OA18593A - Triazole derivatives, intermediates thereof and their use as fungicides - Google Patents

Triazole derivatives, intermediates thereof and their use as fungicides Download PDF

Info

Publication number
OA18593A
OA18593A OA1201800053 OA18593A OA 18593 A OA18593 A OA 18593A OA 1201800053 OA1201800053 OA 1201800053 OA 18593 A OA18593 A OA 18593A
Authority
OA
OAPI
Prior art keywords
alkyl
phenyl
halogen
formula
halogenalkoxy
Prior art date
Application number
OA1201800053
Inventor
Alexander Sudau
Peter Dahmen
Ulrike Wachendorff-Neumann
Ruth Meissner
Julie GEIST
David Bernier
Jean-Pierre Vors
Pierre-Yves Coqueron
Sven WITTROCK
Ricarda MILLER
Sebastien Naud
Stephane Brunet
Pierre Genix
Philippe Kennel
Sebastian Hoffmann
Original Assignee
Bayer Cropscience Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Cropscience Aktiengesellschaft filed Critical Bayer Cropscience Aktiengesellschaft
Publication of OA18593A publication Critical patent/OA18593A/en

Links

Abstract

The present invention relates to novel triazole derivatives, to processes for preparing these compounds, to compositions comprising these compounds, and to the use thereof as biologically active compounds, especially for control of harmful microorganisms in crop protection and in the protection of materials and as plant growth regulators.

Description

TRIAZOLE DERIVATIVES, INTERMEDIATES THEREOF AND THEIR USE AS FUNGICIDES
The présent invention relates to novel triazole dérivatives, to processes for preparing these compounds, to compositions comprising these compounds, and to the use thereof as biologically active compounds, espccially for control of harmful microorganisms in crop protection and in the protection of materials and as plant growth 5 regulators.
It is already known that particular phcnoxy-phcnyl-substituted triazole dérivatives can be used in crop protection as fongicides (e.g. EP-A 0 275 955; J. Agric. Food Chem. 2009,57,4854-4860; CN-A 101225074, DE-A 40 03 180; EP-A 0 113 640; EP-A 0 470 466; US 4,949,720; EP-A 0 126 430, DE-A 38 01 233; WO-A 2013/007767; WO-A 2013/010862; WO-A 2013/010885; WO-A 2013/010894; WO-A 2013/024075; WO-A 10 2013/024076; WO-A 2013/024077; WO-A 2013/024080; WO-A 2013/024081; WO-A 2013/024082; WO-A
2013/024083 and WO-A 2014/082872). It is also known that particular phcnoxy-phcnyl-substituted triazolinethione dérivatives (e.g. WO-A 2010/146114) and particular phcnoxy-hetaryl-substitutcd triazolinethïone dérivatives (e.g. WO-A 2010/146116) can be used in crop protection as fongicides.
Since the ecological and économie demands made on modem active ingrédients, for exemple fongicides, are 15 increasing constantly, for cxample with respect to activity spectrum, toxicity, sclectivity, application rate, formation of residues and fâvourable manufacture, and there can also be problems, for cxample, with résistances, there is a constant need to develop novel fongicidal compositions which hâve advantages over the known compositions at least in some areas.
The compounds according to the présent invention differ from those described in the abovementioned 20 publications inter alia by the replacement of the abovementioned phcnoxy-phcnyl group by a hetaryloxy-phcnyl group as defined herein and/or by the absence of sulphur-based substituents.
Accordingly, the présent invention provides novel triazole dérivatives of the formula (I)
wherein
R’ représente hydrogen, Ci-Ce-alkyl, Ci-Ce-alkcnyl, Cj-Ce-alkynyl, Cî-Cg-cycloalkyl, Cî-Cs-cycloalkylCi-Ct-alkyl, phenyl, phcnyl-Ci-Ct-alkyl, phcnyl-Cî-Q-alkcny! or phcnyl-Ci-Ct-alkynyl;
R2 represents hydrogen, Ci-Ce-alkyl, Cî-Ce-alkcnyl, G-Ce-alkynyl, Cj-Ca-cycloalkyl, Cj-Cs-cycloalkylCi-Q-alkyl, phenyl, phcnyl-Ci-Ct-alkyl, phcnyl-Cj-Cealkcnyl or phcnyl-Cî-Q-alkynyl;
wherein the aliphatic moietics, cxcluding cycloalkyl moietics, of R1 and/or R2 may carry 1, 2,3 or up to the 30 maximum possible number of identical or different groups R* which independently of one another arc selected from
R* halogen, CN, nitro, phenyl, Ci-C<-alkoxy and Ci-Q-halogenalkoxy;
wherein die phenyl may be substituted by 1,2,3,4 or 5 substituents selected independently of onc another from halogen; CN; nitro; Ci-Q-alkyl; Ci-G-alkoxy; Ct-Q-halogenalkyl; Ci-Cxhalogcnalkoxy;
wherein the cydoalkyl and/or phenyl moieties of R1 and/or R1 may carry 1, 2, 3,4,5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-Cealkyl, Ci-G-alkoxy, Ci-Q-halogenalkyl and Ci-Cchalogenalkoxy;
R4 represents halogen, CN, nitro, Ci-Q-alkyl, Ci-Cr-halogcnalkyl, Ct-Ci-alkoxy, Ci-Crhalogennlkoxy, Ci-C<-alkylcarbonyl, hydroxy-substituted Ct-C<-alkyl or penrafluoro-k6-sulfanyl; preferably halogen, 10 CN, nitro, Ci-Oalkyl, Ci-Ohalogenalkyl, Ci-G-alkoxy, Ci-Crhalogenalkoxy or pcntafluoro-λ6sulfanyl;
m isanmtegerandîsO, 1,2,3,4 or 5;
Y represents a substituted or non-substituted 6-mcmbered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
preferably from
wherein Y is connected to the O of fonnula (I) via the bonds identifîed with “u” and Y is connected to the CR'(OR2) moiety of fonnula (I) via die bonds identifîed with “v” and wherein
R représente hydrogen, Ci-Cî-halogenalkyl, Ci-Cî-halogcnalkoxy, Ci-Cz-alkylcarbonyl or halogen; preferably hydrogen, Ci-Cî-halogenalkyl or halogen;
R3 rcprescnts halogen, CN, nitro, CrQ-alkyl, Ci-Q-halogenalkyl, Ci-Ct-alkoxy or Ci-Cthalogenalkoxy, n is anintegerand is 0, I or 2;
and its salts or N-oxides.
The salts or N-oxides of the triazole dérivatives of fonnula (I) also hâve fungicidal properties.
The fonnula (I) provides a general définition of the triazolc dérivatives according to the invention. Preferred radical définitions for the formulae shown above and below are given below. These définitions apply to die end products ofthe fonnula (I) and llkewise to ail intermediates.
R1 preferably rcprescnts hydrogen, Ci-Ct-alkyl, Cî-Ce-alkenyl, Cj-Ce-alkynyl, cyclopropyl, phenyl, benzyl, phcnylethcnyl or phenylethinyl, wherein the aliphatic moieties, excluding the cycloalkyl moieties, of R* may carry 1,2,3 or up to the maximum possible number of identical or different groups R1 which independently of one another are selected from
R* halogen, CN, nitro, phenyl, Cj-Q-alkoxy and Ci-Q-halogcnalkoxy;
wherein the phenyl may be substituted by 1,2,3,4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-Q-alkyl; Ci-Ci-alkoxy; Ci-Crhalogenalkyl; C1-C4halogcnalkoxy, wherein the cycloalkyl and/or phenyl moieties of R1 may cany l, 2, 3, 4, 5 or up to the maximum 5 number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-Ca-alkyl, Ci-Q-alkoxy, Ci-Ci-halogenalkyl and Ci-Q-halogenalkoxy.
R1 more preferably represents hydrogen, methyl, ethyl, propyl, isopropyl, butyl, cyclopropyl, CFi, allyl, CH2C=C-CH3 or CHîOCH, wherein the aliphatic groups R* may cany 1, 2, 3 or up to the maximum possible number of 10 identical or different groups R* which independently of one another are selected from
R* halogen, CN, nitro, phenyl, Ct-C<-alkoxy and Ci-Ohalogenalkoxy;
wherein the phenyl may be substituted by 1,2,3,4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-Ci-alkyl; Ci-G-alkoxy, Ci-Cx-halogenalkyl; C1-C4halogenalkoxy.
R1 more preferably represents hydrogen or non-substituted methyl, ethyl, propyl, isopropyl, butyl, cyclopropyl, CFj, allyl, CH2OC-CH3 or CH2OCH.
R1 more preferably represents hydrogen, methyl or ethyl.
R1 most preferably represents methyl.
R1 preferably represents hydrogen. Ci -G-alkyL allyl, propargyl or bcnzyl, wherein the aliphatic groups R1 may carry 1,2,3 or up to the maximum possible number of identical or different groups R* which independently of one another are selected from
R* halogen, CN, nitro, phenyl, Ci-Oalkoxy and Ci-Ci-hal ogenalkoxy;
wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ct-Ci-alkyl; Ci-Cralkoxy; Ci-Ohalogenalkyl; Ci-Cg-halogenalkoxy;
wherein the cycloalkyl and/or phenyl moieties of R2 may cany 1,2, 3,4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-Oalkyl, Ci-Q-alkoxy, Ci-Ci-halogenalkyl and Ci-Ca-halogcnalkoxy.
R2 more preferably represents hydrogen, methyl, ethyl, isopropyl or allyl.
wherein the aliphatic groups R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R* which independently of one another arc selected from
R* halogen, CN, nitro, phenyl, Ci-G-alkoxy and Ci-Q-halogenalkoxy, wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one 5 another from halogen; CN; nitro; Ci-Q-alkyl; Ci-Q-alkoxy; Ci-Cehalogenalkyl; Ci-C»-halogenalkoxy.
R1 more preferably represents hydrogen or non-susbstituted methyl, ethyl, isopropyl or allyl,
R2 more preferably represents hydrogen or mcthyL
R2 most preferably represents hydrogen.
R4 preferably represents CF3, OCF3, Br, Cl or pentafluoro-Xe-sulfhnyl.
R4 more preferably represents CF3, OCFj, Br, Cl or pcntafluoro-X6-sulfanyl in the 4-position of the phenyl moiety of formula (I).
R4 also more preferably represents CL OCF3 or pentafluoro-X6-sulfanyl, even more preferably Cl, OCF3 or pentafluoro-Xe-sulfànyl in the 2- and/or 4-position of the phenyl moiety of formula (I).
m preferably is 1,2 or 3.
m more preferably is 1 or 2.
Y preferably represents
R R R wherein
R, R3 and n are defined as mentioned above for formula (I).
R preferably represents hydrogen, Crhalogenalkyl, F or CL
R more preferably represents Ci-halogcnalkyl, F or Cl.
R most preferably represents CF3 or Cl.
n preferably is 0.
-6The radical définitions and explanations given above in general ternis or stated within preferred ranges can, however, also be combined with one another as desired, i.e. including between the particular ranges and preferred ranges. They apply both to the end products and correspondîngly to precursors and intermediates. In addition, individual définitions may not apply.
Préférence is given to those compounds of the formula (I) in which each of the radicals have the abovementioned preferred définitions.
Particular préférence is given to those compounds of the formula (I) in which each of the radicals have the abovementioned more and/or most preferred définitions.
In preferred embodiments of the présent invention
R1 «présents hydrogen or Cl-C4-alkyl;
R2 «présents hydrogen;
R4 «présents CFj, OCFj, Br, Cl or pcntafluoro-X^sul&nyl;
m is I;
Y représenta
wherein Y is connected to the O of formula (I) via the bonds identified with ’ÏT and Y is connected to the CR1 (OR2) moiety of formula (I) via the bonds identified with V and
R «présents Ci-halogcnalkyl; and n is 0.
In more preferred embodiments of the présent invention
R1 «présents methyl;
-7R* représenta hydrogen;
R4 représenta Cl in the 4-positionofthe phenyl moiety of formula (I); m is 1;
Y représenta
wherein Y is connected to the O of formula (I) via the bonds identified with “u” and Y is connected to the CR1 (OR2) moiety of formula (I) via the bonds identifïed with “v” and
R représenta CFj; and n is 0.
In the définitions of the symbole given in the above formulae, collective terms were used which are generally représentative ofthe following substituents:
The définition Ci-Ce-alkyl comprises the largest range defined here for an alkyl radical, Specifically, this définition comprises the meanings methyl, ethyl, n-, isopropyl, n-, iso-, sec-, tert-butyl, and also in each case ail isomeric pentyls and hexyls, such as methyl, ethyl, propyl, 1-methylcthyl, butyL 1-mediylpropyl, 2methylpropyl, 1,1-dimethylethyl, n-pentyl, 1-mcthylbutyl, 2-mcthylbutyl, 3-mcthylbutyl, 1,2-dimcthylpropyl,
1.1- dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hcxyt 1-methylpentyl, 2-mediylpentyl, 3mediylpentyl, 4-methylpentyl, 1,2-dimethylbutyl, 1,3-dimethylbutyl, 23-dimethylbutyl, 1,1-dimethylbuty 1,2,2dimethylbutyl, 3,3-dimethylbutyl, 1,1,2-trimethylpropyl, 1,2,2-trimethylpropyl, 1-ethylbutyl, 2-ethylbutyl, 1ethyl-3-methy!propyl, in particular propyl, l-mcthylethyl, butyl, 1-methylbutyl, 2-methylbutyl, 3-mcthylbutyl,
1.1- dimcthylcthyl, 1,2-dimethyl butyl, 13-dïmcthyIbutyl, n-pentyl, 1-mediylbutyl, l-ethylpropyl, hcxyl, 3* m ethyl pentyl. A preferred range is Ci-Q-alkyl, such as methyl, ethyl, n-, isopropyl, n-, iso-, sec-, tert-butyl. The définition Ci-Cï-alkyl comprises methyl and ethyl.
The définition halogen comprises fluorine, chlorîne, bromine and iodinc.
Halogen-substituted alkyl - e.g. referred to as halogenalkyl, halogcnoalkyl or haloalkyi, e.g. Ci-Q-halogenalkyl or Ci-Cî-halogenalkyl - «présents, for example, Ci-Q-alkyl or Ci-Cî-alkyl as defined above substituted by one or more halogen substituents which can bc the same or different Preferably Ci-Cchalogenalkyl représenta chloromethyl, dichloromethyl, trichloromcthyl, fluoromethyl, dî fluoromethyl, trifluoromcthyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, l-fluoroethyl, 2-fluorocthyl, 2,2-difluorocthyl,
2.2.2- trifltioroethyl, 2-chloro-2-fluorocthyl, 2-chloro-2,2-difluoroethyl, 2,2-dichloro-2-fluorocthyl, 2,2,2trichlorocthyl, 1,1-difluoroethyl, pentafluorocthyl, l-fluoro-l-methylethyl, 2-fluoro-l,l-dimcthylethyl,2-fluorol-fluoromethyl-l-methylcthyl, 2-fluoro-l,l-di(fluoromcthyl)-ethyl, 1-chlorobutyl. Preferably C1-C2halogenalkyl représenta chloromethyl, dichloromethyl, trichloromethyl, fluoromethyl, dîfluoromcthyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 1-fluorocthyl, 2-fluoroethyl,
2.2- difluoroethyl, 2,2,2-trifluoroethyl, 2-chloro-2-fluoroethyl, 2-chloro-2,2-difluorocthyl, 2,2-dichloro-2fluoro ethyl, 2,2,2-trichlorocthyl, 1,1-difluoroethyl, pentafluorocthyl.
Mono- or multiple fluorinated Ci-Cu-alkyl représenta, for example, Ci-Cu-alkyl as defined above substituted by one or more fluorine substituent(s). Preferably mono- or multiple fluorinated Ci-Q-alkyl «présents 15 fluoromethyl, dîfluoromethyl, trifluoromethyl, l-fluoroethyl, 2-fluoroethyl, 2,2-difluorocthyl, 222trifluorocthyl, pentafluorocthyl, l-fluoro-l-methyl ethyl, 2-fluoro-l,l-dimcthylethyl, 2-fluoro-1 -fluoromethyl-1methylcthyl, 2-fluoro-l,l-di(fluoromcthyl)-cthyl, l-mcthyl-3-trifluoromcthylbutyl, 3-mcthyl-ltrifluoromethylbutyl.
The définition Cî-Ce-alkenyl comprises the largest range defined hère for an alkenyl radical. Specifically, this 20 définition comprises the meanings ethcnyl, n-, isopropcnyl, n-, iso-, sec-, tert-butenyl, and also in each case ail isomeric pentenyls, hexenyls, 1-methyl-1-propcnyl, 1 -ethyl- l-butenyl. Halogen-substituted alkenyl -referred to as Cî-Ce-haloalkenyl - «présents, for example, Cî-Ce-alkenyl as defined above substituted by one or more halogen substituents which can be the same or different.
The définition Cî-Ce-alkynyl comprises the largest range defined here for an alkynyl radical. Specifically, this 25 définition comprises the meanings ethynyl, n-, isopropynyl, n-, iso-, sec-, tcrt-butynyl, and also in each case ail isomeric pentynyls, hexynyls. Halogen-substituted alkynyl - referred to as Ci-Ce-haloalkynyl - «présents, for example, Ci-Ce-alkynyl as defined above substituted by one or more halogen substituents which can be the same or different.
The définition Cj-Ci-cycloalkyl comprises monocyclic saturated hydrocatbyl groups having 3 to 8 carbon ring 30 members, such as cyclopropyl, cydobutyl, cyclopcntyl, cyclohcxyl, cycloheptyl and cyclooctyl.
The définition halogen-substituted cycloalkyl, halogenocycloalkyl, halocycloalkyl and halogencycloalkyl comprises monocyclic saturated hydrocarbyl groups having 3 to 8 carbon ring members, such as 1-fluorocyclopropy! and 1-chloro-cydopropyl.
The définition aryl comprises aromatîc, mono-, bi- or tricyclic ring, for example phenyl, naphthyl, anthracenyl 35 (anthryl), phenanthracenyl (phenanthryl).
Optionally substituted radicals may be mono- or polysubstituted, where ïn the case of polysubstiturion, the substituents may be idcntical or different.
Unless indicated otherwisc, a group or a substituent which is substituted according to the invention preferably can be substituted by one or more group(s) selected from the list consisting of halogen; SH; nitro; hydroxyl;
cyano; amino; sulfânyl; pentafluoro-X6-sulfanyl; formyl; formyloxy; formylamino; carbamoyl; Nhydroxycarbamoyl; carbamate; (hydroxyimïno)-Ci-G-alkyl; Ci-Cj-alkyl; Ci-Cg-halogcnalkyt; Ci-Cj-alkyloxy; Ci-Cg-halogenalkyloxy; Ci-Cg-alkylthio; CpCg-halogenalkylthio; tri(Ci-Cg-alkyi)sÎlyl; ίπ(0ι-0ί-811εγ1)5ΪΙγ1-0ιCg-alkyl; Ci-C7-cycIoalkyI; Cj-Cî-halocycloalkyl; Cj-CT-cycIoalkenyl; Cj-Cî-halocycloalkenyl; G-Ciocycloalkylalkyl; G-Cio-halocycloalkyialkyl; G-Cij-cycloalkylcycloalky!; tri(Ci-G-alkyl)silyl-Ci-CT10 cycloalkyl; Ci-G-alkenyl; Cî-Cg-alkynyl; C2-C8-alkcnyloxy; C2-Cg-halogcnaIkcnyloxy; Ci-Cg-alkynyloxy;
Ci-Cg-alkylamino; di-Ci-Cg-alkylamino; Ci-G-halogenalkylamino; di-Ci-Cg-halogenalkylamino; Ci-Cgalkylaminoalkyl; di-Ci-Cg-alkylaminoalkyl; Ci-Cg-alkoxy; Ci-Cg-halogcnoalkoxy; Ci-Cg-cyanoalkoxy; G-Cgcycloalkylalkoxy, Cj-G-cycloalkoxy, Cî-G-alkoxyalkoxy; CrCg-alkylcarbonylalkoxy; Ci-Cg-alkylsulfanyl; Ci-Ct-halogenoalkylsulfânyl; Cj-Cg-alkenyloxy; Ci-Cg-halogenoalkenyloxy; Cî-Cg-alkynyloxy; Cj-Cg15 halogenoalkynyloxy; Ci-G-alkylcarbonyl; Ci-Cg-halogenoalkylcarbonyl; Cj-Cg-cycloalkylcarbonyl; Cj-Cghnlogenocycloalkylcarbonyl; Ci-Cg-alkylcarbamoyl; di-CpCg-alkylcarbamoyl; N-C|-Cg-alkyloxycarbamoyI; Ci-Cg-alkoxycarbamoyl; N-G-G-alkyl-Ci-G-alIcoxycarbamoyl; Ci-Cg-alkoxycarbonyl; G-Ghalogenoalkoxycarbonyl; G-Cg-cycloalkoxycarbonyl; Cj-G-alkoxyalkylcarbonyl; Cj-Ghalogenoalkoxyalkylcarbonyl; Ci-Cio-cycloalkoxyalkylcaibonyl; Ci-Cg-alkylaminocarbonyl; di-G-G20 alkylaminocarbonyl; G-G-cycloalkylaminocarbonyl; Ci-Cg-alkylcarbonyloxy, Ci-Cghalogcnoalkylcarbonyloxy; G-G-cycIoalkylcarbonyloxy; Ci-G-alkylcarbonylamino; Ci-Cghalogenoalkylcarbonylamino; G-G-alkylaminocarbonyloxy; di-Ci-G-alkylaminocarbonyloxy, Ci-Galkyloxycarbonyloxy; Ci-G-alkylsulfinyl; C|-Cg-halogcnoalkylsu1finyl; G-G-alkylsulfonyl; Ci-Ghalogcnoalkylsulfonyl; Ci-Cg-alkylaminosulfamoyl; di-Ci-Cg-alkylaminosulfamoyl; (G-G-alkoxyimino)-Ci25 G-alkyl; (Cj-G-cycloalkoxyimtno)-Ci-Cg-alkyl; hydroxyimino-Ci-Cg-alkyl; (Ci-Cg-alkoxyimino)-Cî-C?cycloalkyl; hydroxyimino-G-G-cycloalkyl; (Ci-G-alkylimino)-oxy; (Ci-Cg-alkylimino)-oxy-Ci-Cg-alkyl; (GC7-cycloalky!imino)-oxy-Ci-Cg-a!kyl; (Ci-G-aIky!imino)-oxy-C3-C7-cycloalkyl; (Ci-Cg-alkenyloxyimino)-CiCg-alkyl; (Ci-Cg-alkynyloxyimino)-Ci-Cg-alkyl; 2-oxopyrrolidin-l-yI, (benzy!oxyimino)-C|-Cs-alkyI; C|-Galkoxyalkyl; Ci-G-alkylthioalkyl; Ci-Cg-alkoxyalkoxyalkyl; C|-Ce-ha!ogenoaIkoxyalky!; bcnzyl; phenyl; 530 membered heteroaryl; 6-membered heteroaryl; benzyloxy; phentyloxy; bcnzylsulfânyl; bcnzylamino; phenoxy;
phenylsulfânyl; or phenylamino; wherein the bcnzyl, phenyl, 5-membered heteroaryl, 6-membered heteroaryl, 7-mcmbcrcd heteroaryl, benzyloxy or phcnyloxy may be optionally substituted by one or more group(s) selected from the aforementioned list
As not otherwise indicated - the définition 5-, 6- or 7-mcmbcrcd hetaryl or heteroaryl comprises unsaturated 35 heterocyclic 5- to 7-membered ring containing up to 4 heteroatoms selected from N, O and S: for example 2furyl, 3-furyl, 2-thienyl, 3-thicnyl, 2-pyrroIyl, 3-pynolyl, 1-pyrrolyl, 3-pyrazoIyl, 4-pyrazolyl, 5-pyrazolyl, Ipyrazolyl, 1 H-imidazoI-2-yl, lH-imidazol-4-yl, lH-imidazoI-5-yl, IH-imidazol-l-yl, 2-oxazoIyl, 4-oxazolyl, 5oxazolyl, 2-thiazolyl, 4-thiazolyl, 5-thiazolyl, 3-isoxazoIyL 4-isoxazolyl, 5-isoxazolyI, 3-îsothiazolyl, 418593
-10isothiazolyl, 5-isothiazolyl, lH-l,2,3-triazol-l-yl, lH-l,23-triazol-4-yl, lH-l,2,3-triazol-5-yl, 2H-l,2,3-triiizol-
2- yl, 2H-13J-triazol-4-yl, lH-l,2,4-triazol-3-yl, lH-l,2,4-triazol-5-yl, lH-l,2,4-triazol-l-yl, 4H-l,2,4-triazol-
3- yl, 4H-l^,4-triazol-4-yl, IH-tetrazol-l-yl, lH-tctrazol-5-yl, 2H-tetrazol-2-yl, 2H-tctrazol-5-yl, 1,2,4oxadiazol-3-yl, l«2,4-oxadiazol-5-yl, 1^2,4-thiadiazol-3-yl, l,2,4-thiadiazol-5-yl, U,4-oxadiazol-2-yh 1,3,4thîadiazol-2-yl, l,2,3-oxadiazol-4-yl, 133-oxadiazo!-5-yl, l,2,3-thiadiazol-4-yl, l,2,3-thiadiazol-5-yl, 133oxadiazol-3-yk 133-thiadiazol-3-yl, 2-pyridinyl, 3-pyridinyl, 4-pyridinyl, 3-pyridazinyl, 4-pyridazinyl, 2pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 2-pyrazinyI, 133-triazin-2-yl, l,2,4-triazin-3-yl, l,2,4-triazin-5-ylt 13,4-triazin-6-yl.
If appropriate, the compounds according to the invention can be présent as mixtures of different possible 10 isomcric forms, in particular ofstcreoisomers, such as, for exemple, E and Z, threo and erythro, and also optical isomers, and, if appropriate, also of tautomers. What is daimed are both the E and the Z isomers, and also the threo and erythro, and the optical isomers, any mixtures of these isomers, and the possible tautomeric forms.
If appropriate, the compounds of the présent invention can exist in one or more optical or chiral isomer forms depending on the number of asymmetric centres in the compound. The invention thus relates equally to ail the 15 optical isomers and to their racemic or scalcmic mixtures (the term scalemic dénotes a mixture of ennntiomers in different proportions) and to the mixtures of ail the possible stereoisomers, in ail proportions. The diastereoisomers and/or the optical isomers can be separated according to the methods which are known per se by the man ordinary skilled in the art lf appropriate, the compounds of the présent invention can also exist in one or more géométrie isomer forms 20 depending on the number of double bonds in the compound. The invention thus relates equally to ail géométrie isomers and to ail possible mixtures, in ail proportions. The géométrie isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art lf appropriate, the compounds of the présent invention can also exist in one or more géométrie isomer forms depending on the relative position (syn/anti or cis/trans) ofthe substituents ofring B. The invention thus relates 25 equally to ail syn/anti (or cis/trans) isomers and to ail possible syn/anti (or cis/trans) mixtures, in ail proportions.
The syn/anti (or cis/trans) isomers can be separated according to general methods, which are known per se by the man ordinary skilled in the art
Illustration ofthe professes and lntermediatcs
The présent invention is furthcrmorc relatcd to proccsscs for preparing compounds of formula (I). The présent 30 invention furthcrmorc relates to intermediates such as compounds of formulae (IV), (V), (Va), (VI), (VU), (IX), (X), (XI) and (XXI) and the préparation thereof.
The compounds (I) can be obtained by various routes in analogy to prior art processes known (see e.g. J. Agric. Food Chem. (2009) 57,4854-4860; EP-A 0 275 955; DE-A 40 03 180; EP-A 0 113 640; EP-A 0 126 430; WOA 2013/007767 and référencés therein) and by synthesis routes shown schematically below and in the 35 experimental part of this application. Unless indicated otherwise, the radicals Y, R, R1, R1, R1. R4, m and n hâve
the meanings given above for the compounds of formula (I). These définitions apply not only to the end products ofthe formula (I) but likewise to ail intermediates.
If individual compounds (I) cannot be obtained by those routes, they can be prepared by derivatization of other compounds (I).
Only for better understanding of the following Schemcs the alcohols of formula (I) hâve been named as alcohols (ΙΉ), although such alcohols (I-H) are encompassed by general formula (I) as defined above.
Process A (Scheme I):
Scheme 1: Process A - Préparation of Compounds (I).
R’MgBr
R’LI
R’-LG1 orhydride j donor Λ
CHjCOCt IPrMgBr C u(1) catalyst Cu(l) catalyst A1CI, halogen, preferably F or Cl halogen, preferably Br or I
F, Cl, Br or I, preferably Cl or Br halogen, -OSCh-Ci-CeAlkyl, -OSOî-aryl,
-OSOî-O-Ci-Ctalkyl, -OSCb-O-aryl, -OSCb-NRARA
X
Z
Hal
LG1 wherein the alkyl” and/or “aryl” may carry 1, 2, 3 or up ta the maximum possible number of identical or different groups RB. LG2 is preferably Cl, Br, I, -OSCh-Ci-Guilkyl or -OSCh-p-tolyl.
RB - halogen, CN, nitro, Ci-Ci-alkyl, Ci-Ct-halogenalkyl, Ci-Q-alkoxy or Ci-G-halogenalkoxy
R* = hydrogen, Ci-Ce-alkyl, Cî-Cs-alkenyl, Cî-Ce-alkynyl, Cj-Ce-cycloalkyl, Ci-Cs-cycloalkyl-Ci-Ct-alkyl, phenyl, phcnyl-Ci-Ct-alkyl, phenyl-Cî-Q-alkenyl or phenyl-Ci-Ccalkynyl, which may carry substituents mentioned above for the substituents given for R1.
The compounds (II) and (III) (Scheme 1) can be convertcd by means of methods described in the literature to the corrcsponding compounds (IV) and subsequently to compounds (Va), (VI), (VII), (I-II) and (I) (see WO-A 2013/007767). Phénols (II) are reacted with aryls (ΙΠ), wherein X stands for F or Cl and Z stands for Br or I. Z is in particular Br and the reaction is optionally performed in the presence of a base to obtain compounds (TV). These intermédiares, in particular with Z being Br, are then trans formed into Grignard reagents by the reaction 10 with magnésium or by transmetallation reactions with reagents such as isopropylmagnesium halides and subsequently reactcd with acetyl chloride to yield acetophenones (Va). Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as CuCl, CuCh, AlClj. LiCl and mixtures thereof. Compounds (Va) can be halogenated in a next step, for instance with Ch or Bn in order to obtain α-haloketones (VI). The reactions are preferably carried out in an organic solvent such as diethyl ether, 15 methyl tert-butyl ether, methanol or acetic acid. The halogen in α-position, preferably Cl or Br, can bc subsequently replaced by a 1,2,4-triazolc. Preferably, this transformation is being conducted in the presence of a base, such as NajCOj, KïCOj, CsiCOj, NaOH, KOtBu, NaH or mixtures thereof, preferably in the presence of an organic solvent, such as tetrahydrofuran, dimcthylformamide or toluène. Ketones (VII) arc subsequently reacted with nucleophilic substrates, such as Grignard reagents R'MgBr or organolithîum compounds R’Li or a 20 hydride donor such as sodium borohydride to obtain alcohols (I-H). These transformations arc preferably conducted under anhydrous conditions, optionally in the presence of a Lewis acid such as LaChx2LiCl or MgBrîxOEtl· After further derivatization of alcohol (I-II) with an alkylating agent R:-LG compounds of the general formula (I) can be obtained. LG is a replaceable group such as halogen, alkylsulfonyl, alkylsulfonyloxy and arylsulfonyloxy, preferably Br, I and methylsulfonyloxy. These derivatizations are optionally performed in 25 the presence of a base such as NaH and in the presence of an organic solvent such as tetrahydrofuran.
- 13Process B (Scheme 2):
Scheme 2: Process B — Préparation of Alcohols (l-H).
R’COCl IPrMgBr
(l*H) (lx>
X halogen, preferably F, Cl or Br, more preferably F or Cl Z ™ halogen, preferably Br or I
Compounds of the general structure (III), in particular with Z being Br, are being transformed into Grignard reagents by the reaction with magnésium or by transmctallation réactions with reagents such as isopropylmagnesium halides and subsequently reacted with acyl chlorides to yield ketones (VIII). Thosc reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as CuCh, AlClj, LiCl and mixtures thereof. Ketones (VIII) are subsequently reacted with Phénols (II), optionally in the presence of a base such as K2COj or Cs2COj and a solvent such as DMF (dimethyl formamidc). to obtain compounds (V). Altematively, compounds (V) can be produced by the reaction of (IV) with magnésium or transmctallation reagents and subséquent reaction with acyl chlorides R’COCl. Those réactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as CuCh, AlClj, LiCl and mixtures thereof, Z being preferably Br. Thereafter, întermediates (V) can be converted by means of methods described în the literature to the corresponding epoxides (IX) (see e.g. EP-A 461 502, DE-A 33 15 681, EP-A 291 797,
WO-A 2013/007767). Intermediates (V) arc preferably reacted with trimethylsulfoxonium- or trimethylsulfbnium-salts, which might be prepared in situ, preferably trimethylsulfoxonium halides, trimethylsulfonium halides, trimethylsulfoxonium methylsulfates or trimethylsulfonium methylsulfates, preferably in the presence of a base such as sodium hydroxide. Epoxides (IX) can bc subsequendy reacted with a 1,2,4-triazole in order to obtain compounds (I-II)· Preferably, this transformation is being conducted în the presence of a base, such as Na2COj, K2CO3, Cs2CO Jt NaOH, KOtBu, NaH or mixtures thereof, preferably in the presence of an organic solvent, such as tetrahydrofuran, dimethylformamide or toluène.
- ΜProcess C (Scheme 3):
Scheme 3: Process C - Préparation of Compounds (I).
ι RîQH
e.g. PBr3 or MeSOjCI
LG = halogen, -OSO2-C1-CMalkyl, -OSCh-aryl, -OSCh-O-Ci-Ckalkyl, -OSCh-O-aryl. -OSCh-NRARA wherein the “alkyl and/or aryl” may carry 1, 2, 3 or up to the maximum possible number of identical or different groups RD, preferably Cl, Br, I, -OSOî-Ci-C^alkyl or -OSOî-p-tolyl, more preferably Cl, Br, I or OSOî-Ci-Ctalkyl.
Rd halogen, CN, nitro, Ci-G-alkyl, Ci-G-halogenalkyl, Ci-G-alkoxy or Ci-Cchalogenalkoxy
RA - hydrogen, Ci-C«-alkyI, Ci-Ce-alkenyl, Cr-Ce-alkynyl, Cî-Cg-cycloalkyl, CvCs-cycloalkyl-Ci-Cralkyl, phenyl, phenyl-Ci-G-alkyl, phenyl-Cî-Q-alkenyl or phcnyl-Ci-G-alkynyl, which may carry substituents mentioned above for the substituents given for R1.
Epoxidcs of the general structure (IX) can be reactcd with alcohols R^OH to yield alcohol (X). Prcfcrentially, 15 this transformation is being performed in the presence of an acid. Thereaftcr, alcohol (X) is being prepared for a nucleophilic substitution reaction. Along those lînes, the alcohol functionality in compound (X) is being reacted with halogenatïng agents or sulfonating agents such as PBrj, PCI3, McSOjCl, tosyl chloride or thiony! chloride to obtain compounds (XI). Subsequently, Iniermediatcs (XI) can be reacted with a 1^,4-triazolc in Drdcr to obtain compounds (I). Optionally, this transformation is being conducted in the presence of a base, such as 20 NajCOî, KîCOî, CS2CO3, NaOH, KOtBu, NaH or mixtures thereof preferably in the presence of an organic solvent, such as tetrahydrofuran, dimethyl formamide or toluene.
-15Proccss D (Scheme 4):
Scheme 4: Process D - Préparation of Intermediates (V).
RO-C(*0)-OR5 or
HO-R5 or
X = halogen, preferably F or Cl
Z ” halogen, preferably Cl, Br or I, more preferably Br or I Rs - Ci-Cé-alkyl. Cî- Ct-cycloalkyl or aryl
R®, R7 ” independently Ci-Ce-alkyl or Cj-Ce-cydoalkyl 10 * * * * 15
Compounds (III) (Scheme 4) can be convertcd by means of methods described in the 1 itérature to the corresponding compounds (XII) and subsequently to compounds (XIII), (XIV). (XV), (XVI) and (V).
Altematively, one or scveral reaction steps might be skipped. This is particularly true if certain protecting groups arc not essential and thus process D might be shortened (e.g. (XID —» (XV)).
Compounds (ΙΠ), wherein X stands for F or Cl and Z stands for Cl, Br or I, are optionally reacted with carbon dioxidc or formate salts to obtaîn compounds (XII)· This transformation is performed in the presence of reagents or catalysts such as lithium, magnésium, n-butyllithîum, methyllithium or nickel (e.g. Organic & Biomolecular Chemistry, 8(7), 1688-1694; 2010; WO-A 2003/033504; Organometallics, 13(11), 4645-7; 1994 and références cited thereîn). Altematively, compound (III) is reacted in a hydroxycarbonylation reaction with carbon monoxidc or a formate sait, preferentially in the presence of a catalyst such as Pd(OAc)2 and Co(OAc)2 (e.g. Dalton Transactions, 40(29), 7632-7638; 2011; Synlett, (11), 1663-1666; 2006 and référencés cited therein).
Subsequently, acids (XII) are reacted with anhydrides R,O-C(=O)-ORi, alcohols HO-R5 or alkyl halides Z-R5 in order to obtain ester of the general structure (XIII) (e.g. Russian Journal of General Chemistry, 70 (9), 13711377, 2000; Bulletin of the Chemical Society of Japon 76 (8), 1645-1667, 2003). The reactions are preferentially performed in the presence of a coupling reagent such as CDI or DEAD and/or a base such as
-16triethylamine orDMAP. Optionally, the corresponding acid chlondes are being formed before the reaction with alcohols HO-R5 takes place (e.g. WO-A 2007/059265). Ester (XIII) are subsequently reacted with Phénols (Π), optionally in the presence of a base such as K2CO3, CsjCOj, NEt3 or DABCO and a solvent such as DMF, to obtain compounds (XIV). The following hydrolysis can be canicd out in the presence of an acid such as H2SO4, HNOj or p-toluenesu!fonic acid or in the presence of a base such as KOH to yield acid (XV). Thereaftcr, acid (XV) can be reacted with alkoxyalkylamine, preferentially methoxymethylamine. The corresponding reaction can be canicd out in the presence of reagents such as carbodiimides (e.g. WO-A 2011/076744), diimidazolyl ketone CDI, N-alkoxy-N-alkylcarbamoyl chloridcs (e.g. Bulletin of the Korean Chemical Society 2002, 23, 521-524), S,S-di-2-pyridyl dithiocarbonates (e.g. Bulletin ofthe Korean Chemical Society 2001,22,421-423), trichloromethyl ch loro formate (e,g. Synthetic communications 2003, 33, 4013-4018) or peptide coupling reagent HATU. Intermediates (V) can be obtained after reaction of Weinreh amides (XVI) with magnésium halides R|MgZ such as méthylmagnésium bromide, méthylmagnésium chloride or ethylmagnesiumbromidc, preferentially in a solvent such as THF.
Process E (Scheme 5):
Scheme 5: Process E - Préparation of Intermediates (V).
Z = halogen, preferably Cl, Br or 1, more preferably Br or 1 R* “-B(OH)2, Br, Ι,-Γ-aiyl,
R’ - Ci-Ce-alkyl, Cj-G-cycloalkyl
R10 - C2-Ce-alkyl
Amines (XVII) (Scheme 5) can be converted to the corresponding alcohols (XVIII) by means of methods described in the literature (e.g. Journal of Médicinal Chemistry 1999,42,95-108; WO-A 2007/017754; WO-A 2007/016525; Tetrahedron let. 2003,44,725-728), preferentially in the presence of sulfuric acid or hydrochloric acid as well as NaNO?. Subsequently, alcohols (XVIII) can be converted to compounds of the general structure (TV) by literature know methods (e.g. Chemistry-A Européen Journal 2012, 18, 1414014149; Organic Lettcrs 2011, 13, 1552-1555; Synlctt 2012,23, 101-106; WO-A 2005/040112; Organic Lettcrs 2007,9,643-646; WO18593
A 2009/044160 and référencés cited therein). Compounds (XIX) could be for instance aryliodides which are optionally converted to diaryliodonium salts prior to the reaction, arylbromidcs or -iodidcs which are preferably reacted in the presence of a catalyst such as Cu or Cul or arylboronic acids or -esters which are preferentially reactedin the presenceofa catalyst suchas Cu(OAc)2. Compounds(IV) can bereacted withastannanesuchas 5 (XX) in the presence of a transition métal catalyst such as Pd(PPhj)4, PdChtPPhjh, PdClj or Cul (e.g. WO-A 2011/126960; WO-A 2011/088025; Journal of Organic Chemistry 1997,62,2774-2781; WO-A 2005/019212). Compounds (XXI) can be subscquently hydrolyzed to yield compounds (V), wherein R1 is representd by Cj-Cealkyl, preferentially in the presence of an acid such as HCl or H2SO4 (e.g. Journal of Organic Chemistry 1990, 55, 3114-3118). Compounds (V) can be alternatively produced by the reaction of (IV) with magnésium or 10 transmetallation reagents and subséquent reaction with acyl chloridcs R'COCL Those reactions are preferably performed under anhydrous conditions and in the presence of a catalyst such as CuCh, AlClj, LiCl and mixtures thereof) Z being preferably Br.
General
The processes A to E according to the invention for preparing compounds of the formula (I) are optionally 15 performed using one or more reaction aux il iaries.
Useful reaction auxiliaries are, as appropriate, inorganic or organic bases or acid acceptors. These preferably include alkali métal or alkaline eaith métal acétates, amides, carbonates, hydrogencarbonates, hydrides, hydroxides or alkoxides, for example sodium acetate, potassium acetate or calcium acetate, lithium amïde, sodium amide, potassium amidc or calcium amide, sodium carbonate, potassium carbonate or calcium 20 carbonate, sodium hydrogencarbonate, potassium hydrogencarbonate or calcium hydrogencarbonate, lithium hydride, sodium hydride, potassium hydride or calcium hydride, lithium hydroxide, sodium hydroxide, potassium hydroxide or calcium hydroxide, n-butyllithîum, sec-butyllithîum, tert-butyllithium, lithium diisopropylamidc, lithium bis(trimethylsilyl)amîde, sodium methoxide, ethoxide, n- or i-propoxide, n-, i-, s- or t-butoxide or potassium methoxide, ethoxide, n- or i-propoxide, n-, i-, s- or t-butoxidc; and also basic organic 25 nitrogen compounds, for example trimcthylamine, triethylamine, tripropylamine, tributylamine, ethyldiisopropylamine, Ν,Ν-dimethylcyclohcxylaminc, dicyclohexylamine, ethyldicyclohexylamine, N,Ndimethylaniline, Ν,Ν-dimethylbenzylaminc, pyridine, 2-methyl-, 3-methyl-, 4-mcthyl-, 2,4-dimethyl-, 2,6dimcthyl-, 3,4-dimethyl- and 3,5-dimethylpyridine, 5-ethyl-2-mcthy!pyridine, 4-dimethylaminopyridine, Nmethylpiperidine, l,4-diazabicyclo[2.2.2]-octane (DABCO), l,5-diazabicyc!o[4.3.0]-non-5-enc (DBN) or 1,830 diazabicyclo[5.4.0]-undcc-7-ene (DBU).
Useful reaction auxiliaries are, as appropriate, inorganic or organic acids. These preferably include inorganic acids, for example hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, sulphuric acid, phosphoric acid and nitric acid, and acidic salts such as NaHSCh and KHSO4, or organic acids, for example, formie acid, carbonîc acid and alkanoic acids such as acetic acid, trifluoroacetic acid, trichloroacetic 35 acid and propionïc acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, bcnzoîc acid, cinnamic acid, oxalic acid, saturated or mono- or diunsaturated Ce-C» fatty acids, alkylsulphuric monoesters, alkylsulphonic acids (sulphonic acids having straight-chain or branched alkyl radicals having 1 to
-1820 carbon atoms), arylsulphonie acids or aryldisulphonic acids (aromatic radicals, such as phenyl and naphthyl, which bcar one or two sulphonic acid groups), alkylphosphonic acids (phosphonic acids having straight-chain or branched alkyl radicals having 1 to 20 carbon atoms), arylphosphonic acids or aryldiphosphonic acids (aromatic radicals, such as phenyl and naphthyl, which bcar one or two phosphonic acid radicals), where the alkyl and aryl radicals may bear further substituents, for cxample p-toluenesulphonic acid, salicylic acid, p-aminosa!icylic acid, 2-phenoxybcnzoic acid, 2-acctoxybenzoic acid, etc.
The processes A to E according to the invention are optionally performed using onc or more diluents. Useful diluents are virtually ail inert organic solvents. Unless otherwise indicated for the above described processes A to E, these preferably include aliphatic and aromatic, optionally halogenatcd hydrocarbons, such as pentane, 10 hexane, heptane, cyclohexane, petroleum ether, benzine, ligroin, benzène, toluène, xylene, methylene chloride, ethylene chloride, chloroform, carbon tetrachloride, chlorobcnzenc and o-dich!orobenzcne, ethers such as diethyl ether, dibutyl ether and methyl tert-butyl ether, glycol dimcthyl ether and diglycol dimethyl ether, tetrahydrofuran and dioxane, ketones such as acetone, methyl ethyl ketone, methyl isopropyl ketone and methyl isobutyl ketone, esters, such as methyl acetate and ethyl acetate, nitriles, for example acetonitrile and 15 propionitrile, amides, for exemple dimethyl formamide, dimethylacetamide and N-methylpyrrolidone, and also dimcthyl sulphoxîde, tctramcthylencsulphone and hexamethylphosphoramide and DMPU.
In the processes according to the invention, the reaction températures can be varied within a relatively wide range. In general, the températures employed are between -78°C and 250°C, preferably températures between 78°Cand 150°C.
The reaction time varies as a function of the scale of die reaction and of the reaction température, but is generally between a fcw minutes and 48 hours.
The processes according to the invention are generally performed under standard pressure. However, it is also possible to work under elevated or reduced pressure.
For performance of the processes according to the invention, the starting matcrials required in each case are 25 generally used in approximately equimolar amounts. However, it is also possible to use one of the components used in each case in a relatively large excess.
After a reaction has ended, the compounds are optionally separated from the reaction mixture by one of the eustomary séparation techniques. If necessary, the compounds are purified by recrystallization or chromatography.
lf appropriate, in the processes A to E according to the invention also salts and/or N-oxidcs of the starting compounds can be used.
The invention further relates to novel intermediates of the compounds of formula (I), which form part of the invention.
Novel intermediates according to the présent invention are novel compounds of formula (V)
wherein
R1 représente hydrogen, Ci-Cs-alkyl, Ci-Cs-alkenyl, Cï-Ce-alkynyl, Cs-Cg-cycloalkyl, Cj-Cg-cycloalkyl-Ci5 G-alkyl, phenyl, phenyt-Ci-G-alkyt, phenyt-Cî-Ci-alkenyl or phenyl-Cî-Cralkynyl;
wherein the aliphatic moiedes, excluding cycloalkyl moieties, of R1 may cany l, 2,3 or up to the maximum possible number ofidentical or different groups R* which independently of one another are selected from
R* halogen, CN, nitro, phenyl, Ci-Q-alkoxy and Ci-Cchalogenalkoxy;
wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one 10 another from halogen; CN; nitro; Ci-Q-alkyl; Ci-Ct-alkoxy; Ci-G-halogenalkyl; Cj-Crhalogenalkoxy;
wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2,3, 4,5 or up to the maximum number of idcntical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-Ccalkyl, Ci-C«-alkoxy, Ci-G-halogcnalkyl and Ci-Crhalogenalkoxy;
R4 represents halogen, CN, nitro, Ci-Q-alkyl, Ci-Cg-halogenalkyl, Ci-Cg-alkoxy, Ci-Cehalogcnalkoxy, Ci15 Cvalkylcarbonyl, hydroxy-substituted Ci-CValkyl or pentafluoro-X6-sulfanyl; preferably halogen, CN, nitro, Ci-Q-alkyl, Ci-Ct-halogenalkyl, CrCx-alkoxy, Ci-Cg-halogenalkoxy orpentafluoro-X6-sulfânyl;
with the proviso, that R4 is not represented by CFj when R1 is represented by methyl;
m is an integer and is 0,1,2,3,4 or 5;
Y represents a substituted or ηαη-substitutcd 6-membered aromade hcterocycle containing 1 or 2 nitrogen 20 atom(s) as heteroatom(s) selected from
, preferably from
wherein Y is connected to die O of formula (I) via the bonds identified with “u” and Y is connected to the CR1 (OR2) moiety of formula (I) via the bonds identified with “v and wherein
R represents Cl or CFj;
R1 represents halogen, CN, nitro, Ci-Ci-alkyl, Ci-Q-halogenalkyl, C1-C4 -alkoxy or Ci-Q-halogcnalkoxy, n is an integer and is 0,1 or 2;
and its salts or N-oxides.
Particular novel intermediates of formula (V) according to the présent invention are novel compounds of formula (Va)
wherein
R4 represents halogen, CN, nitro, C1-C4-alkyl, Ci-Q-halogenalkyl, Ci-Q-alkoxy, Ci-Q-halogenalkoxy or pentafluoro-X6-sulfànyl, except forCFj;
m is an integer and is 0, 1,2,3,4 or 5;
Y represents a substituted or non-substîtuted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
wherein Y is connected to the O of formula (I) via the bonds identified with “u” and Y is connected to the CR'iOR2) moiety of formula (I) via the bonds identified with ’V and wherein
R represents hydrogen, Ci-Crhalogcnalkyl, Ci-Cî-halogenalkoxy, Ci-Cî-alkylcarbonyl or halogen; preferably hydrogen, Ci-Cî-halogcnalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-Q-alkyl, CrG-halogcnalkyl, Ci-Cx-alkoxy or Ci-Q-halogcnalkoxy;
n is an integer and is 0,1 or 2;
and its salts or N-oxidcs.
Further novel intermediates according to the présent invention are novel compounds of formula (VI)
wherein
Hal represents F, Cl, Br or I; preferably Cl or Br;
R4 represents halogen, CN, nitro, Ci-Q-alkyl, Ci-Q-halogenalkyl, Ci-G-alkoxy, Ct-O-halogenalkoxy. CiC^-alkylcarbonyl, hydroxy-substituted Ct-Cralkyl or pentafluoro-V-sulfanyl; preferably halogen, CN, nitro, Ct-Oalkyl, Ci-Ci-halogenalkyl, Ci-Q-alkoxy, Ci-Cchalogenalkoxy or pcntafluoro-V-sulfànyl;
m is an integer and isO, 1,2,3,4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom( s) selected from
wherein Y is connected to the O of formula (I) via the bonds identified with “u and Y is connected to the CR'(OR2) moicty of formula (I) via the bonds identified with “v” and wherein
R represents Ci-Cî-halogcnalkyl or halogen;
R’ represents halogen, CN, nitro, Ci-Cx-alkyl, Ci-C4-halogennlkyl, Ci-C«-alkoxy or CrQ-halogenalkoxy;
-22.
n is an înteger and is 0, l or 2;
and its salts or N-oxides.
Further novet intermediates according to the présent invention arc novel compounds of formula (Vil)
whereîn
R4 représenta halogen, CN, nitro, Ci-CU-alkyl, C i-C*-halogenalky(, Ci-Q-alkoxy, C i-Q-halogcnalkoxy, CiCi-alkylcarbonyl, hydroxy-substituted Ci-CU-alkyl or pcntafluoro-k6-sulfanyl; preferably halogen, CN, nitro, Ci-Q-alkyl, Ci-Q-halogenalkyl, Ci-Cealkoxy, Ci-Cchalogenalkoxy or pentafluoro-X6-sulfanyl;
m is an înteger and is 0, t, 2,3,4 or 5;
Y représenta a substituted or non-substituted 6-membered aromatic hcterocyclc containing t or 2 nitrogen atom(s) as heteroatom(s) selected from
wherein Y is connected to the O of formula (I) via the bonds identified with “u” and Y is connected to the CR1 (OR2) moiety of formula (I) via the bonds identified with v and wherein
R représenta hydrogen, Ci-Cî-halogenalkyl, Ci-Cî-halogcnalkoxy, CrC^alkylcarbonyl or halogen; preferably hydrogen, Ci-C2-halogenalkyl or halogen;
R3 représente halogen, CN, nitro, CrC*-alky(, Ci-Q-halogenalkyl, Ci-Q-alkoxy or Ci-Cchalogenalkoxy;
n is an înteger and is 0, 1 or 2;
and its salts or N-oxides.
-23Compounds of formula (VU) are not only usefui intermediates to produce the triazole dérivatives of formula (I), but may also bave fungicidal propcrties thcmselves, Hence, the invention further relates to compositions comprising these compounds, and to the use thereof as biologically active compounds, especially for control of harmful microorganisms in crop protection and in the protection of materiels and as plant growth regulators,
Further novel intermediates according to the présent invention are novel compounds of formula (IX)
wherein
R1 represents hydrogen, Ci-Ce-alkyl, Cj-Ce-alkcnyl, Cî-Ci-alkynyl, Cî-Ce-cycloalkyl, Cî-Ci-cycloalkyl-CiQ-alkyl, phenyl, phenyl-Ci-G-alkyl, phenyl-C2-C*-alkenyl or phcnyl-Cj-Oalkynyl;
wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may cany 1,2,3 or up to the maximum possible number of identical or different groups R* which independently of one another are selected from
R* halogen, CN, nitro, phenyl, Cj-Oalkoxy and Ci-G-halogcnalkoxy;
wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-G-alkyl; Ci-Q-alkoxy; Ci-Q-halogcnalkyl; Ci-Q-halogenalkoxy, wherein the cycloalkyl and/or phenyl moieties of R1 may cany 1,2, 3,4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-Ci-alkyl, Ci-G-alkoxy, Cj-Q-halogcnalkyl and Ci-G-halogcnalkoxy;
R4 represents halogen, CN, nitro, Ci-Q-alkyl, Ci-Crhalogcnalkyl, C|O-alkoxy Ci-Cohalogenalkoxy, C|Q-alkylcarbonyl, hydroxy-substituted Ci-Q-alkyl or pcntafluoro-Xe-sulfanyI; preferably halogen, CN, nitro, Ci-G-alkyl, Ci-Ohalogcnalkyl, Ci-Q-alkoxy, Cj-G-halogenalkoxy or pentafluoro-XAsulfanyl;
m is an integer and is 0, 1,2,3,4 or 5;
Y represents a substituted or non-substituted 6-mcmbered aromatic hetcrocycle containing 1 or 2 nitrogen atom (s) as hctcroatom(s) selected from
, preferably from
• 24-
R R R wherein Y is connected to the O of formula (I) via the bonds identified with “u and Y is connected to the CRl(OR2) moiety of formula (I) via the bonds identified with “v” and wherein
R «présents hydrogen, Ci-Cï-halogenalkyl, Ci-Cî-halogenalkoxy, Ci-Cj-alkylcarbonyl or halogen; preferably hydrogen, Ci-Cî-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-Cg-alkyl, Ci-Cchalogenalkyl, Ci-Cg-alkoxy or Ci-Cchalogenalkoxy;
n is an integer and is 0, 1 or 2;
and its salts or N-oxidcs.
Further novel intermediates according to the present invention are novel compounds of formula (X)
wherein
R1 represents hydrogen, Ci-Ce-alkyl, Ci-Ce-alkenyl, Cî-Ce-alkynyl, Cj-Cg-cycloalkyl, Cj-Cg-cycloalkyl-CiCealkyl, phenyi, phenyl-Ci-Ci-alkyl, phenyl-Cî-Ci-alkenyl or phenyl-Cî-Q-alkynyl;
R1 represents hydrogen, Ci-Ce-alkyl, C2-C«-alkenyl, Cî-Ce-alkynyl, Cj-Cg-cycloalkyl, Cj-Cg-cycloalkyl-CiCralkyl, phenyi, phenyi-CrCi-alkyl, phenyl-Ci-Ce-alkenyl orphenyl-Cî-Ct-alkynyl;
wherein the aliphatîc moieties, excluding cycloalkyl moieties, of R1 and/or R2 may cany 1, 2, 3 or up to the maximum possible number of idcntical or different groups R* which independently of one another are selected from
R* halogen, CN, nitro, phenyi, Ci -Ci-alkoxy and Ci-Ct-halogenalkoxy;
wherein the phenyi may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-Cg-alkyl; Ci-Ci-alkoxy; Ci-Cehalogenalkyl; Ci-Ci-halogcnalkoxy;
wherein the cycloalkyl and/or phenyi moieties of R1 and/or R2 may cany I, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-Q-alkyl, Ci-C«-alkoxy, Ci-G-halogcnalkyl and Ci-G-halogenalkoxy;
R4 represents halogen, CN, nitro, Ci-G-alkyl, Ci-Ct-halogcnalkyl, Ci-Q-alkoxy Ci-Cchalogenalkoxy, CiG-alkylcarbonyl, hydroxy-substitutcd Ci-G-alkyl or pcntafIuoro-Xi-sulfanyl; preferably halogen, CN, nitro, Ci-G-alkyl, Ci-Ct-halogcnalkyl, Ci-C«-alkoxy, Ci-G-halogenalkoxy or pentafluoro-k6-sulfânyl;
m is an integer and îsO, 1,2,3,4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic hetcrocycle containing I or 2 nitrogen atom(s) as hctcroatom(s) selected from
wherein Y is connected to the O of formula (I) via the bonds identified with *‘u” and Y is connected to the CR1 (OR2) moiety of formula (D via the bonds identified with v and wherein
R represents hydrogen, Ci-Cî-halogcnalkyl, Ci-Ct-halogcnalkoxy, Ci-C2-alkylcarbonyl or halogen; preferably hydrogen, Ci-Cj-halogcnalkyl or halogen;
R’ represents halogen, CN, nitro. Ci- G-alkyt, C ι-G-halogenalkyl, C i-C«-alkoxy or C i-G-halogenalkoxy;
n is an integer and is 0,1 or 2;
and its salts or N-oxides.
Further novel intermediates according to the présent invention are novel compounds of formula (XI)
wherein
LG represents halogen, -OSCh-Ci-C&alkyl, -OSCh-aiyL -OSOz-O-Ci-CeAlkyl, -OSCh-O-aryl, -OSO2NR*R* wherein the alkyl” and/or “aryl” may carry 1,2,3 or up to the maximum possible number of identical or different groups RD;
wherein
RD represents halogen, CN, nitro, Ci-Cralkyl, Ci-Ohalogenalkyl, Ci-Oalkoxy or Ci-Q-halogenalkoxy;
R* represents hydrogen, Ci-Ce-alkyl, Cî-Ce-alkcnyl, Cï-Ce-alkynyl, Cj-Ci-cycloalkyl, Ci-Ct-cydoalkylCi-Ci-alkyL phenyl. phcnyl-Ci-Oalkyl, phenyl-Cî-Ccalkenyl or phenyl-Cî-Cx-alkynyl, wherein the aliphatic moieties, excluding cydoalkyl moieties, of RA may cany 1,2,3 orup to the maximum possible number of identical or di fferent groups Rc which independently of one another are selected from
R° halogen, CN, nitro, phenyl, Ci-Oalkoxy and Ci-Cx-halogcnalkoxy;
wherein the phenyl may be substituted by 1,2,3,4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-Ci-alkyl; Ci-Oalkoxy; Ci-Ct-halogenalkyl; Ci-Crhalogenalkoxy;
wherein the cydoalkyl and/or phenyl moieties of RA may carry 1,2,3,4,5 or up to the maximum number of identical or different groups Rd which independently of one another are selected from
Rd halogen, CN, nitro, Ci-Oalkyl, Ci-Oalkoxy, Ci-Ct-halogenalkyl and Ci-Cchalogenalkoxy;
R1 represents hydrogen, Ci-Ce-alkyl, C^Ce-alkenyl, CrCi-alkynyl, Cî-C»-cydoalkyl, Cj-Ci-cycloalkyl-CiCralkyL phenyl, phenyl-Ci-Cx-alkyl, phenyl-Cj-Oalkenyl or phenyl-Cî-Oalkynyl;
R1 represents hydrogen, Ci-C«-alky!, Cî-Ce-alkenyl, Cï-Cô-alkynyi, C3-Cs-cycIoaIkyl, C3-Ci-cycloalkyl-CiOalkyl, phenyl, phenyl-Ci-Ci-alkyl, phenyl-Cî-Q-alkenyl or phcnyl-Cî-C4-alkynyl;
wherein the aliphatic moieties, excluding cydoalkyl moieties, of R1 and/or R1 may cany 1, 2, 3 or up to the maximum possible number of identical or different groups R* which independently of one another are selected from
R* halogen, CN, nitro, phenyl, Ci-Cralkoxy and Ci-Ci-halogcnalkoxy;
wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one 25 another from halogen; CN; nitro; Ci-Ccalkyl; Ci-Oalkoxy; Ci-Ohalogenalkyl; Ci-Ci-halogcnalkoxy;
wherein the cydoalkyl and/or phenyl moieties of R1 and/or R1 may cany I, 2,3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-G-alkyl, Ci-G-alkoxy, Ci-G-halogcnalkyl and Ci-G-halogenalkoxy,
R4
-27represents halogen, CN, nitro, Ci-Ct-alkyl, Ci-Ct-halogenalkyl, Ci-Cralkoxy, Ci-Crhalogenalkoxy, CiCt-alkylcarbonyl, hydroxy-substitutcd Ci-Q-alkyl or pentafluoro-λ-sulianyl; preferahly halogen, CN, nitro, Ci-Ct-alkyl, Ci-G-halogenalkyl, Ci-Ci-alkoxy, Ci-Cx-halogenalkoxy or pentafluoro-Xe-sulfanyl;
m is an integer and isO, 1,2,3,4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
wherein Y is connected to the O of formula (I) via the bonds identified with “u” and Y is connected to the CR1 (OR2) moiety of formula (I) via the bonds identified with “v and wherein
R represents hydrogen, Ci-Cj-halogenalkyl, Ci-Ci-halogenalkoxy, Ci-Ci-alkylcarbonyl or halogen; preferahly hydrogen, Ci-Ci-halogenalkyl or halogen;
R3 represents halogen, CN, nitro, Ci-C*-alkyl, Ci-Ct-halogenalkyl, Ci-C«-alkoxy or Ci-C<-halogenalkoxy;
n isanintegerandisO, lor2;
and its salts or N-oxîdcs.
LG preferably represents Cl, Br, I, -OSOj-Ci-Ce-alkyl or -OSOi-p-tolyl, more preferably Cl, Br, I or -OSO2-C1CïAlkyl.
Further intermediates according to the présent invention are compounds of formula (XVI)
wherein
R4 rcprescnts halogen, CN, nitro, Ci-Cealkyl, Ci-Q-halogenalkyl, Ci-C4-alkoxy, Ct-Crhalogenalkoxy, CiCi-alkylcarbonyl, hydroxy-substituted Ci-Oalkyl or pentailuoro-Xe-sulfânyt, except for Bq preferably halogen, CN, nitro, Ci-C*-alkyl, Ci-G-halogenalkyl, Ci-G-alkoxy, Ci-G-halogenalkoxy orpentafluoroX*-sulfanyl, except for Bq m is an integer and is 0,1,2,3,4 or 5;
Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 or 2 nitrogen atom(s) as heteroatom(s) selected from
wherein Y is connected to the O of fonnula (1) via the bonds identifîed with “u and Y is connected to the CR1 (OR2) moiety of fonnula (I) via the bonds identifîed with “v” and wherein
R represents hydrogen, Ci-Crhalogenalkyl, Ci-Cî-halogenalkoxy, Ct-Cî-alkylcartxjnyl or halogen; preferably hydrogen, Ci-Cï-halogcnalkyl or halogen;
R’ represents halogen, CN, nitro, Ci-Ct-alkyl.Ci-Ci-halogcnalkyhCt-Ci-alkoxy or Ct-Ohalogenalkoxy; ’ n is an integer and is 0, 1 or 2;
R6, R7 independent from each other represent Ci-Ce-alkyl or Cj-Ce-cycloalkyl;
and its salts or N-oxides.
Further novel intermediates according to the présent invention are novel compounds of fonnula (XXI)
wherein
R1 represents hydrogen, Ci-Ce-alkyl, Cî-Ce-alkenyl, Cî-Ce-alkynyl, Cj-C»-cyctoalkyl, Cj-Cs-cycloalkyl-CiCealkyl, phenyl, phenyl-Ci-Ct-aikyl, phenyl-Cj-G-alkenylor phenyl-C2- Cealkynyl;
wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of idcntical or different groups R* which independently of one another are selected from
R* halogen, CN, nitro, phenyl, CrQ-alkoxy and Ci-Cg-halogenalkoxy;
wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; Ci-Q-alkyl; Ci-Oalkoxy; Ci-Cg-halogcnalkyl; Ci-Cg-halogenalkoxy;
wherein the cycloalkyl and/or phenyl moieties of R* may carry 1, 2,3,4,5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
Rb halogen, CN, nitro, Ci-Cg-alkyl, Ci-Q-alkoxy, Ci-G-halogenalkyl and Ci-Q-halogenalkoxy;
R4 represents halogen, CN, nitro, CrCralkyl, Ci-Cg-halogenalkyl, Ct-Cg-alkoxy, Ci-Crhalogcnalkoxy, CtQ-alkylcarbonyl, hydroxy-substituted Ci-Oalkyl or pcntafluoro-X6-sulfanyl, except for Br, preferably halogen, CN, nitro, Ci-Oalkyl, Ci-Ct-halogenalkyl, Ci-Ct-alkoxy, Ci-Q-halogenalkoxy or pentafluoroX*-sulfanyl, except for Br;
m is an integer and is 0,1,2,3,4or5;
R’ represents Ci -Ce-alkyl or Cj-Cg-cycloalkyl;
R10 represents Cî-Ce-alkyl;
Y represents a substituted or non-substïtuted 6-mcmbered aromatic hetcrocycle containing I or 2 nitrogen atom(s) as hetcroatom(s) selected from
, preferably from
wherein Y is connected to the O of formula (I) via the bonds identified with “u and Y is connected to the CR'fOR2) moiety of formula (I) via the bonds identified with “v” and wherein
-30R représenta hydrogen, Ci-Cî-halogenalkyl, Ci-Cr-balogenalkoxy, CrCi-alkylcarbonyl or halogen; preferably hydrogen, Ci-Ci-halogenalkyl or halogen;
R3 représente halogen, CN, nitro, Ci-Q-alkyl, Ci-Q-halogenalkyl, Ci-Q-alkoxy or Ci-Ccbalogenalkoxy;
n îs an integer and is 0,1 or 2;
and its salts or N-oxidcs.
Preferred radical définitions for R1 and R1, R4, m. Y, R, R3, n hâve already been given above for the compounds of fomula (I). Such preferred radical définitions shall also apply for compounds of formula (V), (Va), (VI), (VU), (IX), (X), (XI), (Χνη and (XXI).
The compounds of the formulae (I), (V), (Va), (VI), (VII), (IX), (X), (XI), (XVI) and (XXI) according to the invention can be converted into physiologically acceptable salts, e.g. as acid addition salts or métal sait complexes.
Depcnding on the nature of the substituents defined above, the compounds of the formula (I) hâve acidîc or basic properties and can form salts, if appropriate also inner salts, or adducts with inorganic or organic acids or with bases or with métal ions. If the compounds of the formula (I) cany amino, alkylamino or other groups which induce basic properties, these compounds can be reacted with acids to give salts, or they are directly obtained as salts in the synthesis. If the compounds ofthe formula (I) carries hydroxyl, caiboxy! or other groups which induce acidic properties, these compounds can be reacted with bases to give salts. Suitable bases are, for example, hydroxides, carbonates, bicarbonates of the alkali metals and alkaline earth metals, in particular those of sodium, potassium, magnésium and calcium, furthermore ammonîa, primary, secondary and tertiary amines having (Ci-Q)-alkyl groups, mono-, di- and trialkanolamincs of (Ci-QJ-alkanols, choline and also chlorocholine.
The salts obtainable in this manner also hâve fungicidal properties.
Examples of inorganic acids are hydrohalic acids, such as hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide, sulphuric acid, phosphoric acid and nitric acid, and acidic salts, such as NaHSCL and KHSO4. Suitable organic acids are, for example, formic acid, carbonic acid and alkanoic acids, such as acetic acid, trifluoroacetic acid, trichloroacetîc acid and propionic acid, and also glycolic acid, thiocyanic acid, lactic acid, succinic acid, citric acid, benzoic acid, cinnamic acid, maleic acid, fumaric acid, tartane acid, sortie acid oxalîc acid, alkylsulphonic acids (sulphonic acids having straîght-chain or branched alkyl radicals of 1 to 20 carbon atoms), arylsulphonic acids or aryldisulphonic acids (aromatic radicals, such as phenyl and naphthyl, which carry one or two sulphonic acid groups), alkylphosphonic acids (phosphonic acids having straîght-chain or branched alkyl radicals of I to 20 carbon atoms), arylphosphonic acids or aryldiphosphonic acids (aromatic radicals, such as phenyl and naphthyl, which carry one or two phosphonic acid radicals), where the alkyl and aryl radicals may cany further substituents, for example p-tolucncsulphonic acid, 1,5-naphthalcnedisulphonic acid, salicylic acid, p-aminosalicylic acid, 2-phcnoxybenzoic acid,2-acetoxybenzoic acid, etc.
-31Suïtable métal ions are in particular die ions of the éléments of the second main group, in particular calcium and magnésium, of die third and fourth main group, in particular aluminium, tin and lead, and also of die first to eighth transition group, in particular chromium, manganèse, iron, cobalt, nickel, coppcr, zinc and others. Particular préférence is given to the métal ions of the éléments of the fourth period. Here, the mctals can be présent in various valencies that they can assume.
The acid addition salts of die compounds of the formula (I) can be obtained in a simple manner by customary methods for forming salts, for exemple by dissolving a compound of the formula (I) in a suitable incrt solvent and adding the acid, for example hydrochloric acid, and be isolated in a known manner, for example by filtration, and, if required, be purified by washing with an incrt organic solvent
Suitable anions of the salts are those which are preferably derived from the following acids: hydrohalic acids, such as, for example, hydrochloric acid and hydrobromic acid, furthermore phosphoric acid, nitric acid and sulphuric acid.
The métal sait complexes of compounds of the formula (I) can be obtained in a simple manner by customary processes, for cxample by dissolving the métal sait in alcohol, for example éthanol, and adding the solution to 15 the compound of the formula (I). Métal sait complexes can be isolated in a known manner, for example by filtration, and, if required, be purified by recrystallization.
Salts of the intermediates can also be prepared according to the processes mentioned above for die salts of compounds of formula (I).
N-oxides of compounds of the formula (I) or intermediates thereof can be obtained in a simple manner by 20 customary processes, for cxample by N-oxïdation with hydrogen peroxide (H2O2), peracids, for example peroxy su!furie acid or peroxy carboxylic acids, such as meta-chloroperoxybcnzoïc acid or peroxymonosulfuric acid (Caro's acid).
E.g. the corresponding N-oxides may be prepared starting from compounds (I) using conventional oxidation methods, e.g. by treating compounds (I) with an organic peracid such as metachloroperbcnzoic acid (e.g. WO-A 25 2003/64572 or J. Med. Chem. 38 (11), 1892-1903, 1995); or with inorganic oxidizing agents such as hydrogen peroxide (e.g. J. Heterocyc. Chem. 18 (7), 1305-1308, 1981) or oxone (e.g. J. Am. Chem. Soc. 123 (25), 59625973,2001). The oxidation may lead to pure mono-N-oxides or to a mixture of different N-oxides, which can bc separated by conventional methods such as chromatography.
Composition /Formulation
The présent invention further relates to a crop protection composition for controlling harmfuî microorganisms, especially unwanted fungi and bacteria, comprising an effective and non-phytotoxic amount of the inventive active ingrédients, These are preferably fungicidal compositions which comprise agriculturally suitable auxiliaries, like solvents, carriers, surfactants or extenders.
-32In the context of the présent invention, “control of harmful microorganisms” means a réduction tn infestation by harmful microorganisms, compared with the untreated plant measured as fungicidal eflîcacy, preferably a réduction by 25-50 %, compared with the untreated plant ( 100 %), more preferably a réduction by 40-79 %, compared with the untreated plant (100%); even more preferably, the infection by harmful microorganisms is entirely suppressed (by 70-100 %). The control may be curative, i.e. for treatment of already înfccted plants, or protective, for protection of plants which hâve not yet been înfccted.
An “effective but non-phytotoxic amount” means an amount of the inventive composition which is suffictent to control the fungal discase of the plant tn a satîsfàctory manner or to eradicate the fungal disease complctely, and which, at the same time, does not cause any significant symptoms of phytotoxicity. In general, this application rate may vary within a relatively wide range. It dépends on several factors, for example on the fungus to be controlled, the plant, the climatic conditions and the ingrédients of the inventive compositions.
Suitable organic solvents include ail polar and non-polar organic solvents usually employcd for formulation purposes. Préférable the solvents are selected from ketoncs, e.g. methyl-isobutyl-ketone and cyclohexanone, amides, e.g. dimcthyl forma midc and alkanecarboxylic acid amides, e.g. Ν,Ν-dimethyl decaneamide and Ν,Νdimethyl octanamide, fùrthermore cyclic solvents, e.g. N-methyl-pyrrolidone, N-octyl-pyirolidone, N-dodccyl pyrrolidone, N-octyl-caprolactame, N-dodecyl-caprolactame and butyrolactone, fùrthermore strong polar solvents, e.g. dimethylsulfoxide, and aromatic hydrocarbons, e.g. xylol, Solvesso™, minerai oils, e.g. white spirit, petroleum, alkyl benzenes and spindlc oil, also esters, e.g. propyleneglycol-monomcthylcther acetate, adipic acid dibutylester, acetic acid hexylester, acetic acid heptylester, citric acid tri-n-butylester and phthalic 20 acid di-n-butylester, and also alkohols, e.g. benzyl alcohol and l-methoxy-2-propanol.
According to the invention, a carrier is a naturel or synthetic, organic or inorganic substance with which the active ingrédients are mixed or combined for better applicability, in particular for application to plants or plant ports or sced. The carrier, which may be solid or liquid, is generally inert and should be suitable for use in agriculture. Uscful solid or liquid carriers include: for example ammonium salts and naturel rock dusts, such as kaolins, clays, 25 talc, chalk, quartz, attapulgite, montmorillonite or diatomaceous earth, and synthetic rock dusts, such as finely divided silica, alumina and naturel or synthetic silicates, resins, waxes, solid fertilizers, water, alcohols, especially butanol, organic solvents, minerai and vegetabie oils, and dérivatives thereof. Mixtures of such carriers can likewise be used.
Suitable solid filler and carrier include inorganic particles, e.g. carbonates, silikates, sulphates and oxides with 30 an average particle size of between 0.005 and 20 pm, preferably of between 0.02 to 10 pm, for example ammonium sulphate, ammonium phosphate, urca, calcium carbonate, calcium sulphate, magnésium sulphate, magnésium oxide, aluminium oxide, silicium dioxide, so-called fine-particle silica, silica gels, naturel or synthetic silicates, and alumosilicates and plant products like cereal flour, wood powder/sawdust and cellulose powder.
Uscful solid carriers for granules include: for example crushcd and ûaetionated naturel rocks such as calcite, maible, pumice, sepiolite, dolomite, and synthetic granules of inorganic and organic mcals, and also granules of organic material such as sawdust, coconut shells, maize cobs and tobacco stalks.
Usefiil liquefied gaseous cxtcndcrs or carriers are those Iiquids which are gaseous at standard température and under standard pressure, for example aérosol propellants such as halohydrocarbons, and also butane, propane, nitrogen and carbon dioxide.
In the formulations, it is possible to use tackifiers such as carboxymethylcellulose, and natural and synthetic polymers in the form of powdcrs, granules or latices, such as gum arabic, polyvinyl alcohol and polyvinyl acetate, or else natural phospholipids, such as cephalins and lecithins, and synthetic phospholipids. Further additives may be minerai and vegetable oils.
If the extender used is water, it is also possible to employ, for example, organic solvents as auxiliary solvents. Usefiil liquid solvents are csscntîally: aromatics such as xylene, toluene or alkylnaphthalenes, chlorinatcd 10 aromatics and chlorinated aliphatic hydrocarbons such as chlorobenzenes, chloroethylenes or dichloromethane, aliphatic hydrocarbons such as cyclohexane or parafons, for example minerai oil fractions, minerai and vegetable oils, alcohols such as butanol or glycol and their ethers and esters, kctoncs such as acétone, methyl ethyl ketone, methyl isobutyl ketonc or cyclohexanonc, strongly polar solvents such as dimethylformamide and dimethyl sulphoxidc, and also water.
Suitable surfactants (adjuvants, emulsifiers, dispersants, protective colloids, wetting agent and adhesïve) include ail common ionic and non-ianic substances, for example ethoxylated nonylphcnols, polyalkylene glycolether of lincar or branched alcohols, reaction products of alkyl phénols with ethylene oxide and/or propylene oxide, reaction products of fatty acid amines with ethylene oxide and/or propylene oxide, furthermore fâttic acid esters, alkyl sulfonates, alkyl sulphates, alkyl ethersulphates, alkyl etherphosphates, arylsulphate, ethoxylated 20 arylalkylphénols, e.g. tristyryl-phcnol-ethoxylates, furthermore ethoxylated and propoxylated arylalkylphenols like sulphated or phosphated arylalkylphenol-ethoxylates and -ethoxy- and -propoxylates. Further examples arc natural and synthetic, water soluble polymers, e.g. lignosulphonates, gélatine, gum arabic, phospholipides, starch, hydrophobie modified starch and cellulose dérivatives, in particular cellulose ester and cellulose ether, further polyvinyl alcohol, polyvinyl acetate, polyvinyl pyrrolidone, polyacrylic acid, polymethactylic acid and co-polymerisates of (meth)acrylic acid and (meth)acrylic acid esters, and further co-polymerisates of methacrylic acid and mcthacrylic acid esters which are neutralized with alkalimetal hydroxide and also condensation products of optionally substituted naphthalene sulfonic acid salts with formaldéhyde. The presence of a surfactant is necessary if one of the active ingrédients and/or one of the inert carriers is insoluble in water and when application is effected in water. The proportion of surfactants is between 5 and 40 per cent by weight of the inventive composition.
It is possible to use dyes such as inorganic pigments, for example iron oxide, titanium oxide and Prussian Bluc, and organic dyes such as alizarin dyes, azo dyes and métal phthalocyanine dyes, and trace nutrients such as salts of iron, manganèse, boron, coppcr, cobalt, molybdenum and zinc.
Antifbams which may be présent in the formulations include e.g. silicone émulsions, longchain alcohols, fattiy acids and their salts as well as fluoroorganie substances and mixtures therof
Examples of thickeners are polysaccharides, e.g. xanthan gum or veegum, silicates, e.g. attapulgite, bentonîte as well as fine-particle silica.
If appropriate, it is also possible for other additional components to be présent, for example protective colloids, binders, adhesives, thickeners, thixotropic substances, pénétrants, stabilizers, séquestrants, complexing agents.
-34In general, the active ingrédients can be combined with any solid or liquid addidve commonly used for formulation purposes.
The inventive active ingrédients or compositions can be used as such or, depending on their particular physical and/or chemical properties, in the form of their formulations or the use forms prepared therefrom, such as aérosols, capsule suspensions, cold-fogging concentrâtes, warm-foggîng concentrâtes, encapsulated granules, fine granules, flowable concentrâtes for the treatment of seed, ready-to-use solutions, dustable powders, emulsifiablc concentrâtes, oil-in-water émulsions, water-in-oiî émulsions, macrogranules, microgranules, oil-dispersible powders, oil-miscible flowable concentrâtes, oil-miscible tiquids, gas (under pressure), gas generating product, foams, pastes, pesticide coated seed, suspension concentrâtes, suspoemulsion concentrâtes, soluble concentrâtes, suspensions, wettable powders, soluble powders, dusts and granules, water-soluble and water-dispersible granules or tablets, water-soluble and water-dispersible powders for the treatment of seed, wettable powders, natural products and synthctic substances impregnated with active ingrédient and also microencapsulations in polymeric substances and in coating materials for seed, and also ULV cold-fogging and warm-fogging formulations.
The inventive compositions include not only formulations which are already ready for use and can be applied with a suitable apparatus to the plant or the seed, but also commercial concentrâtes which hâve to be diluted with water prior to use. Customary applications are for example dilution in water and subséquent spraying of die resulting spray liquor, application after dilution in oil, direct application without dilution, seed treatment or soit application of granules.
The inventive compositions and formulations generally contain between 0.05 and 99 %by weight 0.01 and 98 % 20 by weight preferably between 0.1 and 95% by weight more preferably between 0.5 and 90% of active ingrédient most preferably between 10 and 70 % by weight For spécial applications, e.g. for protection of wood and derived timber products the inventive compositions and formulations generally contain between 0.0001 and 95 % by weight preferably 0.001 to 60 % by weight ofactive ingrédient
The contents of active ingrédient in the application forms prepared from die commercial formulations may vary in 25 a broad range. The concentration of the active ingrédients in the application forms is generally between 0.000001 to 95 % by weight preferably between 0.0001 and 2 % by weight
The formulations mentioned can be prepared in a manner known per se, for example by mixing the active ingrédients with at least one customary extender, solvent or diluent adjuvant emulsifier, dispersant and/or binder orfixative.wetting agent water repcllent if appropriate dcsiccants and UV stabilizers and, if appropriate, dyes and 30 pigments, antifoams, preservatives, inorganic and organic thickcners, adhesives, gibberellins and also further processing auxiliaries and also water. Depending on the formulation type to be prepared further processing steps are necessary, e.g. wet grinding, dry grinding and granulation.
The inventive active ingrédients may bc présent as such or in their (commercial) formulations and in the use forms prepared from these formulations as a mixture with other (known) active ingrédients, such as insecticides, 35 attractants, sterilants, bactéricides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and/or semiochemicals.
The inventive treatment ofthe plants and plant parts with the active ingrédients or compositions is cffectcd directly or by action on their sunoundings, habitat or storage space by the customary treatment methods, for example by dipping, spraying, atomizing, irrigating, evaporating, dusting, fogging,broadcasting, foaming, painting, spreading18593
-35on, watering (drcnching), drip irrignring and, in the case of propagation material, especially in the case of seeds, also by dry sced treatment, wet sccd treatment, slurry treatment incrustation, coating with one or more coats, etc. It is also possible to deploy the active ingrédients by the ultra-low volume method or to înject the active ingrédient préparation or the active ingrédient itself into the soit
Plant/Crop Protection
The inventive active ingrédients or compositions hâve potent microbicidal activity and can be used for control of unwanted microorganisms, such as fungi and bacteria, in crop protection and in the protection of materials.
The invention also relates to a method for controlling unwanted microorganisms, charactcrized in that the inventive active ingrédients are applied to the phytopathogenic fungi, phytopathogenic bacteria and/or their 10 habitat.
Fungicides can bc used in crop protection for control of phytopathogenic fiingi. They are characterized by an outstanding efficacy against a broad spcctnim of phytopathogenic fiingi, including soïlbome pathogens, which are in particular members of the classes Plasmodiophoromycetes, Peronosporomycetes (Syn. Oomycetes), Chytridiomycetes, Zygomycetes, Ascomycètes, Basidiomycetes and Deuteromycetes (Syn. Fungi imperfecti). 15 Some fungicides are systemically active and ca be used in plant protection as foliar, seed dressing or soit fongicide. Furthermore, they are suitable for combating fungi, which inter alia infest wood or roots of plant.
Bactéricides can be used in crop protection for control of Pseudomonadaceae, Rhizobiaceae, Enterobacteriaceae, Corynebacteriaceae and Streptamycetaceae.
Non-limiting exemples of pathogens of fiingal diseases which can be treated in accordance with the invention 20 include:
diseases caused by powdery mildew pathogens, for example Blumeria species, for example Blumeria graminis; Podosphaera species, for example Podosphaera leucotricha; Sphaerotheca species, for example Sphaerotheca Jùltginea; Uncinula species, for example Uncinula necator, diseases caused by rust disease pathogens, for example Gymnosporangium species, for example 25 Gymnosporangium sabinae; Hemileia species, for examplc Hemileia vaslatrix; Phakopsora species, for examplc Phakopsora pachyrhizi and Phakopsora metbomiae; Puccinia species, for example Puccinia recondile, P. triticina, P. graminis or P. striiformis; Uromyces species, for example Uromyces appendiculatus;
diseases caused by pathogens from the group of the Oomycetes, for examplc Albugo species, for example Algubo candida; Bremia species, for example Bremia lactucae; Peronospora species, for example Peronospora 30 pisi or P. brassicae; Phytophthoca species, for example Phytophthora infestons; Plasmopara species, for example Plasmopara viticola; Pseudopenmospora species, for example Pseudoperonospona humuli or Pseudoperonospora cubensis; Pythium species, for examplc Pythium ultimum;
leaf blotch diseases and leaf wilt diseases caused, for example, by Altemaria species, for example Altemaria solani; Cercospora species, for examplc Cercospora beticola; Cladiosporium species, for examplc 35 Cladiosporium cucumerinum; Cochliobolus species, for example Cochliobolus sativus (conidia form:
Drechslcra, Syn: Helminthosporium), Cochliobolus miyabeanus; Colletotrlchum species, for examplc Colletotrichum lindemuthanium; Cycloconium species, for example Cycloconium oleaginum; Diaporthe species, for example Diaporthe citri; Elsinoe species, for example Elsinoe fawcettii; Glœosporium species, for
-36example Gloeosporium laeticolor, Glomerella species, for example Glomerella cingulata; Guignardia species, for example Guignardia bidwelli; Lepiosphaeria species, for cxample Leptosphaeria maculant, Leptosphaeria nodorum; Magnaporthe species, for example Magnaporthe grisea; Microdochlum species, for cxample Microdochhtm nivale', Mycosphaerella species, for example Mycosphaerella graminicola, M. arachidicola and M.fijiensis; Phaeosphaeria species, for cxample Phaeosphaeria nodorum·, Pyrenophora species, for cxample Pyrenophora teres, Pyrenophora tritici repentis; Ramularia species, for cxample Ramularia collo-cygni, Ramularia areola; Rhynchosporium species, for example Rhynchosporium secalis; Septoria species, for example Septoria apii, Septoria lycopersii; Typhula species, for example Typhula incamata; Venturia species, for example Venturia inaequalis;
root end stem diseases caused, for cxample, by Corticium species, for example Corticium graminearum; Fusarium species, for example Fusarium oxysporum; Gaeumannomyces species, for example Gaeumannomyces graminis; Rhizoctonia species, such as, for example Rhizoctonia solani; Sarocladium diseases caused for example by Sarocladium oryzae; Sclerotium diseases caused for example by Sclerotium oryzae; Tapesia species, for example Tapesia acujôrmis; Thtelaviopsis species, for cxample Thielaviopsis basicola;
car and panicle discases (including com cobs) caused, for example, by Altemaria species, for cxample Altemaria spp.; Aspergillus species, for cxample Aspergillus y/ovuj; Cladosporium species, for cxample Cladosporium cladosporioides; Claviceps species, for cxample Claviceps purpurea; Fusarium species, for cxample Fusarium culmorum; Gibberella species, for example Gibberella zeae; Monographella species, for 20 cxample Monographella nivalis; Septoria species, for example Septoria nodorum;
diseases caused by smut fungi, for cxample Sphacelotheca species, for example Sphacelotheca reiliana; Tilletia species, for example Tilletia caries, T, controversa; Urocystis species, for cxample Urocystis occulta; Ustilago species, for cxample Ustilago nuda, U. nuda tritici;
fruit rot caused, for examplc, by Aspergillus species, for cxample Aspergillus flavus; Botrytis species, for 25 example Botrytis cinerea; Pénicillium species, for example Pénicillium expansum and P. purpurogenum;
Sclerotinia species, for cxample Sclerotinia sclerotiorum; Verticilium species, for example Verticihum alboatrum;
seed and soilbome decay, mould, wilt, rot and damping-off diseases caused, for example, by Altemaria species, caused for example by A Itemaria brassicicola; Aphanomyces species, caused for example by Aphanomyces 30 euteiches; Ascochyta species, caused for example by Ascochvia lentis; Aspergillus species, caused for example by Aspergillus flavus; Cladosporium species, caused for example by Cladosporium herbarum; Cochiiobolus species, caused for cxample by Cochiiobolus sativus; (Conidiaform: Drcchslera, Bîpolaris Syn; Helminthosporïum); Colletotrichum species, caused for example by Colletotrichum coccodes; Fusarium species, caused for example by Fusarium culmorum; Gibberella species, caused for examplc by Gibberella 35 zeae; Macrophomina species, caused for example by Macrophomina phaseolina; Monographella species, caused for example by Monographella nivalis; Pénicillium species, caused for examplc by Pénicillium expansum; Phoma species, caused for example by Phoma hngam; Phomcpsis species, caused for example by Phomopsis sojae; Phytophthora species, caused for example by Phytophthora cactorum; Pyrenophora species, caused for example by Pyrenophora graminea; Pyricularia species, caused for example by Pyricularia oryzae;
•37Pythium species, caused for example by Pythium ultimum; Rhizoctonia species, caused for example by Rhizoctonia solani; Rhtzopus species, caused for example by Rhizopus oryzae; Sclerotium species, caused for example by Sclerotium rolfsii; Septoria species, caused for example by Septoria nodorum; Typhula species, caused for example by typhula incamata; Verticillium species, caused for example by Pénicillium dahliae; cancers, galls and witches’ broom caused, for example, by Nectria species, for example Nectria galligena; wilt discases caused, for example, by kfonilinia species, for example Monilinia taxa;
leaf blistcr or leaf curf diseuses caused, for example, by Exobasidium species, for example Exobasidium vexans; Taphrina species, for example Taphrina déformons’, décliné diseases of wooden plants caused, for example, by Esca disease, caused for example by Phaemoniella clamydospora, Phaeoacremonium aleophilum and Fomitiporia mediterranea; Eutypa dycback, caused for example by Eutypa lata ; Ganoderma diseases caused for example by Ganoderma boninense; Rigidoporus diseases caused for example by Rigidoporus ligrtosus;
diseases of flowers and sceds caused, for example, by Botrytis species, for example Botrytis cinerea; diseases of plant tubers caused, for example, by Rhizoctonia species, for example Rhizoctonia solani; Helminthosporium species, for example Helminthosporium solani;
Club root caused, for example, by Plasmodiophora species, for example Plamodîophora brassicae;
diseases caused by bacterial pathogens, for example Xanthomonas species, for example Xanthomonas campestris pv. oryzae; Pseudomonas species, for example Pseudomonas syringae pv. lachrymans; Erwinia species, for example Erwinia amylovora.
The following diseases of soya beans can be controlled with préférence:
Fungal diseases on leaves, stems, pods and seeds caused, for example, by Altemaria leaf spot (Altemaria spec. atrans tenuissima), Anthracnose (Colletotrichum gloeosporoides dematium var. truncatum), brown spot (Septoria glycines), cercospora leaf spot and blight (Cercospora kikuchiî), choanephora leaf blight (Choanephora infimdibulifera trispora (Syn.)), dactuliophora leaf spot (Dactuliophora glycines), downy mildew (Peronaspora manshurica), drechslera blight (Drechslera glycini), frogeye leaf spot (Cercospora sojina), leptosphacrulina leaf spot (Leptosphaerultna trifoht), phyllostica leaf spot (Phyllosticta sojaecola), pod and stem blight (Phomopsis sojae), powdcry mildew (Microsphaera diffusa), pyrenochaeta leaf spot (Pyrenochaeta glycines), ihizoctonia acrial, foliage, and web blight (Rhizoctonia solani), rust (Phakopsora pachyrhizi, Phakopsora meibomiae), scab (Sphaceloma glycines), stemphylium leaf blight (Stemphylium botryosum), target spot (Corynespora cassiicola).
Fungal diseases on roots and the stem base caused, for exemple, by black root rot (Calonectria crotalariae), charcoal rot (Macrophomina phaseolina), fusarium blight or wilt, root roL and pod and collar rot (Fusarium oxysporum, Fusarium orthoceras, Fusarium semitectum, Fusarium equisetï), mycoleptodiscus root rot (Mycoleptodiscus terrestris), neocosmospora (Neocosmospora vasinfecta), pod and stem blight (Diaporthe phaseolorum), stem canker (Diaporthe phaseolorum var. caulivora), phytophthora rot (Phytophthora megasperma), brown stem rot (Phialophara gregata), pythium rot (Pythium aphanidermatum, Pythium irregulare, Pythium debaryanum, Pythium myriotylum, Pythium ultimum), rhizoctonia root Γοζ stem decay, and damping-off (Rhizoctonia solani), sclerotinia stem decay (Sclerotinia sclerotiorum), sclerotinia southem blight (Sclerotinia rolfsii), thiclaviopsis root rot (Thielaviopsis basicola).
-38The inventive fungicidal compositions can be used for curative or protective/preventive control of phytopathogenic fimgi. The invention therefore also relates to curative and protective methods for controlling phytopathogenic fimgi by the use of the inventive active ingrédients or compositions, which are applied to the seed, the plant or plant parts, the fruit or the soil in which the plants grow.
The fact that the active ingrédients are well tolerated by plants at the concentrations required for controlling plant diseases allows the treatment of above-ground parts of plants, of propagation stock and seeds, and of the soil.
According to the invention ail plants and plant parts can be treated. By plants is meant ail plants and plant populations such as désirable and (indésirable wild plants, cultivars and plant varieties (whether or not 10 protectable by plant variety or plant breeder’s rights). Cultivars and plant varieties can be plants obtained by conventional propagation and breeding methods which can be assisted or supplcmentcd by one or more biotechnological methods such as by use of double haploids, protoplast fiision, random and directed mutagencsis, molccular or genetic markers or by bioengineering and genetic engineering methods. By plant parts is meant ail above ground and below ground parts and organs of plants such as shoot, leafi blossom and root. 15 whcreby for example leaves, needles, stems, branches, blossoms, fruiting bodies, fruits and seed as well as roots, corms and rhizomes are listed. Crops and végétative and generative propagating material. for example cuttings, corms, rhizomes, runners and seeds also belong to plant parts.
The inventive active ingrédients, when they are well tolerated by plants, hâve favourable homeothcrm toxicity and are well tolerated by the environment, are suitable for protecting plants and plant organs. for enhancing 20 harvest yields, for improving the quality of the harvested material. They can preferably be used as crop protection compositions. They are active against normally sensitive and résistant species and against ail or some stages of development.
Plants which can bc treated in accordance with the invention include the following main crop plants: maize, soya bean, alfalfa, cotton, sunflower, Brassica oil seeds such as Brassica napus (e.g. canola, rapeseed), Brassica 25 rapa, B.juncea (e.g. (field) mustard) and Brassica carinata, Arecaceae sp. (e.g. oilpalm, coconut), rice, wheaζ sugar beet, sugar cane, oats, ryc, barley, millet and sorghum, triticale, flax, nuis, grapes and vine and various fruit and vegctables from various botanic taxa, e.g. Rosaceae sp. (e.g. pome fruits such as apples and pears, but also stone fruits such as apricots, cherries, almonds, plums and peaches, and beny fruits such as strawbcrries, raspberries, red and black currant and gooseberry), Ribesioidae sp., Juglandaceae sp., Betulaceae sp., 30 Anacardiaceaesp., Fagaceaesp., Moraceae sp., Oleaceaesp. (e.g. olive tree),^crim’i/aceaesp., Lauraceaesp.
(e.g. avocado, cinnamon, camphor), Musaceae sp. (e.g. banana trees and plantations), Rubiaceae sp. (e.g. coffee), Theaceaesp. (e.g. tea), Sterculiceae sp.,Rutaceae sp. (e.g. lemons, oranges, mandarins and grapefruit); Solanaceae sp. (e.g. tomatoes, potatoes, peppers, capsicum, aubergines, tobacco), Liliaceae sp., Compositae sp. (e.g. lettuce, artichokes and chicory - including root chicory, endive or common chicoiy), Umbelliferae sp. (e.g.
carrots, porsley, celcry and celeriac), Cucurbitaceae sp. (e.g. cucumbers - including gherkins, pumpkins, watermelons, calabashes and melons), AUiaceae sp. (e.g. leeks and onions), Cruciferae sp. (e.g. white cabbage, red cabbage, broccoli, cauliflower, Brussels sprouts, pak choi, kohlrabi, radtshes, horseradish, cress and chinese cabbage), Leguminosae sp. (e.g. peanuts, peas, lentils and beans - e.g. common beans and broad beans), Chenopodiaceae sp. (e.g. Swiss chard, fodder beeζ spinach, beetroot), Linaceae sp. (e.g. hemp), Cannabeacea
sp. (eg- cannabis), Mahaceae sp. (e.g. okra, cocoa), Papaveraceae (e.g. poppy), Asparagaceae (e.g. asparagus); usefui plants and omamental plants in the gardcn and woods including turf lawn, grass and Stevia rebaudiana, and in each case genctically modified types of these plants.
Plant Growth Régulation
In some cases, the inventive compounds can, at particular concentrations or application rates, also be used as herbicides, safeners, growth regulators or agents to improve plant properties, or as microbicides, for example as fongicides, antimycotics, bactéricides, viricides (including compositions against viroids) or as compositions against MLO (Mycoplasma-like orgnnisms) and RLO (Rickettsia-like organisms). If appropriate, they can also be used as intermediates or precursors for the synthesis of other active ingrédients.
The inventive active ingrédients intervene in the metabolism of the plants and can therefore also be used as growth regulators.
Plant growth regulators may exert various effects on plants. The cffect of the substances dépends essentially on the time of application in relation to the developmental stage of the plant, and also on the amounts of active ingrédient applied to the plants or their environment and on the type of application. In each case, pOwth 15 regulators should hâve a particular desired effect on the crop plants.
Plant growth-regulating compounds can be used, for example, to înhibit the végétative growth of the plants. Such inhibition of growth is of économie interest, for example, in the case of grasses, sïnce it is thus possible to reduce the frequency of grass cutting in omamental gardens, parles and sport fàcilities, on roadsïdes, at airports or in fruit crops. Also of significance is the inhibition of the growth of herbaccous and woody plants on 20 roadsides and in the vicinity of pipelines or overhead cables, or quite generally in areas where vigorous plant growth is unwanted.
Also important is the use of growth regulators for inhibition ofthe longitudinal growthofcereal, This reduces or completely éliminâtes the risk of lodging of the plants prior to harvest In addition, growth regulators in the case of cereals can strengthen the culm, which also countcracts lodging. The employaient of growth regulators for 25 shoitening and strengthening culms allows the déployaient of higher fertilizer volumes to increase the yield, without any risk of lodging of the cereal crop.
In many crop plants, inhibition of végétative growth allows denser planting, and it is thus possible to achieve higher yields based on the soit surface. Another advantage of the smalier plants obtained in this way is that the crop is casier to cultivate and harvest
Inhibition of the végétative plant growth may also lead to enhanc ed yields because the nutrients and assimilâtes are of more benefit to flowerand fruit formation than to the végétative parts of the plants.
Frequcntly, growth regulators can also bc used to promote végétative growth. This îs of great benefit when harvesting the végétative plant parts. However, promoting végétative growth may also promote gcneratîve growth in that more assimilâtes are formed, resulting in more or larger fruits.
In some cases, yield increases may be achieved by manipulating the metabolism of the plant, without any détectable changes in végétative growth. In addition, growth regulators can be used to alter the composition of the plants, which in tum may resuit in an improvement in quality of the harvested products. For example, it is possible to increase the sugar content in sugar beet, sugar cane, pineapples and in citrus fruit, or to increase the
-40protein content in soya or cereals. It is also possible, for example, to use growth regulators to inhibit the dégradation of désirable ingrédients, for example sugar in sugar bect or sugar cane, before or after harvest It is also possible to positively influence the production or the élimination of secondary plant ingrédients. One example is the stimulation of the flow of latex in nibber trees.
Under the influence of growth regulators, parthenocarpic fruits may be formed. In addition, it is possible to influence the sex of the flowers. It is also possible to producc stérile pollen, which is of great importance in the breeding and production of hybrid sccd.
Use of growth regulators can control the branching of the plants. On the one hand, by breaking apical dominance, it is possible to promote die development of side shoots, which may be highly désirable particularly 10 in the cultivation of omamental plants, also in combination with an inhibition of growth. On the other hand, however, it is also possible to inhibit the growth of the side shoots. This effect is of particular interest, for example, in the cultivation of tobacco or in the cultivation of tomatoes.
Under the influence of growth regulators, the amount of leaves on the plants can be contre lied such that défoliation of the plants is achicved at a desired time. Such défoliation plays a major rôle in the mechanical 15 harvesting of cotton, but is also of interest for fàcilitnting harvesting in other crops, for example in viticulture.
Défoliation of the plants can also be undertaken to lower the transpiration of the plants before they are transplan ted.
Growth regulators can likewisc be used to regulate fruit dehiscence. On the one hand, it is possible to prevent prématuré fruit dehiscence. On the other hand, it is also possible to promote fruit dehiscence or even flower 20 abortion to achieve a desired mass (“thinning), in order to elimînate alternation. Alternation is understood to mean the characteristic of some fruit species, for endogenous reasons, to deliver very different yields from year to year. Finally, it is possible to use growth regulators at the time of harvest to rcduce die forces required to detach the fruits, in order to allow mechanical harvesting or to facilitnte manual harvesting.
Growth regulators can also be used to achieve fàster or else delayed ripening of the harvested material before or 25 after harvest This is particularly advantageous as it allows optimal adjustment to the requirements of the market Morcover, growth regulators in some cases can improve the fruit colour. In addition, growth regulators can also be used to concentrate maturation within a certain period of time. This establishes the prerequisites for complété mechanical or manual harvesting in a single operation, for example in the case of tobacco, tomatoes or coffee.
By using growth regulators, it is additionally possible to influence the resting of seed or buds of the plants, such that plants such as pincapple or omamental plants in nurseries, for example, germinate, sprout or flower at a time when they are normally not inclined to do so. In areas where there is a risk of frost it may be désirable to delay budding or germination of seeds with the aid of growth regulators, in order to avoid damage resulting from late frosts.
Finally, growth regulators can induce résistance of the plants to frost, drought or high salinity of the soil. This allows the cultivation of plants in régions which are normally unsuitable for this puipose.
Résistance Induction /Plant Health and other effects
-41The active compounds according to the invention also exhibit a potcnt strengthening effect in plants. Accordingly, they can be used for mobilizing the defences of the plant against attack by undesirable microorganisms.
Plant-strengthening (resistance-inducing) substances are to be undcrstood as meaning, in the présent context, those substances which are capable of stimulating the defence system of plants in such a way that the treated plants, when subsequently inoculâtcd with undesirable microorganisms, dcvelop a high dcgree of résistance to these microorganisms.
The active compounds according to the invention are also suitable for increasing the yield of crops. In addition, they show reduced toxicity and are well tolerated by plants.
Further, in context with the présent invention plant physiology effects comprise the following:
Abiotic stress tolérance, comprising température tolérance, drought tolérance and recovcry after drought stress, water use efficiency (correlating to reduced water consumption), flood tolérance, ozone stress and UV tolérance, tolérance towards chemicals like heavy metals, salts, pesticides (safener) etc..
Biotic stress tolérance, comprising increased fungal résistance and increased résistance against nématodes, viruses and bactérie. In context with the présent invention, biotic stress tolérance preferably comprises increased fungal résistance and increased résistance against nématodes
Increased plant vigor, comprising plant health / plant quality and seed vigor, reduced stand fàilure, improved appearance, increased recovcry, improved greening effect and improved photosynthetic efficiency.
Effects on plant hormones and/or functional enzymes.
Effects on growth regulators (promoters), comprising earlier germination, better cmergence, more developed root system and/or improved root growth, increased ability of tillering, more productive tillers, earlier flowering, increased plant height and/or biomass, shorting of stems, improvements in shoot growth, number of kemels/ear, number of ears/m1, number of stolons and/or number of flowers, enhanced hnrvest index, bigger Icaves, less dcad basal leaves, improved phyllotaxy, earlier maturation / earlier fruit finish, homogenous riping, increased 25 duration o f grain fill ing, better fruit finish, bigger fruit/vegetable size, sprouting résistance and reduced lodging.
Increased yield, referring to total biomass per hectare, yield per hectare, kemel/fiuit weight, seed size and/or hectolitre weight as well as to increased product quality, comprising:
improved processability relating to size distribution (kemel, fruit» etc.), homogenous riping, grain moisture, better milling, better vinification, better brewing, increased juice yield, harvestability, digestibility, 30 sédimentation value, fàlling number, pod stability, storage stability, improved fiber length/strength/unifonnity, increase of milk and/or meet quality of silage fed animais, adaption to cooking and fiying;
further comprising improved marketability relating to improved fruit/grain quality, size distribution (kemel, fruit, etc.), increased storage / shelf-life, firmness / softness, taste (aroma, texture, etc.), grade (size, shape, number of bernes, etc.), number of bemes/fiuits per bunch, crispness, freshness, covcrage with wax, frequency of physiological disorders, colour, etc.;
further comprising increased desired ingrédients such as e.g. protein content, fatty acids, oil content, oïl quality, aminoacid composition, sugar content, acid content (pH), sugar/acid ratio (Brix), polyphenols, starch content, nutritional quality, gluten content/indcx, energy content, taste, cte.;
-42and further comprising decreased undesired ingrédients such as e.g. less mycotoxines, less aflatoxines, geosmin level, phenolic aromas, lacchase, polyphenol oxidases and pcroxidascs, nitrate content etc.
Sustainable agriculture, comprising nutrient use efïiciency, especially nitrogen (N)-use efïîciency, phosphours (P)-use efïiciency, water use efïiciency, improved transpiration, respiration and/or CO2 assimilation rate, better nodulation, improved Ca-metabolism etc..
Delayed sencscence, comprising improvement of plant physiology which is manifested, for example, in a longer grain filling phase, leading to higher yield, a longer duration of green leaf colouration of the plant and thus comprising colour (grcening), water content, dryness etc.. Accondingly, in the context ofthe présent invention, it has been found that the spécifie inventive application of the active compound combination makes it possible to 10 prolong the green leaf area duration, which delays the maturation (senescence) 0 f the plant The main advantage to the farmer is a longer grain filling phase leading to higher yield. There is also an advantage to the fermer on the basis of greater flexibi lity in the harvesting time.
Therein “sédimentation value” is a measure for protein quality and describes according to Zeleny (Zeleny value) the degree of sédimentation of flour suspended in a lactic acid solution during a standard time intcrval. This is 15 taken as a measure of the baking quality. Swclling of the gluten fraction of flour in lactic acid solution affects the rate of sédimentation of a flour suspension. Both a higher gluten content and a better gluten quality give rise to slower sédimentation and higher Zeleny test values. The sédimentation value of flour dépends on the wheat protein composition and is mostly correlated to the protein content, the wheat haniness, and the volume of pan and hearth loaves. A stronger corrélation between loaf volume and Zeleny sédimentation volume compared to 20 SDS sédimentation volume could bc duc to the protein content influencing both the volume and Zeleny value ( Czech J. Food Sel. Vol. 21. No. 3:91-96. 2000).
Further the “fàlling number” as mentioned herein is a measure for the baking quality of cereals, especially of wheat The fàlling number test indicates that sprout damage may hâve occurred. It means that changes to the physical properties ofthe starch portion ofthe wheat kernel has already happened. Therein, the felling number 25 instrument analyzcs viscosity by measuring the résistance of a flour and water paste to a felling plunger. The time (in seconds) for this to happen is known as the felling number. The felling number results are recordcd as an index of enzyme activity in a wheat or flour sample and résulte are expressed in time as seconds. A high felling number (for example, above 300 seconds) indicates minimal enzyme activity and sound quality wheat or flour, A low fàlling number (for exemple, below 250 seconds) indicates substantiel enzyme activity and sprout30 damaged wheat or flour.
The term “more devcloped root system” / “improved root growth refers to longer root system, deeper root growth, fester root growth, higher root dry/fresh weight, higher root volume, larger root surface area, bigger root diameter, higher root stability, more root branching, higher number ofroot hairs, and/or more root tips and can be measured by analyzing the root architecture with suitable méthodologies and Image analysis programmes (e.g. WinRhizo).
The term “crop water use efïiciency” refers technically to the mass of agriculture produce per unit water consumai and economically to the value of product(s) produced per unit water volume consumed and can e.g. be measured in terms of yield per ha, biomass of the plants, thousand-kemel mass, and the number of cars per m2.
-43The term “nitrogen-use efïiciency” refers technîcally to the mass of agriculture producc per unit nitrogen consumed and economically to the value of product(s) produced per unit nitrogen consumcd, reflecting uptake and utilization efïiciency.
Improvement În grecning ! improved colour and improved photosynthetic efïiciency as well as the delay of senescence can bc measured with well-known techniques such as a HandyPea system (Hansatech). Fv/Fm is a paramctcr widely used to indîcate the maximum quantum efïiciency of photosystem II (PSII). This parameter is widely considcred to be a sélective indication of plant photosynthetic performance with healthy samples typically achieving a maximum Fv/Fm value of approx. 0.85. Values lowcr than this will bc observed if a sample has been exposed to some type of biotic or abiotic stress factor which has reduced the capacity for photochemical quenching of energy within PSII. Fv/Fm is presented as a ratio of variable fluorescence (Fv) over the maximum fluorescence value (Fm). The Performance Index is essentially an indicator of sample vitality. (See e.g. Advanced Techniques in Soil Microbiology, 2007, //,319-341; Applied Soit Ecology, 2000, /5,169-182.)
The improvement in grecning / improved colour and improved photosynthetic efficiency as well as the delay of senescence can also bc assessed by measurement of the net photosynthetic rate (Pn), measurement of the chlorophyll content, e.g. by the pigment extraction method of Zieglcr and Ehle, measurement of the photochemical efficiency (Fv/Fm ratio), détermination of shoot growth and final root and/or canopy biomass, détermination of tîller density as well as of root mortality.
Within the context of the présent invention préférence is given to improving plant physiology effects which arc selected from the group comprising: enhaneed root growth / more dcveloped root system, improved grecning, improved water use efïiciency (conelating to reduced water consumption), improved nutrient use efficiency, comprising espccially improved nitrogen (N)-use efficiency, delayed senescence and enhaneed yield.
Within the enhanccmcnt of yield préférence is given as to an improvement in the sédimentation value and the falling number as well as to the improvement of the protein and sugar content - espccially with plants selected from the group of cereals (preferably wheat).
Preferably the novel use of the fungicidal compositions of the présent invention relates to a combined use of a) prcvcntively and/or curatively controlling pathogenic fungi and/or nématodes, with or without résistance management, and b) at least one of enhaneed root growth, improved greening, improved water use efficiency, delayed senescence and enhaneed yield. From group b) enhancement of root system, water use efficiency and N-use efficiency is particularly preferred.
Seed Treatment
The invention further comprises a method for treating seed.
The invention further relates to seed which has been treated by one of the methods described in the previous paragraph. The inventive seeds are employed in methods for the protection of seed from harmful 3 5 microorganisms. In these methods, seed treated with at least one inventive active ingrédient is used.
The inventive active ingrédients or compositions are also suitable for treating seed. A large part of the damage to crop plants caused by harmful organisms is triggercd by the infection of the seed during storage or after sowing, and also during and after germination of the plant This phase is particularly critical since the roots and shoots of
-44thc growing plant are pnrticularly sensitive, and even minor damage may resuit in the dcath of the plant. Thcre is therefore a great interest in protecting the seed and the gcrminating plant by using appropriate compositions.
The control of phytopathogenîc fungi by treating the seed of plants has been known for a long time and is the subject of constant improvements. However, the treatment of seed cntails a sériés of problems which cannot always be solved in a satisfactory manner. For instance, it is désirable to develop methods for protecting the seed and the gcrminating ρίπηζ which dispense with, or at least signifïcantly reduce, the additional deployment of crop protection compositions after planting or afterémergence ofthe plants. It is also désirable to optimize the amount of the active ingrédient used so as to provide the best possible protection far the seed and the germinating plant from attack by phytopathogenîc fungi, but without damaging the plant itself by the active ingrédient employed. In particular, methods for the treatment of seed should also take account of the întrinsic fungicidal properties of transgenic plants in order to achievc optimal protection of the seed and the gcrminating plant with a minimum expenditure of crop protection compositions.
The présent invention therefore also relates to a method for protection of seed and germinating plants from attack by phytopathogenîc fungi, by treating the seed with an inventive composition. The invention likewise relates to the use ofthe inventive compositions for treatment ofseed to protect the seed and the germinating plant from phytopathogenîc fungi. The invention further relates to seed which has been treated with an inventive composition for protection from phytopathogenîc fungi.
The control of phytopathogenîc fungi which damage plants post-emergence is eftected primarily by treating the soil and the above-ground parts of plants with crop protection compositions. Owing to the conccms regarding a possible influence of the crop protection compositions on the environment and the health of humans and animais, thcre are efforts to reduce the amount of active ingrédients deployed.
One ofthe advantages of the présent invention is that the particular systemic properties of the inventive active ingrédients and compositions mean that treatment of the seed with these active ingrédients and compositions not only protects the seed itselfî but also the resulting plants after émergence, from phytopathogenîc fungi. In this way, the immédiate treatment ofthe crop at the time of sowing or shortly thereafter can be dispensed with.
It is likewise considered to be advantageous that the inventive active ingrédients or compositions can especially also be used with transgcnic seed, in which case the plant growing from this seed is capable of expressing a protein which acts against pests. By virtue of the treatment of such seed with the inventive active ingrédients or compositions, mcrcly the expression of the protein, for example an insecticidal protein, can control certain pests. Surprisingly, a further synergistic effect can be observed in dûs case, which additionally increases the effechveness for protection against attack by pests.
The inventive compositions are suitable for protecting seed of any plant varicty which is used in agriculture, in greenhouscs, in forests or in horticulture and viticulture. In particular, this is the seed of ccreals (such as ν+ιεηζ bariey, rye, triticale, sorghum/millet and oats), maize, cotton, soya beans, rice, potatoes, sunflower, bcan, coffee, beet (for exemple sugar beet and fodder beet), peanut, oilseed râpe, poppy, olive, coconut, cocoa, sugar cane, tobacco, vegetables (such as tomato, cucumbers, onions and lettuce), turf and ornementais (see also below). The treatment of the seed of cereals (such as wheat, bariey, rye, triticale and oats), maize and rice is of particular significance.
-45As also described below, the treatment of transgenic seed with the inventive active ingrédients or compositions is of particular significance. This relates to the seed of plants containing at least one heterologous gene. Définition and examples of suitable heterologous genes are given below.
In the context of the présent invention, the inventive composition is applied to the seed alone or in a suitable formulation. Preferably, the seed is treated in a state in which it is sufficiently stable for no damage to occur in the course of treatment. In general, the seed can be treated at any time between harvest and sowing. It is customary to use seed which has been separated from the plant and freed from cobs, shclls, stalks, coats, hairs or the flesh of the fruits. For example, it is possible to use seed which has been harvested, cleaned and dried down to a moisture content of less than 15 % by weight. Alternative!y, it is also possible to use seed which, after drying, for example, has been treated with water and then dried again.
When treating the seed. care must generally be taken that the amount of the inventive composition applied to the seed and/or the amount of further additives is selected such that the germination of the seed is not impaired, or that the resulting plant is not damaged. This has to be borne in mind in particular in the case of active ingrédients which can hâve phytotoxic effects at certain application rates.
The inventive compositions can be applied dircctly, i.e. without containing any other components and without having been diluted. In general, it is préférable to apply the compositions to the seed in the form of a suitable formulation. Suitable formulations and methods for seed treatment are known to those skilled in the art and are described, for example, in the following documents: US 4,272,417, US 4,245,432, US 4,808,430, US 5,876,739, US 2003/0176428 Al, WO 2002/080675, WO 2002/028186.
The active ingrédients usable in accordance with the invention can be converted to the customary seed dressïng formulations, such as solutions, émulsions, suspensions, powders, foams, slurries or other coating compositions for seed, and also ULV formulations.
These formulations aie prepared in a known manner, by mixing die active ingrédients with customary additives, for example customary extenders and also solvents or diluents, dyes, wetting agents, dispersants, emulsifiers, 25 andfoams, preservatives, secondaiy thickeners, adhesives, gibberellins and also water.
Useful dyes which may be présent in the seed dressing formulations usable in accordance with the invention are ail dyes which are customary for such purposes. It is possible to use either pigments, which aie sparingly soluble in water, or dyes, which aie soluble in water. Examples include the dyes known by the names Rhodamine B, C.I. Pigment Red 112 and CJL Solvent Red 1.
Useful wetting agents which may be présent in the seed dressing formulations usable in accordance with the invention are ail substances which promote wetting and which are conventionally used for the formulation of active agrochemical ingrédients. Préférence is given to using alkyl naphthalenesulphonatcs, such as diisopropyl or diisobutyl naphthalenesulphonatcs,
Useful dispersants and/or emulsifiers which may be présent in the seed dressing formulations usable in accordance 35 with the invention are ail nonionic, anionic and cationic dispersants convcntionally used for the formulation of active agrochemical ingrédients. Usable with préférence are nonionic or anionic dispersants or mixtures of nonionic or anionic dispersants. Suitable nonionic dispersants include especially ethylene oxidc/propylene oxide block polymcts, alkylphenol polyglycol ethers and tnstryrylphenol polyglycol ether, and the phosphated or
-46sulphated dérivatives thereof. Suitable anionic dispersants are especially lignosulphonatcs, polyaaylic acid salts and arylsulphonate/formaldchyde condensâtes.
Antifoams which may be présent in die seed dressing formulations usablc in accordance with die invention are al! foam-inhibiting substances convcntionally used for die formulation of active agrochemical ingrédients. Silicone antifoams and magnésium stéarate can be used with préférence.
Preservatives which may be présent in die seed dressing formulations usablc in accordance with the invention are ail substances usablc for such purposes in agrochemical compositions. Examples include dîchloiophcne and benzyl alcohol hemi formai.
Secondary thickeners which may be présent in the seed dressing formulations usablc in accordance widi die invention are ail substances usablc for such purposes in agrochemical compositions. Preferred examples include cellulose dérivatives, acrylic acid dérivatives, xanthan, modified clays and fincly divided silica.
Adhesives which may be présent in die seed dressing formulations usablc in accordance widi the invention are ail customary binders usable in seed dressing products. Preferred exemples include polyvinylpyrrolidone, polyvinyl acetate, polyvinyl alcohol and tylose.
The gibberellins which may be présent in the seed dressing formulations usable in accordance widi the invention may preferably be gibberellins Al, A3 (= gibberellic acid), A4 and A7; particular préférence is given to using gibberellic acid. The gibberellins are known (cf. R. Wegler “Chcmic der Pflanzenschutz- und Schfldlingsbekâmpfungsmitter [Chemistry of the Crop Protection Compositions and Pesticides), vol. 2, Springer Vcrlag, 1970, p. 401-412).
The seed dressing formulations usable tn accordance widi die invention can be used, either directly or after prcviously having been diluted with water, for the treatment of a widc range of different seed, induding die seed of transgcnic plants. In this case, additional synergisde cffccts may also occur in interaction with the substances formed by expression.
For treatment of seed widi die seed dressing formulations usable tn accordance widi die invention, or the préparations prepared therefrom by adding water, ail mixing units usable customarily for the seed dressing are useful. Specifically, die procedure in die seed dressing is to place die seed into a mixer, to add die particular desired amount of seed dressing formulations, either as such or after prier dilution widi water, and to mix everything until die formulation is distributed homogencously on die sccd. If appropriate, this is followed by a drying process.
Mycotoxins
In addition, die inventive treatment can reduce the mycotoxin content tn the harvested material and the foods and feeds prepared therefrom. Mycotoxins include particularly, but not exclusively, the following: deoxynivalenol (DON), nivalenol, 15-Ac-DON, 3-Ac-DON, T2- and UT2-toxin, fumonisins, zearalenon, moniliformin, fusarin, diaceotoxyscirpenol (DAS), beauvericin, cnniatin, fusaroproliferin, fusarcnol, 35 ochratoxins, patulin, ergot alkaloids and aflatoxins which can be produced, for cxample, by the following fungi:
Fusarium spec., such as F. acuminatum, F. asiaticum, F. avenaceum, F. crookwellense, F. culmorum, F. graminearum (Gibberella zeae). F. equiseti, F. fujikoroi, F. musarum, F. axysporum, F. proliferatum,
F. poae, F. pseudograminearum, F. sambucinum, F. scirpi, F. semitectum, F. solani, F. sporotrichoides.
-47F langsethiae, F. subglutinans, F. tricinctum, F verticillioides etc., and also by Aspergillus spcc., such as A. flavus, A. parasiticus, A. nomius, A. ochraceus, A. clavatus, A. terreux, A. versicolor, Pénicillium spec., such as P. verrucosum, P. viridicatum, P. citrinum, P. expansum, P. claviforme, P. roqueforti, Claviceps spcc., such as
C. purpurea, C. Justformis, C. paspali, C. africana, Stachybotrys spcc. and others.
Material Protection
The inventive active ingrédients or compositions can also be used in the protection of materials, for protection of industrial materials against attack and destruction by harmful microorganisms, for example fongi and insects.
In addition, the inventive compounds can be used as antifouling compositions, alone or in combinations with other active ingrédients.
Industrial materials in the présent context are understood to mean inanimate materials which hâve been prepared for use in industry. For example, industrial materials which are to be protected by inventive active ingrédients from microbial alteration or destruction may be adhesives, glues, paper, wallpapcr and board/cardboard, textiles, carpets, Icathcr, wood, fibcTS and tissues, points and plastic articles, cooling lubricants and other materials which can be infected with or destroyed by microorganisms. Parts of production plants and buildings, for example cooling-water circuits, cooling and heating Systems and ventilation and air-condîtionîng units, which may be impaired by the prolifération of microorganisms may also be mentioned within the scope of the materials to be protected. Industrial materials within the scope of the présent invention preferably include adhesives, sizes, paper and card, lcather, wood, paints, cooling lubricants and heat transfer fluids, more preferably wood.
The inventive active ingrédients or compositions may prevent adverse effects, such as rotting, decay, discoloration, 20 décoloration or formation of mould.
In the case of treatment of wood the compounds/compositions according to the invention may also be used against fongal diseases liable to grow on or inside timber. The term timber” means ail types of species of wood, and ail types of working of this wood intended for construction, for example solid wood, high-density wood, laminated wood, and plywood. The method for treating timber according to the invention mainly consists 25 in contacting one or more compounds according to the invention or a composition according to the invention; this includes for example direct application, spraying, dipping, injection or any other suitable means.
In addition, the inventive compounds can be used to protect objects which corne into contact with saltwater or brackish water, especially hulls, screcns, nets, buildings, moorings and sîgnalling Systems, from fbuling.
The inventive method for controlling unwanted fongi can also be employed for protecting storage goods. Storage goods are understood to mean natural substances of vegetable or animal origin or processed products thereof which are of natural origin, and for which long-term protection is desired. Storage goods ofvegetable origin, for example plants or plant parts, such as stems, leaves, tubers, seeds, fruits, grains, can be protected freshly harvested or after processing by (pre)drying, moistening, comminuting, grinding, pressing or roasting. Storage goods also include timber, both unprocessed, such as construction timber, elcctricity pôles and barriers, or in the form of finished products, such as fomiture. Storage goods of animal origin are, for example, hides, leather, fors and hairs. The inventive active ingrédients may prevent adverse effects, such as rotting, decay, discoloration, décoloration or formation of mould.
-48Microorganisms capable of dcgrading or altering the industrial matériels include, for example, bactcria, fungi, yeasts, algae and slime organisms. The inventive active ingrédients preferably act against fungi, espccially moulds, wood-discoloring and wood-destroying fungi (Ærcwwycrtes, Basidiomycetes, Deuteromycetes and Zygomycetes), and against slime organisms and algae. Examples include microorganisms of the following généra: Altemaria, such as Altemaria tenais·, AspergUlus, such as AspergUlus niger, Chaetomium, such as Chaetomium globosum; Coniophora, such as ConiopAora puetana; Lentinus, such as Lentinus tigrinus; Pénicillium, such as Pénicillium glaucum; Polyporus, such as Polyporus versicolor, Aureobasidium, such as Aureobasidium pullulons; Sclerophoma, such as Sclerophoma pityophila; Trichoderma, such as Trichoderma viride; Ophiostoma spp., Ceratocystis spp., Humicola spp., Petriella spp., Trichurus spp., Coriolus spp., Glœophyllum spp., Pleurotus spp., Poria spp., Serpula spp. and Tyromyces spp., Cladosporium spp., Paecilomyces spp. Aïucor spp., Escherichta, such as Escherichia coli; Pseudomonas, such as Pseudomonas aeruginosa; Staphylococcus, such as Staphylococcus aureus, Candida spp. and Saccharomyces spp., such as Saccharomyces cerevisae.
Antimycotic Activity
In addition, the inventive active ingrédients also hâve very good antimycotic activity. They hâve a very broad 15 antimycotic activity spcctrum, espccially against dermatophytes and yeasts, moulds and diphasic fungi (for example against Candida spccies, such as C. albicans, C. glabrata), and Epidermophytonfoccosum, AspergUlus spccies, such as A. niger and A.Jumîgatus, Trichophyton spccies, such as T. mentagrophytes, Microspomn species such as M. canis and M. audouinii. The list of these fungi by no means constitutes a restriction of the mycotic spectium covered, and is merely of illustrative character.
The inventive active ingrédients can therefore be used both in medical and in non-medical applications.
GMO
As already mentioned above, it is possible to treat ail plants and their parts in accordance with the invention. In a preferred embodimenL wild plant species and plant cultivars, or those obtained by conventional biological breeding methods, such as cross ing or protoplast fusion, and also parts thereofi are treated. In a further preferred 25 embodiment, transgenîc plants and plant cultivars obtained by genetic engineering methods, if appropriate in combination with conventional methods (Genctically Modified Organisms), and parts thereof are treated. The ternis “parts” or “parts of plants” or “plant parts” hâve been explained above. More preferably, plants of the pilant cultivars which are commercially avaîlable or are in use are treated in accordance with the invention. Plant cultivars are understood to mcan plants which hâve new properties (traits) and bave been obtained by 30 conventional breeding, by mutagcncsis or by recombinant DNA techniques. They can be cultivars, varietics, bioor génotypes.
The method of treatment according to the invention can be used in the treatment of genctically modified organisms (GMOs), e.g. plants or sccds. Genetically modified plants (or transgenîc plants) are plants of which a heterologous gene has been stably integrated into genome. The expression ‘heterologous gene” essentially means a gene which 35 is provided or assembled outside the plant and when introduced in the nuclear, chloroplastic or mitochondrial genome gives the transformed plant new or improved agronomie or other propicrties by expressing a protein or poljpcpitide of interest or by downregulating or silencing other gene(s) which are présent in the plant (using for
-49example, anriscnse technology, cosuppression technology, RNA interférence - RNAi - technology or microRNA - miRNA - technology). A hetcrologous gene that is located in the genome is also called a transgene. A transgene that is defined by its particular location in the plant genome is called a transformation or transgenic event Depending on the plant specics or plant cultivars, their location and growth conditions (soils, climatc, végétation period, diet), the treatment according to the invention may also resuit in superadditive (“syncrgistic) effects. Thus, for example, reduced application rates and/or a widening of the activity spcctrum and/or an increase in the acti vity of the active compounds and compositions which can be used according to the invention, better plant growth, increased tolérance to high or low températures, increased tolérance to drought or to water or soil sait content, increased flowering performance, easier harvesting, acceleratcd maturation, higher harvest yields, bigger fruits, 10 larger plant height, greener leaf color, earlier flowering, higher quality and/or a higher nutritionel value of the harvested products, higher sugar concentration within the fruits, better storage stability and/or processahility of the harvested products are possible, which exceed the effects which were actually to be expected.
Plants and plant cultivars which are preferably to be treated according to the invention include ail plants which hâve gcnctic material which impart particularly advantageous, uscful traits to these plants (whether obtained by breeding and/or biotechnological means).
Plants and plant cultivars which are also preferably to be treated according to the invention are résistant against one or more biotic stresses, i.e. said plants show a better defense against animal and microbial pests, such as against nematodes, insects, mites, phytopathogenic fungi, bacteria, viruses and/or vîroids.
Examples of nématode or insect résistant plants are described in e.g. U.S. Patent Applications 11/765,491,
11/765,494, 10/926,819, 10/782,020, 12/032,479, 107783,417, 10/782,096, 11/657,964, 12/192,904, 11/396,808,
12/166253, 12/166.239, 12/166,124, 12/166209, 11/762,886, 12/364335, 11/763,947, 12/252,453, 12/209354,
12/491396,12/497221, 12/644,632, 12/646,004,12/701,058,12/718,059,12/72! 395,12/638,591.
Plants and plant cultivars which may also be treated according to the invention are those plants which are résistant to one or more abiotic stresses. Abiotic stress conditions may include, for example, drotighL cold température exposure, heat exposure, osmotic stress, flooding, increased soil salinity, increased minerai exposure, ozone exposure, high light exposure, limited availability of nitrogen nutrients, limited availability of phosphorus nutrients, shade avoidance.
Plants and plant cultivars which may also be treated according to the invention, are those plants characterized by enhanced yield characteristics. Increased yield in said plants can be the resuit of, for example, improved plant 30 physîology, growth and development, such as water use efficiency, water rétention efficiency, improved nitrogen use, enhanced carbon assimilation, improved photosynthèses, increased germination efficiency and accclerated maturation. Yield can fùrthermore be afïccted by improved plant architecture (under stress and non-stress conditions), including but not limited to, early flowering, flowering control for hybrid sced production, seedling vigor, plant size, intemode number and distance, root growth, seed size, fruit size, pod size, pod or car number, 35 sced number per pod or car, seed mass, enhanced seed filî ing, reduced seed dispersai, reduced pod dchiscence and lodgîng résistance. Further yield traits include seed composition, such as carbohydrate content, protein content, oil content and composition, nutritional value, réduction in anti-nutritional compounds, improved processability and better storage stability.
-50Plants that may be treated according to the invention are hybrid plants that already express die characteristic of heterosis or hybrid vigor which results in generally higher yield, vigor, health and résistance towards biotic and abiotic stresses). Such plants are typically made by crossing an inbred malc-stcrile parent line (the female parent) with another inbred male-fertile parent line (the male parent). Hybrid seed is typically harvested from die male stérile plants and sold to growers. Male stérile plants can sometimes (e.g. in com) be produced by dctasseling, i.e. the mechanical removal of the male reproductive organs (or males flowers) but, more typically, male sterility is the resuit of genetic déterminants in the plant genome. In that case, and espccially when seed is the desired product to bc harvested from the hybrid plants it is typically usefui to ensure that male fcrtility in the hybrid plants is fùlly restored. This can be accomplished by ensuring that the male parents hâve appropriate 10 fcrtility restorcr genes which are capable of restoring the male fcrtility in hybrid plants that contain the genetic déterminants responsible for male-stcrility. Genetic déterminants for male sterility may be located in the cytoplasm. Examples of cytoplasmic male sterility (CMS) were for instance described in Brassica spccies (WO 92/05251, WO 95/09910, WO 98/27806, WO 05/002324, WO 06/021972 and US 6,229,072). However, genetic déterminants for male sterility can also bc located in the nuclear genome. Male stérile plants can also be 15 obtained by plant biotechnology methods such as genetic engineering. A particularly usefui means of obtaining male-stérile plants is described in WO 89/10396 in which, for example, a ribonucléase such as bamase is selcctively expressed in die tapétum cells in the stamens. Fertility can then be restored by expression in the tapétum cells of a ribonucléase inhibitor such as barstar (e.g. WO 91/02069).
Plants or plant cultivais (obtained by plant biotechnology methods such as genetic engineering) which may be 20 treated according to die invention are hetbicidc-tolétant plants, i.e. plants made tolérant to one or more given herbicides. Such plants can be obtained either by genetic transformation, or by sélection of plants containing a mutation impartîng such herbicide tolérance.
Herbicide-resistant plants are for example glyphosatc-tolcrant plants, i.e. plants made tolérant to die herbicide glyphosate or salts thereof. Plants can be made tolérant to glyphosate through different means. For exemple, 25 glyphosate-tolerant plants can bc obtained by transforming the plant with a gene encoding die enzyme 5-enoIpynivyIshikimate-3-phosphate synthase (EPSPS), Examples of such EPSPS genes are die AroA gene (mutant CT7) of die bacterium Salmonella typhimurium (Science 1983, 221, 370-371), the CT4 gene of the bactcrium Agrobacterium sp. (Curr, Tapies Plant Physiol. 1992, 7, 139-145), the genes encoding a Pétunia EPSPS (Science 1986, 233, 478-481), a Tomato EPSPS (J. Biol. Chem. 1988, 263, 4280-4289), or an Eleusine EPSPS (WO 30 01/66704). It can also be a mutated EPSPS as described in for example EP 0837944, WO 00/66746, WO 00/66747 or WO 02/26995. Glyphosate-tolerant plants can also be obtained by expressing a gene that encodes a glyphosate oxido-reductase enzyme as described in US 5,776,760 and US 5,463,175. Glyphosatc-tolcrant plants can also be obtained by expressing a gene that encodes a glyphosate acctyl transfcrasc enzyme as described in for example WO 02/036782, WO 03/092360, WO 2005/012515 and WO 2007/024782. Glyphosate-tolerant plants can also be 35 obtained by selecting plants containing naturally-occuning mutations of die above-mentioncd genes, as described in for example WO 01/024615 or WO 03/013226. Plants expressing EPSPS genes that confer glyphosate tolérance are described in e.g. U.S. Patent Applications 11/517,991, 10/739,610, 12/139,408, 12/352,532, 11/312,866, 11/315,678, 12/421,292, 11/400,598, 11/651,752, 11/681,285, 11/605,824, 12/468.205. 11/760,570, 11/762,526, 11/769327, 11/769,255,11/943801 or 12/362,774. Plants comprising other genes that confcr glyphosate tolérance,
-51such as decaiboxylase gènes, are described in e.g. U.S. Patent Applications 11/588,811, 11/185,342, 12/364,724, 11/185360 or 12/423,926.
Other herbicide résistant plants are for example plants that are made tolérant to herbicides inhibiting the enzyme glutamine synthase, such as bialaphos, phosphinothricin or glufosinate. Such plants can be obtained by 5 expressing an enzyme detoxifying the herbicide or a mutant glutamine synthase enzyme that is résistant to inhibition, e.g. described in U.S. Patent Application 11/760,602. One such efficient detoxifying enzyme is an enzyme encoding a phosphinothricin acetyltransferase (such as the bar or pat protein from Streptomyces spccîcs). Plants expressing an exogenous phosphinothricin acetyltransferase are for example described in U.S. Patents 5361336; 5,648,477; 5,646,024; 5373,894; 5,637,489; 5376368; 5,739,082; 5,908,810 and 7,112,665.
Further hcrbicidc-tolerant plants are also plants that are made tolérant to the herbicides inhibiting the enzyme hydroxyphenylpymvatcdioxygcnase (HPPD). HPPD is an enzyme that catalyze the reaction in which parahydroxyphenylpyruvate (HPP) is transformed into homogentisate. Plants tolérant to HPPD-inhibitors can be transformed with a gene encoding a naturally-occurring résistant HPPD enzyme, or a gene encoding a mutated or chimeric HPPD enzyme as described in WO 96/38567, WO 99/24585, WO 99/24586, WO 09/144079, WO 15 02/046387, or US 6,768,044. Tolérance to HPPD-inhibitors can also be obtained by transforming plants with genes encoding certain enzymes enabling the formation of homogentisate despite the inhibition of the native HPPD enzyme by the HPPD-inhibitor. Such plants and genes are described in WO 99/34008 and WO 02/36787. Tolérance of plants to HPPD inhibitors can also be improved by transforming plants with a gene encoding an enzyme having prephenate deshydrogenase (PDH) activity in addition to a gene encoding an 20 HPPD-tolerant enzyme, as described in WO 04/024928. Further, plants can be made more tolérant to HPPDinhibitor herbicides by adding into their genome a gene encoding an enzyme capable of metabolizing or degrading HPPD inhibitors, such as the CYP450 enzymes shown in WO 2007/103567 and WO 2008/150473.
Still further herbicide résistant plants are plants that are made tolérant to acctolactate synthase (ALS) inhibitors. Known ALS-inhibitors include, for example, sulfonylurea, imidazolinone, triazolopyrimidines, pryimidinyoxy25 (thio)benzoatcs, and/or sulfonylaminocarbonyltriazolinone herbicides. Different mutations in the ALS enzyme (also known as acetohydroxyacid synthase, AHAS) are known to confcr tolérance to different herbicides and groups of herbicides, as described for example in Tranel and Wright (WeedScience 2002,50,700-712), but also, in U.S. Patents 5,605,011,5,378,824,5,141,870, and 5,013,659. The production of sulfonylurea-tolcrant plants and imidazolinone-tolerant plants is described in U.S. Patents 5,605,011; 5,013,659; 5,141,870; 5,767361; 5,731,180;
0 5 304,732; 4,761373; 5331,107; 5,928,937; and 5378,824; and WO 96/33270. Other imidazolinone-tolerant plants are also described in for example WO 2004/040012, WO 2004/106529, WO 2005/020673, WO 2005/093093, WO 2006/007373, WO 2006/015376, WO 2006/024351, and WO 2006/060634. Further sulfonylurea- and imidazolinone-tolerant plants are also described in for example WO 2007/024782 and U.S. Patent Application 61/288958.
Other plants tolérant to imidazolinone and/or sulfonylurea can be obtained by induced mutagenesis, sélection in cell cultures in the presence of the herbicide or mutation breeding as described for example for soybeans in US 5.084,082, for rice in WO 97/41218, for sugar beet in US 5,773,702 and WO 99/057965, for lettuce in US 5,198,599, or for sunflower in WO 01/065922.
-52Plants or plant cultivais (obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to Ae invention are insect-resistant transgenic plants, te. plants made résistant to attack by certain target insccts. Such plants can be obtained by genetic transformation, or by sélection of plants containing a mutation imparting such insect résistance.
An **insect-resistant transgenic plant”, as used herein, includes any plant containing at least one transgene comprising a coding sequence encoding:
1) an insecticidal crystal protein from Bacillus thuringiensis or an insecticidal portion thereof such as Ae insecticidal crystal proteins listed by Crickmore et aL (1998, Microbiology and Molecular Biology Reviews, 62: 807-813), updated by Crickmore et al. (2005) at Ae Bacillus thuringiensis toxin nomenclature, online at: http^/www.lifcsci.sussex.ac.uk/Home/Neil_Crickmore/Bt/), or insecticidal portions Aereof e.g., proteins of Ae Cry protein classes Cry lAb, CrylAc, Cry IB, Cry IC, Cryl D, Cry 1F, Cry2Ab, Cry3Aa, or Cry3Bb or insecticidal portions thereof(e.g. EP-A 1 999 141 and WO 2007/107302), or such proteins encodcd by synActic genes as e.g. described in and U.S. Patent Application 12/249,016 ; or
2) a crystal protein from Bacillus thuringiensis or a portion Aereof which is insecticidal in Ae presence of a second oAer crystal protein from Bacillus thuringiensis or a portion Aereof, such as Ae binary toxin made up of Ae Cry34 and Cry35 crystal proteins (Nat. Biotechnol. 2001, 19,668-72; AppliedEnvironm. Microbiol. 2006, 71, 1765-1774) or Ae binary toxin made up of Ae CrylA or CrylF proteins and Ae Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618); or
3) a hybrid insecticidal protein comprising parts of different insecticidal crystal proteins from Bacillus thuringiensis, such as a hybrid of Ae proteins of 1) above or a hybrid of Ae proteins of 2) above, e.g., Ae Cryl A.105 protein produced by com event MON89034 (WO 2007/027777); or
4) a protein of any one of l) to 3) above wherein some, particularly l to 10, amino acids hâve been replaced by anoAer amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand Ae range of target insect species affected, and/or because of changes introduced into Ac encoding DNA during cloning or transformation, such as Ae Cry3Bbl protein in com events MON863 or MON88017, or Ac Cry3A protein in com event MIR604; or
5) an insecticidal secreted protein from Bacillus thuringiensis or Bacillus cereus, or an insecticidal portion Aercofr such as Ae végétative insecticidal (VIP) proteins listed at http//www.lifcscisusscxac.uk/home/Neil_Crickmorç/Bt/vip.html, e.g., proteins from Ae VB*3Aa protein class;or
6) a secreted protein from Bacillus thuringiensis or Bacillus cereus which is insecticidal in Ae présence of a second secreted protein from Bacillus thuringiensis or B. cereus, such as Ae binary toxin made up of Ae VIP1A and VB*2A proteins (WO 94/21795); or
7) a hybrid insecticidal protein comprising parts from different secreted proteins from Bacillus thuringiensis or Bacillus cereus, such as a hybrid of Ae proteins in 1 ) above or a hybrid of Ae proteins in 2) above; or
8) a protein of any one of 5) to 7) above wherein some, particularly 1 to 10, amino acids hâve been replaced by anoAer amino acid to obtain a higher insecticidal activity to a target insect species, and/or to expand Ae range of target insect species affected, and/or because of changes introduced into Ae encoding DNA during cloning or
transformation (while still encoding an insecticidal protein), such as the VIP3Aa protein in cotton evcnt COT102;
or
9) a secreted protein from Bacillus thuringiensts or Bacillus cereus which is rnsectic idal in the presence of a crystal protein from Bacillus thuringiensis, such as the bînary toxin made up of VIP3 and Cry IA or Cry 1F (U.S.
Patent Applications 61/126083 and 61/195019), or the binary toxin made up of the VIP3 protein and the Cry2Aa or Cry2Ab or Cry2Ae proteins (U.S. Patent Application 12/214,022 and EP-A 2 300 618).
10) a protein of 9) above wherein some, particularly I to 10, amino acids hâve been replaced by another amino acid to obtain a higher insecticidal activity to a target insect spectes, and/or to expnnd the range of target insect spccies affcctcd, and/or because of changes introduced into the encoding DNA during cloning or transformation (while still encoding an insecticidal protein)
Of course, an insect-resistant transgenie plant, as used herein, also includes any plant comprising a combination of genes encoding the proteins of any one of the above classes 1 to 10. In one embodiment, an insect-resistant plant contains more than one transgene encoding a protein of any one of the above classes I to 10, to expand the range of target insect spectes affcctcd when using different proteins directed at different target insect spccies, or to delay 15 insect résistance development to the plants by using di fferent proteins insecticidal to the same target insect species but having a different mode of action, such as binding to different receptor binding sites in the insect
An “insect-resistant transgenie plant”, as used herein, further includes any plant containing at least one transgene comprising a sequence producing upon expression a double-stranded RNA which upon ingestion by a plant insect pest inhibits the growth of this insect pest as described e.g. in WO 2007/080126, WO 2006/129204, 20 WO 2007/074405, WO 2007/080127 and WO 2007/035650.
Plants or plant cultivars (obtained by plant bïotechnology methods such as genctic engineering) which may also be treated according to the invention are tolérant to abiotie stresses. Such plants can be obtained by genetic transformation, or by sélection of plants containing a mutation imparting such stress résistance. Particularly useful stress tolérance plants include:
1) plants which contain a transgene capable of reducing the expression and/or the activity of poly(ADPribose) polymerase (PARP) gene in the plant cells or plants as described tn WO 00/04173, WO 2006/045633, EP-A 1 807 519, or EP-A 2 018 431.
2) plants which contain a stress tolérance enhancing transgene capable of reducing the expression and/or the activity o f the PARG encoding genes of the plants or plants cells, as described e.g. in WO 2004/090140.
3) plants which contain a stress tolérance enhancing transgene coding for a plant-functional enzyme of the nîcotineamide adénine dinucleotide salvage synthesis pathway including nicotinamidase, nicotinate phosphoribosyl transféras e, nicotinic acid mononucleotide adcnyl transferase, nicotinamidc adenine dinucleotide synthetase or nicotine amide phosphorybosyltransfcnise as described e.g. in EP-A 1 794 306, WO 2006/133827, WO 2007/107326, EP-A 1 999 263, or WO 2007/107326.
Plants or plant cultivars (obtained by plant bïotechnology methods such as genetic engineering) which may also be treated according to the invention show altered quantity, quality and/or storage-stability of the harvested product and/or altered properties of spécifie ingrédients of the harvested product such as:
1) transgenie plants which synthesize a modified starch, which in rts physical-chemical characteristics, in particular the amylose content or the amylosc/amylopcctin ratio, the degree of branching, the average chain
length, die side chain distribution, die viscosity behaviour, die gelling strength, die starch grain sizeand/or the starch grain morphology, is changed in comparison with the synthcsiscd starch in wild type plant cells or plants, so that this is better suited for spécial applications. Said transgenic plants synthesizing a modifîed starch are disclosed, for exemple, in EP-A 0 571 427, WO 95/04826, EP-A 0 719 338, WO 96/15248, WO 96/19581, WO 5 96/27674, WO 97/11188, WO 97/26362, WO 97/32985, WO 97/42328, WO 97/44472, WO 97/45545, WO
98/27212, WO 98/40503, WO 99/58688, WO 99/58690, WO 99/58654, WO 00/08184, WO 00/08185,
WO 00/08175, WO 00/28052, WO 00/77229, WO 01/12782, WO 01/12826, WO 02/101059, WO 03/071860, WO 04/056999, WO 05/030942, WO 2005/030941, WO 2005/095632, WO 2005/095617, WO 2005/095619,
WO 2005/095618, WO 2005/123927, WO 2006/018319, WO 2006/103107, WO 2006/108702, 10 WO 2007/009823, WO 00/22140, WO 2006/063862, WO 2006/072603, WO 02/034923, WO 2008/017518,
WO 2008/080630, WO 2008/080631, WO 2008/090008, WO 01/14569, WO 02/79410, WO 03/33540, WO 2004/078983, WO 01/19975, WO 95/26407, WO 96/34968, WO 98/20145, WO 99/12950, WO 99/66050, WO 99/53072, US 6,734,341, WO 00/11192, WO 98/22604, WO 98/32326, WO 01/98509, WO 01/98509, WO 2005/002359, US 5,824,790, US 6,013,861, WO 94/04693, WO 94/09144, WO 94/11520, WO 95/35026, WO 15 97/20936, WO 2010/012796, WO 2010/003701,
2) transgenic plants which synthcstze non starch carbohydrate polymers or which synthesize non starch carbohydrate polymers with altcrcd properties in comparison to wild type plants without genetic modification. Examples are plants producing polyfructose, especially of the inulin and levan-type, as disclosed in EP-A 0 663 956, WO 96/01904, WO 96/21023, WO 98/39460, and WO 99/24593, plants producing alpha-1,420 glucans as disclosed in WO 95/31553, US 2002031826, US 6,284,479, US 5,712,107, WO 97/47806, WO
97/47807, WO 97/47808 and WO 00/14249, plants producing alpha-1,6 branched alpha-1,4-glucans, as disclosed in WO 00/73422, plants producing alteman, as disclosed in e.g. WO 00/47727, WO 00/73422, US 5,908,975 and EP-A 0 728 213,
3) transgenic plants which produce hyaluronan, as for example disclosed in WO 2006/032538, WO
2007/039314, WO 2007/039315, WO 2007/039316, JP-A 2006-304779, and WO 2005/012529.
4) transgenic plants or hybrid plants, such as onions with charactcristics such as 'high soluble solids content*, ’low pungency’ (LP) and/or ‘long storage’ (LS), as described in U.S. Patent Applications 12/020,360.
Plants or plant cultivais (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to die invention are plants, such as cotton plants, with altered fiber 30 characteristics. Such plants can be obtained by genetic transformation, or by sélection of plants contain a mutation imparting such altered fiber charactcristics and include:
a) Plants, such as cotton plants, containing an altered form of cellulose synthase genes as described in WO 98/00549.
b) Plants, such as cotton plants, containing an altered form of rsw2 or rsw3 homologous nucleic acids as described in WO 2004/053219.
c) Plants, such as cotton plants, with increased expression of sucrose phosphate synthase as described in WO 01/17333.
d) Plants, such as cotton plants, with increased expression of sucrose synthase as described in WO 02/45485.
e) Plants, such as cotton plants, wherein die timing of die plasmodesmatal gating at die basis of die fiber cell is altered, e.g. through downregulation of fibcr-selective β-13-glucanase as described in WO 2005/017157, or as described in WO 2009/143995.
f) Plants, such as cotton plants, having fibera with altered reactivity, e.g. through the expression of N5 acetylglucosaminetransferase gene including nodC and chitin synthase genes as described in WO 2006/136351.
Plants or plant cultivais (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed râpe or related Brassica plants, with altered oil profile characteristics. Such plants can be obtained by genetic transformation, or by sélection of plants contain a mutation imparting such altered oil profile characteristics and include:
a) Plants, such as oilseed râpe plants, producing oïl having a high oleic acid content as described e.g. in US
5,969,169, US 5,840,946 or US 6,323,392 or US 6,063,947
b) Plants such as oilseed râpe plants, producing oil having a low linolenic acid content as described in US 6,270,828, US 6,169,190, or US 5,965,755
c) Plant such as oilseed râpe plants, producing oil having a low level of saturated fatty acids as described 15 e.g. in US 5,434,283 or U.S. Patent Application 12/668303
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as oilseed râpe or related Brassica plants, with altered seed shattering characteristics. Such plants can be obtained by genetic transformation, or by sélection of plants contain a mutation imparting such altered seed shattering characteristics and include plants 20 such as oilseed râpe plants with delayed or reduced seed shattering as described in U.S. Patent Application 61/135,230, WO 2009/068313 and WO 2010/006732.
Plants or plant cultivars (that can be obtained by plant biotechnology methods such as genetic engineering) which may also be treated according to the invention are plants, such as Tobacco plants, with altered posttranslational protein modification patterns, for example as described in WO 2010/121818 and WO
2010/145846.
Particularly useful transgcnic plants which may be treated according to the invention are plants containing transformation events, or combination of transformation events, that are die subject of pétitions for nonregu lated status, in the United States of America, to the Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) whether such pétitions are granted or are still pending. At 30 any time this information is readtly available from APHIS (4700 River Road, Riverdale, MD 20737, USA), for instance on its internet site (URL http://www.aphis.usda.gov/brs/no t_reg.html). On the filing date of this application the pétitions for nonregulated status that were pending with APHIS or granted by APHIS were those which contains the following information:
Pétition: the identification number of the pétition. Technical descriptions of die transformation events can be found 35 in the individual pétition documents which are obtainable from APHIS, for example on the APHIS website, by reference to this pétition number. These descriptions are herein incorporated by référencé.
Extension of Pétition; reference to a previous pétition for which an extension is requested.
Institution: die name of the entity submitting the pétition.
Regulated article: the plant species concemed.
Transgenic phenotype: the trait confcrred to the plants by the transformation event
Transformation event or line: the name of die event or events (sometimes also designated as lines or lines) for which nonregulated status is requested.
APHIS documents: various documents publishcd by APHIS in relation to the Pétition and which can be requested 5 with APHIS.
Additional particularly useful plants containing single transformation events or combinations of transformation events arc listed for example in the databases from various national or régional regulatory agencies (sec for exemple http^/gmoinfo.jrc.it/gmp_browseÆspx and http://www.agbios.com/dbase.php).
Application Rates and Timing
When using the inventive active ingrédients as fungteides, die application rates can be varied within a relatively wide range, depending on die kind of application. The application rate of die inventive active ingrédients is in the case of treatment of plant parts, for example leaves: from 0.1 to 10000 g/ha, preferably from 10 to 1000 g/ha, more preferably from 10 to 800 g/ha, even more preferably from 50 to 300 g/ha (in the case of application by watering or dripping, it is even possible to reduce die application rate, especially when inert substrates such as 15 rockwool or perlite are used);
in the case of seed treatment: from 2 to 200 g per 100 kg ofseed, preferably from3to 150 g per 100 kg of seed, more preferably from 23 to 25 g per 100 kg of seed, even more preferably from 23 to 123 g per 100 kg of seed; in the case of soit treatment from 0.1 to 10 000 g/ha, preferably from 1 to 5000 g/ha.
These application rates are merely by way of example and are not limiting for the purposes of the invention.
The inventive active ingrédients or compositions comprising a compound according to formula (I) can thus be used to protect plants from attack by the pathogens mentioncd for a certain period of time after treatment The period for which protection is provided extends generally for 1 to 28 days, preferably for 1 to 14 days, more preferably for 1 to 10 days, most preferably for 1 to 7 days, after the treatment of die plants with the active ingrédients, or for up to 200 days after a seed treatment
The plants listed can particularly advantageously be treated in accordance with the invention with the compounds of die general formula (I) and die inventive compositions. The preferred ranges stated above for the active ingrédients or compositions also apply to die treatment of these plants. Particular emphasis is given to the treatment of plants with die compounds or compositions specifically mentioned in die présent text
The invention is illustrated by die exemples below. However, die invention is not limited to the examplcs.
-57Préparation ciamnlcs
Preparation of compounds of the formula (D according to process Aî
Préparation of2-f6-f4-chloroDhcnoxv)-2-(trifluoromethvl)-3-ovridvl1-l-(1.2.4-tria7ol-l-y1)nronan-2-ol (LOI)
A solution of magnésium bromide diethyl etherate (4.8 g, 18.8 mmol) in dichloromethane (20 mL) and diethyl ether (10 mL) was cooled to 0 °C, before a solution of l-[6-(4-chlorophenoxy)-2-(trifluoromethyl)-3-pyridyl]-2(l,2,4-triazol-l-yl)ethanone (1.80 g, 4,70 mmol) in dichloromethane (10 mL) was added and stirred for 30 min at 0 eC. Then méthylmagnésium bromide (3.1 mL, 9.4 mmol, 3M solution in ethyl ether) was added, the cooling 10 bath was removed, and the mixture was stirred for 1.5 hours (h) at 21°C (room température, rt), before the mixture was quenched with water, NH4CI (saturated aqueous solution), extracted with dichloromethane, dried (over MgSOr), and concentrated. As the starting ketone and the target alcohol overlap in terms of rétention time, the concentrated material (roughly 2 g of a thick colourless oil containing both ketone and alcohol) was dissolved in pyridine (15.0 mL), and treated with methoxylamine hydrochloride (313 mg. 3.75 mmol) at rt for 15 20 h (to convert the ketone into the corresponding methyl oxime, which has a significantly different rétention time). The mixture was then diluted with dichloromethane. filtered over ChemElut, and concentrated. Préparative HPLC gave 319 mg (17% yield over two steps, 99% pure) of the target compound as colourless oil, which soli dified upon standing.
MS(ESI): 398.08 ([M+H]*)
Préparation of 2-f64,4-chloronhcnoxv)-4-itrifluoromethv1)-3-Pvritfvll- 1-f 1.2.4-triazol- l-v1)nror>nn-2-ol H. 02)
A solution of magnésium bromide diethyl etherate (U g. 4.63 mmol) in dichloromethane (10 mL) was cooled to 0 °C, before a solution of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]-2-(l,2,4-triazol-l25 yl)cthanone (443 mg, 1.16 mmol) in dichloromethane (2 mL) was added and stirred for 30 min at 0 °C. Then méthylmagnésium bromide (0.78 mL, 2.3 mmol, 3M solution in ethyl ether) was added, the cooling bath was retnoved, and the mixture was stirred for 1 h at rt, before the mixture was quenched with water, extracted with dichloromethane, dried (over MgSCh), and concentrated. Preparative HPLC gave 126.6 mg (27% yield, 100% pure) of the target compound as a colourless solid.
-58MS (EST): 398.08 ([M+H]*)
Prenaration of I -16-(4<hloronhenoxy)-2-(tnfluoromethvl)-3-pvTidv1]-2-( 1.2.4-triazol-1 -vDethanol (L0D
To a solution of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]-2-(l,2,4-triazÎol-l-yl)cthanone (800 mg, 1.67 mmol) in dry methanol (25.0 mL) at 5 °C was added sodium borohydridc (127 mg, 3.3 mmol), the cooling bath was removed, mixture warmcd to rt and stirred for 1 h. The mixture was then quenched with water, diluted with dichloromethane, filtered over ChemElut, and concentrated. Préparative HPLC gave 286 mg (60% yield, 100% pure) of the target compound as a colourless solid.
MS (ESI): 384.06 ([M+H]*)
Préparation of l-[6-f4-chlorophenoxv)-4-ftrifluoromethvl)-3-nvridvll-2-(1.2.4-tria7ol-l-vltethanol (1.04)
To a solution of l-[6-(4-cHorophenoxy)-4-(trifluoromethy!>3-pyridyl]-2-( |,2,4-triazol- l-y!)ethanone (518 mg,
135 mmol) in dry methanol (5.0 mL) at 5 °C was added sodium borohydride (102 mg, 2.7 mmol), the cooling bath was removed, mixture warmcd to rt and stirred for 1 h. The mixture was then quenched with water, diluted with dichloromethane, filtered over ChemElut, and concentrated. Preparative HPLC gave 252 mg (48% yield, 100% pure) of the target compound as a colourless oil, which crystallized upon standing.
MS (ESI): 384.06 ([M+H]*)
Préparation of compounds of the formula (VIF) according to process A:
Préparation ofl-(6-(4-chloronhenoxv)-24tnfluoromethvl)-3-nvridvll-2-(1.2.4-triazol-l-vl)ethanone ÎVII.01)
,F F
F F
-59A mixture of 2-chloro-l-[6-(4-chlonjphenoxy)-2-(trifluoromethy1)-3-pyridyl]cthanone (8.3 g, 23.7 mmol) and 111-1,2,4-triazole (1.8 g, 26.0 mmol) in acetonitrile (80 mL) was heated to 75 °C, before potassium carbonate (3.9 g, 28 J mmol) was added. The heating was continued for 20 minutes (min) before the mixture was rapidly cooled to room température by addition of ice water, extracted with dichloromethane, dried (over MgSCh), and concentrated. Flash column chromatography (gradient, up to DCM/10%MeOH in DCM«60/40, 254 nm) gave 4.30 g (43% yield, 91% pure) of the target compound as a yellow glass, which was used as such for the next reaction steps. A small quantity was further purified by HPLC to give the target product (100% pure) as a yellow solid.
MS (EST): 382.04 ([M+H]*)
Préparation of 1 46-(4-chlorophcnoxv)-4-(trifluoromethvl)-3-pyTidvn-2-4ï.2.4-triazol-l-yIkthanone (VII. 02)
A mixture of 2-chIoro-I-[6-{4-chIorophenoxy)-4-(tnfluoromcthyl)-3-pyridyI]cthanonc (3.4 g, 9.71 mmol) and lH-l^,4-triazoïe (0.74 g, 10.6 mmol) in acetonitrile (50 mL) was heated to 75 eC, before potassium carbonate 15 ( 1.6 g, 11.6 mmol) was added. The heating was continued for 20 mm before the mixture was rapidly cooled to room température by addition of ice water, extracted with dichloromethane, dried (over MgSO*), and concentrated. Flash column chromatography (gradient, up to DCM/10%MeOH in DCM=°70/30, 254 nm) followed by préparative HPLC gave 1.50 g (40% yield, 100% pure) of the target compound as a yellow solid.
MS (ESI): 382.04 ([M+H]*)
Préparation of compounds of the formula (VT) according to process A;
Préparation of 2-chIoro-l-f644-chïoronhenoxv)-2-(tri fluoTomçthyn-3-PvridvTlethanone(VÏ.01) ci
A mixture of l-[6-(4-chlorophenoxy)-2-{trifluoromcthyl)-3-pyridyl]ethanone (8.6 g, 27.2 mmol) and 25 benzyltrimethylammonium dichloroiodate ( 18.9 g, 54.4 mmol) in 1,2-dichIoroethane (60 mL) and methanol (20 mL) was heated to 75 °C for 4 h, before the mixture was concentrated, then dilutcd with ethyl acetate, washed with NajSiOj (10% w/w aqueous solution), washed with brine, dried (over MgSCh), concentrated, and passed
over a plug of silica (hcptane/cthyl acctate=I/l, 254 nm) to give 8.3 g (83% yield, 96% pure) of the target compound as a pale yellow solid.
MS (ESI): 348.99 ([M+H]*)
Préparation of 2-chloro-l-i6-(4-ch!oronhcnoxv)-4-(trifluoromcthvl,)-3-nYridv!lethnnone (VI. 021
A mixture of l-[6-(4-chlorophenoxy)-4-(trifluoromethyl)-3-pyridyl]cthanone (3.6 g, 11.4 mmol) and bcnzyltrimethylammonium dichloroiodate (7.93 g, 22.8 mmol) in 1,2-dichloroethane (30 mL) and methanol (10 mL) was heated to 75 °C for 4 h, before the mixture was concentrated, then diluted with ethyl acetate, washed 10 with NaîSiOj (10% w/w aqueous solution), washed with brine, dried (over MgSO<), concentrated, and passed over a plug of silica (heptane/ethyl acetate=85/15, 254 nm) to give 3.4 g (58% yield, 69% pure) of the target compound as a colourless oiL which was used without further purification.
MS (ESI): 348.99 ([M+H]*)
Préparation of compounds of the formula (VI according to process D;
Préparation of l-I6-(4-chloronhenoxv)-2-(trifluoromcthvl)-3-pvridvllethanone (V,011
A solution of 6-(4-chlorophenoxy)-N-methoxy-N-methyl-2-(trifluoromethyi)pyridine-3-carboxaniide (11.5 g, 20 31.9 mmol) in THF (150 mL) at 5 eC was treated with méthylmagnésium bromide (21.2 mL, 63.7 mmol, 3M solution in diethyl ether), The mixture was then warmed to rt and stining continucd for 4 h at rt, before the reaction was qucnched with water, NH4CI (saturated aqueous solution), extracted with dichloromethane, dried (over NàîSOi), and concentrated to give 8.60 g (82% yield, 96% pure) of the target compound as a pale yellow solid, which was used without further purification.
MS (ESI): 315.03 ([M+H]*)
-6iPréparation of !-(6-(4-ch1onophenoxv)-4-(trifluoromethvl)-3-PVridvl1ethanone (V.02)
A solution of 6-(4-chlorophcnoxy)-N-methoxy-N-mcthyl-4-(trifluoromethyl)pyridine-3-cartx)xamidc (6.9 g, 5 17.4 mmol) in THF (100 mL) at 5 °C was treated with méthylmagnésium bromide (11.6 mL, 34.8 mmol, 3M solution in diethyl ether). The mixture was then warmed to rt and stirring continued for 4 h at rt, before the reaction was quenched with water, NH4CI (saturated aqueous solution), extracted with dichloromethane, dried (over Na2SO4), and concentrated. Flash column chromatography (gradienL up to heptane/ethyl acetate=80/20, 254 nm) gave 3.60 g (61% yield, 94% pure) of the target compound as a colourless oil.
MS (EST): 315.03 ([M+H]*)
Préparation of compounds ofthe fonnula (XVT) according to process D;
Préparation of 6-(4<hloronhenoxY)-N-methoxy-N-methyl-2-(trifluoromethvlÎnvridine-3-cartx)xamide (XVI.01)
A mixture of 6-chloro-N-methoxy-N-methyl-2-(trifluoromethyl)pyridine-3-carboxamide (9.0 g, 33.5 mmol), 4chlorophcnol (4.3 g, 33.5 mmol), potassium carbonate (11.5 g, 83.7 mmol), copper(I) iodidc (638 mg. 3.35 mmol), and ΝΛΛ’Λ’-tetramethylethylcnediamine (TMEDA; 1.0 mL, 6.7 mmol) in dîmethyl sulfoxide (DMSO; 150 mL) was heated for 3 h at 100 °C. The reaction mixture was then cooled to rt, water added, extracted with ethyl acetate, dried (over NaîSCh), concentrated and passed over a plug of silica (heptane/ethyl 20 acctate=l/l, 254 nm) to give 7.7 g (58% yield, 91% pure) ofthe target compound as a yellow oil.
MS(ESI): 360.05 ([M+H]*)
Préparation of 6-i4-chloronhcnoxv)-N-methoxv-N-methy|-4-/trifluoromcthv1)nvridine-3-carboxamide (XVI.02)
À
A mixture of 6-chloro-N-methoxy-N-mcthyl-4-(trifluoromcAyl)pyridine-3-caiboxamide (5.7 g, 21.3 mmol), 4chlorophenol (2.7 g, 21.3 mmol), potassium carbonate (7.4 g, 533 mmol), coppcr(I) îodidc (406 mg, 2.13 mmol), and TMEDA (0.64 mL, 436 mmol) in DMSO (100 mL) was heated for 3 h at 100 ’C. The reaction mixture was then cooled to rt, water added, extracted with ethyl acetate, dried (over NaîSOA concentrated and passed over a plug of silica (heptane/ethyl acctate=l/l, 254 nm) to give 6.59 g (85% yield, 100% pure) of Ae target compound as a colourless oil.
MS (ESI): 360.05 ([M+H]*)
Préparation of compounds of the formula ffî according to process B;
Préparation of 14644-ch1orophenoxv)-2-ftrifluoromeAyl)-3-pyridvl1-l-cvclorronv!-2-n.2.4-trin7ol-lvllethanol (1.911 according to Process B
Epoxidc K.07 (1.0 g, 2.81 mmol), lH-l,2,4-triazole (194 mg, 2.81 mmol), sodium hydroxide (40 mg, 0.984 mmol), 0.013 mL water in DMF (10 mL) was heated at 120 ’C for 22 h, before water, NHiCl (saturated aqueous solution) and CH2CI2 were added. Phases were separated, Ae aqueous phase was extracted twice wiA CH2CI2, the combined organic extracts were dried over Na:SO< and concentrated to give, after purification via préparative HPLC, Ae desired alcohol 1.91 (362 mg, 30%) as a colorless oil.
MS (ESI): 425.09 ([M+H] +)
Préparation of 6-(4-chloronhcnoxy)-3-(2-cvcl
Eïiïs nvloxiran-2-vlV24trifluoromcAvl)nvri<iinc (DC.071) according to Process B
À
To a suspension oftrimcthylsulfonium iodide (3.1 g, 15.2 mmol) in THF (100 mL) at 0 °C was added potassium tert-butoxidc (1.7 g, 15.2 mmol) in one portion, and the mixture was stirred for 5 min. Then, ketone V.41 (4.0 g,
11.7 mmol) in THF (10 mL) was added, the mixture was warmed to room température and stirred for 13 h. Then water and CH2CI2 were added, the aqueous phase was extracted with CH2CI2, the combined organic extracts were dried over NazSCh and concentrated, to give, after flash column chromatography, the desired epoxide IX.07 (138 mg, 3%) as a colorless oil.
MS(ESI): 356.06 ([M+HJ+)
Préparation of rô-M-chlorophenoxvÎ-Z-ftrifluoromethyD-S-nyTÏdvIl-cYcIonronyl-niethanone (V.4 D according to Process D
A mixture of [6-chloro-2-(trifluoromethyl)pyridin-3-yl](cyclopropyl)methanone (6.0 g, 24.0 mmol), 4chlorophenol (3.1 g, 24.0 mmol), potassium carbonate (83 g, 60.1 mmol), coppcr(I) iodide (458 mg, 2.40 mmol), and NJ^.N’X-tetramethylcthylencdiamine (TMEDA; 0.7 mL, 4.8 mmol) in dimethyl sulfoxide (DMSO; 100 mL) was heated for 2 h at 100 °C. The reaction mixture was then cooled to rt, water added, extracted with ethyl acetate, dried (over NajSCL), concentrated and passcd over a plug of silica (heptane/cthyl acctate=l/l, 254 nm), and reoystallized from CHîCh and diisopropyl ether to give 4.2 g (48% yield, 95% pure) of the target compound V.41 as a colorless solid.
MS (ESI): 342.04 ([M+HJ+)
Préparation of [6-chloro-2-(trifluonpmethvn-3-nvridyll-cyclor!ropyl-methanone
-64A solution of 6-chloro-2-(trifIuoromethyl)pyridine-3-cart»xylic acid (6.0 g, 26.6 mmol), thionyl chloride (3.9 mL, 53,2 mmol) and few drops ofdimethylformamide in dichloroethane ( 100 mL) was heated at 85 °C for 4 h, before the mixture was cooled to rt and concentrated. Then dry THF (150 mL) and Fe(acac)j (470 mg, 1.33 mmol) were added and the solution was cooled to -78 °C, before a solution of cyclopropylmagnesium bromidc (69 mL, 0.5 M, 34.6 mmol) was added dropwise, keeping the internai température below -70 °C. After complété addition, the cooling bath was removed and the reaction was allowed to warrn to room température. The reaction was then qucnched with NHiCl (saturated aqueous solution) and extracted with CH2CI2, dried over Na;SO4 and concentrated. The target compound [6-chloro-2-(trifluoromethyl)pyridin-3yl](cyclopropyl)mcthanone (6.0 g, 87%yidd) was used in the following step without further purification.
MS (ESI): 250.02 ([M+H]+)
The following tables illustrate in a non -limiting manner exemples of compounds according to the invention.
Table 1: Compounds according to formula (I)
Ex N’ Y n RJ R R1 R1 m R4 LogP
LOI R 0 CFj CHj H 1 4-C1 2Ï8F1
L02 (♦) u. R 0 CF 3 CHi H 1 4-C1 2^1
L03 R 0 CFj H H 1 4-C1 2Ï701*1
L04 R 0 CFj H H 1 4-C1 2,68w
1.05 Λν, R 0 Cl CHj H 0 2,10w;2,06lb)
1.06 ΎΧ R 0 Cl CHj H 0 2,47w; 2,43^'
1.07 R 0 Cl CHj H 0 2,14^2,09^1
1.08 (*) R 0 Cl CHj H 1 4-C1 230w
1.09 (*) R 0 Cl CHj H 1 4-Cl 236^
L10 R 0 Cl H H 2 3-C1.4-C1 230^
1.11 R 0 Cl H H 2 3-Cl, 4-OCFj 3,1 lw
L12 R 0 Cl H H 1 4-OCFj 2^1
1.13 -Çk R 0 Cl H H 0
1.14 R 0 Cl H H l 4-Cl
1.15 II 0 Cl H H 2 2-Me,4-Cl 2,751*1
L16 R 0 Cl H H 2 3-Cl, 4-Me 2,731*'
1.17 λΓ) 0 Cl H H 1 4-F 2,08^
1.18 R 0 Cl H H 2 2-F.4-F 2ÜF1
1.19 -ç, R 0 Cl H H 1 2-F 2^8™
L20 R 0 Cl H H 3 3-F.4-F, 5-F iTï™
L21 U.. Ά R 0 Cl H H 0 1,92[*1
L22 R 0 Cl H H 0 2,01 “I
1.23 R 0 Cl H H 2 2-C1,4-C1 2,75w
1.24 R 0 Cl H H 1 4-( 1 · hydroxyethyl) 1,48«
L25 -ç, R 0 CHFj H H 1 4-Cl 2.441*1
L26 -Çl, R 0 OCFi H H 1 4-Cl
1.27 R 0 Cl CHj H 1 4-F 2,28^
L28 R 0 Cl CH) H 2 2-Mc,4-Cl 2^94^
1.29 -Çk R 0 Cl CH) H 2 3-CI, 4-Me
L30 -Çk H 0 Cl H H 2 2-Cl,4-OMc 232^
1.31 R 0 Cl CH) H 2 2-Cl,4-OMe 236111
L32 ^Çk R 0 Cl CH) H 2 3-C1.4-C1 3.091*1
L33 ^Çk R 0 OCFj CH) H i 4-Cl 339^
L34 R 0 Cl H H 1 4-SFs 2^1
L35 -9, R 0 Cl ch. H 1 4-SFj 3,17l,i
L36 (*) u._ 'V- R 0 CFj H H 1 4-SFs 3,15W
1.37 υ-.<% Λν·ν R 0 CF, CH, H l 4-SFj 333w
L38 γ-·ν R 0 Cl H H 1 4-CHFi W1
L39 R 0 Cl CH, H 1 4-CHFî 2,4 lw
L40 -ç, R 0 cf. H H l 4-Br 2^
L41 -ç, R 0 F H H 1 4-C1 223^
1.42 R 0 F CH, H 1 4-C1 2,46[11
L43 U., '‘φ. R 0 CF, H H l 4-OCF, W*1
1.44 R 0 CFj CH, H l 4-OCF, 323111
L45 (*) R 0 CFj CHj H l 4-CI 2,84'4
1.46 C) u.. R 0 CFj CHj H 1 4-CI 2,93[*]
L47 (*) u-.<N<s Ç1··, R 0 CFj H H 1 4-CFj 2,84'4
1.48 U.. -'•Çk R 0 CFj H H l 4-Br 2,75'4
1.49 u„ - R 0 CFj ch3 H 1 4-ür 2^
L50 R 0 CFj CHj H 1 4-CFj 3,11'4
L5I (*) -'nÇk R 0 Cl CHj H 1 4-CI W1*1
L52 (*) R 0 Cl CHj H 1 4-CI
L53 (*) R 0 Cl CHj H 1 4-CI
1.54 (*) '-Çk R 0 Cl CHj H 1 4-CI 23711
1.55 R 0 CFj H H 1 4-CHFi 2,55w
1.56 R 0 CFj CHj H 1 4-CHFi 2/73^
1.57 U. R 0 CFj H H 2 2-F.4-C1 2.861'1
L58 R 0 CFj CHj H 2 2-F.4-C1 ÂO?11
L59 (*) R 0 CFj CHj H 1 4-Br 2^74
L60 < 0 CFj H H 1 4-SFj 3,08w
1.61 R 0 CFj H H 1 4-CFj 2174
L62 R 0 CFj CHj H 1 4-SFj 335™
1.63 R 0 CHFj H H 1 4-Br 239w
1.64 U. R 0 CHFi CHj H l 4-Cl
L65 -9. R 0 CFî CHi H 1 4-CFî 3,04w
1.66 R 0 cf3 CHi H 2 2-F.4-C1 2^1
1.67 R 0 CFî CHi H 1 4-C1 2,68[,!
1.68 R 0 Cl H H 1 4-C1 238^
1.69 R 0 CFj vinyl H 1 4-CFî 3J3W
L70 -y1···, R 0 CFî H H 2 2F.4-CI 2J8^
1.71 -C, R 0 CFî cyclo propyl H 1 4-CI 3J5l,J
L72 (*) R 0 CFî H H 1 4-CFi X86P1
1.73 R 0 CHFî H H 1 4-Br 2^50'·'
1.74 -ç, R 0 CFj H H 1 4-CHFï 239^
L75 R 0 CFj CHj H l 4-isopropyl 3j5W
L76 u.. R 0 CFj Et H i 4-CFj 3^
L77 -ç, R 0 4fluor ophe noxy CHj H 1 4-F
L78 v R 0 Cl CHj H 1 4-CFj 2,88w
L79 R 0 CFj H H i 4-OCFj 2.891'1
1.80 Νγ^ R 0 CFj cyclopropyl H 1 4-C1 332™
1.81 (*) R 0 CFj cyclopropyl H 1 4-Br 3,70w
1.82 R 0 CHFï CHj H 1 4-Br 2/78^
1.83 (*) u., R 0 CFj H H 1 4-SFj 3jF
L84 C) R 0 CFj cyclopropyi H 1 4-Br 3,4 pi
1.85 R 0 CFj CFj H 1 4-Br 3,48[,]
L86 (*) u._ 'φ, R 0 CFj H H 1 4-SFj 3,1 lw
1.87 R 0 CFj cyclopropyl H l 4-CFj 337^
1.88 u.. R 0 Cl H H 1 4-CFj 2^4^
L89 -ç, R 0 CFj CHj H 2 2-F.4-CI
1.90 kÇi,, R 0 CFj H H 2 2-F.4-C1 238^
1.91 R 0 CFj cyclopropyl H 1 4-C1 336[*J
L92 (*) U._ ΛίζΧ R 0 CFj H H l 4-CFj 2.861*1
L93 -ç, R 0 CFj cyclopropyl H 1 4-CHFî 3.131*1
1.94 •Μ^ι, R 0 CHFi H H 1 4-C1 2,13w
L95 γ*-·, R 0 CFj CHj H 1 4-OCFj 2,98w
1.96 R 0 CFj CHj H 1 4-C1 2^1
L97 R 0 CFj cyclopropyl H 1 4-SFj 3,80l*J
L98 λΙΊ -γ1·'» R 0 CFj butyl H 1 4-C1 3,87111
1.99 (*) 1···, R 0 CFj cyclopropyl H 1 4-Br χϊϊ™
L100 γ1···» R 0 CFj propyl H 1 4-C1 3^
I. LOI (*) R 0 CFj CHj H 1 4-Br 2,94w
1.102 (*) -ç, R 0 CFj CHj H 1 4-Br 2.94'·'
L103 «γΥ R 0 CFj Et H 1 4-C1 339^
Optical rotation
Concentration c is expressed in g/100 mL (*) Ex 1.45 and 1.46 are the 2 enantiomcrs of Ex 1.02
(♦) Ex 1.53 and 1.54 are the 2 enantiomers of Ex 1.08
Ex 1.53: Optical rotation: -35° (c=0.52, DCM, 20°C)
Ex 1.54: Optical rotation: +52° (c-0.50, DCM, 20eC) (*) Ex 1.51 and L52 arc the 2 enantiomers of Ex L09
Ex 1.51 : Optical rotation: -128.2° (c=0.52, DCM, 20°C)
Ex 1.52: Optical rotation:+ 133.3° (c=0.51, DCM, 20°C) (♦) Ex 1.83 and 1.86 are the 2 enantiomers of Ex L36
Ex 1.83: Optical rotation: +10.0°(c-0.50, CDCb, 25°C)
Ex 1.86: Optical rotation: -11.0’(c=0.73, CDCb, 25°C) (*) Ex 1.72 and 1.92 are the 2 enantiomers of Ex L47
Ex 1.72: Optical rotation: +11.7°(c=0.52, CDCb. 25°C) 15 Ex 1.92; Optical rotation: -10.4“(c-0.58, CDCb, 25°Ç) (*) Ex 1.101 and 1.102 arc the 2 enantiomers of Ex 1.59
Ex 1.101: Optical rotation: +27.5° (c=0.88; MeOH; 20°C)
Ex 1.102; Optical rotation: -31.5° (c=l.02; MeOH; 20°C) 20 (*) Ex 1.84 and 1.99 are the 2 enantiomers of Ex L81
Ex 1.84: Optical rotation: -8°(c=1.00, MeOH, 25°C)
Ex 1.99: Optical rotation: +73°(c=1.10, MeOH, 25°C)
Table 2: Compounds according to formula (V)
ExN° Y n RJ R R1 m R4 LogP
V.01 R 0 CFj CHi 1 4-C1 330111
V.02 U.. X R 0 CFj CHa 1 4-C1 339^
V.03 u, JL -v, R 0 CFj CHj 1 4-SFj 432«
V.04 U, JL A· R 0 CFj CH3 1 4-CHFj 3,621*1
V.05 R 0 chf2 CHj 1 4-C1 335«
V.06 «Y>-, R 0 OCFj CHj 1 4-C1 4371*1
V.07 R 0 CFj CHj 2 2-F.4-C1 <09^
V.08 U-.AA Ύλ, R 0 Cl CHj 0 2^· 2,86«
V.09 R 0 Cl CHj 1 4-C1 332^ 3,42«
V.10 R 0 Cl CHj 1 4-C1 ÏÂÏ^, 336«
V.U -ç, R 0 Cl CHj 2 3-C1.4-CI 4,10«
V.12 A-, R 0 Cl CHj 1 4-F 3,111*1
V.13 Y 0 H CHj i 4-Cl 2,73w
V.14 R 0 Cl CHj l 4-CHFj 3,15W
V.15 u.. X R 0 CFj CHj 1 4-OCFj 4^1
V.16 R 0 CFj CHj 1 4-SFs ϊγ
V.17 R 0 CFj CHj 1 4-CFj 336^
V.18 U. ‘'Çk R 0 Cl CHj 1 4-CFj 3.871*1
V.19 u. 'kX, R 0 C(0)CH3 CHj 1 4-Cl SÛT11
V20 -^Çk R 0 CFj CHj l 4-Br
VJl ..Y γ-ν R 0 Cl CHj 0 2.94W; 2,85w
VJ2 ’^Çk R 0 Cl CHj l 4-Cl
V23 R 0 Cl CHj 1 4-C1 3,5 P*'
V.24 R 0 F CH} 1 4-C1
V25 u. X Ά'·· R 0 CF3 CH} 1 4-CF} 4,04L
V26 R 0 Cl CH} 1 4-C1 3,45w
V27 u. X R 0 CFj CH} 1 4-Br 339^
V28 R 0 Cl CH} l 4-OCF} 3^
V29 R 0 Cl CH} 2 2-C1,4-OCH} 334^
V30 -ÇU R 0 Ci CH} 1 4-SF, W*1
V31 -Ç, R 0 CFj CHa 3 2-F, 4-Cl,6-F 4,06“'
V32 A?, R 0 CFj CH} 1 4-CHF:
V33 γ-. R 0 4-chlorophenoxy CHj l 4-Cl 436w
V34 R 0 CHFî CHj 1 4-Br IT?11
V35 R 0 CFj CHj i 4-OCFj ξδΤ*1
V36 u.. ΛίζΧ R 0 chf2 CHj 1 4-Br 3,74w
V37 R 0 chf2 CHj t 4-Cl 3.571'1
V38 R 0 CFj CHj 2 2-F.4-C1 3.871*1
V39 Λ**) Ny^-v R 0 cf3 cyclopropyt l 4-CFj 4371*1
V.40 ^*.J= ’~0 < 0 CFj cyclopropyl l 4-Br 4.491*1
V.41 Ν>/··ν R 0 CFj cyclopropyl t 4-Cl 4,17w
V.42 aX^ -y-v R 0 CFj cyclopropyl 1 4-formyl 3^lffl
V.43 It 0 CFj cyclopropyl 1 4-SFs 4,67w
V.44 '*ç>, R 0 CFj cyclopropyl 1 4-CHFj
V.45 -Ç... R 0 CFj ethyl 1 4-Cl 430“'
V.46 A'v R 0 CFj propyl 1 4-Cl
V.47 -Ç, R 0 CFj (sobutyl 1 4-Cl 4,981*1
V.48 *ÇL, R 0 CFj butyl 1 4-Cl 5,03l*l
Tablc 3: Compounds according to formula (VI)
ExN° Y n R* R liai m R4 LogP
VL01 Y* R 0 CFj Cl 1 4-Cl 4.01w
VI.02 u.. X R 0 - CFj Cl 1 4-Cl
Ex N” Y O RJ R H al m R4 LogP
VI.03 0 « a a 0 - 3^3«
VI.04 -ç, K 0 - a a 1 4-Cl 3,72;,)
VI.05 i 0 - Cl a 0 - 338w
VI.06 a-Çl, A 0 a a 1 4-C! 3,77w
VI.07 0 - Cl Br 2 3-C1.4-C1 4,58«
VI.08 -v. 0 - a a 1 4-OCFj 4,09w
VI.09 A 0 - a CI 1 4-F 3391,3
VL 10 λ-ΤΓ •γ1·, A 0 - a a 1 4-C1 3,78'*’
VI.11 A 0 * CHFî a 1 4-C1 3,62w
VL12 À 0 - OCFj a 1 4-Cl 43 P’
ExN° Y n RJ R Haï m R* LogP
VT.I3 R 0 - a a 2 2-CI,4-OCHj 3,71«
VI.I4 Λ 0 - CFî Br 1 4-Cl 439«
VI.15 U.. X A:çk * 0 - CFj Br 1 4-Br 434«
VU6 ’^Çk 0 - a a l 4-CHFî 3,42«
VI.I7 Nx>-V R 0 - a Br 1 4-CHFj 337«
VI. 18 ’^Çk R 0 - cf3 Br l 4-Br 433«
VI.I9 t- 0 - CFj a l 4-Br 4,11«
VI.20 -p, R 0 F a 1 4-Cl 3,69«
VI.21 '-O., R 0 w CFî Cl i 4-OCFî 437«
VI22 Λγ·· R 0 * CFî Cl 1 4-CFj 431«
Ex Ν’ Y n RJ R Hal m R4 LogP
VL23 u.. R 0 - CF, Cl 1 4-Br 4,16e·'
VI24 u·. R 0 - CFj Br 2 2-F.4-CI 434w
VI25 U._ .N R 0 - CF, a 2 2-F.4-C1 4,15w
VI26 a2Çl, R 0 - CF, Cl l 4-CHF2 3.76['
VI27 R 0 - CF, Br l 4-CHFî 3,99w
VI28 yU,, R 0 - CF, a l 4-CF, 4,19W
VL29 »yL., R 0 - CF, CI l 4-SF5 429w
VL30 -Çl. R 0 - Cl Cl l 4-SF5 4211*1
VL31 -p... R 0 - CF, a 3 2-F.4-Cl.6-F 426w
VL32 -Ç, R 0 CF, Br 3 2-F.4-C1,6-F 4,18^
Ex N” Y n RJ R Ha! m R4 LogP
VI.33 R 0 - CFj a 1 4-OCFj 4,O7w
VI.34 R 0 - CFj Br l 4-CI 4,19w
VI .35 γ-ν R 0 - CFj a 2 2-F.4-CI 4,1 lW
VI.36 R 0 - CF, Cl 1 4-CHFj 3^0[,t
Table 4: Compounds according to formula (VU)
ExN° Y n RJ R m R4 LogP
VTI.Ol «y*·., R 0 - CFj 1 4-Cl 2,92w
VII.02 R 0 - CFj I 4-CI 2,92[*'
Ex Ν’ Y n R’ R m R4 LogP
VII.03 Ap,, R 0 - a 2 3-C1.4-C1 3,06w
VII.04 R 0 - Cl 2 3-C1, 4-OCFî 333e*1
VII. 05 u._ R 0 - a 0 - 230e*1
VIL06 R 0 - Cl 0 - 231e*1
Vn.07 A 0 - a 0 - 2,45e*1
VIL08 -ç, R 0 - a l 4-OCFj 2,95e*1
VIL09 Ά« R 0 - a l 4-C1 2,66e*1
VIL 10 -•v R 0 - Cl 2 2-CHJ.4-C1 2,94e*1
VIL U R 0 - Cl 2 3-C1,4-CHj 3,02e*1
ExN° Y n R* R m R4 LogP
VIL12 R 0 - a 1 4-F 2,3 0w
VIL13 -Ç.., R 0 - a 2 2-F.4-F 2,4 lw
VIL14 R 0 - a 1 2-F 2,28w
VIL15 R 0 - a 3 3-F.4-F.5-F 2,66w
VII. 16 R 0 - a 2 2-CI.4-C1 3,02w
VIL17 R 0 - a 1 4-C(O)CHj l,96w
VIL 18 -ç, R 0 - OCFj 1 4-C1 3,23w
VIL19 '‘-Çl., R 0 - a 2 2-a.4-OCHj 2^8W
VII.20 R 0 - a 1 4-SFj 3,11M
ExN° Y η R’ R m R4 LogP
νΠ2Ι 0 * CFj l 4-SFj 335w
VIL22 0 - Cl l 4-CHFî 2,39'4
VII.23 AT} -γ1'. R 0 - Cl t 4-Cl 234w
VIL24 R 0 - CFj l 4-Br 2,99'4
VÏÏ.25 vÇL, R 0 - F l 4-Cl 2,50«
VII26 Ά R 0 - CFj l 4-OCFj 337-4
VH.27 « 0 - CFj l 4-Br 3,02'4
VIÎ.28 Μ 0 - CFj l 4-CFj 3,1714
VIL29 R 0 - CFj l 4-CHFj 2.80«
VII30 Λ-ψ·., « 0 - CFj 2 2-F.4-CI 3.06'4
Ex N° Y n R’ R m R4 LogP
VII31 R 0 - CFj 1 4-SFj 333w
VIL32 R 0 - CFj 1 4-CFj 3,04e*’
VIL33 a 0 - CFj 3 2-F.4-Cl.6-F 2,96e*1
VIL34 -Çk R 0 - CFj 1 4-isopropyl 3,44'*’
VIL35 R 0 - CHFj 1 4-Br 2,68e*1
VIL36 k- a ·»** K 0 - CHFj 1 4-C1 23 Ie*1
VIL37 R 0 - CFj 2 2-F.4-C1 2,74'*’
VII38 R 0 - Cl 1 4-C1 2,60e*1
VIL39 R 0 - CFj 1 4-OCFj 2,95'*'
ExN° Y n R* R m R* LogP
VII.40 R 0 - Cl 1 4-CF] 2,92e*1
VII.41 R 0 - chf2 l 4-Br 2,61e*'
ΥΠ.42 R 0 - CF] 1 4-CHFî 2,41e'1
Tablc 5: Compounds according to formula (IX)
ExN° Y n R’ R R* m R* LogP
IX.01 u,. R 0 - CFj CHj 1 4-C1 4,41e*1
IX.02 -p. R 0 - Cl CHj 0 - 3,40e*1; 338[b]
IX.03 R 0 - a CHj 1 4-C1 4,06e*1; 4,00[b]
IX.04 'V 0 - a CH] 0 - 3,42e*1; 339[b]
ExN° Y n R’ R r‘ m R4 LogP
DC.05 0 - CFj cyclopropyl 1 4-CHFi 4,49«
Di.06 0 - CFj CHj 1 4-C! 4,44«
K.07 R 0 - CFj cyclopropyl 1 4-Cl 4,80«
K.08 Λ0ι.., 0 - CFj cyclopropyl 1 4-Br 5,11«
Di.09 V 0 - CFj cyclopropyl 1 4-SFj 5,22«
IX.10 ;·φ- 0 - a CHj 1 4-Cl 4,06«
IX.11 V. 0 - CFj cyclopropyl 1 4-CFj 5,00«
LogP values:
Measurement of LogP values was performed according to EEC directive 79/831 Annex V.A8 by HPLC 5 (High Performance Liquid Chromatography) on rcversed phase columns with the following methods:
[*’ LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% formic acid in water and acetonîtrile as cluent (lincar gradient from 10% acetonitrile to 95% acetonitrile).
LogP value is determined by measurement of LC-UV, in a neutral range, with 0.001 moîar ammonium acetate solution in water and acetonitrile as cluent (linear gradient from 10% acetonitrile to 10 95% acetonitri le).
[c) LogP value is determined by measurement of LC-UV, in an acidic range, with 0.1% phosphoric acid in water and acetonitrile as eluent (linear gradient from 10% acetonitrile to 95% acetonitrile).
If more than one LogP value is available within the same method, all the values are given and separated by
Calibration was donc with straight-chain alkan2-oncs (with 3 to 16 carbon atoms) with known LogP 5 values (measurement of LogP values using rétention times with linear interpolation between successive alkanones). Lambda-max-values were determined using UV-spectra from 200 nm to 400 nm and the peak values of the chromatographie signais.
NMR-Peak Hsts
IH-NMR data of selected examples are written in form of ΙΗ-NMR-peak lists. To each signai peak are lîsted the δ-value in ppm and the signal intensity in round brackets. Between the δ-value - signal intensity pairs are semicolons as délimitas.
The peak list of an example has therefore the form:
δι (intensityi);δ: (intensity:);........;δ) (intensity);......; δη (intcnsity„)
Intensity of sharp signais correlates with the height of the signais in a printed examplc of a NMR spectrum in 15 cm and shows the real relations of signa] intensifies. From broad signais scveral peaks or the middle of the signal and their relative intensity in comparison to the most intensive signal in the spectrum can be shown.
For calibrating chemical shift for 1H spectra, we use tetramethylsilane and/or the chemical shift of the solvent used, especially in the case ofspectra measured in DMSO. Therefore in NMR peak lists, tetramethylsilane peak can occur but not neccssarily.
The 1H-NMR peak lists are similar to classical 1 H-NMR prints and contains therefore usually all peaks, which are lîsted at classical NMR-interpretation.
Additionally they can show like classical 1 H-NMR prints signais of solvents, stereoisomers of the target compounds, which are also object of the invention, and/or peaks of impurities.
To show compound signais in the delta-rangc of solvents and/or water the usual peaks of solvents, for example 25 peaks of DMSO in DMSO-D« and the peak of water are shown in our IH-NMR peak lists and hâve usually on average a hi gh intensity.
The peaks of stereoisomers of the target compounds and/or peaks of impurities hâve usually on average a lower intensity than the peaks of target compounds (for examplc with a purity >90%).
Such stereoisomers and/or impurities can bc typical for the spécifie préparation process. Therefore their peaks 3 0 can hclp to recognize the reproduction of our préparation process via “side-products-fingerprints”.
-92An expert, who calculâtes the peaks of the target compounds with known methods (MestreC, ACD-simulation, but also with empirically cvaluated expectation values) can isolate the peaks of the target compounds as ncedcd optionally using additional intensity filtcrs, This isolation would be similar to relevant peak picking at classical
1H-NMR interprétation.
Further details of NMR-data description with peak lists you find in the publication Citation of NMR Pcaklist
Data within Patent Applications” of the Research Disclosure Database Number 564025.
Example 1.01: ‘H-NMR (300.2 MHz, CDCh):
δ= 8.232 (2.4); 8203 (23); 8.041 (5.3); 8.022 (0.4); 7.955 (5.9); 7.645 (0.5); 7.424 (0.8); 7.414 (5.5); 7.406 (1.8); 7391 (2.1); 7384 (6.6); 7373 (0.8); 7368 (0.4); 7299 (882); 7.188 (0.9); 7.177 (6.9); 7.170 (1.8); 7.155 (1.8); 7.147 (5.0); 7.136 (0.4); 7.031 (3.0); 7.002 (2.7); 6.948 (0.5); 5.424 (0.4); 4.764 (22); 4.716 (3.6); 4.702 (5.8); 4.554 (33); 4.507 (2.4); 4.197 (1.1); 4.173 (33); 4.150 (3.5); 4.126 (1.1); 2.085 (16.0); 1.679 (123); 1.579 (44.1); 1323 (4.5); L299 (9.1); 1275 (4.2); 0.917 (03); 0235 (0.6); 0.108 (9.3); 0.050 (4.1) ; 0.039(1193); 0.028 (4,6);-0.027 (03);-0.159 (03)___________________________________________
Example 1.02: ‘H-NMR (3002 MHz, CDCh):
5= 8.470 (5.6); 8.063 (63); 7.956 (6.4); 7.450 (0.6); 7.439 (5.5); 7.432 (2.0); 7.416 (2.1); 7.409 (7.0); 7398 (0.8); 7316 (6.6); 7300 (303); 7.138 (0.8); 7.127 (6.8); 7.120 (23); 7.105 (1.9); 7.097 (5.7); 7.087 (0.6); 5340 (0.7); 4.727 (23); 4.679 (3.6); 4.480 (3.9); 4.440 (7.0); 1.675 (16.0); 1.587 (173); 1.294 (0.7); 0.109 (1.8); 0.051 (1,7); 0.040 (413); 0.029(1.8)___________________________________________________________________
Exemple 1.03: ‘H-NMR (3002 MHz, CDCh):
5= 8.134 (33); 8.113 (1.4); 8.084 (1.4); 8.045 (3.4); 7.430 (3.0); 7.423 (1.0); 7.408 (1.1); 7.400(3.8); 7390 (03); 7299 (12.4); 7202 (0.5); 7.192 (3.8); 7.184 (1.2); 7.169 (1.0); 7.162 (3.0); 7.151 (1.7); 7.121 (1.4); 5351 (03); 5324 (0.5); 4.528 (0.7); 4320 (0.7); 4.481 (1.0); 4.473 (1.0); 4312 (1.0); 4285 (1.0); 4265 (0.7); 4238 (0.7);4.032 (0.9); 1.600 (16.0); 0.108 (13); 0.049 (0.6); 0.038 (14.7); 0.027 (0.6)_______________
Example 1.04: ‘H-NMR (3002 MHz, CDCh):
δ= 8.582 (32); 8.159 (4.0); 8.055 (3.9); 7.646(0.5); 7.452 (33); 7.430(12); 7.422 (4.4); 7.412 (0.6); 7367 (0.6); 7300 (813); 7259 (3.7); 7234 (0.4); 7.160 (03); 7.149 (43); 7.126 (12); 7.119 (3.5); 6.949 (0.5); 5.470 (0.8); 5.452 (0.9); 5340 (16.0); 4315 (0.8); 4308 (0.8); 4.469 (1.4); 4.461 (1.4); 4.343 (12); 4315 (12); 4297 (0.8); 4269 (0.7); 3.835 (23); 3.824 (23); 1.647 (0.6); 1.607 (0.4); 1381 (79.0); 1.515 (0.4); 1351 (0.7); 1293 (13); 0.920 (0.6); 0.900 (03); 0.235 (0.6); 0.109 (63); 0.051 (33); 0.040 (105.0); 0.029 (52); 0.006 (0.4); -0.026 (0.4); -0,159 (03)______________________________________________________________
Example 1.05: 'H-NMR (400.0 MHz, de-DMSO):
5= 8339 (32); 8.187 (3.4); 7.953 (2.1); 7.790 (3.1); 7.443 (1.0); 7.438 (0.4); 7.424 (1.8); 7422 (1.7); 7.407 (03); 7.403 (13); 7248 (0.7); 7246 (0.4); 7230 (1.1); 7211 (0.5); 7.147 (3.6); 7.120 (1.6); 7.117 (1.9); 7,112 (0.5); 7.098 (1.6); 7.096 (1.4); 6.002 (2.8); 4.747 (0.9); 4.711 (1.4); 4397 (1.4); 4361 (0.9); 3328 (18.0); 2.891 (16.0); 2.732 (133); 2311 (6.5); 2307 (13.1); 2302 (173); 2.498 (123); 2.493 (5.9); 1.989 (1.1) ; 1.615 (7.6); 1.175 (0.6); 0.000(4,4)____________________________________________________________
Example 1.06: ‘H-NMR (400.0 MHz, dô-DMSO):
5= 8367 (6.6); 8224 (4.5); 8218 (4.6); 7.808 (6.2); 7.619 (4.5); 7.613 (4.4); 7.491 (03); 7.486(23); 7.480 (0.9); 7.473 (0.5); 7.467 (3.6); 7.464 (3.4); 7.459 (0.5); 7.451 (1.1); 7.446 (3.1); 7.440 (0.4); 7268 (0.8);
7265 (1.5); 7263 (0.9); 7247 (2.4); 7231 (0.6); 7228 (1.1); 7226 (0.6); 7.133 (33); 7.130 (42); 7.125 (1.1); 7.114 (1.9); 7.111 (3.5); 7.109 (3.0); 7.102 (03); 5.809 (73); 5.757 (4.9); 4.764 (1.4); 4.729 (3.5);
4.690 (3.7); 4.655 (13); 4.038 (0.4); 4.020 (0.4); 3327 (20.9); 2325 (0.4); 2312 (8.5); 2.507 (17.1); 2.503 (22.5); 2.498 (16.1); 2.493 (7.6); 1.989(1.8); 1351 (16.0); 1397(0.9); 1.193 (0.5); 1.175 (1.0); 1,157(0.5); 0.000(6.5) ____________________________________________________________________________________
Exemple 1.07: ‘H-NMR (400.0 MHz, dô-DMSO):
5= 8327 (6.5); 7.985 (3.8); 7.963 (4.1); 7.953 (12); 7.785 (6.2); 7.477 (03); 7.472 (22); 7.467 (0.9); 7.453 (3.6); 7.451 (33); 7.437 (1.1); 7.432 (3.0); 7.426 (0.4); 7275 (1.4); 7256 (23); 7238 (1.0); 7.162 (32);
7.160 (4.0); 7.155 (1.1); 7.141 (33); 7.139 (2.9); 7.132 (03); 6.917 (4.0); 6.896 (4.0); 6.009 (53); 4.776 (2.0); 4.740 (2.7); 4.595 (2.8); 4360 (2.0); 4.056 (0.6); 4.038 (1.9); 4.020 (1.9); 4.002 (0.6); 3328 (25.8);
2.891 (9.0); 2.732 (73); 2325 (0.6); 2.511 (11.8); 2.507 (23.5); 2302 (30.8); 2.498 (222); 2.493 (10.6);
1.989 (82); 1.612 (16.0); 1397 (1.9); 1.193 (22); 1,175 (4.4); 1.157 (22); 0,000 (8.0)
-93Example 1.08: ‘H-NMR (499.9 MHz, de-DMSO):
5= 8.369 (6.3); 8251 (6.6); 7.785 (5.9); 7.614 (4.8); 7.597 (5.6); 7.400 (5.7); 7382 (4.8); 6381 (6.6); 6.047 (5.9); 4.777 (23); 4.749 (2.9); 4.542 (2.9); 4314 (23); 3319 (6.7); 2.892 (03); 2.733 (03); 2304 (2.7); 1.629(16.0); 0.000 (0.7)
Exemple 1.09: ‘H-NMR (3002 MHz, CDCh):
5= 8.077 (3.7); 8.049 (3.9); 8.006 (4.7); 7.860 (4.4); 7.378 (0.4); 7.367 (43); 7360 (13); 7345 (1.7); 7.337 (53); 7.326 (0.7); 7269 (2.2); 7.084 (0.6); 7.074 (5.6); 7.066 (1.7); 7.051 (13); 7.044 (43); 7.033 (03); 6.718 (3.9); 6.690 (3.8); 5300 (0.7); 5260 (2.0); 5213 (23); 4.991 (13); 4336 (2.4); 4.489 (2.1); 1.744 (03); 1.697 (16.0); 0.000 (23)___________________________________________________________________________
Example 1.10: Ή-NMR (400.1 MHz, CDCh):
5= 8.092 (123); 7.992 (0.9); 7.963 (15.1); 7.913 (11.8); 7.892 (122); 7.861 (0.4); 7.839 (0.4); 7.520 (0.3); 7.476 (14.5); 7.454 (16.0); 7311 (0.4); 7288 (15.7); 7281 (16.1); 7261 (38.0); 7.045 (9.1); 7.039 (83); 7.023 (82); 7.017 (7.6); 6.997 (0.4); 6.919 (0.6); 6.900 (133); 6.879 (12.9); 5.378 (5.7); 5372 (6.0); 5358 (63); 5353 (5.8); 4.603 (5.8); 4397 (5.8); 4368 (7.1); 4362 (6.9); 4260 (63); 4241 (6.4); 4225 (5.6);
4206 (53); 4.145 (1.0); 4.127 (2.4); 4.109 (2.4); 4.092 (0.9); 2.952 (3.0); 2.872 (2.7); 2.040 (9.7);1331 (03); 1324 (0.5); 1309 (0.5); 1284 (0.8); 1275 (32); 1.257 (7.5); 1.239 (2.8); 0.880 (0.6); 0.862(03);
0.070 (52); 0,008 (13); 0.000 (27,0)_________________________________________________________________
Example I.Il:‘H-NMR (3002MHz,CDCh):
δ= 8.116 (0.6); 8.097 (14.9); 7.990 (16.0); 7.955 (03); 7.931 (73); 7.930 (73); 7.904 (7.8); 7.902 (7.7);
7.608 (03); 7372 (3.9); 7368 (4.0); 7342 (5.1); 7338 (5.1); 7308 (9.9); 7299 (10.9); 7262 (69.8);7.125 (6.8) ; 7.116 (62); 7.095 (5.4); 7.086 (5.1); 6.946 (0.4); 6.927 (8.4); 6.911 (0.8); 6.900 (8.0); 5 390 (2.4);
5365 (23); 5302 (14.5); 4.623 (3.7); 4.615 (3.7); 4376 (4.7); 4368 (4.7); 4286 (43); 4260 (43);4.239 (3.6) ; 4214 (3.7); 4.185 (2.8); 2.716 (1.6); 2.046 (0.6); 1384 (32); 1267 (1.0); 1260 (0.9); 1253 (1.0);
1244(1.8); 1236(0.4); 1221 (0.9);0.0II (1.7); 0.000(56.1):-0.011 (2.6)_________________________________
Example 1,12: 'H-NMR (3002 MHz, CDCh):
8=8.087 (14.9); 7.953 (16.0); 7.928 (0.3); 7.909 (73); 7.908 (7.1); 7.881 (7.7); 7.880 (7.4); 7276 (52); 7270 (3.8); 7264(273); 7.248 (102); 7245 (9.9); 7201 (2.6); 7.I9I (193);7.183 (4.9); 7.168 (4.0); 7.160 (8.9) ; 7.150 (1.1); 7.139 (03); 6.883 (8.4); 6.855 (8.1); 5380 (2.1); 5354 (23); 4.610 (33); 4.603 (3.5);
4.564 (4.5); 4356 (4.4); 4.419 (2.9); 4.407 (2.8); 4373 (03); 4262 (4.4); 4236 (4.1); 4216 (3.4); 4.189 (33); 4.155 (03); 4.131 (1.3); 4.107 (13); 4.083 (03); 2.045 (6.0); 1.644 (4.8); 1283 (1.7); 1259 (33); 1235 (1.6);0.071 (1.7): 0.011 (0.6);0.000(19.0);-0.0II (0.8)_______________________________________________
ExamplcL 13:‘H-NMR (3002 MHz, CDCh):
8=8.115 (4.1); 8.089 (14.8); 7.985 (4.0); 7.958 (15.1); 7.889 (22); 7.863 (9.8); 7.835 (82); 7.442 (9.1); 7.417(16.0); 7393 (9.0);7291 (5.7);7277(123);7267(22.4);7264(25.4);7240(7.6);7217(3.0);7.156 (17.9) ; 7.130 (11.9); 6.834 (22); 6.807 (10.1); 6.792 (4.5); 6.779 (7.8); 5381 (6.6); 5358 (5.6); 4.609 (5.8); 4362 (7.4); 4332 (6.4); 4288 (1.8); 4261 (6.0); 4235 (5.4); 4215 (4.6); 4.188 (3.6); 4.158 (1.4); 4.131 (2.8) ; 4.107 (2.6); 4.087 (0.9); 2.072 (2.4); 2.058 (52); 2.048 (8.8); 2.045 (9.9); 1.718 (0.4); 1.711 (0.4);
1.639 (7.3); 1352 (0.4); 1283 (4.6); 1.272 (42); 1262 (7.0); 1259 (7.6); 1238 (2.8); 1235 (3.0); 0.904 (0.4); 0.879 (03); 0.859 (03); 0.097 (0.6); O.O7I (1.8); 0.027 (33); 0.013 (73); 0.003 (12.0); 0.000 (13.6) Example 1.14; ‘H-NMR (3002 MHz, CDCh):
5=8.148 (0.4); 8.140 (0.4); 8.083 (12.1); 7.916 (143); 7.903 (7.1); 7.902 (7.0); 7.876 (7.1); 7.874 (7.0); 7394 (12); 7383 (12.6); 7.376 (43); 7370 (1.7); 7361 (5.0); 7353 (16.0); 7342 (2.3); 7330 (03); 7266 (13.6) ; 7.117 (1.7); 7.106 (15.8); 7.099 (4.8); 7.084 (4.7); 7.076 (12.9); 7.065 (13); 7.056 (1.0); 6.954 (0.4); 6.926 (0.4); 6.861 (7.7); 6.833 (73); 5.365 (1.9); 5338 (2.0); 4.676 (2.8); 4.663 (2.7); 4396 (32); 4388 (32); 4350 (4.0); 4342 (4.0); 43 20 (0.4); 4234 (3.8); 4208 (3.7); 4.188 (3.1); 4.161 (3.0); 4.152 (0.6); 4.128 (12); 4.104 (12); 4.080 (0.4); 2.042 (53); 1.729 (13); 1281 (1.6); 1257 (33); 1234 (1.6); 0.072 (0.6); 0.000 (9.1); -0.011(0.4)
Example 1.15: ‘H-NMR (300.2 MHz, CDCh):
8= 8.085 (63); 7.972 (6.5); 7.868 (3.0); 7.867 (3.1); 7.840 (3.1); 7.839 (33); 7263 (203); 7219 (13); 7217 (13); 7210 (12); 7208 (l.l); 7.189 (1.9); 7.182 (1.6); 7.180 (1.5); 7.002 (3.7); 6.973 (2.9); 6.789 (33); 6.761 (3.4); 5367 (0.9); 5356 (0.9); 5341 (0.9); 4.606 (13); 4399 (13); 4360 (1.9); 4.552 (1.9); 4265 (1.9) ; 4239 (1.8): 4218 (1.8); 4210 (2.0); 4.193 (2.4); 2.153 (16.0); 2.046 (0.4); 1.600 (4.1); 1.259 (0.4); 1254 (0.4); 0.070 (11.1): 0.011 (03); 0.000 (133); -0.011 (0.6)
-94Example 1.16: ‘H-NMR <300.2 MHz, CDCh):
5= 8.089 (6.2); 7.951 (6.5); 7.886 (2.9); 7.885 (3.0); 7.859 (3.0); 7.857 (3.1); 7.264 (12.1); 7.236 (2.6); 7.163 (3.0); 7,155 (3.4); 6.977 (2.0); 6.969 (1.9); 6.949 (1.7); 6.941 (1.6); 6.839 (3.4); 6.811 (33); 5373 (0.9); 5358 (0.8); 5346 (0.9); 5301 (0.6); 4.607 (1.4); 4399 (13); 4.560 (1.8); 4352 (1.8); 4.405 (13); 4.391 (13); 4251 (1.8); 4.224 (1.7); 4.204 (1.4); 4.178 (13); 2379 (16.0); 2.044 (0.4); 1.645 (1.7); 1.259 (0.4); 0.071 (11.6); 0.000 (7.2);-0.011 (0.3)
Example 1.17; ‘H-NMR (3002 MHz, CDCh):
5= 8.152 (03); 8.143 (03); 8.083 (6.0); 7.950 (6.7); 7.877 (3.1); 7.875 (3.0); 7.849(33); 7,847(32); 7264 (113); 7.130 (03); 7.125 (0.7); 7.114 (16.0); 7.102 (3.1); 7.096 (7.1); 7.090 (6.9); 7.081 (1.9); 7.070 (0.6); 7.060 (03); 7.055 (0.4); 6.939 (03); 6.911 (03); 6.831 (3.6); 6.803 (3.4); 5369 (0.9); 5.343 (1.0); 5.301 (0.6); 4.602 (13); 4394 (1.5); 4355 (1.9); 4347 (1.9); 4389 (13); 4.375 (1.4); 4363 (03); 4255 (1.9); 4.228 (1.8); 4208 (13); 4.182 (1.4); 1.643 (1.4); 0.071 (10.5); 0.000 (7.9); -0.011 (0.4)
Example 1.18: 'H-NMR (3002 MHz, CDCh):
8=8.118 (0.9); 8.109 (1.0); 8.087 (14.8); 7.994 (16.0); 7.902 (8.0); 7.901 (7.6); 7.874 (8.4); 7.873 (8.0); 7.748 (03); 7.740 (0.5); 7.719 (03); 7.712 (03); 7.608 (0.7); 7292 (0.4); 7262 (110.9); 7.252 (1.9); 7244 (1.0); 7233 (2.8); 7215 (23); 7203 (4.4); 7,185 (43); 7.175 (23); 7.157 (2.1); 7.033 (0.9); 7.005 (0.8); 6.996 (2.4); 6.986 (3.0); 6.968 (2.6); 6.958 (3.8); 6.953 (43); 6.944 (11.6); 6.934 (3.3); 6.926 (43); 6.922 (6.0); 6.917 (122); 6.893 (22); 6.888 (1.9); 6.883 (1.4); 6.878 (1.4); 5365 (2.6); 5346 (2.8); 5302 (22);
5.143 (0.4); 4.600 (3.8); 4392 (3.9); 4354 (5.0); 4346 (5.0); 4377 (0.6); 4365 (0.6); 4.340 (0.6); 4313 (0.7); 4268 (5.0); 4242 (4.6); 4.221 (3.8); 4.195 (3.6); 4.098 (03); 4.086 (0.4); 4.034 (13); 3.735 (0.4);
3.712 (03); 2.047 (0.9); 2.011 (03); 1374 (8.0); 1.482 (03); 1284 (03); 1268 (1.2); 1260 (12); 1.254 (1.6); 1245 (1.9); 1221 (0.9); I.15I (03); 1.000 (03); 0.978 (0.3); 0.070(43.6):0.011 (2.7); 0.000 (78.1);0.011 (33);-0.199 (03)____________________________________________________________________________
Example 1.19; 'H-NMR (3002 MHz, CDCh);
5= 8388 (0.4); 8.134 (3.1); 8.088 (16.0); 7.974 (15.3); 7.900 (7.7); 7.872 (7.4); 7.746 (1.8); 7.716 (1.6): 7284 (83); 7274 (19.9); 7266 (31.0); 7263 (372); 7.228 (21.4); 7217 (212); 7207 (23.6); 7.027 (2.1); 6.999 (1.8); 6.924 (8.0); 6.896 (7.1); 5.367 (5.2); 5348 (4.8); 5301 (23); 5.155 (1.4); 5.140 (1.4); 5.130 (1.4) ; 4.599 (5.1); 4353 (6.6); 4.417 (0.8); 4371 (2.3); 4332 (1.7); 4.307 (1.6); 4256 (4.9); 4229 (4.9);
4208 (43); 4.181 (9.4); 3.716 (1.8); 2.045 (0.4); 1.603 (153); 1344 (0.4); 1258 (1.8); 1.003 (03); 0.865 (0.4); 0.074 (37.2); 0.022 (5.6); 0.011 (13.2); 0.003 (19.8); 0.000 (23.5); -0.036 (0.4)
Example 120: 'H-NMR (3002 MHz, CDCh)
5=8.182 (0.5); 8.173 (0.6); 8.096 (14.1); 7.991 (16.0); 7.951 (0.4); 7.934 (7.8); 7.932 (7.6); 7.906 (83); 7.904 (8.0); 7.608 (0.4); 7279 (0.4); 7263 (80.1); 7.000 (0.5); 6.972 (03); 6.927 (92); 6.912 (0.8); 6.900 (8.8) ; 6.878 (1.4); 6.865 (6.7); 6.859 (2.0); 6.845 (72); 6.838 (6.9); 6.824 (23); 6.818 (6.6); 6.805 (1.4);
6.796 (0.7); 6.792 (0.8); 5.394 (13); 5387 (2.1); 5382 (2.0); 5.372 (2.5); 5356 (22); 5348 (1.8); 5.302 (2.4) ; 4.619 (4.0); 4.611 (3.9); 4.573 (5.1); 4365 (5.0); 4396 (0.4); 4.385 (0.4); 4349 (0.4); 4282 (4.9);
4256 (4.6); 4.236 (3.8); 4210 (3.7); 4.177 (6.6); 4.163 (63); 4.133 (0.4); 4.109 (0.4); 3.719 (0.4); 2.046 (13); 2.011 (0.4); 1.579 (32.0); 1284 (03); 1260 (13); 1253 (1.7); 1236 (0.6); 0.070 (20.4); 0.011 (1.8); 0,000 (542);-0.011(23)___________________________________________________________________________
Example 121: Ή-NMR (3002 MHz, CDClî):
5= 8.328 (113); 8.120 (10.1); 8.059 (0.4); 7.965 (11.4); 7.458 (0.8); 7.450 (4.0); 7.443 (1.9); 7.425 (82); 7.423 (73); 7.415 (1.7); 7.404 (32); 7398 (72); 7390 (1.4); 7373 (0.4); 7273 (2.4); 7269 (4.7); 7.262 (54.0); 7253 (1.7); 7250 (2.7); 7245 (5.6); 7239 (2.1); 7224 (1.7); 7220 (2.4); 7216 (13); 7205 (0.4); 7.140 (8.0); 7.136 (10.0); 7.129 (2.9); 7.115 (4.9); 7.112 (8.0); 7.108 (6.8); 7.099 (l.I); 6.940 (16.0); 6.911 (0.4); 5.428 (23); 5.421 (2.4); 5.401 (2.6); 5394 (23); 4368 (3.1); 4360 (3.1); 4322 (43); 4314 (42); 4.307 (4.0); 4279 (3.8); 4260 (2.9); 4233 (2.8); 4.132 (0.8); 4.109 (0.8); 4.085 (0.4); 4.025 (0.7); 3.915 (0.8); 2.046 (3.1); 1.605(22); 1283 (1.0); 1260(2.0); 1236 (0.9); 0.011 (1.4); 0.000 (38.0);-0.011 (12) Example L22: 'H-NMR (3002 MHz, CDCh):
5= 8.179 (153); 8.164 (9.7); 8.156 (9.8); 7.834 (14.8); 7.609 (03); 7.462 (1.0); 7.454 (4.7); 7.448 (2.4); 7.438 (1.6); 7.430 (9.4); 7.427 (8.6); 7.419 (1.9); 7.408 (33); 7.402 (8.1); 7394 (1.4); 7.339 (12.1); 7.331 (12.0); 7268 (8.1); 7263 (59.3); 7.252 (1.7); 7248 (3.0); 7243 (6.5); 7238 (2.4); 7.222 (1.8); 7219 (2.8); 7.215 (1.7); 7.076 (23); 7.071 (8.8); 7.067 (11.3); 7.060 (32); 7.046 (5.4); 7.042 (8.9); 7.039 (8.0); 7.030 (12); 6.912 (0.4); 5382 (2.0); 5371 (23); 5362 (2.8); 5358 (2.7); 5.352 (2.8); 5347 (2.8); 5339 (2.7); 5.328 (23); 4.644 (2.8); 4.633 (2.9); 4.597 (6.5); 4.585 (16.0); 4.561 (11.5); 4.532 (63); 4313 (6.0); 4.485 (2.8) ; 4.466(2.7); 2.047 (0.8); 1.596 (48.3); 1260 (0.6); 0.011 (1.7); 0.000 (43.8); -0.011(1.6)
-95Example 1.23: Ή-NMR (300.2 MHz, CDCh):
5=8.088 (152); 8.032 (0.6); 8.001 (16.0); 7.950 (0.4); 7.908 (7.7); 7.906 (7.9); 7.880 (8.1); 7.878 (8.5); 7.844 (0.6); 7.763 (0.4); 7.608 (1.1); 7.490 (10.6); 7.482 (11.6); 7.433 (0.4); 7.405 (0.4); 7334 (0.7); 7.319 (6.0); 7.311 (5.6); 7290 (9.1); 7.282 (8.8); 7262 (212.9); 7215 (0.9); 7202 (0.8); 7.175 (13.6); 7.147 (9.3); 7.115 (0.5); 7.087 (0.5); 6.969 (0.5); 6.934 (9.1); 6.906 (8.4); 6.879 (0.3); 6.818 (0.4); 5.370 (23); 5.346 (2.7) ; 5302 (9.4); 4.606 (3.9); 4.599 (3.9); 4360 (5.1); 4.552 (4.8); 4.281 (4.8); 4255 (43); 4235 (3.9); 4.209 (3.5); 4.158 (0.9); 4.134 (2.8); 4.110 (3.0); 4.086 (1.1); 3.980 (23); 2.174 (03); 2.047 (13.9); 1369 (38.7) ; 1.473 (0.4); 1284 (3.8); 1260 (82); 1.237 (3.9); 0.195 (03); 0.069 (333); 0.057 (1.8); 0.035 (0.6); 0.011 (4.7); 0.000 ( 141.0); -0.011 (5.6); -0.060 (0.4); -0200 (0.4)
Example 124: ‘H-NMR (300.2 MHz, CDClj):
5= 8.073 (2.1); 7.905 (23); 7.854 (1.0); 7.826 (1.1); 7.416 (13); 7.410 (0.6); 7394 (0.7); 7388 (1.8); 7379 (03); 7271 (32); 7.117 (2.1); 7.110 (0.7); 7.095 (0.7); 7.088 (1.8); 6.808 (12); 6.780 (12); 5352 (0.4);
5331 (0.4); 5326 (0.4); 4.931 (0.6); 4.909 (0.6); 4377 (03); 4369 (03); 4331 (0.6); 4323 (0.6); 4,239 (03); 4.213 (03); 4.192 (0.4); 4.166 (0.4); 4.152 (1.1); 4.128 (3.4); 4.104 (3.5); 4.081 (1.2); 2.042 (160);
2.031 (0.4); 1323 (3.9); 1302 (3.9); 1281 (4.4); 1258 (8.9); 1234 (4.6); 0.072 (5.8); 0.060 (03); 0.000 (1-7) _______________________________________________________________________________________________
Examp le L25: 'H-NMR (3002 MHz, CDCh):
8= 8.089 (92); 8.022 (7.1); 7.994 (7.6); 7.947 (112); 7397 (13); 7386 (12.9); 7379 (4.6); 7364 (53); 7357 (16.0); 7346 (2.2); 7265 (93); 7.113 (1.9); 7.102 (15.8); 7.095 (53); 7.080 (4.7); 7.073 (13.0); 7.062 (1.8) ; 7.042 (5.8); 7.013 (53); 6.678 (3.7); 6.496 (7.5); 6314 (3.8); 5.645 (2.4); 5.619 (2.6); 4324 (3.1);
4.516 (32); 4.477 (43); 4.470 (43); 4327 (2.6); 4287 (4.4); 4260 (4.1); 4240 (3.1); 4213 (2.9); 4.129 (0.7); 4.105 (0.7); 3.953 (1.1); 2.042 (2.9); 1.694 (4.8); 1281 (12); 1.257 (3.9); 1234 (1.1); 0.879 (03);
0.855 (0.4); 0.071 (5.7); 0.000 (9.7)___________________________________________________________________________
Example 126: 'H-NMR (300.2 MHz, CDCb):
8= 18304 (0.4); 16267 (0.4); 15.166 (0.4); 12.449 (0.4); 8.100 (03); 8.057 (13.2); 7.993 (14.6); 7.886 (6.8); 7.858 (7.1); 7.607 (1.0); 7331 (0.4); 7382 (1.8); 7371 (12.6); 7364 (4.5); 7349 (4.9); 7342 (16.0); 7331 (1.9) ; 7300 (0.7); 7262 (1593); 7.127 (23); 7.116 (15.0); 7.109 (43); 7.093 (43); 7.086 (11.8); 7.075(13);
7.065 (03); 6.910 (0.7); 6.820 (03); 6.793 (8.0); 6.766 (7.4); 5343 (03); 5329 (0.5); 5313 (1.7);5302 (5.4); 5.289 (33); 5279 (23); 4.528 (3.4); 4319 (3.0); 4.481 (4.9); 4.473 (4.6); 4317 (4.5); 4292(42);
4.270 (3.0); 4246 (2.9); 3.929 (6.7); 3.914 (62); 2316 (0.5); 2221 (03); 2.174 (0.7); 1.617 (0.4);1.553 (141.0); 1.524 (1.1); 1.508 (0.8); 1.477 (03); 1308 (12); 1255 (3.7); 0.896 (0.6); 0.881 (1.1); 0.853 (0.6); 0.196 (0.8); 0.069 (18.0); 0.011 (62); 0.000 (1853); -0.011 (8.4); -0.065 (0.6); -0.199 (0.9); -1.451 (0.4); 3269 (03) ________________________________________________________________________
Example 127: Ή-NMR (3002 MHz, CDCIj):
5=8.062 (33); 8.034 (33); 8.007 (4.0); 7.860 (42); 7269 (1.8); 7.088 (133); 7.067 (12.6); 6.686 (33); 6.658 (3.4); 5300 (13); 5261 (22); 5214 (2.4); 4.978 (1.7); 4335 (23); 4.488 (22); 1.696 (16.0); 1.255 (0.6); 0.000 (0.9)_____________________________________________________________________________________________
Example 128: *H-NMR (300.2 MHz, CDCh):
5= 8.054 (33); 8.026 (3.4); 8.000 (4.4); 7.859 (4.1); 7317 (03); 7.298 (0.4); 7291 (0.4); 7266(3.8); 7.245 (13); 7.238 (1.9); 7.199 (1.0); 7.197 (1.0); 7.190 (0.8); 7.189 (0.7); 7.170 (12); 7.169 (12); 7.162 (1.0);
7.160 (1,0); 6.973 (2.6); 6.945 (2.0); 6.642 (3.4); 6.613 (33); 5.713 (0.4); 5301 (0.7); 5.253 (1.9); 5.206 (2.1); 4.950 (03); 4335 (2.2); 4.488 (2.0); 2.150 (03); 2.115 ( 112); 1.697 (16.0); 0.000 (3.9)
Exemple 129: *H-NMR (3002 MHz, CDCh):
8= 8.067 (3.6); 8.052 (0.6); 8.039 (3.8); 8.023 (03); 8.013 (4.3); 7.863 (4.4); 7268 (2.6); 7247 (1.6); 7219 (1.9) ; 7.141 (2.4); 7.133 (2.5); 6.943 (1.6); 6.935 (13); 6.916 (13); 6.907 (12); 6.702 (0.4); 6.695 (3.8);
6.673 (0.4); 6.667 (3.7); 5300 (0.4); 5.250 (1.9); 5203 (22); 4.968 (0.9); 4344 (23); 4,497 (2.1); 2368 (123); 1.735 (13); 1.697 (16,0); 0.000 (2.4)______________________________________________________________
Example 130: 'H-NMR (3002 MHz, CDCh):
5= 8.089 (43); 8.005 (42); 7.861 (2.4); 7.833 (2.6); 7.608 (0.4); 7313 (0.4); 7262 (51.7); 7.141 (23); 7.111 (2.9) ; 7.012 (3.0); 7.002 (2.6); 6.872 (2.1); 6.863 (1.6); 6.842 (2.9); 6.837 (33); 6.809 (23); 5375 (13); 5361 (13); 5350 (12); 4.606 (1.4); 4359 (1.9); 4.280 (1.4); 4254 (1.4); 4234 (1.1); 4.209 (1.1); 3.904 (2.9); 3.890 (23); 3.828 (16.0); 1.664 (0.4); 1370 (143.6); 1293 (0.9); 1.257 (1.8); 0.887 (0.6); 0.856 (0.4); 0.069 (7.1); 0.000 (47.4);-0.032 (0.4)
-96Example 1.31: lH-NMR (300.2 MHz, CDClj):
5= 8.055 (2.8); 8.027 (2.8); 7.989 (3.8); 7.866 (3.5); 7.263 (46.0); 7.115 (2.3); 7.086 (2.8); 6.993 (2.2); 6.983 (2.6) ; 6.854 (1.6); 6.844 (1.4); 6.824 (13); 6.814 (1.1); 6.687 (2.8); 6.658 (2.7); 5302 (92); 5.246 (1.6): 5.199 (1.9); 4.874(2.9); 4.532 (2.0); 4.486(1.7); 3.819 (16.0); 1.692(10.3); 1.571 (113.0); 1254 (1.0); 0.069 (82); 0.011 (12); 0.000 (38.4);-0.011 (1.7)
Example 1.32: ‘H-NMR (3Ô02 MHz, CDCh):
5= 8.141 (1.5); 8.116 (3.9); 8.088 (33); 8.047 (2.6); 8.024 (4.8); 7.878 (2.7); 7.859 (5.6); 7.489 (1.4); 7.480 (1.4); 7.466 (3.7); 7.452 (1.7); 7.437 (33); 7.273 (43); 7269 (4.2); 7.035 (1.5); 7.019 (3.0); 7.015 (3.0);
6.990 (22); 6.795 (1.5); 6.770 (3.9); 6.758 (1.7); 6.742 (2.8); 5358 (03); 5324 (0.9); 5316 (0.8); 5301 (2.0); 5238 (2.6¼ 5.192 (2.9); 5.053 (1.0); 4381 (1.4); 4.555 (2.9); 4.534 (1.5k 4.523 (12); 4.509 (2.6);
2.194 (0.5); 2.187 (03); 2.172 (12); 1.761 (0.9); 1.724 (73); 1.715 (6.9); 1.702 (16.0); 0.000 (0.8)
Example 133: ‘H-NMR (300.2 MHz; CDClj):
5= 8.447 (0.4); 8.418 (0.4); 8.193 (03); 8.024 (10.1); 8.011 (0.8); 7.996 (103); 7.915 (13.4); 7.865 (132); 7.418 (03); 73 88 (0.6); 7365 (13); 7354 (12.7); 7347 (4.4); 7332 (4.8); 7324 (16.3); 7314 (1.8); 7268 (5.6) ; 7.142 (0.6); 7.112 (0.6); 7.097 (1.8); 7.087 (16.0); 7.079 (4.8); 7.064 (4.4); 7.057 (12.9); 7.046 (13); 6.954 (03); 6.926 (03); 6.684 (9.4); 6.656 (9.1); 5.571 (1.1); 4.939 (8.6); 4.819 (5.6); 4.773 (7.0); 4.454 (7.6) ; 4.407 (6.0); 1.750 (3.6); 1.579 (41.0); 0.000 (4.9)
Example 134: ‘H-NMR (3002 MHz, CDCh):
5= 8.099 (2.6); 7.999 (2.7); 7.942 (13); 7.914 (13); 7.817 (23); 7.810 (0.7); 7.794 (0.8); 7.786 (2.5); 7.262 (13.8); 7254 (1.6); 7223 (13); 6.956 (13); 6.928 (13); 5396 (0.4); 5385 (0.3); 5372 (0.4); 5302 (0.4); 4.628 (0.6); 4.621 (0.6); 4382 (0.8); 4374 (0.8); 4299 (0.8); 4274 (0.8); 4253 (0.6); 4227 (0.6); 4.157 (1.1) ; 4.133 (3.6); 4.110 (3.9); 4.086 (12); 2.046 (16,0); 1375 (3.4); 1284 (43); 1.260 (8.6); 1236 (42); 0.069 ( 1.6); 0.011 (03); 0.000 ( 16.0); -0.011 (0.7)
Example 135: ‘H-NMR (3002 MHz, CDCh):
5= 8.234 (1.6); 8231 (1.7);8203 (1.2); 8.143(4.1); 8.115 (4.3); 8.006(5.8); 7.872(5.1¼ 7.866 (1.8¼ 7.859 (03); 7.842 (03); 7.835 (1.5); 7.810 (03); 7.799 (43); 7.792 (13); 7.776 (13); 7.769 (5.0); 7.758 (03); 7307 (0.8); 7277 (0.9); 7262 (35.5); 7215 (2.8); 7.185 (23); 7.053 (12); 7.025 (12); 6.818 (43); 6.789 (4.1) ; 5.717 (3.4); 5302 (15.9); 5249 (23); 4.994 (2.7); 4337 (2.7); 4.490 (2.4); 2.010 (03); 1.713 (16.0); 1359 (3.1); 1269 (0.4); 1254 (03); 1246 (03); 0.069 (9.3); 0.057 (0.4); 0.011 (12); 0.000 (40.7); -0.011 (1.7) _______________________________________________________________________________________________
Example 1.36: ‘H-NMR (3002 MHz, CDCh):
5= 8.603 (7.8); 8.160 (9.7); 8.044 (3.2); 8.038 (2.8); 8.024 (2.6); 7.882 (9.0); 7.875 (3.1); 7.858 (3.6); 7.852 (9.8) ; 7.841 (1.1); 7327 (9.7); 7300 (34.9); 7.271 (5.5); 5.496 (1.9); 5.468 (2.0); 5339 (16.0); 4326 (2.0); 4320 (1.9); 4.479 (3.2); 4.473 (3.1); 4347 (23); 4319 (2.1); 4300 (13); 4272 (1.4); 4.180 (0.4); 4.157 (03); 4.093 (0.4); 4.086 (0.4); 4.079 (0.4); 4.061 (0.4); 4.021 (0.9); 1396 (11.1); 1334 (0.4); 1304 (0.9); 1292 (1.9); 1.259 (0.4); 0.108 (32); 0.039 (35.5); 0.028 (1.8)
Exemple 137; ‘H-NMR (3002 MHz, CDCh):
δ= 8.500 (5.7); 8.071 (53); 7.959 (6.6); 7.881 (0.6); 7.870 (5.8); 7.863 (1.9); 7.847(1.9); 7.840 (63); 7.829 (0.7); 7.378 (6.6); 7300 (51.6); 7277 (3.7); 7247 (32); 5339 (132): 4.742 (2.7); 4.694 (3.7); 4303 (5.4); 4.499 (53¼ 4.451 (2.8); 1.693 (16.0¼ 1388 (17.9); 0.108 (0.6); 0.050 (1.8); 0.039 (52.9); 0.028 (10) Example 138: 'H-NMR (3002 MHz, CDCh):
8= 8.136 (0.4); 8.047 (03); 7387 (03); 7300 (6.7); 7285 (0.4); 7255 (03); 6.905 (03); 1.603 (16.0); 0.108 (0.7); 0.038 (7.0); 0.028 (0.3)_________________________________________________________________________________
Example 139pH-NMR (3002 MHz, CDClj):
5= 8.138 (3.4); 8.109 (4.7); 8.083 (13); 8.041 (53); 8.014 (2.1); 7.909 (4.9); 7.882(2.0); 7398 (3.4); 7.569 (52) ; 7343 (2.0); 7307 (93); 7300 (233); 7273 (7.8); 7250 (4.7); 7222 (53); 7.197 (1.8); 6.892 (1.4);
6.864 (0.6); 6.794 (3.6); 6.766 (43); 6.740 (12); 6.703 (2.7); 6.677 (1.1); 6315 (1.4); 6.488 (0.6); 5339 (43); 5323 (2.9); 5313 (1.8); 5297 (1.4); 5276 (2.9); 5250 (13); 4.990 (4.1); 4.963 (1.9); 4373 (2.9); 4345 (13); 4326 (2.7); 4300 (1.0); 1.745 (16.0); 1.718 (63); 1398 (16.5); 1.571 (7.7); 1294 (0.7); 1266 (03); 0.108 (3.2); 0.082 (12); 0.046 (92); 0.039 (22.4); 0.012 (7.1)_______________________________________
Example 1.40: lH-NMR (300.2 MHz, CDCh):
5= 8.131 (4.9); 8.117 (2.0); 8.088 (2.0); 8.033 (5.1); 7389 (0.4); 7.578 (4.6); 7.571 (1.5); 7355 (13); 7.548 (53) ; 7338 (03); 7300 (15.7); 7.153 (23); 7.141 (5.4); 7.134 (1.7); 7.125 (22); 7.119 (1.7); 7.112 (4.6);
7.101 (03); 5349 (0.7); 5324 (0.7); 4325 (0.9); 4317 (1.0); 4.478 (1.4); 4.471 (1.4); 4308 (1.4); 4281 (1.4); 4261 (1.0¼ 4234 (1.0); 4.116 (23); 4.104 (23); 1.609 (16.0); 1293 (03); 0.108 (1.4); 0.049 (03¼ 0.039 (15.0); 0.028 (03)
-97Example 1.41: ‘H-NMR (300.2 MHz, CDCIj):
δ= 8.115 (14.5); 8.025 (14.6); 7.948 (3.6); 7.919 (4.4); 7.889 (3.7); 7.646 (0.6); 7.438 (1-2); 7.427 (12.9); 7.420 (4.2); 7.405 (4.6); 7.397 (15.8); 7.386 (1.7); 7.367 (0.6); 7.300 (121.1); 7.270 (0.4); 7233 (0.5); 7.144 (1.6); 7.133 (16.0); 7.126 (4.7); 7.111 (4.1); 7.103 (12.7); 7.093 (1-2); 6.949 (0.7); 6.828 (5.9); 6.801 (5.5); 5364 (1.4); 5350 (1.8); 5339 (2.9); 5330 (2.1); 5315 (1.6); 4.590 (3.1); 4381 (3.2); 4343 (4.8); 4.534 (4.8) ; 4.393 (4.7); 4.368 (43); 4346 (3.1); 4321 (2.9); 4.000 (8.1); 3.985 (8.0); 1.660 (0.5); 1394 (134.6); 1327 (0.7); 1.380 (0.4); 1342 (0.5); 1292 (1.1); 0.920 (0.4); 0234 (03); 0.120 (1.1); 0.108 (33.8); 0.049 (3.9) ; 0.038 (128.9); 0.027 (5.1); -0.008 (0.3); -0.029 (0.6);-0.160 (0.6)
Example 1.42: ‘H-NMR (3002 MHz, CDCIj):
5= 8.045 (1.5); 8.017 (1.8); 8.011 (1.8); 8.001 (4.0); 7.983 (1.7); 7.921 (3.9); 7.424 (0.5); 7.413 (4.0); 7.406 (1.4); 7391 (13); 7383 (4.9); 7372 (0.6); 7300 (172); 7.118 (0.6); 7.107 (4.9); 7.100 (13); 7.085 (1.3); 7.078 (4.0); 7.067 (0.4); 6.722 (1.7); 6.717 (1.7); 6.695 (1.6); 6.690 (1.7); 4.855 (2.7); 4.811 (1.4); 4.765 (1.8) ; 4.496 (2.0); 4.449 (1.5); 2.047(2.0); 1.607 (16.0); 0.107 (2.0); 0.049 (0.8): 0.038 (18.3); 0.027 (0.8)
Example 1-43: ‘H-NMR (3002 MHz. CDCIj):
δ= 8391 (113); 8.161 (14.7); 8.045 (16.0); 7.646 (0.6); 7.367 (0.5); 7.339 (6.0); 7308 (11.8); 7300 (110.2); 7279 (13.8); 7242 (2.4); 7232 (19.4); 7.224 (4.8); 7209 (3.8); 7.201 (10.4); 7.190 (0.9); 6.949 (0.6); 5.480 (23); 5.453 (2.5); 4.518 (2.8); 4.510 (2.9); 4.471 (4.6); 4.463 (4.7); 4.342 (4.6); 4314 (42); 4295 (2.8); 4267 (2.8); 3.948 (43); 3.938 (4.5); 2.048 (8.9); 1.664 (0.4); 1.597 (53.9); 1.533 (03); 1290 (1.1); 0234 (0.4); 0,108 (23); 0.049 (4.1); 0.038 (119.4); 0.027 (42); -0.160 (0.4)_____________________________________
Example 1.44: ‘H-NMR (3002 MHz, CDCh):
S= 8.477 (5.7); 8.070 (6.8); 7.958 (72); 7.335 (72); 7328 (3.3); 7325 (33); 7318 (1.7); 7300 (48.0); 7220 (12); 7209 (8.8); 7201 (23); 7.186 (1.9); 7.179 (5.0); 7.167 (0.5); 5340 (4.8); 4.732 (23); 4.685 (3.7);
4.484 (4.1); 4.461 (6.6); 4.437 (2.8); 1.680 (16.0); 1.655 (0.6); 1398 (17.9); 1307 (0.4); 1292 (0.4); 1.284 (0.4); 0.108 (1.4); 0.049 (23); 0.038 (48.0); 0.027 (1.7)___________________________________________________
Example 1.45: ‘H-NMR (3002 MHz, CDCh):
δ= 15.116 (0.4); 15.105 (0.4); 8.468 (5.5); 8.066 (6.4); 7.957 (6.7); 7.646 (1.0); 7.439 (6.4); 7.431 (2.1); 7.416 (23); 7.409 (7.4); 7398 (1.0); 7.366 (1.1); 7.316 (8.1); 7300 (198.5); 7.233 (0.5); 7.137 (0.9); 7.126 (73); 7.119 (2.0); 7.104 (1.9); 7.097 (6.0); 6.949 (1.1); 5340 (12.4); 4.727 (23); 4.680 (3.7); 4.480 (3.9); 4.433 (9.2); 1.721 (0.4); 1.675 (16.0); 1.593 (2253); 1326 (1.0); 1300 (0.5); 1.466 (0.4); 1306 (0.9); 1293 (1.4) ; 1260 (03); 0.918 (03); 0.897 (0.5); 0.234 (0.7); 0.172 (0.4); 0.119 (0.9); 0.108 (28.9); 0.069 (03);
0,049 (5.8);O.O38 (187.8); 0.027 (7.4); -0.028 (0.6); -0.159 (0.8)_____________________________________________
Example 1.46: 'H-NMR (3002 MHz, CDCh):
5= 8.468 (5.6); 8.067 (63); 7.957 (6.9); 7.646 (0.6); 7.449 (0.7); 7.438 (6.5); 7.431 (22); 7.416 (2.5); 7.409 (7.8) ; 7398 (0.9); 7366 (0.5); 7348 (0.3); 7316 (73); 7300 (943); 7.137 (1.0); 7.126 (7.9); 7.119 (23); 7.104 (23); 7.097 (62); 7.086 (0.6); 6.949 (0.4); 5340 (12.1); 4.726 (2.6); 4.679 (3.6); 4.480 (4.1); 4.434 (7.8) ; 1.675(16.0); 1.598(493); 1.307(0.8); 1293(12); 1284(0.7); 1.261 (0.6); 1240(0.4); 0.107 (14.9);
0.096 (0.7); 0.049 (3.9); 0.038 (89.4); 0.027 (3.4); -0.160 (0.3)_______________________________________________
Example 1.47; ‘H-NMR (3002 MHz, CDCh):
S= 8.600 (7.4); 8.161 (10.0); 8.036 (6.8); 7.756 (53); 7.727 (6.4); 7322 (6.6); 7314 (10.8); 7300 (443); 5.489 (1.6); 5.462 (1.6); 4.523 (1.8); 4.516 (1.9); 4.476 (3.0); 4.469 (3.0); 4345 (2.9); 4317 (2.7); 4.298 (1.8) ; 4.270 (1,7); 4.059 (12); 1.604 (16.0); 1291 (0.4); 0.108 (2.6); 0.049 (1.5); 0.039 (45.1); 0.028 (1.6)
Example 1.48: 'H-NMR (3002 MHz, CDCh):
5= 8385 (103); 8.154 (13.4); 8.011 (12.8); 7.608 (12); 7398 (122); 7391 (3.8); 7.575 (4.0); 7369 (133); 7358 (1.4); 7300 (263); 7256(11.7); 7.105 (1.4); 7.094 (13.6); 7.088(4.0):7.072 (3.8); 7.065 (11.9); 7.055 (12); 5.467 (22); 5.439 (22); 4304 (23); 4.497 (2.6); 4.457 (42); 4.450 (4.1); 4.328 (4.0); 4300 (3.7): 4281 (23); 4.253 (2.4); 4.153 (2.2); 2.045 (8.3); 1.632 (16.0); 1291 (0.4); 0.107 (1.9); 0.048 (1.0); 0.038 (28.3); 0.027 (1.1)____________________________________________________________________________________________
Example 1.49: ‘H-NMR (3002 MHz, CDCh):
8= 8.469 (5.6); 8.359 (0.4); 8327 (0.4); 8216 (0.9); 8.065 (63); 8.024 (1.1); 7.958 (6.8); 7.657 (03); 7.646 (0.8); 7.637 (0.8); 7398 (0.9); 73 88 (6.5); 7380 (22); 7365 (2.1); 7358 (7.3); 7347 (0.8); 7.428 (0.4); 7389 (0.4); 7358 (0.6); 7317 (7.5); 7300 (122.9); 7.085 (0.8); 7.074 (72); 7.067 (22); 7.052 (2.1); 7.045 (6.4) ; 7.034 (0.8); 6.949 (0.6); 5299 (1.0); 5281 (1.1); 4.728 (23); 4.680 (3.6); 4.480 (3.8); 4.442 (6.4); 4.433 (3.1); 2.944 (03); 2.888 (0.4); 2.638 (03); 2379 (0.4); 2.049 (03); 1.675 (16.0); 1.655 (3.0); 1.590 (46.1); 1293 (13); 0.918 (0.4); 0235 (03); 0.108 (7.9); 0.050 (53); 0.039 (133.6); 0.028 (5.0); -0.160 (03)
-98Example 1.50: ‘H-NMR (3002 MHz, CDClj):
8= 8.490 (5.7); 8.071 (6.6); 7.959 (7.1); 7.743 (3.8); 7.715 (4.4); 7369 (6.6); 7.300 (49.1); 7.271 (3.8); 5.340 (11.7) ; 4.738 (2.6); 4.690 (3.7); 4.493 (4.7); 4.486 (6.7); 4.445 (2.9); 1.688 (16.0); 1.596 (17.8); 1293 (1.0);
0.108 (3.1 ); 0.049 ( 1.7); 0.038 (47.7); 0.027 ( 1.9)________________________________________________________________
Examplc 1.51: ‘H-NMR (3002 MHz, CDClj):
5= 8.112 (4.7); 8.084 (5.0); 8.036 (5.7); 7.905 (53); 7.646 (0.6); 7.417 (0.7); 7.407 (5.8); 7.400 (1.9); 7385 (2.2); 7.377 (72); 7.366 (1.5); 7300 (1163); 7289 (2.0); 7234 (03); 7.122 (0.9); 7.112 (7.1); 7.104 (2.1); 7.089 (1.9); 7.082 (5.7); 7.071 (0.6); 6.949 (0.5); 6.755 (5.0); 6.727 (4.8); 5340 (1.2); 5320 (2.6); 5273 (2.9); 4.977 (43); 4364 (32); 4.516 (2.8); 1.737(16.0); 1.735 (15.7); 1.709 (0.4); 1.656 (1.0); 1.589(156.0); 1323 (0.7); 1.323 (0.4); 1293 (2.8); 0.234 (0.4); 0.120 (0.5); 0.108 (7.1); 0.049 (4.7); 0.039 (114.3); 0.028 (43);-0.028 (0.6);-0.160 (0.3)
Exampïe 132: ‘H-NMR (300.2 MHz, CDClj):
δ= 17.800 (0.4); 17.078 (0.4); 12.484 (0.4); 11.639 (0.4); 10.368 (0.4); 8.112 (4.3); 8.084 (4.5); 8.036 (5.6); 7.906 (5.5); 7.646 (1.1); 7.435 (0.4); 7,407 (5.3); 7.400 (1.9); 73 85 (1.9); 7378 (6.6); 7367 (1.7); 7.327 (0.6); 7300 (179.7); 7.233 (0.6); 7.122 (0.7); 7.112 (6.4); 7.105 (2.0); 7.089 (1.6); 7.082 (52); 6.949 (0.9); 6.755 (4.5); 6.727 (4.3); 5.811 (0.4); 5.340 (0.7); 5320 (2.7); 5274 (2.9); 4.976 (42); 4.563 (3.1); 4.517 (2.8) ; 1.736 (16.0); 1.700 (0.4); 1.671 (0.5); 1.654 (1.4); 1.587 (2403); 1.521 (1.1); 1.340 (0.4); 1.293 (3.9); 0.893 (0.4); 0234 (0.8); 0.108 (10.8); 0.050 (5.5); 0.039 (174.0); 0.028 (6.1); -0.028 (0.9); -0.160 (0.7); -
1.485 (0.4); -3388 (0.4)
Example 1.53: ‘H-NMR (3002 MHz, CDClj):
5= 8.472 (4.8); 8.023 (3.8); 7.898 (3.5); 7.416 (0.4); 7.405 (3.6); 7.398 (12); 7383 (13); 7375 (4.3); 7.365 (03); 7.300 (13.9); 7.097 (0.5); 7.086 (4.3); 7.079 (13); 7.064 (1.1); 7.057 (3.5); 7.046 (0.4); 6.913 (4.9); 5.339 (03); 5215 (1.7); 5.168 (1.9); 4.834 (22); 4357(2.1); 4.510 (1.8); 2211 (16.0); 1.736(11.9); 1.613 (3.4) ; 0,107 (0 8); 0.049 (03); 0.038 (13.4): 0.027 (03)______________________________________________
Exampïe 1.54: 'H-NMR (3002 MHz, CDClj):
δ= 8.472 (4.0); 8.023 (3.1); 7.899 (2.9); 7.405 (3.0); 7.398 (1.0); 7.383 (1.1); 7376 (3.6); 7365 (0.4); 7.300 (19.7) ; 7.097 (0.4); 7.087 (3.6); 7.079 (1.1); 7.064 (1.0); 7.057 (2.9); 6.913 (4.1); 5.339 (03); 5218 (1.4):
5.171 (1.6); 4.830 (2.0); 4357 (1.7); 4310 (13); 2220 (0.4); 2211 (16.0); 1.737 (9.1); 1.602 (8.9); 1.294 (03); 0.108 (12); 0.049 (0,8); 0.038 (19.1); 0,027 (0.7)___________________________________________________
Example 135: 'H-NMR (3002 MHz, cfc-DMSO):
5= 8337 (11.6); 8.485 (16.0); 7.988 (14.8); 7.706 (8.1); 7.678 (9.3); 7.491 (13.1); 7.426 (0.4); 7.373 (10.4); 7345 (8.7); 7287 (33); 7.101 (7.2); 6.915 (33); 6216 (6.8); 6.200 (7.0); 5.781 (12.7); 5229 (22); 5.216 (2.6); 5204 (23); 4.494 (1.9); 4.466 (1.8); 4.447 (3.8); 4.420 (3.6); 4372 (3.8); 4360 (3.8); 4.325 (1.8); 4313 (1.6); 3.954 (0.6); 3351 (40.4); 3201 (0.4); 3.184 (0.4); 2331 (63); 2325 (82); 2319 (6.1); 2.012 (0.7); 1.258 (0.4); 1.198 (0.4); 1.079 (0.4); 0.023 (7.0)_______________________________________________________
Example 1.56: 'H-NMR (400.1 MHz, CDClj):
5= 8.441 (5.7); 8.072 (2.9); 7.900 (3.8); 7381 (3.9); 7360 (4.3); 7.310 (6.8); 7264 (33); 7227 (4.8); 7206 (43); 6.808 (1.7); 6.666 (33); 6.525 (1.7); 4.666 (23); 4.630 (3.4); 4.451 (3.6); 4.416 (2.6); 1.641 (16.0); 0.000 (2.4)
Example 137: ‘H-NMR (400.1 MHz, dô-DMSO)
8= 8.476 (11,7); 8.441 (16.0); 7.946 (16.0); 7.681 (4.1); 7.676 (4.3); 7.655 (42); 7.650 (42); 7347 (132); 7,472 (2.9); 7.450 (7.0); 7.429 (53); 7395 (4.6); 7391 (4.4); 7.373 (2.6); 7370 (2.3); 6.165 (6.6); 6.153 (6.8) ; 5.197 (2.1); 5.187 (2.4); 5.178 (2.1); 4.455 (2.0); 4.434 (1.9); 4.420 (3.6); 4.399 (33); 4.348 (33);
4339 (3.5); 4.313 (1.9); 4.304 ( 1.8); 3.304 (25.8); 2.505 (9.5); 2300 (12.7); 2.496 (9.4); 0.000 (l 1.0); -0.008 (0.6) _____________________________________________________________________________________________________
Example 138: ‘H-NMR (3002 MHz, dô-DMSO)
8= 8339 (0.4); 8.336 (10.3); 8.315 (72); 8.057 (0.4); 7.859 (10.1); 7.702 (2.7); 7.694 (2.7); 7.667 (2.5); 7.660 (2.6); 7347 (8.9); 7.490 (1.7); 7.461 (4.2); 7.434 (3.8); 7.412 (3.4); 7.410 (3.3); 7.405 (3.0); 7381 (1.4) ; 7373 (13); 5.949 (0.7); 5.865 (93); 4365 (0.9); 4317 (52); 4302 (52); 4.455 (1.0); 3.348 (18.9);
2337 (3.9); 2331 (7.7); 2325 (10.3); 2.519 (7.5); 2313 (3.6); 1.583 (16.0); 0.034 (0.5); 0.023 (11.3); 0.012 (03) ________________________________________________________________________________
Example 1.59: 'H-NMR (3002 MHz, CDClj):
5= 8.231 (32); 8202 (33); 8.043 (72); 8.005 (0.3); 7.952 (8.0); 7372 (0.8); 7361 (73); 7354 (23); 7338 (2.4) ; 7331 (8.4); 7321 (0.9); 7300 (36.8); 7.137 (0.9); 7.126 (8.6); 7.119 (2.5); 7.104 (2.3); 7.097 (7.4);
7.086 (0.7); 7.033 (3.8); 7.004 (3.6); 5339 (8.7); 4.761 (2.9); 4.714 (8.4); 4354 (4.7); 4306 (3.0); 2.996 (0.6); 2.923 (03); 1.678 (16.0); 1.604 (13.6); 1.306 (03); 1292 (1.0); 1.283 (0.6); 0.108 (5.8); 0.049 (1.1); 0.038(37.9); 0.027(1.4)
-99Example 1.60: ‘H-NMR (3002 MHz,CDClj):
5= 8.172 (3.7); 8.147 (10.6); 8.063 (8.6); 7.875 (0.9); 7.864 (7.6); 7.857 (2.5); 7.841 (2.6); 7.833 (8.6); 7.823 (1.1); 7.646 (0.8); 7.365 (4.8); 7334 (4.4); 7300 (127.8); 7241 (3.9); 7.213 (3.6); 6.949 (0.8); 5.573 (1.4); 5347 (1.4); 5340 (16.0); 4347 (1.7); 4339 (1.7); 4300 (2.7); 4.492 (2.6k 4330 (2.7); 4304 (2.6); 4.284 (1.7) ; 4257 (1.8); 4.025 (2.6); 1.663 (0.5); 1.596 (86.9); 1.410 (03); 1349 (0.6); 1321 (0.8); 1307 (12): 1.292 (1.8); 1284 (13); 1260 (0.6); 0.919 (0.6); 0.892 (03); 0.866 (0.4); 0.854 (0.4); 0.233 (03); 0.119 (1.1) ; 0.107 (26.2); 0.095 (1.0); 0.049 (4.5): 0.038 (124.6); 0.027 (4.6): 0.009 (0.4); -0.029 (0.5): -0.160 (0.5)
Example 1.61: ‘H-NMR (3002 MHz, CDCh):
5=9.881 (0.4); 8.157 (6.4); 8.144 (15.5); 8.128 (6.6); 8.060 (16.0); 7.736 (8.7); 7.707 (10.2); 7.646 (0.9); 7373 (93); 7345 (83); 7300 (151.7); 7.233 (0.6); 7.220 (6.7); 7.192 (62); 6.949 (0.9); 5.566 (2.2); 5.543 (2.2) ; 5340 (12); 4.543 (2.9); 4336 (3.1); 4.497 (4.7); 4.489 (4.4); 4327 (4.4); 4300 (4.4); 4280 (32);
4.254 (3.0); 4.024 (53k 4.013 (5.2k 2260 (0.4k 1.727 (0.3); 1.593 (37.5k 1.519 (0.3k 1.441 (03); 1.410 (0.7); 1372 (1.0); 1324 (2.0); 1293 (3.9); 1213 (0.4); 1207 (0.4); 1.181 (03); 0.942 (0.7); 0.919 (1.1); 0.894 (1.0); 0.866 (12); 0.234 (0.7); 0.108 (33); 0.049 (52); 0.038 (165.4); 0.028 (5.9); -0.029 (0.6); -0.159 (03) ________________________________________________________________________________
Examplc 1.62* ‘H-NMR (300.2 MHz, do-DMSO):
8= 8.432 (0.5); 8383 (6.8); 8339 (0.5); 8333 (0.4); 8314 (0.4); 8.264 (03); 8.184 (33); 8.155 (3.6); 8.045 (6.1); 8.015 (6.8); 7.890 (6.5); 7337 (0.4); 7.452 (6.0); 7.423 (6.2); 7.381 (3.6); 5.944 (6.6); 5.793 (8.8); 5.756 (0.4); 4.637 (03); 4.608 (1.1); 4358 (5.8); 4345 (6.1); 4.497 (1.1); 3363 (10.9); 2.648 (0.4); 2.627 (0.6); 2335 (23.4): 2388 (0.4); 1.699 (0.3); 1399 (16.0); 1.273 (0.6); 0.094 (0.4); 0.032 (10.8)
Examplc 1.63: ‘H-NMR (300.2 MHz, CDCh):
5= 8386 (8.8); 8.163 (0.4); 8.141 (12.3); 8.045 (12.9); 7.646 (03); 7.601 (1.4); 7391 (123); 7.584 (4.1); 7368 (4.1); 7361 (14.1); 7.550 ( 1.6k 7300 (117.8k 7.233 (3.1); 7201 (9.0); 7.103 (1.4); 7.092 (14.0); 7.085 (43); 7.069 (3.9); 7.062 (12.6); 7.051 (6.7); 6.949 (0.6); 6.868 (32); 5.410 (2.0); 5396 (1.8); 5383 (2.1);
340 (16.0); 4300 (0.9); 4.488 (1.4); 4.453 (5.6): 4.441 (5.7); 4.437 (63); 4.409 (4.7); 4390 (1.0); 4.362 (13); 3.956 (8.5); 3.945 (83); 2.438 (0.4); 1.592 (49.0); 1293 (13); 0.920 (03); 0.234 (0.6); 0.108 (3.4);
0.050 (4.1k 0.039 (124.2); 0.028 (4.4); -0.160 (0.5)
Examplc 1.64: ‘H-NMR (3002 MHz. CDCIj):
5= 8.160 (3.6); 8.105 (52); 8.006 (5.6); 7.840 (1.4); 7.659 (1.6); 7.654 (1.6); 7.473 (1.5); 7.446 (0.5); 7.435 (4.9); 7.427 (1.6); 7.412 (1.7); 7.405 (6.0); 7394 (0.6); 7356 (3.6); 7300 (14.9); 7.145 (0.7); 7.134 (6.1); 7.126 (1.8); 7.111 (1.6); 7.104 (4.8); 7.093 (0.4); 4.655 (1.8); 4.607 (2.7k 4392 (2.8k 4385 (32k 4.338 (2.4) ; 2.047 (1.9); 1.632 (6.3); 1613 (16.0); 1291 (0.7); 0.107 (3.4); 0.037 (9.5); 0.026 (0.4)
Example 1.65: ‘H-NMR (3002 MHz, dô-DMSO):
5= 8381 (9.7); 8.172 (32); 8.143 (33); 7.889 (10.0); 7.872 (5.0); 7.843 (5.6); 7.452 (53); 7.424 (4.8); 7376 (42); 7347 (4.0); 5.933 (6.7); 5.902 (0.5); 4.603 (0.9); 4356 (5.1): 4.541 (5.1); 4.494 (0.9); 3361 (24.8); 2.547 (3.8); 2341 (7.9); 2.535 (10.8); 2.529 (7.9); 2.523 (3.7); 2.108 (43); 1398 (16.0); 0.032 (4.5) Example 1.66: ‘H-NMR (3002 MHz, CDCh):
5= 8.258 (3.0); 8229 (32); 8.043 (63); 7.951 (72); 7302 (7.9); 7.269 (2.0); 7261 (32); 7231 (5.6); 7.208 (7.4) ; 7203 (3.5); 7.179 (0.8); 7.172 (0.7); 7.136 (3.6); 7.107 (3.4); 4.733 (2.6); 4.702 (4.8); 4.686 (4.4); 4.550 (4.4); 4.503 (2.7); 1.668 (16.0); 1.648 (3.7); 0.109 (0.9); 0.049 (0.4); 0.038 (8.0); 0.028 (03)
Example 1.67: ‘H-NMR (3002 MHz, CDCh):
8= 8.227 (3.1k 8-198 (3.2); 8.047 (7.0); 7.944 (7.5k 7.423 (0.7); 7.412 (6.6); 7.405 (22k 7390 (2.5k 7.383 (83); 7372 (0.9); 7301 (7.7); 7.188 (1.0); 7.177 (8.5); 7.169 (2.4); 7.154 (22); 7.147 (6.4); 7.136 (0.6); 7.030 (3.7); 7.001 (33); 5338 (1.7); 4.759 (7.7); 4.706 (4.2); 4.554 (4.5); 4.506 (2.9); 1-677 (16.0); 1-660 (2.0); 1.292 (1.8); 0.108 (0.4); 0.038 (7.7)
Example 1.68: ‘H-NMR (3002 MHz, d«-DMSO):
5= 8.478 (142); 8.223 (12.7); 7.975 (14.2); 7.539 (1.1); 7.527 (11.7); 7320 (3.9); 7.505 (4.6); 7.498 (14.1);
7.486 (1.6); 7307 (153); 7241 (1.6); 7.230 (143); 7.223 (43); 7208 (42); 7.200(113); 7.189 (1.2); 6.100 (72); 6.084 (7.4); 5.786 (16.0); 5.274 (13); 5256 (3.1); 5236 (33); 5.219 (1.4); 4.445 (0.4); 4.416 (9.4); 4398 (6.8); 3353 (42.4); 2.754 (03); 2334 (33.1): 2328 (432); 2322 (303); 1261 (0.8); 0.037 (1.6); 0.026 (43.6); 0.015 (13)
Example 1.69: ‘H-NMR (300.2 MHz. CDCh):
5= 8338 (132); 8208 (0.4); 8.143 (03); 8.113 (14.6); 8.057 (03); 8.026 (03); 8.020 (0.3); 8.016 (03); 7.934 (16.0); 7.744 (9.4); 7.716 (103); 7.670 (0.4); 7373 (15.2); 7352 (0.6); 7302 (20.9); 7.278 (9.0); 6321 (2.7) ; 6286 (3.0); 6.264 (3.1); 6.229 (33); 5307 (03); 5.427 (8.8); 5372 (123); 5338 (83); 5.223 (03); 5201 (0.4); 4.816 (103); 4.775 (5.7); 4.728 (9.9); 4.619 (9.7); 4371 (5.4); 1.690 (1.9); 1294 (1.0); 0.110 (13); 0-039 (8.0k 0-028 (03)
-100Example 1.70: Ή-NMR (3002 MHz, CDCh):
5= 8.193 (6.1); 8.164 (6.7); 8.139 (15.6); 8.059 (16.0); 7.646 (0.7); 7.350 (7.0); 7.321 (6.9); 7.300 (146.0):
7.135 (1.4); 7.124 (2.8); 7.113 (14.4); 7.089 (14.0); 7.078 (2.7); 7.067 (13); 6.949 (0.8); 5.539 (23); 5.514 (23); 5385 (0.4); 4321 (2.9); 4313 (32); 4.474 (4.6); 4.466 (43); 4.306 (4.7); 4279 (4.4); 4259 (32); 4232 (2.9); 4.001 (9.0); 3.989 (8.9); 2282 (03); 2260 (0.3); 2.047 (03); 1390 (65.8); 1338 (03); 1346 (0.9); 1305 (13); 1293 (22); 0.919 (0.7); 0.896 (03); 0234 (0.7); 0.108 (26.4); 0.049 (5.0); 0.039 (156.4); 0.028 (6.1);-0.160 (0.7)
Exemple 1.71: Ή-NMR (300.2 MHz, de-DMSO):
5= 15.167 (03); 13.267 (0.3); 12.426 (03); 8396 (03); 8361 (15.7); 8236 (0.4); 8229 (0.6); 8206 (5.2); 8.177 (5.3); 7.892 (03); 7.832 (15.6); 7.548 (1.8); 7337(122); 7330 (4.2); 7.515 (4.8); 7308 (14.8); 7.497 (13); 7315 (03); 7.289 (22); 7278 (15.6); 7.270 (5.8); 7264 (7.6); 7255 (4.8); 7248 (123); 7235 (7.0); 6331 (03); 5297 (14.6); 4.785 (4.0); 4.737 (6.0); 4.580 (5.7); 4332 (3.9); 4.380 (03); 4.152 (1.4); 4.134 (3.9) ; 4.117 (43); 4.099 (13); 3.491 (0.4); 3.445 (0.5); 3.419 (0.6); 3353 (793); 3202 (16.7); 3.185 (16.0);
2.761 (0.4); 2.755 (0.4); 2334 (373); 23 28 (503); 2.522 (363); 2297 (03); 1.621 (0.7); 1.607 (1.4); 1397 (13); 1379 (2.6); 1360 (1.7); 1334 (0.8); 1325 (0.4); 1312 (0.4); 1263 (I.l); 1.104 (0.6); 1.081 (1.4);
1.057 (03); 0.881 (0.4); 0,620 (0.6); 0.607 (13); 0.588 (2.1); 0372 (2.5); 0357 (2.0); 0.539 (0.8); 0.467 (0.6); 0.436 (1.6); 0.415 (1.8); 0.376 (1.0); 0352 (1.0); 0341 (1.4); 0323 (22); 0312 (2.1); 0297 (2.5);
0280 (2.6); 0266(2.7); 0248 (22); 0.037 (2.0); 0.026 (51.2); 0.015 (2.4); -0.173 (0.4); -3327 (0.4) Exemple 1.72: Ή-NMR (499.9 MHz,CDClj):
8= 8365 (0.3); 8.115 (0.4); 7.977 (0,4); 7.274 (03):7261 (1.1);5.298 (16.0); 1361 (0.7); 0.000 (0.8) Exemple 1.73: Ή-NMR (3002 MHz, de-DMSO):
5=8.471 (16.0); 8.108 (5.9); 8.079 (63); 7.975 (15.7); 7.677 (1.4); 7.666 (13.7); 7.659 (4.1); 7.644 (4.6); 7.637 (143); 7.626 (13); 7296 (5.6); 7267 (52); 7217 (1.7); 7206 (15.6); 7.199 (4.4); 7.184 (4.4); 7.177 (12.9) ; 7.165 (12); 7.147 (3.0); 6.969 (6.4); 6.790 (32); 6.U4 (72); 6.099 (7.4); 5.785 (13); 5377 (22); 5367 (23); 5 355 (23); 4.445 (1.4); 4.420 (1.2); 4.400 (4.1); 4373 (43); 4361 (4.2); 4.347 (4.1); 4314 (1.4); 4300 (l.l); 3 349 (65.1); 2.762 (0.4); 2341 (193); 2.535 (40.9); 2.529 (553); 2323 (39.2); 2.517 (17.8) ; 23 05 (03); 1275 (0.6); 1264 (0.7); 0.223 (0.4); 0.038 (2.1); 0,027 (633); 0.016 (2.0)______________
Exemple 1.74: Ή-NMR (300.2 MHz, de-DMSO):
5=8.488 (16.0); 8298 (5.9); 8269 (6.4); 7.992 (15.3); 7.710 (82); 7.682 (9.6); 7.496 (6.7); 7.467 (6.3); 7393 (10.8); 7365 (9.0); 7291 (3.4); 7.105 (7.4); 6.919 (3.6); 6209 (7.0); 6.193 (73); 5.786 (1.0); 5286 (23); 5274 (23); 4.464 (1.9); 4.437 (1.8); 4.418 (3.9); 4.390 (3.8); 4343 (3.8); 4331 (3.9); 4296 (1.9); 4.284 (1.7); 3.358 (44.1); 3.046 (03); 2334 (93); 2328 (122); 2323 (9.0); 1262 (0.7); 0.026 (5.7)
Exemple 1.75: Ή-NMR (499.9 MHz, CDCh):
5= 8.113 (1.8); 8.095 (1.9); 8.027 (3.6); 7.890 (3.9); 7264 (1.9); 7259 (03); 7254 (32); 7237 (4.0); 7.094 (0.6); 7.088 (42); 7.085 (1.7); 7.075 (13); 7.071 (33); 6.886 (22); 6.868 (2.1); 4.684 (1.7); 4.655 (2.3); 4309 (23); 4.481 (1.8); 2.961 (03); 2.947 (0.9); 2.933 (12); 2.919 (0.9); 2.906 (0.4); 1.634 (9.6); 1274 (15.8) ; 1.260(16.0); 0,000(1.7)___________________________________________________________
Exemple 1.76; Ή-NMR (300.2 MHz, CDCh):
δ= 8.411 (9.1); 7.994 (11.0); 7.980 (03); 7.912 (11.4); 7.742 (6.3); 7.713 (72); 7.354 (10.9); 7302 (12.7); 7276 (6.1); 4.732 (4.0); 4.684 (133); 4324 (63); 4.476 (4.1); 2.196 (0.4); 2.172 (1.4); 2.147 (1.9); 2.123 (23); 2.099 (2.0); 2.074 (0.6); 2.042 (2.4); 1.904 (0.5); 1.879 (1.9); 1.855 (2.4); 1.831 (2.0); 1.807 (13); 1.783 (0.6); 1.737 (0.9); 1292 (0.3); 0.924 (73); 0.900 (16.0); 0.875 (6.9); 0,109 (03); 0.037 (4.4)__________
Exemple 1.77: Ή-NMR (499.9 MHz, de-DMSO):
8= 8302 (13); 8378 (1.0); 8361 (I.O); 8339(6.0); 8.009 (1.4); 7.827 (3.4); 7.811 (3.7); 7.799 (5.4); 7261 (0.6); 7251 (0.7); 7242 (0.9); 7233 (0.9); 7.199 (0.8); 7.188 (1.9); 7.181 (6.8); 7.176 (7.1); 7.I7I (53);
7.160 (5.0); 7.148 (13); 7.140 (22); 7.133 (1.6); 7.123 (2.6); 7.115 (2.4); 7.097 (4.9); 7.080 (3.4); 7.073 (03); 7.041 (3.6); 7.031 (3.8); 7.023 (23); 7.018 (1.2); 7.013 (2.0); 6.835 (1.0); 6.819 (1.0); 6323 (3.6);
6306 (3.6); 5.897 (2.7); 5.844 (4.9); 5.754 (3.5); 4.745 (2.2); 4.717 (2.8); 4364 (2.9); 4.536 (22); 3.324 (9.8) ; 2302 (4.9); 1390(16.0); 1235(1.0); 0.000(1.0)___________________________________________
Exemple 1.78: Ή-NMR (3002 MH^CDCÏjj:
5= 8.488 (5.3); 8.039 (23); 7.895 (2.8); 7.702 (2.5); 7.674 (2.8); 7.298 (3.4); 7247 (2.7); 7219 (2.4); 6.977 (5.9) ; 5333(11.1); 5205(1.9); 5.158 (22); 4.573 (23); 4326 (2.0); 1.743 (16.0); 1290(0.4); 0.034 (33)
-101Example 1.79: ‘H-NMR (300.2 MHz, CDCh):
5= 8.133 (5.0); 8.099 (1.7); 8.033 (3.9); 8.012 (0.5); 7.325 (1.0); 7.316(0.7); 7.313 (0.7); 7300 (15.8); 7.295 (5.1); 7294 (5.0); 7285 (2.5); 7277 (7.1); 7268 (12); 7256 (0.9); 7.248 (13); 7.171 (2.0); 7.142 (1.9); 5352 (0.8); 5.527 (0.8); 5.339 (16.0); 4330 (0.8); 4322 (0.9); 4.483 (13); 4,476 (13); 4312 (12); 4285 (12) ; 4265 (0.8); 4238 (0.8); 4.156 (0.7); 1.627 (0.9); 13(M (0.4); 1.293 (0.4); 1280 (0.4); 0.108 (1.9); O.(M9 (0.7); 0.038 (15.8); 0.027 (0.6)
Example 1.80: 'H-NMR (300.2 MHz, de-DMSO):
5= 8362 (11.2); 8206 (3.8); 8.177 (4.0); 7.832 (11.0); 7.537 (8.6); 7.530 (3.0); 7315 (3.7); 7308 (103); 7.496 (1.1); 7288 (13); 7278 (10.9); 7270 (43); 7265 (5.6); 7255 (3.7); 7248 (8.7); 7236 (5.4); 5297 (10.6) ; 4.785 (3.0); 4.738 (4.4); 4381 (4.4); 4.533 (2.9); 4396 (0.4); 4.380 (0.8); 43 62 (0.4); 4.152 (1.3);
4.135 (4.1); 4.117 (42); 4.100 (1.6); 3.485 (0.7); 3.469 (0.6); 3.462 (03); 3.445 (0.6); 3354 (53.8); 3.202 (16.6) ; 3.185 (16.0); 2334 (23.6); 2.528 (30.7); 2.522 (22.1); 1.624 (03); 1395 (1.1); 1378 (1.9); 1362 (13) ; 1334 (0.5); 1266 (0.5); l.KM (1.1); 1.081 (2.0); 1.058 (1.0); 0.603 (1.0); 0389 (1.7); 0373 (1.8); 0.557 (1.4); 0.468 (0.4); 0.437 (12); 0.417 (1.6); 0376 (0.8); 0.339 (Ι.Ιξ 0324 (1.5); 0.312 (1.7); 0.295 (1.9); 0.280 (1.9); 0.266 (2.0); 0.247 (13); 0237 (1.0); 0.026 (30.3)
Example 1.81:‘H-NMR (300.2 MHz, CDCh):
5=8.268 (5.9); 8239 (62); 8.064 (14.1); 7.948 (16.0); 7360 (13); 7350 (132); 7343 (43); 7.527 (4.4); 7320 (15.2); 7.509 (1.6); 7.302 (2.9); 7.146 (1.7); 7.135 (15.3); 7.128 (4.6); 7.113 (42); 7,106 (13.1); 7.095 (13); 7 .(MO (72); 7.011 (6.8); 4.833 (5.6); 4.785 (8.3); 4.740 (7.2); 4.609 (8.1); 4377 (0.4); 4361 (5.4);
2.028 (0.7); 1.620 (3.7); 1.493 (0.6); 1.469 (1.6); 1.449 (2.6); 1.439 (13); 1.427 (1.9); 1.403 (0.8); 0302 (0.6); 0.495 (0.7); 0.488 (1.0); 0.477 (1.6); 0.466 (1.7); 0.458 (2.8); 0.448 (1.6); 0.441 (13); 0.421 (0.6);
0.413 (0.4); 0.403 (0.7); 0.392 (0.8); 0373 (42); 0359 (10.7); 0349 (6.0); 0.330 (7.5); 0.320 (2.6); 0.288 (0.4):0.029(1.5)
Example 1.82: 'H-NMR (300.2 MHz, CDCh):
5= 8.160 (2.5); 8.104 (3.6); 8.011 (3.7); 7.840 (0.9); 7.660 (1.1); 7.654 (1.0); 7394 (0.3); 7383 (33); 7376 (1.0); 7361 (1.1); 7354 (3.6); 7343 (0.4); 7.473 (1.0); 7358 (2.4); 7300 (13.6); 7.093 (0.4); 7.082 (3.7); 7.075 (1.1); 7.060 (1.0); 7.053 (32); 5.339 (4.3); 4.657 (12); 4.610 (1.7); 4371 (2.1); 4385 (2.1); 4.337 (1.6) ; 1.613(16.0); 1292 (0.4); 0.107 (13); 0.038 (9.4); 0.027 (0.4)
Example 1.83: 'H-NMR (499.9 MHz, CDCh):
5= 8.567 (0.8); 8.116 (0.9); 7.984 (0.9); 7.836 (0.7); 7.818 (0.8); 7.286 (0.9); 7260 (2.4); 7239 (0.6); 5.298 (16.0); 4.110 (03); 4.103 (0.6); 2,0(M (0.3); 1356 (11); 0.000 (1.8)__________________________________________
Exemple L84: ‘H-NMR (499.9 MHz, CDCh):
5=8.238 (6.8); 8221 (7.0); 8.021 (14.6); 7.923 (15.1); 7.522 (1.4); 7.516 (13.0); 7312 (5.0); 7302 (4.8); 7.498 (14.1); 7.492 (1.8); 7262 (10.7); 7.107 (1.6); 7.10! (142); 7.097 (52); 7.087 (4.7); 7.083 (13.0); 7.077 (1.6); 7.006 (7.6); 6.988 (7.4); 5297 (8.4); 4.794 (6.6); 4.765 (8.5); 4.679 (13.5); 4374 (8.4); 4.545 (6.6);
1.608 (16.0); 1.443 (0.8); 1.429 (2.0); 1.416 (32); 1.403 (22); 1389 (0.9); 1256 (03); 0.460 (13); 0.449 (23); 0.445 (2.6); 0.438 (3.4); 0.427 (2.1); 0.416 (0.3); 0.357 (03); 0.344 (23); 0341 (33); 0330 (72); 0328 (72); 0317 (8.1); 0305 (4.4); 0.302 (4.0); 0291 (1.9): 0.278 (0.7); 0.000 (9.6)_______________________
Example L85: 'H-NMR (3002 MHz. CDCh):
3=8.139 (103); 8.067 (33); 8.037 (3.5); 7.996 (13.1); 7.583 (13); 7372 (143); 7365 (4.4); 7.550 (4.8); 7343 (16.0); 7332 (1.7); 7.300 (15.1); 7.156 (2.0); 7.145 (18.0); 7.140 <11.0): 7.122 (4.9); 7.115 (15.7); 7.111 (8.9); 6.001 (1.1); 5.337 (3.6); 4.954 (1.9); 4.905 (62); 4.863 (7.8); 4.815 (2.6); 2216 (0.4); 2211 (0.8); 1.723 (0.6); 1.666 (0.8); 1.409 (03); 1372 (0.7); 1346 (0.7); 1.339 (0.7); 1321 (1.4); 1293 (7.8);
1258 (0.8); 1216 (0.4); 1201 (0.4); 1.074 (0.5); 0.966 (0.3); 0.937 (0.8); 0.917 (1.5); 0.892 (1.6); 0.865 (1.6); 0.108 (3.6); 0.(M8 (0.4); 0.037 (13.4); 0.026 (0.6)
Example 1.86: 'H-NMR (499.9 MHz, CDCh):
5= 8.115 (0.4); 7.972 (0.4); 7.817 (0.3); 7286 (03): 726! (0.8); 5299 (16.0); 1367 (03); 0.000 (0.6) Exemple L87: 'H-NMR (300.2 MHz. di-DMSO):
5=8371 (103); 8344 (0.6); 8259 (33); 8.230 (3.8); 7.936 (0.4); 7.862 (6.1); 7.836 (16.0); 7.490 (0.7); 7.446 (6.4); 7.418 (53); 7364 (4.7); 7335 (4.4); 5326 (102); 5.166 (0.6); 4.8(M (2.8); 4.756 (4.0); 4393 (4.0); 4368 (0.4); 4.545 (2.7); 3.353 (24.0); 2.641 (0.4); 2.618 (0.4); 23 35 (4.9); 2329 (6.5); 2323 (4.8);
2.101 (0.3); 1.643 (0.4); 1.624 (1.0); 1.616 (12); 1393 (3.1); 1.573 (53); 1353 (0.7); 1.450 (2.0); 0.640 (03); 0.624 (0.9); 0.610 (13); 0.593 (1.7); 0379 (1.3); 0.563 (0.6); 0.482 (0.4); 0.454 (l.l); 0.433 (1.4);
0.420 (13); 0.405 (0.9); 0.392 (0.7); 0368 (0.7); 0355 (1.1); 0339 (13); 0327 (1.6); 0.310 (1.7); 0297 (2.0); 0.284 (2.0); 0.265 (1.6); 0.252(1.0); 0.025 (4.3)
-102Examplc 1.88: ‘H-NMR (3002 MHz, CDCb):
8= 8362 (11.7); 8.154 (10.1); 7.999 (122); 7.977 (0.4); 7.728 (7.6); 7.700 (8.7); 7298 (34.0); 7289 (8.6); 7261 (72); 7.077 (16.0); 5.483 (2.1); 5.457 (22); 5337 (8.0); 4.623 (32); 4.615 (3.1); 4.576 (42); 4.568 (42); 4351 (4.0); 4324 (3.8); 4305 (2.9); 4278 (2.9); 4.161 (2.1); 3.992 (0.4); 1.633 (43); 1320 (0.4); 1292 (12); 1278 (0.5); 0.916 (0.4); 0.889 (03); 0.866 (0.4); 0.107 (0.6); 0.047 (1.1); 0.036 (342); 0.025 (1.4) _____________________________________________________________________________________________________
Example 1.89: ‘H-NMR (3002 MHz, CDCh):
5= 8297 (2.9); 8268 (3.1); 8.053 (7.1); 7.963 (53); 7.300 (213); 7.237 (3.7); 7208 (33); 7.118 (0.7); 7.107 (13); 7.096 (6.9); 7.072 (6.7); 7.061 (12); 7.050 (0.6); 4.715 (2.1); 4.667 (3.9); 4.650 (1.7); 4.631 (0.9); 4352 (4.9); 4304 (2.8); 1.657 (16.0); 1.612 (2.8); 1398 (3.3); 1292 (03); 0.107 (5.8); 0.048 (03); 0.037 (14.7); 0.026 (03)
Example 1.90: ‘H-NMR (3002 MHz, CDCh):
8= 8.149 (6.4); 8.131 (15.9); 8.120 (6.6); 8.048 (16.0); 7.646 (0.4); 7.300 (87.7); 7284 (4.7); 7277 (5.6);
7252 (8.6); 7243 (11.8); 7223 (22.1); 7.197 (13); 7.189 (1.4); 6.949 (0.5); 5341 (23); 5315 (23); 5.339 (1.8) ; 4321 (3.1); 4313 (3.1); 4.474 (4.7); 4.467 (4.5); 4308 (4.7); 4281 (4.4); 4261 (3.1); 4234 (3.1);
4.034 (5.3); 4.024 (52); 1399 (21.4); 1350 (03); 1324 (0.7); 1292 (1.6); 0.922 (0.4); 0234 (0.4); 0.108 (22.6) ; 0.096 (0.8); 0.(M9 (3.4); 0.039 (97.6); 0.028 (33); 0.014 (0.4)____________________________________
Exemple 1.91: ‘H-NMR (3002 MHz, ck-DMSO):
5= 8362 (14.8); 8344 (13); 8206 (4.9); 8.177 (52); 7.964 (0.4); 7.934 (0.4); 7.832 (16.0); 7348 (13); 7337 (11.7); 7329 (4.0); 7314 (4.4); 7307 (142); 7.496 (1.4); 7288 (1.9); 7277 (14.8); 7270 (5.4); 7264 (7.4) ; 7255 (43); 7248 (11.7); 7235 (6.9); 6.890 (0.4); 6.861 (0.4); 5297 (14.1); 5.169 (1.0); 4.786 (3.8);
4.738 (5.8); 4.690 (03); 4381 (5.6); 4333 (3.8); 3.357 (45.4); 2334 (7.8); 2328 (10.3); 2322 (7.4); 2.101 (4.0); 1.623 (0.7); 1.602 (2.5); 1372 (9.0); 1353 (1.5); 1334 (0.8); 1.261 (0.6); 0.621 (03); 0.604 (13);
0389 (2.1); 0372 (2.3); 0358 (1.7); 0341 (0.8); 0.465 (03); 0.436 (13); 0.416 (1.9); 0.404 (1.8); 0.388 (13); 0376 (1.0); 0353 (1.0); 0341 (1.4); 0323 (2.0); 0.312 (2.3); 0.295 (2.4); 0280 (2.6); 0267 (2.8);
0248 (2.1); 0236 (12); 0.036 (03); 0.025 (8.6); 0.014 (0,3)____________________________________________
Example 1.92: ‘H-NMR (499.9 MHz, CDCh):
5= 8365 (0.8); 8.114 (1.0); 7.975 (1.0); 7.709 (0.7); 7.692 (0.8); 7274 (1.3); 7260 (2.9); 5298 (16.0); 4.440 (03); 4.436 (03); 4.139 (0.5); 4.132 (0.6); 1363 (1-7); 0.000 (2.0)________________________________________
Example 1.93: ‘H-NMR (300.2 MHz, CDCh):
5= 83 07 (6.4); 8278 (6.7); 8.167 (03); 8.071 (14.1); 8.054 (1.1); 7.969 (16.0); 7.606 (73); 7378 (92); 7342 (103); 7.313 (83); 7.301 (16.3); 7272 (0.6); 7225 (0.8); 7200 (0.4); 7.084 (7.7); 7.055 (7.4); 6.902 (3.9) ; 6.714 (7.9); 6326 (4.0); 5.338 (1.9); 4.852 (62); 4.805 (92); 4.747 (14.0); 4.627 (9.0); 4379 (6.0); 2.995 (6.6); 2.922 (5.7); 2394 (2.3); 1.660 (13,4); 1305 (0.7); 1.483 (1.8); 1.461 (2.8); 1.440 (2.0); 1.416 (0.8); 0313 (1.0); 0.497 (2.0); 0.484 (2.1); 0.476 (2.6); 0.467 (1.7); 0.461 (1.9); 0.437 (0.7); 0.429 (0.4); 0.416 (0.9); 0.407 (0.9); 0399 (2.6); 0392 (33); 0371 (83); 0361 (33); 03 53 (6.5); 0343 (6.4); 0330 (1.9) ; 0302 (0.4); 0.110 (1.3); 0.049 (03); 0.038 (13.4); 0.027 (03)_____________________________________
Example 1.94: ‘H-NMR (300.2 MHz, CDCh):
8= 8385 (6.4); 8.140 (8.7); 8.036 (9.1); 7.453 (1.0); 7.442 (8.1); 7.435 (3.0); 7.420 (3.1); 7.412 (10.0); 7.402 (13); 7337 (0.4); 7328 (0.4); 7300 (55.7); 7235 (23); 7.199 (63); 7.155 (13); 7.144 (9.8); 7.137 (32); 7.122 (2.9); 7.114 (8.0); 7.103 (1.0); 7.053 (4.1); 6.949 (03); 6.871 (23); 5.409 (1.4); 5394 (13); 5381 (1.6) ; 5340 (11.4); 4.499 (0.7); 4.487 (1.0); 4.452 (4.0); 4.440 (42); 4.434 (4.4); 4.407 (3.3); 4388 (0.8);
4.360 (1.0); 4.019 (42); 4.008 (42); 1.607 (16.0); 1326 (0.4); 1292 (13); 0.108 (43); 0.050 (2.7); 0.039 (60.0):0.028 (23)__________________________________________________________________________________
Example 1.95: ‘H-NMR (3002 MHz, CDCh):
8=8246 (3.1); 8.217 (32); 8.049 (4.1); 7.958 (5.0); 7.647 (0.4); 7301 (80.0); 7279 (7.6); 7271 (3.8); 7264 (11.9) ; 7254 (1.6); 7242 (1.1); 7234 (1.8); 7.053 (3.7); 7.023 (33); 6.950 (0.5); 5341 (03); 4.770 (2.4); 4.723 (5.7); 4359 (3.6); 4312 (2.4); 1.685 (16.0); 1394 (222); 1.294 (1.1); 0.921 (0.4); 0235 (03); 0.109 (9.9) ; 0.051 (2.6); 0.040 (81.7); 0.029 (2.9); -0.158 (0.4)_______________________________________________
Example 1.96: ‘H-NMR (3002 MHz, CDCh):
8= 8220 (2.8); 8.191 (2.9); 8.052 (6.8); 7.941 (6.1); 7.422 (0.6); 7.4 U (62); 7.404(2.0); 7388 (22); 7.381 (7.7) ; 7370 (0.8); 7301 (10.0); 7.186 (0.9); 7.176 (82); 7.168 (23); 7.153 (2.0); 7.146 (6.0); 7.135 (0.6); 7.027 (3.4); 6.998 (33); 5337 (0.7); 4.777 (3.4); 4.770 (1.7); 4.748 (22); 4.701 (33); 4353 (43); 4305 (2.7) ; 1.676 (16.0); 1290(13); 0.106 (0.7); 0.036 (9.8); 0.025 (0.4)
-103 Example 1.97: ‘H-NMR (3002 MHz, CDCb):
5=8.338 (6.4); 8309 (6.8); 8.076 (14.5); 7.958 (16.0); 7.848 (1.4); 7.837 (122); 7.831 (4.0); 7.813 (4.8); 7.807 (13.6); 7.796 (1.5); 7364 (8.7); 7334 (7.7); 7301 (3.1); 7.138 (7.6); 7.108 (72); 4.852 (5.8); 4.804 (9.6) ; 4.792 (8.1); 4.626 (8.4); 4.579 (5.7); 2.030 (2.1); 1.506 (0.7); 1.483 (1.9); 1.462 (2.9); 1.452 (1.4);
1.441 (2.1); 1.417 (0.8); 0.523 (0.7); 0.516 (0.9); 0312 (0.9); 0.498 (1.9); 0.489 (2.2); 0.478 (2.8); 0.466 (1.6) ; 0.456 (1.1); 0.441 (0.6); 0.434 (0.4); 0.423 (0.8); 0.411 (0.9); 0392 (4.0); 0378 (9.6); 0.367 (5.8);
0354 (72); 0348 (6.8); 0335 (3.0); 0305 (0.4); 0.031 (1.8)____________________________________________
Example 1.98: 'H-NMR (3002 MHz, CDCb):
8= 9.258 (0.4); 8.164 (33); 8.134 (3.3); 7.992 (6.9); 7.915 (8.0); 7.419 (0.7); 7.409 (6.7); 7.401 (22); 7386 (23); 7.379 (8.4); 7368 (0.9); 7301 (5.7); 7.194 (l.l); 7.184 (8.8); 7.176 (2.4); 7.161 (23); 7.154 (6.4); 7.143 (0.6); 7.010 (3.8); 6.981 (3.6); 5337 (16.0); 4.782 (2.9); 4.734 (4.1); 4360 (4.1); 4313 (2.8); 3.445 (12); 2.182 (03); 2.168 (0.7); 2.135 (0.9); 2.127 (1.0); 2.122 (1.0); 2.097 (0.8); 2.081 (0.8); 1.803 (0.7);
1.791 (0.8); 1.763 (1.0); 1.749 (l.l); 1.717 (0.7); 1.703 (0.7); 1,425 (0.5); 1.417 (0.4); 1.403 (0.6);1396 (0.7); 1378 (0.9); 1363 (0.8); 1354 (0.8); 1335 (2.0); 13U (3.1); 1.288 (2.7); 1265 (1.4); 1.240(03);
1.078 (03); 1.056 (0.6); 1.034 (l.l); 1.018 (0.7); 1.010 (l.l); 1.001 (0.5); 0.993 (0.6); 0.985 (03);0.978 (0.4); 0.898 (5.8); 0.875 (11.4); 0,850 (4.4); 0.108 (03); 0.037 (5.4)__________________________________________
Example 1.99; ‘H-NMR (499.9 MHz, CDCb):
5= 8.239 (5.8); 8221 (6.0); 8.021 (12.6); 7.923 (13.1); 7323 (12); 7316 (11.5); 7.512 (4.0); 7.499 (122); 7,492 (1.4); 7262(10.7); 7.107 (1.3); 7.101 (123); 7.097 (4.1); 7.087 (42)-,7.083 (11.2); 7.077(13); 7.006 (63); 6.988 (6.4); 5.297 (9.6); 4.794 (5.7); 4.765 (73); 4.679 (11.7); 4374 (72); 4345 (5.6); 1.601 (16.0)i 1.443 (0.7); 1.429 (1.7); 1.416 (2.7); 1.403 (1.8); 1389 (0.7); 0.460 (1.1); 0.449 (2.1); 0.445 (22); 0.438 (2.9) ; 0.427 (1.8); 0.357 (0.4); 0347 (1.8); 0.344 (2.0); 0341 (2.9); 0.330 (6.1); 0.328 (6.1); 0317 (7.0);
0305 (3.7); 0302 (33); 0291 (13); 0278 (0.6); 0.006 (0.4); 0.000 (9.7)_________________________________
Example 1.100: ‘H-NMR (3002 MHz, CDCb):
5=8217 (0.6); 8.157 (5.0); 8.128 (5.0); 8.040 (1.7); 8.017 (10.9); 7.906 (12.1); 7.413 (1.0); 7.402 (9.8): 7.395 (33); 7380 (3.6); 7.372 (12.8); 7362 (1.4); 7305 (42); 7.198 (03); 7.185 (1.4); 7.175 (12.9); 7.167 (3.9) ; 7.152 (32); 7.145 (9.8); 7.134 (0.9); 7.005 (5.8); 6.976 (5.5); 4.760 (4.1); 4.713 (63); 4365 (6.6);
4318 (42); 4.164 (0.6); 4.141 (0.6); 3.446 (0.4); 2.994 (11.4); 2.977 (03); 2.916 (102); 2.745 (0.4); 2.158 (0.7); 2.144 (0.9); 2.112 (1.4); 2.098 (13); 2.077 (23); 2.071 (1.5); 2.056 (13); 1.778 (0.9); 1.763 (12);
1.738 (13); 1.732 (12); 1.723 (1.6); 1.691 (1.0); 1.676 (1.1); 1.497 (0.3); 1.480 (0.5); 1.473 (03); 1.455 (1.1); 1.438 (1.0); 1.431 (l.l); 1.414 (13); 1389 (0.9); 1373 (03); 1.314 (0.7); 1290 (13); 1267 (0.7);
1.138 (0.4); 1.123 (0.6); 1.114 (0.6); 1.098 (1.1); 1.091 (0.8); 1.074 (1.0); 1.056 (1.0); 1.035 (0.7); 1.031 (0.7): 1.016 (03); 1.009 (0.4); 0.995 (0.4): 0.919 (82); 0.895 (16.0); 0.870 (6.1); 0.106 (1.1); 0.032 (3.3) Example 1.101:‘H-NMR (499.9 MHz, CDCb):
5= 8.187 (3.1); 8.169 (32); 8.001 (6.6); 7.910 (6.8); 7321 (0.6); 7314 (6.3); 7.510 (2.1); 7301 (2.2); 7.497 (6.7) ; 7.490 (0.8); 7.260 (16.3); 7.088 (0.7); 7.082 (6.8); 7.078 (22); 7.068 (2.1); 7.064 (62); 7.058 (0.7);
6.989 (33); 6.971 (3.4); 5298 (l.l); 4.707 (2.9); 4.678 (3.8); 4.662 (53); 4308 (4.0); 4.479 (3.0); 1.639 (16.0); 1359(8.7); 1255(13); 0.006(0.6): 0.000(16.6)_______________________________________________
Example 1.102: Ή-NMR (499.9 MHz, CDCb):
δ= 8.187 (3.1); 8.169 (32); 8.001 (6.6); 7.908 (6.8); 7.521 (0.6); 7314 (62); 7310(22); 7301 (22); 7.496 (6.7); 7.490 (0.9); 7260 (132); 7.088 (0.7); 7.082 (6.7); 7.078 (23); 7.068 (22); 7.064 (62); 7.058 (0.8); 6.989 (33); 6.971 (3.4); 5298 (l.l); 4.705 (2.9); 4.677 (3.9); 4.667 (7.0); 4308 (4.0); 4.479 (3.0); 1.639 (16.0); 1362 (102); 1255 (0.4); 0.006 (03); 0.000 (13.3)______________________________________________
Example 1.103:‘H-NMR (3002 MHz, CDCb):
5=8.163 (4.6); 8.133 (4.8); 7.994 (10.3); 7.909 (112); 7.419 (0.9); 7.408 (93); 7.401 (3.1); 7386 (3.6): 7.379 (11.9); 7.368 (13); 7.304 (52); 7.192 (1.4); 7.181 (123); 7.174 (3.4); 7.159 (32); 7.152 (9.1); 7.141 (0.9); 7.016 (53); 6.987 (5.2); 4.821 (23); 4.783 (4.3); 4.736 (62); 4368 (6.3); 4320 (4.1); 4.169 (0.7);
4,146 (0.7); 2238 (0.4); 2213 (1.4); 2.188 (2.0); 2.165 (23); 2.140 (1.9); 2.116 (0.6); 2.082 (3.1); 1.883 (0.6); 1.859 (1.8); 1.834 (2.4); 1.811 (23); 1.786 (2.1); 1.762 (1.1); 1.319 (0.9); 1295 (1.7); 1272 (0.8):
0.885 (7.7); 0.861 (16.0); 0.836 (7.1); 0.110 (0.9); 0.037 (2.8)
Example V.01:‘H-NMR (3002 MHz, CDCh):
8= 7.881 (2.8); 7.852 (3.0); 7.449 (0.6); 7.438 (5.9); 7.431 (1.9); 7.415 (2.3); 7.408 (73); 7397 (0.8); 7.299 (52); 7241 (03); 7211 (0.6); 7201 (0.9); 7.191 (7.6); 7.183 (2.2); 7.168 (23); 7.161 (8.8); 7.150 (0.7);
7.133 (3.0); 6.818 (03); 6.789 (0.4); 5.338 (03); 2.614 (16.0); 2.612 (14.4); 1.606 (03); 1.470 (0.9); 0.108 (0.4); 0.038 (62)
-104-
Exemple V.02: ‘H-NMR (3002 MHz, CDCb): δ= 8.519 (3.7); 7.478 (0.4); 7.467 (4.5); 7.460 (13); 7.445 (1.6); 7.438 (5.4); 7.427 (0.7); 7330 (4.0); 7.300 (53); 7.172 (0.6); 7.161 (5.6); 7.154 (1.7); 7.139 (13); 7.131 (4.4); 7.120 (0.5); 2.635 (16.0); 1395 (63); 0.921 (03); 0.109 (1.7); 0.039 (6.2)
Exemple V.03: ‘H-NMR (3002 MHz, CDCb): 8= 8318 (3.8); 7.912 (0.4); 7.901 (4.0); 7.894 (13); 7.878 (13); 7.871 (4.5); 7.860 (0.5); 7.695 (0.6); 7.665 (0.6); 7391 (4.1); 7323 (23); 7.299 (53); 7.293 (2.3); 6.908 (0.4); 6.878 (03); 5304 (03); 2.651 (16.0); 1.608 (7.9); 1.306 (1.4); 0.942 (03); 0.921 (1.6); 0.897 (0.6); 0.109 (1.6); 0.038 (4.8)
Example V.04: ‘H-NMR (300.2 MHz, d*-DMSO): 8= 8.845 (3.1); 7.724 (1.9); 7.695 (23); 7.651 (33); 7.435 (2.6); 7.407(2.1); 7293 (0.9); 7.107 (1.9); 6.921 (0.9); 3350 (2.0); 2.640 (16.0); 2331 (03); 2325 (0.7); 2319 (03); 0.020 (0.8)
Example V.05: ‘H-NMR (3002 MHz, CDCb): 5= 8.098 (1.9); 8.069 (2.0); 7.411 (0.4); 7.400 (4.0); 7.393 (1.6); 7.378 (1.6); 7371 (52); 7361 (0.8); 7262 (122); 7225 (13); 7.181 (0.6); 7.170 (5.1); 7.162 (1.6); 7.155 (0.6); 7.147 (1.5); 7.140 (3.9); 7.129 (0.5); 7.053 (2.1); 7.044 (33); 7.024 (1.9); 6.862 (13); 4.158 (0.4); 4.134 (1.1); 4.110 (1.1); 4.087 (0.4); 2.620 (16.0); 2.047 (5.0); 1362 (9.9); 1.432 (1.4); 1284 (1.4); 1260 (2.8); 1236 (1.4); 0.070 (92); 0.057 (03); 0.011 (03); 0.000 (15.9); -0.011 (0.9)
Example V.06: ‘H-NMR (3002 MHz, CDCb): 5= 8.350 (2.4); 8322 (23); 7394 (3.2); 7387 (1.3); 7372 (1.4); 7365 (4.3); 7352 (0.7); 7263 (7.4); 7.141 (0.8); 7.132 (4.0); 7.125 (13); 7.110 (1.4); 7.102 (3.4); 7.092 (0.4); 6.868 (23); 6.840 (23); 2.682 (0.4); 2.665 (0.6); 2.659 (03); 2.617(16.0); 1384 (27.0); 1.432(1.1); 0.070(43); 0.000 (8.6);-0.011 (0.4)
Exemple V.07; 'H-NMR (300.2 MHz, ck-DMSO): 8= 8.832 (32); 7.763 (3.4); 7.743 (13); 7.735 (1.3); 7.708 (12): 7.700 (1.2); 7350 (0.9); 7.521 (2.1); 7.493 (1.6); 7.448 (12); 7.444 (12); 7.440 (12); 7.436 (1.0); 7.419 (0.6); 7.415 (0.7): 7.411 (0.6); 7.407 (0.6); 3.344 (1.7); 2.641 (16.0):2.537 (03); 2331 (1.0); 2.525 (1.4); 2319 (1.0): 2313 (03); 0.021 (22)
Example V.08: 'H-NMR (400.0 MHz, tb-DMSO): 8= 8.634 (5.1); 7.482 (1.7); 7.477 (0.7); 7.463 (3.0); 7.446 (1.0); 7.442 (2.4); 7.437 (0.4); 7307 (5.0); 7.302 (1.4); 7283 (1.8); 7264 (0.8); 7215 (2.6); 7.212 (32); 7.193 (2.7); 3331 (4.3); 2.642 (03); 2395 (16.0); 2308 (4.1); 2.504 (5.4); 2.499 (4.1); 0.000 (1.0)
Exemple V.09: 'H-NMR (400.0 MHz, ds-DMSO): 8= 8.628 (52); 7329 (0.4); 7.520 (4.0); 7315 (1.4); 7304 (13); 7.498 (4.8); 7.490 (0.6); 7368 (5.1); 7275 (0.6); 7267 (4.8); 7261 (1.6); 7250 (13); 7244 (4.0); 7236 (0.4); 3333 (3.7); 2398 (16.0); 2314 (1.8): 2310 (33); 2.505 (4.6); 2301 (33); 2.496 (1.7); 1.186 (0.4); 0.000 (1.2)
Exemple V.10: 'H-NMR (400.0 MHz, d*-DMSO): 8= 8.299 (2.8); 8278 (2.9); 7.549 (0.4); 7340 (3.6); 7.535 (1.3); 7324 (1.4); 7318 (43); 7310 (0.5); 7297 (03): 7289 (43); 7284 (1.4); 7272 (12); 7267 (3.6); 7258 (0.4); 7.178 (2.9); 7.157 (2.8); 3.329 (6.4); 2.599 (16.0); 2308 (72); 2304 (92); 2.499 (6.8); 0.000 (13)
Exemple V.l 1:‘H-NMR (400.1 MHz, CDCb): 8= 8.081 (2.5); 8.060 (2.6); 7.498 (2.1); 7.476(23); 7.312 (2.1); 7305(22); 7.260 (63); 7.067 (1.4); 7.061 (13); 7.046 (13); 7.039 (12); 6.924 (2.7); 6.903 (2.6); 2.695 (16.0); 1344 (0.4); 1.432 (0.6); 0.070 (1.2); 0.000(5.1)
Example V.12: 'H-NMR (3002 MHz, ib-DMSO) 8= 8.382 (4.0); 8369 (03); 8354 (42); 8342 (0.6); 7.808 (0.4); 7.781 (0.3); 7363 (03); 7352 (5.5); 7345 (23); 7.530 (22); 7323 (7.1); 7312 (1.0); 7313 (0.7); 7302 (6.9); 7.294 (2.6); 7279 (2.0); 7272 (5.6); 7235 (4.5); 7206 (43); 7.184 (0.4); 7.155 (0.4); 5.107 (1.4); 5.081 (16.0); 3.326 (9.1); 2398 (13); 2308 (5.1); 2.502 (6.9); 2.496 (52); 1247 (1.0); 0.858 (0.8); 0.000 (52)
Example V. 13:‘H-NMR (3002 MHz, CDCb) 8= 8.195 (2.5); 8.165 (2.7); 7.438 (32); 7.431 (1.1); 7.415 (1.2); 7.409(42); 7398(03); 7315 (2.8); 7.284 (2.6); 7262 (15.9); 7216 (0.5); 7205 (4.1); 7.198 (13); 7.183 (1.1); 7.176 (3.3); 7.165 (0.4); 7.081 (0.4); 4.240 (1.9);2.826 (1.9); 2.801 (16.0); 1349 (142);0.069 (3.3); 0.010(03);0.000(18.0);-0.011 (0.9)
Exemple V.14: 'H-NMR (3002 MHz, CDCb): 8= 8.127 (2.5); 8.099 (2.7); 7.637 (2.1); 7.608 (2.4); 7.313 (3.1); 7300 (19.5); 7284 (23); 6.961 (2.7); 6.933 (2.6); 6.911 (1.0); 6.723 (1.9); 6335 (1.0); 2.740 (16.0); 1385 (19.8); 1.307 (0.7); 0.921 (0.6); 0.108 (1.3); 0.049 (1.0); 0.039 (17.8); 0.028 (0.9)
-105-
Example V.15: ‘H-NMR (300.2 MHz, CDCh): 8= 8.524 (3.9); 7.349 (5.7); 7324 (3.8); 7313 (1.1); 7.299 (3.9); 7.256 (1.6); 7245 (6.1); 7237 (1.6); 7.222 (1.9); 7215 (3.1); 2.650 (32); 2.638 (16.0); 1.636 (2.4); 1.623 (14.4); 1304 (1.6); 0.940 (0.6); 0.932 (0.6); 0.918 (1.4): 0.895 (0.5); 0.108 (0.5); 0.048 (0.5); 0.036(3.2)
Example V.16: 'H-NMR (3002 MHz, CDCh): 5= 7.931 (2.8); 7.902 (3.0); 7.885 (0.6); 7.874 (5.5); 7.867 (1.7); 7.851 (1.8); 7.844 (62); 7.833 (0.7); 7368 (3.5); 7337 (3.1); 7.300 (9.9); 7253 (3.2); 7225 (3.0); 2.630 (16.0); 2.628 (14.9); 1.589 (11.0); 0.109 (1.9); 0.049 (03); 0.038 (10.2); 0.027 (0.4)
Example V. 17: ‘H-NMR (3002 MHz, CDCh): 8= 7.918 (2.8); 7.890 (3.0); 7.792 (0.4); 7.745 (3.7); 7.717 (43); 7.645 (0.5); 7.618 (03); 7376 (4.1); 7348 (33); 7.300 (15.0); 7232 (33); 7204 (3.0); 2.627 (16.0); 2.625 (15.1); 1.588 (12.4); 0.109 (2.9); 0.049 (0.5); 0.038(14.9):0.027 (0.5)
Example V.18: 'H-NMR (3002 MHz, CDCh): 8= 8.654 (0.6); 8.527 (3.9); 7.752 (1.9); 7.724 (2.1); 7.491 (0.7); 7.315 (2.0); 7300 (23); 7287 (1.8); 7.1W (42); 2.716 (2.7); 2.692 (16.0); 1.614 (2.8); 0.109 (0.5); 0.037 (2.0)
Example V. 19:‘H-NMR (499.9 MHz, de-DMSO): 8= 8.898 (4.8); 8.651 (0.4); 7.631 (0.4); 7.624(3.7); 7.607 (4.4); 7.600(0.9); 7.582 (0.5); 7387 (0.5); 7380 (4.7); 7363 (4.1); 7357 (0.6); 7.152 (5.1); 6.827 (0.5); 3318 (12); 2.696 (16.0); 2.641 (1.6); 2.606 (15.0); 2.507 (0.8); 1.230 (0.3); 0.877 (03)
Example V.20: ‘H-NMR (3002 MHz. CDCh): 8= 7.882 (2.9); 7.853 (3.1); 7.599 (0.7); 7388 (6.6); 7.581 (2.1); 7.566(2.2); 7.558 (7.3); 7348 (0.7); 7300 (14.6);7.165 (3.4); 7.151 (0.9); 7.141 (83); 7.118 (2.1); 7.111 (6.4):7.100 (0.6); 2.615 (16.0); 2.613 (15.2); 1.589 (10.9); 1345 (0.6); 1306 (3.4); 0.942 (12); 0.921 (4.0); 0.897 (13); 0.108 (0.9); 0.049 (0.5); 0.038 (14.0); 0.027(03)
Example V.21:‘H-NMR (400.0 MHz^d^DMSO): 8= 8.288 (2.9); 8267 (3.0); 7300 (1.6); 7.496 (0.8); 7.480 (3.0); 7.461 (2.4); 7320 (1.1); 7301 (1.8); 7283 (0.8); 7234 (2.6); 7232 (32); 7213 (2.6); 7.116 (3.1); 7.095 (2.9); 3331 (5.0); 2.619 (0.8); 2398 (16.0); 2308 (5.0); 2304 (63); 2.500 (4.9); 0.000 (1.1)
Examplc V.22: ‘H-NMR (399.8 MHz, CDCh): 8= 8.488 (4.8); 7.405 (3.7); 7383 (4.1); 7261 (3.4); 7.098 (4.3); 7.076 (3.6); 7.002 (43); 2.642 (16.0); 1.565 (12); 1.432 (0.4);-0.001 (3.6)
Examplc V.23: ‘H-NMR (499.9 MHz. CDCh): 8= 8.329 (4.9); 7.430 (0.4); 7.424 (3.6); 7.406 (4.1); 7.400 (03); 7.262 (2.5); 7.155 (03); 7.148 (4.1); 7.131 (3.6); 7.125 (0.4); 2.684 (16.0): 1372 (7.9): 0.000 (2.7)
Example V.24: ‘H-NMR (499.9 MHz, CDCh): 8= 8389 (23); 8373 (3.4); 8371 (3.2); 8354 (2.6); 8.323 (0.4); 8306 (0.4); 7.412 (0.9); 7.406 (7.3); 7.402 (2.7); 7.392 (2.9); 7388 (8.4); 7382 (12); 7372 (0.4); 7262 (4.5); 7.247 (0.6); 7229 (0.6); 7203 (0.5); 7.185 (0.6); 7.124 (1.1); 7.117 (8.4); 7.113 (3.0); 7.104 (2.7); 7.099 (73); 7.093 (12); 6.934 (0.6); 6.916 (03); 6.884 (0.6); 6.864 (3.2); 6.861 (3.1); 6.847 (3.1); 6.844 (3.1); 6.626 (0.4); 6.610 (0.4); 3.769 (0.4); 3350 (03); 2.734 (0.7); 2.708 (23); 2.643 (0.7); 2.618 (15.7); 2.609 (16.0); 2359 (0.9); 1.580 (11.1); 1.431 (0.7); 1345 (0.4); 0.000 (43)
Example V.25: ‘H-NMR (3002 MHz, CDCh): 8= 8319 (3.7); 7.775 (2.6); 7.746 (3.0); 7381 (4.0); 7341 (2.8); 7313 (2.6); 7300 (8.1); 2.675 (0.8); 2.646 (16.0); 1.598(15.8);0.108 (1.3):0.038 (72)
Example V.26: ‘H-NMR (299.9 MHz, CDCh): 8= 8.066 (2.6); 8.037 (2.6); 7.410 (0.5); 7399 (3.4); 7377 (1.6); 7.370 (4.0); 7257 (6.1); 7.132 (0.6); 7.121 (42); 7.098 (1.4); 7.092 (32); 6.882 (2.8); 6.854 (2.6); 2.689 (16.0); 1355 (7.5); -0.005 (5.4)
Examplc V.27: ‘H-NMR (3002 MHz, CDCh): 8= 8.517 (3.6); 7.627 (03); 7.617 (4.6); 7.610 (13); 7394 (1.6); 73 87 (5.0); 7377 (0.6); 7330 (4.0); 7299 (5.4); 7.119 (0.6): 7.108 (52); 7.101 (1.6); 7.085 (1.5); 7.078 (43); 7.068 (03); 2.635 (16.0); 1.590 (2.6); 0.109 (0.5); 0.039(5.4)
Example V.28: ‘H-NMR (300.2 MHz, tk-DMSO); 8= 8316 (2.6); 8288 (2.7); 7300 (13); 7.472 (23); 7.404 (0.6); 7392 (43); 7385 (13); 7370 (0.9); 7362 (2.6); 7.274 (03); 7.206 (2.7); 7.178 (2.6); 3324 (27.4); 2.667 (03); 2.642 (03); 2.618 (0.5); 2.601 (16.0); 2313 (53); 2.507 (11.4); 2301 (16.0); 2.495 (12.0); 2.490 (6.0); 0.000(9.9)
-106-
Example V.29: 'H-NMR (3002 MHz, CDCb):
8= 8.068 (2.6); 8.040 (2.7); 7263 (12.9); 7.148 (1.9); 7.118 (2.4); 7.020 (1.9); 7.010 (2.1); 6.882 (1.4); 6.875 (2.9); 6.872 (1.6); 6.852 (13); 6.847 (2.8): 6.843 (12); 5302 (5.1); 3.833 (13.6); 2.796 (0.5); 2.709 (0.4); 2.691 (16.0); 2.681 (0.5); 2.048 (0.8); 1365 (16.4); 1.432 (03): 1261 (03); 0.070 (2.6); 0.011 (0.4); 0.000 (11,7); -0.011(0.5)______________________________________________________________________________________
Exemple V.30:1 H-NMR (3002 MHz, CDC13):
8= 8.115 (2.5); 8.087 (2.6); 7.839 (23); 7.832 (0.8); 7.816 (0.8); 7.809 (2.8); 7.798 (0.4); 7290 (13); 7263 (3.6) ; 6.982 (2.7); 6.954 (23); 2.720 (12); 2.716 (0.4); 2.708 (16.0); 2.698 (03); 1.432 (03); 0.072 (0.5); 0.000 (2.9)
Example V.31:1 H-NMR (3002 MHz, CDCI3):
8= 7.931 (2.8); 7.902 (3.0); 7355 (33); 7327 (3.0); 7.300 (15.7); 7.142 (0.8); 7.131 (1.4); 7.125 (22); 7.121 (6.6) ; 7.097 (63); 7.093 (2.1); 7.086 (13); 7.076 (0.7); 2.620 (15.4); 2.618 (16.0); 1385 (4.9); 0.109 (23); 0.050 (0.7); 0.039 (172); 0.028 (0.8)
Example V32:1 H-NMR (3002 MHz, CDCb):
8= 7.899 (2.8); 7.898 (2.8); 7.871 (3.0); 7.870 (3.0); 7.626 (3.3); 7397 (4.1); 7.337 (4.6); 7308 (3.7); 7300 (3.0); 7.193 (32); 7.192 (32); 7.165 (3.0); 7,164 (3.0); 6.908 (1.7); 6.720 (33); 6332 (1.8); 3200 (0.8); 2.617 (15,6); 2.615 (16.0); 1.630 (0.3); 1.469 (0.9); 1381 (0.4); 1268 (03); 1247 (03); 0.036 (2.4)
Example V.33:1 H-NMR (499.9 MHz, CDCh):
8= 8.094 (5.1); 7263 (23); 7251 (03); 7245 (3.7); 7241 (1.5); 7231 (1.7); 7227 (6.9); 7222 (1.9); 7212 (13); 7208 (42); 7202 (03); 6.940 (03); 6.934 (4.1); 6.930 (1.6); 6.920 (1.7); 6.916 (4.7); 6.914 (53); 6.910 (2.0); 6.900 (13); 6.896 (3.7); 6.890 (0.4); 2.729 (0,4); 2.716 (16.0); 1394 (62); 0,000 (2.4)__________
Example V.34:1 H-NMR (3002 MHz, CDCh):
8= 8.138 (1.9); 8.110 (2.0):7399 (0.5); 7388 (43); 7381 (13); 7.566 (1.8); 7.559(5.0); 7.548 (0.7); 7358 (03); 7302 (112); 7264 (1.6); 7.169 (0.7); 7.159 (5.1); 7.151 (1.6); 7.136 (1.7); 7.129 (4.4); 7.118 (0.6); 7.095 (22); 7.083 (3.4); 7.067 (2.0): 6.902 (1.6); 3.789 (0.4); 3358 (0.4); 3.450 (0.4); 2.694 (03); 2.685 (0.6); 2.661 (16.0); 1.895 (03); 1395 (1.1); 1.473 (0.4); 1293 (0.6); 0.110 (1.0); 0.051 (0.6); O.tMO (11.7); 0,029 (0.6)______________________________________________________________________________________________
Example V.35:1 H-NMR (3002 MHz, CDCh):
8= 7.895 (2.8); 7.893 (2.8); 7.866 (3.0); 7.865 (3.0); 7328 (1.6); 7.321 (0.9); 7318 (0.8); 7299 (7.0); 7297 (63); 7284 (2.4); 7276 (10.4); 7267 (1.8); 7255 (13); 7245 (2.1); 7238 (0.4); 7.180 (33); 7.179 (33); 7.152 (3.0); 7.151 (3.0); 2.615 (15.9); 2.612 (16.0); 1.627(0.4); 1.468 (12); 0.111 (0.4); 0.036(1.7)
Example V.36:1 H-NMR (3002 MHz, CDCh):
8= 8.768 (2.5); 7.690 (KO);7.628 (0.4); 7.617(33); 7.610 (1.1); 7395 (12); 7387(3.8); 7377(0.4); 7308 (2.0); 7.407 (2.6); 7326 (1.0); 7298 (4.7); 7.126 (0.4); 7.115 (4.0); 7.108 (1.1); 7.093 (1.1); 7.086 (3.4); 7.075 (03); 2.648 (16.0); 1394 (3.9); 0.107 (03); 0.037 (4.5)_____________________________________________
Example V37:1 H-NMR (3002 MHz, CDCb):
8= 8.769 (2.6); 7.692 (1.0); 7.510 (2.1); 7.479 (03); 7.469 (3.3); 7.462 (1.1); 7.446 (12); 7.439 (4.0); 7.428 (0.4); 7.407 (2.7); 7328 (1.1); 7298 (23.0); 7.179 (0.4); 7.168 (4.1); 7.161 (12); 7.146 (1.0); 7.139 (33); 2.648 (16.0); 1.581 (20.7); 0.107 (2.5); 0.048 (0.7); 0.037 (22.4); 0.027 (0.9)
Example V38:1 H-NMR (3002 MHz, CDCh):
8= 7.904 (2.8): 7.903 (2.8); 7.876 (3.1); 7300 (23); 7288 (1.7); 7287 (1.7); 7281 (2.1); 7265 (1.1); 7258 (3.8); 7252 (2.6); 7247 (2.2); 7238 (3.6); 7231 (3.7); 7230 (3.7); 7.226 (3.7); 7221 (73); 7217 (4.6); 7.197(0.6):7.190 (03); 2.610(16.0); 2.608(15.9); 1.715 (0.7); 1.469(12); 0.036(2.4)
Example V.40:1 H-NMR (3002 MHz, d6-DMSO):
8=9.719 (2.7); 8342 (5.8); 8314 (62); 7.712 (13); 7.701 (13.7); 7.694 (4.4); 7.678 (4.6); 7.671 (15.5); 7.660 (1.6); 7.492 (6.7); 7.463 (63); 7350 (2.1); 7342 (0.7); 73 27 (0.7); 7320 (2.3); 7309 (0.5); 7302 (1.7) ; 7291 (16.0); 7284 (4.7); 7269 (43); 7261 (133); 7250 (13); 6.762 (23); 6.754 (0.7); 6.739 (0.7); 6.732 (22); 3356 (19.8); 2.541 (3.5); 2335 (7.6); 2329 (10.5); 2323 (7.7); 2316 (4.1); 2.499 (1.9); 2.489 (22); 2.485 (13); 2.474 (3.6); 2.467 (1.7); 2.458 (2.1); 2.449 (2.1); 2.433 (1.0); 1361 (03); 1240 (0.4); 1233 (1.0); 1216 (32); 1205 (7.7); 1.198 (43); 1.190 (3.1); 1.179 (8.5); 1.172 (5.1); 1.169 (5.1); 1.161 (7.4); 1.146 (93); 1.135 (33); 1.117 (0.9); 0.035 (03); 0.025 (9.6); 0.014 (0.4)
-107Example V.41:1 H-NMR (3002 MHz, CDCh):
5=7.931 (5.8); 7.903 (62); 7.453 (12); 7.442 (12.6); 7.434 (42); 7.419 (4.6); 7.412 (16.0); 7.401 (1.7); 7.301 (28.1); 7246 (1.1); 7239 (0.4); 7224 (0.5); 7217 (1.5); 7212 (1.9); 7202 (16.3); 7.194 (4.7); 7.179 (42); 7.172 (12.8); 7.166 (7.5); 7.138 (62); 6.820 (1.3); 6.812 (0.4); 6.797 (0.3); 6.790 (I.l); 4.825 (13);
2366 (0.8); 2351 (1.8); 2340 (2.0); 2325 (3.7); 2311 (2.1); 2300 (2.0); 2285 (1.0); 1.592 (13.5); 1.471 (03); 1.407 (1.7); 1393 (5.8); 1381 (9.6); 1367 (72); 1356 (2.4); 1320 (03); 1306 (0.6); 1294 (0.5);
1277 (03); 1251 (0.4); 1228 (23); 1216 (7.5); 1205 (5.4); 1202 (5.7); 1.190 (83); I.I83 (3.7); 1.179 (4.6); 1.163 (32); 0.110 (3.1 ); 0.051 ( 1.0); 0.040 (3 0.8); 0.029 ( l. 1 )
Example V.44; 1 H-NMR (3002 MHz, d6-DMSO):
5=8362 (9.6); 8333 (102); 7.726 (11.4); 7.698 (14.0); 7.525 (11.0½ 7.497 (10.4); 7.444 (16.0); 7.415 (13.0); 7298 (5.7); 7.111 (123); 6.925 (6.0); 5.785 (0.9); 3360 (11.1); 3.146 (1.1); 2.541 (2.8); 2335 (6.1): 2.529 (8.7); 2.523 (7.6); 2.517 (33); 2.507 (3.1); 2.498 (3.6); 2.493 (2.5); 2.482 (6.0); 2.475 (2.6); 2.466 (3.4) ; 2.457 (33); 2.441 (1.6); 1246 (0.6); 1238 (1.6); 1220 (5.1); 1210 (12.9); 1202 (7.0); 1.194 (4.8); 1.184 (14.4); 1.176 (10.9); 1.168 (12.6); 1.158 (10.7); 1.152 (15.7); 1.141 (5.6); 1.124 (1.4); 1.109 (0.4); 0.023(10.1); 0.012(0.4)
Example V.45:1 H-NMR (3002 MHz, CDCh):
5= 7.806 (3.4); 7.778 (3.7); 7.432 (0.9); 7.422 (73); 7.414 (2.4); 7399 (2.7); 7392 (92); 7381 (1.0); 7297 (1.4) ; 7213 (0.6); 7.191 (13); 7.181 (9.6); 7.173 (2.8); 7.158 (2.5); 7.151 (73); 7.143 (43); 7.115 (3.7);
6.805 (0.7); 6.775 (0.6); 2.902 (1.7); 2.878 (53); 2.854 (5.5); 2.830 (1.9); 1388 (0.5); 1363 (0.8); 1.337 (0.4); 1297(0.4); 1259(8.1); 1235(16.0); 1211 (7.6); 0.911 (0.4); 0.031 (13)__________________________
Example V.46:1H-NMR (3002 MHz, CDCh):
5= 7.814 (3.5); 7.785 (3.8); 7.433 (0.7); 7.423 (73); 7.415 (2.6); 7.400 (2.8); 7393 (92); 7382 (1.0); 7302 (1.1); 7210 (0.4); 7.194 (1.1); 7.184 (9.7); 7.176 (2.8); 7.161 (2.6); 7.154 (73); 7.144 (4.7); 7.116 (3.8);
6.806 (0.4); 6.776 (03); 2.855 (33); 2.831 (7.0); 2.807 (3.9); 1.827 (0.8); 1.802 (2.9); 1.778 (5.4); 1.753 (53); 1.729(2.8); 1.705 (0.7); 1.689(0.8); 1.044(8.2); 1.019 (16.0);0.994(73);0.034(1.0)
Example V.47:1 H-NMR (3002 MHz, CDCh):
8= 7.816 (1.8); 7.788 (2.0); 7.441 (0.4); 7.431 (3.7); 7.423 (12); 7.408 (1.4); 7.401 (4.6); 7390 (0.5); 7302 (1.0); 7.199 (0.6); 7.188 (4.7); 7.181 (1.4); 7.166 (13); 7.159 (3.6); 7.148 (2.4); 7.119 (1.9); 2.760 (3.6); 2.737 (3.9); 2337 (0.4); 2314 (0.9); 2292 (1.1); 2270 (0.9); 2247 (03); 1.625 (13); 1.039 (16.0); 1.017 (15.5); 0.989 (0.5); 0.967 (0.4); 0.038 (0.9)___________________________________________________________________
Example V.48:1 H-NMR (3002 MHz, CDCh):
5= 7.812 (33); 7.784 (3.6); 7.678 (0.4); 7.652 (0.4); 7.449 (0.7); 7.438 (72); 7.431 (2.4); 7,416 (3.0); 7.408 (8.9); 7398 (1.1); 7391 (0.6); 7301 (24.8); 7248 (12); 7240 (0.4); 7225 (03); 7218 (1.4); 7203 (1.1); 7.192 (92); 7.184 (2.6); 7.169 (23); 7.162 (7.0); 7.152 (4.4); 7.124 (3.6); 6.821 (1.5); 6.814 (0.4); 6.799 (0.4); 6.791 (12); 4.802 (0.7); 2.948 (0.4); 2.922 (03); 2.895 (0.5); 2.878 (33); 2.854 (6.1); 2.829 (3.6); 1.771 (12); 1.747 (3.0); 1.722 (3.7); 1.697 (2.7); 1.672 (12); 1.592 (17.5); 1.488 (0.7); 1.464 (22); 1.439 (32); 1.413 (33); 1389 (22); 1365 (0.8); 1.307 (12); 1.013 (1.0); 1.001 (82); 0.989 (2.2); 0.976 (16.0); 0.965 ( 12); 0.952 (6.6); 0.922 (13): 0.899 (0.5); 0.110 (2.8); 0.051 (0.9); 0.040 (26.0); 0.029(1,0)
Example VI.OI:'H-NMR (3002 MHz, CDCh):
8= 7.879 (3.4); 7.851 (3.7); 7.460 (0.8); 7.449 (7.5); 7.442 (2.6); 7.427 (2.9); 7.419 (9.5); 7.409 (1.2); 7300 (21.9) ; 7246 (0.6); 7216 (1.1); 7210 (5.0); 7.199 (9.8); 7.192 (32); 7.180 (43); 7.177 (3.8); 7.169 (7.6); 7.158 (0.8); 6.819 (0.7); 6.790 (0.6); 4.798 (0.8); 4.509 (16.0); 2.616 (0.5); 1387 (40.4); 1347 (0.5); 1306 (2.2); 0.942 (0.8); 0.921 (2.5); 0.897 (0.9); 0.108 (1.6); 0.049 (0.8): 0.039 (26.1); 0.028 (1.1)
Example VI.03: 'H-NMR (299.9 MHz, de-DMSO):
8= 8367 (4.1); 8338 (43); 7.511 (1.7); 7305 (0.8); 7.486 (33); 7.465 (12); 7.459(2.8); 7.451 (0.5); 7336 (0.7); 7332 (1.4); 7328 (0.9); 7307 (2.0); 7302 (0.7); 7286 (0.5); 7283 (0.8); 7279 (03); 7244 (2.9): 7240 (3.8); 7233 (I.l); 7218 (1.7); 7215 (2.9); 7212 (2.5); 7.171 (4.2); 7.142 (4.1); 5.077 (16.0); 3318 (33.7); 2313 (42); 2307 (9.0); 2.501 (12.4); 2.495 (9.1); 2.489 (4.4); 0.000 (4,6)___________________________
Example VI.O4: ‘H-NMR (399.8 MHz, CDCh):
8= 8.091 (33); 8.090 (3.9); 8.069 (4.0); 7.417 (0.7); 7.409 (53); 7.404 (1.9); 7392 (2.8); 7387 (5.6); 7381 (0.9); 7379 (0.9); 7262 (63); 7260 (73); 7.135 (0.9); 7.128 (6.2); 7.122 (22); 7.110 (2.6); 7.106 (4.9); 7.100 (0.8); 6.937 (4.0); 6.918 (3.4); 6.916 (3.9); 4.761 (13.8); 4.759 (16.0); 2.693 (0.7); 1375 (I.l); 0.001 (6.9) ; 0.000 (7.6)
-108-
Example V1.05: Ή-NMR (299.9 MHz, CDCh):
δ= 8.504 (5.4); 7.484 (0.4); 7.476 (1.7); 7.470 (0.8); 7.451 (3.5); 7.430 (1.2); 7.424 (2.9); 7.416 (0.5); 7.313 (1.4); 7.309 (0.9); 7288 (2.1); 7259 (5.4); 7.162 (2.9); 7.158 (3.8); 7.152 (1.1); 7.133 (2.9); 7.003 (5.7); 4.662 (03): 4.650 (16.0); L546 (2.7); 0.000 (5.4)
Example V1.06: Ή-NMR (299.9 MHz, CDCh):
8= 8.473 (6.4); 7.428 (0.6); 7.417 (4.5); 7.411 (1.7); 7395 (1.8); 7388 (5.9); 7377 (0.6); 7.260 (12.9); 7.120 (0.7); 7.109 (5.6); 7.102 (1.9); 7,086 (1.6); 7.079 (4.9); 7.069 (0.5); 7.037 (6.7); 4.646 (16.0); 1343 (12.4); 1254 (0.4); 0.010 (0.7): 0.009(0.7); 0.000 ( 12.0); -0.011 (0.4)
Example VI.07; Ή-NMR (3002 MHz, CDClj):
5= 8.111 (0.7); 8.092 (3.8); 8.083 (0.8); 8.064 (4.0); 7.512 (33); 7.483 (4.0); 7323 (32); 7315 (3.5); 7265 (22); 7.084 (23); 7.075 (2.1); 7.054 (2.0); 7.045 (1.9); 6.983 (0.8); 6.976 (4.1); 6.955 (0.8); 6.948 (3.9); 4.760 (2.6); 4369 (16.0); 4359 (03); 4,542 (03); 2.045 (0.9); 1259 (0.7); 0.074 (1.1); 0,000 (1.1)__________
Exemple VI.08: Ή-NMR (3002 MHz, CDCh):
S= 8.110 (3.7); 8.081 (3.9); 7.608 (03); 7305 (1.9); 7.274(43); 7263 (783); 7.232 (12); 7221 (6.8); 7213 (1.8); 7.198 (1.4); 7.191 (3.1); 6.963 (4.0); 6.935 (3.9); 6.911 (0.4); 4.767 (16.0); 4.723 (0.6); 3.678 (03); 1369 (2433); 1.456 (0.4); 1336 (0.4); 1300 (03); 1.253 (1.6); 0.882 (0.6); 0.195 (0.4); 0.081 (0.9); 0.069 (26.9) ; 0.057 (1.4): 0.011 (2.6); 0.000 (762): -0.011 (3.7)______________________________________________
Example VI.09: Ή-NMR (3002 MHz, CDCh):
5= 8.409 (03); 8381 (0.6); 8.094 (3.8); 8.065 (4.2); 8.039 (0.5); 7263 (21.4); 7.139 (143); 7.133 (2.7); 7.120 (7.1); 7.117 (7.4); 7.087 (0.4); 6.975 (13); 6.954 (2.1); 6.921 (4.9); 6.897 (23); 6.893 (42); 6.864 (03); 6.836 (0.4); 6.665 (0.6); 6.638 (03); 4.852 (2.1); 4.767 (16.0); 2.694 (2.6); 1371 (753); 1306 (0.9); 1266(5.7); 0.904 (2.0); 0.882 (6.1); 0.859 (2.4): 0.070 (1.8); 0.011 (0.7): 0.000 (20.9); -0.011(1.1)
Example VI.10: Ή-NMR (3002 MHz, CDCh):
5= 8381 (73); 7.494 (03); 7.483 (4.7); 7.476 (13); 7.461 (1.7); 7.454 (5.8); 7.443 (0.6); 7300 (15.7); 7209 (0.7); 7.198 (5.8); 7.191 (1.8); 7.176 (1.5); 7.169 (4.6); 7.158 (0.4); 5339 (0.6); 4.954 (16.0); 3371 (0.4); 1380 (7.4); 0.108 (53); 0,049 (0.6); 0.039 (163); 0.028 (0.6)_____________________________________________
Example VI.H: Ή-NMR (3002 MHz, CDClj):
5= 8.035 (2.7); 8.007 (2.9); 7.420 (0.6); 7.409 (5.8); 7.402 (2.0); 7387 (2.4); 7379 (73); 7369 (LO); 7262 (142); 7.173 (1.4); 7.162 (7.0); 7.155 (2.2); 7.140 (2.1); 7.132 (5.4); 7.121 (0.7); 7.093 (2.7); 7.065 (2.6); 7.049 (22); 6.903 (0.4); 6.868 (4.1); 6.687 (2.1); 4.569 (16.0); 4322 (1.6); 3300 (0.6); 1358 (393); 1.260 (0.8); 0.882 (0.7); 0.070(73); 0.058 (0.4); 0.011 (0.7); 0.000 (17.8);-0.011 (0.9)
Examplc VI. 12: Ή-NMR (3002 MHz, CDClj):
5= 8.421 (3.7); 8393 (3.8); 7.413 (03); 7.403 (4.8); 7396 (1.9): 7380 (2.0); 7373 (6.4); 7363 (0.9): 7342 (03); 7262 (93); 7.153 (03); 7.142 (0.9); 7.132 (6.0); 7.125 (2.2); 7.109 (1.9); 7.102 (4.9); 7.091 (0.6);
6.925 (3.5); 6.897 (33); 6.807 (0.4); 4.722 (03); 4.713 (03); 4.668 (16.0); 3.916 (03); 3.896 (0.9); 3214 (2.9) ; 2.617 (0.8); 1350 (6.0); 1306 (0.5); 1266 (3.1); 0.903 (M); 0.882 (3.4); 0.858 (13); 0.070 (2.1);
0.011 (0.4); 0.000 (10.9);-0.011 (0.5)
Exemple VI. 13: Ή-NMR (3002 MHz, CDCh):
8= 8.100 (2.8); 8.072 (3.0); 7.262 (6.1); 7.149 (22); 7.120 (2.7): 7.023 (2.2); 7.013 (23); 6.936 (3.1); 6.908 (3.0); 6.886 (1.6); 6.876 (13); 6.856 (13); 6.847 (13); 4.775 (11.9); 3.835 (16.0); 2.690 (0.6); 1363 (11.7); 1266 (0.7); 1.260 (0.7); 0.882 (0.8); 0.000 (6.6)
Example VI. 14: Ή-NMR (3002 MHz, CDClj):
5= 8.540 (4.2); 8318 (03); 7.489 (03); 7.478 (53); 7.470 (1.9); 7.455 (2.0); 7.448 (63); 7.438 (12); 7376 (4.6); 7329 (03); 7300 (25.9); 7.186 (0.7); 7.176 (63); 7.168 (2.0); 7.161 (0.9); 7.153 (2.0); 7.146 (5.1);
7.135 (0.7); 7.131 (0.6); 5304 (0.4); 4365 (16.0); 2.636 (1.6); 1384 (37.7); 1294 (0.4); 0.109 (2.6); 0.050 (1.0); 0.039(28.1); 0.028(12)
Exemple VI. 15: Ή-NMR (3002 MHz, CDClj):
5= 8.759 (0.6); 8340 (4.4); 8317 (0.7); 7.638 (0.7); 7.633 (1.2); 7.627 (5.8); 7.620 (2.1); 7.617 (1.4); 7.610 (0.9); 7.604 (23); 7397 (63); 7387 (1.6); 7398 (0.7); 7377 (4.8); 7330 (0.7); 7300 (73); 7.133 (0.9); 7.130 (12); 7.123 (6.5); 7.U5 (2.0); 7.108 (13); 7.100 (2.6); 7.093 (5.6); 7.082 (0.8); 7.079 (1.0); 6.454 (12); 4366 (16.0); 2.636 (2.7); 1387 (4.6); 1306 (1.6); 0.943 (0.6); 0.921 (1.8); 0.898 (0.7); 0.110 (0.7); 0.039(6.9)
-109Example VI. 16: ‘H-NMR (3002 MHz, CDCh):
8= 8.150 (3.8); 8.122 (4.0); 7.646 (2.9); 7.618 (3.3); 7.320 (3.7); 7300 (17.0); 7.292 (3.4); 7.014 (4.0); 6.986 (3.8) ; 6.916 (1.4); 6.728 (2.9); 6340 (13); 4.803 (16.0); 4.197 (0.4); 4.173 (13); 4.149 (1.3); 4.126 (0.5);
2.739 (12); 2.085 (5.9); 1.581 (73); 1322 (1.6); 1299 (32); 1275 (13); 0.108 (1.3); 0.049 (0.5); 0.039 (16.8) ; 0.028 (0.6)
Example VI. 17:‘H-NMR (3002 MHz, CDCh):
5= 8.131 (1.1); 8.103 (12); 7.646(1.0); 7.618 (1.2); 7324 (13); 7.300 (8.7); 7.007 (12); 6.979 (1.1); 6.917 (03); 6.728 (0.9); 6340 (03); 4.615 (4.6); 4388 (0.4); 2.740 (0.8); 2.085 (0.9); 1380 (3.7); 1370 (12); 1.346 (2.7); 1306 (15.9); 0.943 (5.6); 0.922 (16.0); 0.898 (6.3); 0.109 (0.6); 0.050 (0.4); 0.039 (8.0); 0.029 (0.4)_________________________________________________________________________________________________________
Example VI. 18:'H-NMR (300.2 MHz, CDCh):
5= 7.599 (0.5); 7370 (0.6); 7.300 (5.0); 7.151 (0.6); 7.121 (0.5); 4.337 (1.2); 2.086 (0.5); 1379 (2.4); 1370 (0.9); 1.347 (2.1); 1307 (13.6); 0.944 (5.0); 0.922 (16.0); 0.899 (5.9); 0.040 (5.0)____________________________
Example VI. 19:'H-NMR (3002 MHz, CDCh):
8= 7.972 (0.4); 7.944 (0.4); 7.881 (3.4); 7.852 (3.7); 7.609 (0.9); 7399 (8.7); 7391 (2.7); 7376 (3.1); 7369 (9.6); 7358 (12); 7358 (03); 7300 (29.3); 7212 (3.9); 7.183 (4.1); 7.158 (1.4); 7.153 (22); 7.147 (93); 7.140 (2.8); 7.125 (33); 7.118 (7.6); 7.107 (0.8); 6.777 (0.3); 4.511 (16.0); 4301 (2.0); 3.948 (0.4); 3303 (13); 2.617 (0.4); 1388 (24.4); 1367 (0.4); 1344 (0.9); 1305 (5.0); 0.942 (1.8); 0.920 (5.8); 0.897 (2.1); 0.108 (23); 0.049 (1.0); 0.038 (29.1); 0.027 (1.1)
Exemple VI.20: 'H-NMR (300.2 MHz, CDCh):
5= 8321 (3.8); 8.493 (4.8); 8.490 (4.6); 8.462 (3.9); 8.453 (0.7); 8.425 (0.7); 7.477 (1.1); 7.466 (10.0); 7.458 (33); 7.443 (3.7); 7.436 (12.2); 7.425 (1.6); 7300 (40.9); 7284 (03); 7276 (1.0); 7.251 (0.8); 7229 (03); 7221 (1.0); 7.178 (1.5); 7.167 (12.2); 7.160 (3.8); 7.144 (3.3); 7.137 (9.6); 7.126 (1.0); 6.984 (4.3); 6.978 (4.9) ; 6.956 (4.4); 6.950 (4.9); 6.922 (1.0); 6.914 (0.4); 6.892 (0.8); 6.729 (0.7); 6.700 (0.6); 4.876 (3.1); 4.729 (16.0); 4.719 (16.0); 4.416 (0.4); 4.410 (0.4); 2.665 (0.5); 2.649 (0.6); 1381 (193); 1369(0.5); 1347 (0.9); 1306 (5.0¾ 0.943 (1.8); 0.921 (5.7); 0.898 (2.1); 0.120 (0.5); 0.108 (122); 0.096 (0.5); 0.050 (1.7); 0.039 (44.7); 0.028 (1.7)
ExampÎe VI.21: 'H-NMR (300.2 MHz, CDCh):
8= 8.573 (03); 8.490 (4.7); 7.397 (5.0); 7363 (23); 7.334 (4.1); 7300 (5.5); 7269 (1.0); 7258 (7.4); 7250 (1.9) ; 7.235 (13); 7228 (3.9); 7217 (0.4); 7.159 (0.6); 6.870 (03); 6.839 (0.4); 4.586 (1.8); 4354 (16.0);
4.091 (2.8); 3.898 (0.7); 3309 (2.1); 2.640 (0.6); 1.605 (3.4); 1305 (0.9); 0.920 (1.0); 0.897 (0.4); 0.110 (0.9¾ 0.038(5.4)___________________________________________________________________________________
Exemple VI.22: 'H-NMR (3002 MHz, CDCh):
8= 8.484 (3.0); 7.785 (22); 7.756 (2.6); 7.427 (33); 7354 (2.4); 7326 (2.2); 7300 (8.2); 5339 (0.4¾ 4386 (0.9); 4.556 (10.7); 4.090 (13); 3314 (0.7); 2.646 (1.0); 1.600 (16.0); 1346 (0.4); 1305 (2.1); 0.942 (0.8); 0.920 (2.4); 0.897 (0.9); 0.108 (1.6); 0.038 (7.6)
Example VI.23:1 H-NMR (300.2 MHz, CDCh):
5= 8373 (0.4); 8.482 (3.4); 7.637 (0.4); 7.626 (42); 7.619 (1.4); 7.604 (1.4); 7397 (4.6); 7387 (0.6); 7378 (3.8); 7356 (03); 7300 (8.1); 7.159 (0.4); 7.128 (03); 7.117 (4.7); 7.110 (1.4); 7.095 (13); 7.088 (4.0); 7.078 (03); 6.775 (03); 6.745 (0.5); 4.921 (0.4); 4.586 (1.4); 4352 (12.1); 4.090 (2.1); 2.636 (0.6); 1.602 (16.0); 1304 (0.9); 0.942 (03); 0.920 (1.0); 0,897 (0.4); 0,108 (13); 0.038 (73)____________________________
Exemple VI.24:‘H-NMR (3002 MHz, de-DMSO):
8= 8.911 (0.8); 8.894 (53); 8.866 (0.4); 8.833 (1.0); 7.913 (0.4); 7.898 (0.7); 7.834 (5.6); 7.813 (1.2); 7.758 (13¾ 7.746 (23¾ 7.738 (2.5¾ 7.729 (0.7¾ 7.719 (0.7¾ 7.712 (23); 7.704 (2.4¾ 7.695 (03¾ 7364 (1.6);
7.555 (0.6); 7348 (0.5); 7335 (33); 7326 (0.6); 7319 (0.9); 7.507 (2.7); 7.491 (0.6); 7.454 (22); 7.450 (23); 7.446 (2.4); 7.442 (2.0); 7.434 (0.6); 7.425 (1.2); 7.421 (1.4); 7.417 (13); 7.413 (12): 5.815 (0.7);
5.777 (3.6); 4.986 (16.0); 2.641 (52); 2337 (0.6); 2331 (1.1); 2325 (13); 2319 (l.l); 2313 (0.5); 1265 (03); 0.876 (03); 0.019 (1.9)____________________________________________________________________________
Example VI.25:'H-NMR (3002 MHz, d«-DMSO):
5= 8.858 (5.1¾ 8.833 (2.8); 7.843 (5.4); 7.760(3.0); 7.747 (2.1¾ 7.740(3.1); 7.732 (13): 7.713 (2.0¾ 7.705 (3.0); 7.697 (12); 7358 (13); 7349 (0.9); 7329 (3.4); 7320 (2.0); 7311 (0.4); 7301 (2.6); 7.492 (13);
7.454 (2.0); 7.449 (22); 7.446 (2.7); 7.442 (2.5); 7.435 (1.0); 7.425 (l.l); 7.420 (1.3); 7.417 (13);7.413 (13); 7.406 (0.6); 5.778 (32); 5.188 (03); 5.171 (16.0); 4.031 (0.4); 4.025 (0.4); 3348 (3.6); 3203(13);
2.641 (13.6); 2337 (0.8); 2331 (1.6); 2325 (2.2); 2.519 (1.6); 2313 (0.8); 2.011 (0.4); 1266 (l.l);0.900 (03); 0.878 (1.1); 0.855 (0.4); 0.020(2.5)
-110Example VI.26: ‘H-NMR (300.2 MHz. de-DMSO):
δ= 9.951 (0.5); 8.972 (0.6); 8.870 (4.9); 7.732 (8.2); 7.704 (3.7); 7.445 (4.1); 7.416 (3.5); 7388 (0.9); 7.298 (1.4) ; 7.111 (3.1); 6.926 (13); 5.190 (23); 5.166 (16.0); 4.031 (3.2); 3351 (2.7); 3213 (03); 2.641 (1.0);
2.537 (03); 2.531 (1.0); 2.525 (1.4); 2319 (1.0); 2.513 (0.5); 0.021 (1,7)___________________________________
Example VI.27: *H-NMR (300.2 MHz, dô-DMSO):
5= 8.906 (5.4); 8.845 (1.1); 7.829 (0.8); 7.781 (03); 7.733 (3.8); 7.721 (7.0): 7.705 (4.4); 7.650 (1.2); 7.470 (03); 7.451 (4.6); 7.423 (3.8); 7.408 (0.9); 7298 (1.6); 7.112 (33); 6.926 (1.7); 5.777 (0.8); 4.976 (16.0); 3 3 75(0.8); 2.641 (5.2); 2337 (0.4); 2331 (0.9); 2.525(12); 2319 (0.9); 2.513 (0.4); 0.021 (1.4)
Example VI.28: 'H-NMR (3002 MHz, CDCh):
5= 7.917 (3.4); 7.889 (3.8); 7.810 (0.4); 7.757 (4.7); 7.728 (5.6); 7.688 (0.4); 7.661 (0.4); 7386 (5.0); 7.358 (4.4) ; 7.300 (36.4); 7276 (4.0); 7248 (3.9); 7233 (0.4); 7219 (0.4); 4.516 (16.0); 4.506 (1.7); 4308 (13); 3312 (0.4); 2.628 (1.0); 1385 (412); 1345 (0.4); 1307 (1.9); 0.943 (0.6); 0.921 (2.0); 0.898 (0.8); 0.108 (8.4) ; 0.096 (03); 0.049 (12); 0.039 (37.1); 0.028 (13)______________________________________________
Example VI.29: ‘H-NMR (3002 MHz, CDCh):
5= 7.931 (3.5); 7.902 (4.0); 7.886 (73); 7.879 (23); 7.863 (2.4); 7.856 (8.1); 7.845 (13); 7.837 (0.9); 7.810 (1.0); 7.688 (1.1); 7.661 (0.9); 7.646 (03); 7378 (43); 7348 (4.0); 7300 (41.0); 7269 (3.9); 7.239 (0.4); 4317 (16.0); 4306 (43); 4309 (12); 4301 (0.4); 3314 (03); 2.631 (1.4); 1385 (432); 1346 (13); 1306 (73); 0.943 (2.6); 0.921 (8.6); 0.898 (3.1); 0.108 (83); 0.050 (13); 0.039 (39.4); 0.028 (1.4)
Example VI.30: 1H-NMR (3002 MHz, CDC13):
5= 8.148 (0.4); 8.135 (3.7); 8.120(0.4); 8.106(4.0); 7.862 (0.4); 7.851 (3.8); 7.844 (12); 7.827 (13); 7.820 (4.1) ; 7.810 (0.6); 7300 (2.3); 7269 (22); 7263 (5.6); 7.051 (03); 7.031 (3.9); 7.022 (0.4); 7.003 (3.7); 6.865 (0.7); 4.803 (0.9); 4.787 (0.4); 4.765 (16.0); 4.724 (0.7); 2.708 (0.6); 1372 (8.0); 1266 (0.9); 1.26C (0.9); 0.903 (03); 0.882 (1.1); 0.858 (0.4); 0.000 (4.8)
Example V1.31:1 H-NMR (3002 MHz, CDC13):
5= 7.939 (3.3); 7.911 (3.6); 7.816 (0.3); 7.702 (0.8); 7.697 (0.9); 7.690(0.8); 7.677 (1.1); 7.671 (1.1); 7373 (0.4); 7348 (1.6); 7324 (1.1); 7.400 (3.9); 7372 (3.7); 7355 (0.5); 7.343 (0.3); 7327 (03); 7312 (03); 7.300 (44.0); 7.149 (0.8); 7.139 (1.6); 7.133 (2.6); 7.129 (8.1); 7.120 (13); 7.105 (7.9); 7.100 (2.7); 7.095 (2.1) ; 7.084 (0.9); 5.340 (2.0); 5.028 (32); 4317 (16.0); 4302 (12); 3.772 (32); 3.433 (15.9); 3300 (0.8); 2,619 (1.8); 2.617 (1.9); 1394 (223); 1293 (0,6);0.108 (5.0); 0.049 (1.6); 0,038 (48.2): 0.027 (1.9)
Example V1.32:1 H-NMR (3002 MHz, CDC13):
8= 7.982 (3.1); 7.954 (3.4); 7.406 (0.4); 7.394 (3.7); 7379 (0.4); 7365 (3.4); 7300 (30.6); 7.149 (0.7); 7.139 (13); 7.133 (2.7); 7.129 (7.1); 7.121 (0.9); 7.105 (7.0): 7.100 (23); 7.096 (1.6); 7.085 (0.7): 6379 (0.7); 6368 (0.3); 4341 (16.0); 2.619 (13); 1.583 (293); 1296(0.4); 0.108 (6.3); 0.049 (1.1); 0.039 (32.1); 0.027 (12)_________________________________________________________________________________________
Example VI.33: 1 H-NMR (3002 MHz, CDC13):
5=7.893 (33); 7.865 (3.6); 7342 (1.9); 7311 (7.1); 7300 (23.1); 7288 (12.0); 7279 (2.3); 7266 (13); 7257 (2.8); 7230 (3.9); 7202 (3.6); 4313 (16.0); 4305 (03); 3306 (0.7); 2.619 (03); 1380 (93); 1.479 (0.7); 1.306 (0.8); 0.921 (0.7): 0.109 (1.1); 0.050 (0.7); 0.039 (24.0); 0.028 (0.9)
Example VI.34: 1H-NMR (3002 MHz, CDC13):
5= 7.925 (3.2); 7.924 (3.1); 7.897 (3.4); 7.895 (3.4); 7.460 (0.8); 7.450(72); 7.442(23); 7.427 (2.8); 7.420 (9.1) ; 7.409 (1.1); 7300 (24.4); 7213 (1.4); 7202 (12.8); 7.194 (3.0); 7.179 (33); 7.172 (92); 7.161 (0.8); 4.338 (16.0); 1382 (18.1); 0.050 (12); 0.039 (26.1); 0.028 (1.0)
Example VI.35:1H-NMR (3002 MHz, CDCh):
5= 7.906 (33); 7.905 (3.4); 7.878 (3.6); 7.877 (3.7); 7309 (4.4); 7300 (16.0); 7294 (32); 7.293 (3.2): 7282 (4.1) ; 7281 (4.1); 7269 (1.6); 7264 (33); 7259 (2.8); 7247 (4.1); 7245 (3.9); 7238 (4.0); 7232 (8.9); 7227 (5.7); 7210 (0.7); 7203 (0.7); 7.187 (0.4); 4312 (16.0); 4299 (1.0); 3.300 (0.6); 2.615 (0.4); 1.720 (1.1) ; 1383 (3.9); 1.479(0.8): 1322 (03); 1.294 (0.5); 0.109 (3.4); 0.050 (0,7); 0.039 (15.4); 0,028 (0.4)
Example VI.36: 1H-NMR (3002 MHz, CDCh):
5= 7.903 (3.4); 7.902 (3.4); 7.875 (3.7); 7.873 (3.6); 7.638 (4.0); 7.609 (4.9); 7348 (53); 7319 (4.4); 7.302 (23); 7240 (3.9); 7239 (3.9); 7212 (3.6): 6.915 (2.1); 6.727 (4.2); 6.539 (2.1); 4320 (16.0); 3271 (03); 3220(03); 2.621 (03); 2.619 (03); 0.039(23)
-111Example VII.01: Ή-NMR (300.2 MHz, CDCb):
5= 8.222 (4.3); 8.019 (4.5); 7.927 (2.0); 7.898 (2.1); 7.462 (0.4); 7.452 (4.1); 7.444 (1.5); 7.429 (1.5); 7.422 (5.4) ; 7,411 (0.6); 7300 (12.6); 7206 (2.3); 7.196 (0.7); 7.185 (53); 7.178 (3.7); 7.163 (1.5); 7.155 (43); 7.145 (0.5); 5.424 (8.1); 1.608 (16.0); 0.108 (13); 0.049 (03); 0.038 (14.8); 0.028(0.6)
Example VII.02;1 H-NMR (3002 MHz, CDCb):
5= 8378 (5.9); 8.245 (6.7); 8.032 (6.7); 7.496 (0.8); 7.485 (62); 7.478 (23); 7.463 (2.4); 7.455 (7.7); 7.445 (1.0); 7397 (63); 7300 (39.6); 7.178 (0.9); 7.168 (7.5); 7.160 (2.6); 7.145 (2.1); 7.138 (62); 7.127 (0.7); 5.499 (16.0); 5.340 (7.4); 1387 (19.7); 0.109(1.6); 0.050 (23); 0.039 (51.8); 0.029 (2.6)
Exemple VII.03: ‘H-NMR (400.1 MHz, CDCb):
5= 8.235 (2.1); 8.195 (5.7); 8.174(5.8); 8.004(3.3); 7.927 (03); 7.906(0.6); 7323 (5.1); 7318 (0.6); 7.501 (5.6) ; 7374 (0.6); 7354 (0.6); 7328 (5.1); 7321 (5.4); 7309 (0.4); 7297 (0.8); 7.259 (70.7); 7209 (0.4); 7.078 (3.3); 7.072 (3.1); 7.057 (3.0); 7.050 (2.9); 6.999 (6.0); 6.978 (5.9); 5.704 (16.0); 5.686 (03); 5298 (03); 4355 (0.4); 2.804 (1.2); 2.704 (33); 2.003 (2.4); 1.640 (03); 1.561 (0.7); 1305 (0.4); 1333 (0.4); 1314 (03); 1284(0.8); 1256 (1.7); 0.881 (0.6); 0.069 (1.9); 0.008 (1.6); 0.000 (46.8);-0.008 (1.6)
Example V1I.04: 'H-NMR (499.9 MHz, de-DMSO):
5= 8.534 (8.6); 8.494 (5.1); 8.477 (53); 8.033 (8.1); 7.758 (4.7); 7.752 (4.9); 7.712 (2.1); 7.710 (2.2); 7.694 (2.4) ; 7.692 (23); 7.425 (2.9); 7.419 (2.9); 7.407 (2.6); 7.401 (2.6); 7327 (5.4); 7311 (53); 5.883 (16.0): 3319 (14.6); 2.892 (03); 2.742 (0.8); 2.733 (03); 2311 (1.1); 2307 (2.4); 2304 (33); 2.500 (23); 2.497 (13); 1.989(03); 0.000(13)
Example VII.05: ‘H-NMR (300.2 MHz, CDCb):
8= 8.615 (8.1); 8232 (63); 8.005 (6.6); 7.497 (0.4); 7.489 (2.0); 7.483 (1.0); 7.464 (4.1); 7.463 (3.8); 7.443 (13); 7.437 (3.6); 7.429 (0.8); 7333 (1.0); 7329 (2.0); 7326 (13); 7310 (0.9); 7305 (2.6); 7299 (0.9); 7284 (0.8); 7.280 (13); 7.276 (0.9); 7.273 (0.5); 7271 (0.6); 7270 (0.7); 7.262 (34.2); 7252 (0.7); 7.247 (03); 7244 (0.4); 7.171 (1.0); 7.167 (3.8); 7.162 (5.1); 7.155 (1.4); 7.141 (22); 7.138 (3.8); 7.134 (33); 7.125 (0.6); 7.039 (8.7); 5.629 (16.0); 5302 (53); 1383 (4.9); 1253 (03); 0.011 (0.8); 0.008 (0.4); 0.000 (25.6) ; -0.009 (0.7);-0.011 (1.1)
Example VII.06: ‘H-NMR (400.1 MHz,de-DMSO):
8= 8330 (8.6); 8.461 (53); 8.440 (5.8); 8.032 (83); 7326 (03); 7.520 (2.8); 7315 (13); 7301 (5.0); 7.499 (5.0); 7.485 (1.7); 7.480 (4.2); 7.475 (0.6); 7344 (1.1); 7341 (2.0); 7339 (1.4); 7323 (32); 7307 (0.8): 7304 (1.4); 7302 (0.9); 7259 (4.6); 7256 (5.8); 7251 (1.7); 7239 (2.8); 7237 (4.7); 7235 (4.1); 7.228 (0.6); 7.200 (5.9); 7.179 (5.9); 5.878 (16.0); 3.314 (53); 2.897 (03); 2.738 (0.4); 2317 (6.1); 2.512 (123); 2308 (163); 2303 ( 11.7); 2.499 (5.6)________________________________________________________________
Example V1I.07: 'H-NMR (300.2 MHz, CDClj):
5= 8352 (5.4); 8344 (53); 8.219 (6.7); 8.016 (6.8); 7.608 (03); 7318 (2.0); 7311 (1.0); 7.493 (42); 7.471 (13); 7.465 (33); 7.457 (0.7); 7357 (1.0); 7353 (2.0); 7350 (1.2); 7.334 (1.0); 7329 (2.6); 7323 (0.8); 7308 (0.7); 7304 (12); 7300 (0.7); 7285 (5.7); 7277 (5.8); 7.271 (1.1); 7262 (77.9); 7.147 (3.9); 7.143 (5.1); 7.136 (1.4); 7.122 (23); 7.118 (3.9); 7.115 (33); 7.106 (0.6); 6.911 (0.4); 5.845 (16.0); 1362 (52.8); 1253 (03):0.011 (1.9); 0.000 (56.2); -0.011 (2.2)
Example V1I.08; 'H-NMR (499.9 MHz, ck-DMSO):
5= 8327 (83); 8.478 (4.7); 8.461 (4.8); 8.029 (7.7); 7.506 (4.1); 7.488 (5.8); 7.414 (1.0); 7.407 (8.4); 7.402 (2.8) ; 7393 (22); 7389 (6.0); 7382 (0.7); 7277 (4.9); 7260 (4.8); 5.877 (16.0); 3315 (10.4); 2305 (33); 2302 (4.8); 2.499 (3.8); 0.000 (1.7)
Example VII.09: 'H-NMR (400.1 MHz, ck-DMSO):
5= 8330 (8.8); 8.472 (5.7); 8.451 (5.9); 8.032 (8.6); 7.569 (0.7); 7361 (7.5); 7355 (23); 7344 (2.7); 7.538 (9.0); 7.530 (0.9); 7322 (1.0); 7314 (9.1); 7308 (2.8); 7297 (2.4); 7.291 (73): 7283 (0.7); 7260 (6.1): 7239 (6.1); 5.878 (16.0); 5.859 (03); 3312 (7.1); 2.897 (1.1); 2.739 (0.9); 2317 (7.1); 2.512 (14.4); 2308 (19.4) ; 2303 (13.6); 2.499 (63)
Example Vil. 10: Ή-NMR (400.1 MHz, de-DMSO):
5= 8322 (7.4); 8.470 (4.9); 8.449 (52); 8.028 (72); 7.489 (2.5): 7.488 (23); 7.483 (2.8); 7.482 (2.8); 7.379 (1.4) ; 7378 (1.4); 7372 (13); 7371 (13); 7357 (1.9); 7356 (1.9); 7351 (1.8); 7350 (1.8); 7242 (5.4);
7230 (43); 7221 (53); 7209 (3.4); 5.877 (13.2); 5.859 (03); 3312 (6.2); 2.897 (0.4); 2.739 (0.4); 2.738 (0,4); 2.530 (0.4); 2317 (6.2); 2313 (12.6); 2308 (173); 2304 (123); 2.499 (6.3); 2.108 (16.0)____________
ExampleVH.il: Ή-NMR (400.1 MHz, de-DMSO):
5= 8330 (7.2); 8.463 (43); 8.442 (4.7); 8.032 (7.0); 7.474 (2.4); 7.452 (2.8); 7.406 (3.4); 7.400 (3.6); 7240 (4.9) ; 7219 (4.9); 7.172 (2.1); 7.166 (2.1); 7.151 (1.9); 7.145 (1.8); 5.877 (12.9); 3313 (53); 2.897 (0.4); 2.738 (03); 2317 (5.5); 2312 (11,1); 2308 (14.9); 2303 (10.6); 2.499 (5.0); 2.366 (16.0)
-112 Example VII.12: Ή-NMR (400.1 MHz, de-DMSO):
5= 8.529 (8.8); 8.461 (5.7); 8.440 (5.9); 8.031 (8.6); 7.352 (0.8); 7.345 (0.6); 7337 (1.0); 7329 (6.9); 7325 (3 2); 73 20 (7.1 ); 7309 ( 11.1); 7307 ( 11.1); 7297 (1.1); 7285 (0.4); 7222 (6.1 ); 7201 (6.0); 5,876 ( 16.0); 5.856(0.4); 3.313 (5.9); 2,517 (6,5); 2.512 (13,1); 2.508 (17.7); 2303 (12,4); 2,499(5.8)___________________
Example VII. 13: ‘H-NMR (400,1 MHz, de-DMSO):
8= 8.524 (8.8); 8.506 (5.6); 8.485 (5.8); 8.030 (8.5); 7.562 (12); 7.555 (13); 7350 (12); 7340 (13); 7335 (23); 7327 (3.4); 7313 (3.4); 7.505 (23); 7.491 (1.2); 7379 (6.0); 7358 (5.8); 7242 (0.8); 7238 (0.9); 7.235 (0.8); 7231 (0.8); 7.218 (1.4); 7215 (1.4); 7212 (13); 7.199 (0.7); 7.195 (0.8); 7.192 (0.7); 7.188 (0.6); 5.887 (16.0); 3313 (9.6); 2.530 (03); 2317 (73); 2312 (14,7); 2308 (19.7); 2303 (13.9); 2,499 (63) Example VI 1.14; ‘H-NMR (400.1 MHz, de-DMSO):
5= 8325 (8.8); 8305 (62); 8.484 (6.4); 8.031 (83); 7.472 (1.0); 7.468 (1.1); 7.460 (12); 7.456 (1.4); 7.452 (1.9); 7,448 (2.1); 7.441 (3.4); 7.436 (2.9); 7.425 (1.9); 7.421 (32); 7.416 (2.1); 7.409 (1.0); 7.404 (1.0); 7396 (1.0); 7390 (1.8); 7.385 (1.4); 7378 (1.8); 7373 (1.4); 7370 (13); 7362 (7.0); 7358 (13); 7353 (1.0); 7341 (73); 7.335 (22); 7320 (2.1); 7316 (2.1); 7301 (0.8); 7300 (0.8); 7297 (0.8); 5.889 (16.0); 5.872 (0.4); 3315 (63); 2.897 (0.5); 2.739 (0.4); 2.738 (0.4); 2.530 (0.4); 2326 (0.6); 2.517 (6.0); 2.513 (12.1) ; 2308 (16.7); 2.504 (12.0); 2.499(6.0); 2.463 (03)___________________________________________
Example VII. 15: Ή-NMR (400.1 MHz, de-DMSO):
8= 8.537 (8.8); 8.494 (6.0); 8.472 (6.3); 8.035 (8.7); 7300 (0.6); 7.491 (2.9); 7.485 (1.0); 7.475 (3.0); 7.469 (3.0); 7.460 (1.1); 7.454 (2.8); 7.445 (0.8); 7.436 (0.4); 7317 (6.5); 7295 (63); 5.882 (16.0); 5.862 (03); 3311 (8.5); 2331 (03); 2.517 (7.6); 2313 (16.0); 2308 (22.1); 2304 (16.3); 2.499 (83); 2.463 (0.5); 2.459 (0-4)________________________________________________________________________________________________________________
Example VI1.16;‘H-NMR (3002 MHz,CDCh):
8= 8.222 (8.9); 8.194 (4.8); 8.020 (2.0); 8.004 (53); 7.608 (0.4); 7.520 (3.5); 7312 (3.9); 7358 (2.0); 7.350 (1.8) ; 7.329 (2.9); 7321 (2.8); 7279 (0.4); 7.277 (0.4); 7276 (0.4); 7273 (0.7); 7262 (62.1); 7.250 (1.2); 7247 (0.9); 7246 (0.8); 7.244 (0.8); 7.240 (0.6); 7234 (03); 7228 (0.4); 7200 (4.7); 7.171 (32); 7.054 (4.8) ; 7.025 (4.7); 6.911 (0.4); 5.710 (12.5); 2.959 (16.0); 2.886 (13.8); 2.885 (133); 1370 (15.1); 1.252 (0.4); 0.011 (1.8); 0.009 (1.1); 0.000 (49.7);-0.010 (1.4); -0.011 (1.9); -0.018 (0.4)___________________________
Exemple VI 1.17: Ή-NMR (3002 MHz,CDCb):
8= 8.231 (33); 8222 (2.9); 8.194 (2.8); 8.091 (0.4); 8.082 (32); 8.075 (1.2); 8.059 (1.1); 8.053 (3.4); 8.044 (0.6); 8.019 (0.4); 8.008 (33); 7299 (03); 7290 (3.4); 7283 (12); 7.278 (0.4); 7276 (0.4); 7275 (0.5); 7273 (0.6); 7263 (33.8); 7252 (1.0); 7.031 (2.8); 7.002 (2.8); 5.719 (7.4); 2.959 (13); 2.887 (1.1); 2.885 (1.1) ; 2.641 (16.0); 2.562 (03); 2.048 (0.9); 1367 (83); 1261 (0.6); 0.011 (0.8); 0.007 (0.5); 0.000 (25.4); -
0.009 (0.8);-0.0 H (1.1)_________________________________________________________________________________
Example VILÏ8:’H-NMR (3002 MHz,CDCh):
5= 8.450 (5.1); 8.422 (5.4); 8,193 (7.8); 8.019 (7.8); 7.608 (03); 7.429 (0.8); 7.418 (63); 7.411 (2.4); 7396 (2.6) ; 7389 (83); 7378 (12); 7330 (0.4); 7300 (03); 7262 (77.9); 7230 (03); 7.152 (1.1); 7.141 (7.6);
7.134 (23); 7.119 (23); 7.112 (6.4); 7.101 (0.6); 6.955 (4.7); 6.927 (4.6); 6.911 (0.6); 5.568 (16.0); 5.302 (0.9); 1354 (49.9); 1340 (0.4); 1252 (1.1); 0.881 (03); 0.195 (03); 0.081 (0.9); 0.069 (25.4); 0.057 (13); 0.026 (03); 0.011 (2.9); 0.000 (87.8); -0.011 (43); -0.031 (0.6); -0200 (0.4)_________________________________
Example VII. 19:‘H-NMR (3002 MHz, CDCb):
5= 8.221 (3.0); 8.196 (2.4); 8.167 (23); 8.001 (3.0); 7264 (6.6); 7.157 (1.8); 7.127 (23); 7.031 (1.8); 7.022 (2.1) ; 6.965 (2.6); 6.937 (2.4); 6.897 (1.4); 6.887 (12); 6.867 (1.1); 6.857 (1.0); 5.716 (6.8); 5301 (16.0);
3.841 (13.1); 3.827 (0.7); 3.818 (03); 3.808 (12); 1,610 (5.6); 0.070 (0.4); 0.000 (6.8)______________________
Example VH.20: ‘H-NMR (3002 MHz, CDCb):
8= 8233 (10.0); 8205 (3.0); 8.201 (5.1); 8.005 (72); 7.865 (6.9); 7.857 (3.0); 7.841 (5.6); 7.834 (6.7); 7309 (5.6) ; 7.278 (5.7); 7266 (5.9); 7.053 (52); 7.025 (4.9); 5.718 (16.0); 5305 (6.6); 5301 (123); 1.662 (6.4);
1.258 (03); 0.003 (3.1); 0.000 (53)______________________________________________________________________
Example VH.21:‘H-NMR (300.2 MHz, CDCb):
8= 8.572 (6.1); 8248 (6.8); 8.034 (7.0); 7.931 (0.6); 7.920 (5.9); 7.914 (22); 7.897 (2.0); 7.890 (6.7); 7.452 (6.4); 7.332 (4.0); 7300 (30.7); 5303 (16.0); 5340 (53); 1393 (10.7); 1308 (03); 1295 (0.6); 0.109 (7.2); 0.050 (1.3); 0.039 (35.7); 0.029 (1.7)_____________________________________________________________________
Exemple V1I.22: ‘H-NMR (3002 MHz, CDCb):
8= 8266 (6.8); 8246 (4.8); 8217 (4.9); 8.044 (6.7); 7.660 (33); 7.631 (4.0); 7327 (4.6); 7300 (443); 7.039 (5.0); 7.010 (4.7); 6.923 (1.7); 6.735 (3.4); 6.547 (1.7); 5.753 (16.0); 5.339 (0.4); 1391 (21.4); 1352 (0.4); 1293 ( 1.1 ); 0.108 (3.0); 0.050 ( 1.5); 0.039(42.6); 0.028(13)
-113Example VII.23: ‘Η-NMR (499.9 MHz, de-DMSO):
5= 8.946 (1.3); 8.897 (1-3); 8.756 (9.9); 8332 (8.7); 8.416 (1.2); 8.027 (8.2); 8.015 (03); 7397(0.7); 7390 (7.0); 7386 (23); 7377 (2.7); 7372 (8.6); 7366 (1.2); 7355 (0.6); 7.545 (1.1); 7341 (03); 7338 (0.4); 7332 (0.5); 7328 (12); 7.402 (1.0); 7395 (8.5); 7391 (2.8); 7381 (2.5); 7377 (7.2); 7370 (1.9); 7356 (0.6); 7351 (1.1); 5.929 (16.0); 3300 (185.7); 2.681 (3.9); 2391 (0.4); 2.560 (0.4); 2.507 (8.9); 2.503 (182); 2300 (25.1); 2.496 (18.7); 2.493 (9.8); 2.070 (0.8); 0.006 (03); 0.000 (73); -0.007 (0.5)
Example VH.24: Ή-NMR (3002 MHz, CDCh):
5= 8.223 (8.6); 8.022 (8.8); 7.930 (3.9); 7.902 (42); 7.646 (0.6); 7.613 (0.8); 7.602 (8.5); 7.595 (2.8); 7.579 (2.8) ; 7372 (93); 7362 (1.1); 7366 (0.6); 7300 (100.9); 7233 (03); 7209 (43); 7.181 (4.0); 7.145 (1.0);
7.134 (9.5); 7.127 (3.0); 7.112 (2.6); 7.104 (8.2); 7.094 (0.9); 6.949 (03); 5.425 (16.0); 1.657 (0.6); 1397 (38.8) ; 1393 (86.1); 1324(0.5); 1326(0.4); 1292(0.9); 0.919 (03); 0233 (0.4); 0.120 (0.7); 0.108 (20.9); 0.095 (0.7); 0.049 (3.4); 0.038 (102.6); 0.027 (33); -0.028 (0.4); -0.161 (0.4)
Exemple VII.25: ‘H-NMR (3002 MHz, CDCh):
5= 8318 (4.9); 8.490 (6.7); 8.487 (5.9); 8.459 (5.1); 8.265 (0.4); 8237 (14.7); 8.057 (15.0); 7.646 (0.3); 7.492(1.4); 7.481 (13.5); 7.473 (4.4); 7.458 (5.0); 7.451 (16,0); 7.440 (2.0);7.412 (0.5); 7300 (55.9); 7.191 (1.9) ; 7.180 (16.7); 7.173 (5.0); 7.158 (4.6); 7.150 (13.0); 7.140 (1.6); 7.016 (5.7); 7.010 (53); 6.988 (5.5); 6.982(52); 6.949 (03); 5.619 (15.7); 5.607 (15.6); 5.571 (0.9); 2.692 (1.1); 2.046 (03); 1.610 (13.9); 1306 (0.4); 1292 (03); 0.119 (0.5); 0.107 (103); 0.095 (03); 0.048 (2.4); 0.047 (1.7); 0.038 (60.4); 0.030 (1.9); 0.028 (1.8); 0.027 (23); 0.018 (0.4)
Example V1126: Ή-NMR (300.2 MHz, CDCh):
5= 8384 (5.9); 8245 (6.9); 8.030 (6.9); 7.414 (6.1); 7368 (2.9); 7340 (4.7); 7338 (43); 7300 (12.6); 7264 (1.1); 7253 (9.0); 7245 (2.4); 7231 (1.9); 7.223 (5.0); 7212 (03); 5302 (16.0); 5337 (9.8); 4.170 (0.7); 4.146 (0.7); 2.082 (3.1); 1.639 (5.4); 1320 (0.9); 1296 (1.8); 1273 (0.8); 0.107 (1.4); 0.048 (0.4); 0.037 (12.6) ; 0.026(03)___________________________________________________________
Example VII27: Ή-NMR. (3002 MHz, CDCh):
δ= 8378 (5.8); 8244 (6.8); 8.031 (6.9); 7.645 (0.8); 7.634 (6.9); 7,627 (22); 7.612(23); 7.605 (7.7); 7394 (0.8); 7398 (6.0); 7300 (243); 7.124 (0.8); 7.113 (7.8); 7.106 (23); 7.091 (2.2); 7.084 (6.9); 7.073 (0.7); 5300 ( 16.0); 5339 (3.1); l.609 ( 14.4); 0.108 ( 1.0); 0.049 (0.9); 0.038 (25.7); 0.027 ( 1.0)
Example VII28: Ή-NMR (3002 MHz, CDCh):
δ= 8.576 (4.9); 8247 (5.7); 8.033 (5.9); 7.793 (33); 7.765 (4.0); 7.445 (5.3); 7350 (3.8); 7322 (3.6); 7310 (1.1); 7.300 (32.4); 5304 (13.7); 5339 (13.6); 1.600 (16.0); 1293 (0.4); 0.108 (13); 0.049 (1.6); 0.038 (34.7) ; 0.027 (13)_____________________________________________________________
Example V1I29: Ή-NMR (3002 MHz, de-DMSO):
S= 9.008 (6.8); 8.549 (93); 8.059(9.2); 7.752(8.8); 7.717 (5.0); 7.462 (5.7); 7.434 (4.6); 7307 (1.8); 7.121 (42); 6.935 (2.0); 5.945 (15.0); 5.781 (0.8); 4.088 (12); 4.064 (3.6); 4.057 (0.6); 4,041 (3.6); 4.017 (12); 3347 (22.1); 2337 (1.9); 2.531 (4.0); 2325 (53); 2319 (4.0); 2313 (1.9); 2.012 (16.0); 1221 (4.4); 1.198 (8.8) ; 1.174 (43); 0.023 (3.8)________________________________________________________________
Example V1L30: Ή-NMR (3002 MHz, de-DMSO):
&= 8.999 (7.1); 8339 (10.0); 8.057 (10.0): 7.866 (7.7); 7.770 (2.8); 7.762 (2.9); 7.735 (2.7); 7.727 (2.8); 7379 (2.1); 7350 (4.6); 7322 (33); 7.471 (2.7); 7.467 (2.7); 7.463 (2.5); 7.459 (2.2); 7.441 (1.4); 7.438 (1.6) ; 7.433 (1.4); 7.430 (1.3); 5.950 (16.0); 5.781 (15.8); 3352 (4.1); 2337 (2.1); 2331 (4.4); 2325 (6.0); 2.519(4.4); 2.513 (2.1); 0.022 (7.5); 0.011 (0.4)
Example V11.31: Ή-NMR (3002 MHz, CDCh):
5= 8225 (8.9); 8.021 (9.1); 7.974 (4.0); 7.946(4.2); 7.899 (1.0); 7.888 (7.9); 7.881 (2.8); 7.865 (2.9); 7.858 (8.7) ; 7.847 (l.l); 7362 (5.1); 7332 (4.6); 7300 (30.4); 7288 (5.0); 7260 (43); 5.433 (16.0); 5338 (10.9);
1.606 (6.4); 1293 (0.6); 0.108 (0.7); 0,049 (1.4); 0.038 (32.7); 0.027 (13)_________________________________
Exemple V11.32: ‘H-NMR (499.9 MHz, CDCh):
5= 8.182 (8.2); 7.976 (8.1); 7.915 (3.9): 7.898 (4.1); 7.711 (5.5); 7.694 (6.0); 7327(5.7); 7310 (53); 7.263 (5.1 ); 7.221 (43); 7.204 (4.1 ); 5390 ( 16.0); 5296 (0.4); 1.634 (0.7); 0.000 (53); -0.007 (0.4)
Exemple VI1.33: 1H-NMR (3002 MHz, CDCh):
5= 8.225 (8.1); 8.030(8.4);7.994(3.9); 7.966(4.1); 7.646 (0.5);7.408(4.5); 7380(4.1); 7319(0.6);7.300 (86.9) ; 7.153 (0.9); 7.142 (1.8); 7.132 (8.7); 7.108 (83); 7.104 (2.6); 7.099 (1.7); 7.088 (0.8); 6.949 (0.4);
5.431 (16.0); 1.589 (31.8); 1354 (0.5); 1.292 (1.3); 0.920 (0.4); 0.234 (0.4); 0.108 (12.4); 0.049 (33); 0.039 (933); 0.028 (32); 0.015 (0.4); -0.160(03)
-114Example VI1.34: IH-NMR (499.9 MHz, CDCb):
5=8.186 (4.0); 7.970 (4.1); 7.847(1.8); 7.830 (1.9); 7.288 (3.1); 7.271 (3.8); 7267(1.9); 7.106 (0.6); 7.101 (4.1) ; 7.097 (1.4); 7.087 (1.3); 7.084 (3.4); 7.078 (0.4); 7.061 (2.0); 7.044 (2.0); 5393 (7.4); 2.966 (0.8);
2.952 (1.1); 2.938 (0.8); 2.924 (0,4); 1286 (15.9); 1272 (16.0); 1259 (0.5); 0.000 (12)____________________
Example VH.35:1H-NMR (3002 MHz, CDCb):
5= 8.250 (6.6); 8.098 (3.8); 8.070 (42); 8.040 (73); 7.647 (0.5); 7.615 (1.0); 7.604 (83); 7397 (2.6); 7382 (3.1) ; 7374 (9.1); 7364 (13); 7302 (68.9); 7.158 (3.9); 7.147 (1.4); 7.136 (10.1); 7.129 (63); 7.113 (3.0); 7.106 (8.0); 7.096 (1.0); 7.018 (2.7); 6.950 (03); 6.836 (5.1); 6.655 (2.6); 5361 (16.0); 5341 (13); 1.613 (15.8); 1293 (13); 0.122 (0.4); 0.109 (8.8); 0.098 (0.4); 0.051 (1.4); 0.040 (42.7); 0.029 (1.6)
Example V1I.36: 1H-NMR (3002 MHz, CDCh):
8= 8.819 (4.9); 8252 (72); 8.056 (73); 7.644 (03); 7.586 (1.8); 7302 (0.7); 7.491 (6.8); 7.483 (6.1); 7.468 (2.4); 7.461 (8.0); 7.450 (0.9); 7.405 (3.7); 7298 (87.1); 7223 (1.9); 7.193 (0.8); 7.182 (8.1); 7.174 (23); 7.159 (2.1); 7.152 (63); 7.141 (0.6); 6.947 (03); 5.624 (16.0); 5338 (6.7); 1383 (53.8); 1291 (23); 0.107 (1.7) ; 0.048 (2.8); 0.038 (89.7); 0.027 (3.3):-0.161 (0.4)
Example VH.37: 1 H-NMR (3002 MHz, CDCh):
5= 8.222 (7.7); 8.024 (8.6); 7.993 (0.4); 7.957 (3.9); 7.930 (4.2); 7,646 (0.4); 7337 (03); 7311 (5.7); 7300 (832); 7283 (5.0); 7267 (2.9); 7265 (3.4); 7261 (3.9); 7239 (7.6); 7233 (7.7); 7226 (6.4); 7222 (3.9); 7.198 (0.6); 6.949 (0.4); 5.426 (16.0); 5340 (1.1); 1391 (25.1); 1368 (0.4); 1350 (03); 1293 (1.0); 0.920 (0.4); 0.234 (0.4); 0.108 ( 10.6); 0.067 (0.4); 0.049 (3.6); 0.039 (88.4); 0.028 (3.1); 0.018 (0.4)
Example VII.38:1H-NMR (300.2 MHz, d6-DMS0):
8= 8.833 (102); 8351 (9.6); 8.057 (9.4); 7.585 (0.8); 7373 (7.8); 7.566 (23); 7.551 (3.0); 7.544 (9.5); 7333 (1.1) ; 7.496 (10.9); 7334 (1.1); 7323 (9.8); 7315 (2.8); 7300 (2.7); 7293 (7.4); 7282 (0.8); 5.912 (16.0);
5.786 (13); 3 355 (11.4); 2340 (33); 2334 (6.8); 2328 (9.2); 2322 (6.6); 2316 (3.1); 0.026 (83); 0.015 (03)_________________________________________________________________________________________
Example V11.39: 1H-NMR (3002 MHz, CDCh):
8= 8225 (7.9); 8.021 (8.6); 7.940 (3.9); 7.912 (43); 7342 (3.0); 7312 (7.6); 7300 (343); 7284 (22); 7275 (13.6) ; 7.266 (3.0); 7252 (22); 7244 (4.8); 7227 (4.8); 7.198 (4.4); 5.428 (16.0); 5.339 (32); 2.084 (0.4);
1,608 (5.6); 1298 (03); 1.292 (0.5); 0,108 (4.4); 0.049 (12); 0.038 (37.2); 0.027 (1.4)______________________
Example VII.40: IH-NMR (3002 MHz, CDCh):
8= 8.606 (82); 8265 (6.7); 8.026 (7.0); 7.762 (4.0); 7.733 (4.6); 7321 (4.4); 7298 (5.9); 7294 (4.1); 7.159 (8.6) ; 5.663 (16.0); 5329 (102); 0.031 (3.8)
Example VIL41: IH-NMR (3002 MHz,CDCh):
5= 8.817 (53); 8251 (72); 8.055 (7.1); 7.651 (0.8); 7.640 (6.4); 7.634 (2.7); 7.618 (23); 7.611 (7.3); 7.585 (1.8) ; 7.481 (5.6); 7.404 (3.9); 7298 (49.1): 7223 (1.9); 7.139 (0.9); 7,128 (7.1); 7.122 (2.9); 7.106 (22); 7.099 (63); 5.624 (16.0); 5.338 (43); 1386 (30.9); 1342 (03); 1291 (22); 0.918 (0.4); 0.107 (2.0); 0.048 (2.4); 0.038(51.2)
Example VI1.42: 1 H-NMR (3002 MHz, CDCh):
8= 8223 (8.7); 8.017 (9.0); 7.947 (3.9); 7.918 (4.2); 7.637 (43); 7.609 (5.4); 7332 (62); 7301 (8.5); 7.234 (43); 7206 (42); 6.915 (23); 6.727 (4.6); 6339 (23); 5.432 (16.0); 5334 (13); 3292 (0.4); 1.741 (0.6): 0.034(4.6)
Example 1X.0I:’H-NMR (300.2 MHz, CDCh):
8= 8.496 (5.1); 7.450 (0.6); 7.439 (63); 7.432 (2.1); 7.417 (23); 7.409 (7.9); 7.399 (0.9); 7300 (312); 7.183 (5.8); 7.151 (1.0); 7.140 (7.8); 7.133 (2.4); 7.118 (2.1); 7.110 (6.4); 7.099 (0.7); 5340 (0.9); 3.053 (3.8); 3.037 (4.9); 2.917 (2.6); 2.901 (2.0); 1.682 (16.0); 1382 (18.0); 1304 (0.7); 0.921 (0.7); 0.109 (13); 0.050 (1.0); 0.049 (0.7); 0.047 (0.7); 0.039 (33.9): 0.029 (1.4)
-115Example IX.02: 'H-NMR (4000MHz,de-DMSO):
5= 8.630 (0.5); 8.170 (63); 7.467 (03); 7.462 (0.5); 7.450 (2.9); 7.445 (1.8); 7.431 (4.1); 7.429 (4.1); 7.415 (13); 7.410 (33); 7.404 (0.7); 7281 (03); 7263 (1.4); 7260 (1.8); 7.258 (1.2); 7242 (2.9); 7236 (6.9); 7.226 (0.9); 7223 (12); 7220 (0.8); 7.191 (0.4); 7.188 (0.4); 7.173 (1.1); 7.170 (1.1); 7.155 (4.0); 7.152 (4.9); 7.147 (13); 7.135 (23); 7.133 (33); 7.131 (3.0); 7.124 (0.6); 7.105 (03); 6.428 (03); 3327 (40.6); 3251 (0.7); 3.077 (4.0); 3.022 (3.1); 3.009 (33); 2.996 (03); 2.825 (2.4); 2.812 (2.2); 2.711 (0.6); 2.622 (03); 2392 (33); 2362 (03); 2342 (136.6); 2325 (13); 2311 (17.8); 2307 (35.0); 2302 (45.6); 2.498 (33.1) ; 2.493 (16.0); 2.472 (03); 2.432 (03); 2.429 (03); 2368 (0.6); 2329 (0.4); 1.989 (0.7); 1.642 (0.6);
1382 (16.0); 1.258 (0.4); 1.235 (1.4); 1.135 (0.4); 1.119 (03); 1.106 (12.4); 0.853 (03); 0.836 (0.4); 0.000 (43)____________________________________________________________________________________
Example IX.03: ‘H-NMR (400.0 MHz, de-DMSO):
8= 9.657 (0.4); 8.172 (5.6); 7.502 (0.6); 7.496 (0.7); 7.487 (4.7); 7.481 (2.0); 7.470 (1.9); 7.465 (53); 7.456 (0.9); 7.447 (0.4); 7.430 (03); 7.421 (03); 7.408 (0.3); 7303 (5.5); 7.218 (0.8); 7213 (0.9); 7204 (53); 7.199 (2.2); 7.188 (1.8); 7.182 (4.7); 7.176 (1.0); 7.149 (0.4); 6.772 (03); 6.750 (03); 3.748 (0.4); 3.660 (0.6); 3.602 (0.4); 3327 (263); 3251 (0.7); 3.077 (5.1); 3.025 (2.6); 3.013 (2.9); 2.996 (0.6); 2.821 (22); 2.808 (1.9); 2.712 (03); 2394 (1.8); 2364 (03); 2.542 (118.0); 2311 (17.7); 2307 (35.6); 2302 (473); 2.498 (35.2); 2.494 (17.7); 2368 (0.6); 2329 (0.4); 1.989(0.7); 1.760 (03); 1.622 (0.4); 1381 (14.0); 1.298 (03); 1259 (0.9); 1235 (2.8); 1.193 (0.4); 1.183 (1.1); 1.169 (0.5); 1.135 (03); 1.119 (0.6); 1.106 (16.0); 1.082 (0.4); 1.046 (0.6); 0.867 (0.4); 0.854 (0.9); 0.836 (0,7); 0.813 (0.3); 0.000 (3.9)________________________
Example 1X.04: 'H-NMR (400.0 MHz, de-DMSO):
5= 9319 (0.3); 7.931 (33); 7.910 (3.6); 7.489 (0.4); 7.473 (23); 7.453 (43); 7.434 (3.4); 7.421 (0.9); 7.401 (0.6); 7285 (1.6); 7266 (23); 7248 (13); 7234 (0.6); 7216 (0.8); 7.197 (0.7); 7.179 (43); 7.160 (3.8);
7.134 (0.8); 7.120 (0.4); 7.013 (3.7); 6.993 (3.6); 6389 (03); 3.744 (0.4); 3.628 (1.6); 3.601 (03); 3.329 (352); 3251 (0.6); 3.077 (1.6); 3.(M0 (2.9); 3.027 (33); 2.996 (0.4); 2.818 (2.6); 2.805 (2.4); 2.712 (12): 2369 (1.9); 2342 (199.7); 2321 (2.1); 2307 (30.0); 2503 (403); 2.498 (31.6); 2459 (1.8); 2368 (13); 2330 (0.4); 1.989 (0.6); 1.769 (03); 1.760 (0.7); 1.751 (03); 1.630 (03); 1385 (03); 1365 (16.0); 1.259 (0.4); 1.235(1.1); 1.183 (03); 1.135 (0.4); 1.119(0.4); 1.106 (5.1); 0.854 (0.4); 0.000 (3.4)
Examplc DC.05:1H-NMR (300.2 MHz, d6-DMSO):
5=8216 (1.9); 8,188 (3.6); 8.163 (22); 8.115 (6.9); 8.086 (7.4); 7.721 (63); 7.707 (14.0); 7.678 (16.0); 7.450 (43); 7.417 (10.0); 7.403 (13.1); 7389 (14.5); 7374 (10.6); 7362 (63); 7289 (6.2); 7.103 (13.2): 6.917 (6.4); 3358 (153); 3.070 (83); 3.054 (10.1); 2.921 (7.8); 2.905 (6.5); 2540 (5.5): 2334 (10.8); 2328 (143); 2322 (103); 1.616 (43); 1392 (03); 1356 (0.6); 1399 (0.8); 1381 (1.7); 1371 (1.9); 1354 (3.0);
1337 (1.9); 1329 (1.8); 1311 (0.9); 1269 (0.3); 1218 (03); 1.165 (0.3); 1.140 (0.4); 1.133 (03); 1.125 (0.4); 1.110 (0.4); 0319 (0.8); 0312 (0.7); 0300 (2.0); 0.482 (7.8); 0.468 (3.4); 0.455 (8.7); 0.449 (6.0);
0.441 (5.0); 0.427 (32); 0.422 (32); 0.410 (3.6); 0.404 (2.9); 0392 (3.1); 0361 (1.0); 0356 (1.4); 0348 (3.1) ; 0.331 (3.9); 0322 (1.9); 0309 (2.6); 0301 (13); 0293 (1.0); 0.034 (0.8); 0.024 (152); 0.013 (0.7)
Examplc IX.06: 1H-NMR (300.2 MHz, CDCb):
5= 7.441 (0.4); 7.418 (0.4); 7.411 (0.7); 7389 (03); 7371 (03); 7360 (4.9); 7353 (1.8); 7343 (0.9); 7338 (2.0); 7330 (63); 7320 (0.9); 7313 (0.9); 7300 (5.3); 7202 (03); 7.193 (0.6); 7.181 (0.4); 7.172 (0.4);
7.163 (0.7); 7.143 (0.4); 7.135 (03); 7.124 (0.7); 7.114 (63); 7.106 (2.0); 7.091 (1.9); 7.084 (6.9); 7.071 (1.1) ; 7.064 (03); 7.054 (3.0); 7.042 (0.6); 5.883 (2.6); 5.851 (23); 4.844 (2.7); 4.809 (3.0); 4.633 (0.4);
4.198 (03); 4.192 (13); 4.186 (1.6); 4.181 (0.6); 4.162 (0.5); 4.157 (13); 4.151 (1.4); 4.145 (0.6); 3.827 (0.7); 3336 (1.9); 3.171 (0.4); 2.892 (0.4); 2.654 (0.6); 2.616 (0.9); 2.614 (0.9); 2333 (03); 2.081 (16.0); 1.985(2.4); 1.725(1.1); 1.676(0.6); 1396(43); 1350(0.7); 1263 (0.3); 0.041 (53)______________________
Examplc IX.07:1H-NMR (300.2 MHz, d6-DMSO):
8= 8.092 (6.0); 8.064 (6.4); 7.891 (0.4); 7.864 (0.4); 7.565 (13); 7354 (12.8); 7.546 (5.0); 7331 (5.1); 7324 (16.0); 7.515 (23); 7380 (6.8); 7352 (6.4); 7322 (23); 7311 (16.0); 7304 (4.8); 7289 (5.7); 7282 (123); 7270 (1.4); 7258 (1.0); 4.810 (03); 4.651 (0.6); 4252 (0.7); 4234 (0.6); 3.480 (03); 3.462 (03); 3.354 (13,8); 3.065 (7.0); 3.049 (8.4); 2.910 (6.7); 2.894 (5.6); 2334 (9.4); 2328 (12.6); 2322 (9.1); 2387 (0.4);
2364 (03); 1389 (0.6); 1372 (13); 1362 (1.5); 1345 (23); 1328 (13); 1320 (1.6); 1302 (0.8); 1.262 (0.4); 0315 (0.6); 0.495 (1.8); 0.477 (63); 0.465 (3.0); 0.449 (7.1); 0.436 (3.0); 0.433 (3.1); 0.420 (2.6);
0,415 (2.4); 0.408 (1.7); 0.401 (3.0); 0383 (2.6); 0350 (1.0); 0341 (2.6); 0324 (33); 0303 (2.4); 0.294 (1.1 ); 0.036(0.6); 0.025(12.4); 0.014 (03)
- 116 Example IX.08: 1H-NMR (300.2 MHz, d6-DMSO):
5= 8.193 (1.0); 8.165 (1.8); 8.140 (1.1); 8.092 (4.6); 8.064 (5.0); 7.696 (2.7); 7.689(1.5); 7.678 (14.8); 7.671 (6.6) ; 7.656 (5.0); 7.648 (16.0); 7.637 (1.6); 7.414 (2.1); 7383 (5.9); 7354 (4.9); 7.262 (12); 7.251 (12.5);
7243 (5.4); 7241 (6.4); 7233 (2.4); 7228 (3.6); 7221 (10.6); 7211 (5.4); 7200 (0.5); 3 357 (7.1);3.064 (53); 3.048 (63); 2.910 (5.0); 2.894 (4.4); 2340 (2.4); 2334 (5.1); 2.528 (6.8); 2322 (4.9); 2316(23);
2.014 (0.5); 1.604 (0.3); 1391 (3.0); 1391 (0.4); 1372 (1.0); 1361 (13); 1344 (2.0); 1328 (1.4);1.320 (13); 1302 (0.9); 1268 (2.7); 0.902 (0.8); 0.880 (2.5); 0.857 (0.9); 0.513 (0.4); 0.493 (1.1); 0.475 (4.9);
0.462 (22); 0.448 (53); 0.434 (2.8); 0.420 (2.0); 0.415 (2.0); 0.401 (2.3); 0384 (2.0); 0349 (0.8);0.341 (2.0); 0324 (2.6); 0.311 (1.0); 0.302 (1.8); 0294 (1.0); 0286 (0.7); 0,022 (7.4)
Example IX.10:1HNMR (3002 MHz, CDClj):
8= 8.255 (6.0); 7.429 (0.6); 7.418 (52); 7.410 (1.8); 7.395 (2.0); 7.388 (6.2); 7377 (0.8); 7300 (3.4); 7.128 (0.8); 7.117 (6.4); 7.109 (2.1); 7.094 (1.8); 7.087 (5.1); 7.076 (0.6); 6.970 (63); 5.337 (12); 3.029 (3.3); 3.012 (3.9); 2.841 (2.6); 2,839 (23); 2.824 (22); 2.822(2.1); 1.696 (16.0); 1.612 (22); 0.039 (33)__________
Example IX. 11: 1 H-NMR (3002 MHz, d6-DMSO):
8=9.802 (03); 8242 (1.1); 8215 (2.0); 8.189(12); 8.140 (7.8); 8.111 (83); 7.960 (0.3); 7.875 (13.8); 7.847 (16.0); 7.813 (0.5); 7.754 (2.7); 7.729 (2.5); 7.502 (3.6); 7.489 (122); 7.472 (14.1); 7.461 (11.1); 7.444 (10.1); 7.015 (03); 6.986 (0.4); 3.355 (20.6); 3.075 (92); 3.059 (113); 3.035 (0.5): 3.027 (0.8); 3.010 (0.7); 2.925 (8.6); 2.908 (73); 2.879 (03); 2340 (6.0); 2334 (12.8); 2328 (173); 2.522 (12.6); 2316 (5.9); 1.898 (03); 1.605 (12); 1391 (10,7); 1343 (1.0); 1.474 (03); 1.405 (0.7); 1378 (2.1); 1358 (3.4); 1342 (22); 1.333 (2.1); 1315 (12); 1269 (2.5); 0.903 (0.7); 0.881 (2.3): 0.858 (0.9); 0303 (1.7); 0.485 (9.0); 0.472 (3.7) ; 0.458 (10.9); 0.448 (5.1); 0.430 (4.0); 0.417 (4.5); 0397 (33); 0385 (12); 0354 (3.6); 0345 (2.1); 0.336 (4.0); 0324 (1.9); 0315 (2.5); 0307 (22); 0298 (1.4); 0277 (0.6); 0.034 (03); 0.023 (18.0); 0.012 (0.8)
Use Examples
Exampïe A: in vivo preventlvç test on Botrytis cinerea (grçv mould)
5 Solvent: 5% by volume of Dimethyl sulfoxidc (DMSO)
10% by volume of Acetone
Emulsifien Ιμΐ of Tween* 80 per mg of active ingrédient
The active ingrédients are made soluble and homogenized in a mixture of Dimcthyl sulfoxidc/Acetone/ /Twcen* 80 and then dilutcd in water to the desired concentration.
The young plants of gherkin are treated by spraying the active ingrédient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimethyl sulfoxidc/ Tween* 80.
After 24 hours, the plants are contamïnated by spraying die leaves with an aqueous suspension of Botrytis cinerea spores. The contamïnated gherkin plants are incubated for 4 to 5 days at 17°C and at 90% relative humidity.
The test is evaluated 4 to 5 days after the inoculation. 0% means an efTicacy which corresponds to that of the control plants while an efïicacy of 100% means that no disease is observed.
-II7In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of500 ppm of active ingrédient; L25; L58; 1.82; VIL38
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingrédient; 1.19; 131 ; 137; 1.43; 1.47; 137; L67; L71; VII.09
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm ofactive ingrédient: LOI; L03; 1.05; L07; LOS; L09; I.I2; 1.13; LI4; LIS; L16; LI7;
I.2I; 1.29; L32; 134; 1.38; L39; 1.40; 1.42; L45; 1.48; 1.49; 1.50; I.5I; 1.53; 135; 136; 139; I.6I; L62; 1.65; 1.68;
1.75; 1.78; 1.79; 1.86; 1.88; 1.91 ; 1.92; 1.93; L96; VÏÏ.01; Vn.06; Vn.08; VII. 11; VH34; VH.40; VH.41
Example B: in vivo préventive test on PuccMa recondifa (brown rust an wheat)
Solvent
Emulsifien
5% by volume of Dimethyl sulfoxide
10% by volume of Acetone
ΙμΙ of Tween® 80 per mg of active ingrédient
The active ingrédients are made soluble and homogenized in a mixture of Dimethyl sulfoxidc/Acetone/ /Tween® 80 and then diluted in water to the desired concentration.
The young plants of wheat are treated by sprayîng the active ingrédient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimcthyl sulfoxide/ Tween® 80.
After 24 hours, the plants are contaminated by spraying the leaves with an aqueous suspension of Puccinia reçoit dite spores. The contaminated wheat plants arc incubated for 24 hours at 20°C and at 100% relative humidity and then for 10 days at 20®C and at 70-80% relative humidity.
The test is evaluated 11 days after the inoculation. 0% means an efficacy which corresponds to that of the control plants while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of 500 ppm of active ingrédient: 1.07; 1.23; 1.27; L3I; 1.42; 1.72; VH03; VII.U; VIL 15; VH. 16; Vn.I9;Vn.25
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingrédient: 1.09; LU; I.I6; 1.17; L20; 1.21; 1.29; 1.41; 1.46; 1.52; L54; 138; 1.75; 1.83; L89; 1.90; VH.04; VH.06; VH.13; VH26; VÏÏ30; VH.37
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingrédient: LOI; 1.02; 1.03; 1.04; 1.05; 1.08; 1,12; LI3; 1.14; 1,15; 1.25; 1.28;
132; L33; 1.34; 135; 136; 1.37; 138; 139; 1.40; 1.43; 1.44; 1.45; 1.47; 1.48; 1.49; L50; 131; 133; 1.55; 136; 137;
-1181.88; 1.91; 1.92; 1.93; 1.95; 1.96; 1.97; 1.98; VH.01 ; VÏÏ.02; VII.05; VH.08; VÏÏ.09; VH. 12; VII.20; VIL21; VÏÏ.22;
ΥΠ24; VIL27; ΥΠ.28; VH.29; VH.31; VIL32; VIL33; VÏÏ.36; VÏÏ.38; VH.39; VIL40; VIL41; VIL42
Examplc C: in vivo preventtve test on Seotoria tririci fteat spot on wheat)
Solvent:
5% by volume of Dimethyl sulfoxide
Ernulsifien
10% by volume of Acetone
Ιμΐ of Tween* 80 per mg of active ingrédient
The active ingrédients are made soluble and homogenized in a mixture of Dimethyl sulfoxide/Acetone/ /Tween® 80 and then diluted in water to the desired concentration.
The young plants of wheat are treated by spraying the active ingrédient prepared as described above. Control plants are treated only with anaqueous solution of Acetone/Dimcthyl sulfoxide/ Tween® 80.
After 24 hours, the plants are contamînated by spraying the leaves with an aqueous suspension ofSeptoria tritici spores. The contamînated wheat plants are incubated for 72 hours at !8°C and at 100% relative humidity and then for 21 days at 20°C and at 90% relative humidity.
The test is evaluated 24 days after the inoculation. 0% means an efTicacy which corresponds to that of the control plants while an efTicacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efTicacy between 70% and 79% at a concentration of 500 ppm of active ingrédient: 1.22
In this test the following compounds according to the invention showed efTicacy between 80% and 89% at a concentration of 500 ppm of active ingrédient: 1.02; 1.16; 136; 1.57; 1.75; L78; VII.01 ; VIL23; VH.26; VH.34
In this test the following compounds according to the invention showed eflîcacy between 90% and 100% at a concentration of 500ppm of active ingrédient: 1.01; L03; 1.05; 1.06; 1.07; 1.08; L09; LU; L12; 1.13; 1.14; 1.15;
Examplc D: In vivo préventive test on Sphaemtheca fuilginea fpowdery mlldcw on criciirblts)
Solvent:
5% by volume of Dimethyl sulfoxide
10% by volume o f Acétone
-119E mu! si fier:
lui ofTween* 80 per mgofactive ingrédient
The active ingrédients are made soluble and homogenized in a mixture of Dimethyl sulfoxidc/Acetone/ /Tween® 80 and then diluted in water to the desired concentration.
The young plants of gherfdn are treated by spraying the active ingrédient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimethyl sulfoxide/ Tween* 80.
After 24 hours, the plants are contaminated by spraying the leaves with an aqueous suspension of Sphaerotheca fuliginea spores. The contaminated gherkin plants are incubated for 72 hours at 18°C and at 100% relative humidity and then for 12 days at 20°C and at 70-80% relative humidity.
The test is evaluated 15 days after the inoculation. 0% means an efïicacy which corresponds to that of the control plants while an efïicacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingrédient: 1.30
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingrédient: 1.01; L02; 1.03; 1.04; LOS; 1.06; 1.07; LOS; 1.09; 1.11; L12; 1.13;
1.58; 1.59; L60; 1.61; 1.62; L63; 1.64; 1.65; L66; 1.67; 1.68; 1.70; 1.71; 1.72; 1.74; L75; 1.76; 1.78; L79; 1.80; 1.81; 1.82; 1.83; 1.86; 1.87; L88; 1.90; 1.91; L92; L93; L94; 1.95; 1.96; 1.97; 1.98; VH0I; VH.02; VII.03; VII.04; VII. 05; Vn.06; Vn.08; VIL09; Vïï.l 1; VH.12; VÏÏ.14; VÏÏ.15; VII.16; VH.18; VII.20; VII21; VÏÏ.22; VIL24; VII25; VII26; VII27; VIL28; VH.29; VH.30; VÏÏ.31; VÏÏ.32; VH.34; VH.36; VIL37; VIL38; VII. 3 9; VH.40; VH.41; VII.42
Exampk E: in vivo préventive test on Uromvces appendictilattis (bean nut)
Solvent:
5% by volume of Dimethyl sulfoxide
Emulsifier:
10% by volume of Acetone
Ιμΐ ofTween® 80 per mg ofactive ingrédient
The active ingrédients are made soluble and homogenized in a mixture of Dimethyl sulfoxidc/Acetone/ /Tween® 80 and then diluted in water to the desired concentration.
The young plants of bean are treated by spraying the active ingrédient prepared as described above. Control plants are treated only with an aqueous solution of Acetone/Dimethyl sulfoxide/ Tween* 80.
- 120 After 24 hours, the plants are contaminated by spraying the teaves with an aqueous suspension of Uromyces appendiculatus spores. The contaminated bean plants are incubated for 24 hours at 20°C and at 100% relative humidity and then for 10 days at 20°C and at 70-80% relative humidity.
The test is evaluatcd 11 days after the inoculation. 0% means an cfticacy which corresponds to that of the control plants while an cfticacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed cfticacy between 70% and 79% at a concentration of 500 ppm ofactive ingrédient: 1.06; 1.15; 1.20; 1.52; L85; VII.38
In this test the following compounds according to the invention showed cfticacy between 80% and 89% at a concentration of500 ppm ofactive ingrédient: 1.13; 127; 133; 1.67; 1.89; VII.02; VII.07; VU.12; VII.25
In this test the following compounds according to the invention showed cfticacy between 90% and 100% at a concentration of 500 ppm of active ingrédient 1.01; L02;I.03; 1.04; L05; 1.07; 1.08; 1.09; 1.11; L12; L14; 1.16;
Exemple F; in vivo préventive test on A/remaria test (tomatoes)
Solvent:
24.5 parts by weight o f acétone
24.5
Emulsifier:
parts by weight of dimethylacetamide part by weight of alkylaryl polyglycol ether
To produce a suitable préparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the conccntrate is diluted with water to the desired concentration.
To test for préventive activity, young plants are sprayed with the préparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Aiternaria solani. The plants are then placed in an incubation cabinet at approximately 20°C and a relative atmosphcric humidity of 100%.
The test is evaluated 3 days after the inoculation. 0% means an efticacy which corresponds to that of the untreated control while an efticacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efticacy between 70% and 79% at a concentration of 100 ppm of active ingrédient: 1.63; VU.32 • 121 In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 100 ppm of active ingrédient; 1.03; 1.25; 1.60; 1.62; 1.71; L75; L96; Vn.01; VII.09; VTL40
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 100 ppm of active ingrédient: 1.01; L02; 1.05; 1.08; L09; 1.14; 1.16; 1.29; 1.35; 1.36; L37; 1.38; 1.39; 1.40; 1.42; 1.45; 1.47; 1.48; 1.49; 1.50; 1.51; L53; L55; 1.56; 138; 139; 1.61; 1.74; 1.78; 1.88; VIL24
Example G; In vivo preventlve test on Phakonsora test (soybeansl
Solvent: 24.5 parts by weight of acetone
24.5 parts by weight of dimethylacetamidc
Emulsifier: 1 part by weight of alkylaryl polyglycol ether
To producc a suitable préparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the conccntrate is diluted with water to the desired concentration.
To test for préventive activity, young plants are sprayed with the préparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of the causal agent of soybean rust (Phakopsora pachyrhizï) and stay for 24h without light in an incubation cabinet at approxîmately 24°C and a relative atmospheric humidity of 95 %.
The plants remain in the incubation cabinet at approximatcly 24°C and a relative atmospheric humidity of approxîmately 80 % and a day / night intcrval of 12h.
The test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of 100 ppm of active ingrédient: 1.35; 1.75; VII.09
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 100 ppm of active ingrédient 1.40; VŒ01; VH.27
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 100 ppm of active ingrédient 1.01 ; L02; 1.03; 1.05; L08; 1.09; 1.14; L16; 1.25; 1.36; L37; 1.39; 1.42; 1.45; L47; 1.48; 1.49; 1.50; 1.51; 1.53; 1.55; 1.56; 1.58; 1.59; L60; 1.61; 1.62; L63; 1.65; 1.71; L74; 1.78; 1.79; 1.88; 1.91; 1.96; Vïï28;Vn.32
Example H: In vivo preventlve test on Venturia test (apples)
Solvent: 24.5 parts by weight of acétone
24.5 parts by weight of dimcthylacetamide
Emulsifier I part by weight of alkylaryl polyglycol ether
To produce a suitable préparation of active compound, 1 part by weight of active compound is mixed with the stated amounts of solvent and emulsifier, and the conccntrate is diluted with water to the desired concentration.
To test for préventive activity, young plants arc sprayed with the préparation of active compound at the stated 5 rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous conidia suspension of the causal agent of apple scab (Venturia inaequaiis) and then remain for 1 day in an incubation cabinet at approximately 20°C and a relative atmosphcric humidity of 100%.
The plants are then placed in a greenhouse at approximately 21°C and a relative atmospheric humidity of approximately 90%.
The test is evaluated 10 days after the inoculation. 0% means an eflicacy which corresponds to that of the untreated control, while an eflicacy of 100% means that no disease is observed.
In this test the fotlowing compounds according to the invention showed eflicacy between 80% and 89% at a concentration of 100 ppm of active ingrédient: 1.37; 139; 1.40; 1.50; 1.51; 1.58; 1.60; VII.28
In this test the following compounds according to the invention showed eflicacy between 90% and 100% at a 15 concentration of 100 ppm of active ingrédient: 1.01; L02; 1.03; 1.05; L08; 1.09; 1.14; L16; 1.25; L29; 134; 135;
136; 138; L42; 1.45; 1.47; L48; 1.49; 1.53; 1.55; 1.56; 1.59; 1.61; 1.62; 1.63; 1.65; L71; 1.74; L75; L78; 1.79; 1.88;
1.91; 1.96; VIL01; Vfl.09; VII24; VIL27; VH.32; Vfl.40
Example I; in vivo nreventlve Bfttmeria test (barley)
Solvent: 49 parts by weight of Ν,Ν-dimethylacetamide
Emulsifien 1 part by weight of alkylaryl polyglycol ether
To produce a suitable préparation of active compound, 1 part by weight of active compound or active compound combination is mixed with the stated amounts of solvent and emulsifier, and the conccntrate is diluted with water to the desired concentration.
To test for préventive activity, young plants are sprayed with the préparation of active compound or active 25 compound combination at the stated rate ofapplication.
After the spray coating has been dried, the plants are dusted with spores of Biumeria gramlnisf.sp. hordei.
The plants are placed in the greenhouse at a température of approximately 18°C and a relative atmospheric humidity of approximately 80% to promote the development of mildew pustules.
The test is evaluated 7 days after the inoculation. 0% means an eflicacy which corresponds to that of the 30 untreated control, while an eflicacy of 100% means that no disease is observed.
-123In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingrédient: 1.33; VII.20; VII.31
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingrédient 1.01; L02; 1.05; 1.08; L09; 1.14; 1.17; L25; 1.27; 1.34; 135; 1.36;
1.37; 1.38; 1.39; 1.40; 1,42; 1.43; 1.44; 1.45; 1.46; 1.47; 1.48; 1.49; 1.50; 1.53; 1.55; 1.56; 1.58; 1.59; L60; 1.61; 1.62;
1.63; 1.65; L66; L78; 1.79; L90; L91 ; L94; 1.95; VH.01; VH.08; VH.09; VII.12; ΥΠ.22; ΥΠ24; ΥΠ25; VIL27;
VII.28; VII.29; VII32; VH.36; VŒ37; VH39; VH.40; VH.41; VIL42
Example J: in vivo préventive Leptosnhaerla nmforum test fwhcat)
Solvent; 49 parts by weight ofN,N-dimethylacetamide
Emulsificr; l part by weight ofalkylaryl polyglycol ether
To producc a suitable préparation of active compound, 1 part by weight of active compound or active compound combination îs mixed with the stated amounts of solvent and emulsificr, and the concentrate is diluted with water to the desired concentration.
To test for préventive activity, young plants arc sprayed with the préparation of active compound or active 15 compound combination at the stated rate of appl ication.
After the spray coating has been dried, the plants are sprayed with a spore suspension of Leptosphaerla nodorum. The plants remain for 48 hours in an incubation cabinet at approximately 20°C and a relative atmospheric humidity of approximately 100%.
The plants are placed in the greenhouse at a température of approximately 25°C and a relative atmospheric 2 0 humidity o f approximately 80%.
The test is evaluated 8 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an efficacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed efficacy between 70% and 79% at a concentration of500 ppm of active ingrédient: 1.09; 1.12; L14; 1.27; L37; L39; L43; L58; 1.60
In this test the following compounds according to the invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingrédient: 1.03; 1.05; L25; 1.33; 135; VII.04; VII.29
In this test the following compounds according to the invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingrédient: 1.01; L02; 1.08; 1.36; L40; 1.45; 1.47; L48; 1.49; 1.50; L55; 1.56; 1.59; 1.61 ; VII.01 ; VII.09; VII.24; VH27; VI1.28; Vll.32; VI1.41
-124Example K; in vivo préventive Puccinie trificina test fwheat)
Solvent:
Emulsifier:
parts by weight of Ν,Ν-dimcthylacetamide part by weight ofalkylaiyl polyglycol ether
To produce a suitable préparation of active compound, 1 part by weight of active compound or active 5 compound combination is mixed with Ae stated amounts of solvent and emulsifier, and Ae concentrate is diluted wi A water to the desired concentration.
To test for préventive activity, young plants are sprayed wiA Ae préparation of active compound or active compound combination at Ae stated rate of application.
After Ae spray coating has been dried, Ae plants are sprayed wiA a spore suspension ofPuccinia triticina. The 10 plants remain for 48 hours in an incubation cabinet at approximately 20eC and a relative atmospheric humidity ofapproximately 100%.
The plants are placed in Ae greenhouse at a température of approximately 20°C and a relative atmospheric humidity of approximately 80%.
The test is evaluated 8 days after Ae inoculation. 0% means an efficacy which corresponds to that of Ae 15 untreated control, while an efficacy of 100% means that no disease is observed.
In Ais test Ae following compounds according to Ae invention showed efficacy between 70% and 79% at a concentration of500 ppm of active ingrédient: 1.27
In Ais test Ae following compounds acconiing to Ae invention showed efficacy between 80% and 89% at a concentration of 500 ppm of active ingrédient: 1.09; L66; VII.29
In Ais test Ae following compounds according to Ae invention showed efficacy between 90% and 100% at a concentration of 500 ppm of active ingrédient: 1.01; 1.02; 1.03; 1.05; 1.08; 1.12; 1.14; L25; 1.32; 1.34; L35; 1.36;
ExampIe L: in vivo prevrntive Scntoria tritici test fwheaO
Solvent:
Emulsifier:
parts by weight of Ν,Ν-dimeAylacetamide l part by weight of alkylaryl polyglycol eAcr
To produce a suitable préparation of active compound, 1 part by weight of active compound or active compound combination is mixed wiA Ac stated amounts of solvent and emulsifier, and Ae concentrate is 30 diluted wiA water to Ae desired concentration.
-125To test for préventive activity, young plants are sprayed with the préparation of active compound or active compound combination at the stated rate of application.
After the spray coating has been dried, the plants are sprayed with a spore suspension of Septorla tritici. The plants remain for 48 hours in an incubation cabinet at approximately 20°C and a relative atmospheric humidity ofapproximately 100% and afterwards for 60 hours atapproximatcly 15°C in a transhicent incubation cabinet at a relative atmospheric humidity of approximately 100%.
The plants are placed in the greenhouse at a température of approximately 15°C and a relative atmospheric humidity of approximately 80%.
The test is evaluated 21 days after the inoculation. 0% means an efficacy which corresponds to that of the untreated control, while an eflicacy of 100% means that no disease is observed.
In this test the following compounds according to the invention showed eflicacy between 70% and 79% at a concentration of500 ppm of active ingrédient: L38; 1.39; 1,82; VII.36
In this test the following compounds according to the invention showed eflicacy between 80% and 89% at a concentration of500 ppm of active ingrédient: 1.63; 1.90; L91 ; VH. 12; Vfl.22
In this test the following compounds according to the invention showed eflicacy between 90% and 100% at a concentration of 500 ppm of active ingrédient: 1.01; L02; Γ.03; 1.05; 1.08; 1.09; 1.17; L25; 1.27; 1.35; 1.36; 1.37; 1.40; 1.43; L44; L45; Γ.46; L47; 1.48; 1.49; L50; 1.53; 1.55; 1.56; L58; L59; 1.60; L61; 1.62; 1.65; L66; 1.78; 1.79; 1.95; Vn.01; VIÏ.04; VII.08; VII.09; Vn.24; VII.27; VII.28; Vn.29; VII.31; VÏÏ.32; VII .3 7; Vn.39; VII.41; VIL42
Examnlc M; fa vivo préventive test on Snhaerorheca (cucumbers); cnmparison of phenoxv-Bvridvl compounds according to the Invention vs, known phenoxv-phenyl compounds
Solvent:
Emuisificn
24.5 parts by weight o f acetone
24.5 parts by weight of dimethylacetamidc part by weight of alkylaryl polyglycol ether
To produce a suitable préparation of active compound, 1 part by weight of active compound is mixed with the above stated amounts of solvent and cmulsifïer, and the concentrate is diluted with water to the desired concentration.
To test for préventive activity, young plants are sprayed with the préparation of active compound at the stated rate of application. After the spray coating has dried on, the plants are inoculated with an aqueous spore suspension of Sphaerotheca fuüginea. The plants are then placed in a greenhouse at approximately 23°C and a relative atmospheric humidity of approximately 70%.
The test is evaluated 7 days after the inoculation. 0% means an efficacy which corresponds to that of the untreatcd control, while an efficacy of 100% means that no disease is observed.
Table: résulta ofthe in vivo préventive test on Sphaerothrca fcueumbersl
Active compound Rate of application of active compound in ppm Efficacy in%
Known from WO-A F Z OH 10 30
2013007767:
Accondtne to the
invention:
1.05 O f H 10 71
1.14 w'-Ar A Cl 10 83
1.16 10 77
-127-
1.29 r=N «V O ^O^N^CI 10 95
1.35 F OH N^=\ 10 100
i Γί 1 N
kx JL JL z>k.
VII.01 0 N=A 10 78
J, N
Vïi
. JL JJ F
1.01 □ H N=\ 10 100
J. N
ΥΊ ιίπ^
M . JL JL t F F
1.36 F. JF 10 100
F X OH N^\
1 Jê F I 1 N
* VAX f'Y ii ιΛΑ zW
r I 1 JL J
1.39 F OH ΝχΛ 1 Xi 10 97
F^Y^ il Ρί M 1 N Z'N's^’
^crVri
1.45 F F^j^F Chiral FX 10 99
ThoJ
Y IPT
-129-

Claims (18)

  1. Claims
    I. Triazole dérivatives ofthe formula (i) wherein
    5 R’ represents hydrogen, C|-C6-alkyl, Cî-Q-alkeny!, C2-C6-alkynyl, Cj-C8-cycloalkyl, Cj-C8cycloalkyl-Ci-Ci-alkyl, phenyl, phenyl-C|-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4alkynyl;
    R2 represents hydrogen, C|-C6-alkyl, C2-C6-alkenyl, CrC6-alkynyl, Cj-C8-cycloalkyl, Cj-C8cycloalkyl-CpCi-alkyl, phenyl, phenyl-CrC4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C410 alkynyl;
    wherein the aliphatic moieties, excluding cydoalkyl moieties, of R* and/or R* may carry 1,2, 3 or up to the maximum possible number of identical or different groups R1 which independently ofone another are selected from
    R* halogen, CN, nitro, phenyl, C|-C4-alkoxy and C|-C4-halogenalkoxy;
    15 wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected from halogen;
    CN; nitro; C|-C4-alkyl; C|-C4-alkoxy; C|-C4-halogenalkyl; C|-C4-halogenalkoxy;
    wherein the cydoalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
    20 Rb halogen, CN, nitro, CrC4-alkyl, Ci-C4-alkoxy, Q-Crhalogenalkyl and CrC4halogenalkoxy;
    R4 represents halogen, CN, nitro, C)-C4-alkyl, C|-C4-halogenalkyl, C|-C4-alkoxy, C)-C4halogenalkoxy, CrC4-alkylcarbonyl, hydroxy-substîtuted C|-C4-alkyl or pentafluoro-X^sulfanyl;
    m is an integer and is 0,1, 2,3,4 or 5;
    Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 nitrogen atom as heteroatom selected from
    -130-
    R R R wherein Y is connected to the O of formula (1) via the bonds identifïed with “u” and Y is connected to the CR‘(OR2) moiety of formula (I) via the bonds identified with “v” and wherein
    5 R represents hydrogen, CpCj-halogenalkyl, Cj-Cj-halogenalkoxy, C|-C2-alkylcarbonyl or halogen;
    R1 represents halogen, CN< nitro, C|-C4-alkyl, CpCvhalogenalkyl, Ci-C4-alkoxy or C|-C4halogenalkoxy;
    n is an integer and is 0,1 or 2;
    10 and its salts or N-oxïdes.
  2. 2. Triazole dérivatives of formula (1) according to claim 1, wherein
    R* represents halogen, CN, nitro, Ci-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy, Ci-C4halogenalkoxy or pentafluoro-k6-sulfany I;
    and/or ] 5 R represents hydrogen, Ci-C2-halogenalkyI or halogen.
  3. 3. Triazole dérivatives of formula (I) according to at least one of claims 1 to 2, wherein
    R1 represents hydrogen, CrC4-alkyl, CrC6-alkenyl, C2-C6-alkynyl, cyclopropyl, phenyl, benzyl, phenylethenyl or phenylethinyl;
    R2 represents hydrogen, Ci-C4-alkyl, allyl, propargyl or benzyl;
    20 wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1,2,3 or up to the maximum possible number of identical or different groups R* which independently ofone another are selected from
    R* halogen, CN, nitro, phenyl, Ci-C4-alkoxy and C|-C4-halogenalkoxy;
    wherein the phenyl may be substituted by 1,2,3, 4 or 5 substituents selected independently of
    25 one another from halogen; CN; nitro; CpC4-alkyl; C|-C4-alkoxy; C|-C4-halogenalkyl; Ci-C4halogenalkoxy;
    -131 wherein the cycloalkyl and/or phenyi moieties of R1 and/or R2 may cany 1,2, 3,4,5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
    Rb halogen, CN, nitro, C|-Cralkyl, C|-C4-alkoxy, C|-C«-halogenalkyl and C1-C4halogenalkoxy;
    R* represents CF3, OCF3, Br, Cl or pcntafluoro-X6-sulfanyl;
    m is 1,2 or 3;
    Y represents wherein Y is connected to the O of formula (1) via the bonds identified with “u” and Y is connected to the CR'(OR2) moiety of formula (1) via the bonds identified with “v” and wherein R, R3 and n are defined according to claim 1;
    and its salts or N-oxides.
  4. 4. Triazole dérivatives of formula (1) according to at least one of claims 1 to 3, wherein
    R represents hydrogen, Cphalogenalkyl, F or Cl;
    n is 0;
    and its salts or N-oxidcs.
  5. 5. Triazole dérivatives of formula (I) according to claim 4, wherein
    R1 represents hydrogen or Ci-C^-alkyl;
    R2 represents hydrogen;
    R4 represents CF3. OCF3, Br, Cl or pentafluoro-X6-sulfanyl;
    m is 1;
    Y represents wherein Y is connected to the O of formula (1) via the bonds identified with “u” and Y is connected to the CR'(OR2) moiety of formula (I) via the bonds identified with “v” and
    R represents Ci-halogenalkyl;
    n is 0;
    and its salts or N-oxides.
  6. 6. Method for controiling harmful microorganisms in crop protection and in the protection of materials, characterized in that compounds of the formula (I) according to Claim 1, 2, 3, 4 or 5 and/or compounds of the formula (VII) according to Claim 14 are applied to the harmful microorganisms and/or their habitat.
  7. 7. Method for controiling phytopathogenic harmful fungî in crop protection and in the protection of materials, characterized in that compounds of the formula (1) according to Claim I, 2, 3,4 or 5 and/or compounds of the formula (Vil) according to Claim 14 are applied to the phytopathogenic harmful fungi and/or their habitat.
  8. 8. Composition for controiling harmful microorganisms, preferably for controiling phytopathogenic harmful fungî, characterized by a content of at least one compound of the formula (I) according to Claim I, 2, 3, 4 or 5 and/or at least one compound of the formula (VII) according to Claim 14, in addition to extenders and/or surfactants.
  9. 9. Composition according to Claim 8 comprising at least one further active ingrédient selected from the group of the insecticides, attractants, sterilants, bactéricides, acaricides, nematicides, fungicides, growth regulators, herbicides, fertilizers, safeners and semiochemicals.
  10. 10. Use of compounds of the formula (1) according to Claim I, 2, 3, 4 or 5 and/or compounds of the formula (VII) according to Claim 14 for control of harmful microorganisms in crop protection and in the protection of materials, preferably phytopathogenic harmful fungi.
  11. 11. Use of compounds of the formula (1) according to Claim 1, 2, 3, 4 or 5 and/or compounds of the formula (VII) according to Claim 14 for treatment of plants or transgenîc plants or for treatment of seed or of seed of transgenîc plants.
  12. 12. Compounds of formula (V)
    -133- wherein
    R1 représenta hydrogen, C|-C6-alkyl, Cî-Ce-alkenyl, Cj-Cô-alkynyl, Cî-Cg-cydoalkyl, Cj-Cgcycloalkyl-Cj-Ci-alkyl, phenyl, phenyl-C|-C4-alkyl, phenyl-Cî-Ccalkenyl or phenyl-C2-C4alkynyl;
    wherein the alîphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of identical or différent groups R* which independently of one another are selected from
    R* halogen, CN, nîtro, phenyl, Ct-C4-alkoxy and Ci-C4-halogenalkoxy; wherein the phenyl may be substituted by 1, 2, 3, 4 or 5 substituents selected independently of one another from halogen; CN; nitro; C|-C4-alkyl; C|-C4*alkoxy; Ci-C4-halogenalkyl; C|-C4halogenalkoxy;
    wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1,2,3,4,5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
    Rb halogen, CN, nîtro, Ct-C4-alkyl, C,-C4-alkoxy, Cj-C4-halogenalkyl and CrC4halogenalkoxy;
    R4 représenta halogen, CN, nîtro, Ci-C4-alkyl, C|-C4-halogenalkyl, Ct-C4-alkoxy, C|-C4halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substîtuted C|-C4-alkyl or pentafiuoro-X6-sulfanyl;
    with the proviso, that R4 is not represented by CF3 when R1 is represented by methyl;
    m is an înteger and isO, 1,2,3,4 or 5;
    Y représenta a substituted or ηοπ-substituted 6-membered aromatic heterocycle containing 1 nitrogen atom as heteroatom selected from
    R R R wherein Y is connected to the O of formula (V) via the bonds identified with “u” and Y is connected to the C(OXR') moiety of formula (V) via the bonds identified with “v” and
    -134wherein
    R represents C! or CF3;
    R3 represents halogen, CN, nitro, C|-C4-alkyl, C|-C4-ha1ogenalkyl, C|-C4-a1koxy or C|-C4halogenalkoxy;
    n is an integer and is 0,1 or 2;
    and its salts or N-oxides.
  13. 13. Compounds of formula (VI) wherein
    Ha! represents F, Cl, Br or 1;
    R4 represents halogen, CN, nitro, C|-C4-a1kyl, C|-C4-halogenalkyl, C|-C4-a1koxy, Ci-C4halogenalkoxy, Ci-C4-alkylcarbonyl, hydroxy-substituted Ci-C4-alkyl or pentafluoro-X6-sulfanyl;
    m is an integer and isO, 1,2,3,4 or 5;
    Y represents a substituted or non-substituted 6-membered aromatic heterocyde containing 1
    15 nitrogen atom as heteroatom selected from
    R R R wherein Y is connected to the O of formula (VI) via the bonds identified with “u” and Y is connected to the C(OXCHjHal) moiety of formula (VI) via the bonds identified with “v” and wherein
    R represents Ci-Crhalogenalkyi or halogen;
    R3 represents halogen, CN, nitro, C|-C4-alkyl, Ci-C4-halogenalkyl, C|-C4-alkoxy or C|-C4halogenalkoxy;
    n is an integerand isO, 1 or2;
    and its salts or N-oxides.
    -135-
  14. 14. Compounds of formula (VII) wherein
    R4 représente halogen, CN, nitro, C|-C«-alkyl, CpCchalogenalkyl, CpCi-alkoxy, C|-Cr halogenalkoxy, Ci-C^-alkylcarbonyl, hydroxy-substituted C|-C<-alkyl orpentafluoro-X6-sulfanyl;
    m is an integer and is 0, 1,2,3,4 or 5;
    Y représente a substituted or non-substituted 6-membered aromatic heterocycle containing I nitrogen atom as heteroatom selected from wherein Y is connected to the O of formula (VII) via the bonds identified with “u” and Y is connected to the C(O) moiety of formula (Vil) via the bonds identified with “v” and wherein
    R représente hydrogen, C|-C2-halogena1kyl, C)-C2-halogena1koxy, C|-C2-alkylcarbonyl or halogen;
    R3 représente halogen, CN, nitro, Ct-C4-alkyl, C)-C«-halogenalkyl, Ci-C^-alkoxy or C)-C<halogenalkoxy;
    n is an integer and is 0,1 or 2;
    and its salts or N-oxides.
  15. 15. Compounds of formula (IX) wherein
    -136R1 represents hydrogen, Ci-C6-alkyl, C2-Cô-alkenyl, C2-Cô-alkynyl, Cj-Cj-cycloalkyl, Cj-Cjcycloalkyl-C|-C4*alkyl, phenyi, phenyl-Ci-C4-alkyl, phenyl-C2-C4-alkeny1 or phenyl-C2-C4alkynyl;
    wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1,2, 3 or up to the maximum possible number of identical or different groups R* which independently of one another are selected from
    R’ halogen, CN, nitro, phenyi, C|-C4-alkoxy and Ct-C4-halogenalkoxy;
    wherein the phenyi may be substituted by 1,2, 3,4 or 5 substituents selected independently of one another from halogen; CN; nitro; Cj-C^-alkyI; C|-C4-alkoxy; C]-C4-halogenalkyl; C|-C4halogenalkoxy;
    wherein the cycloalkyl and/or phenyi moieties of R1 may cany 1,2, 3,4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
    Rb halogen, CN, nitro, CrC4-alkyl, CrC4-alkoxy, C|-C4-halogenalkyl and CrC4halogenalkoxy;
    R4 represents halogen, CN, nitro, CrC4-alkyl, CrC4-halogenalkyl, C|-C4-alkoxy C|-C4halogenalkoxy, C|-C4-alkylcarbonyl, hydroxy-substituted C|-C4-alky1 or pentafluoro-X6-sulfanyl;
    m is an integer and is 0,1,2, 3,4 or 5;
    Y represents a substituted or non-substituted 6-membered aromatic hetcrocycle containing 1 nitrogen atom as heteroatom selected from wherein Y is connected to the O of formula (IX) via the bonds identified with “u” and Y ts connected to the oxirane moiety of formula (IX) via the bonds identified with “v” and wherein
    R represents hydrogen, C|-C2-halogenalkyl, C|-C2-halogenalkoxy, C|-C2-alkylcarbonyl or halogen;
    R3 represents halogen, CN, nitro, C|-C4-alkyl, C|-C4-halogenalkyl, C|-C4-alkoxy or Ci-C4halogenalkoxy;
    -137n is an integer and is 0,1 or 2;
    and its salts or N-oxides.
  16. 16. Compounds of formula (X) wherein
    R1 represents hydrogen, Ci-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-C8-cycloalkyl, C3-C8cycloalkyl-CrCi-alkyl, phenyl, phenyl-C|-Cralkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4alkynyl;
    R1 represents hydrogen, Ci-C«-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3-Cg-cycloalkyl, C3-Cgcycloalky!-C|-C<-a!kyl, phenyl, phenyl-Q-C^alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4alkynyl;
    wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may cany 1, 2, 3 or up to the maximum possible number of identical or different groups R’ which independently of one another are selected from
    R* halogen, CN, nitro, phenyl, C|-C4-alkoxy and C1-C4-halogenalkoxy;
    wherein the phenyl may be substituted by 1,2, 3,4 or 5 substituents selected independently of one another from halogen; CN; nitro; C|-C4-alkyl; C|-C4-alkoxy; C1-C4-halogenalkyl; C|-C4-halogenalkoxy;
    wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
    Rb halogen, CN, nitro, C|-C4-alkyl, C|-C4-alkoxy, C(-C4-halogenalkyl and CrC4halogenalkoxy;
    R4 represents halogen, CN, nitro, C|-C4-alkyl, Ci-C4-halogenalkyl, Ci-C4-alkoxy C|-C4halogenalkoxy, C|-C4-alkylcarbonyl, hydroxy-substituted C|-C4-alkyl or pentafluoro-Z6-sulfanyl;
    m is an integer and is 0, 1, 2,3,4 or 5;
    -138Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 nitrogen atom as beteroatom selected from wherein Y is connected to the O of formula (X) via the bonds identified with “u and Y is connected to the CR’îOR^CHîOH) moiety of formula (X) via the bonds identified with “v” and whereîn
    R represents hydrogen. C|-C2-haIogenalkyl, Ci-Crhalogenalkoxy, CpCralkylcarbonyl or halogen;
    R3 represents halogen, CN, nitro, C|-C4-alkyI, C|-C4-halogenalkyl, Ci-C4-alkoxy or Cj-C4halogenalkoxy;
    n is an înteger and is 0, I or 2;
    and its salts or N-oxides.
  17. 17. Compounds of formula (XI) wherein
    LG represents halogen, -OSOj-Cj-Cô-alkyl, -OSO2-ary1, -OSOj-O-Ci-C^lkyl, -OSOrO-aryl, -OSO2NRaRa wherein the “alkyl” and/or “aryl” may carry 1,2,3 or up to the maximum possible number of identical or different groups RD;
    wherein
    Rd represents halogen, CN, nitro, C|-C4-alkyl, C|-C4-ha1ogenalkyl, C|-C4-alkoxy orCpC4 halogenalkoxy;
    Ra represents hydrogen, CrC6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Cj-Cg-cydoalkyl, C,-Cgcyc1oalkyl-Ci-C4-alkyl, phenyl, phenyl-Ci-C4-a1kyl, phcnyl-C2-C4-a1kenyl Dr phenyl-C2-C4alkynyl.
    -139 whereîn the aliphatic moieties, excluding cycloalkyl moieties, of R* may carry 1,2, 3 or up to the maximum possible number of identical or different groups Re which independently of one another are selected from
    Rc halogen, CN, nitro, phenyl, C|-C4-alkoxy and C|*C4*halogenalkoxy;
    wherein the phenyl may be substituted by 1,2,3,4 or 5 substituents selected independently of one another from halogen; CN; nitro; C|-C4-alkyl; C|-C4-alkoxy; Ci*C4-halogenalkyl; C| -C4-ha logenalkoxy;
    wherein the cycloalkyl and/or phenyl moieties of RA may carry 1,2,3,4,5 or up to the maximum number of identical or different groups Rd which independently of one another are selected from
    R4 halogen, CN, nitro, CrC4-alkyl, Ci-C4-alkoxy, Ci-C4-halogenalkyl and C]-C4halogenalkoxy;
    R1 represents hydrogen, CfC6*alkyl, C2*C6-alkenyl, C2-C6-alkynyl, Cj-Cj-cycloalkyl, C3*Cgcycloalkyl-C|-C4-alkyl, phenyl, phenyl-C|*C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4alkynyl;
    R2 represents hydrogen, CrC6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, C3*Cg-cycloalkyl, C3-Cgcycloalkyl-C|-C4-alkyl, phenyl, phenyl-Ct-C4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4alkynyl;
    wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 and/or R2 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R1 which independently of one another are selected from
    R1 halogen, CN, nitro, phenyl, CrC4-alkoxy and C|-C4-halogenalkoxy;
    wherein the phenyl may be substituted by 1,2,3,4 or 5 substituents selected independently of one another from halogen; CN; nitro; C]-C4-alkyl; CrC4-alkoxy; C|-C4-halogenalkyl; CrC4halogenalkoxy;
    wherein the cycloalkyl and/or phenyl moieties of R1 and/or R2 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
    Rb halogen, CN, nitro, C|-C4-alkyl, C|-C4-alkoxy, C|-C4-halogenalkyl and Cj-C4-halogenalkoxy;
    R4 represents halogen, CN, nitro, C|-C4-alkyl, C|-C4-halogenalkyl, C|-C4-alkoxy Ct-C4halogenalkoxy, Ci-Cralkylcarbonyl, hydroxy-substituted C|-C4-alkyl or pcntailuoro-X6-sulfanyl;
    m is an integer and is 0,1,2,3, 4 or 5;
    - ΜΟΥ represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 nitrogen atom as heteroatom selected from wherein Y is connected to the O of formula (XI) via the bonds identified with “u” and Y is connected to the CR'(OR2XCH2LG) moiety of formula (XI) via the bonds identified with “v” and wherein
    R represents hydrogen, C|-C2-halogenalkyl, Q-Q-halogenalkoxy, C|-C2-alkylcarbonyl or halogen;
    R1 represents halogen, CN, nitro, C|-C4-alkyl, C|-C4-halogenalkyl, C|-C4-alkoxy or C]-C4halogenalkoxy;
    n is an integer and is 0,1 or 2;
    and its salts orN-oxides.
  18. 18. Compounds of formula (XXI) wherein
    R* represents hydrogen, C1-C6-alkyl, C2-C6-alkenyl, C2-C6-alkynyl, Cj-Cg-cycloalkyl, Cj-Cgcydoalkyl-C|-C4-alkyl, phenyl, phenyl-CrC4-alkyl, phenyl-C2-C4-alkenyl or phenyl-C2-C4alkynyl;
    wherein the aliphatic moieties, excluding cycloalkyl moieties, of R1 may carry 1, 2, 3 or up to the maximum possible number of identical or different groups R’ which independently of one another are selected from
    R* halogen, CN, nitro, phenyl, CrC4-alkoxy and CrC4-halogenalkoxy;
    -141 wherein the phenyl may be substituted by 1,2,3,4 or 5 substituents selected independently of one another from halogen; CN; nitro; G-Q-alkyl; C|-C<-alkoxy; Ci-Crhalogenalkyl; Cj-Crhalogenalkoxy;
    wherein the cycloalkyl and/or phenyl moieties of R1 may carry 1, 2, 3, 4, 5 or up to the maximum number of identical or different groups Rb which independently of one another are selected from
    Rb halogen, CN, nitro, CrC«-alkyl, Ci-Ci-alkoxy, Ci-Q-halogenalkyl and C)-C<halogenalkoxy;
    R4 represents halogen, CN, nitro, C|-C«-alkyl, C|-C«-halogenalkyl, Ci-Cralkoxy, Ci-C<halogenalkoxy, Ci-Cralkylcarbonyl, hydroxy-substituted Ci-C^-alkyl or pentafluoro-X6-sulfanyl, except for Br, m isan integerand is 0,1,2,3,4 or 5;
    R9 represents C ! -C6-alky l or CrCg-cyc loal ky 1 ;
    R10 represents C2-C6-alkyl;
    Y represents a substituted or non-substituted 6-membered aromatic heterocycle containing 1 nitrogen atom as heteroatom selected from wherein Y is connected to the O of formula (XXI) via the bonds identifïed with “u and Y is connected to the C(OR9) moiety of formula (XXI) via the bonds identifïed with “v” and wherein
    R represents hydrogen, C|-C2-halogenalky1, C|-C2-halogenalkoxy, C|-C2-alkylcarbonyl or halogen;
    R3 represents halogen, CN, nitro, C|-Cralky1, C|-C<-halogenalkyl, Ci-Ci-alkoxy or C|-C<halogenalkoxy;
    n is an integer and is 0, 1 or 2;
    and its salts or N-oxides.
OA1201800053 2015-08-14 2016-08-11 Triazole derivatives, intermediates thereof and their use as fungicides OA18593A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP15181152.8 2015-08-14
EP15200792.8 2015-12-17

Publications (1)

Publication Number Publication Date
OA18593A true OA18593A (en) 2018-12-28

Family

ID=

Similar Documents

Publication Publication Date Title
US10485236B2 (en) Triazole derivatives, intermediates thereof and their use as fungicides
WO2016156282A1 (en) Novel triazole compounds for controlling phytopathogenic harmful fungi
CA2856591A1 (en) 2-iodoimidazole derivatives
US9822099B2 (en) Triazole derivatives
US9668481B2 (en) Triazole derivatives
AU2016239175A1 (en) Triazole derivatives as pesticides and plant growth regulators
EP2984080B1 (en) Novel triazolinthione derivatives
US20180116220A1 (en) Novel triazole derivatives
WO2016050769A1 (en) Novel triazole derivatives useful as fungicides
EP3277674B1 (en) Triazol derivatives as fungicides
EP3515906A1 (en) Novel triazole derivatives and their use as fungicides
EP3515907A1 (en) Novel triazole derivatives
OA18593A (en) Triazole derivatives, intermediates thereof and their use as fungicides
EP3292762A1 (en) Active compound combinations comprising a 5-substituted imidazole derivative
WO2016156284A1 (en) Novel pyridine compounds for controlling phytopathogenic harmful fungi