OA18432A - Sample grouping signaling in file formats - Google Patents

Sample grouping signaling in file formats Download PDF

Info

Publication number
OA18432A
OA18432A OA1201700326 OA18432A OA 18432 A OA18432 A OA 18432A OA 1201700326 OA1201700326 OA 1201700326 OA 18432 A OA18432 A OA 18432A
Authority
OA
OAPI
Prior art keywords
box
syntax element
sample
grouping
sampletogroup
Prior art date
Application number
OA1201700326
Inventor
Ye-Kui Wang
Fnu HENDRY
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Publication of OA18432A publication Critical patent/OA18432A/en

Links

Abstract

A device generates, in a container box of a file for storage of video contents, a Sample Group Description box that provides a Sample Group Description for a sample grouping. The Sample Group Description box includes a grouping type syntax element having a particular value. Additionally, the Sample Group Description box includes one or more sample group entries. The device generates, in the same container box, a plurality of Sample To Group boxes. Each respective Sample To Group box of the plurality of Sample To Group boxes includes a respective grouping type syntax element having the particular value, includes a respective sample count syntax element indicating a number of samples in a respective sample grouping, and includes a respective group description index syntax element indicating an index of an entry in the Sample Group Description box which describes samples of the respective sample grouping. Each sample of the respective sample grouping comprises a respective picture of the video contents.

Description

Abrégé:
A device generates, in a container box of a file for storage of video contents, a Sample Group Description box that provides a Sample Group Description for a sample grouping. The Sample Group Description box includes a grouping type syntax element having a particular value. Additionally, the Sample Group Description box includes one or more sample group entries. The device generates, in the same container box, a plurality of Sample To Group boxes. Each respective Sample To Group box ofthe plurality of Sample To Group boxes includes a respective grouping type syntax element having the particular value, includes a respective sample count syntax element indicating a number of samples in a respective sample grouping, and includes a respective group description index syntax element indicating an index of an entry in the Sample Group Description box which describes samples of the respective sample grouping. Each sample of the respective sample grouping comprises a respective picture ofthe video contents.
O.A.P.I. - B.P. 887, YAOUNDE (Cameroun) - Tel. (237) 222 20 57 00-Site web: http:/www.oapi.int - Email: oapi@oapi.int
SAMPLE GROUPING SIGNALING IN FILE FORMATS [0001] This application claims the benefit of U.S. Provisiona! Patent Application 62/115,087, filed February 11,2015, the entire content of which is incorporated by reference.
TECHNICAL FIELD [0002] Thîs disclosure relates to video coding and file formats for coded video data.
BACKGROUND [0003] Digital video capabilities can be incorporated into a wide range of devices, including digital télévisions, digital direct broadcast Systems, wireless broadcast Systems, personal digital assistants (PDAs), laptop or desktop computers, tablet computers, c-book readers, digital caméras, digital recording devices, digital media players, video gaming devices, video game consoles, cellular or satellite radio téléphonés, so-called “smart phones,” video teleconferencing devices, video streaming devices, and the like. Digital video devices implement video compression techniques, such as those described in the standards defined by MPEG-2, MPEG-4, ITU-T H.263, ITU-T H.264/MPEG-4, Part 10, Advanced Video Coding (AVC), the High Efïiciency
Video Coding (HEVC) standard presently under development, and extensions of such standards. The video devices may transmit, receive, encode, décodé, and/or store digital video information more efficiently by implementing such video compression techniques.
[0004] Video compression techniques perform spatial (intra-picture) prédiction and/or temporal (inter-pîcture) prédiction to reduce or remove redundancy inhérent in video sequences. For block-based video coding, a video slice (i.e., a video frame or a portion of a video frame) may be partitioned into video blocks, which may also be referred to as treeblocks, coding units (CUs) and/or coding nodes. Video blocks in an intra-coded (I) slice of a picture are encoded using spatial prédiction with respect to reference samples in neighboring blocks in the same picture. Video blocks in an inter-coded (P or B) slice of a picture may use spatial prédiction with respect to reference samples in neighboring blocks ïn the same picture or temporal prédiction with respect to reference samples in other reference pictures. Pictures may be referred to as frames, and reference pictures may be referred to as reference frames.
[0005] Spatial or temporal prédiction results in a prédictive block for a block to be coded. Resîdual data represents pixel différences between the original block to be coded and the prédictive block. An inter-coded block is encoded according to a motion vector that points to a block of reference samples forming the prédictive block, and the residual data indicating the différence between the coded block and the prédictive block. An intra-coded block is encoded according to an intra-coding mode and the residual data. For further compression, the residual data may be transformed from the pixel domain to a transform domain, resulting in residual transform coefficients, which then may be quantized. The quantized transform coefficients, initially arranged in a two10 dimensional array, may be scanned in order to produce a one-dimensional vector of transform coefficients, and entropy coding may be applied to achîeve even more compression.
SUMMARY [0006] One or more aspects of this disclosure relate to storage of video contents in file formats. For instance, the techniques of this disclosure may improve the design of sample grouping mechanism and signaling of stream access point (SAP) sample grouping in files formed according to the ISO base media file format and file formats derived based on it.
[0007] In one aspect, this disclosure describes a method of generating a file for storage of video contents, the method comprising: generating, in a container box of the file, a SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein the file belongs to a particular file format în which there shall only be one SampleGroupDescription box in the container box with the particular value ofthe grouping type syntax element;
generating, in the same container box ofthe file, a plurality of SampleToGroup boxes, each respective SampleToGroup box ofthe plurality of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample group entries comprising a
respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description of the respective sample group, each sample of the respective sample group comprising one or more pictures of the video contents; and outputting the file.
[0008] In another aspect, this disclosure describes a device for generating a file for storage of video contents, the device comprising: a memory configured to store the file; and one or more processors configured to: generate a container box of the file such that 10 the file conforms to a particular file format, wherein as part of generating the container box, the one or more processors: generate a SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein the file belongs to a particular file format in which there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element; and generate, in the same container box of the file, a pluralîty of SampleToGroup boxes, each respective SampleToGroup box of the pluralîty of SampIeToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample group entries comprising a respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description of the respective sample group, each sample of the respective sample group comprising one or more pictures ofthe video contents; and output the file.
[0009] In another aspect, this disclosure describes a device for generating a file for storage of video contents, the device comprising: means for generating a container box ofthe file such that the file conforms to a particular file format, wherein the means for generating the container box comprises: means for generating a
SampleGroupDescriptïon box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescriptïon box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax 5 element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein the file belongs to a particular file format in which there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element; and means for generating, in the same container box ofthe file, a plurality of 10 SampleToGroup boxes, each respective SampleToGroup box of the plurality of
SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample group entries comprising a respective sample count syntax element indicating a number of 15 samples ïn a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description of the respective sample group, each sample of the respective sample group comprising one or more pictures of the video contents; and 20 means for outputting the file.
[0010] In another aspect, this disclosure describes a computer-readable data storage medium having stored thereon instructions that, when executed, cause one or more processors of a device for generating a file for storage of video contents to: generate a container box of the file such that the file conforms to a particular file format, wherein, 25 as part of generating the container box, the one or more processors: generate a
SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax 30 element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein the file belongs to a particular file format in which there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element; and generate, in the same container box of the file, a plurality of SampleToGroup boxes,
each respective SampleToGroup box of the plurality of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry ofthe one or more sample group entries comprising a 5 respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description of the respective sample group, each sample of the respective sample group 10 comprising one or more pictures of the video contents; and output the file.
[0011] In another aspect, this disclosure describes a device for reading a file for storage of video contents, the device comprising: a memory configured to store the file; and one or more processors configured to obtain, from the file, a container box ofthe file, wherein the container box comprises: a SampleGroupDescription box that includes one 15 or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, 20 wherein a requirement of the particular file format is that there shall only be one
SampleGroupDescription box in the container box with the particular value ofthe grouping type syntax element; and a plurality of SampleToGroup boxes, each respective SampleToGroup box of the plurality of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective 25 SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample group entries comprising a respective sample count syntax element indicating a number of samples ïn a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a 30 group description entry in the SampleGroupDescription box that provides a description of the respective sample group, each sample of the respective sample group comprising one or more pictures of the video contents.
[0012] In another aspect, this disclosure describes a method for reading a file for storage of video contents, the method comprising: obtaining the file; and obtaining, • « from the file, a container box of the file, wherein the container box comprises: a SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type 5 syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein a requîrement of the particular file format is that there shall only be one SampleGroupDescription box in the container box with the particular value ofthe grouping type syntax element; and a plurality of SampleToGroup boxes, each respective SampleToGroup box of the plurality of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample group entries comprising a respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description of the respective sample group, each sample ofthe respective sample group comprising one or more pictures of the video contents.
[0013] In another aspect, this disclosure describes a device for reading a file for storage of video contents, the device comprising: means for obtaining the file; and means for obtaining, from the file, a container box of the file, wherein the container box comprises: a SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein a requirement of the particular file format is that there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element; and a plurality of SampleToGroup boxes, each respective SampleToGroup box ofthe plurality of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample group
entries comprising a respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription 5 box that provides a description of the respective sample group, each sample of the respective sample group comprising one or more pictures ofthe video contents.
[0014[ In another aspect, this disclosure describes a computer readable storage medium having stored thereon instructions that, when executed, cause a device to: obtain, from the file, a container box ofthe file, wherein the container box comprises: a
SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein a requ ire ment of the particular file format is that there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element; and a pluralîty of SampleToGroup boxes, each respective SampleToGroup box ofthe pluralîty of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry ofthe one or more sample group entries comprising a respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry ofthe one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description of the respective sample group, each sample ofthe respective sample group comprising one or more pictures ofthe video contents.
[0015] The details of one or more examples of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description, drawings, and claims.
BRIEF DESCRIPTION OF DRAWINGS [0016] FIG. 1 is a block diagram illustrating an example video encoding and decoding system that may use the techniques described in this dîsclosure.
[0017] FIG. 2 is a block diagram illustrating an example video encoder that may implement the techniques described in this dîsclosure.
[0018] FIG. 3 is a block diagram illustrating an example video décoder that may implement the techniques described in this dîsclosure.
[0019] FIG. 4 is a block diagram illustrating an example set of devices that form part of 10 a network.
[0020] FIG. 5 ts a conceptual diagram of two different stream access point (SAP) sample types in a sequence of samples in a track.
[0021] FIG. 6A is a conceptual diagram illustrating an example structure of a file, in accordance with one or more techniques of this dîsclosure.
[0022] FIG. 6B is a conceptual diagram illustrating an example structure of a file, in accordance with one or more techniques of this dîsclosure.
[0023] FIG. 6C ts a conceptual diagram illustrating an example structure of a file, in accordance with one or more techniques of this dîsclosure.
[0024] FIG. 7A is a conceptual diagram illustrating an example structure ofa file, in accordance with one or more techniques of this d isc losure.
[0025] FIG. 7B is a conceptual diagram illustrating an example structure of a file, în accordance with one or more techniques of this dîsclosure.
[0026] FIG. 7C is a conceptual diagram illustrating an example structure ofa file, in accordance with one or more techniques of this dîsclosure.
[0027] FIG. 8 is a flowchart illustrating an example operation of a source device, in accordance with a technique of this dîsclosure.
[0028] FIG. 9 is a flowchart illustrating an example operation ofa device for reading a file for storage of video contents, in accordance with a technique ofthîs dîsclosure.
DETAILED DESCRIPTION [0029] The International Standards Organization (ISO) base media file format (ISOBMFF) and file formats derived from the ISO base media file format are designed for storage of video contents. ISOBMFF is defined in terms of a set of nested “boxes”
that store encoded video data and associated metadata. For instance, a media data box may include one or more samples. Each ofthe samples may include encoded video data of one or more pictures in an access unit.
[0030] In addition, the boxes in an ISOBMFF file may include SampleToGroup boxes and SampleGroupDescription boxes. In this disclosure, SampleToGroup boxes may be referred to as “Sample to Group boxes” and SampleGroupDescription boxes may be referred to as “Sample Group Description boxes.” In general terms, a SampleToGroup box includes syntax éléments defining one or more groups of samples. In thîs disclosure, groups of samples may also be referred to as “sample groups” or “sample groupîngs.” Furthermore, în general terms, a SampleGroupDescription box includes descriptions of sample groups.
[0031] More specifically, a SampleToGroup box includes a grouping type syntax element. The grouping type syntax element may also be referred to as the grouping^type syntax element. Additionally, the SampleToGroup box includes one or more sample group entries. Each respective sample group entry în the SampleToGroup box includes a respective sample count syntax element and a respective group description index syntax element. The respective sample count syntax element indicates the number of consecutive samples to which the respective group description index applies.
[0032] A SampleGroupDescription box also includes a grouping type syntax element.
When the grouping type syntax éléments ofa SampleToGroup box and a SampleGroupDescription box match, the SampleToGroup box and the SampleGroupDescription box are said to correspond to one another. A SampleGroupDescription box includes one or more group description entries. Each respective group description entry in a SampleGroupDescription box includes a description of a respective sample group. A group description index in a SampleToGroup box identifies a corresponding group description entry in the corresponding SampleGroupDescription box.
[0033] For example, a SampleToGroup box may hâve a first sample group entry that includes a sample count syntax element having a value equal to 5 and a group description index having a value equal to 3. Hence, in this example, five consecutive samples belong to a sample group described by the third group description entry în the corresponding SampleGroupDescription box. In this example, the SampleToGroup box may hâve a second sample group entry that includes a sample count syntax element
having a value equal to 4 and a group description index having a value equal to 2. Hence, in this example, the next four consecutive samples belongto a sample group described by the second group description entry in the corresponding SampleGroupDescription box.
[0034] There are multiple versions of ISOBMFF. In one version of ISOBMFF, which is referred to as version 1, the SampleToGroup box includes a grouping type parameter syntax element in addition to the syntax éléments described above. The grouping type parameter syntax element is a separate syntax element from the grouping type syntax element. This disclosure may refer to a sample group defined in a SampleToGroup box 10 defined in version 1 of ISOBMFF as a version 1 sample group. The grouping type parameter syntax element may be denoted as grouping_type_parameter. The grouping type parameter syntax element is not présent in SampleToGroup boxes of files conforming to the initial version of ISOBMFF. The grouping type parameter syntax element is an indication of a sub-type of the sample grouping. Thus, a SampleToGroup 15 box may include a “grouping type” syntax element and a separate “grouping type parameter” syntax element.
[0035] A version ofthe ISOBMFF spécification, which is hereinafter referred to simply as “the ISOBMFF spécification” or “NI 4574” is available from http://Dhenix.intevrv.fr/mpeE/doc_end user/documents/l09 Sapporo/wgl l/w!4574-v2-wl 4574.zip.
The ISOBMFF spécification comprises a document entitled ISO/IEC 15444-12, fourth édition, Information technology - JPEG 2000 - image coding system - Part 12: ISO base media file format, 15 July 2012, as modified by COR 1, FDAM1, FDAM2, COR2, and FDAM 3 (hereinafter, “15444-12” or the “15444-12 spécification”). The ISOBMFF spécification also comprises a document entitled Singer et a!., “ISO/IEC
14496-12, Amd. 4, improved audio support, ISO/IEC JTC1/SC29/WG11,
MPEG2014/wl4325,25 July 2014, Sapporo, Japan (hereinafter, “14496-12” or the “14996-12 spécification”).
[0036] The introduction ofthe grouping type parameter syntax element in the SampleToGroup box raises several issues. For example, with the introduction of the 30 grouping type parameter syntax element, the grouping type of a version 1 sample group is actually defined by both the grouping type syntax element and the grouping type parameter syntax element. Defining the grouping type of a version 1 sample group in this way may be problematic because other portions of the ISOBMFF spécification, which is available from rely on the assumption that the grouping type of a sample group
is defined solely by the grouping type parameter syntax element. For example, the semantics defined in the ISOBMFF spécification for the SampleGroupDescription box do not account for the grouping type parameter syntax element in any way. Other examples are described elsewhere in this disclosure.
[0037] This disclosure describes several techniques for addressing such issues. For instance, in accordance with a technique of this disclosure, it is proposed to define the relationship between SampleGroupDescription boxes and SampleToGroup boxes for the same grouping types as a 1 to N relationship, where /Visa positive non-zero integer. Thus, multiple SampleToGroup boxes having grouping type syntax éléments with the same value may correspond a single SampleGroupDescription box having a grouping type syntax element having that value. In some instances, each ofthese SampleToGroup boxes may hâve grouping type parameter syntax éléments having different values. Defining the relationship in this way may résolve the issue described above without changing the syntax of the SampleGroupDescription box or the
SampleToGroup box. Instead, implémentation of this example may only involve changes to the semantics and descriptions ofthe SampleGroupDescription box and/or the SampleToGroup box.
[0038] In accordance with one example ofthis technique, a source device may generate, in a container box ofthe file, a SampleGroupDescription box that includes one or more 20 group description entries. In this disclosure, a container box is a box that contains one or more other boxes. In the ISOBMFF extensions for carnage of HEVC and other video formats, example types of container boxes include sample table boxes, track fragment boxes, and other types of boxes. Each respective group description entry provides descriptions for a respective sample group. The SampleGroupDescription box 25 further includes a grouping type syntax element that identifies a type of sample grouping. In this example, the grouping type syntax element in the SampleGroupDescription box has a particular value and the container box is a sample table box or a track fragment box. Furthermore, in this example, the source device may generate, in the same container box of the file, a plurality of SampleToGroup boxes. In 30 this example, each respective SampleToGroup box of the plurality of SampleToGroup boxes includes a respective grouping type syntax element having the particular value. Additionally, each respective SampleToGroup box includes one or more sample group entries. Each respective sample group entry of the one or more sample group entries comprises a respective sample count syntax element indicating a number of samples in a
respective sample group. Each respective sample group entry of the one or more sample group entries comprises a respective group description index syntax element indicatîng an index of a group description entry in the SampleGroupDescription box that provides a description ofthe respective sample group. Each sample ofthe respective sample group comprises one or more pictures of the video content. In this example, the source device may output the file.
[0039] FIG. 1 is a block diagram illustrating an example video encoding and decoding system 10 that may use the techniques described ïn this disclosure. As shown in FIG. 1, system 10 includes a source device 12 that generates encoded video data to be decoded 10 at a later time by a destination device 14. Source device 12 and destination device 14 may comprise any of a wide range of devices, including desktop computers, notebook (i.e., laptop) computers, tablet computers, set-top boxes, téléphoné handsets such as socalled “smart” phones, so-called “smart” pads, télévisions, caméras, display devices, digital media players, video gaming consoles, video streaming device, or the like. In 15 some cases, source device 12 and destination device 14 may be equipped for wireless communication. Hence, source device 12 and destination device 14 may be considered wireless communication devices. Source device 12 and destination device 14 may be considered video devices.
[0040] In the example of FIG. I, source device !2 includes a video source 18, video 20 encoder 20 and an output interface 22. In some cases, output interface 22 may include a modulator/demodulator (modem) and/or a transmitter. In source device 12, video source 18 may include a source such as a video capture device, e.g., a video caméra, a video archive contaîning previously captured video, a video feed interface to receive video from a video content provider, and/or a computer graphies system for generating 25 computer graphies data as the source video, or a combination of such sources.
However, the techniques described in this disclosure may be applicable to video coding in general, and may be applied to wireless and/or wired applications.
[0041] Video encoder 20 may encode the captured, pre-captured, or computer-generated video. Source device 12 may transmit the encoded video data directly to destination device 14 via output interface 22 of source device 12. The encoded video data may also (or altematively) be stored onto storage device 33 for later access by destination device 14 or other devices, for decoding and/or playback.
[0042] Destination device 14 includes an input interface 28, a video décoder 30, and a display device 32. Furthermore, in the example ofFIG. 1, destination device 14
includes a storage medium 29 and a file parsing unit 31. In some cases, input interface 28 may include a receiver and/or a modem. Input interface 28 of destination device 14 receives the encoded video data over a link 16. The encoded video data communicated over link 16, or provided on storage device 33, may include a variety of syntax éléments 5 generated by video encoder 20 for use by a video décoder, such as video décoder 30, in decoding the video data. Such syntax éléments may be included with the encoded video data transmitted on a communication medium, stored on a storage medium, or stored on a file server.
[0043] Display device 32 may be integrated with, or may be cxtemal to, destination 10 device 14. In some examples, destination device 14 may include an integrated display device and may also be configured to interface with an cxtemal display device. In other examples, destination device 14 may be a display device. In general, display device 32 displays the decoded video data to a user, and may comprise any of a variety of display devices such as a liquid crystal display (LCD), a plasma display, an organic light emitting diode (OLED) display, or another type of display device.
[0044] Video encoder 20 and video décoder 30 each may be implemented as any of a variety of suitable encoder circuitry, such as one or more mîcroprocessors, digital signal processors (DSPs), application spécifie integrated circuits (ASICs), field programmable gâte arrays (FPGAs), discrète logic, software, hardware, firmware or any combinations 20 thereof. When the techniques are implemented partially in software, a device may store instructions for the software in a suitable, non-transitory computer-readable medium and execute the instructions in hardware using one or more processors to perform the techniques of this disclosure. Each of video encoder 20 and video décoder 30 may be included in one or more encoders or decoders, either of which may be integrated as part 25 of a combined encoder/decoder (CODEC) in a respective device.
[0045] Destination device 14 may receive the encoded video data to be decoded via link 16. Link 16 may comprise any type of medium or device capable of moving the encoded video data from source device 12 to destination device 14. In one example, link 16 may comprise a communication medium to enable source device 12 to transmît 30 encoded video data directly to destination device 14 in real-time. The encoded video data may be modulated according to a communication standard, such as a wireless communication protocol, and transmitted to destination device 14. The communication medium may comprise any wireless or wired communication medium, such as a radio frequency (RF) spectrum or one or more physical transmission lines. The
communication medium may form part of a packet-based network, such as a local area network, a wide-area network, or a global network such as the Internet. The communication medium may include routers, switches, base stations, or any other equipment that may be useful to facilitate communication from source device 12 to 5 destination device 14.
[0046] Altematively, output interface 22 may output encoded data to a storage device 33. Similarly, input interface 28 may access encoded data storage device 33. Storage device 33 may include any of a variety of distributed or locally accessed data storage media such as a hard drive, Blu-ray dises, DVDs, CD-ROMs, flash memory, volatile or 10 non-volatile memory, or any other suitable digital storage media for storing encoded video data. In a further example, storage device 33 may correspond to a file server or another intermediate storage device that may hold the encoded video generated by source device 12. Destination device 14 may access stored video data from storage device 33 via streaming or download. The file server may be any type of server capable 15 of storing encoded video data and transmitting that encoded video data to the destination device 14. Example file servers include a web server (e.g., for a website), a file transfer protocol (FTP) server, network attached storage (NAS) devices, or a local disk drive. Destination device 14 may access the encoded video data through any standard data connection, including an Internet connection. This may include a wireless channel (e.g., 20 a Wi-Fi connection), a wired connection (e.g., DSL, cable modem, etc.), or a combination of both that is suitable for accessing encoded video data stored on a file server. The transmission of encoded video data from storage device 33 may be a streaming transmission, a download transmission, or a combination of both.
[0047] The techniques of this disclosure are not necessarily limited to wireless applications or settings. The techniques may be applied to video coding in support of any of a variety of multimedia applications, such as over-the-air télévision broadcasts, cable télévision transmissions, satellite télévision transmissions, streaming video transmissions, e.g., via the Internet, encoding of digital video data for storage on a data storage medium, decoding of digital video data stored on a data storage medium, or other applications. In some examples, system 10 may be configured to support one-way or two-way video transmission to support applications such as video streaming, video playback, video broadeasting, and/or video telephony.
[0048] Furthermore, in the example of FIG I, video coding system 10 includes a file génération device 34. File génération device 34 may receive encoded video data
generated by source device 12. File génération device 34 may generate a file that includes the encoded video data. Destination device 14 may receive the file generated by file génération device 34. In various examples, file génération device 34 may include various types of computing devices. For instance, file génération device 34 may 5 comprise a video encoding device, a Media Aware Network Element (MANE), a server computing device, a personal computing device, a specîal-purpose computing device, a commercial computing device, or another type of computing device. In some examples, file génération device 34 is part of a content delivery network. File génération device 34 may receive the encoded video data from source device 12 via a channel such as link to 16. Furthermore, destination device 14 may receive the file from file génération device via a channel such as link 16. File génération device 34 may be considered a video device. As shown in the example of FIG I, file génération device 34 may comprise a memory 31 configured to store a file that contains encoded video contents.
[0049] In other examples, source device 12 or another computing device may generate a 15 file that includes the encoded video data. However, for case of cxplanation, this disclosure describes file génération device 34 as generating the file. Nevertheless, it should be understood that such descriptions are applicable to computing devices in general.
]0050] Video encoder 20 and video décoder 30 may operate according to a video compression standard, such as the High Efficiency Video Coding (HEVC) standard or an extension thereof. The HEVC standard may also be referred to as ISO/IEC 23008-2. Recently, the design of HEVC has been finalized by the Joint Collaboration Team on Video Coding (JCT-VC) of ITU-T Video Coding Experts Group (VCEG) and ISO/IEC Motion Picture Experts Group (MPEG). The latest HEVC draft spécification, and referred to as HEVC WD hereinafter, is available from http://phenix.intevry.frjct/doc_end_user/documents/l4_Vienna/wgI l/JCTVC-N!003-vl .zip. The multiview extension to HEVC, namely MV-HEVC, has also been developed by the JCT-3V. A recent Workîng Draft (WD) of MV-HEVC, titled “MV-HEVC Draft Text 5” and referred to as MV-HEVC WD5 hereinafter, is available from http://phenix.it30 sudparis.eu/jct2/doc_end_user/documents/5_Vienna/wgl 1/JCT3V-El004-v6.zip. The scalable extension to HEVC, named SHVC, has also been developed by the JCT-VC. A recent Workîng Draft (WD) of SHVC, titled “High efficiency video coding (HEVC) scalable extension draft 3 and referred to as SHVC WD3 hereinafter, is available from http://phenix.it-sudparis.eu/jct/doc_end_user/documents/14_Vienna/wgl 1/JCTVC18432
N1008-v3.zîp. A recent working draft (WD) ofthe range extension of HEVC, is available from available from http://phenix.tntevry.fr/jct/doc_end_user/documents/14_Vienna/wgl l/JCTVC-N1005-v3.zip. A recent working draft (WD) ofthe 3D extension of HEVC, namely 3D-HEVC, titled “3D5 HEVC Draft Text 1” is available from http://phenix.tntevry.fr/jct2/doc_end_user/documents/5_Vienna/wgll/JCT3V-E1001-v3.zip. Video encoder 20 and video décoder 30 may operate according to one or more of these standards or other standards. Such other video coding standards include ITU-T H.261, ISO/IEC MPEG-I Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263,
ISO/IEC MPEG-4 Visual, ITU-T H.264 or ISO/IEC MPEG-4 AVC, including its Scalable Video Coding (SVC) and Multiview Video Coding (MVC) extensions.
[0051] Alternatively, video encoder 20 and video décoder 30 may operate according to other proprietary or industry standards, such as the ITU-T H.264 standard, alternatively referred to as MPEG-4, Part 10, Advanced Video Coding (AVC), or extensions of such 15 standards. The techniques of this disclosure, however, are not limited to any particular coding standard. Other examples of video compression standards include ITU-T H.261, ISO/IEC MPEG-I Visual, ITU-T H.262 or ISO/IEC MPEG-2 Visual, ITU-T H.263, ISO/IEC MPEG-4 Visual and ITU-T H.264 (also known as ISO/IEC MPEG-4 AVC), tncluding its Scalable Video Coding (SVC) and Multiview Video Coding (MVC) extensions.
[0052] In general, in HEVC, a video frame or picture may be divided into a sequence of treeblocks or largest coding units (LCU) that include both luma and chroma samples. Treeblocks may also be referred to as Coding Tree Units (CTUs). A treeblock has a similar purpose as a macroblock ofthe H.264/AVC standard. A slice includes a number 25 of consecutive treeblocks în coding order. A video frame or picture may be partitioned into one or more slices. Each treeblock may be split into coding units (CUs) according to a quadtree. For example, a treeblock, as a root node of the quadtree, may be split into four child nodes, and each child node may tn tum be a parent node and be split into another four child nodes. A final, unsplit child node, as a leaf node ofthe quadtree, comprises a coding node, i.e., a coded video block. Syntax data associated with a coded bitstream may define a maximum number of times a treeblock may be split, and may also define a minimum size ofthe coding nodes.
[0053] A CU includes a coding node and prédiction units (PUs) and transform units (TUs) associated with the coding node. A size of the CU corresponds to a size of the
coding node and must be square in shape. The size of the CU may range from 8x8 pixels up to the size of the treeblock with a maximum of64x64 pixels or greater. Each CU may contain one or more PUs and one or more TUs. Syntax data associated with a CU may describe, for example, partitioning of the CU into one or more PUs.
Partitioning modes may differ between whether the CU is skip or direct mode encoded, intra-prediction mode encoded, or inter-prediction mode encoded. PUs may be partitioned to be non-square in shape. Syntax data associated with a CU may also describe, for example, partitioning of the CU into one or more TUs according to a quadtree. A TU can be square or non-square in shape.
[0054] The HEVC standard allows for transformations according to TUs, which may be difièrent for different CUs. The TUs are typically sized based on the size of PUs within a given CU defined for a partitioned LCU, although this may not always be the case. The TUs are typically the same size or smaller than the PUs. In some examples, residual samples corresponding to a CU may be subdivided into smaller units using a quadtree structure known as “residual quad tree” (RQT). The leaf nodes of the RQT may be referred to as TUs. Pixel différence values associated with the TUs may be transformed to produce transform coefficients, which may be quantized.
[0055[ In general, a PU includes data related to the prédiction process. For example, when the PU is intra-mode encoded, the PU may include data describing an intra20 prédiction mode for the PU. As another example, when the PU îs inter-mode encoded, the PU may include data defîning a motion vector for the PU. The data defining the motion vector for a PU may describe, for cxample, a horizontal component of the motion vector, a vertical component ofthe motion vector, a resolution for the motion vector (e.g., one-quarter pixel précision or one-eighth pixel précision), a reference 25 picture to which the motion vector points, and/or a reference picture list (e.g., List 0,
List I ) for the motion vector.
[0056] In general, a TU is used for the transform and quantization processes. A given CU having one or more PUs may also include one or more transform units (TUs). Following prédiction, video encoder 20 may calculate residual values corresponding to 30 the PU. The residual values comprise pixel différence values that may be transformed into transform coefficients, quantized, and scanned using the TUs to produce serialized transform coefficients for entropy coding. This disclosure typically uses the term “video block” to refer to a coding node (i.e., coding block) of a CU. In some spécifie
cases, lhis disclosure may also use the term “video block” to refer to a treeblock, i.e., LCU, or a CU, which includes a coding node and PUs and TUs.
(0057] A video sequence typically includes a sériés of video frames or pictures. Each slice of a picture may include slice syntax data that describes an encoding mode for the 5 respective slice. Video encoder 20 typically opérâtes on video blocks within individual video slices in order to encode the video data. A video block may correspond to a coding node wilhin a CU. The video blocks may hâve fixed or varying sizes, and may difier in size according to a specified coding standard.
[0058] Following intra-predictive or inter-predictive coding using the PUs of a CU, video encoder 20 may calculate residual data for the TUs of the CU. The PUs may comprise pixel data in the spatial domain (also referred to as the pixel domain) and the TUs may comprise coefficients in the transform domain following application of a transform, e.g., a discrète cosine transform (DCT), an integer transform, a wavelet transform, or a conceptually similar transform to residual video data. The residual data may correspond to pixel différences between pixels of the unencoded picture and prédiction values corresponding to the PUs. Video encoder 20 may form the TUs including the residual data for the CU, and then transform the TUs to produce transform coefficients for the CU.
[0059] Following any transforms to produce transform coefficients, video encoder 20 may perform quantization ofthe transform coefficients. Quantization generally refers to a process in which transform coefficients are quantized to possibly reduce the amount of data used to represent the coefficients, providing further compression. The quantization process may reduce the bit depth associated with some or ail of the coefficients.
[0060] After scanning the quantized transform coefficients to form a one-dimensional vector, video encoder 20 may entropy encode the one-dimensional vector, e.g., according to context adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), Probability Interval Partitioning Entropy (PIPE) coding or another entropy encoding methodology. Video encoder 20 may also entropy encode syntax éléments associated with the encoded video data for use by video décoder 30 in decoding the video data.
[0061] Video encoder 20 may output a bitstream that includes a sequence of bits that forms a représentation of coded pictures and associated data. The term “bitstream” may be a collective term used to refer to either a Network Abstraction Layer (NAL) unit
stream (e.g., a sequence ofNAL units) or a byte stream (e.g., an encapsulation of a NAL unit stream containîng start code préfixés and NAL units as specified by Annex B of the HEVC standard). A NAL unit is a syntax structure containîng an indication of the type of data in the NAL unit and bytes containîng that data in the form of a raw byte sequence payload (RBSP) interspersed as necessary with émulation prévention bits. Each ofthe NAL units may include a NAL unit header and may encapsulate an RBSP. The NAL unît header may include a syntax element that indicates a NAL unit type code. The NAL unit type code specified by the NAL unit header of a NAL unit indicates the type ofthe NAL unit. A RBSP may be a syntax structure containîng an integer number 10 ofbytes that is encapsulated within a NAL unit. In some instances, an RBSP includes zéro bits.
[0062] Different types ofNAL units may encapsulate different types of RBSPs. For example, a first type ofNAL unit may encapsulate an RBSP for a picture parameter set (PPS), a second type ofNAL unit may encapsulate an RBSP for a slice segment, a third 15 type ofNAL unit may encapsulate an RBSP for Supplémentai Enhancement
Information (SEI), and so on. NAL units that encapsulate RBSPs for video coding data (as opposed to RBSPs for parameter sets and SEI messages) may be referred to as video coding layer (VCL) NAL units. NAL units that contain parameter sets (e.g., video parameter sets (VPSs), sequence parameter sets (SPSs), PPSs, or other types of parameter sets) may be referred to as parameter set NAL units.
[0063] This disclosure may refer to a NAL unit that encapsulâtes an RBSP for a segment slice as a coded slice NAL unit. As defîned in the HEVC WD, a slice segment is an integer number of CTUs ordered consecutively in tiie scan and contained in a single NAL unit. In contrast, in the HEVC WD, a slice may be an integer number of 25 CTUs contained in one independent slice segment and ail subséquent dépendent slice segments (if any) that précédé the next independent slice segment (if any) within the same access unît. An independent slice segment is a slice segment for which values of the syntax éléments of the slice segment header are not inferred from the values for a preceding slice segment. A dépendent slice segment is a slice segment for which the 30 values of some syntax éléments of the slice segment header are inferred from the values for the preceding independent slice segment in decodîng order. The RBSP of a coded slice NAL unit may include a slice segment header and slice data. A slice segment header is a part of a coded slîce segment containîng the data éléments pertaining to the first or ali CTUs represented in the slice segment. A slice header is a slice segment
header of the independent slice segment that is a current slice segment or the most recent independent slice segment that précédés a current dépendent slice segment in decoding order.
[0064[ Video décoder 30 may receive a bitstream generated by video encoder 20. In addition, video décoder 30 may parse the bitstream to obtain syntax éléments from the bitstream. Video décoder 30 may reconstruct the pictures of the video data based at least in part on the syntax éléments obtained from the bitstream. The process to reconstruct the video data may be generally reciprocal to the process performed by video encoder 20. For instance, video décoder 30 may use motion vectors of PUs to détermine prédictive blocks for the PUs of a current CU. In addition, video décoder 30 may inverse quantize coefficient blocks of TUs of the current CU. Video décoder 30 may perform inverse transforms on the coefficient blocks to reconstruct transform blocks of the TUs of the current CU. Video décoder 30 may reconstruct the coding blocks of the current CU by adding the samples of the prédictive blocks for PUs of the current CU to corresponding samples ofthe transform blocks of the TUs ofthe current CU. By reconstructing the coding blocks for each CU of a picture, video décoder 30 may reconstruct the picture.
[0065] File formats and file format standards will now be briefly discussed. File format standards include the ISO base media file format (ISOBMFF, ISO/IEC 14496-12, hereinafter, “ISO/IEC 14996-12”) and other file format standards derived from ISOBMFF, including MPEG-4 file format (ISO/IEC 14496-14), 3GPP file format (3GPP TS 26.244) and AVC file format (ISO/IEC 14496-15, hereinafter “ISO/IEC 14996-15”). Thus, ISO/IEC 14496-12 spécifiés the ISO base media file format. Other documents extend the ISO base media file format for spécifie applications. For instance, ISO/IEC 14496-15 describes the carriage of NAL unit structured video in the ISO base media file format. H.264/AVC and HEVC, as well as their extensions, are examples of NAL unit structured video. ISO/IEC 14496-15 includes sections describing the carriage of H.264/AVC NAL units. Additionally, section 8 of ISO/IEC 14496-15 describes the carriage ofHEVC NAL units. Thus, section 8 of ISO/IEC
14496-15 is said to describe the HEVC file format. The discussion below is based on the reccntly integrated version of 14496-12, embedded in N14574.
[0066[ ISOBMFF is used as the basis for many codée encapsulation formats, such as the AVC File Format, as well as for many multimedia container formats, such as the MPEG-4 File Format, the 3GPP File Format (3GP), and the DVB File Format. In
addition to continuous media, such as audio and video, static media, such as images, as well as metadata, can be stored in a file conforming to ISOBMFF. Files structured according to ISOBMFF may be used for many purposes, including local media file playback, progressive downloading of a remote file, segments for Dynamic Adaptive
Streaming over HTTP (DASH), containers for content to be streamed and its packetization instructions, and recording of received real-tîme media streams. Thus, although originally designed for storage, ISOBMFF has proven valuable for streaming, e.g., for progressive download or DASH. For streaming purposes, movie fragments defined in ISOBMFF can be used. In addition to continuous media, such as audio and video, static media, such as images, as well as metadata can be stored in a file conforming to ISOBMFF.
[0067] A file conforming to the HEVC file format may comprise a sériés of objects, called boxes. A box may be an object-oriented building block defined by a unique type identifier and length. A box is the elementary syntax structure in ISOBMFF and may 15 include a four-character coded box type, a byte count of the box, and a payload. In other words, a box may be a syntax structure comprising a coded box type, a byte count ofthe box, and a payload. In some instances, ail data in a file conforming lo the HEVC file format may be contained within boxes and there may be no data in the file that is not in a box. Thus, an ISOBMFF file may consist of a sequence of boxes, and boxes 20 may contain other boxes. For instance, the payload of a box may include one or more additional boxes. FIG. 6A, FIG. 6B, FIG. 6C, FIG. 7A, FIG. 7B, and FIG. 7C, described in detail elsewhere in this disclosure, show example boxes within a file, in accordance with one or more techniques of this disclosure.
[0068] A file conforming to ISOBMFF may include various types of boxes. For 25 example, a file conforming to ISOBMFF may include a file type box, a media data box, a movie box, a movie fragment box, and so on. In this example, a file type box includes file type and compatibîlity information. A media data box may contain samples (e.g., coded pictures). A Movie box (“moov”) contains metadata for continuous media streams présent in the file. Each ofthe continuous media streams may be represented in 30 the file as a track. For instance, a movie box may contain metadata regarding a movie (e.g., logical and timing relationships between samples, and also pointers to locations of samples). Movie boxes may include several types of sub-boxes. The sub-boxes in a movie box may include one or more track boxes. A track box may include information about an individual track of a movie. A track box may include a track header box that 22 spécifiés overall information of a single track. In addition, a track box may include a media box that contains a media information box. The media information box may include a sample table box that contains data indexing media samples in the track. Information in the sample table box may be used to Iocate samples in time and, for each of the samples of the track, a type, size, container, and offset into that container of the sample. Thus, the metadata for a track is enclosed în a Track box (“trak”), while the media content of a track is either enclosed in a Media Data box (“mdat”) or directly in a separate file. The media content for tracks comprises or consists of a sequence of samples, such as audio or video access units.
[0069] ISOBMFF spécifiés the following types of tracks: a media track, which contains an elementary media stream, a hint track, which either includes media transmission instructions or represents a received packet stream, and a tîmed metadata track, which comprises tîme-synchronized metadata. The metadata for each track includes a list of sample description entries, each providing the coding or encapsulation format used in the track and the initialîzation data used for processing that format. Each sample is associated with one of the sample description entries of the track [0070] ISOBMFF enables specifying sample-specific metadata with various mechanisms. Spécifie boxes within the Sample Table box (“stbl”) hâve been standardized to respond to common needs. The Sample Table box contains a sample table that contains ail the time and data indexing of the media samples in a track. Usîng the tables in the Sample Table box, it may be possible to Iocate samples in time, détermine their type (e.g. I-frame or not), and détermine their size, container, and offset into that container.
[0071] For example, a Sync Sample box (“stss”) is a box within a Sample Table box.
The Sync Sample box is used to list the random access samples ofthe track. This dîsclosure may refer to a sample listed by the Sync Sample box as a sync sample. In another example, a sample groupîng mechanîsm enables mapping of samples according to a fbur-character groupîng type into groups of samples sharing the same property specified as a sample group description entry in the file. Several groupîng types hâve been specified in ISOBMFF.
[0072] A Movie Fragment box is a top-Ievel box. Each Movie Fragment box provides information that would hâve previously been in the Movie box. A Movie Fragment box may contain one or more track fragment (“traf ’) boxes. Within the Movie Fragment there is a set of track fragments, zéro or more per track. The track fragments in tum
contain zéro or more track runs, each of which documents a contiguous run of samples for that track. For instance, each track run may contain samples of pictures that are contiguous in a certain order, such as decoding order. A track fragment box is defined în the 14996-12 spécification and comprises metadata for one or more track fragments.
For instance, a track fragment box may include a track fragment header box indicating a track ID, a base data offset, a sample description index, a default sample duration, a default sample size, and default sample flags. A track fragment box may include one or more track fragment run boxes, each documenting a contiguous set of samples for a track. For instance, a track fragment box may include syntax éléments indicating a sample count, a data offset, sample flags, a sample duration, a sample size, sample composition time offset, and so on. Within these structures, many fields are optional and can be defaulted.
[0073] A sample table box may Include one or more SampleToGroup boxes and one or more sample group description boxes (i.e., SampleGroupDescription boxes). A
SampleToGroup box may be used to détermine a sample group to which a sample belongs, along with an associated description ofthe sample group. In other words, a SampleToGroup box may indicate a group to which a sample belongs. A SampleToGroup box may hâve a box type of “sbgp.” A SampleToGroup box may include a grouping type element (e.g., grouping_type). In some instances, in this disclosure, an element of a box may also be referred to as a syntax element. The grouping type element may be an integer that identifies a type (i.e., a criterion used to form the sample groups) of a sample grouping. Furthermore, a SampleToGroup box may include one or more entries (i.e., sample group entries). Each sample group entry in a SampleToGroup box may be associated with a different, non-overlapping sériés of consecutive samples in the track. Each sample group entry may indicate a sample count element (e.g., sample_count) and a group description index element (e.g., group_description_index). The sample count element ofa sample group entry may indicate a number of samples associated with the sample group entry. In other words, the sample count element of the sample group entry may be an integer that gives the number of consecutive samples with the same sample group descriptor. The group description index element may identify, within a SampleGroupDescription box, a group description entry that contains a description of the samples associated with the sample group entry. The group description index éléments of multiple sample group entries may identify the same SampleGroupDescription box.
[0074] As indicated bnefly above, the SampleToGroup box may also include a grouping type parameter syntax element. The grouping type parameter syntax element may be denoted as grouping_type_parameter. The grouping type parameter syntax element is an indication ofa sub-type of the sample grouping. There are three places in ISO/ŒC 14496*15 using grouping_type_parameter, the first as part of finalized spécification (of the MVC file format), the other two as parts of under-development spécifications:
1) In clause B.5 (View priority sample grouping) of Wang et a!., “Carnage of AVC based 3D video excluding MVC, ISO/IEC JTC1/SC29/WG11/NI4837, October 2014, (Text of 14496-15 2014 PDAM 2 AVC based 3D video excluding MVC), hereinafter, NI4837, and earlier versions of 14496-15 that has the MVC file format in it:
If version 1 of the Sample to Group Box is used and the MVC View Priority Assignment URI box is présent in the sample entry, grouping_type_parameter is a 1-based index to the MVC View Priority Assignment URI box.
2) In clause 7.2.6 (Sample groups on random access recovery points and random access points) of N14837 (Text of 14496-15 2014 PDAM 2 AVC based 3D video excluding MVC):
When version 1 of the SampleToGroupBox is used for the random access point sample grouping, the group ing_type_parameter spécifiés the tierjd value of the layer(s) or vîew(s) that are refreshed in the associated sample.
3) In clause 10.6 (Stream access point sample group) of N14574 (ISO/IEC 1449612 Amd.4 Improved audio support):
A stream access point, as defined in Annex I, enables random access into a container of media stream(s). The SAP sample grouping identifies samples (the first byte of which is the position Isau for a SAP as specified ïn Annex I) as being of the indicated SAP type.
The syntax and semantics of grouping_type_parameter are specified as follows.
{ unsigned int(28) target_layers;
unsigned int(4)layer_id_method_idc;
ï target_layers spécifiés the target layers for the indicated SAPs according to Annex I. The semantics of target_layers dépends on the value of layer_id_method_idc. When layer_id_method_idc is equal to 0, target_iayers is reserved.
layer_id_method_ idc spécifiés the semantics of target_layers. layer_id_method_idc equal to 0 spécifiés that the target layers consist of ail the layers represented by the track. layer_id_method_idc not equal to 0 is specified by derived media format spécifications.
« « * [0075] There are also some instances in the latest 14496-12 text that use the grouping_type_parameter syntax element. For instance, clause 8.8.13.1 Level Assignment Box and clause 8.8.16.1 Alternative Startup Sequence Properties Box use the grouping_typej)arameter syntax element.
[0076] Some aspects ofthe current signaling of sample groups in ISOBMFF (i.e., the SampleGroupDescription box and SampleToGroup box) are not clear or not working when the version of the SampleToGroup boxes is equal to 1. For instance, the syntax of the Sample to Group box is as follows:
aligned(8) class SampleToGroupBox extends FullBoxt'sbgp', version, 0) (
unsigned int(32)__arouping_tvpe;
if (version — 1) ( unsigned int(32) grouplng_type_parameter;
unsigned int(32) entry_count;
for (i«l; i <= entry_count; i++) (
unsigned int(32) sample_count;
unsigned int(32) group_description_index;
) }
[0077] The semantîcs of grouping_type and grouping_type_parameter are as follows:
grouping_type is an integer that identifies the type (i.e. criterion used to form the sample groups) of the sample grouping and links it to its sample group 20 description table with the same value for grouping type. At most one occurrence of this box with the same value for grouping_type (and, if used, grouping_type_parameter} shall exïst foratrack.
grouping_type_parameter is an indication of the sub-type of the 25 grouping [0078] Therefore, the grouping type of a version 1 sample group may consist of both groupingjype and groupîng_type_parameter.
[0079] Furthermore, there is the following description ofthe SampleToGroup box in the 30 14496-12 spécification:
There may be multiple instances of this box if there is more than one sample grouping for the samples in a track. Each instance ofthe SampleToGroup box has a type code that distinguishes different sample groupings. [START 1]
Within a track, there shall be at most one instance of this box with a particular grouping type. [END 1] [START 2] The associated SampleGroupDescription shall indicate the same value for the grouping type. [END 2] [0080] In this description ofthe SampleToGroup box, the type code is actually just grouping_type, not including the sub-type grouping_type_parameter. While on the other hand, based on the text between [START 1[ and [END 1] above, the grouping type consists of both grouping_type and groupïng_type_parameter. While agaîn, based on the text between [START 2] and [END 2] above, the grouping type again consists only of groupïngjype.
[0081] The syntax of the Sample Group Description box is as follows:
aligned(8) class SampleGroupDescriptionBox (unsigned int(32) handler_type) extends FullBox(’sgpd', version, 0){ unsigned int(32) grouping_type;
if (version==l) ( unsigned int(32) default_length; } if (version>=2) ( unsigned int(32) default_sample_description_index;
} unsigned int(32) entry_count;
int i;
for (i = 1 ; i <- entry_count ; i++)( if (version==l) ( if (default_length==0) ( unsigned int(32) description_length;
} }
SampleGroupEntry (grouping_type);
// an instance of a class derived from SampleGroupEntry // that is appropriate and permitted for the media type }
{0082] As can be seen, no sample grouping sub-type (i.e., grouping_type_parameter) exists in the SampieGroupDescription box. Thus, there is no way to hâve multiple SampieGroupDescription boxes in a Sample Table box or a Track Fragment box with the same value of grouping_type (and different values of grouping_type_parameter) such that there is a one-to-one mapping between SampieToGroup boxes and SampieGroupDescription boxes when sub-groupîng is used with version 1 SampieToGroup boxes.
{0083] Furthermore, there is the following description ofthe Sample Description box in the 14496-12 spécification:
There may be multiple instances of this box if there is more than one sample grouping for the samples in a track. Each instance of the SampieGroupDescription box has a type code that distinguishes different sample groupings. Within a track, there shall be at most one instance ofthis box with a particular grouping type. The associated SampieToGroup shall indicate the same value for the grouping type.
From this text, both the type code and the grouping type should just be grouping_type, not including the sub-type grouping_type_parameter.
[0084] A summary description of the techniques ofthis disclosure is given below, with a detailed implémentation of some methods provided in iater sections. Some ofthese techniques may be applied independentiy and some of them may be applied in combination. Particular techniques ofthis disclosure prescribe requirements to which files belonging to a file format must conform. For instance, îf a file does not satisfy one of the requirements, the file does not conform to the file format.
[0085] ln accordance with a first example technique of this disclosure, the clarity issues regarding the signaling of sample groups in ISOBMFF described above may be addressed by removing the grouping_type_parameter syntax element from the Sample to Group box syntax. Thus, the grouping_type syntax element may be the sole syntax element indicating the grouping type of a Sample to Group box.
[0086] In accordance with a second example technique of this disclosure, the clarity issues regarding the signaling of sample groups in ISOBMFF described above may be
addressed by adding a groupingjype_parameter syntax element to the syntax of the Sample Group Description box when the version of the Sample Group Description box is 1. With this example, there is a one-to-one relatîonship between Sample Group Description boxes and Sample to Group boxes such that Sample Group Description boxes and Sample to Group boxes can be matched by the value of the grouping_type syntax element and the grouping_type_parameter syntax element, if présent. For example, the syntax of the Sample Group Description box may be modified such that the Sample Group Description box may include a grouping_type_parameter syntax element. In this example, a Sample to Group box may correspond to a Sample Group 10 Description box if the value of the grouping_type syntax element of the Sample to
Group box matches the value ofthe grouping_type syntax element ofthe Sample Group Description box and the value of the grouping_type_parameter syntax element of the Sample to Group box matches the value of the grouping_type_parameter syntax element of the Group Description box.
[0087] In accordance with a third example technique ofthis disclosure, the clarity issues regarding the signaling of sample group groups in ISOBMFF described above may be addressed by defining that the relatîonship between SampleGroupDescription box and SampleToGroup box for the same grouping type is 1 to N. In accordance with this third example technique, one or more ofthe following may apply. Firstly, within a container box (e.g., 'stbl' or 'traf ) there shall be only one SampleGroupDescription box with a particular value of grouping_type and there can be one or more associated (e.g., corresponding) SampleToGroup boxes wîth the same value ofgroupingjype. For example, the value ofa groupingjype syntax element in a SampleGroupDescription box may be equal to 3 and the values of groupingjype syntax éléments in multiple
SampleToGroup boxes may hâve values equal to 3. In some examples, the container box may include multiple SampleGroupDescription boxes. In at least some such examples, no two ofthe multiple SampleGroupDescription boxes are permîtted to hâve groupingjype syntax éléments having the same value.
[0088] Secondly, in the third example technique of this disclosure, when there are 30 multiple SampleToGroup boxes with a particular value of the groupingjype syntax element in a container box, the version of ail the SampleToGroup boxes must be I. For instance, in this example, if two SampleToGroup boxes in a container box hâve groupingjype syntax éléments with values equal to 3, it is not possible to hâve one of the SampleToGroup boxes be a version 0 SampleToGroup box. Rather, in this
example, both ofthe two SampleToGroup boxes are version 1 SampleToGroup boxes. Therefore, in this example, both of the two SampleToGroup boxes hâve groupingjype_parameter syntax éléments. Thus, it may be a requirement of a file format that when there are multiple SampleToGroup boxes with the same value of the 5 groupingjype syntax element in a single container box, each of the multiple
SampleToGroup boxes must hâve a respective version identifier equal to 1.
[0089] Thîrdly, in this third example technique ofthis disclosure, when there are multiple SampleToGroup boxes with a particular value ofthe grouping_type syntax element, the value ofthe groupingjype syntax element should be constrained such that 10 any value of the group_description_index syntax element that is greater than 0 shall not be présent in more than one of the SampleToGroup boxes. In other words, there is a restriction or prohibition built into the file format that prevent two or more
SampleToGroup boxes in the same container box from having group_description_index syntax éléments with the same value greater than 0. For example, a first
SampleToGroup box and a second SampleToGroup box may each hâve a grouping_type syntax element with a value equal to 4. In this example, if the first SampleToGroup box has a group_description_îndex syntax element with a value equal to 2, the second SampleToGroup box may not hâve a group_descriptionjndex syntax element with a value equal to 2. Thus, in this example, it may be a requirement ofthe file format that 20 when there are multiple SampleToGroup boxes with the same value of the grouping type syntax element in a single container box, no two of the multiple SampleToGroup boxes shall hâve group description index syntax éléments having the same value greater than 0.
[0090] Thus, in accordance with an example ofthe third technique ofthis disclosure, a 25 device, such as source device 12 or file génération device 34, may generate a container box (e.g., a sample table box or a track fragment box) of the file such that the file conforms to a particular file format. As part of generating the container box, the device may generate, in the container box, a SampleGroupDescription box that includes one or more group description entries. Each respective group description entry provides a 30 description for a respective sample group. The SampleGroupDescription box further includes a grouping type syntax element that identifies a type of sample grouping. In this example, the grouping type syntax element in the SampleGroupDescription box has a particular value. Furthermore, in this example, the device may generate, in the same container box ofthe file, a pluralîty of SampleToGroup boxes. In this example, each
respective SampleToGroup box of the plurality of SampleToGroup boxes includes a respective grouping type syntax element having the particular value. Addîtionally, each respective SampleToGroup box includes one or more sample group entries. Each respective sample group entry of the one or more sample group entries comprises a respective sample count syntax element indicating a number of samples in a respective sample group. Each respective sample group entry of the one or more sample group entries comprises a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description of the respective sample group. Each sample of the respective sample group 10 comprises one or more pictures of the video content. In this example, the device may output the file.
[0091] A device for reading a file, such as destination device 14 may obtain the file and obtain, e.g., by parsing the file, the container box from the file. For instance, in the example of FIG. I, storage medium 29 of destination device 14 may be configured to 15 store the file. File parsing unit 31 ofdestination device 14 may be configured to obtain the container box from the file. In this example, video décoder 30 may décodé encoded video data parsed from the file.
[0092] In accordance with the third example technique of this disclosure, it may be a requ ire ment of the particular file format that there shall only be one
SampleGroupDescription box in the container box with the particular value of the grouping type syntax element. However, in some examples, the device may further generate another SampleGroupDescription box having a grouping type syntax element different from the particular value.
[0093] As indicated above, the file may conform to a particular file format. Moreover, 25 in some examples, it is a requirement of the file format that when there are multiple
SampleToGroup boxes with the same value of the grouping type syntax element in a single container box, each ofthe multiple SampleToGroup boxes must hâve a respective version identifier equal to 1. In other words, when there are multiple SampleToGroup boxes with a particular value of grouping_type in a container box, the version of ail the 30 SampleToGroup boxes must be I. Furthermore, in some examples, a requirement of the file format is that when there are multiple SampleToGroup boxes with the same value of the grouping type syntax element in a single container box, no two ofthe multiple SampleToGroup boxes shall hâve group description index syntax éléments having the same value greater than 0. In other words, when there are multiple SampleToGroup
boxes with a particular value of grouping_type, it should be constrained that any value of group_descriptionjndex that is greater than 0 shall not be présent in more than one of the SampleToGroup boxes. In some examples, it is a requirement of the file format that when there are multiple SampleToGroup boxes with the same value of the grouping 5 type syntax element in a single track or track fragment, no two of the multiple
SampleToGroup boxes hâve the same value of a grouping type parameter syntax element.
[0094] The ISOBMFF spécification spécifiés six types of Stream Access Points (SAPs) for use with DASH. The first two SAP types (types 1 and 2), correspond to
Instantaneous Decoding Refresh (IDR) pictures in H.264/AVC and HEVC. An IDR picture only includes I slices. I slices are slices that may include intra predicted blocks, but not inter predicted blocks. The third SAP type (type 3) corresponds to open-GOP random access points, i.e., Broken Link Access (BLA) or Clean Random Access (CRA) pictures in HEVC. BLA pictures and CRA pictures may only include I slices. Pictures that follow a CRA picture in decoding order, but précédé the CRA picture in output order, may use pictures decoded before the CRA picture for reference. A BLA picture typically originates from bitstream splicing at the position of a CRA picture, and in the spliced bitstream the splicing point CRA picture is changed to a BLA picture. The fourth SAP type (type 4) corresponds to Graduai Decoding Refresh (GDR) random access points. An access unit that is not an Intra Random Access Point (IRAP) access unit and that contains a recovery point SEI message is referred to as a GDR access unit, and its corresponding picture is referred to as a GDR picture.
[0095] In the current 14996-12 spécification, the design of signaling an SAP sample grouping requires that version 1 of SampleToGroup boxes are used. This design is inefficient because it would typically require the use of multiple SampleToGroup boxes as well as more total entries in the SampleToGroup boxes. This may mean both higher parsing complexity and more data overhead. One reason for the additional data overhead is that the use of extra boxes would consequently resuit in more overhead for signaling some information such as box type, box version, and so on. Another reason for the additional data overhead is the additional entries in the SampleToGroup boxes, while the data amount of each entry is a constant. More boxes may mean that more parsing îs used for finding the boxes. In particular, ifthere isjust one box to be found, then parsing can stop immediately after that box is found, while when there are possibly
Φ 33 multiple boxes to be found and the actual number of the boxes is unknown, parsing of the entire container box until the end would be used.
[0096] To solve this issue, this disclosure proposes that instead of using version I for the SampleToGroup boxes, version 0 is used. The syntax éléments target_layers and layers_id_method_idc are included in the sample group description entry. [0097] FIG. 2 is a block diagram illustrating an example video encoder 20 that may implement the techniques described in this disclosure. Video encoder 20 represents an example of a video coder configured generate video data that may be stored using the file format techniques described in this disclosure. Video encoder 20 may be configured to output single view, multiview, scalable, 3D, and other types of video data. Video encoder 20 may be configured to output video to post-processing processing entity 27. Post-processing processing entity 27 is intended to represent an example of a video entity, such as a MANE or splicing/editing device, that may process encoded video data from video encoder 20. In some instances, post-processing processing entity may be an example of a network entity. In some video encoding Systems, postprocessing entity 27 and video encoder 20 may be parts of separate devices, while in other instances, the functionality described with respect to post-processing entity 27 may be performed by the same device that comprises video encoder 20. Postprocessing entity 27 may be a video device. In some examples, post-processing entity
27 may be the same as file génération device 34 of FIG. 1.
[0098] In accordance with a technique of this disclosure, post-processing entity 27 may generate a file for storage of encoded video content generated by video encoder 20. The file may include, ïn a container box of the file, a SampleGroupDescription box that provides a sample group description fora sample grouping. The
SampleGroupDescription box includes a grouping type syntax element having a particular value. Additionally, the SampleGroupDescription box includes one or more sample group entries. Post-processing entity 27 may generate, in the same container box, a plurality of SampleToGroup boxes. Each respective SampleToGroup box of the plurality of SampleToGroup boxes includes a respective grouping type syntax element having the particular value, includes a respective sample count syntax element indicating a number of samples in a respective sample grouping, and includes a respective group description index syntax element indicating an index of an entry in the SampleGroupDescription box which describes samples of the respective sample • 34 groupîng. Each sample of the respective sample groupîng may comprise a respective picture ofthe video contents.
[0099] Video encoder 20 may perform intra- and inter-coding of video blocks within video slices. Intra-coding relies on spatial prédiction to reduce or remove spatial redundancy in video within a given video frame or picture. Inter-coding relies on temporal prédiction to reduce or remove temporal redundancy in video within adjacent frames or pictures of a video sequence. Intra-mode (I mode) may refer to any of several spatial based compression modes. Inter-modes, such as uni-directional prédiction (P mode) or bi-prediction (B mode), may refer to any of several temporal-based to compression modes.
[0100] In the example of FIG. 2, video encoder 20 includes a partitioning unit 35, prédiction processing unît 41, filter unit 63, reference picture memory 64, summer 50, transform processing unît 52, quantization unit 54, and entropy encoding unit 56. Prédiction processing unit 41 includes motion estimation unit 42, motion compensation 15 unit 44, and intra prédiction processing unit 46. For video block reconstruction, video encoder 20 also includes inverse quantization unit 58, inverse transform processing unit 60, and summer 62. Filter unit 63 is intended to represent one or more loop filters such as a deblocking filter, an adaptive loop filter (ALF), and a sample adaptive offset (SAO) filter. Although filter unit 63 is shown in FIG. 2 as being an în loop filter, in other 20 configurations, filter unit 63 may be implemented as a post loop filter.
[0101] A video data memory 65 of video encoder 20 may store video data to be encoded by the components of video encoder 20. The video data stored in video data memory 65 may be obtained, for example, from video source 18. Reference picture memory 64 may be a reference picture memory that stores reference video data for use 25 in encoding video data by video encoder 20, e.g., in intra- or inter-coding modes. Video data memory 65 and reference picture memory 64 may be formed by any ofa variety of memory devices, such as dynamic random access memory (DRAM), including synchronous DRAM (SDRAM), magnetoresîstive RAM (MRAM), résistive RAM (RRAM), or other types of memory devices. Video data memory 65 and reference picture memory 64 may be provided by the same memory device or separate memory devices. In various examples, video data memory 65 may be on-chip with other components of video encoder 20, or ofî-chip relative to those components. [0102] As shown în FIG. 2, video encoder 20 receives video data, and partitioning unit 35 partitions the data into video blocks. This partitioning may also include partitioning φ 35 into slices, tîles, or other larger units, as wells as video block partitioning, e.g., according to a quadtree structure of ECUs and CUs. Video encoder 20 generally illustrâtes the components that encode video blocks within a video slice to be encoded. The slice may be divided into multiple video blocks (and possîbly into sets of video 5 blocks referred to as tîles). Prédiction processing unit 41 may select one ofa plurality of possible coding modes, such as one of a plurality of intra coding modes or one of a plurality of inter coding modes, for the current video block based on error results (e.g., coding rate and the level ofdistortion). Prédiction processing unit 41 may provide the resulting intra- or inter-coded block to summer 50 to generate residual block data and to 10 summer 62 to reconstruct the encoded block for use as a reference picture.
[0103] Intra prédiction processing unît 46 within prédiction processing unit 41 may perform intra-predictive coding of the current video block relative to one or more neighboring blocks in the same frame or slice as the current block to be coded to provide spatial compression. Motion estimation unit 42 and motion compensation unit 15 44 within prédiction processing unit 41 perform inter-predictive coding of the current video block relative to one or more prédictive blocks in one or more reference pictures to provide temporal compression.
[0104] Motion estimation unit 42 may be configured to détermine the inter-prediction mode for a video slice according to a predetermined pattern for a video sequence. The 20 predetermined pattern may designate video slices in the sequence as P slices, B slîces, or
GPB slices. Motion estimation unit 42 and motion compensation unit 44 may be highly integrated, but are illustrated separately for conceptual purposes. Motion estimation, performed by motion estimation unit 42, is the process of generating motion vectors, which estimate motion for video blocks. A motion vector, for example, may indicate 25 the displacement of a PU of a video block within a current video frame or picture relative to a prédictive block within a reference picture.
[0105] A prédictive block is a block that is found to closely match the PU of the video block to be coded in terms of pixel différence, which may be determined by sum of absolute différence (SAD), sum of square différence (SSD), or other différence metrics. 30 In some examples, video encoder 20 may calculate values for sub-integer pixel positions of reference pictures stored in reference picture memory 64. For example, video encoder 20 may interpolate values of one-quarter pixel positions, one-eighth pixel positions, or other fractional pixel positions of the reference picture. Therefore, motion
estimation unit 42 may perform a motion search relative to the full pixel positions and fractional pixel positions and output a motion vector with fractional pixel précision. [0106] Motion estimation unit 42 calculâtes a motion vector for a PU of a video block în an inter-coded slice by comparing the position of the PU to the position of a prédictive block of a reference picture. The reference picture may be selected from a first reference picture list (List 0) or a second reference picture list (Lîst 1), each of which identify one or more reference pictures stored in reference picture memory 64. Motion estimation unit 42 sends syntax éléments from which the calculated motion vector can be determined to entropy encoding unit 56 and motion compensation unît 44.
[0107] Motion compensation, performed by motion compensation unit 44, may involve fetching or generating the prédictive block based on the motion vector determined by motion estimation, possibly performing interpolations to sub-pixel précision. Upon receiving the motion vector for the PU of the current video block, motion compensation unit 44 may locate the prédictive block to which the motion vector points in one of the reference picture lists. Video encoder 20 may form a residual video block by subtracting pixel values of the prédictive block from the pixel values of the current video block being coded, forming pixel différence values. The pixel différence values form residual data for the block, and may include both luma and chroma différence components. Summer 50 represents the component or components that perform this subtraction operation. Motion compensation unit 44 may also generate syntax éléments associated with the video blocks and the video slice for use by video décoder 30 în decoding the video blocks ofthe video slice.
[0108] Intra prédiction processing unit 46 may intra-predict a current block, as an alternative to the inter-prediction performed by motion estimation unit 42 and motion compensation unit 44, as described above. In particular, intra prédiction processing unit 46 may détermine an intra-prediction mode to use to encode a current block. In some examples, intra prédiction processing unit 46 may encode a current block using various intra-prediction modes, e.g., during separate encoding passes, and intra prédiction processing unit 46 may select an appropriate intra-prediction mode to use from the tested modes. For example, intra prédiction processing unit 46 may calculate ratedistortion values using a rate-distortion analysis for the various tested intra-prediction modes, and select the intra-prediction mode having the best rate-distortion characteristics among the tested modes. Rate-distortion analysis generally détermines an amount of distortion (or error) between an encoded block and an original, unencoded
block that was encoded to produce the encoded block, as well as a bit rate (that is, a number of bits) used to produce the encoded block. Intra prédiction processing unit 46 may calculate ratios from the distortions and rates for the various encoded blocks to détermine which intra-prediction mode exhibits the best rate-distortion value for the 5 block.
[0109] In any case, after selecting an intra-prediction mode for a block, intra prédiction processing unit 46 may provide information indicative ofthe selected intra-prediction mode for the block to entropy encoding unit 56. Entropy encoding unit 56 may encode the information indicating the selected intra-prediction mode in accordance with the techniques of this disclosure. Video encoder 20 may include in the transmitted bitstream configuration data, which may include a plurality of intra-prediction mode index tables and a plurality of modified intra-prediction mode index tables (also referred to as codeword mapping tables), définitions of encoding contexts for various blocks, and indications ofa most probable intra-prediction mode, an intra-prediction mode index table, and a modified intra-prediction mode index table to use for each of the contexts.
[0110] After prédiction processing unit 41 generates the prédictive block for the current video block via either inter-prediction or intra-prediction, video encoder 20 may form a residual video block by subtracting the prédictive block from the current vîdeo block.
The residual video data in the residual block may be included in one or more TUs and applied to transform processing unit 52. Transform processing unit 52 transforms the residual video data into residual transform coefficients using a transform, such as a discrète cosine transform (DCT) or a conceptually similar transform. Transform processing unît 52 may convert the residual video data from a pixel domain to a transform domain, such as a frequency domain.
[0111] Transform processing unit 52 may send the resulting transform coefficients to quantization unit 54. Quantization unit 54 quantizes the transform coefficients to further reduce bit rate. The quantization process may reduce the bit depth associated with some or ail of the coefficients. The degree of quantization may be modified by 30 adjusting a quantization parameter. In some examples, quantization unit 54 may then perform a scan ofthe matrix including the quantized transform coefficients. Alternatively, entropy encoding unit 56 may perform the scan.
[0112] Following quantization, entropy encoding unit 56 may entropy encode syntax éléments representing the quantized transform coefficients. For example, entropy
encoding unit 56 may perform context adaptive variable length coding (CAVLC), context adaptive binary arithmetic coding (CABAC), syntax-based context-adaptive binary arithmetic coding (SBAC), probabîlity interval partitioning entropy (PIPE) coding or another entropy encoding methodology or technique. Following the entropy 5 encoding by entropy encoding unit 56, the encoded bitstream may be transmitted to video décoder 30, or archived for later transmission or retrieval by video décoder 30. Entropy encoding unit 56 may also entropy encode the motion vectors and the other syntax éléments for the current video slice being coded.
[0113] Inverse quantizatîon unit 58 and inverse transform processing unit 60 apply inverse quantizatîon and inverse transformation, respectively, to reconstruct the residual block in the pixel domain for later use as a reference block of a reference picture. Motion compensation unit 44 may calculate a reference block by adding the residual block to a prédictive block of one of the reference pictures within one of the reference picture lists. Motion compensation unit 44 may also apply one or more interpolation filters to the reconstructed residual block to calculate sub-integer pixel values for use in motion estimation. Summer 62 may add the reconstructed residual block to the motion compensated prédiction block produced by motion compensation unit 44 to produce a reference block for storage in reference picture memory 64. The reference block may be used by motion estimation unit 42 and motion compensation unît 44 as a reference block to inter-predict a block in a subséquent video frame or picture.
[0114] FIG. 3 is a block diagram illustrating an example video décoder 30 that may implement the techniques described in this disclosure. Video décoder 30 of FIG 3 represents an example of a video décoder configured to décodé video data that may be stored using the file format techniques described in this disclosure.
[0115] Video décoder 30 may be configured to décodé single view, multiview, scalable,
3D, and other types of video data. In the example of FIG. 3, video décoder 30 includes an entropy decoding unit 80, prédiction processing unit 81, inverse quantizatîon unit 86, inverse transform processing unit 88, summer 90, filter unit 91, and reference picture memory 92. Prédiction processing unit 81 includes motion compensation unit 82 and intra prédiction processing unît 84. Video décoder 30 may, in some examples, perform a decoding pass generally reciproca! to the encoding pass described with respect to video encoder 20 from FIG. 2.
[0116] A coded picture buffer (CPB) 79 may receive and store encoded video data (e.g., NAL units) of a bitstream. The video data stored in CPB 79 may be obtained, for © 39 example, from link 16 of FIG. 1, e.g., from a local video source, such as a caméra, via wired or wireless network communication of video data, or by accessing physical data storage media. CPB 79 may form a video data memory that stores encoded video data from an encoded video bitstream. Reference picture memory 92 may be a reference picture memory that stores reference video data for use in decoding video data by video décoder 30, e.g., in intra- or inter-coding modes. CPB 79 and reference picture memory 92 may be formed by any of a variety of memory devices, such as dynamic random access memory (DRAM), including synchronous DRAM (SDRAM), magnetoresistive RAM (MRAM), résistive RAM (RRAM), or other types of memory devices. CPB 79 and reference picture memory 92 may be provided by the same memory device or separate memory devices. In various examples, CPB 79 may be on-chip with other components of video décoder 30, or off-chip relative to those components. [0117[ During the decoding process, video décoder 30 receives an encoded video bitstream that represents video blocks of an encoded video slice and associated syntax éléments from video encoder 20. In the example of FIG 3, video décoder 30 may receive the encoded video bitstream from a file parsîng unit 77 that parses a file to extract a coded video bitstream. In some examples, file parsing unit 77 may receive the file from a network entity 29. Network entity 29 may, for example, be a server, a MANE, a video editor/splicer, or other such device configured to implement one or more of the techniques described above. Network entity 29 may or may not include a video encoder, such as video encoder 20. Some of the techniques described in this disclosure may be implemented by network entity 29 prior to network entity 29 transmitting the encoded video bitstream to video décoder 30. In some video decoding Systems, network entity 29 and video décoder 30 may be parts of separate devices, while in other instances, the functionality described with respect to network entity 29 may be performed by the same device that comprises video décoder 30. Network entity 29 may be considered to be a video device. Furthermore, in some examples, network entity 29 is the file génération device 34 of FIG 1. File parsing unit 77 may be implemented as part of destination device 14 or a device separate from destination device. In some examples, network entity 29 and file parsing unit 77 are implemented by the same device.
[0118] Entropy decoding unit 80 of video décoder 30 entropy décodés particular syntax éléments of the bitstream to generate quantized coefficients, motion vectors, and other syntax éléments. Entropy decoding unit 80 forwards the motion vectors and other
W 40 syntax éléments to prédiction processing unît 81. Video décoder 30 may receive the syntax éléments at the video slice level and/or the video block level.
[0119] When the video slice is coded as an intra-coded (1) slice, intra prédiction processing unit 84 of prédiction processing unit 81 may generate prédiction data for a video block of the current video slice based on a signaled intra prédiction mode and data from previously decoded blocks of the current frame or picture. When the video frame is coded as an inter-coded (i.e., B or P) slice, motion compensation unit 82 of prédiction processing unit 81 produces prédictive blocks for a video block of the current video slice based on the motion vectors and other syntax éléments received from entropy decoding unit 80. The prédictive blocks may be produced from one ofthe reference pictures within one of the reference picture lists. Video décoder 30 may construct the reference frame lists, List 0 and List 1, using default construction techniques based on reference pictures stored in reference picture memory 92.
[0120] Motion compensation unit 82 détermines prédiction information for a video block of the current video slice by determining the motion vectors and obtaining other syntax éléments, and uses the prédiction information to produce the prédictive blocks for the current video block being decoded. For example, motion compensation unit 82 uses some of the received syntax éléments to détermine a prédiction mode (e.g., intra- or inter-prediction) used to code the video blocks of the video slice, an inter-prediction slice type (e.g., B slice, P slice, or GPB slice), construction information for one or more of the reference picture lists for the slice, motion vectors for each inter-encoded video block ofthe slice, inter-prediction status for each inter-coded video block ofthe slice, and other information to décodé the video blocks in the current video slice.
[0121] Motion compensation unit 82 may also perform interpolation based on interpolation filters. Motion compensation unit 82 may use interpolation filters as used by video encoder 20 during encoding of the video blocks to calculate interpolated values for sub-integer pixels of reference blocks. In this case, motion compensation unit 82 may détermine the interpolation filters used by video encoder 20 from the received syntax éléments and may use the interpolation filters to produce prédictive blocks.
[0122] Inverse quantization unit 86 inverse quantizes, i.e., de-quantizes, the quantized transform coefficients provided in the bitstream and decoded by entropy decoding unit 80. The inverse quantization process may include use ofa quantization parameter calculated by video encoder 20 for each video block in the video slice to détermine a degree of quantization and, likewise, a degree of inverse quantization that should be
4.
applied. Inverse transform processing unit 88 applies an inverse transform, e.g., an inverse DCT, an inverse integer transform, or a conceptually similar inverse transform process, to the transform coefficients in order to produce residual blocks in the pixel domain.
[0123] After motion compensation unit 82 generates the prédictive block for the current video block based on the motion vectors and other syntax éléments, video décoder 30 forms a decoded video block by summing the residual blocks from inverse transform processing unit 88 with the corresponding prédictive blocks generated by motion compensation unit 82. Summer 90 represents the component or components that perform this summatîon operation. If desired, loop filters (either in the coding loop or after the coding loop) may also be used to smooth pixel transitions, or otherwise improve the video quality. Filter unit 91 is intended to represent one or more loop filters such as a deblocking filter, an adaptive loop filter (ALF), and a sample adaptive offset (SAO) filter. Although filter unit 91 is shown in FIG. 3 as being an in loop filter, in other configurations, filter unit 9I may be implemented as a post loop filter. The decoded video blocks in a given frame or picture are then stored in reference picture memory 92, which stores reference pictures used for subséquent motion compensation. Reference picture memory 92 also stores decoded video data for later présentation on a display device, such as display device 32 of FIG. I. Thus, reference picture memory 92 may be an example of one or more data storage media configured to store video data. [0124] FIG. 4 is a block diagram illustrating an example set of devices that form part of network 100. In this example, network 100 includes routing devices I04A, 104B (routing devices 104) and transcoding device 106. Routing devices 104 and transcoding device 106 are intended to represent a small number of devices that may form part of network 100. Other network devices, such as switches, hubs, gateways, firewalls, bridges, and other such devices may also be included within network 100. Moreover, additional network devices may be provided along a network path between server device 102 and client device 108. In some examples, server device 102 may correspond to source device 12 (FIG. I), while client device 108 may correspond to destination device 14 (FIG. I).
[0125] In general, routing devices 104 implement one or more routing protocols to exchange network data through network 100. In some examples, routing devices 104 may be configured to perform proxy or cache operations. Therefore, in some examples, routing devices 104 may be referred to as proxy devices. In general, routing devices
104 execute routing protocols to discover routes through network 100. By executîng such routing protocols, routing device 104B may discover a network route from itself to server device 102 via routing device 104A.
[0126] The techniques ofthis disclosure may be implemented by network devices such 5 routing devices 104 and transcoding device 106, but also may be implemented by client device 108, In this manner, routing devices 104, transcoding device 106, and client device 108 represent examples of devices configured to perform the techniques of this disclosure. Moreover, the devices of FIG. 1, and encoder 20 illustrated in FIG. 2 and décoder 30 illustrated in FIG. 3 are also examples of devices that can be configured to 10 perform one or more of the techniques of this disclosure. For example, a file generated în manner described tn this disclosure may be transmitted or streamed from server device 102 to client device 108 via network 100, as shown in FIG. 4.
[0127] The details oftechniques ofthis disclosure elsewhere in this disclosure are provided in this section. In the following text, changes ofthe implémentations described in 15444-12, text between “<insert>’' and “</insert> symbols corresponds to additions or modified existing texts (e.g., <insert>added text</insert>), while removed text is between “<delete>” and “</delete> symbols (e.g., <delcte>deleted text</delete>).
[0128] As indicated briefly above with regard to the first example technique ofthis disclosure, the grouping_type_parameter syntax element may be removed from the
Sample to Group box syntax, as follows:
• « aligned(8) class SampleToGroupBox extends FullBox('sbgp', version, 0) ( unsigned int{32) grouping_type;
<delete>if (version -« 1) { unsigned int(32) grouping_type_parameter;
}</delete>
unsigned int(32) entry_count;
for (i-1; i <= entry_count; i++) w { unsigned int{32) sample_count;
unsigned int(32) group_descriptionindex;
» »
[0129] In this example, portions of 14496-12 that use the groupingjtype_parameter syntax element may be modified to add the information carried in the parameter (not necessarily the syntax element itself) into the sample group description entry.
[0130] Furthermore, as indicated briefly above with regard to the second example technique of this disclosure, there may be a one-to-one relationship between Sample Group Description box and Sample to Group box such that they can be matched by the value of the grouping_type syntax and the grouping_type_parameter syntax element, if present. In accordance with this example, the syntax of the SampleGroupDescriptionBox may be modified as follows.
aligned(8) class SampleGroupDescriptionBox (unsigned int{32) handler_type) extends FullBoxt’sgpd', version, 0){ unsigned int(32) grouping_type;
if (version==l) { unsigned int{32) default_length;
<insert>unsigned int{32) grouping_type_parameter; </insert>
) if (version>=*2) { unsigned int(32) default_sample_description_index;
ï unsigned int(32) entry_count;
int i;
for (i “ 1 ; i o entry_count ; i++)( if (version==l) ( if (default_length==O) ( unsigned int(32) description_length;
} ï
SampleGroupEntry (grouping_type);
// an instance of a class derived from SampleGroupEntry // that is appropriate and permitted for the media type }
ï ]0131 ] Furthermore, in accordance with techniques of this disclosure where there is a one-to-one relationship between Sample Group Description box and Sample to Group box, the semantics of the grouping_type syntax element and the grouping_type_parameter syntax element in the Sample Group Description box may be modified as follows:
grouping_type is an integer that identifies the grouping<însert>. Together with grouping_type_parameter, îf présent, it identifies the SampleToGroup box that is associated with this sample group description. grouping_type_parameter is an indication of the sub-type of the grouping. </insert>
[0132] The semantics of grouping_type and grouping_type_parameter in the Sample to Group box may be modified as follows:
grouping_type is an integer that identifies the type (i.e. criterion used to form the sample groups) of the sample grouping and links it to its sample group description table with the same value for grouping type <însert>and groupîng_type_parameter, if present</insert>. At most one occurrence of this box with the same value for grouping_type (and, if used, grouping_type_parameter) shall exîst foratrack. grouping_type_parameter îs an indication ofthe sub-type ofthe grouping.
[0133] Furthermore, in accordance with techniques of this disclosure where there is a one-to-one relationship between Sample Group Description box and Sample to Group box, the description about the quantity of SampleGroupDescription boxes and SampleToGroup boxes may be modified as follows:
SampleGroupDescription box: There may be multiple instances ofthis box if there is more than one sample grouping for the samples in a track<insert> or track fragment<7insert>. Each instance ofthe SampleGroupDescription box has a type code that dîstinguishes different sample groupings. Within a track <însert>or track fragment</insert>, there shall be at most one instance of this box with a particular grouping type<insert> and sub-type, if present</insert>. <insert>The associated SampleToGroup shall indicate the same value for the grouping type and sub-type, if présent and shall indicate the same value of version.</însert>
SampleToGroup box: There may be multiple instances of this box if there is more than one sample grouping for the samples in a track <Însert> or track fragment</insert>. Each instance ofthe SampleToGroup box has a type code that dîstinguishes different sample groupings. Within a track <insert> or track fragment</insert>, there shall be at most one instance of this box with a particular grouping type <insert>and sub-type, if present</insert>. <insert>The associated SampleGroupDescription shall indicate the same value for the grouping type and sub-type, if présent, and shall indicate the same value of version.</insert>
[0134[ As indicated above, in accordance with the third technique ofthis disclosure, the relationship between SampleGroupDescription boxes and SampleToGroup boxes for the
same grouping type is 1 to N. In accordance with such techniques, one or more of the following constraînts or aspects may apply. First, within a container box (e.g., ’stbl’ or ’traf) there shall be only one SampleGroupDescription box with a particular value of groupingjype and there can be one or more associated SampleToGroup boxes with the 5 same value of groupingjype. Second, when there are multiple SampleToGroup boxes with a particular value of groupingjype in a container box, the version of ali the SampleToGroup boxes must be 1. For example, if there are exactly three SampleToGroup boxes in a container box and the values of the groupingjype syntax éléments in these three SampleToGroup boxes are each equal to 5, each of the
SampleToGroup boxes must be version 1 SampleToGroup boxes, and therefore include groupingjypej>arameter syntax éléments. Third, when there are multiple SampleToGroup boxes with a particular value of groupingjype, the file is constrained such that any value of the group_descriptionjndex syntax element that is greater than 0 shall not be présent în more than one of the SampleToGroup boxes. For example, if there are exactly three SampleToGroup boxes in a container box and each of these three
SampleToGroup boxes has a groupingjype syntax element with a value equal to 5, no two ofthe SampleToGroup boxes are allowed to hâve group_description_index syntax éléments with the same value, unless that value is 0. For instance, no two of the SampleToGroup boxes are allowed to hâve group_descriptionjndex syntax éléments with values equal to 6.
[0135] Furthermore, in accordance with techniques ofthis disclosure where the relationship between SampleGroupDescription boxes and SampleToGroup boxes for the same grouping type is 1 to N, the description about the quantity of SampleToGroup boxes in the 15444-12 spécification may be modified as follows:
There may be multiple instances of this box if there is more than one sample grouping for the samples in a track <insert>or track fragment</insert>. Each instance ofthe SampleToGroup box has a type code that distinguishes different sample groupings. Within a track <insert>or track fragment</insert>, 30 there shall be at most one instance of this box with a particular grouping type <insert>and sub-type, if present</însert>. <insert>The associated SampleGroupDescription shall indicate the same value for the grouping type and sub-type, if présent. </insert>
[0136] Additionally, the semantics of the groupîngjype syntax element m SampleGroupDescription box may be modified as follows:
grouping_type is an integer that identifies the SampleToGroup box that is associated with this sample group description. If grouping_type_parameter is not defined <insert>in the SampleToGroup box</insert> for a given grouping_type, then there shall be only one occurrence of <insert>SampleToGroup</insert> <delete>thîs</delete> box with this grouping_type <insert>in a container box<7insert>.
[0137] In accordance with techniques of this dîsclosure where the relationship between SampleGroupDescription boxes and SampleToGroup boxes for the same groupîng type is 1 to N, the semantics ofthe group_description_index syntax element in the SampleToGroup box may be modified as follows to ensure that when there are multiple SampleToGroup boxes with a particular value of group ing_type, the file is constrained such that any value of the group_description_index syntax element that ts greater than 0 shall not be présent în more than one of the SampleToGroup boxes:
group_description_index is an integer that gives the index ofthe sample group entry which describes the samples in this group. The index ranges from I to the number of sample group entries in the SampleGroupDescription Box, or takes the value 0 to indicate that this sample is a member of no group ofthis type. <insert>When the version ofthis box is equal to I, if a particular value of group_description_index is présent in this SampleToGroup box, the same value of group_description_index shall not be présent in any other SampleToGroup box with the same value of grouping_type in the same container box.</insert>
[0138] As indicated briefly above, the current design of signaling SAP sample groupîng requires that version l of SampleToGroup boxes are used. To overcome issues caused by requiring version I of SampleToGroup boxes being used for signaling SAP sample groupings, a device, such as source device 12 or file génération device 34, may use
version 0 of SampleToGroup boxes and include targetjayers and layers_id_method_idc syntax éléments in sample to group description entries. Thus, the device may use the changed design for the ‘sap * sample group design regardless ofwhich ofthe three previously-described techniques ofthis disclosure are to be taken for the general sample 5 grouping mechanism In 14496-12.
[0139] In 14496-12 spécification, the syntax and semantics of grouping_type_parameter are specified as follows.
{ unsigned int(28) target_layers;
unsigned int(4)layer_id_method_idc;
} [0140] In the text above, targetjayers spécifiés the target layers for the indicated SAPs according to Annex I ofthe 14496-12 spécification. The semantics oftargetjayers dépends on the value of layerJd_methodJdc. When layerJd_methodJdc is equal to
0, targetjayers is reserved. The layerJd_methodJdc syntax element spécifiés the semantics of the targetjayers syntax element. In this example, layerJd_methodJdc equal to 0 spécifiés that the target layers consist of ail the layers represented by the track corresponding to the Track box or Track Fragment box containing the SampleToGroup box. layerJd_methodJdc not equal to 0 is specified by derived media format spécifications.
[0141] As indicated above, the SampleGroupDescription box may include a sériés of sample group description entries. A spécialized version ofthe sample group description entry may be used for SAPs. In the 14496-12 spécification, the syntax and semantics of 25 such a sample group description entry are as follows:
class SAPEntryO extends SampleGroupDescriptionEntry(’sap ') {
unsigned int(4) reserved;
unsigned int(l) dependent_flag; unsigned int(3) SAP_type;
) [0142] In SAPEntryO, lhe reserved syntax element shall be equal to 0. Devices parsing the file shall allow and ignore ail values of reserved. The dependent_flag syntax element shall be 0 for non-layered media. The dependent_flag syntax element equal to 1 spécifiés that the reference layers, if any, for predicting the target layers may hâve to be decoded for accessing a sample ofthis sample group. The dependentjlag syntax element equal to 0 spécifiés that the reference layers, if any, for predicting the target layers need not be decoded for accessing any SAP of this sample group.
[0143] The sap_type syntax element wîth values equal to 0 and 7 are reserved. Values of the sap_type syntax element in the range of 1 to 6, inclusive, specify the SAP type, as specified in Annex I, of the associated samples (for which the first byte of a sample in this group is the position Isau).
[0144] In accordance with a technique of this disclosure, the following modifications are made to the 14496-12 spécification to address the issues with signaling SAP sample grouping.
class SAPEntryf) extends SampleGroupDescriptionEntry('sap unsigned int(4) reserved;
unsigned int(l) dependent_flag;
unsigned int(3) SAP_type;
<insert>unsigned int(28) target_layers; unsigned int(4)layer_id_method_idc;</insert>
[0145] In this example, the semantics of the reserved syntax element, the dependent_flag syntax element, the SAP_type syntax element the targetjayers syntax element and the layer_id_method_îdc syntax element remain the same. Furthermore, with the above design modification, there is exactly one SampleToGroup box and exactly one SampleGroupDescription box with grouping_type 'sap * in a container box. [0146] In the following text compares the first second, and third example techniques of this disclosure using the 'sap ' sample grouping as an example. FIG. 5 is a conceptual diagram oftwo different stream access point (SAP) sample types in a sequence of samples in a track. For instance, consîder the following example scénario as shown in
FIG. 5, which illustrâtes a sequence of samples in a track and the SAP pictures in the samples are signaled using the ’sap * sample grouping. Particularly, FIG. 5 shows a base layer 200 and an enhancement layer 202. Base layer 200 includes a sériés of pictures, starting with an IDR picture, followed by one or more non-IRAP pictures (e.g., 95 nonIRAP pictures). In base layer 200, there are a number of CRA pictures interspersed among the non-IRAP pictures prior to the next IDR picture. Enhancement layer 202 may include IDR pictures in the same access units as the IDR pictures in base layer 200. However, enhancement layer 202 does not necessarily include CRA pictures corresponding to the CRA pictures of base layer 200.
[0147] In an example in accordance with the first example technique of this disclosure, one SampleGroupDescription box and one SampleToGroup box with groupîng_type *sap ' may be used. The SampleGroupDescription box contains two entries, and the entry count in the SampleToGroup box is 12, as shown below:
SampleGroupDescriptionBox (’sgpd*, version - 0)
- grouping_type = 'sap '
- entry_count ” 2
- Entry #1 - SAPEntryt) o dependent_flag “ 0 o SAP_type “ 1 o target_layers - 3 o layer_id_method_idc - 1
- Entry #2 - SAPEntryt) o dependent_flag = 1 o SAP_type « 3 o target_layers « 1 o layer_id_method_idc - 1
SampleToGroupBox ( 'sbgp', version - 0)
grouping^type - 'sap '
entry_ count = 12
Entry #1 - [i - 1 ] //[sample
Entry #2 - [95 - 0]
Entry #3 - [i - 2]
Entry #4 - [95 - 0]
Entry #5 - [1 - 2]
Entry #6 - [95 - 0]
Entry #7 - [i - 2]
count — group_description_index]
Entry #8 - [95 - 0]
Entry #9 - [1 - 1]
Entry #10 - [95 - 0]
Entry #11 - [1 - 2]
Entry #12 - [95 - 0] [0148] In an exemple in accordance with the second example technique of this disclosure, there may be two SampleGroupDescription boxes and may be two SampleToGroup boxes with grouping^type ‘sap *. In this example, each SampleGroupDescription box contains one entry, resulting in two total entries, and the entry_count syntax éléments in the two SampleToGroup boxes are 4 and 9, respectively, resulting in thirteen total entries in the SampleToGroup boxes, as shown below:
SampleGroupDescriptionBox #l('sgpd', version « 0)
- grouping_type = 'sap '
- grouping_type_parameter o target_layers - 3 o layer_id_method_idc - 1
- entry_count = 1
- Entry #1 - SAPEntryO o dependent_flag = 0 o SAP_type = 1
SampleGroupDescriptionBox #2('sgpd', version « 0)
- grouping_type = 'sap '
- grouping_type_parameter o target_layers - 1 o layer_id_method_idc = 1
- entry_count = 1
- Entry #1 - SAPEntryO o dependent_flag = 0 o SAP_type = 3
SampleToGroupBox #1 ( 'sbgp', version - 0)
- grouping_type = 'sap '
- grouping_type_parameter o target_layers - 3 o layer_id_method_idc = 1
- entry_count = 4
- Entry #1 - [1 - 1] //[sample_count—group_description_index]
- Entry #2 - [383 - 0]
- Entry #3 - [1 - 1]
- Entry #4 - [191 - 0]
SampleToGroupBox #2 (’sbgp', version » 0)
- grouping_type = ’sap *
- grouping_type_parameter o target_layers = 1 o layer_id_method_idc « 1 entry_count - 9
Entry #1 - [96 - 0] //[sample_count — group_descriptionJndexJ
Entry #2 - [1-1]
Entry #3 - [95 - 0]
Entry #4 - [1 - 1]
Entry #5 - [95 - 0]
Entry #6 - [1 - 1]
Entry #7 - [191 - 0]
Entry #8 - [1-1]
Entry #9 - [95 - 0] [0149] In an cxample in accordance with the third example technique of this disclosure, there may be one SampleGroupDescription box and there may be two SampleToGroup boxes with grouping_type ‘sap *. In this example, the SampleGroupDescription box contains two entries, and the entry_count syntax éléments in the two SampleToGroup boxes are again 4 and 9, respectively, resulting in thirteen total entries in the SampleToGroup boxes, as shown below:
SampleGroupDescriptionBox ('sgpd', version » 0)
- grouping_type = 'sap '
- entry_count = 2
- Entry #1 - SAPEntryO o dependent_flag = 0 o SAP_type = 1
- Entry #2 - SAPEntryO o dependent_flag = 1 o SAP_type = 3
SampleToGroupBox #1 ( ’sbgp', version = 0)
- grouping_type = 'sap *
- grouping_type_parameter o target^layers 3 o layer_id_method_idc 1 entry_count - 4
Entry #1 - [1 - 1] //[sample_count—group_description_index]
Entry #2 - [383 - 0]
Entry #3 - [1 - 1]
Entry #4 - [191 - 0]
SampleToGroupBox #2 ( 'sbgp', version « 0)
- grouping^type = *sap '
- grouping_type_parameter o target_layers « 1 o layer_id_method_idc = 1 entry_count = 12
Entry #1 - [96 - 0] //[sample_count — group_description_index]
Entry #2 - [1 - 2]
Entry #3 - [95-0]
Entry #4 - [1 - 2]
Entry #5 - [95-0]
Entry #6 - [1 - 2]
Entry #7 - [191 - 0]
Entry #8 - [1 - 2]
Entry #9 - [95 - 0] [0150] As can be seen from above, the main différences among the options, the example in accordance with the first technique of this disclosure may use the smallest number of (SampleToGroup and SampleGroupDescription) boxes and may use the smallest number of total entries as well.
[0151] FIG. 6A, FIG. 6B, and FIG. 6C are conceptual diagram illustrating examples structure of a file 300, in accordance with one or more techniques of this disclosure. FIG. 6A corresponds to the first example technique of this disclosure discussed above. FIG. 6B corresponds to the second example technique ofthis disclosure discussed above. FIG. 6C corresponds to the third example technique of this disclosure discussed above.
[0152] In the examples of FIG. 6A, FIG. 6B, and FIG. 6C, file 300 includes a Movie box 302 and a plurality of Media Data boxes 304. Although illustrated in the examples of FIG. 6A, FIG. 6B, and FIG. 6C as being in the same file, in other examples Movie
box 302 and Media Data boxes 304 may be în separate files. As indicated above, a box may be an object-oriented building block defined by a unique type identifier and length. For instance, a box may be the elementary syntax structure in ISOBMFF, including a four-character coded box type, a byte count of the box, and a payload.
[0153] Movie box 302 may contain metadata for tracks of file 300. Each track of file
300 may comprise a continuous stream of media data. Each of Media Data boxes 304 may include one or more samples 305. Each of samples 305 may comprise an audio or vîdeo access unît. As described elsewhere in this disclosure, each access unit may comprise multiple coded pictures In multi-vîew coding (e.g., MV-HEVC and 3D10 HEVC) and scalable video coding (e.g., SHVC). For instance, an access unit may include one or more coded pictures for each layer.
[0154] Furthermore, in the examples of FIG. 6A, FIG. 6B, and FIG. 6C, Movie box 302 includes a Track box 306. Track box 306 may enclose metadata for a track of file 300.
In other examples, Movîe box 302 may include multiple Track boxes for different tracks 15 of file 300. Track box 306 includes a Media box 307. Media box 307 may contain ail objects that déclaré information about the media data within the track. Media box 307 includes a Media Information box 308. Media Information box 308 may contain ail objects that déclaré characteristic information of the media of the track. Media Information box 308 includes a Sample Table box 309. Sample Table box 309 may 20 specify sample-specific metadata.
[0155] In the examples of FIG. 6A, FIG. 6B, and FIG. 6C, Sample Table box 309 includes at least one SampleToGroup box 310 and at least one SampleGroupDescription box 312. Thus, Sample Table box 309 is an instance of a “container box.” In other examples, Sample Table box 309 may include other boxes in addition to
SampleToGroup box 310 and SampleGroupDescription box 312, and/or may include multiple SampleToGroup boxes and SampleGroupDescription boxes. SampleToGroup box 310 may map samples (e.g., particular ones of samples 305) to a group of samples. SampleGroupDescription Box 312 may specify a property shared by the samples in the group of samples (i.e., sample group).
[0156] Furthermore, în the examples of FIG. 6A, FIG. 6B, and FIG. 6C,
SampleToGroup box 310 includes a grouping_type syntax element 313 (i.e., a grouping type syntax element), an entry_count syntax element 314 (i.e., an entry count syntax element), and one or more sample group entries 315. Entry_count syntax element 314 indicates the number of sample group entries 315. Each of sample group entries 315
includes a sample_count syntax element 316 (i.e., a sample count syntax element) and a group_description_index syntax element 317 (i.e., a group description index syntax element). Sample_count syntax element 316 may indicate a number ofsamples associated with the sample group entry containing sample_count syntax element 316.
Group_description_index syntax element 317 may identify, within a SampleGroupDescription box (e.g., SampleGroupDescription box 312), a group description entry that contains a description of the samples associated with the sample group entry containing group_description_index syntax element 317.
[0157] Additionally, in the examples of FIG. 6A, FIG. 6B, and FIG. 6C,
SampleGroupDescription box 312 includes a grouping_type syntax element 320, an entry_count syntax element 322, and one or more group description entries 324. Entry_count syntax element 322 indicates the number of group description entries 324 in the SampleGroupDescription box.
[0158] As indicated above, in the first example technique of this disclosure, the clarity issues regarding the signaling of sample groups in ISOBMFF described above may be addressed by removing the grouping_type_parameter syntax element from the Sample to Group box syntax. Thus, in accordance with the first example technique of this disclosure, which is illustrated in FIG. 6A, none of SampleToGroup boxes 310 includes the grouping_type_parameter syntax element (i.e., the grouping type parameter syntax element). Thus, în accordance with the first example technique of this disclosure, SampleToGroup box 310 does not include groupingjype_parameter 318 illustrated in FIG. 6B and FIG. 6B, and SampleGroupDescription box 312 does not include groupingjype_parameter 326, as illustrated in FIG. 6B.
[0159] As indicated above, in the second example technique of this disclosure, the clarity issues regarding the signaling of sample groups in ISOBMFF described above may be addressed by adding a grouping_type_parameter syntax element to the syntax of the Sample Group Description box when the version of the Sample Group Description box is 1. Thus, in accordance with the second example technique ofthis disclosure, which is illustrated in FIG. 6B, SampleToGroup boxes 310 and
SampleGroupDescription boxes 312 may include grouping_type_parameter syntax éléments 318,326 and there is a 1 -to-1 relationship between SampleToGroup boxes 310 and SampleGroupDescription boxes 312.
[0160] As indicated above, in the third example technique of this disclosure, the clarity issues regarding the signaling of sample group groups in ISOBMFF described above
may be addressed by defintng that the relationship between SampleGroupDescription box and SampleToGroup box for the same grouping type is I to N. Thus, in accordance with the third example technique of this disclosure, which is illustrated in FIG. 6C, SampleToGroup box 310 includes groupïng_type_parameter syntax element 318 (i.e., a 5 grouping type parameter syntax element). Furthermore, there is a I-to-Nrelationship between SampleGroupDescription boxes and SampleToGroup boxes having grouping_type syntax éléments (e.g., grouping_type syntax éléments 313,320) with the same value. For instance, one of the SampleGroupDescription boxes (e.g., SampleGroupDescription box 312) may hâve a grouping_type syntax element having a 10 particular value and two or more SampleToGroup boxes may also hâve grouping_type syntax éléments having the particular value. In some examples, if two or more SampleToGroup boxes hâve grouping_type syntax éléments with the same value, each SampleToGroup box in Sample Table box 309 must be version I. Furthermore, in some examples, if two or more SampleToGroup boxes hâve groupîngjtype syntax éléments 15 with the same value, any value of the group_description_index syntax element that is greater than 0 shall not be présent in more than one of SampleToGroup boxes 310. In accordance with the third example technique of this disclosure,
SampleGroupDescription boxes (e.g., SampleGroupDescription box 312) do not include groupïng_type_parameter syntax éléments (e.g., grouping_type_parameter syntax 20 element 326 shown in FIG. 6B).
[0161] FIG. 7A, FIG. 7B, and FIG. 7C are conceptual dîagrams illustratîng example structures of a file 450, in accordance with one or more techniques of this disclosure. FIG. 7A corresponds to the fïrst example technique ofthis disclosure discussed above. FIG. 7B corresponds to the second example technique ofthis disclosure discussed above. FIG. 7C corresponds to the third example technique of this disclosure discussed above.
[0162] In the examples ofFIG. 7A, FIG. 7B, and FIG. 7C, file 450 includes one or more Movie Fragment boxes 452 and a plurality of media data boxes 454. Although illustrated in the examples ofFIG. 7A, FIG. 7B, and FIG. 7C as being in the same file, 30 în other examples Movie Fragment boxes 452 and Media Data boxes 454 may be in separate files. Each of Media Data boxes 454 may include one or more samples 456. Each ofthe Movie Fragment boxes corresponds to a movie fragment. Each movie fragment may comprise a set of track fragments. There may be zéro or more track fragments per track.
[0163] In the examples of FIG. 7A, FIG. 7B, and FIG. 7C, a Movie Fragment box 452 provides information regarding a corresponding movie fragment. Such information would hâve previously been in a Movie box, such as Movie box 302. Movie Fragment box 452 may include a Track Fragment box 458. Track Fragment box 458 corresponds to a track fragment and provides information about the track fragment.
[0164] For instance, in the examples of FIG. 7A, FIG. 7B, and FIG. 7C, Track Fragment box 458 may include one or more SampleToGroup boxes 462 and one or more SampleGroupDescription boxes 464 that contain information about the track fragment corresponding to Track Fragment box 458. Thus, Track Fragment box 458 is to an instance of a “container box.
[0165] Furthermore, in the examples of FIG. 7A, FIG. 7B, and FIG. 7C, SampleToGroup box 462 includes a groupîng_type syntax element 470 (i.e., a grouping type syntax element), an entry_count syntax element 471 (i.e., an entry count syntax element), and one or more sample group entries 472. Entry_count syntax element 471 15 indicates the number of sample group entries 472. Each of sample group entries 472 includes a sample_count syntax element 473 (i.e., a sample count syntax element) and a group_descriptionjndex syntax element 474 (i.e., a group description index syntax element). Sample_count syntax element 473 may indicate a number of samples associated with the sample group entry containing sample_count syntax element 473.
Group_description_index syntax element 474 may identify, within a SampleGroupDescription box (e.g., SampleGroupDescription box 464), a group description entry that contains a description of the samples associated with the sample group entry containing group_description_index syntax element 474. [0166] Additionally, in the examples of FIG. 7A, FIG. 7B, and FIG. 7C,
SampleGroupDescription box 464 includes a grouping_type syntax element 480, an entry_count syntax element 482, and one or more group description entries 484. Entry_count syntax element 482 indicates the number of group description entries 484 in SampleGroupDescription box 464.
[0167] As indicated above, in the first example technique of this disclosure, the clarity issues regarding the signaling of sample groups in ISOBMFF described above may be addressed by removing the grouping_type_parameter syntax element from the Sample to Group box syntax. Thus, in accordance with the first example technique ofthis disclosure, which is illustrated in FIG. 7A, none of SampleToGroup boxes 462 includes the grouping_type_parameter syntax element. For instance, in accordance with the first
example technique of this disclosure, SampleToGroup box 462 does not include grouping_type_parameter syntax element 475 illustrated in FIG. 7B and FIG. 7C and SampleGroupDescription box 464 does not include grouping_type_parameter syntax element 486 illustrated in FIG. 7B.
[0168] As indicated above, in the second example technique of this disclosure, the clarity issues regarding the signaling of sample groups in ISOBMFF described above may be addressed by adding a grouping_type_parameter syntax element to the syntax of the Sample Group Description box when the version of the Sample Group Description box is 1. Thus, in accordance with the second example technique ofthis disclosure, which corresponds to FIG. 7B, SampleToGroup boxes 462 and SampleGroupDescription boxes 464 may include groupingjype_parameter syntax éléments and there is a 1-to-l relatîonship between SampleToGroup boxes 462 and SampleGroupDescription boxes 464. For instance, in accordance with the second example technique ofthis disclosure, SampleToGroup box 462 includes grouping_type_parameter syntax element 475 and SampleGroupDescriptïon box 464 includes grouping_type_parameter syntax element 486.
[0169] As indicated above, in the third example technique of this disclosure, the clarity issues regarding the signaling of sample group groups in ISOBMFF described above may be addressed by defining that the relatîonship between SampleGroupDescription box and SampleToGroup box for the same grouping type is 1 to N. Thus, in accordance with the third example technique ofthis disclosure, which is illustrated în FIG. 7C, there is a 1-to-jV relatîonship between SampleGroupDescription boxes 464 and SampleToGroup boxes 462 having groupingjype syntax éléments with the same value. For instance, one of SampleGroupDescription boxes 464 may hâve a groupingjype syntax element having a particular value and two or more of SampleToGroup boxes 462 may also hâve groupingjype syntax éléments having the particular value. In some examples, if two or more of SampleToGroup boxes 462 hâve groupingjype syntax éléments with the same value, each of SampleToGroup boxes 462 in Track Fragment box 458 must be version 1. Furthermore, in some examples, iftwo or more of
SampleToGroup boxes 462 hâve groupingjype syntax éléments with the same value, any value of group_descriptionjndex syntax element 474 that is greater than 0 shall not be présent in more than one of SampleToGroup boxes 462. In accordance with at least some implémentations ofthe third example technique ofthis disclosure,
SampleGroupDescription box 464 does not include groupîng_type_parameter syntax element 475 shown in FIG. 7B.
[0170] FIG. 8 is a flowchart illustrating an example operation of source device 12, in accordance with a technique of this disclosure. Although FIG. 8 is described with 5 reference to source device 12, the example operation of FIG. 8 may be performed by other devices, such as file génération device 34 or another device. The flowchart of FIG. 8 is provided as an example. Other operations in accordance with the techniques of this disclosure may include more, fewer, or different actions, or the actions may be performed in a different order or in parallel.
[0171 ] In the example of FIG. 8, source device 12 generates a container box of the file such that the file conforms to a particular file format (500). The particular file format may be a version ofthe ISOBMFF modified in accordance with a technique ofthis disclosure. In the example of FIG. 8, as part of generating the file, source device 12 may generate a SampleGroupDescription box that includes one or more group description entries (502). Each respective group description entry may provide descriptions for a respective sample group. The SampleGroupDescription box may further include a grouping type syntax element that identifies a type of sample grouping. The grouping type syntax element in the SampleGroupDescription box may hâve a particular value. The container box may be a sample table box or a track fragment box.
In the example of FIG. 8, the file belongs to a particular file format in which there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element.
[0172] Furthermore, in the example of FIG. 8, as part of generating the container box, source device 12 generates, in the same container box ofthe file, a plurality of
SampleToGroup boxes (504). Each respective SampleToGroup box of the plurality of SampleToGroup boxes includes a respective grouping type syntax element having the particular value. Each respective SampleToGroup box may include one or more sample group entries. Each respective sample group entry of the one or more sample group entries may comprise a respective sample count syntax element (e.g., sample_count) indicating a number of samples in a respective sample group. Each respective sample group entry of the one or more sample group entries may comprise a respective group description index syntax element (e.g., group_descriptîon_index) indicating an index of a group description entry in the SampleGroupDescription box that provides a
description of the respective sample group. Each sampîe ofthe respective sample group may comprise one or more pictures ofthe video contents.
[0173] In some examples, source device 12 may generate the plurality of SampieToGroup boxes such that for each respective SampieToGroup box ofthe plurality of SampieToGroup boxes, the respective SampieToGroup box includes a respective grouping type parameter syntax element (e.g., grouping_type_parameter) indicating a sub-type of the type of sample grouping. Furthermore, in some examples, the file conforms to a particular file format and a requirement of the file format is that when there are multiple SampieToGroup boxes with the same value ofthe grouping 10 type syntax element in a single container box, each of the multiple SampieToGroup boxes must hâve a respective version identifier equal to 1. In some examples, a requirement ofthe file format is that when there are multiple SampieToGroup boxes with the same value of the grouping type syntax element in a single container box, no two of the multiple SampieToGroup boxes shall hâve group description index (e.g., 15 group_description_index) syntax éléments having the same value greater than 0.
Furthermore, in some examples, a requirement ofthe file format is that when there are multiple SampieToGroup boxes with the same value of the grouping type syntax element in a single track or track fragment, no two of the multiple SampieToGroup boxes hâve the same value of a grouping type parameter syntax element.
[0174] Furthermore, source device 12 may output the file (506). For example, source device 12 may output the file for storage on a computer-readable storage medium, such as a memory, magnetic media, or optical media. In another example, source device 12 may output the file for transmission.
[0175] FIG. 9 is a flowchart illustrating an example operation of a device for reading a 25 file for storage of video contents, in accordance with a technique of this disclosure. In the example of FIG. 9, the device for reading the file may be destination device 14 of FIG. 1 or another device.
[0176] In the example of FIG. 9, the device may obtain the file (500). For example, the device may obtain the file from a data storage medium (e.g., storage medium 29 of FIG.
1), a transmission medium, or another source. For instance, the device may receive or read the file from such a source. Furthermore, in the example of FIG. 9, the device may obtain, from the file, a container box of the file (502). For instance, the device may parse or otherwise interpret the file to extract or otherwise access the container box and its content.
[0177] In some examples, the container box is a sample table box or a track fragment box. The container box may comprise a SampleGroupDescription box that includes one or more group description entries. Each respective group description entry provides descriptions for a respective sample group. Furthermore, the SampleGroupDescription 5 box further includes a grouping type syntax element that identifies a type of sample grouping. The grouping type syntax element în the SampleGroupDescription box has a particular value. In accordance with a technique of this disclosure, a requirement of the particular file format is that there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element. The 10 container box may also contain a plurality of SampleToGroup boxes. Each respective
SampleToGroup box ofthe plurality of SampleToGroup boxes may include a respective grouping type syntax element having the particular value. Each respective
SampleToGroup box may include one or more sample group entries. Furthermore, each respective sample group entry ofthe one or more sample group entries may comprise a 15 respective sample count syntax element indicating a number of samples in a respective sample group. Each respective sample group entry of the one or more sample group entries may comprise a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description ofthe respective sample group. Additionally, each sample ofthe respective 20 sample group may comprise one or more pictures ofthe video contents.
[0178] The following paragraphs describe particular examples in accordance with thîs disclosure.
[0179] Example I. A method of generating a file, the method comprising:
[0180] generating a box that spécifiés a sample grouping, the sample grouping being a 25 group of samples, wherein: the box includes a syntax element identifying a type ofthe sample grouping, and regardless of a version of a format of the box, the box does not include a parameter indicating a sub-type of the sample grouping; and generating the file, wherein the file includes the box.
[0181] Example 2. The method of example 1, wherein each respective one of the samples is an encoded picture.
[0182] Example 3. A method of generating a file, the method comprising: generating a first box, the first box specifying a sample grouping, the sample grouping being a group of samples; generating a second box, the second box including syntax éléments providing a sample group description for the sample grouping, wherein: the second box includes a fîrst syntax element and optionally includes a second syntax element, the fîrst syntax element identifies a type of the sample grouping and, together with the second syntax element, if présent, identifies the first box as being associated with the sample group description; the second syntax element indicating a sub-type of the sample grouping; and generating the file, wherein the file includes the first box and the second box.
[0183] Example 4. The method of example 3, wherein generating the first box comprises: generating, in the first box, a third syntax element and optionally a fourth syntax element, wherein: the third syntax element identifies the type of the sample 10 grouping and links the sample grouping to a sample group description table with a same value ofthe type ofthe sample grouping and value ofthe fourth syntax element, if présent, and the second syntax element indicating a sub-type ofthe sample grouping.
[0184] Example 5. The method ofexamples 3 or 4, wherein: the file includes one or more boxes specîfying sample group descriptions for sample groupings for samples in a 15 track or track fragment, within a track or track fragment, there is at most one instance of a box specîfying a sample group description with a particular grouping type and subtype.
[0185] Example 6. The method of examples 3-5, wherein: the file includes one or more boxes specîfying sample groups for samples in a track or track fragment, within a 20 track or track fragment, there is at most one instance of a box specîfying a sample group with a particular grouping type and sub-type.
J0186] Example 7. A method of generating a file, the method comprising: generating a first box, the first box specîfying a sample grouping, the sample grouping being a group of samples; generating a second box, the second box including syntax éléments 25 providing a sample group description for the sample grouping, wherein a relationship between SampleGroupDescription box and SampleToGroup box for the same grouping type is 1 to N; and generating the file, wherein the file includes the first box and the second box.
[0187] Example 8. A method of generating a file, the method comprising: generating 30 a box, the box specîfying a description of a sample grouping, the sample grouping being a group of samples, the box including a first syntax element and a second syntax element, the first syntax element specîfying target layers, the second syntax element specîfying semantics ofthe fîrst syntax element; and generating the file, wherein the file includes the box.
[0188] Example 9. The method of example 8, wherein the second syntax element equal to a particular value spécifiés that the target layers consist of ail the layers represented by a track, the second syntax element being not equal to the particular value is specified by derived media format spécifications.
[0189] Example 10. A video decoding device for generating a file, the device comprising: a memory storing the file; and one or more processors configured to perform any combination of the methods of generating the file provided in any of the claims above.
[0190] In one or more examples, the functions described may be implemented în 10 hardware, software, firmware, or any combination thereof. If implemented în software, the functions may be stored on or transmitted over, as one or more instructions or code, a computer-readable medium and executed by a hardware-based processing unit. Computer-readable media may include computer-readable storage media, which corresponds to a tangible medium such as data storage media, or communication media 15 including any medium that facilitâtes transfer of a computer program from one place to another, e.g., according to a communication protocol. In this manner, computerreadable media generally may correspond to (1) tangible computer-readable storage media which is non-transitory or (2) a communication medium such as a signal or carrier wave. Data storage media may be any available media that can be accessed by 20 one or more computers or one or more processors to retrieve instructions, code and/or data structures for implémentation of the techniques described în this dîsclosure. A computer program product may include a computer-readable medium.
[0191] By way of example, and not limitation, such computer-readable storage media can comprise RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic 25 disk storage, or other magnetic storage devices, flash memory, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer. Also, any connection is properly termed a computer-readable medium. For example, if instructions are transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted 30 pair, digital subscriber line (DSL), or wireless technologies such as infrared, radio, and mîcrowave, then the coaxial cable, fiber optîc cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and mîcrowave are included in the définition of medium. It should be understood, however, that computer-readable storage media and data storage media do not include connections, carrier waves, signais, or other transient
media, but are instead directed to non-transient, tangible storage media. Disk and dise, as used herein, includes compact dise (CD), laser dise, optical dise, digital versatile dise (DVD), floppy disk and Blu-ray dise, where disks usually reproduce data magnetïcally, while dises reproduce data optically with lasers. Combinations of the above should also 5 be included within the scope of computer-readable media.
[0192] Instructions may be executed by one or more processors, such as one or more digital signal processors (DSPs), general purpose microprocessors, application spécifie integrated circuits (ASICs), field programmable logic arrays (FPGAs), or other équivalent integrated or discrète logic circuitry. Accordingly, the term “processor,” as 10 used herein may refer to any of the foregoing structure or any other structure suitable for implémentation of the techniques described herein. In addition, in some aspects, the functionality described herein may be provided within dedicated hardware and/or software modules configured for encoding and decoding, or încorporated in a combined codée. Also, the techniques could be fully implemented in one or more circuits or logic 15 éléments.
[0193] The techniques of this disclosure may be implemented in a wîde variety of devices or apparatuses, including a wireless handset, an integrated circuit (IC) or a set of ICs (e.g., a chip set). Various componenls, modules, or units are described in this disclosure to emphasize functional aspects of devices configured to perform the disclosed techniques, but do not necessarily require realization by différent hardware units. Rather, as described above, various units may be combined in a codée hardware unit or provided by a collection of interoperative hardware units, including one or more processors as described above, in conjunction with suitable software and/or firmware. [0194] Various examples hâve been described. These and other examples are within the 25 scope of the following claims.

Claims (25)

  1. Claims
    1. A method of generating a file for storage of vîdeo contents, the method comprising:
    generating a container box of the file such that the file conforms to a particular file format, wherein generating the container box comprises:
    generating, in the container box, a SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein a requirement ofthe particular file format is that there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element; and generating, in the same container box ofthe file, a plurality of SampleToGroup boxes, each respective SampleToGroup box of the plurality of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample group entries comprising a respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description ofthe respective sample group, each sample ofthe respective sample group comprising one or more pictures ofthe vîdeo contents; and outputting the file.
    Λ
  2. 2. The method of claim 1, wherein generating the plurality of SampleToGroup boxes comprises generating the plurality of SampleToGroup boxes such that, for each respective SampleToGroup box of the plurality of SampleToGroup boxes, the respective SampleToGroup box includes a respective grouping type parameter syntax element indicatîng a sub-type ofthe
    5 type of sample grouping.
  3. 3. The method ofclaim 1, wherein a requïrement ofthe partïcular file format is that when there are multiple SampleToGroup boxes with the same value ofthe grouping type syntax element in a single container box, each of the multiple SampleToGroup boxes must hâve a
    10 respective version identifier equal to 1.
  4. 4. The method of claim 1, wherein a requïrement of the partïcular file format is that when there are multiple SampleToGroup boxes with the same value ofthe grouping type syntax element in a single container box, no two ofthe multiple SampleToGroup boxes shall hâve group
    15 description index syntax éléments having the same value greater than 0.
  5. 5. The method ofclaim 1, wherein a requïrement ofthe partïcular file format is that when there are multiple SampleToGroup boxes with the same value of the grouping type syntax element in a single track or track fragment, no two of the multiple SampleToGroup boxes hâve
    20 the same value of a grouping type parameter syntax element.
  6. 6. The method of claim I, wherein the SampleGroupDescription box is a first SampleGroupDescription box and generating the container box comprises generating a second SampleGroupDescription box in the container box, the second SampleGroupDescription box
    25 having a grouping type syntax element different from the partïcular value.
    Λ
  7. 7. A device for generating a file for storage of video contents, the device comprising:
    a memory configured to store the file; and one or more processors configured to:
    generate a container box of the file such that the file conforms to a particular file format, wherein as part of generating the container box, the one or more
    5 processors: generate a SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in
    10 the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein the file belongs to a particular file format în which there shall only be one SampleGroupDescription box in the container box with the particular value ofthe grouping type syntax element; and
    15 generate, in the same container box of the file, a plurality of SampleToGroup boxes, each respective SampleToGroup box of the plurality of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample
    20 group entries comprising a respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a
    25 description of the respective sample group, each sample of the respective sample group comprising one or more pictures of the video contents; and output the file.
  8. 8. The device of claim 7, wherein the one or more processors are configured to generate the plurality of SampleToGroup boxes such that, for each respective SampleToGroup box ofthe plurality of SampleToGroup boxes, the respective SampleToGroup box includes a respective grouping type parameter syntax element indicating a sub-type of the type of sample grouping.
  9. 9. The device of claim 7, wherein a requirement of the particular file format is that when there are multiple SampleToGroup boxes with the same value of the grouping type syntax element in a single container box, each of the multiple SampleToGroup boxes must hâve a respective version identifier equal to 1.
  10. 10. The device of claim 7, wherein a requirement of the particular file format is that when there are multiple SampleToGroup boxes with the same value of the grouping type syntax element in a single container box, no two of the multiple SampleToGroup boxes shall hâve group description index syntax éléments having the same value greater than 0.
  11. 11. The device of claim 7, wherein a requirement of the particular file format is that when there are multiple SampleToGroup boxes with the same value of the grouping type syntax element in a single track or track fragment, no two of the multiple SampleToGroup boxes hâve the same value of a grouping type parameter syntax element.
  12. 12. The device of claim 7, wherein the device comprises at least one of:
    an integrated circuit;
    a mîcroprocessor; or a wireless communication device.
  13. 13. The device of claim 7, wherein the SampleGroupDescription box is a first SampleGroupDescription box and generating the container box comprises generating a second SampleGroupDescription box in the container box, the second SampleGroupDescription box having a grouping type syntax element different from the particular value.
  14. 14. The device of claim 7, further comprising a caméra configured to capture the video content.
  15. 15. A device for generating a file for storage of video contents, the device comprising:
    means for generating a container box of the file such that the file conforme to a particular file format, wherein the means for generating the container box comprises: means for generating a SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein the file belongs to a particular file format in which there shall only be one SampleGroupDescription box in the container box with the particular value ofthe grouping type syntax element; and means for generating, in the same container box of the file, a plurality of SampleToGroup boxes, each respective SampleToGroup box of the plurality of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry ofthe one or more sample group entries comprising a respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description ofthe respective sample group, each sample of the respective sample group comprising one or more pictures of the video contents; and means for outputtîng the file.
  16. 16. The device of claim 15, wherein the means for generating the plurality of SampleToGroup boxes comprises means for generating the plurality of SampleToGroup boxes such that, for each respective SampleToGroup box ofthe plurality ofSampleToGroup boxes, the respective SampleToGroup box includes a respective grouping type parameter syntax element indicating a sub-type of the type of sample grouping.
  17. 17. The device of claim 15, wherein a requirement of the particular file format is that when there are multiple SampleToGroup boxes with the same value ofthe grouping type syntax element in a single container box, each of the multiple SampleToGroup boxes must hâve a respective version identifier equal to 1.
  18. 18. The device ofclaim 15, wherein a requirement ofthe particular file format is that when there are multiple SampleToGroup boxes with the same value of the grouping type syntax element in a single container box, no two ofthe multiple SampleToGroup boxes shall hâve group description index syntax éléments having the same value greater than 0.
  19. 19. The device of claim 15, wherein a requirement of the particular file format is that when there are multiple SampleToGroup boxes with the same value of the grouping type syntax element in a single track or track fragment, no two of the multiple SampleToGroup boxes hâve the same value of a grouping type parameter syntax element.
  20. 20. A device for reading a file for storage of video contents, the device comprising:
    a memory configured to store the file; and one or more processors configured to obtain, from the file, a container box of the file, wherein the container box comprises:
    a SampleGroupDescription box that includes one or more group description entries, wherein each respective group description entry provides descriptions for a respective sample group, the SampleGroupDescription box further including a grouping type syntax element that identifies a type of sample grouping, the grouping type syntax element in the SampleGroupDescription box having a particular value, the container box being a sample table box or a track fragment box, wherein a requirement of the particular file format is that there shall only be one SampleGroupDescription box in the container box with the particular value of the grouping type syntax element; and a pluralîty of SampleToGroup boxes, each respective SampleToGroup box of the pluralîty of SampleToGroup boxes including a respective grouping type syntax element having the particular value, each respective SampleToGroup box including one or more sample group entries, each respective sample group entry of the one or more sample group entries comprising a respective sample count syntax element indicating a number of samples in a respective sample group, and each respective sample group entry of the one or more sample group entries comprising a respective group description index syntax element indicating an index of a group description entry in the SampleGroupDescription box that provides a description of the respective sample group, each sample of the respective sample group comprising one or more pictures of the video contents.
  21. 21. The device of claim 20, wherein each respective SampleToGroup box of the pluralîty of SampleToGroup boxes includes a respective grouping type parameter syntax element indicating a sub-type of the type of sample grouping.
  22. 22. The device of claim 20, wherein a requirement of the particular file format is that when there are multiple SampieToGroup boxes with the same value of the grouping type syntax element in a single container box, each ofthe multiple SampieToGroup boxes must hâve a respective version identifier equal to 1.
  23. 23. The device of claim 20, wherein a requirement of the particular file format is that when there are multiple SampieToGroup boxes with the same value of the grouping type syntax element in a single container box, no two of the multiple SampieToGroup boxes shall hâve group description index syntax éléments having the same value greater than 0.
  24. 24. The device of claim 20, wherein a requirement of the particular file format is that when there are multiple SampieToGroup boxes with the same value of the grouping type syntax element in a single track or track fragment, no two of the multiple SampieToGroup boxes hâve the same value of a grouping type parameter syntax element.
  25. 25. The device of claim 20, wherein the SampieGroupDescription box is a first SampieGroupDescription box and the container box comprises a second SampieGroupDescription box, the second SampieGroupDescription box having a grouping type syntax element different from the particular value.
OA1201700326 2015-02-11 2015-12-16 Sample grouping signaling in file formats OA18432A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62/115,087 2015-02-11
US14/969,9541 2015-12-05

Publications (1)

Publication Number Publication Date
OA18432A true OA18432A (en) 2018-11-15

Family

ID=

Similar Documents

Publication Publication Date Title
US11115669B2 (en) End of sequence and end of bitstream NAL units in separate file tracks
US10298938B2 (en) Sample entry and operation point signalling in a layered video file format
JP6559663B2 (en) Multi-layer video file format design
AU2015382335B9 (en) Sample grouping signaling in file formats
OA18432A (en) Sample grouping signaling in file formats
OA18394A (en) Design of sample entry and operation point signalling in a layered video file format.