OA17718A - Methods of processing unfermented fruit seeds such as cocoa beans or cupuacu beans. - Google Patents

Methods of processing unfermented fruit seeds such as cocoa beans or cupuacu beans. Download PDF

Info

Publication number
OA17718A
OA17718A OA1201500311 OA17718A OA 17718 A OA17718 A OA 17718A OA 1201500311 OA1201500311 OA 1201500311 OA 17718 A OA17718 A OA 17718A
Authority
OA
OAPI
Prior art keywords
cocoa
etoh
beans
solution
fruit seeds
Prior art date
Application number
OA1201500311
Inventor
II Raymond John SCHNELL
Edward Stephen SEGUINE
Cristiano DIAS
Carolina BIZZOTTO
Jean-Philippe MARELLI
David Mills
Juan Carlos MOTAMAYOR-ARIAS
Original Assignee
Mars, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mars, Incorporated filed Critical Mars, Incorporated
Publication of OA17718A publication Critical patent/OA17718A/en

Links

Abstract

The present invention provides methods for processing fruit seeds, such as cocoa beans or cupuacu beans.

Description

This application claims the benefit of U.S. Application No. 61/767,157, filed February 20, 2013, and U.S. Application No. 61/782,997, filed March 14, 2013, the contents of which are herein incorporated by reference in their entireties.
FIELD OF THE INVENTION
The présent invention relates generally to methods for processing fresh seeds of fruit, including but not limited to cocoa beans or cupuacu beans suitable for rnaking products such as cocoa and/or cupuacu products without the need of microbial fermentation.
BACKGROUND OF THE INVENTION
Cocoa beans are the principal raw material for chocolaté production. These beans are derived from the fruit pods of the tree Theobroma cacao L., which is cultivated in farms in the équatorial zone, e.g., in Brazil, Costa Rica, Ecuador, Indonesia, Ivory Coast, Ghana and Vietnam. The cocoa beans are surrounded by a mucilaginous pulp inside the pods. Raw cocoa beans hâve an astringent, unpleasant taste and flavor. Traditionally to obtain the characteristic cocoa flavor and taste, cocoa beans hâve undergone microbial fermentation by both yeast and bacteria, dried, and roasted.
Chocolaté flavor is influenced by the origin of the cocoa beans, the cocoa cultivars or génotypes, the on-the-farm fermentation and drying process, and the roasting and further processing performed by the chocolaté manufacturer.
Some suggest that the flavor quality of the fermented cocoa beans is predominantly due to transport kinetics of water and solutés during the fermentation but the full details of this flavor development are poorly understood. Cocoa fermentation process is very heterogeneous and suffers from great variations in both microbial counts and species composition and hence métabolites. The variations seem to dépend on many factors including country, farm, pod ripeness, post-harvest pod âge and storage, pod diseases, type of cocoa, variations in pulp/bean ratio, the fermentation method, size of the batch, the location of the bean within the batch, season and weather conditions, the turning frequency or no turning, the fermentation time, etc. which makes reproducibility of fermentation particularly difficult. Because the uncontrolled nature of the usual fermentation process, particularly with respect to the lack of control over the growth and development of microorganisms and metabolic production during the process, the quality of the finished cocoa beans and the résultant cocoa products is variable.
A need exists for a method of processing cocoa beans that allows for the characteristic cocoa flavor and taste to develop without the variations of inhérent in microbial fermentation. Accordingly, the invention provides a method of processing raw cocoa beans without microbial fermentation that produces cocoa products having the desired cocoa flavor.
SUMMARY OF THE INVENTION
In various aspects the invention provides a method of processing seeds of fruit, e.g., cocoa beans or cupuacu beans by adding unfermented seeds to a solution of a defined concentration of éthanol in a volume sufficient to cover the seeds, maintaining the solution at a set température for a period of time wherein the solution remains substantially free of microbial growth and removing the cocoa beans from the solution to produce processed seeds. The period of time is between 24 to 96 hours. Optionally, the processing is performed under a vacuum or under pressure.
The defined concentration is from about 7% to 16% (v/v). In some embodiments the defined concentration is 7% (v/v) or 12% (v/v). In some embodiments two, three, four or more defined concentration are used sequentially. Alternatively, the defined concentration of éthanol is a continuously variable concentration within a range.
The set température is less than 55°C. Preferably, the set température is between about 25°C to 55°C or between about 45 °C to 51 °C. In some embodiments two, three, four or more set température are used sequentially. Alternatively, the set température is a continuously variable température within a range.
In various aspects the fruit seeds are substantially de-pulped prior their addition to the éthanol solution. In other aspects the pulp that has been treated to inhibit endogenous microbial activity is added to the éthanol. The pulp has been mechanically processed. In some embodiments the pulp is derived from the same cultivar as the cocoa beans. Alternatively, the pulp is derived from a cultivar that is different from the fruit seeds.
In furtheraspects ofthe invention the fruit seeds hâve been mechanically or physically processed prior to their addition to the éthanol solution. Mechanically processing includes for example is chopping, bruising or piercing the testa. Physical processing includes for example, a thermal treatment (e.g., heating, chilling orfreezing), a microwave treatment, a treatment under water-saturated conditions, an ultrasound treatment, an infra-red treatment, a laser treatment, a pressure treatment, or a vacuum treatment.
In various embodiments the solution is sparged with a gas such as carbon dioxide, nitrogen or argon prior to maintaining at the set température.
Optionally, the éthanol solution contains about 0.001 mg to 12 mg citric acid per gram of éthanol solution and/or contains about 1.0 mg to 5 mg acetic acid per gram of éthanol solution.
In some embodiments the methods ofthe invention further include drying the processed fruit seeds until the total moisture content is about 5 to 10 percent to produce dried fruit seeds. Optionally, the dried fruit seeds are roasted. In further embodiments, the shell is removed from the roasted cocoa beans and the cocoa nibs are recovered. The cocoa nibs are then milled to produce cocoa liquor.
The invention further includes the cocoa beans or cupuacu beans produced according to the methods ofthe invention and their use in the manufacture of products such as cocoa products and cupuacu products. The invention further provides the food products produced with the cocoa products and cupuacu products ofthe invention.
Unless otherwise defined, ail technical and scientific terms used herein hâve the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or équivalent to those described herein can be used in the practice of the présent invention, suitable methods and materials are described below. Ail publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety. In cases of conflict, the présent spécification, including définitions, will control. In addition, the materials, methods, and examples described herein are illustrative only and are not intended to be limiting. Otherfeatures and advantages ofthe invention will be apparent from and encompassed by the following detailed description and claims.
Unless otherwise defined, ail technical and scientific terms used herein hâve the same meaning as commonly understood by one of ordinary skill in the art to which this invention pertains. Although methods and materials similar or équivalent to those described herein can be used in the practice of the présent invention, suitable methods and materials are described below. Ail publications, patent applications, patents, and other references mentioned herein are expressly incorporated by reference in their entirety. In cases of conflict, the présent spécification, including définitions, will control. In addition, the materials, methods, and examples described herein are illustrative only and are not intended to be limiting. Otherfeatures and advantages ofthe invention will be apparent from and encompassed by the following detailed description and claims.
BR1EF DESCRIPTION OF THE DRAWINGS
Figure 1 is an illustration showing the sensory characteristics of cocoa produced by the method ofthe invention.
DETAILED DESCRIPTION OF THE INVENTION
The invention is based on the discovery that microbial fermentation of cocoa beans and/or their pulp is not required to obtain the desired characteristic of cocoa flavor and taste. This is surprising since fermentation is generally accepted in the art as being an important factor in the flavor development of cocoa beans.
Before cocoa can be processed into final products (i.e., cocoa liquor, cocoa powder, cocoa butter) they must undergo post harvesting processing comprising the steps of pod opening, bean removal from the pod, fermentation and drying. In this process, it is well accepted in the art that fermentation constitutes an essential critical step for the development of cocoa flavor. Although the term “cocoa bean fermentation” is widely used, it does not truly designate the fermentation of the cocoa beans themselves but the totality of the activity of microorganisms in the pulp surrounding the beans and the subséquent transformation in the cotylédons to achieve the desired cocoa flavor and taste
Attempts hâve been made in the prior art to control the post-harvest processing of cocoa beans; however these attempts hâve focused on controlling the fermentation. To that end, the prior art has attempted to control the fermentation by manipulating either the microrganisms (e.g., yeast and bacteria) and/or the pulp.
For example WO 2007/031186 discloses a method of regulating the fermentation of plant material by adding spécifie bacterial cultures containing lactic acid bacterium and acetic acid bacterium at different times during the fermentation process.
US 5,342,632 discloses a method for treating cocoa beans for improving fermentation by removing and separating a portion ofthe pulpfrom the fresh cocoa beans and fermenting the partly depulped cocoa beans under highly aérobic conditions.
W0 2009/138420 discloses a method of processing cocoa beans by depulping the cocoa beans and treating the pulp and the depulped cocoa beans separately. In particular, the method comprises fermenting the pulp (without the beans) and treating the cocoa beans under at least one acidic condition. After the pulp is fermented and the cocoa beans are acid treated they are combined and the mixture is further processed.
W0 2009/138419 discloses a method of processing cocoa beans by depulping the cocoa beans, fermenting the pulp, combining the pulp with fermented or unfermented cocoa beans and further processing the mixture.
Quesnel (1957) discloses curing cocoa beans in an ethanolic acetic acid solution produced chocolaté équivalent in strength of flavor to that ofthe bestTrinidad cocoa. However, Quesnel discloses that acetic acid concentration was the most important factor in curing the cocoa beans in the absence of microbial fermentation and that éthanol had only a mellowing effect on cocoa flavor and increasing the éthanol concentration did not produce a superior product.
In contrast, the présent inventors hâve shown that beans soaked in éthanol alone at the proper température could produce cocoa with acceptable taste and quality.
Accordingly, the invention provides a method of processing cocoa beans for the production of cocoa products without the need for microbial (i.e. yeast and bacterial) fermentation. The invention provides a method of processing cocoa beans into cocoa products having a desired flavor and organoleptic properties. The invention provides high-flavored cocoa beans by means of a simple, faster, more controllable (i.e., less variable) and reproducible process, resulting in a cocoa product having a controllable, well-defined, and repeatable flavor and taste profile.
One skilled in the art would readily recognize that the methods disclosed herein may be used to process other seeds of fruit that require fermentation such as Theobroma grandiflorum (cupuaçu), or tomato seeds
In the présent invention, the tree material is preferably derived from any species of the généra Theobroma or Herrania or inter- and intra-species crosses thereof within those généra, and more preferably from the species Theobroma cacao and Theobroma grandiflorum. The species Theobroma cacao as used herein comprises ail génotypes , particularly ail commercially useful génotypes, including but not limited to Criollo, Forastero, Trinitario, Arriba, Amelonado, Contamana, Curaray, Guiana, Iquitos, Maranon, Nacional, Nanay and Purus, and crosses and hybrids thereof. Cocoa beans derived from the fruit pods of Theobroma cacao are the principal raw material for chocolaté production. The cocoa beans are surrounded by a mucilaginous pulp inside the pods. After the pods are harvested, the cocoa beans (usually including at least a portion ofthe surrounding pulp) are recovered from the pods. Accordingly, the tree material used in the method ofthe invention may preferably comprise cocoa beans derived from the fruit pods of Theobroma cacao, and may further comprise the pulp derived from the fruit pods. In an embodiment, the tree material may consist essentially of cocoa beans and the pulp derived from the fruit pods of Theobroma cacao.
The terms cocoa and cacao as used herein are considered as synonyms.
The term fermentation refers generally to any activity or process involving enzymatic or metabolic décomposition (digestion) of organic materials by microorganisms. The term fermentation encompasses both anaérobie and aérobic processes, as well as processes involving a combination or succession of one or more anaérobie and/or aérobic stages. “Anaérobie” fermentation is meant that the conditions are such the décomposition of organic matter by microorganisms that prefer anaérobie conditions are favored over the décomposition of organic matter by microorganisms that prefer aérobic conditions. Likewise, “aérobic” fermentation is meant that the conditions are such the décomposition of organic matter by microorganisms that prefer aérobic conditions are favored over the décomposition of organic matter by microorganisms that prefer anaérobie conditions.
The term “fruit seed” or “seed of fruit” as used herein is intended to refer to the propagative part of a plant. A fruit seed can be, for example, a cocoa bean, a cupuacu bean, a tomato seed or a coffee bean.
The term cocoa beans as used herein is intended to refer to cocoa beans or cocoa seeds as such as well as parts thereof. Cocoa beans basically consist of three parts: an outer part comprising the testa or seed coat surrounding the bean; an inner part comprising the cotylédons and the embryo or germ contained within the testa; and the pulp. The bean when broken is referred to as “cocoa nibs”. In the présent spécification, the terms testa or shell or seed coat are used as synonyms.
The term cupuacu bean as used herein is intended to refer to cupuacu beans or cupuacu seeds as such as well as parts thereof.
The term pulp in accordance with the présent invention relates to the mucilaginous plant material in which cocoa beans are embedded inside the cocoa pods.
The term fermented cocoa beans is intended to refer to cocoa beans that hâve been fermented either deliberately or adventitiously for at least one day, preferably at least two days, thus, that hâve undergone a fermentation process.
The term “unfermented cocoa beans” is intended to refer to cocoa beans that hâve been liberated from cocoa pods and hâve not yet been fermented. Unfermented cocoa beans generally are not yet germinated.
As used herein the term non-depulped cocoa beans refer to cocoa beans that hâve not been liberated from their pulp. The term depulped cocoa beans refers to cocoa beans that hâve been essentially liberated from their pulp. Essentially liberated refers to the removal from the cocoa beans of more than 40 %, preferably more than 50, 65, 70, 75, 80, 85, 90, 95, 97, or 99% by weight of pulp based upon the original total combined weight of beans and pulp. The process according to the invention can use non-depulped cocoa beans, depulped cocoa beans or partially de-pulped cocoa beans.
A spontaneous fermentation” or natural fermentation or “fermentation process” as used herein is one that employs endogenous microorganisms naturally présent in and/or unconsciously introduced into the organic material at the start or during the fermentation. By means of example and not limitation, in spontaneous fermentation of cocoa beans and pulp, microorganisms may be introduced after the beans and the pulp are released from the pods from natural microbiota présent, for example, on workers' hands, tools (knifes, shovels, unwashed baskets, etc.), in the air where the pods are being broken open, the fermentation box or basket, coverings such as banana leaves, jute or other sacks and in places of previous fermentations. Additionally, prior to the addition of éthanol, endogenous yeast and bacteria naturally présent in the organic material may be inhibited by the addition of microbial growth inhibitors such as sulfites.
The term food product' is used herein in a broad sense, and covers food for humans as well as food for animais (i.e. a feed). In a preferred aspect, the food is for human consumption. The term about or approximately as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, is meant to encompass variations of +/-20% or less, preferably +/-10% or less, more preferably +/-5% or less, and still more preferably +/-1 % or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier about or approximately refers is itself also specifically, and preferably, disclosed.
The term significant as used herein when referring to a measurable value such as a parameter, an amount, and the like. In some aspects significant is meant to encompass variations of +/-20%, preferably +/-10%, or +/-5% or less, insofar such variations are appropriate to perform in the disclosed invention.
The terms one or more or at least one, such as one or more or at least one member(s) of a group of members, is clear per se, by means of further exemplification, the term encompasses inter alia a reference to any one of said members, or to any two or more of said members, such as, e.g., any^3, >4, >5, >6 or>7 etc. of said members, and up to ail said members.
By “bulk quantity” it is meant greater than 600 grams of cocoa beans. Preferably, a bulk quantity is at least 1kg, 2 kg, 5 kg or more.
The term sensory characteristic refers to an organoleptic sensation comprising one or ail of the following characteristics: the sensations associated with recognized mouth taste sensations associated with in-mouth receptors(sweet, sour/acid, salty, bitter, umami, fatty); the sensations associated with the retronasal characterization of volatile éléments of flavor (fruit, floral, etc.); and other mouth sensations not necessarily associated with spécifie receptors (astringency, creamy, gritty).
In a preferred embodiment, said sensory characteristic is a taste characteristic, which can be used interchangeably with flavor characteristic.
Ail these terms relate to gustation (i.e.tasting) of cocoa beans or derived products therefrom. In general, overall taste is composed of different taste characteristics. By means of example, and without limitation, in the context of cocoa or derived products therefrom, the following sensory characteristics, such as taste characteristics, can be discerned: astringent, bitter, sour, acidity, fruity, flowery, total intensity, aftertaste intensity, aftertaste time, cocoa taste, chocolaté taste, aromatic, winey, putrid, carbon, and grilled, as well as off-note flavors including baggy, smoky, mouldy, earthy, raw, hammy, metallic, rancid, burnt and musty. These sensory characteristics are ail well known in the art, and the most important ones are briefly described for further guidance.
Astringent can be defined as the chemical feeling factor perceived on the tongue and other oral surfaces, described as puckering or drying, elicited with tannins or alum. Astringency is associated with the action of polyphenols and peptide materials. Cocoa material which is astringent may be perceived as less désirable by certain consumer groups.
Cocoa can be defined as the basic cocoa note, which is characteristic of well fermented, de-shelled, roasted, and ground cocoa beans especiaily characteristic of spécifie types or génotypes (eg: Amelonado, Comum, or West African types).
Bitter can be defined as one of the four basic tastes perceived most sensitively at the back of the tongue, stimulated by solutions of caffeine, quinine, and other alkaloids.
Acid or Sour can be defined as one of the four basic fastes perceived on the tongue, associated with acids like citric acid.
Total intensity can be defined as a full-flavor intensity contrasting with watery. It indicates the overall or total flavor intensity of the product.
Bouquet is a general term covering ail flavor éléments over and above the cocoa character, e.g. aromatic, floral, and fruity notes.
The présent method encompasses the processing of cocoa beans by harvesting cocoa beans from cocoa pods; soaking the cocoa beans in a solution of éthanol at a set température for a predetermined period of time; and removing the cocoa beans from the solution. The éthanol solution is also referred to herein as the soak solution. The processed cocoa beans are then subjected to conventional drying, roasting and milling processes to produce cocoa products.
The éthanol concentration is defined. By defined concentration is meant that the éthanol concentration of the soak solution is set at the onset of the method. More specifically, by defined concentration it is meant that the éthanol concentration of the soak solution does not substantially increase during the method of the invention. In other words, no significant endogenous éthanol is produced, unlike during traditional cocoa processing in which anaérobie yeast fermentation occurs which produces éthanol as a by-product. The skilled artisan will appreciate that the éthanol concentration in the soak solution may decrease slightly as the water in the cocoa beans is displaced by the éthanol soak solution until equilibrium is reached. The defined concentration can be at least 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 16%, 17%, 18%, 19%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, or more (v/v). Preferably, the defined concentration of éthanol is a concentration high enough to prevent spontaneous fermentation by endogenous microbes. For example, the define concentration of éthanol is at least 1% , 2%, 3%, 4%, 5%, 6%, 7%, (v/v) or more. In some embodiments the concentration is between 1% to about 50 % (v/v), 1 % to about 25% (v/v), 1 % to about 20% (v/v), 1 % to about 15% (v/v), 2% to about 50 %, (v/v), 2% to about 25% (v/v), 2% to about 20% (v/v), 2% to about 15% (v/v); 3% to about 50 % (v/v), 3% to about 25% (v/v), 3% to about 20% (v/v), 3% to about 15% (v/v), 4% to about 50 % (v/v), 4% to about 25% (v/v), 4% to about 20% (v/v), 4% to about 15% (v/v), 5% to about 50 % (v/v), 5% to about 25% (v/v), 5% to about 20% (v/v), 5% to about 15% (v/v), 6% to about 50 % (v/v), 6% to about 25% (v/v), 6% to about 20% (v/v), 6% to about 15% (v/v), 7% to about 50 % (v/v), 7% to about 25% (v/v), 7% to about 20% (v/v), 7% to about 15% (v/v). Preferably, the defined concentration is between about 7% to about 16% (v/v). More preferably the defined concentration is between about 7% to about 12% (v/v). Most preferably the defined concentration is about 7%, about 10%, about 12%, about 13% or about 16% (v/v). The amount of éthanol will vary depending upon the amount of cocoa beans to be processed. Ail that is minimally required is that a sufficient quantity of the éthanol solution is used to completely cover (i.e., submerge) the cocoa beans at the commencement of the method. However, one skilled in the art will recognize that more éthanol solution that what is required to cover the beans can be used.
In some aspects of the method of the invention uses one or more defined concentrations of éthanol. For example, the beans are soaked in first defined concentration of éthanol for a predetermined period of time and température and then transferred to a second defined concentration of éthanol for a predetermined period of time and température.
In other aspects the, the defined concentration of éthanol a defined range of concentrations. For example, the defined concentration of éthanol is a continuously variable concentration within a defined range. The defined range is for example between 1% and 90% (v/v); 1% and 80% (v/v); 1 % and 70% (v/v); 1 % and 60% (v/v); 1 % and 50% (v/v); 1 % and 40% (v/v); 1% and 30% (v/v); 1% and 20% (v/v); 1% and 16% (v/v); 1% and 12% (v/v); or 1% and 7% (v/v).
The cocoa beans in the éthanol solution are maintained at set température. By “set température”, it is meant that the température does not vary. The skilled artisan will appreciate that slight fluctuations in température will occur due to standard errer of the température monitoring and maintenance devices. Thus, by set température it is meant that the température does not vary outside the accepted tolérances of the température and maintenance devices used to practice the claimed methods. A set température is less than 60 °C. Preferably, the set température is less than 55°C. The set température is between 20°C to 55 °C. More preferably, the set température is between 25°C to 55 °C. Even more preferably, the set température is between 45 °C to 51 °C. For example, the set température is about 20 °C, 21’C, 22°C, 23°C, 25 °C, 26 °C, 27°C, 28 C, 29 °C, 30 “C, 31 °C, 32°C, 33 °C, 34°C, 35°C, 36°C, 37 °C, 38 °C, 39°C, 40°C, 41 °C, 42°C, 43°C, 44°C, 45 °C, 46 °C, 47°C, 48°C, 49°C, 50 °C, 51 “C, 52°C, 53°C, 54 °C, 55°C, 56°C, 57°C, 58°C, or 59 °C.
In some aspects of the method of the invention uses one or more set températures. For example, the beans are maintained in the soak solution for a predetermined amount of time for a first set température and then maintained at a second set température for a second predetermined period of time. Two, three, four, five or more set températures may be used in the methods of the invention.
In other aspects the set température is a defined range of températures. For example, the set température is a continuously variable température within a defined range. The defined range is for example between 20°C to 55 °C; 20°C to 51 °C; 20 C to 45 C.
The cocoa beans in the éthanol solution are soaked for a period of time. The period of time is also referred to herein as the soak period or soak time. The soak period may vary depending upon the cocoa cultivar being processed. In some embodiments, the soak time is the time that is required for cocoa bean death to occur. By cocoa bean death is meant that the germination of cocoa beans has been inhibited. The term germination of cocoa beans (cocoa seeds) as used herein refers to the sprouting of a cocoa seedling from a cocoa seed. Inhibition of germination as used in the présent application is intended to refer to the effect of avoiding that germination of the cocoa seeds starts but also to the effect of ending (interrupting) germination ofthe cocoa seeds if germination is or has been already started. Germination of at least 30%, 40%, 50%, 60% 70% 80%, and preferably at least 85%, 90%, 95%, and even up to 100% ofthe cocoa beans is inhibited. Inhibition of germination can be measured by determining a germination rate by means of a germination assay. The germination rate is the number of cocoa seeds that germinate under proper conditions, and in particular, that germinate when growing the cocoa seeds on earth or cotton for 7 days at 25-31 °C under humidity saturated conditions. The germination rate is expressed as a percentage, e.g. 15% germination rate indicates that about 15 out of 100 seeds germinate.
In alternative embodiments, the soak period is the time that is required for the concentration of éthanol within the bean to reach equilibrium with the concentration of éthanol ofthe soak solution. Preferably, the period of time is between 24-168 hours.
During the soak period, the éthanol solution is substantially free of microbial growth (e.g. bacterial or yeast). In other words, spontaneous fermentation ofthe pulp if présent (i.e., anaérobie or aérobic) does not substantially occur. Microbial growth is determined by known methods.
During the soak period, it may be désirable to mix, agitate, turn, or stir the beans in the container. This may be achieved manually or mechanically. In some embodiments the cocoa beans are mixed, agitated, turned, or stirred continuously or at regular intervals. For example, the cocoa beans are mixed, agitated, turned, or stirred at over about 24 hours, about 48 hours, about 72 hours, about 96 hours after the initiation of the soak period.
In some embodiments the cocoa beans include the pulp or portion thereof. Alternatively, the cocoa beans are substantially depulped. The pulp is derived from the same cultivar as the cocoa beans. Alternatively, the pulp is derived from a different cultivar than the cocoa beans.
When including the pulp or portion thereof, the pulp may be separated from the cocoa beans. Optionally, the pulp may be mechanically processed prior to the addition to the éthanol solution. For example, the pulp may be mashed or blended.
The pulp may be fermented prior to the addition to the éthanol solution. Alternatively, the pulp is not fermented prior to the addition to the éthanol solution. In some aspects when fermentation ofthe pulp is not desired orto stop fermentation, the pulp (non- fermented or fermented) may be pre-treated prior to addition to the éthanol solution to insure that ail endogenous microbial activity is inhibited. For example, the pulp may be treated with a sulfite solution or similar food grade antimicrobiais. Pre-treatment of the pulp is particularly important when the concentration of the éthanol soaking solution is low enough to allow spontaneous microbial activity.
In another embodiment, at least a part of the cocoa beans are dried or pre-dried before the actual process. This operation may be or may not be preceded by a réduction of pulp as described above. The pre-drying step may be carried out in any conventional hot air dryer, such as a circular drier, or using any alternative drying system such as sun drying. The cocoa beans are dried until the total moisture content is between 25-50%.
Various pre-treatments (mechanical and physical) and combinations thereof may be applied in accordance with the présent invention.
Mechanical treatments include for example, depulping, scoring, scraping, chopping, cracking, crushing, pressing, bruising, rubbing, centrifugation, piercing, cutting or perforation of the cocoa beans and any combinations thereof.
Mechanical treatment facilitâtes the transport of fluids and gases from the interior of the seed across shell to the exterior environment. In particular, mechanical treatment allows for aération of cocoa beans and of cocoa cotylédons.
As used herein, pierce generally refers to forming an opening in a cocoa bean, while leaving the portion of the cocoa bean surrounding the opening substantially intact. Intact generally refers to unitary or whole. A pierced cocoa bean may be a perforated cocoa bean. A perforated cocoa bean refers to a cocoa bean pierced in one, two or more locations to form openings. The openings may be substantially uniform in size and/or shape. Cocoa bean may be pierced in a variety of methods, such as piercing with a solid object, piercing with a fluid jet, piercing with droplets of enzymes or acids, piercing with electromagnetic radiation, or combinations thereof.
Physical treatments include for example, a thermal treatment (e.g. heating, chilling or freezing), a microwave treatment, a treatment under water-saturated conditions, an ultrasound treatment, an infra-red treatment, a laser treatment, a pressure treatment, a vacuum treatment and any combinations thereof.
In alternative embodiments, no pre-treatment to the cocoa beans are applied. In some embodiments the cocoa beans used in the method according to the invention are intact cocoa beans atthe beginning of the soak period. Specifically, in some embodiments of the invention the cocoa beans are not pierced.
In some embodiments the éthanol solution contains additive(s). Additives include for example, acids such as citric acid, acetic acid, or phosphoric acid; enzymes such pectinase; microbial growth inhibitors; preservatives; or an aromatic or tastant substance.
Preferably, additive(s) is/ are added to the cocoa beans at the beginning of the soak period or up to 24 hrs after the start of the incubation period. In one embodiment, additives(s) is/are added to the cocoa beans up to 24 hrs, or up to 36 hrs, or up to 48 hrs, up to 72 hrs, or up to 96 hrs after the start of the soak period .
Citric acid when used is added to the éthanol solution at a concentration between 0.001 mg to 25 mg of citric acid per gram of éthanol solution. Preferably, the concentration is between 0.001 mg to 12 mg of citric acid per gram of éthanol solution Acetic acid when used is at a concentration between 1 mg to 5 mg of acidic acid per gram of éthanol solution. Preferably the concentration is 1.5 mg acetic acid per gram of éthanol solution. When acids are used during the methods of the invention, optionally they may be neutralized during the process. Aromatic or tastant substances (e.g. salts, spices, aromatic wood and synthetic aromatic substances) may be any natural, natural identical or artificial aromatic substance or tastant substance used in the food industry and elsewhere. This includes substances that can be smelled and/or tasted. Generally, the aromatic substance or tastant are capable of modifying the flavor and/or aroma of the cocoa beans during the fermentation process. Preferred solid or aqueous aromatic or tastant substances are fruit pulps, aromatic leaves, roots, flowers, stems, wooden parts, such as pièces of aromatic timber, any kind of powders (such as ground aromatic powders, herbs or spices.
Preferred liquid aromatic or tastant substances are oils such as essential oils and juices (e.g., fruit juices) made of a plant or made of fruit pulp.
In one embodiment, at least one aromatic or tastant substance as listed in the European Register of flavoring substances notified by the Member States pursuant to Article 3(1 ) of Régulation ECNo 2232/96 of the European Parliament and of the Council of 28 October 1996 laying down a Community procedure for flavoring substances used or intended for use in or on foodstuffs , in the version published in the Official Journal of the European Communities, L 84, Volume 42, dated 27 March 1999, is used. The content of said Register (in particular the names of the flavoring substances and the respective CAS numbers insofar these had been attributed or made available) is herewith incorporated by reference in its entirety.
In certain embodiments, the aromatic or tastant substance is a sait such as acetic or lactic sait.
In certain embodiments, the aromatic or tastant substance is a dutching agent such as sodium carbonate, sodium bicarbonate, ammonium hydroxide. When alkai are used during the methods of the invention, optionally they may be neutralized during the process. Other aromatic substances suitable for use in the présent invention include for example those disclosed in W0 2009/103137, the contents of which are incorporated by reference in its entirety.
In some embodiments, after the cocoa beans are placed in the éthanol solution, the solution is sparged with a gas before the incubation period. The gas is for example carbon dioxide, or any inert gas such as argon or nitrogen. Optionally, incubation of the cocoa beans and the éthanol solution is done under a vacuum or under pressure.
After the incubation period, the cocoa beans are removed from the éthanol solution and the cocoa beans are dried until the total moisture content is less that 10 percent, preferably the cocoa beans are dried to about 7 to 8 percent moisture. Once dried to the appropriate moisture content, the cocoa beans may be aged. Aging allows for the élimination of some flavor artifacts. For example, the cocoa beans are aged for 2, 3, 4, 5, 6, 7, 8, 9, 10 or more weeks, preferably at least 6 weeks, at room température, prior to liquor making. Some varieties may âge faster, some may âge a bit slower, but in general the 6 week aging is a good balance point between undue aging time and eliminating some flavor artifacts.
After the cocoa beans are dried and optionally aged, the beans are roasted and milled to liquor using procedures well known in the art, including roasting the beans; removing the shell and milling the recovered cocoa nibs into cocoa liquor. The cocoa liquor obtained from cocoa beans processed by the methods of the invention hâve sensory characteristics substantially the same as cocoa liquor produced by traditionally fermented cocoa beans. By sensory characteristics substantially the same as cocoa liquor produced by traditionally fermented cocoa beans, is meant that an individual trained in chocolaté sensorial analysis and familiar with the flavor of beans from cocoa trees of various génotypes fermented via traditional fermentation processes will recognize that the sensory characteristics obtained by the method of the invention produces sensory characteristics of what experts would expect over a large number of commercial fermentations of beans from these génotypes. According to the invention, sensory characteristics, such as taste characteristics of ail cocoa- derived material, in addition to cocoa liquor can be evaluated. Accordingly, in an embodiment, sensory characteristics are scored for cocoa-derived material such as cocoa beans, cocoa powder, cocoa butter, cocoa nibs, cocoa pulp, cocoa flakes, cocoa extract, cocoa mass, cocoa cake, and chocolaté. As cocoa liquor represents a homogenous cocoa dérivative, sensory characteristics may advantageously and preferably be evaluated for cocoa liquor.
Sensory characteristics such as taste characteristics are usually evaluated by means of a taste panel. Taste panels can be consumer taste panels or expert or trained taste panels. Preferably, the taste panel is an expert or trained taste panel, in which ail members thereof are familiar with the protocols and taste characteristics, which allow for a more objective évaluation ofthe taste characteristics. Taste panels are well known in the art. In essence, each member ofthe taste panel scores one or more taste characteristics, preferably on a numerical scale. Scores typically vary between a minimum score, corresponding to the (substantial) absence ofthe taste characteristic, and a maximum score, corresponding to a very strong or dominant presence ofthe taste characteristic. A number of intermediate scores between the minimum and maximum score are typically also presented. It is to be understood that references herein to a comparison of sensory or taste characteristics essentially relate to a comparison of the score of such sensory or taste characteristic. In some embodiments the scores of the cocoa products produced by the methods of the invention are substantially similar to the scores of the cocoa products produced by traditional fermentation. As used herein, the terms substantially similar preferentially refer to scores which differ by no more than 20%, preferably no more than 15%, more preferably no more than 10%, even more preferably no more than 5%.
The cocoa liquor obtained for cocoa beans processed by the method of the invention hâve sensory characteristics of cocoa liquor that are within the range of what an individual trained in chocolaté sensorial analysis would expect from cocoa liquor produced by traditionally fermented cocoa beans.
In some embodiments the cocoa liquor obtained for cocoa beans processed by the method of the invention are superior to the sensory characteristics of cocoa liquor produced by traditionally fermented cocoa beans. By superior it is meant that an individual trained in chocolaté sensorial analysis determined that the quality of the cocoa liquor obtained by the method of the invention is higher in at least one or more cocoa flavor attributes than the chocolaté liquor obtained by traditional fermentation. Preferably, quality of the cocoa liquor obtained by the method of the invention is higher in two, three, four, five or more cocoa flavor attributes than the chocolaté liquor obtained by traditional fermentation.
Each sample can be evaluated for, including but not limited to, one or more of the following flavor attributes: cocoa flavor (as found in Ghanaian beans), acidity (qualifies the basic taste generated by dilute aqueous solutions of most acids), bitterness (qualifies the basic taste generated by dilute solutions of various substances such as caffine, perceived on the top of the tongue and at the back of the palate), fruity (taste note belonging to the bouquet and which evokes a fruit which has reached maturity: apple, banana, pear and the like), flowery, e.g., “total floral’ or “floral woody”(corresponds to an olfactory sensation evoking flowers in general: rose, jasmin, hyacinth, lilac and the like), “nutty, nut skins, and caramel notes” (the taste and odor of roasted nuts, nut skins, and caramelized sugars) smoky (taste and odor of smoke; defect resulting in general from drying the cocoa beans after fermentation by means of a wood fire), “hammy” (taste and odor of smoked ham or other smoked méat; defect resulting in general from diseased cocoa beans, musty (taste and odor of damp slightly moldy materials), and raw (feature of insufficiently roasted cocoas where the flavor has not developed); earthy (corresponds to an olfactory sensation that evokes fresh clean slightly damp earth or potting soil or the rich smell of the earth in a forest after a light rain). “ bark woody”, “dirty”, etc. In addition, each sample can be evaluated for other sensations, including but not limited to, astringency (corresponds to sensations of a physical nature, from the suppression of unctuousness to the astringency in the medical sense which covers constriction and/or crispation of the tissues) or “other” (a compilation of flavors otherwise specified in the aforelisted attributes). “Other off’ flavors as used herein refer to flavors such as cardboardy, stale, baggy, tar-like, burnt rubber, etc., flavors that would be considered to be “off flavors” that are known to a skilled person in the art and hâve not been aforementioned.
In addition to the sensory characteristics, the cocoa beans processed according to the methods ofthe invention, orthe cocoa products produced therefrom, also hâve nutritional and chemical characteristics that are substantially similar or superior to cocoa beans that hâve been traditionally fermented. Nutritional and chemical characteristics include for example, fat, moisture, crude protein, theobromine, caffeine, sugars, starch, total dietary fiber, organic acids, ash, cholestérol, minerais (such as, without limitation, potassium, sodium, calcium, magnésium, phosphorus, chloride, iron, zinc, copper) or vitamins (such as, without limitation, A (retinol), B1 (thiamine), B2 (riboflavin), B3 (niacin), Vitamin B5, C (ascorbic acid), E (tocopherol)). The chemical composition equally relates to for instance fatty acid composition (such as percentages of saturated, monounsaturated or polyunsaturated fatty acids) and type (such as percentages of for instance palmitic (016:0), stearic (C18:0), oleic (C18: 1), palmitoleic (C16: 1),, linoleic (018:2), arachidic (020:0) orother fatty acids). Methods for determining these parameters are well known in the art (see for instance de Zaan Cocoa & Chocolaté Manual, 2009, ADM Cocoa International, Switzerland).
In yet another aspect, the invention relates to cocoa beans that are obtained or obtainable by a carrying out a method according to the invention. Specifically, the invention also relates to cocoa products prepared with one or more cocoa beans as defined herein. Cocoa products according to the présent invention are defined as products that can be prepared using cocoa beans, and such as cocoa powder, cocoa extract, cocoa liquor, cocoa mass, cocoa cake, and cocoa butter. Cocoa products can be in a liquid form or in a dry or lyophilized form, such as in the form of granules, pellets, or a powder.
The invention thus relates to the use of cocoa beans according to the invention for the préparation of food products, e.g. preferably chocolaté products, and to food products thereby obtained. For this, cocoa beans according to the invention can be conventionally processed into cocoa products such as cocoa butter, cocoa powder, cocoa liquor, cocoa mass, and further introduced in food products.
The food may be in the form of a liquid or as a solid. Non limitative examples of food products which may be obtained using cocoa beans according to the présent invention include for instance chocolaté products, chocolaté drinks, nutritional beverages, beverage powders, milk-based products, ice cream, confectionery, bakery products such as cakes and cake mixes, fillings, cake glaze, chocolaté bakery filling, doughnuts, chocolaté syrup, chocolaté sauce, and dairy products.
Food products, e.g. chocolaté products, comprising cocoa beans or cocoa products derived thereof as defined herein may hâve improved characteristics, including for instance improved storage stability, improved organoleptic properties such as for instance a better flavor profile, betterflavor release, prolongée! flavor rétention and improved appearance, than équivalent products made from cocoa beans that hâve been traditionally fermented.
Example 1 : Evaluation of Ethanol Concentration, Soak Time and Température on the Development of Cocoa Flavor
In order to détermine if cocoa beans could develop a cocoa flavor without microbial fermentation, cocoa beans from a single variety, PS 1319 (a variety commonly grown in Bahia, Brazil) were soaked in either a 7% (v/v) or 12 % (v/v) solution. For each concentration of éthanol three températures were evaluated 25°C, 4°C, and 60°C. Approximately 100 g of de-pulped cocoa beans were used per treatment. A sufficient amount of éthanol was used to completely cover the beans. Each treatment was performed in triplicate. Laboratory scale fermentation (Ml) was used as a control.
Samples were collected at 0, 12, 24, 36, 48 and 168 hours and the beans were processed into cocoa liquor and assessed for flavor. The Table below summarizes the flavor profile of the chocolaté liquor produced as tasted by a professional taster in a double blind taste test.
Sample Ethan ol Conc. Te mp Ti me C oc 0 a Tôt al Aci dity Bitt erne SS Astringen cy
ETOH_12%( 25).72 12% ETOH O 25 C 72 4 1 7 9
ETOH_12%( 25).72 12% ETOH 25 C 72 5 0 8 7
ETOH_12%( 25).72 12% ETOH 25 C 72 5 0 6 8
ETOH_12%( 25).72 12% ETOH 25 C 72 5 0 7 8
ETOH_12%( 25).72 12% ETOH 25“ C 72 5 0 6 8
ETOH_12%( 25).72 12% ETOH 25 C 72 6 0 7 8
ETOH_12%( 25).72 12% ETOH 25 C 72 4 2 7 9
ETOH_12%( 25).72 12% ETOH 25” C 72 5 1 6 8
ETOH_12%( 25).72 12% ETOH U 25 C 72 6 0 6 8
ET0H_12%( 25).168 12% ETOH 25 C 16 8 6 0 6 7
ET0H_12%( 25).168 12% ETOH 25 C 16 8 8 0 4 5
ET0H_12%( 25).168 12% ETOH 25 C 16 8 8 0 5 6
ET0H_12%( 25).168 12% ETOH 25 C 16 8 5 0 7 8
ET0H_12%( 25).168 12% ETOH 25” C 16 8 6 0 6 7
ET0H_12%( 25).168 12% ETOH 25 C 16 8 6 0 6 10
ET0H_12%( 25).168 12% ETOH 25” C 16 8 6 0 7 9
ET0H_12%( 25).168 12% ETOH 25 C 16 8 7 0 7 7
ET0H_12%( 25).168 12% ETOH 25 C 16 8 7 0 6 7
ET0H_12%( 45).72 12% ETOH 45 C 72 4 0 7 9
ET0H_12%( 45).72 12% ETOH 45 C 72 6 0 6 8
ET0H_12%( 45).72 12% ETOH 45” C 72 7 0 7 8
ET0H_12%( 45).72 12% ETOH 45 C 72 4 2 5 8
ET0H_12%( 45).72 12% ETOH 45 C 72 6 0 6 8
ET0H_12%( 45).72 12% ETOH 45“ C 72 6 0 5 6
ET0H_12%( 45).72 12% ETOH 45” C 72 4 0 7 9
ET0H_12%( 45).72 12% ETOH 45 C 72 5 0 6 7
ET0H_12%( 12% 45 72 6 0 7 8
45).72 ETOH °C
ET0H_12%( 45).168 12% ETOH 45“ C 16 8 6 0 6 7
ET0H_12%( 45).168 12% ETOH 45 C 16 8 6 1 5 7
ET0H_12%( 45).168 12% ETOH 45 C 16 8 7 0 5 6
ET0H_12%( 45).168 12% ETOH 45 C 16 8 4 1 5 7
ET0H_12%( 45).168 12% ETOH 45“ C 16 8 4 2 5 6
ET0H_12%( 45).168 12% ETOH 45 C 16 8 6 0 6 7
ET0H_12%( 45).168 12% ETOH 45“ C 16 8 6 0 5 6
ET0H_12%( 45).168 12% ETOH 45 C 16 8 6 0 5 6
ET0H_12%( 45).168 12% ETOH 45 C 16 8 8 0 5 6
ET0H_12%( 60).72 12% ETOH 60“ C 72 1 0 3 6
ETOH_12%( 60).72 12% ETOH ô 60 C 72 2 1 5 6
ETOH_12%( 60).72 12% ETOH 60 C 72 2 0 6 7
ETOH_12%( 60).72 12% ETOH 60 C 72 0 0 3 4
ETOH_12%( 60).72 12% ETOH ό 60 C 72 0 0 2 3
ETOH_12%( 60).72 12% ETOH 60 C 72 2 2 5 7
ETOH_12%( 60).72 12% ETOH 60 C 72 2 0 3 6
ETOH_12%( 60).72 12% ETOH 60 C 72 3 0 2 5
ET0H_12%( 60).72 12% ETOH 60° C 72 3 0 2 5
ETOH_12%( 60).168 12% ETOH 60 C 16 8 0 2 3 6
ETOH_12%( 60).168 12% ETOH 60 C 16 8 0 0 3 6
ETOH_12%( 60).168 12% ETOH 60 C 16 8 1 0 2 5
ETOH_12%( 60).168 12% ETOH 60 C 16 8 2 0 1 2
ETOH_12%( 60).168 12% ETOH 60 C 16 8 2 0 3 4
ETOH_12%( 60).168 12% ETOH 60 C 16 8 2 0 2 3
ETOH_12%( 60).168 12% ETOH 60 C 16 8 0 1 3 6
ETOH_12%( 60).168 12% ETOH 60 C 16 8 0 0 1 0
ETOH_12%( 60).168 12% ETOH 60 C 16 8 0 0 0 0
ETOH_7%(2 5).72 7% ETOH 25 C 72 4 0 7 9
ETOH_7%(2 5).72 7% ETOH 25 C 72 5 0 8 9
ETOH_7%(2 5).72 7% ETOH 25“ C 72 6 1 7 8
ETOH_7%(2 5).72 7% ETOH 25 C 72 4 0 7 8
ETOH_7%(2 5).72 7% ETOH 25” C 72 6 0 6 7
ETOH_7%(2 5).72 7% ETOH 25 C 72 6 0 5 6
ETOH_7%(2 5).72 7% ETOH 25 C 72 6 1 6 7
ETOH_7%(2 7% u 25 72 7 0 6 7
5).72 ETOH C
ETOH_7%(2 5).72 7% ETOH 25 C 72 7 0 6 7
ETOH_7%(2 5).168 7% ETOH 25 C 16 8 3 0 7 8
ETOH_7%(2 5).168 7% ETOH δ 25 C 16 8 4 0 8 10
ETOH_7%(2 5).168 7% ETOH 25 C 16 8 5 3 7 7
ETOH_7%(2 5).168 7% ETOH 25” C 16 8 6 0 6 9
ETOH_7%(2 5).168 7% ETOH 25 C 16 8 6 1 8 9
ETOH_7%(2 5).168 7% ETOH 25 C 16 8 6 0 6 8
ETOH_7%(2 5).168 7% ETOH δ 25 C 16 8 4 0 7 7
ETOH_7%(2 5).168 7% ETOH 25 C 16 8 4 0 7 10
ETOH_7%(2 5).168 7% ETOH 25 C 16 8 7 1 5 7
ETOH_7%(4 5).72 7% ETOH 45 C 72 4 0 6 8
ETOH_7%(4 5).72 7% ETOH 45 C 72 5 2 5 7
ETOH_7%(4 5).72 7% ETOH 45“ C 72 5 0 6 7
ETOH_7%(4 5).72 7% ETOH 45 C 72 4 0 6 9
ETOH_7%(4 5).72 7% ETOH 45” C 72 5 1 6 8
ETOH_7%(4 5).72 7% ETOH 45 C 72 6 2 6 8
ETOH_7%(4 5).72 7% ETOH 45 C 72 4 0 7 9
ETOH_7%(4 5).72 7% ETOH 45 C 72 6 1 6 6
ETOH_7%(4 5).72 7% ETOH 45 C 72 6 0 6 6
ETOH_7%(4 5).168 7% ETOH 45“ C 16 8 4 3 5 8
ETOH_7%(4 5).168 7% ETOH 45 C 16 8 5 2 6 8
ETOH_7%(4 5).168 7% ETOH 45 C 16 8 6 1 5 6
ETOH_7%(4 5).168 7% ETOH 45 C 16 8 4 3 5 7
ETOH_7%(4 5).168 7% ETOH 45“ C 16 8 5 2 5 7
ETOH_7%(4 5).168 7% ETOH 45 C 16 8 5 1 5 7
ETOH_7%(4 5).168 7% ETOH 45 C 16 8 3 2 5 8
ETOH_7%(4 5).168 7% ETOH 45“ C 16 8 4 1 6 8
ETOH_7%(4 5).168 7% ETOH 45 C 16 8 5 2 4 6
ETOH_7%(6 0).72 7% ETOH 60 C 72 0 0 2 4
ETOH_7%(6 0).72 7% ETOH 60 C 72 0 0 2 3
ETOH_7%(6 0).72 7% ETOH 60“ C 72 1 0 3 4
ETOH_7%(6 0).72 7% ETOH 60 C 72 3 0 5 7
ETOH_7%(6 0).72 7% ETOH 60“ C 72 3 0 4 6
ETOH_7%(6 0).72 7% ETOH 60 C 72 5 0 6 7
ETOH_7%(6 7% 60 72 0 0 1 0
0).72 ETOH C
ETOH_7%(6 0).72 7% ETOH 60 C 72 0 1 3 4
ETOH_7%(6 0).72 7% ETOH 60 C 72 1 1 3 4
ETOH_7%(6 0).168 7% ETOH 60 C 16 8 0 0 2 4
ETOH_7%(6 0).168 7% ETOH 60 C 16 8 0 0 1 1
ETOH_7%(6 0).168 7% ETOH 60 C 16 8 2 0 2 4
ETOH_7%(6 0).168 7% ETOH 60 C 16 8 0 0 3 2
ETOH_7%(6 0).168 7% ETOH 60” C 16 8 0 0 2 5
ETOH_7%(6 0).168 7% ETOH 60 C 16 8 1 0 2 2
ETOH_7%(6 0).168 7% ETOH 60 C 16 8 0 0 2 3
ETOH_7%(6 0).168 7% ETOH 60 C 16 8 0 0 0 2
ETOH_7%(6 0).168 7% ETOH 60 C 16 8 2 0 1 3
Control_72 Contra I Ml 72 5 3 7 8
Control_72 Contra I Ml 72 6 1 5 9
Control_72 Contra I Ml 72 6 2 6 7
Control_72 Contra I Ml 72 4 2 7 9
Control_72 Contra I Ml 72 6 0 7 9
Contra l_72 Contra I Ml 72 7 0 6 9
Control_72 Contre I Ml 72 3 0 6 9
Control_72 Contre I Ml 72 3 0 8 10
Control_72 Contre I Ml 72 6 0 8 8
Control_168 Contre I Ml 16 8 3 3 6 7
Control_168 Contre I Ml 16 8 5 3 6 7
Control_168 Contre I Ml 16 8 7 2 5 6
Control_168 Contre I Ml 16 8 4 4 6 6
Control_168 Contre I Ml 16 8 5 2 5 7
Control_168 Contre I Ml 16 8 5 3 4 7
Control_168 Contre I Ml 16 8 3 4 5 7
Control_168 Contre I Ml 16 8 4 2 6 8
Control_168 Contre I Ml 16 8 5 4 5 8
Example 2: Evaluation of Température of the Development of Cocoa Flavor
To further evaluate the effect of température on the development of flavor, cocoa beans from three clones (PS1319, TSH 1188 and CCN 51) were soaked in a12 % (v/v) éthanol 5 solution. Six températures were evaluated: 45°C, 48°C, 51 °C, 54 C, 57°C and 60 C.
Approximately 600 g of de-pulped cocoa beans were used per treatment. A sufficient amount of éthanol was used to completely cover the beans.
Samples were collected at 72 hours and the beans were processed into cocoa liquor and assessed for flavor. The flavor profile of the chocolaté liquor produced as tasted by a professional taster in a double blind taste test.
Example 3: Détermination of the Optimal Température For the Development of
Cocoa Flavor
To further evaluate the effect of température on the development of flavor, cocoa beans from multiple clones (e.g., PS1319, TSH 1188 and CCN 51) will be soaked in a single concentration of éthanol (e.g. 7%, 12 % (v/v)) solution for a set time such as for example 72hrs. Multiple températures will be evaluated: 30°C, 33°C, 36°C, 39°C, 41 °C, 44°C. In addition one or more of the températures described in Example 2 will be used (e.g., 45°C, 48°C, and 60°C). Approximately 600 g of de-pulped cocoa beans are used per treatment. A sufficient amount of éthanol is used to completely cover the beans.
Samples are collected at 72 hours and the beans are processed into cocoa liquor and assessed for flavor. The flavor profile of the chocolaté liquor produced will be determined by a professional taster in a double blind taste test.
Example 4: Détermination of the Optimal Ethanol Concentration For the Development of Cocoa Flavor
To further evaluate the effect of éthanol concentration on the development of flavor, cocoa beans from multiple clones (e.g., PS1319, TSH 1188 and CCN 51) will be soaked in multiple concentration of éthanol (e.g. 2%, 3%, 5%, 7%, 12 %, 15%, 20% or 25% (v/v) éthanol solution for a set time such as for example 72hrs at the optimal température determined in Example 3. Approximately 600 g of de-pulped cocoa beans are used per treatment. A sufficient amount of éthanol is used to completely cover the beans.
Samples are collected at 72 hours and the beans are processed into cocoa liquor and assessed for flavor. The flavor profile of the chocolaté liquor produced will be determined by a professional taster in a double blind taste test.
Example 5: Détermination of the Soak Time For the Development of Cocoa Flavor
To further evaluate the effect of soak time on the development of flavor, cocoa beans from multiple clones (e.g., PS1319, TSH 1188 and CCN 51) will be soaked atthe optimal température determined in Example 3 and the optimal éthanol concentration determined in Example 4. Approximately 600 g of de-pulped cocoa beans are used per treatment. A sufficient amount of éthanol is used to completely cover the beans.
Samples are collected at multiple times (e.g., 24, 48, 72, 96, 120, 144, or 168 hours and the beans are processed into cocoa liquor and assessed for flavor. The flavor profile of the chocolaté liquor produced will be determined by a professional taster in a double blind taste test.
One skilled in the art will appreciate that experiments described in Example 3-5 may be performed in a different order or even as a single integrated experiment (eg: partial orfull factorial) to détermine the optimal time, température, and éthanol concentration for the development of the best cocoa flavor.

Claims (10)

  1. We Claim:
    1. A method of processing fruit seeds comprising:
    a. adding unfermented fruit seeds to a first solution of a defined concentration of éthanol wherein said defined concentration is from about 7% to about 16% (v/v) in a volume sufficient to cover the fruit seeds;
    b. maintaining the first solution at a first set température that is less than 55°C for a first period of between 24 to 96 hours wherein the solution remains substantially free of microbial growth; and
    c. removing the fruit seeds from the solution thereby producing processed fruit seeds.
  2. 2. The method of claim 1, further comprising prior to step (c) transferring the fruit seeds to a second solution of a defined concentration of éthanol wherein said defined concentration is from about 7% to 16% (v/v) in a volume sufficient to cover the fruit seeds and maintaining the solution at a second set température that is less than 55°C for a first period of between 24 to 96 hours wherein the solution remains substantially free of microbial growth.
  3. 3. The method of claim 1 or claim 2, further comprising prior to step (c) maintaining the first solution at a second set température that is less than 55°C for a second period of between wherein the solution remains substantially free of microbial growth.
  4. 4. The method of any one of the preceding daims , wherein the defined concentration of éthanol is a continuously variable concentration within a range.
  5. 5. The method of claim any one of the preceding daims further comprising one or more of the following steps:
    (i) the fruit seeds are substantially de-pulped prior to step (a), (ii) adding pulp to the solution prior to step (b), wherein the pulp has been treated such that endogenous microbial activity is inhibited;
    (iii) mechanically or physically processing the fruit seeds prior to step (a); wherein mechanically process is chopping, bruising or piercing the testa and wherein physically processing is a thermal treatment, a microwave treatment, a treatment under watersaturated conditions, an ultrasound treatment, an infra-red treatment, a laser treatment, a pressure treatment, or a vacuum treatment;
    (iv) drying fruit seeds until the total moisture content is about 25-50% prior to step (a);
    (v) sparging the solution with a gas prior to step (b);
    (vi) drying the processed fruit seeds until the total moisture content is about 5 to 10 percent to produce dried fruit seeds, and optionally roasting the dried fruit seeds to produce roasted fruit seeds;
    (vii) where the fruit seeds are cocoa beans removing the shell and recovering the cocoa nibs.
  6. 6. The method of any one ofthe preceding claims, wherein the solution contains about 0.001 mg to 12 mg citric acid per gram of éthanol solution and/or about 1.0 mg to 5 mg acetic acid per gram of éthanol solution.
  7. 7. The method of any one ofthe preceding claims, wherein the éthanol concentration is 7% or 12% (v/v).
  8. 8. The method of any one ofthe preceding claims, wherein the fruit seeds are cocoa beans or cupuacu beans.
  9. 9. The method of claim 8 which further comprises using products in the production of cocoa products, cupuacu products or other food products.
  10. 10. The cocoa beans or cupuacu beans produced according to the method of claim 8.
OA1201500311 2013-02-20 2014-02-19 Methods of processing unfermented fruit seeds such as cocoa beans or cupuacu beans. OA17718A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US61/767,157 2013-02-20
US61/782,997 2013-03-14

Publications (1)

Publication Number Publication Date
OA17718A true OA17718A (en) 2017-10-11

Family

ID=

Similar Documents

Publication Publication Date Title
US20200367525A1 (en) Methods of processing unfermented fruit seeds such as cocoa beans or cupuacu beans
US8501256B2 (en) Method for processing cocoa beans
De Vuyst et al. The functional role of lactic acid bacteria in cocoa bean fermentation
JP6585339B2 (en) Microbial composition for fermentation of cocoa material
US20150374007A1 (en) Anaerobic fermentation of seeds of fruit
EP2456321A2 (en) Process for the fermentation of cocoa beans to modify their aromatic profile
KR102703360B1 (en) Method for preparing fermented coffee using traditionally fermented soybean production
OA17718A (en) Methods of processing unfermented fruit seeds such as cocoa beans or cupuacu beans.
Suma et al. Scope of Entrepreneurial Developments in Cocoa Processing
Singh Cocoa and Chocolate Based Beverages
Rohmah et al. The taste development of cocoa bean: evidence from the tropical rain forest to the table
OA19628A (en) Anaerobic fermentation of seeds of fruit.
Hartel et al. Other ingredients
RU2784946C1 (en) Method for obtaining caramelized cocoa beans
WO2021123181A1 (en) Improved cocoa bean quality by enhanced fermentation technology
Dewi et al. A Short Review: Changes in the Physical-Chemical Properties of Cacao Beans During the Fermentation Process
OA10844A (en) Drying method for cacao beans
Gutiérrez Carmona State-of-the-Art chocolate manufacture: A review
WO2022167677A1 (en) Chocolate and methods for preparing said chocolate
CN117481169A (en) Coconut-flavor rose sauce capable of being used for baking and preparation method and application thereof
CN117941757A (en) Processing method for changing green tea into yellow tea
JP2014503226A (en) Cocoa sensory characteristics
Arya et al. COCOA: PROCESSING METHODS FOR CHOCOLATE AND OTHER PRODUCTS
Bumrungsin Development of chocolate dipped dehydrated mango (mangifera indica linn.)