OA16426A - Processing biomass. - Google Patents
Processing biomass. Download PDFInfo
- Publication number
- OA16426A OA16426A OA1201300010 OA16426A OA 16426 A OA16426 A OA 16426A OA 1201300010 OA1201300010 OA 1201300010 OA 16426 A OA16426 A OA 16426A
- Authority
- OA
- OAPI
- Prior art keywords
- acid
- mixtures
- food
- group
- fermentation
- Prior art date
Links
- 239000002028 Biomass Substances 0.000 title abstract description 19
- 239000000463 material Substances 0.000 claims abstract description 65
- 238000000855 fermentation Methods 0.000 claims abstract description 44
- 230000004151 fermentation Effects 0.000 claims abstract description 44
- 235000013305 food Nutrition 0.000 claims abstract description 42
- 239000000446 fuel Substances 0.000 claims abstract description 4
- 235000015097 nutrients Nutrition 0.000 claims description 68
- 102000004190 Enzymes Human genes 0.000 claims description 63
- 108090000790 Enzymes Proteins 0.000 claims description 63
- 239000000203 mixture Substances 0.000 claims description 51
- 229940088598 Enzyme Drugs 0.000 claims description 40
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 30
- 244000005700 microbiome Species 0.000 claims description 21
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 16
- 229910052757 nitrogen Inorganic materials 0.000 claims description 15
- 235000013339 cereals Nutrition 0.000 claims description 14
- -1 éthanol Chemical compound 0.000 claims description 13
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 12
- 235000013311 vegetables Nutrition 0.000 claims description 12
- 108091005771 Peptidases Proteins 0.000 claims description 11
- 239000004365 Protease Substances 0.000 claims description 11
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 11
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 claims description 11
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 11
- 235000005822 corn Nutrition 0.000 claims description 11
- 235000005824 corn Nutrition 0.000 claims description 11
- 108010065511 Amylases Proteins 0.000 claims description 10
- 102000013142 Amylases Human genes 0.000 claims description 10
- 235000019418 amylase Nutrition 0.000 claims description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical class O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 9
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butanoic acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 claims description 8
- 108010059892 Cellulase Proteins 0.000 claims description 8
- 102000033147 ERVK-25 Human genes 0.000 claims description 8
- 239000004202 carbamide Substances 0.000 claims description 8
- 239000004382 Amylase Substances 0.000 claims description 7
- 240000007594 Oryza sativa Species 0.000 claims description 7
- 235000007164 Oryza sativa Nutrition 0.000 claims description 7
- 150000007524 organic acids Chemical class 0.000 claims description 7
- XBDQKXXYIPTUBI-UHFFFAOYSA-N propionic acid Chemical compound CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 claims description 7
- 235000009566 rice Nutrition 0.000 claims description 7
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Chemical compound OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 claims description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- BDAGIHXWWSANSR-UHFFFAOYSA-N formic acid Chemical compound OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 claims description 6
- 150000002430 hydrocarbons Chemical class 0.000 claims description 6
- 235000012054 meals Nutrition 0.000 claims description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N n-butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 claims description 6
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 claims description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 5
- 235000005985 organic acids Nutrition 0.000 claims description 5
- BFNBIHQBYMNNAN-UHFFFAOYSA-N Ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 4
- JFCQEDHGNNZCLN-UHFFFAOYSA-N Glutaric acid Chemical compound OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 claims description 4
- 235000010469 Glycine max Nutrition 0.000 claims description 4
- OYHQOLUKZRVURQ-IXWMQOLASA-N Linoleic acid Natural products CCCCC\C=C/C\C=C\CCCCCCCC(O)=O OYHQOLUKZRVURQ-IXWMQOLASA-N 0.000 claims description 4
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N Oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 claims description 4
- IPCSVZSSVZVIGE-UHFFFAOYSA-N Palmitic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 4
- QIQXTHQIDYTFRH-UHFFFAOYSA-N Stearic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 claims description 4
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N Valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 claims description 4
- 235000011054 acetic acid Nutrition 0.000 claims description 4
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 4
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 4
- 108010002430 hemicellulase Proteins 0.000 claims description 4
- 229940059442 hemicellulase Drugs 0.000 claims description 4
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 4
- 239000004310 lactic acid Substances 0.000 claims description 4
- 235000014655 lactic acid Nutrition 0.000 claims description 4
- OFOBLEOULBTSOW-UHFFFAOYSA-N malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 claims description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 4
- MUBZPKHOEPUJKR-UHFFFAOYSA-N oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 4
- BDERNNFJNOPAEC-UHFFFAOYSA-N propanol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 claims description 4
- 229940025131 Amylases Drugs 0.000 claims description 3
- 235000007319 Avena orientalis Nutrition 0.000 claims description 3
- 244000075850 Avena orientalis Species 0.000 claims description 3
- 240000007842 Glycine max Species 0.000 claims description 3
- 240000005979 Hordeum vulgare Species 0.000 claims description 3
- 235000007340 Hordeum vulgare Nutrition 0.000 claims description 3
- 102000035443 Peptidases Human genes 0.000 claims description 3
- 240000004713 Pisum sativum Species 0.000 claims description 3
- 235000010582 Pisum sativum Nutrition 0.000 claims description 3
- 240000001016 Solanum tuberosum Species 0.000 claims description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 claims description 3
- 240000008529 Triticum aestivum Species 0.000 claims description 3
- 235000011187 glycerol Nutrition 0.000 claims description 3
- 235000021374 legumes Nutrition 0.000 claims description 3
- 235000012015 potatoes Nutrition 0.000 claims description 3
- 239000001384 succinic acid Substances 0.000 claims description 3
- 235000021307 wheat Nutrition 0.000 claims description 3
- 235000015099 wheat brans Nutrition 0.000 claims description 3
- FUZZWVXGSFPDMH-UHFFFAOYSA-N Hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 claims description 2
- 239000005642 Oleic acid Substances 0.000 claims description 2
- 235000021314 Palmitic acid Nutrition 0.000 claims description 2
- 235000021355 Stearic acid Nutrition 0.000 claims description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 2
- 235000019253 formic acid Nutrition 0.000 claims description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 claims description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N iso-propanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 claims description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 claims description 2
- 235000020778 linoleic acid Nutrition 0.000 claims description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 2
- 239000001294 propane Substances 0.000 claims description 2
- 235000019260 propionic acid Nutrition 0.000 claims description 2
- 239000008117 stearic acid Substances 0.000 claims description 2
- 229940005605 valeric acid Drugs 0.000 claims description 2
- SJZRECIVHVDYJC-UHFFFAOYSA-N γ-Hydroxybutyric acid Chemical compound OCCCC(O)=O SJZRECIVHVDYJC-UHFFFAOYSA-N 0.000 claims description 2
- 229940106157 CELLULASE Drugs 0.000 claims 2
- 240000008042 Zea mays Species 0.000 claims 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims 2
- 239000004215 Carbon black (E152) Substances 0.000 claims 1
- 239000000543 intermediate Substances 0.000 abstract description 16
- 239000002699 waste material Substances 0.000 abstract description 5
- 238000000034 method Methods 0.000 description 21
- 238000004519 manufacturing process Methods 0.000 description 14
- 235000000346 sugar Nutrition 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 241001019659 Acremonium <Plectosphaerellaceae> Species 0.000 description 12
- 238000010364 biochemical engineering Methods 0.000 description 12
- 229920002678 cellulose Polymers 0.000 description 12
- 239000001913 cellulose Substances 0.000 description 12
- WQZGKKKJIJFFOK-VFUOTHLCSA-N β-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 12
- WQZGKKKJIJFFOK-GASJEMHNSA-N D-Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 11
- 108010047754 beta-Glucosidase Proteins 0.000 description 11
- 102000006995 beta-Glucosidase Human genes 0.000 description 11
- 239000008103 glucose Substances 0.000 description 11
- 150000001720 carbohydrates Chemical class 0.000 description 10
- 235000014633 carbohydrates Nutrition 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 241000209149 Zea Species 0.000 description 9
- 150000001298 alcohols Chemical class 0.000 description 9
- 239000004094 surface-active agent Substances 0.000 description 8
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 6
- 239000008187 granular material Substances 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 239000000123 paper Substances 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 5
- 239000000654 additive Substances 0.000 description 5
- 230000001461 cytolytic Effects 0.000 description 5
- 239000011236 particulate material Substances 0.000 description 5
- 239000012254 powdered material Substances 0.000 description 5
- 102000004169 proteins and genes Human genes 0.000 description 5
- 108090000623 proteins and genes Proteins 0.000 description 5
- 102000005575 Cellulases Human genes 0.000 description 4
- 108010084185 Cellulases Proteins 0.000 description 4
- SRBFZHDQGSBBOR-SQOUGZDYSA-N Xylose Natural products O[C@@H]1CO[C@@H](O)[C@@H](O)[C@@H]1O SRBFZHDQGSBBOR-SQOUGZDYSA-N 0.000 description 4
- 230000003115 biocidal Effects 0.000 description 4
- 150000001735 carboxylic acids Chemical class 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 3
- 244000285963 Kluyveromyces fragilis Species 0.000 description 3
- 229920002472 Starch Polymers 0.000 description 3
- 101700006119 XYL1 Proteins 0.000 description 3
- 101700047052 XYLA Proteins 0.000 description 3
- 101700051122 XYLD Proteins 0.000 description 3
- 101700065756 XYN4 Proteins 0.000 description 3
- 101700001256 Xyn Proteins 0.000 description 3
- 150000007513 acids Chemical class 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000003242 anti bacterial agent Substances 0.000 description 3
- 235000013405 beer Nutrition 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000004821 distillation Methods 0.000 description 3
- 239000003925 fat Substances 0.000 description 3
- 235000019197 fats Nutrition 0.000 description 3
- 239000002657 fibrous material Substances 0.000 description 3
- 230000001965 increased Effects 0.000 description 3
- 229920005610 lignin Polymers 0.000 description 3
- 229920000136 polysorbate Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000019698 starch Nutrition 0.000 description 3
- 239000008107 starch Substances 0.000 description 3
- 150000008163 sugars Chemical class 0.000 description 3
- 101700065693 xlnA Proteins 0.000 description 3
- 101700006979 xyl2 Proteins 0.000 description 3
- 101710017636 xynS20E Proteins 0.000 description 3
- UCSJYZPVAKXKNQ-HZYVHMACSA-N 1-[(1S,2R,3R,4S,5R,6R)-3-carbamimidamido-6-{[(2R,3R,4R,5S)-3-{[(2S,3S,4S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-3-(methylamino)oxan-2-yl]oxy}-4-formyl-4-hydroxy-5-methyloxolan-2-yl]oxy}-2,4,5-trihydroxycyclohexyl]guanidine Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 241001438625 Acremonium dichromosporum Species 0.000 description 2
- 241000228209 Acremonium persicinum Species 0.000 description 2
- 241001019292 Acremonium pinkertoniae Species 0.000 description 2
- 241000609240 Ambelania acida Species 0.000 description 2
- 229940064005 Antibiotic throat preparations Drugs 0.000 description 2
- 229940083879 Antibiotics FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR TOPICAL USE Drugs 0.000 description 2
- 229940042052 Antibiotics for systemic use Drugs 0.000 description 2
- 229940042786 Antitubercular Antibiotics Drugs 0.000 description 2
- 241000228212 Aspergillus Species 0.000 description 2
- 241000193830 Bacillus <bacterium> Species 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 101700010451 CELB Proteins 0.000 description 2
- 108010008885 Cellulose 1,4-beta-Cellobiosidase Proteins 0.000 description 2
- 241000135254 Cephalosporium sp. Species 0.000 description 2
- 241000123346 Chrysosporium Species 0.000 description 2
- 241000223218 Fusarium Species 0.000 description 2
- 241000223221 Fusarium oxysporum Species 0.000 description 2
- 101700041462 GUX2 Proteins 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 241001019284 Gliomastix roseogrisea Species 0.000 description 2
- 108010073178 Glucan 1,4-alpha-Glucosidase Proteins 0.000 description 2
- 229940093922 Gynecological Antibiotics Drugs 0.000 description 2
- 229920002488 Hemicellulose Polymers 0.000 description 2
- 241000223198 Humicola Species 0.000 description 2
- 241001480714 Humicola insolens Species 0.000 description 2
- 235000014663 Kluyveromyces fragilis Nutrition 0.000 description 2
- 102100008175 MGAM Human genes 0.000 description 2
- 239000001888 Peptone Substances 0.000 description 2
- 108010080698 Peptones Proteins 0.000 description 2
- 241000906075 Simplicillium obclavatum Species 0.000 description 2
- 241001313536 Thermothelomyces thermophila Species 0.000 description 2
- 241001494489 Thielavia Species 0.000 description 2
- 229940024982 Topical Antifungal Antibiotics Drugs 0.000 description 2
- 241000499912 Trichoderma reesei Species 0.000 description 2
- 229960003487 Xylose Drugs 0.000 description 2
- 241000588901 Zymomonas Species 0.000 description 2
- 102000004139 alpha-Amylases Human genes 0.000 description 2
- 108090000637 alpha-Amylases Proteins 0.000 description 2
- 229940024171 alpha-amylase Drugs 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000010905 bagasse Substances 0.000 description 2
- 235000015278 beef Nutrition 0.000 description 2
- 239000002551 biofuel Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000024881 catalytic activity Effects 0.000 description 2
- 101700046922 cex Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000000593 degrading Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000002538 fungal Effects 0.000 description 2
- 229940079866 intestinal antibiotics Drugs 0.000 description 2
- 239000002655 kraft paper Substances 0.000 description 2
- 229940005935 ophthalmologic Antibiotics Drugs 0.000 description 2
- 239000010893 paper waste Substances 0.000 description 2
- 235000019319 peptone Nutrition 0.000 description 2
- 235000021317 phosphate Nutrition 0.000 description 2
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 2
- 235000015277 pork Nutrition 0.000 description 2
- 239000010817 post-consumer waste Substances 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000010907 stover Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N 2-methyl-2-propenoic acid methyl ester Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- ALRHLSYJTWAHJZ-UHFFFAOYSA-N 3-Hydroxypropionic acid Chemical compound OCCC(O)=O ALRHLSYJTWAHJZ-UHFFFAOYSA-N 0.000 description 1
- 241001438635 Acremonium brachypenium Species 0.000 description 1
- 240000005337 Agave sisalana Species 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N Ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N BRL-49594 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 240000003917 Bambusa tulda Species 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 240000000218 Cannabis sativa Species 0.000 description 1
- 241001619326 Cephalosporium Species 0.000 description 1
- 229920002101 Chitin Polymers 0.000 description 1
- DJHJJVWPFGHIPH-OODMECLYSA-N Chitin Chemical compound O[C@@H]1C(NC(=O)C)[C@H](O)OC(CO)[C@H]1COC[C@H]1C(NC(C)=O)[C@@H](O)[C@H](COC[C@H]2C([C@@H](O)[C@H](O)C(CO)O2)NC(C)=O)C(CO)O1 DJHJJVWPFGHIPH-OODMECLYSA-N 0.000 description 1
- 229960005091 Chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N Chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 241001674013 Chrysosporium lucknowense Species 0.000 description 1
- MYSWGUAQZAJSOK-UHFFFAOYSA-N Ciprofloxacin Chemical compound C12=CC(N3CCNCC3)=C(F)C=C2C(=O)C(C(=O)O)=CN1C1CC1 MYSWGUAQZAJSOK-UHFFFAOYSA-N 0.000 description 1
- 241001508811 Clavispora Species 0.000 description 1
- 241001508813 Clavispora lusitaniae Species 0.000 description 1
- 241001508812 Clavispora opuntiae Species 0.000 description 1
- 240000007170 Cocos nucifera Species 0.000 description 1
- 235000013162 Cocos nucifera Nutrition 0.000 description 1
- 241000222511 Coprinus Species 0.000 description 1
- 240000000491 Corchorus aestuans Species 0.000 description 1
- 235000011777 Corchorus aestuans Nutrition 0.000 description 1
- 235000010862 Corchorus capsularis Nutrition 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- GZCGUPFRVQAUEE-KCDKBNATSA-N D-(+)-Galactose Natural products OC[C@@H](O)[C@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-KCDKBNATSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Destomysin Chemical compound OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 1
- 229940097277 Hygromycin B Drugs 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 101710042672 MCYG_00144 Proteins 0.000 description 1
- 240000004658 Medicago sativa Species 0.000 description 1
- 241000123318 Meripilus giganteus Species 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- 241000226677 Myceliophthora Species 0.000 description 1
- 241001674208 Mycothermus thermophilus Species 0.000 description 1
- 229950010131 PUROMYCIN Drugs 0.000 description 1
- RXWNCPJZOCPEPQ-NVWDDTSBSA-N PUROMYCIN Chemical compound C1=CC(OC)=CC=C1C[C@H](N)C(=O)N[C@H]1[C@@H](O)[C@H](N2C3=NC=NC(=C3N=C2)N(C)C)O[C@@H]1CO RXWNCPJZOCPEPQ-NVWDDTSBSA-N 0.000 description 1
- 241000235652 Pachysolen Species 0.000 description 1
- 241000235647 Pachysolen tannophilus Species 0.000 description 1
- 241001520808 Panicum virgatum Species 0.000 description 1
- 229940049954 Penicillin Drugs 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 229940066779 Peptones Drugs 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 241000235648 Pichia Species 0.000 description 1
- 241000209504 Poaceae Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 229920001131 Pulp (paper) Polymers 0.000 description 1
- 241000193448 Ruminiclostridium thermocellum Species 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000582914 Saccharomyces uvarum Species 0.000 description 1
- 241000192263 Scheffersomyces shehatae Species 0.000 description 1
- 241000223255 Scytalidium Species 0.000 description 1
- WXMKPNITSTVMEF-UHFFFAOYSA-M Sodium benzoate Chemical compound [Na+].[O-]C(=O)C1=CC=CC=C1 WXMKPNITSTVMEF-UHFFFAOYSA-M 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 229960005322 Streptomycin Drugs 0.000 description 1
- 241001092905 Thermophis Species 0.000 description 1
- 241001495429 Thielavia terrestris Species 0.000 description 1
- 241000219094 Vitaceae Species 0.000 description 1
- 241000588902 Zymomonas mobilis Species 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid Chemical compound OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000000996 additive Effects 0.000 description 1
- 235000017585 alfalfa Nutrition 0.000 description 1
- 235000017587 alfalfa Nutrition 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 239000002280 amphoteric surfactant Substances 0.000 description 1
- 229960003942 amphotericin B Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 239000010828 animal waste Substances 0.000 description 1
- 230000000845 anti-microbial Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 150000001479 arabinose derivatives Chemical class 0.000 description 1
- 230000001580 bacterial Effects 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 229960000626 benzylpenicillin Drugs 0.000 description 1
- 239000003225 biodiesel Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 235000009120 camo Nutrition 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 235000005607 chanvre indien Nutrition 0.000 description 1
- 229960003405 ciprofloxacin Drugs 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000010411 cooking Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N edta Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 125000004494 ethyl ester group Chemical group 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000010794 food waste Substances 0.000 description 1
- 239000002816 fuel additive Substances 0.000 description 1
- 229960002518 gentamicin Drugs 0.000 description 1
- 150000004676 glycans Polymers 0.000 description 1
- 235000021021 grapes Nutrition 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011487 hemp Substances 0.000 description 1
- 235000012765 hemp Nutrition 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atoms Chemical class [H]* 0.000 description 1
- 230000003116 impacting Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 239000002054 inoculum Substances 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 108010062085 ligninase Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000012766 marijuana Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- 125000004492 methyl ester group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 230000000813 microbial Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L na2so4 Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Polymers 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 239000010908 plant waste Substances 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 108090000765 processed proteins & peptides Proteins 0.000 description 1
- 230000002797 proteolythic Effects 0.000 description 1
- 238000004537 pulping Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 108010027322 single cell proteins Proteins 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000004299 sodium benzoate Substances 0.000 description 1
- 235000010234 sodium benzoate Nutrition 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010902 straw Substances 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N α-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
Abstract
Biomass (e.g., plant biomass, animal biomass, and municipal waste biomass) is processed to produce useful intermediates ans products, such as energy, fuels, foods or materials. For example, methods are described that can use feedstock materials, such as cellulosic and/or lignocellulosic materials, to produce an intermediate or product, e.g., by fermentation.
Description
PROCESSING BIOMASS
RELATED APPLICATIONS
This application claims priority to U.S. Provîsional Application Serial No. 61/365,493, filed July 19, 2010. The complété disclosure of this provîsional application is hereby incorporated by reference herein.
BACKGROUND
Cellulosic and lignocellulosic materials are produced, processed, and used in large quantifies in a number of applications. Often such materials are used once, and then discarded as waste, or are simply considered to be waste materials, e.g., sewage, bagasse, sawdust, and stover.
Various cellulosic and lignocellulosic materials, their uses, and applications hâve been described in U.S. Patent Nos. 7,074,918, 6,448,307, 6,258,876, 6,207,729, 5,973,035 and 5,952,105; and in various patent applications, including “FIBROUS MATERIALS AND COMPOSITES,” PCT/US2006/010648, filed on March 23, 2006, AND “FIBROUS MATERIALS AND COMPOSITES,” U.S. Patent Application Publication No. 2007/0045456.
SUMMARY
Generally, this invention relates to bioprocessing of carbon-containing materials, such as carbohydrate-containing materials (e.g., biomass materials, biomass-derived materials or chitin), in particular cellulosic and lignocellulosic materials, and saccharîfied carbohydrate-containing materials. The bioprocessing techniques disclosed herein include combining the carbohydrate-containing materials with a microorganism that utilizes the carbohydrate-containing material, or its saccharîfied dérivative, to produce a product or intermediate. This process is generally performed in a fluid medium, and in some implémentations comprises fermentation.
A typical biomass resource contains cellulose, hemicellulose, and lignin plus lesser amounts of proteins, extractables and minerais. The complex carbohydrates contained in the cellulose and hemicellulose fractions can be processed into fermentable/|f' sugars, which can then be converted by bioprocessing into a variety of products, such as alcohols or organic acids. The product obtained dépends upon the microorganisin utilized and the conditions under which the bioprocessing occurs.
Unlike traditional fermentation feedstocks such as corn, grapes, and the like, cellulosic and lignocellulosic materials generally contain relatively low to negligîble levels of nutrients. This is particularly true of feedstocks that hâve been processed, e.g., by pulping, for example waste paper and waste paper pulp. As a result, when such feedstocks are used fermentation generally proceeds slowly (if at ail), and it can be diffîcult to obtaîn high concentrations of éthanol. While commercially available nutrient packages, such as peptone or yeast nitrogen base, can be added to the fermentation medium, such materials are generally expensive, impacting the économie viability of large-scale fermentation processes.
The inventors hâve found that by adding particular nutrients to the bioprocessing medium to feed the microorganisms, the efficiency of the bioprocess can be significantly enhanced and the cost can be significantly reduced. The nutrients include a food product, e.g., a grain or vegetable; a residue of a food product, e.g., a residue of a crop product such as rice bran, or a residue of a méat product, e.g., stock, renderings, bouillon or extract of beef, chicken, pork or the like; or mixtures thereof. These will be referred to collectively herein as “food-based nutrient sources.” Because food-based nutrient sources are used, nutrients can be supplied to the fermentation process at relatively low cost, reducing the overall cost of a product produced by the process. The food-based nutrient source can be low in sugar content, since the material is being used prïmarily or solely as a nutrient source, rather than as a fermentation feedstock. Thus, materials can be used that are not valued as a sugar source.
In some implémentations, the food-based nutrient source is delivered as part of a nutrient package, which may include one or more additional ingrédients. In some preferred implémentations, the nutrient package further includes a nitrogen source, e.g., urea, ammonia, ammonium sulfate, and mixtures thereof.
In one aspect, the invention features a method that includes combining a feedstock, comprising a carbon-containing material, such as a cellulosic or lignocellulosic material and/or a saccharified cellulosic or lignocellulosic material, with a microorganism 2
and a food-based nutrient source to form a mixture, the microorganism utilizing the feedstock to produce a product or intermediate.
Some implémentations include one or more of the following features. In some cases, the food-based nutrient source is selected from the group consisting of grains, vegetables, residues of grains, residues of vegetables, residues of méat (e.g., stock, extract, bouillon or renderings), and mixtures thereof. For example, the nutrient source may be selected from the group consisting of wheat, oats, barley, soybeans, peas, legumes, potatoes, corn, rice bran, corn meal, wheat bran, méat product residues, and mixtures thereof.
The product can be or include, for example, a fuel selected from the group consisting of hydrogen, alcohols, organic acids, hydrocarbons, and mixtures thereof. For example, the product may comprise an alcohol selected from the group consisting of methanol, éthanol, propanol, isopropanol, n-butanol, ethylene glycol, propylene glycol, l,4-butane diol, glycerin, and mixtures thereof. In some cases, the product may be an organic acid selected from the group consisting of formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic, palmitic acid, stearic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, oleic acid, linoleic acid, glycol ic acid, lactic acid, γhydroxybutyric acid and mixtures thereof. Hydrocarbons include, for example, methane, ethane, propane, isobutene, pentane, n-hexane, and mixtures thereof. Other products and intermediates may also be produced.
The utilizing step can include, for example, saccharification and/or fermentation. In some cases, the utilizing step includes simultaneous saccharification and fermentation (SSF). The microorganism may include, for example, a yeast and/or an enzyme, such as any of those described in detail herein. In some cases, saccharification may be conducted at a pH of about 3.8 to 4.2 and fermentation may be conducted at a pH of about 4.8 to 5.2, and the method may further include adjusting the pH between saccharification and fermentation. The mixture may, in some cases, include a nitrogen source, which may be part of a nutrient package or may be added separately. The nitrogen source may be, for example, selected from the group consisting of urea, ammonia, ammonium sulfate, and mixtures thereof./ff4
In some preferred implémentations, the mixture further comprises an enzyme System selected to release nutrients, e.g., nitrogen, amino acids, and fats, from the foodbased nutrient source. For example, the enzyme System may include one or more enzymes selected from the group consisting of amylases, proteases, and mixtures thereof. In some cases, the enzyme System comprises a protease and an amylase.
Unless otherwise defined, ail technical and scientifîc terms used herein hâve the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar or équivalent to those described herein can be used in the practice or testing of the présent invention, suitable methods and materials are described below. Ail publications, patent applications, patents, and other référencés mentioned herein are incorporated by reference in their entirety. In case of conflict, the présent spécification, including définitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting.
Other features and advantages of the invention will be apparent from the following detailed description, and from the claims.
DESCRIPTION OF DRAWINGS
FIG. I is a flow diagram illustrating conversion of a feedstock to éthanol via production of a glucose solution.
FIG. 2 is a schematic diagram of an éthanol manufacturing facility.
FIG. 3 is a diagram illustrating the enzymatic hydrolysis of cellulose to glucose.
DETAILED DESCRIPTION
Using the methods and nutrient packages described herein, carbon-contaïning materials such as cellulosic and I ignocellulosic materials and their saccharified dérivatives can be bioprocessed, e.g., using fermentation, to produce useful intermediates and products such as those described herein.
The inventors hâve found that by addîng low levels of a food product and/or a food residue to the fermentation batch, efficient fermentation can be obtained, resulting in relatively high concentrations of éthanol, e.g., up to Ι0%, 15%, 20%, 25%, or even up to
30% or more.
In some cases, concentrations can be, for example, from about 0.1 to 80
g/L, e.g., from about O.l to 40 g/L, about 0.5 to 20 g/L, about I to 10 g/L or in some implémentations from about l to 5 g/L. The concentration used will vary depending on the nutrient profile of the material(s) used.
Suitable food-based nutrient sources include grains, e.g., wheat, oats, and barley, and vegetables, e.g., soybeans, peas, legumes, potatoes, and corn, and residues of such materiais, e.g., rice bran, corn meal, and wheat bran. These represent but a few examples of the many grains and vegetables that may be used. As discussed above, in addition or alternatively the food-based nutrient source may include méat residues such as the stock, bouillon, extract or renderings of beef, chicken, pork, or other méats. The food-based nutrient source may include mixtures of two or more grains and/or vegetables and/or méat residues. Advantageously, such materiais are generally low cost. In some cases, materiais are used that are otherwise considered waste, e.g., food products or residues that would otherwise hâve to be landfilled.
In addition to the food-based nutrient source, preferred nutrient packages contain a nitrogen source. Suitable nitrogen sources include, for example, urea, ammonia, ammonium sulfate, and mixtures thereof. In some implémentations, the nitrogen source is added in a concentration of about 1-10, 2-8 or preferably 3-6 g/L based on the volume of the liquid medium.
Other compounds that may be included in the nutrient package include phosphates, which are used by the microorganism for réplication.
In preferred implémentations, the nutrient package is used with a particular combination of enzymes that includes one or more enzymes selected to saccharify on the cellulosic or lignocellulosîc material, and one or more enzymes selected to release nutrients (e.g., nitrogen, amino acids and fats) from the food-based nutrient source. In some cases, the combination of enzymes includes an amylase, to break down starch in the nutrient source, and a protease, to hydrolyze protein and produce peptides from the nutrient source. Preferred enzyme combinations will be discussed in detail below.
Processes in which the food-based nutrient sources or nutrient packages may be used will now be discussed.
CONVERTING CELLULOSIC AND LIGNOCELLULOSIC MATERIALS TO ALCOHOLS
Referring to FIG, l, a process for manufacturing an alcohol, e.g., éthanol, can include, for example, optionally mechamcally treating the feedstock (step HO), before and/or after this treatment, optionally treating the feedstock with another physîcal treatment, for example irradiation (e.g., électron beam irradiation), to further reduce its recalcitrance (step 112), saccharifying the feedstock to form a sugar solution (step 114), optionally transporting, e.g., by pipeline, railcar, truck or barge, the solution (or the feedstock, enzyme and water, if saccharification is performed en route) to a manufacturing plant (step 116), and then bio-processing the treated feedstock to produce a desired product (step 118), which is then processed further, e.g., by distillation (step 120). If desired, lignîn content can be measured (step 122) and process parameters can be set or adjusted based on this measurement (step 124), as described in U.S. Provisional Application Number 61/151,724, filed on February 11, 2009, the complété disclosure of which is incorporated herein by reference.
The food-based nutrient source or nutrient package is présent during bioprocessing (step 118), e.g., fermentation, and may in some preferred implémentations also be présent during the saccharification step (step 114). In some implémentations, the food-based nutrient source or nutrient package is added at the beginning of step 114, along with an enzyme combination suitable for saccharification, fermentation, and release of nutrients from the food-based nutrient source. Saccharification is conducted under a first set of process conditions (e.g., température and pH), and then when saccharification has proceeded to a desired extent the process conditions are adjusted (e.g., by adjusting pH from 4 to 5) to allow fermentation to proceed.
The manufacturing plant used in steps 118-120 (and in some cases ail of the steps described above) can be, for example, an existing starch-based or sugar-based éthanol plant or one that has been retrofitted by removing or decommissioning the equipment upstream from the bio-processing System (which in a typical éthanol plant generally includes grain receiving equipment, a hammermill, a slurry mixer, cooking equipment and liquéfaction equipment). In some cases, the feedstock received by the plant can be.
input directly into the fermentation equipment. A retrofitted plant is shown schematically in FIG. 2.
Steps H0-H2 are described, for example, in U.S. Serial No. 12/429,045, filed April 23, 2009, the complété disclosure of which is incorporated herein by reference. Steps 114, 118 and 120 (saccharification, fermentation, and distillation), which pertain to the production ofalcohol by bioprocessing, will now be discussed further.
Saccharification
In order to convert the feedstock to ferinentable sugars, the cellulose in the feedstock is hydrolyzed by a saccharifying agent, e.g,, an enzyme, a process referred to as saccharification. The materials that include the cellulose are treated with the enzyme, e.g., by combining the material and the enzyme in a solvent, e.g., in an aqueous solution.
Enzymes and biomass-destroying organisms that break down biomass, such as the cellulose and/or the lignin portions of the biomass, contain or manufacture various cellulolytic enzymes (cellulases), ligninases or various small molécule biomassdestroying métabolites. These enzymes may be a complex of enzymes that act synergistically to dégradé crystalline cellulose or the lignin portions of biomass. Examples of cellulolytic enzymes include: endoglucanases, cellobiohydrolases, and cellobiases (β-glucosidases). Referring to FIG. 3, a cellulosic substrate is initially hydrolyzed by endoglucanases at random locations producing oligomeric intermediates. These intermediates are then substrates for exo-splitting glucanases such as cellobiohydrolase to produce cellobiose from the ends of the cellulose polymer. Cellobiose is a water-soluble 1,4-linked dimer of glucose. Finally cellobiase cleaves cellobiose to yield glucose.
Suitable saccharifying agents are described, for example, in the Materials section below.
As noted above, the food-based nutrient source or nutrient package is preferably added prior to or during saccharification, and an enzyme is added that îs selected to release nutrients from the food-based nutrient source. Suitable enzymes are described, for example, in the Materials section below./n*/
The saccharification process can be partially or completely performed in a tank (e.g., a tank having a volume of at least 4000, 40,000, 400,000, or 1,000,000 L) in a manufacturing plant, and/or can be partially or completely performed in transit, e.g., in a rail car, tanker truck, or in a supertanker or the hold of a ship. The time required for complété saccharification will dépend on the process conditions and the feedstock and enzyme used. If saccharification is performed in a manufacturing plant under controlled conditions, the cellulose may be substantially entirely converted to glucose in about 1296 hours. If saccharification is performed partially or completely in transit, saccharification may take longer.
It îs generally preferred that the tank contents be mixed during saccharification, e.g., using jet mixing as described in U.S. Provisîonal Application No. 61/218,832, the fui 1 disclosure of which is incorporated by reference herein.
The addition of surfactants can enhance the rate of saccharification. Examples of surfactants include non-îonic surfactants, such as a Tween® 20 or Tween® 80 polyethylene glycol surfactants, ionic surfactants, or amphoteric surfactants.
It is generally preferred that the concentration of the resulting glucose solution be relatively high, e.g., greater than 40%, or greater than 50, 60, 70, 80, 90 or even greater than 95% by weight. This reduces the volume to be shipped, if saccharification and fermentation are performed at different locations, and also inliibits microbial growth in the solution. However, lower concentrations may be used, in which case it may be désirable to add an antimicrobial additive, e.g., a broad spectrum antibiotic, in a low concentration, e.g., 50 to 150 ppm. Other suitable antibiotics include amphotericin B, ampicillin, chloramphenicol, ciprofloxacin, gentamicin, hygromycin B, kanamycln, neomycin, penicillin, puromycin, streptomycin. Antibiotics will inhibit growth of microorganisms during transport and storage, and can be used at appropriate concentrations, e.g., between 15 and 1000 ppm by weight, e.g,, between 25 and 500 ppm, or between 50 and 150 ppm. If desired, an antibiotic can be included even if the sugar concentration is relatively high.
A relatively high concentration solution can be obtained by 1 imiting the amount of water added to the feedstock with the enzyme. The concentration can be controlled, e.g., by controlling how niuch saccharification takes place. For example, concentration can be
increased by adding more feedstock to the solution. In order to keep the sugar that is being produced in solution, a surfactant can be added, e.g., one of those dîscussed above. Solubility can also be increased by increasing the température of the solution. For example, the solution can be maintained at a température of 40-50°C, 60-80°C, or even higher.
In some embodiments, the feedstock is processed to convert it to a convenîent and concentrated solid material, e.g., in a powdered, granulate or particulate form. The concentrated material can be in a purified, or a raw or crude form. The concentrated form can hâve, for example, a total sugar concentration of between about 90 percent by weight and about 100 percent by weight, e.g., 92, 94, 96 or 98 percent by weight sugar. Such a form can be particularly cost effective to ship, e.g,, to a bioprocessing facility, such as a biofuel manufacturing plant. Such a form can also be advantageous to store and handle, easier to manufacture and becomes both an intermediate and a product, providing an option to the biorefinery as to which products to manufacture.
In some instances, the powdered, granulate or particulate material can also include one or more of the materials, e.g., additives or chemicals, described herein, such as the food-based nutrient or nutrient package, a nitrogen source, e.g., urea, a surfactant, an enzyme, or any microorganism described herein. In some instances, ail materials needed for a bio-process are combined in the powdered, granulate or particulate material. Such a form can be a particularly convenîent form for transporting to a remote bioprocessing facility, such as a remote biofuels manufacturing facility. Such a form can also be advantageous to store and handle.
In some instances, the powdered, granulate or particulate material (with or without added materials, such as additives and chemicals) can be treated by any of the physical treatments described in U,S. Serial No. 12/429,045, incorporated by reference above. For example, îrradiating the powdered, granulate or particulate material can increase îts solubility and can sterilize the material so that a bioprocessing facility can integrate the material into their process directly as may be required for a contemplated intermediate or product.
In certain instances, the powdered, granulate or particulate material (with or without added materials, such as additives and chemicals) can be carried in a structure or 9
a carrier for ease of transport, storage or handling. For example, the structure or carrier can include or incorporate a bag or liner, such as a degradable bag or liner. Such a form can be particularly useful for adding directly to a bioprocess System.
Fermentation
Microorganisms can produce a number of useful intermediates and products by fermenting a low molecular weight sugar produced by saccharifying the treated biomass materials. For example, fermentation or other bioprocesses can produce alcohols, organic acids, hydrocarbons, hydrogen, proteins or mixtures of any of these materials.
Yeast and Zymomonas bacteria, for example, can be used for fermentation or conversion. Other microorganisms are discussed in the Materials section, below. The optimum pH for yeast is from about pH 4 to 5, while the optimum pH for Zymomonas is from about pH 5 to 6. Typical fermentation times are about 24 to 96 hours with températures in the range of 26 °C to 40 °C, however thermophi lie microorganisms prefer higher températures.
In some embodiments, ail or a portion of the fermentation process can be interrupted before the low molecular weight sugar is completely converted to éthanol. The intermediate fermentation products include high concentrations of sugar and carbohydrates. These intermediate fermentation products can be used in préparation of food for human or animal consumption. Additionally or alternatively, the intermediate fermentation products can be ground to a fine particle size in a stainless-steel laboratory mil! to produce a flour-like substance.
Mobile fermentors can be utilized, as described in U.S. Provisional Patent Application Serial 60/832,735, now Published International Application No. WO 2008/011598. Similarly, the saccharification equipment can be mobile. Further, saccharification and/or fermentation may be performed in part or entirely during transit.
Distillation
After fermentation, the resulting fluids can be distilled using, for example, a “beer column” to separate éthanol and other alcohols from the majority of water and residual solids. The vapor exiting the beer column can be, e.g., 35% by weight éthanol and can be fed to a rectification column. A mixture of neariy azeotropic (92.5%) éthanol and water, from the rectification column can be purified to pure (99.5%) éthanol using vapor-phase molecular sieves. The beer column bottoms can be sent to the first effect of a three-effect evaporator. The rectification column reflux condenser can provide heat for this first effect. After the first effect, solids can be separated using a centrifuge and dried in a rotary dryer. A portion (25%) of the centrifuge effluent can be recycled to fermentation and the rest sent to the second and third evaporator effects. Most of the evaporator condensate can be returned to the process as fairly clean condensate with a small portion split off to waste water treatment to prevent build-up of low-boiling compounds.
INTERMEDIATES AND PRODUCTS
The processes and nutrients discussed herein can be used to convert carbohydratecontaining materials, e.g., cellulosic or lignocellulosic materials, to one or more products, such as energy, fuels, foods and materials. Spécifie examples of products include, but are not limited to, hydrogen, alcohols (e.g., monohydric alcohols or dihydric alcohols, such as éthanol, n-propanol or n-butanol), hydrated or hydrous alcohols, e.g., containing greater than 10%, 20%, 30% or even greater than 40% water, sugars, biodiesel, organic acids (e.g., acetic acid and/or lactic acid), hydrocarbons, co-products (e.g., proteins, such as cellulolytic proteins (enzymes) or single cell proteins), and mixtures of any of these in any combination or relative concentration, and optionally in combination with any additives, e.g., fuel additives. Other examples include carboxylic acids, such as acetic acid or butyric acid, salts of a carboxylic acid, a mixture of carboxylic acids and salts of carboxylic acids and esters of carboxylic acids (e.g., methyl, ethyl and n-propyl esters), ketones, aldéhydes, alpha, beta unsaturated acids, such as acrylic acid and olefins, such as ethylene. Other alcohols and alcohot dérivatives include propanol, propylene glycol, l,4butanediol, l,3-propanediol, methyl or ethyl esters of any of these alcohols. Other products include methyl acrylate, methylmethacrylate, lactic acid, propionîc acid, butyric acid, succinic acid, 3-hydroxypropionic acid, a sait of any of the acids and a mixture of any of the acids and respective salts.
Other intermediates and products, including food and pharmaceutical products, are described in U.S. Serial No. 12/417,900, the full disclosure of which is hereby incorporated by reference herein, /«υϊ
MATERIALS
Nutrient Package Ingrédients
As discussed above, preferred nutrient packages contain a food-based nutrient source, a nitrogen source, and in some cases other ingrédients, e.g., phosphates. Suitable food-based nutrient sources include grains and vegetables, including those discussed above and many others. The food-based nutrient source may include mixtures of two or more grains and/or vegetables.
Preferred nutrient packages may include about 2 to 5 % by volume weight of a food-based nutrient source, e.g., 3-4% by volume weight of rice bran meal or 4-5% by volume weight of corn meal, about 3 to 4 g/L of a nitrogen source, e.g., about 3.5 g/L urea, and about 8 to 12 g/L of a non-ionic surfactant, e.g., about 10 g/L Tween® 80 surfactant.
Enzymes for Releasing Nutricnts
As discussed above, it is preferred that the saccharification and/or fermentation mixture further include an enzyme system selected to release nutrîents, e.g., nitrogen, amino acids, and fats, from the food-based nutrient source. For example, the enzyme System may include one or more enzymes selected from the group consisting of amylases, proteases, and mixtures thereof.
In some cases, the enzyme system comprises a protease and an amylase. An example of a suitable protease is FER.MGEN™ acid proteolytic enzyme, commercially available from Genencor®, a division of Danisco. This enzyme is a fungal protease composed of 5-10% Aspergillopepsin 1 in an aqueous solution with glycerol, sodium sulfate, and sodium benzoate. An example of a suitable amylase is STARGEN™ enzyme, commercially available from Genencor®, a division of Danisco. This enzyme is a glucoamylase and alpha-amylase blend, containing Aspergillus kawachi alpha-amylase expressed in Trichoderma reesei and a gluco-amylase from Trichoderma reesei.
In some preferred implémentations, the amylase and protease are each included at a concentration of about 0.5 to 1.5% by weight based on the weight of the food-based nutrient source added, e.g., about 1% by weight each. These are very low concentrations,^ compared to the concentrations that are generally required when the same food-based materials are being used as a feedstock for saccharification and fermentation, rather than as a nutrient source. For example, recommended concentrations of FERMGEN™ enzyme and STARGEN™ enzyme are 26-38% w/w and 20-34% w/w, respectively, when 5 those enzymes are used in the saccharification and fermentation of corn and grains to éthanol.
Whîle it is preferred that a combination of protease and amylase be used, in some cases one or the other may be used alone, and/or other enzymes may be used that are capable of releasing nutrients from the food-based nutrient source.
Biomass Materials
The biomass can be, e.g., a cellulosic or lignocellulosic material. Such materials include paper and paper products (e.g., polycoated paper and Kraft paper), wood, woodrelated materials, e.g., particle board, grasses, rice hulls, bagasse, jute, hemp, flax, 15 bamboo, sisal, abaca, straw, switchgrass, alfalfa, hay, corn cobs, corn stover, coconut hair; and materials high in α-cellulose content, e.g., cotton. Feedstocks can be obtained from vîrgin scrap textile materials, e.g., remnants, post consumer waste, e.g., rags. When paper products are used they can be virgin materials, e.g., scrap vîrgin materials, or they can be post-consumer waste. Aside from virgin raw materials, post-consumer, industrial 20 (e.g., offal), and processing waste (e.g., effluent from paper processing) can also be used as fiber sources. Biomass feedstocks can also be obtained or derived from human (e.g., sewage), animal or plant wastes. Additional cellulosic and lignocellulosic materials hâve been described in U.S. Patent Nos. 6,448,307, 6,258,876, 6,207,729, 5,973,035 and 5,952,105.
In some embodiments, the biomass material includes a carbohydrate that is or includes a material having one or more p-l,4-linkages and having a number average molecular weight between about 3,000 and 50,000. Such a carbohydrate is or includes cellulose, which is derived from (β-glucose) through condensation of β(1,4)-glycosidic bonds. This linkage contrasts itself with that for a( 1,4)-glycosidic bonds présent in starch 30 and other carbohydrates,
Saccliarifying Agents
Suitable enzymes include cellobiases and cellulases capable of degrading biomass.
Suitable cellobiases include a cellobiase from Aspergillus niger sold under the tradename NOVOZYME 188™.
Cellulases are capable of degrading biomass, and may be of fungal or bacterial origin. Suitable enzymes include cellulases from the généra Bacillus, Pseudomonas, Humic ola, Fusarium, Thielavia, Acremonium, Chrysosporium and Trichodenna, and include species of Humicola, Coprinus, Thielavia, Fusarium, Myceliophthora, Acremonium, Cephalosporium, Scytalidium, Pénicillium or Aspergillus (see, e.g., EP 458162), especîally those produced by a strain selected from the species Humicola insolens (reclassified as Scytalidium thermophilum, see, e.g., U.S, Patent No. 4,435,307), Coprin us cinereus, Fusarium oxysporum, Myceliophthora thermophila, Meripilus giganteus, Thielavia terrestris, Acremonium sp., Acremonium persicinum, Acremonium acremonium, Acremonium brachypenlum, Acremonium dichromosporum, Acremonium obclavatum, Acremonium pinkertoniae, Acremonium roseogriseum, Acremonium incoloralum, and Acremonium furatunr, preferably from the species Humicola insolens DSM 1800, Fusarium oxysporum DSM 2672, Myceliophthora thermophila CBS 117.65, Cephalosporium sp. RYM-202, Acremonium sp. CBS 478.94, Acremonium sp. CBS 265.95, Acremonium persicinum CBS 169.65, Acremonium acremonium AHU 9519, Cephalosporium sp. CBS 535.71, Acremonium brachypenium CBS 866.73, Acremonium dichromosporum CBS 683.73, Acremonium obclavatum CBS 311.74, Acremonium pinkertoniae CBS 157.70, Acremonium roseogriseum CBS 134.56, Acremonium incoloralum CBS 146.62, and Acremonium furatitm CBS 299.70H. Cellulolytic enzymes may also be obtained from Chrysosporium, preferably a strain of Chrysosporium lucknowense. Additionally, Trichodenna (particularly Trichodenna viride, Trichodenna reesei, and Trichodenna koningii), alkalophilic Bacillus (see, for example, U.S. Patent No. 3,844,890 and EP 458162), and Streptomyces (see, e.g., EP 458162) may be used.
Enzyme complexes may be utilized, such as those available from Genencor® under the tradename ACCELLERASE®, for example, Accellerase® 1500 enzyme complex. Accellerase® 1500 enzyme complex contains multiple enzyme activities, mainly exoglucanase, endoglucanase (2200-2800 CMC U/g), hemi-cellulase, and betaglucosidase (525-775 pNPG U/g), and has a pH of 4.6 to 5.0. The endoglucanase activity of the enzyme complex is expressed in carboxymethylcellulose activity units (CMC U), while the beta-glucosidase activity is reported in pNP-glucoside activity units (pNPG U). Another suitable enzyme complex is Accellerase® Duet enzyme complex. Accellerase® Duet enzyme complex also contains multiple enzyme activities, mainly exoglucanase, endoglucanase (2400-3000 CMC U/g), hemi-cellulase (including xylanase, > 3600 ABX U/g), and beta-glucosidase (>400 pNPG U/g), and has a pH of 4.3 to 4.6. The endoglucanase activity of the enzyme complex is expressed in carboxymethylcellulose activity units (CMC U), while the beta-glucosidase activity is reported in pNP-glucoside activity units (pNPG U) and Xylanase activity is reported in Acid Birchwood Xylanase Units (ABXU). In some embodiments, a blend of Accellerase® 1500 or Accellerase® Duet enzyme complex with NOVOZYME™ 188 cellobiase is used.
Fermentation Agents
The microorganism(s) used in fermentation can be natural microorganisms and/or engineered microorganisms. For example, the microorganism can be a bacteriuin, e.g., a cellulolytic bacterium, a fungus, e.g., a yeast, a plant or a protïst, e.g., an algae, a protozoa or a fungus-like protist, e.g., a slime mold. When the organisms are compatible, mixtures of organisms can be utilîzed.
Suitable fermenting microorganisms hâve the ability to convert carbohydrates, such as glucose, xylose, arabinose, mannose, galactose, oligosaccharides or polysaccharides into fermentation products. Fermenting microorganisms include strains of the genus Sacchromyces spp. e.g., Sacchromyces cerevisiae (baker’s yeast), Saccharomyces disfaticus, Saccharomyces uvarum·, the genus Kluyveromyces, e.g., species Kluyveromyces marxianus, Kluyveromyces fragilis·, the genus Candide, e.g., Candida pseudotropicalis, and Candida brassicae, Pichia stipilis (a relative of Candida shehatae, the genus Clavispora, e.g., species Clavispora lusitaniae and Clavispora opuntiae, the genus Pachysolen, e.g., species Pachysolen tannophilus, the genus
Bretannomyces, e.g., species Bretannomyces clausenii (Philtppîdîs, G. P., 1996,41«
Cellulose bioconversion technology, in Handbook on Bioethanol: Production and Utilization, Wyman, C.E., ed., Taylor & Francis, Washington, DC, 179-212).
Commercially available yeasts include, for example, Red Star®/Lesaffre Ethanol Red (available from Red Star/Lesaffre, USA), FALI® (available from Fleischmann’s 5 Yeast, a division of Burns Philip Food Inc., USA), SUPERSTART® (available from Alltech, now Lalemand), GERT STRAND® (available from Gert Strand AB, Sweden) and FERMOL® (available from DSM Specialties).
Bacteria may also be used în fermentation, e.g., Zymomonas mobilis and Clostridium thermocellum (Philippidis, 1996, supra).
I6
EXAMPLE 1
A feedstock (referred to in Example 2 as “XP”) was produced using the following procedure.
A 1500 pound skid of vîrgîn bleached white Kraft board having a bulk density of 30 lb/ft3 was obtained from International Paper. The material was eut into pièces 8 1/4 inches by 11 inches using a guillotine cutter and fed to a Munson rotary knife cutter, Model SC30. The discharge screen had 1/8 inch openings. The gap between the rotary and fixed blades was set to approximately 0.020 inch. The rotary knife cutter sheared the eut pièces, releasing a fibrous material.
EXAMPLE 2
A medium was prepared by heating4 L deionized water to 50°C and mixing while adding 4% by volume weight rice bran meal, 3.405 g/L Urea, and 10 g/L Tween 80® surfactant. Next, three enzymes were added, in the following amounts:
ACCELLERASE® enzyme 0.25 mL/Ι gram XP feedstock
STARGEN™ enzyme 1% by bran weight
FERMGEN™enzyme 1% by bran weight
The ACCELLERASE was added at 0 hours, and the other two enzymes were added at 3 hours.
The XP feedstock was then added in incréments, the amount and frequency of which was determined by consistency of the mixture and the mixing speed. The material was added over a 27 hour period, in incréments of incréments of 150-275 grams. The total amount added was 1096 grams.
Température fluctuations were monitored during mixing, to prevent heating over 55°C, which will tend to dénaturé the enzymes.
Throughout the process, mixing was performed at 250 rpm, using an 1KA ROTOTRON® mixer. The température was maintained at approximately 50°C, and the pH was about 3.7.
After the last incrément of feedstock was added, at 27 hours, the batch was allowed to continue to saccharify to a total of 70 hours from the beginning of the process. At this point the glucose concentration was 90 g/L./ï^
The saccharified mixture was transferred to a BioFlow® 115 bioreactor for fermentation. The parameters were then changed, and the mixture inoculated, to initiate fermentation. Mixing was performed with a Rushton impeller at 250 rpm, with air provided at 0.025 vvm, and the pH was adjusted to about 5.0. The température was reduced to about 30°C. pH control was provided using l Μ H3PO4 (acid control) and IM NaOH (base control). Inoculation was based on the following ratio: l mg of Superstart™ yeast to l g of glucose. The yeast was added directly to the mixture as a freeze dried inoculum.
After 20 hours of fermentation under these conditions, the concentration of éthanol tn the mixture was about 50 g/L, and the concentration of glucose had dropped to about 0 g/L. This was only slightly lower than éthanol concentrations obtaîned by fermenting 150 g/L glucose and 40 g/L xylose in a medium containing 1.7 g/L YNB, 2.27 g/L Urea and 6.6 g/L soy peptones under the same processing conditions.
OTHER EMBODIMENTS
A number of embodiments of the invention hâve been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the invention.
For example, while it is preferred for cost reasons that the nutrient packages disclosed herein include only food-based (and in particular vegetable and/or grain) nutrient sources, if desired the nutrient package can include mixtures of these nutrient sources with other non-food based or non-grain/non-vegetable food sources.
Accordingly, other embodiments are within
Claims (25)
- WHAT IS CLA1MED IS:1. A method comprising combining a feedstock, comprising a cellulosic or lignocellulosic material and/or a saccharified cellulosic or lignocellulosic material, with a microorganism and a foodbased nutrient source to form a mixture, the microorganism utilizing the feedstock to produce a product or intermediate.
- 2. The method of claim l wherein the food-based nutrient source is selected from the group consisting of grains, vegetables, residues of grains, residues of vegetables, residues of méat products, and mixtures thereof.
- 3. The method of claim l or 2 wherein the product comprises a fuel selected from the group consisting of hydrogen, alcohols, organic acids, hydrocarbons, and mixtures thereof.
- 4. The method of claim l, 2 or 3 wherein utilizing comprises fermentation.
- 5. The method of claim 4 wherein the microorganism comprises a yeast.
- 6. The method of claim 4 wherein fermentation is conducted at a pH of about 4.8 to 5.2.
- 7. The method of any one of the above claims wherein utilizing comprises saccharification.
- 8. The method of claim 7 wherein the microorganism comprises an enzyme.
- 9. The method of claim 8 wherein the enzyme comprises a hemicellulase or a cellulase.ftiL·-/
- 10. The method of claim 7 wherein saccharification is conducted at a pH of about 3.8 to 4.2.
- 11. The method of any one of the above claims wherein the mixture further comprises a nitrogen source.
- 12. The method of claim 11 wherein the nitrogen source is selected from the group consisting of urea, ammonia, ammonium sulfate, and mixtures thereof.
- 13. The method of claim 2 wherein the food-based nutrient source is selected from the group consisting of wheat, oats, barley, soybeans, peas, legumes, potatoes, corn, rice bran, corn meal, wheat bran, and mixtures thereof.
- 14. The method of any one of the above claims wherein the mixture further comprises an enzyme System selected to release nutrients from the food-based nutrient source.
- 15. The method of claim 14 wherein the enzyme System comprises one or more enzymes selected from the group consisting of amylases, proteases, and mixtures thereof.
- 16. The method of claim 14 wherein the enzyme System comprises a protease and an amylase.
- 17. The method of claim I6 wherein the enzyme System further comprises a hemicellulase or a cellulase.
- 18. The method of any one of the above claims wherein the mixture further comprises a medium.
- 19. The method of claim 18 wherein the concentration of the food-based nutrient source in the medium is from about O.l to I0 g/L./iwy
- 20. The method of claim 3, wherein the alcohol is selected from the group consisting of methanol, éthanol, propanol, isopropanol, n-butanol, ethylene glycol, propylene glycol, l,4-butane diol, glycerin, and mixtures thereof.
- 21. The method of claim 3, wherein the organic acid is selected from the group consisting of formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic, palmitic acid, stearic acid, oxalîc acid, malonic acid, succinic acid, glutaric acid, oleic acid, linoleic acid, glycolic acid, lactic acid, γ-hydroxybutyric acid and mixtures thereof.
- 22. The method of claim 3, wherein the hydrocarbon is selected from the group consisting of methane, ethane, propane, isobutene, pentane, n-hexane, and mixtures thereof.
- 24. The method of any one of the above daims wherein the cellulosic or lignocellulosic material has been treated to reduce its recalcitrance.
- 25. The method of claim 24 wherein the cellulosic or lignocellulosic material has been treated with radiation.o C(.
- 26. The method of claim 25 wherein the radiation comprises an électron beam.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US61/365,493 | 2010-07-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
OA16426A true OA16426A (en) | 2015-10-15 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9359620B2 (en) | Processing biomass | |
Zabed et al. | Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches | |
AU2016235003B2 (en) | Processing of Biomass Materials | |
Bothast et al. | Ethanol production from agricultural biomass substrates | |
US20140349360A1 (en) | Methods and system for liquefaction, hydrolysis and fermentation of agricultural feedstocks | |
Ramamoorthy et al. | An Insight into the Applications of Fungi in Ethanol Biorefinery Operations | |
AU2015201819B2 (en) | Processing Biomass | |
OA16426A (en) | Processing biomass. | |
WO2010099406A9 (en) | Processes for plant polysaccharide conversion | |
NZ716079B2 (en) | Processing of Biomass Materials |