OA16295A - Indolizine derivatives, process for the preparation thereof and therapeutic use thereof. - Google Patents
Indolizine derivatives, process for the preparation thereof and therapeutic use thereof.Info
- Publication number
- OA16295A OA16295A OA1201300002 OA16295A OA 16295 A OA16295 A OA 16295A OA 1201300002 OA1201300002 OA 1201300002 OA 16295 A OA16295 A OA 16295A
- Authority
- OA
- OAPI
- Prior art keywords
- formula
- alk
- compound
- group
- alkyl
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 18
- 238000002360 preparation method Methods 0.000 title abstract description 7
- 230000001225 therapeutic Effects 0.000 title abstract description 4
- 125000003406 indolizinyl group Chemical class C=1(C=CN2C=CC=CC12)* 0.000 title 1
- 150000001875 compounds Chemical class 0.000 claims abstract description 276
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims abstract description 49
- 125000004432 carbon atoms Chemical group C* 0.000 claims abstract description 38
- 230000000875 corresponding Effects 0.000 claims abstract description 20
- -1 -COORS Chemical group 0.000 claims description 70
- 125000000217 alkyl group Chemical group 0.000 claims description 69
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 claims description 62
- 125000004435 hydrogen atoms Chemical group [H]* 0.000 claims description 53
- 239000000203 mixture Substances 0.000 claims description 53
- VEXZGXHMUGYJMC-UHFFFAOYSA-N HCl Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 claims description 36
- 125000001072 heteroaryl group Chemical group 0.000 claims description 31
- 239000011780 sodium chloride Substances 0.000 claims description 29
- 125000001188 haloalkyl group Chemical group 0.000 claims description 26
- 201000010099 disease Diseases 0.000 claims description 18
- 230000002265 prevention Effects 0.000 claims description 17
- 125000005843 halogen group Chemical group 0.000 claims description 16
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Natural products CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 15
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 14
- 125000005418 aryl aryl group Chemical group 0.000 claims description 13
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 13
- 201000011510 cancer Diseases 0.000 claims description 12
- 238000004519 manufacturing process Methods 0.000 claims description 12
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 12
- UCPYLLCMEDAXFR-UHFFFAOYSA-N Triphosgene Chemical compound ClC(Cl)(Cl)OC(=O)OC(Cl)(Cl)Cl UCPYLLCMEDAXFR-UHFFFAOYSA-N 0.000 claims description 11
- 125000003342 alkenyl group Chemical group 0.000 claims description 11
- 125000002947 alkylene group Chemical group 0.000 claims description 11
- 230000027455 binding Effects 0.000 claims description 11
- 238000006482 condensation reaction Methods 0.000 claims description 11
- PCLIMKBDDGJMGD-UHFFFAOYSA-N N-Bromosuccinimide Chemical compound BrN1C(=O)CCC1=O PCLIMKBDDGJMGD-UHFFFAOYSA-N 0.000 claims description 10
- 238000005804 alkylation reaction Methods 0.000 claims description 10
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 10
- 208000008919 Achondroplasia Diseases 0.000 claims description 9
- 208000002780 Macular Degeneration Diseases 0.000 claims description 9
- 206010039073 Rheumatoid arthritis Diseases 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- 125000005466 alkylenyl group Chemical group 0.000 claims description 8
- 201000008275 breast carcinoma Diseases 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000001684 chronic Effects 0.000 claims description 8
- 239000003446 ligand Substances 0.000 claims description 8
- 201000003896 thanatophoric dysplasia Diseases 0.000 claims description 8
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 8
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 8
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 claims description 7
- 206010027476 Metastasis Diseases 0.000 claims description 7
- 239000004480 active ingredient Substances 0.000 claims description 7
- 125000004122 cyclic group Chemical group 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- 125000005842 heteroatoms Chemical group 0.000 claims description 7
- 238000006460 hydrolysis reaction Methods 0.000 claims description 7
- 201000001441 melanoma Diseases 0.000 claims description 7
- 230000001681 protective Effects 0.000 claims description 7
- 230000002792 vascular Effects 0.000 claims description 7
- 206010064930 Age-related macular degeneration Diseases 0.000 claims description 6
- 206010021972 Inflammatory bowel disease Diseases 0.000 claims description 6
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 6
- 230000000051 modifying Effects 0.000 claims description 6
- 229910052763 palladium Inorganic materials 0.000 claims description 6
- 200000000008 restenosis Diseases 0.000 claims description 6
- 125000000876 trifluoromethoxy group Chemical group FC(F)(F)O* 0.000 claims description 6
- 230000000989 vascularization Effects 0.000 claims description 6
- 206010003210 Arteriosclerosis Diseases 0.000 claims description 5
- WPYMKLBDIGXBTP-UHFFFAOYSA-N Benzoic acid Natural products OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 5
- 206010006187 Breast cancer Diseases 0.000 claims description 5
- 206010009944 Colon cancer Diseases 0.000 claims description 5
- 206010012601 Diabetes mellitus Diseases 0.000 claims description 5
- 206010017758 Gastric cancer Diseases 0.000 claims description 5
- 206010018338 Glioma Diseases 0.000 claims description 5
- 206010024324 Leukaemias Diseases 0.000 claims description 5
- 206010058467 Lung neoplasm malignant Diseases 0.000 claims description 5
- 206010060862 Prostate cancer Diseases 0.000 claims description 5
- 238000006069 Suzuki reaction reaction Methods 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 238000002399 angioplasty Methods 0.000 claims description 5
- 201000001320 atherosclerosis Diseases 0.000 claims description 5
- 239000003054 catalyst Substances 0.000 claims description 5
- 238000010511 deprotection reaction Methods 0.000 claims description 5
- 238000005886 esterification reaction Methods 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 200000000018 inflammatory disease Diseases 0.000 claims description 5
- 125000004430 oxygen atoms Chemical group O* 0.000 claims description 5
- 239000008194 pharmaceutical composition Substances 0.000 claims description 5
- 125000004076 pyridyl group Chemical group 0.000 claims description 5
- 238000001959 radiotherapy Methods 0.000 claims description 5
- SKDHHIUENRGTHK-UHFFFAOYSA-N 4-nitrobenzoyl chloride Chemical compound [O-][N+](=O)C1=CC=C(C(Cl)=O)C=C1 SKDHHIUENRGTHK-UHFFFAOYSA-N 0.000 claims description 4
- 206010007572 Cardiac hypertrophy Diseases 0.000 claims description 4
- 206010012689 Diabetic retinopathy Diseases 0.000 claims description 4
- 210000004185 Liver Anatomy 0.000 claims description 4
- 210000004072 Lung Anatomy 0.000 claims description 4
- 206010025323 Lymphomas Diseases 0.000 claims description 4
- 208000004296 Neuralgia Diseases 0.000 claims description 4
- 208000008589 Obesity Diseases 0.000 claims description 4
- 208000008443 Pancreatic Carcinoma Diseases 0.000 claims description 4
- IQPQWNKOIGAROB-UHFFFAOYSA-N [N-]=C=O Chemical compound [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 claims description 4
- 239000004202 carbamide Substances 0.000 claims description 4
- 201000009030 carcinoma Diseases 0.000 claims description 4
- 125000006165 cyclic alkyl group Chemical group 0.000 claims description 4
- 150000002148 esters Chemical class 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 4
- 229910052739 hydrogen Inorganic materials 0.000 claims description 4
- 201000010072 hypochondroplasia Diseases 0.000 claims description 4
- 238000002513 implantation Methods 0.000 claims description 4
- 235000020824 obesity Nutrition 0.000 claims description 4
- 238000007363 ring formation reaction Methods 0.000 claims description 4
- 201000011549 stomach cancer Diseases 0.000 claims description 4
- RWLWREPZATZGBZ-UHFFFAOYSA-N 3-[2-methyl-3-(2-methyl-4-oxo-1H-quinazoline-6-carbonyl)indolizin-1-yl]benzoic acid Chemical compound CC1=C(C(=O)C=2C=C3C(=O)NC(C)=NC3=CC=2)N2C=CC=CC2=C1C1=CC=CC(C(O)=O)=C1 RWLWREPZATZGBZ-UHFFFAOYSA-N 0.000 claims description 3
- 125000006163 5-membered heteroaryl group Chemical group 0.000 claims description 3
- 239000005711 Benzoic acid Substances 0.000 claims description 3
- 208000008787 Cardiovascular Disease Diseases 0.000 claims description 3
- 206010016654 Fibrosis Diseases 0.000 claims description 3
- 210000003734 Kidney Anatomy 0.000 claims description 3
- 206010030155 Oesophageal carcinoma Diseases 0.000 claims description 3
- 206010038389 Renal cancer Diseases 0.000 claims description 3
- 230000001093 anti-cancer Effects 0.000 claims description 3
- 125000003118 aryl group Chemical group 0.000 claims description 3
- 235000010233 benzoic acid Nutrition 0.000 claims description 3
- 201000011539 clear cell acanthoma Diseases 0.000 claims description 3
- 201000003963 colon carcinoma Diseases 0.000 claims description 3
- 125000004538 indolizin-3-yl group Chemical group C=1C=C(N2C=CC=CC12)* 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 201000005296 lung carcinoma Diseases 0.000 claims description 3
- 201000008482 osteoarthritis Diseases 0.000 claims description 3
- 201000001514 prostate carcinoma Diseases 0.000 claims description 3
- 201000004681 psoriasis Diseases 0.000 claims description 3
- 201000010174 renal carcinoma Diseases 0.000 claims description 3
- VQCVRBIZLMBCCK-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-2-methyl-4-oxo-1H-quinoline-3-carboxylic acid Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(NC(C)=C(C(O)=O)C2=O)C2=C1 VQCVRBIZLMBCCK-UHFFFAOYSA-N 0.000 claims description 2
- 206010043554 Thrombocytopenia Diseases 0.000 claims description 2
- GTLDTDOJJJZVBW-UHFFFAOYSA-N Zinc cyanide Chemical compound [Zn+2].N#[C-].N#[C-] GTLDTDOJJJZVBW-UHFFFAOYSA-N 0.000 claims description 2
- 238000005903 acid hydrolysis reaction Methods 0.000 claims description 2
- 238000007333 cyanation reaction Methods 0.000 claims description 2
- 150000004820 halides Chemical class 0.000 claims description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 2
- 201000007270 liver cancer Diseases 0.000 claims description 2
- 238000007127 saponification reaction Methods 0.000 claims description 2
- 208000002551 Irritable Bowel Syndrome Diseases 0.000 claims 1
- 208000004403 Prostatic Hyperplasia Diseases 0.000 claims 1
- 230000005494 condensation Effects 0.000 claims 1
- 238000009833 condensation Methods 0.000 claims 1
- 229920001577 copolymer Chemical group 0.000 claims 1
- 150000002513 isocyanates Chemical class 0.000 claims 1
- YMWUJEATGCHHMB-UHFFFAOYSA-N methylene dichloride Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 108
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 97
- OKKJLVBELUTLKV-UHFFFAOYSA-N methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 84
- 239000012429 reaction media Substances 0.000 description 75
- 239000007787 solid Substances 0.000 description 71
- PMZURENOXWZQFD-UHFFFAOYSA-L na2so4 Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 64
- 230000002829 reduced Effects 0.000 description 64
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 57
- 239000007864 aqueous solution Substances 0.000 description 54
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 51
- 210000004027 cells Anatomy 0.000 description 50
- XEKOWRVHYACXOJ-UHFFFAOYSA-N acetic acid ethyl ester Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 48
- 238000002844 melting Methods 0.000 description 39
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 38
- 230000001575 pathological Effects 0.000 description 36
- 230000003042 antagnostic Effects 0.000 description 34
- 239000005557 antagonist Substances 0.000 description 34
- 229910052938 sodium sulfate Inorganic materials 0.000 description 32
- 235000011152 sodium sulphate Nutrition 0.000 description 32
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 31
- 238000010828 elution Methods 0.000 description 31
- 239000012074 organic phase Substances 0.000 description 31
- 238000010898 silica gel chromatography Methods 0.000 description 30
- 230000033115 angiogenesis Effects 0.000 description 29
- 239000012298 atmosphere Substances 0.000 description 28
- 230000000694 effects Effects 0.000 description 25
- 239000002244 precipitate Substances 0.000 description 25
- 102000018233 Fibroblast growth factor family Human genes 0.000 description 24
- 108050007372 Fibroblast growth factor family Proteins 0.000 description 24
- ZMANZCXQSJIPKH-UHFFFAOYSA-N triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 24
- 108090000379 Fibroblast Growth Factor 2 Proteins 0.000 description 22
- RTZKZFJDLAIYFH-UHFFFAOYSA-N diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 22
- 239000011734 sodium Substances 0.000 description 20
- 102000003974 Fibroblast Growth Factor 2 Human genes 0.000 description 19
- 230000035755 proliferation Effects 0.000 description 18
- 102000005962 receptors Human genes 0.000 description 18
- 108020003175 receptors Proteins 0.000 description 18
- 102000027757 FGF receptors Human genes 0.000 description 17
- 108091008101 FGF receptors Proteins 0.000 description 17
- 238000002560 therapeutic procedure Methods 0.000 description 17
- UIIMBOGNXHQVGW-UHFFFAOYSA-M NaHCO3 Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 16
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 15
- 238000005160 1H NMR spectroscopy Methods 0.000 description 15
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N DMSO-d6 Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 15
- 210000001519 tissues Anatomy 0.000 description 15
- 239000008346 aqueous phase Substances 0.000 description 14
- 238000003756 stirring Methods 0.000 description 14
- 238000000338 in vitro Methods 0.000 description 13
- 230000002401 inhibitory effect Effects 0.000 description 13
- 239000002464 receptor antagonist Substances 0.000 description 13
- 239000002253 acid Substances 0.000 description 12
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- 230000002757 inflammatory Effects 0.000 description 11
- 159000000000 sodium salts Chemical class 0.000 description 11
- 210000002889 Endothelial Cells Anatomy 0.000 description 10
- 241000282414 Homo sapiens Species 0.000 description 10
- 238000007792 addition Methods 0.000 description 10
- 230000004663 cell proliferation Effects 0.000 description 10
- ZAFNJMIOTHYJRJ-UHFFFAOYSA-N diisopropyl ether Chemical compound CC(C)OC(C)C ZAFNJMIOTHYJRJ-UHFFFAOYSA-N 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000002609 media Substances 0.000 description 9
- 230000037361 pathway Effects 0.000 description 9
- 238000002512 chemotherapy Methods 0.000 description 8
- 239000003102 growth factor Substances 0.000 description 8
- NFHFRUOZVGFOOS-UHFFFAOYSA-N palladium;triphenylphosphane Chemical compound [Pd].C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1.C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 NFHFRUOZVGFOOS-UHFFFAOYSA-N 0.000 description 8
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 8
- 235000017557 sodium bicarbonate Nutrition 0.000 description 8
- WYURNTSHIVDZCO-UHFFFAOYSA-N tetrahydrofuran Substances C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 8
- 101710003421 FGF Proteins 0.000 description 7
- 206010073071 Hepatocellular carcinoma Diseases 0.000 description 7
- 125000004458 methylaminocarbonyl group Chemical group [H]N(C(*)=O)C([H])([H])[H] 0.000 description 7
- 230000003076 paracrine Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 239000012047 saturated solution Substances 0.000 description 7
- 229960000583 Acetic Acid Drugs 0.000 description 6
- FJDQFPXHSGXQBY-UHFFFAOYSA-L Caesium carbonate Chemical compound [Cs+].[Cs+].[O-]C([O-])=O FJDQFPXHSGXQBY-UHFFFAOYSA-L 0.000 description 6
- INQOMBQAUSQDDS-UHFFFAOYSA-N Methyl iodide Chemical compound IC INQOMBQAUSQDDS-UHFFFAOYSA-N 0.000 description 6
- JGFZNNIVVJXRND-UHFFFAOYSA-N N,N-Diisopropylethylamine Chemical compound CCN(C(C)C)C(C)C JGFZNNIVVJXRND-UHFFFAOYSA-N 0.000 description 6
- 206010029113 Neovascularisation Diseases 0.000 description 6
- 208000002154 Non-Small-Cell Lung Carcinoma Diseases 0.000 description 6
- 210000003491 Skin Anatomy 0.000 description 6
- QTBSBXVTEAMEQO-UHFFFAOYSA-M acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 6
- 230000003305 autocrine Effects 0.000 description 6
- WPYMKLBDIGXBTP-UHFFFAOYSA-M benzoate Chemical compound [O-]C(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-M 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 238000005755 formation reaction Methods 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- 229910052757 nitrogen Inorganic materials 0.000 description 6
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 6
- 239000012453 solvate Substances 0.000 description 6
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 5
- GQHTUMJGOHRCHB-UHFFFAOYSA-N DBU Substances C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 5
- 102100007405 FGF7 Human genes 0.000 description 5
- 101700033323 FGF7 Proteins 0.000 description 5
- 206010020880 Hypertrophy Diseases 0.000 description 5
- 241001465754 Metazoa Species 0.000 description 5
- 241000700159 Rattus Species 0.000 description 5
- 150000007513 acids Chemical class 0.000 description 5
- 239000002870 angiogenesis inducing agent Substances 0.000 description 5
- 230000002491 angiogenic Effects 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 230000014399 negative regulation of angiogenesis Effects 0.000 description 5
- 210000000056 organs Anatomy 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- BGWHLVRBXWEQTO-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-2-methyl-1H-quinazolin-4-one Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(N=C(C)NC2=O)C2=C1 BGWHLVRBXWEQTO-UHFFFAOYSA-N 0.000 description 4
- 108010035532 Collagen Proteins 0.000 description 4
- 102000008186 Collagen Human genes 0.000 description 4
- 206010061289 Metastatic neoplasm Diseases 0.000 description 4
- 108010061543 Neutralizing Antibodies Proteins 0.000 description 4
- 208000006641 Skin Disease Diseases 0.000 description 4
- WFDIJRYMOXRFFG-UHFFFAOYSA-N acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 4
- DGQLVPJVXFOQEV-JNVSTXMASA-N carminic acid Chemical compound OC1=C2C(=O)C=3C(C)=C(C(O)=O)C(O)=CC=3C(=O)C2=C(O)C(O)=C1[C@@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O DGQLVPJVXFOQEV-JNVSTXMASA-N 0.000 description 4
- 230000001413 cellular Effects 0.000 description 4
- 229920001436 collagen Polymers 0.000 description 4
- 229960005188 collagen Drugs 0.000 description 4
- 239000000975 dye Substances 0.000 description 4
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 4
- 150000002478 indolizines Chemical class 0.000 description 4
- 239000000543 intermediate Substances 0.000 description 4
- 230000001394 metastastic Effects 0.000 description 4
- FNOVTGGTFWOHLE-UHFFFAOYSA-N methyl 2-amino-5-(1-methoxy-2-methylindolizine-3-carbonyl)benzoate Chemical compound C1=C(N)C(C(=O)OC)=CC(C(=O)C=2N3C=CC=CC3=C(OC)C=2C)=C1 FNOVTGGTFWOHLE-UHFFFAOYSA-N 0.000 description 4
- NQMRYBIKMRVZLB-UHFFFAOYSA-N methylamine hydrochloride Chemical compound [Cl-].[NH3+]C NQMRYBIKMRVZLB-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000012299 nitrogen atmosphere Substances 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000004083 survival Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- DKGAVHZHDRPRBM-UHFFFAOYSA-N t-BuOH Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 4
- 210000004509 vascular smooth muscle cell Anatomy 0.000 description 4
- 239000003643 water by type Substances 0.000 description 4
- JBIKRMBOZUEHPX-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-3-[(3-methyl-1,2,4-oxadiazol-5-yl)methyl]-1H-quinazoline-2,4-dione Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C(C=C1C2=O)=CC=C1NC(=O)N2CC1=NC(C)=NO1 JBIKRMBOZUEHPX-UHFFFAOYSA-N 0.000 description 3
- 208000006179 Aortic Coarctation Diseases 0.000 description 3
- 210000001185 Bone Marrow Anatomy 0.000 description 3
- 101700008564 CHIC2 Proteins 0.000 description 3
- 210000001736 Capillaries Anatomy 0.000 description 3
- 206010009807 Coarctation of the aorta Diseases 0.000 description 3
- 102000012422 Collagen Type I Human genes 0.000 description 3
- 108010022452 Collagen Type I Proteins 0.000 description 3
- 210000002744 Extracellular Matrix Anatomy 0.000 description 3
- 102100000360 FGF13 Human genes 0.000 description 3
- YSFTYXKQUONNFY-NQXPEFQPSA-N FGF2 Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](C)NC(=O)CNC(=O)[C@H](CO)NC(=O)CNC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H]1NCCC1)C1=CC=CC=C1 YSFTYXKQUONNFY-NQXPEFQPSA-N 0.000 description 3
- 102100018000 FGFR2 Human genes 0.000 description 3
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 3
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 3
- 206010018691 Granuloma Diseases 0.000 description 3
- 206010025650 Malignant melanoma Diseases 0.000 description 3
- 241000699666 Mus <mouse, genus> Species 0.000 description 3
- 210000004413 Myocytes, Cardiac Anatomy 0.000 description 3
- 206010061309 Neoplasm progression Diseases 0.000 description 3
- 210000002536 Stromal Cells Anatomy 0.000 description 3
- 210000003462 Veins Anatomy 0.000 description 3
- UQYZFNUUOSSNKT-UHFFFAOYSA-N [benzotriazol-1-yloxy(dimethylamino)methylidene]-dimethylazanium;hexafluorophosphate Chemical compound F[P-](F)(F)(F)(F)F.C1=CC=C2N(OC(N(C)C)=[N+](C)C)N=NC2=C1 UQYZFNUUOSSNKT-UHFFFAOYSA-N 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 230000001772 anti-angiogenic Effects 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 229910000024 caesium carbonate Inorganic materials 0.000 description 3
- 210000002317 cardiac myocyte Anatomy 0.000 description 3
- 230000002354 daily Effects 0.000 description 3
- 230000001419 dependent Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 210000002919 epithelial cells Anatomy 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 210000002950 fibroblast Anatomy 0.000 description 3
- 238000003304 gavage Methods 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 239000012362 glacial acetic acid Substances 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 230000003902 lesions Effects 0.000 description 3
- 108010082117 matrigel Proteins 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000002018 overexpression Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N oxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 3
- 230000000144 pharmacologic effect Effects 0.000 description 3
- 229920001690 polydopamine Polymers 0.000 description 3
- 239000001184 potassium carbonate Substances 0.000 description 3
- 229910000027 potassium carbonate Inorganic materials 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- 230000001023 pro-angiogenic Effects 0.000 description 3
- BZKBCQXYZZXSCO-UHFFFAOYSA-N sodium hydride Chemical compound [H-].[Na+] BZKBCQXYZZXSCO-UHFFFAOYSA-N 0.000 description 3
- 230000004936 stimulating Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 230000002194 synthesizing Effects 0.000 description 3
- 230000000699 topical Effects 0.000 description 3
- IERBVBGUKBHALB-UHFFFAOYSA-K tripotassium;phosphate;dihydrate Chemical compound O.O.[K+].[K+].[K+].[O-]P([O-])([O-])=O IERBVBGUKBHALB-UHFFFAOYSA-K 0.000 description 3
- 201000011528 vascular disease Diseases 0.000 description 3
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2R,3R,4S,5R,6S)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2S,3R,4S,5R,6R)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2R,3R,4S,5R,6R)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 2
- ALTLCJHSJMGSLT-UHFFFAOYSA-N (3-methoxycarbonylphenyl)boronic acid Chemical compound COC(=O)C1=CC=CC(B(O)O)=C1 ALTLCJHSJMGSLT-UHFFFAOYSA-N 0.000 description 2
- ORHMBWYDQKDSFX-UHFFFAOYSA-N (4-aminophenyl)-(1-methoxy-2-methylindolizin-3-yl)methanone Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(N)C=C1 ORHMBWYDQKDSFX-UHFFFAOYSA-N 0.000 description 2
- DEEMRPLXKCJOLE-UHFFFAOYSA-N (4-aminophenyl)-(2-methylindolizin-3-yl)methanone Chemical compound CC=1C=C2C=CC=CN2C=1C(=O)C1=CC=C(N)C=C1 DEEMRPLXKCJOLE-UHFFFAOYSA-N 0.000 description 2
- VOILBIIZCFNUOE-UHFFFAOYSA-N (4-nitrophenyl)methanone Chemical compound [O-][N+](=O)C1=CC=C([C]=O)C=C1 VOILBIIZCFNUOE-UHFFFAOYSA-N 0.000 description 2
- DTYLXDLAOLOTKT-UHFFFAOYSA-N 1,4-dihydroquinoline-3-carboxylic acid Chemical compound C1=CC=C2CC(C(=O)O)=CNC2=C1 DTYLXDLAOLOTKT-UHFFFAOYSA-N 0.000 description 2
- CNJOFWXKUJPBPX-UHFFFAOYSA-N 2-[6-(1-methoxy-2-phenylindolizine-3-carbonyl)-2,4-dioxo-1H-quinazolin-3-yl]acetic acid Chemical compound C=1C=C2NC(=O)N(CC(O)=O)C(=O)C2=CC=1C(=O)C=1N2C=CC=CC2=C(OC)C=1C1=CC=CC=C1 CNJOFWXKUJPBPX-UHFFFAOYSA-N 0.000 description 2
- NFDVFOMTJNHWRA-UHFFFAOYSA-N 2-amino-5-(1-methoxyindolizine-3-carbonyl)benzoic acid Chemical compound N12C=CC=CC2=C(OC)C=C1C(=O)C1=CC=C(N)C(C(O)=O)=C1 NFDVFOMTJNHWRA-UHFFFAOYSA-N 0.000 description 2
- YAQLSKVCTLCIIE-UHFFFAOYSA-M 2-bromobutanoate Chemical compound CCC(Br)C([O-])=O YAQLSKVCTLCIIE-UHFFFAOYSA-M 0.000 description 2
- ZJLZRXVJFOXTCX-UHFFFAOYSA-N 3-hydroxy-6-(1-methoxy-2-methylindolizine-3-carbonyl)-1H-quinazoline-2,4-dione Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(NC(=O)N(O)C2=O)C2=C1 ZJLZRXVJFOXTCX-UHFFFAOYSA-N 0.000 description 2
- WICZLYJDENBSSK-UHFFFAOYSA-N 6-(1-bromo-2-methylindolizine-3-carbonyl)-2-methyl-1H-quinazolin-4-one Chemical compound N1=C(C)NC(=O)C2=CC(C(=O)C=3N4C=CC=CC4=C(Br)C=3C)=CC=C21 WICZLYJDENBSSK-UHFFFAOYSA-N 0.000 description 2
- XGDSEXGIFSXMQK-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-1-prop-2-enyl-3,1-benzoxazine-2,4-dione Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(N(CC=C)C(=O)OC2=O)C2=C1 XGDSEXGIFSXMQK-UHFFFAOYSA-N 0.000 description 2
- WZPGRHSDKVVHHA-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-4-oxo-1H-quinoline-3-carboxylic acid Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(NC=C(C(O)=O)C2=O)C2=C1 WZPGRHSDKVVHHA-UHFFFAOYSA-N 0.000 description 2
- JDDAZRDZLHOCPB-UHFFFAOYSA-N 6-[1-(2-methoxyethoxy)-2-methylindolizine-3-carbonyl]-3-propyl-1H-quinazoline-2,4-dione Chemical compound C1=CC=CN2C(C(=O)C3=CC=C4NC(=O)N(C(C4=C3)=O)CCC)=C(C)C(OCCOC)=C21 JDDAZRDZLHOCPB-UHFFFAOYSA-N 0.000 description 2
- 206010053552 Allodynia Diseases 0.000 description 2
- 206010059512 Apoptosis Diseases 0.000 description 2
- 108060000885 BCL2 Proteins 0.000 description 2
- 102100013894 BCL2 Human genes 0.000 description 2
- 101710032374 BCL2L1 Proteins 0.000 description 2
- 210000000481 Breast Anatomy 0.000 description 2
- 206010008958 Chronic lymphocytic leukaemia Diseases 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 206010011401 Crohn's disease Diseases 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- USIUVYZYUHIAEV-UHFFFAOYSA-N Diphenyl ether Chemical compound C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 2
- 210000002615 Epidermis Anatomy 0.000 description 2
- 101700054771 GCA Proteins 0.000 description 2
- XGALLCVXEZPNRQ-UHFFFAOYSA-N Gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 2
- 206010073069 Hepatic cancer Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 206010020718 Hyperplasia Diseases 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 2
- 101700061402 MTRX Proteins 0.000 description 2
- 206010027458 Metastases to lung Diseases 0.000 description 2
- 210000002445 Nipples Anatomy 0.000 description 2
- 208000002193 Pain Diseases 0.000 description 2
- 229960001412 Pentobarbital Drugs 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N Pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- WGYKZJWCGVVSQN-UHFFFAOYSA-N Propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 239000007759 RPMI Media 1640 Substances 0.000 description 2
- 101710017884 Segment-8 Proteins 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M Sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- BPICBUSOMSTKRF-UHFFFAOYSA-N Xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 230000011759 adipose tissue development Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000000240 adjuvant Effects 0.000 description 2
- 230000001058 adult Effects 0.000 description 2
- 230000002424 anti-apoptotic Effects 0.000 description 2
- 230000006907 apoptotic process Effects 0.000 description 2
- 125000004429 atoms Chemical group 0.000 description 2
- 210000000270 basal cell Anatomy 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000012292 cell migration Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 201000010902 chronic myelomonocytic leukemia Diseases 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 230000002596 correlated Effects 0.000 description 2
- LTMHNWPUDSTBKD-UHFFFAOYSA-N diethyl 2-(ethoxymethylidene)propanedioate Chemical compound CCOC=C(C(=O)OCC)C(=O)OCC LTMHNWPUDSTBKD-UHFFFAOYSA-N 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 230000004064 dysfunction Effects 0.000 description 2
- JWXFCSBTVHCORR-UHFFFAOYSA-N ethyl 1-methyl-6-(2-methylindolizine-3-carbonyl)-4-oxoquinoline-3-carboxylate Chemical compound C1=CC=CN2C(C(=O)C3=CC=C4N(C)C=C(C(C4=C3)=O)C(=O)OCC)=C(C)C=C21 JWXFCSBTVHCORR-UHFFFAOYSA-N 0.000 description 2
- DVFNFHTVCJIUQP-UHFFFAOYSA-N ethyl 6-(1-methoxy-2-methylindolizine-3-carbonyl)-2-methyl-4-oxo-1-prop-2-enylquinoline-3-carboxylate Chemical compound C1=CC=CN2C(C(=O)C3=CC=C4N(CC=C)C(C)=C(C(C4=C3)=O)C(=O)OCC)=C(C)C(OC)=C21 DVFNFHTVCJIUQP-UHFFFAOYSA-N 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 229960000390 fludarabine Drugs 0.000 description 2
- GIUYCYHIANZCFB-FJFJXFQQSA-N fludarabine phosphate Chemical compound C1=NC=2C(N)=NC(F)=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@@H]1O GIUYCYHIANZCFB-FJFJXFQQSA-N 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 229960002584 gefitinib Drugs 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- IKDUDTNKRLTJSI-UHFFFAOYSA-N hydrazine hydrate Chemical compound O.NN IKDUDTNKRLTJSI-UHFFFAOYSA-N 0.000 description 2
- 230000001965 increased Effects 0.000 description 2
- 238000001764 infiltration Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- 201000002250 liver carcinoma Diseases 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- OMGMJELPGNASQI-UHFFFAOYSA-N methyl 2-amino-5-(1-bromo-2-methylindolizine-3-carbonyl)benzoate Chemical compound C1=C(N)C(C(=O)OC)=CC(C(=O)C=2N3C=CC=CC3=C(Br)C=2C)=C1 OMGMJELPGNASQI-UHFFFAOYSA-N 0.000 description 2
- ZRDULRROHRBMIJ-UHFFFAOYSA-N methyl 2-amino-5-(1-methoxyindolizine-3-carbonyl)benzoate Chemical compound C1=C(N)C(C(=O)OC)=CC(C(=O)C=2N3C=CC=CC3=C(OC)C=2)=C1 ZRDULRROHRBMIJ-UHFFFAOYSA-N 0.000 description 2
- BXCLPBUWAIZHJO-UHFFFAOYSA-N methyl 2-amino-5-[1-(2-methoxyethoxy)-2-methylindolizine-3-carbonyl]benzoate Chemical compound N12C=CC=CC2=C(OCCOC)C(C)=C1C(=O)C1=CC=C(N)C(C(=O)OC)=C1 BXCLPBUWAIZHJO-UHFFFAOYSA-N 0.000 description 2
- IRRNKPDLQNWWMS-UHFFFAOYSA-N methyl 2-amino-5-[1-(3-methoxycarbonylphenyl)-2-methylindolizine-3-carbonyl]benzoate Chemical compound COC(=O)C1=CC=CC(C2=C3C=CC=CN3C(C(=O)C=3C=C(C(N)=CC=3)C(=O)OC)=C2C)=C1 IRRNKPDLQNWWMS-UHFFFAOYSA-N 0.000 description 2
- YKNIPSFGGJBRMO-UHFFFAOYSA-N methyl 5-[1-(2-methoxyethoxy)-2-methylindolizine-3-carbonyl]-2-(propylcarbamoylamino)benzoate Chemical compound C1=C(C(=O)OC)C(NC(=O)NCCC)=CC=C1C(=O)C1=C(C)C(OCCOC)=C2N1C=CC=C2 YKNIPSFGGJBRMO-UHFFFAOYSA-N 0.000 description 2
- 229920000609 methyl cellulose Polymers 0.000 description 2
- 239000001923 methylcellulose Substances 0.000 description 2
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006011 modification reaction Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 101700045377 mvp1 Proteins 0.000 description 2
- 230000011164 ossification Effects 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- 239000000546 pharmaceutic aid Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 230000000750 progressive Effects 0.000 description 2
- 230000001737 promoting Effects 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000001044 red dye Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 239000003826 tablet Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 238000004450 types of analysis Methods 0.000 description 2
- 201000006704 ulcerative colitis Diseases 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- SQKJFDIPMUZFFA-UHFFFAOYSA-N (1-methoxy-2-methylindolizin-3-yl)-(4-nitrophenyl)methanone Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C([N+]([O-])=O)C=C1 SQKJFDIPMUZFFA-UHFFFAOYSA-N 0.000 description 1
- ZIGGOJHAEJJSFZ-UHFFFAOYSA-N (2-methylindolizin-3-yl)-(4-nitrophenyl)methanone Chemical compound CC=1C=C2C=CC=CN2C=1C(=O)C1=CC=C([N+]([O-])=O)C=C1 ZIGGOJHAEJJSFZ-UHFFFAOYSA-N 0.000 description 1
- BRZYSWJRSDMWLG-DJWUNRQOSA-N (2R,3R,4R,5R)-2-[(1S,2S,3R,4S,6R)-4,6-diamino-3-[(2S,3R,4R,5S,6R)-3-amino-4,5-dihydroxy-6-[(1R)-1-hydroxyethyl]oxan-2-yl]oxy-2-hydroxycyclohexyl]oxy-5-methyl-4-(methylamino)oxane-3,5-diol Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H]([C@@H](C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-DJWUNRQOSA-N 0.000 description 1
- VHJLVAABSRFDPM-UHFFFAOYSA-N 1,4-dimercaptobutane-2,3-diol Chemical compound SCC(O)C(O)CS VHJLVAABSRFDPM-UHFFFAOYSA-N 0.000 description 1
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 1
- CJRWNGIEWYSHCZ-UHFFFAOYSA-N 1-methoxy-2-methylindolizine Chemical compound C1=CC=CC2=C(OC)C(C)=CN21 CJRWNGIEWYSHCZ-UHFFFAOYSA-N 0.000 description 1
- DSKDECJHXHHIPF-UHFFFAOYSA-N 1-methoxy-2-phenylindolizine Chemical compound C=1N2C=CC=CC2=C(OC)C=1C1=CC=CC=C1 DSKDECJHXHHIPF-UHFFFAOYSA-N 0.000 description 1
- PGQUNNPJRKSPRU-UHFFFAOYSA-N 1-methyl-6-(2-methylindolizine-3-carbonyl)-4-oxoquinoline-3-carboxylic acid Chemical compound CN1C=C(C(O)=O)C(=O)C2=CC(C(=O)C=3N4C=CC=CC4=CC=3C)=CC=C21 PGQUNNPJRKSPRU-UHFFFAOYSA-N 0.000 description 1
- SDQJTWBNWQABLE-UHFFFAOYSA-N 1H-quinazoline-2,4-dione Chemical compound C1=CC=C2C(=O)NC(=O)NC2=C1 SDQJTWBNWQABLE-UHFFFAOYSA-N 0.000 description 1
- VUKAUDKDFVSVFT-UHFFFAOYSA-N 2-[6-[4,5-bis(2-hydroxypropoxy)-2-(2-hydroxypropoxymethyl)-6-methoxyoxan-3-yl]oxy-4,5-dimethoxy-2-(methoxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)-5-methoxyoxane-3,4-diol Chemical compound COC1C(OC)C(OC2C(C(O)C(OC)C(CO)O2)O)C(COC)OC1OC1C(COCC(C)O)OC(OC)C(OCC(C)O)C1OCC(C)O VUKAUDKDFVSVFT-UHFFFAOYSA-N 0.000 description 1
- HHCMVQGXSYFHSS-UHFFFAOYSA-N 2-amino-5-(1-bromo-2-methylindolizine-3-carbonyl)benzoic acid Chemical compound CC=1C(Br)=C2C=CC=CN2C=1C(=O)C1=CC=C(N)C(C(O)=O)=C1 HHCMVQGXSYFHSS-UHFFFAOYSA-N 0.000 description 1
- HRUAZBSVPMQJJL-UHFFFAOYSA-N 2-methylindolizine Chemical compound C1=CC=CN2C=C(C)C=C21 HRUAZBSVPMQJJL-UHFFFAOYSA-N 0.000 description 1
- XKTMTXJIRSNXNU-UHFFFAOYSA-N 3-[3-(2,4-dioxo-3-propyl-1H-quinazoline-6-carbonyl)-2-methylindolizin-1-yl]benzoic acid Chemical compound C1=C2C(=O)N(CCC)C(=O)NC2=CC=C1C(=O)C(N1C=CC=CC1=1)=C(C)C=1C1=CC=CC(C(O)=O)=C1 XKTMTXJIRSNXNU-UHFFFAOYSA-N 0.000 description 1
- LHCGQERGXVXIRF-UHFFFAOYSA-N 3-amino-6-(1-methoxy-2-methylindolizine-3-carbonyl)-1H-quinazoline-2,4-dione Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(NC(=O)N(N)C2=O)C2=C1 LHCGQERGXVXIRF-UHFFFAOYSA-N 0.000 description 1
- NLTIETZTDSJANS-UHFFFAOYSA-N 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine Chemical compound O1C(C)(C)C(C)(C)OB1C1=CC=NC=C1 NLTIETZTDSJANS-UHFFFAOYSA-N 0.000 description 1
- SSTNOKVWZUXJKR-UHFFFAOYSA-N 4-oxo-2-phenyl-3,1-benzoxazine-6-carboxylic acid Chemical compound O1C(=O)C2=CC(C(=O)O)=CC=C2N=C1C1=CC=CC=C1 SSTNOKVWZUXJKR-UHFFFAOYSA-N 0.000 description 1
- BVHAUCIEPCLLTR-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-2-methyl-3,1-benzoxazin-4-one Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(N=C(C)OC2=O)C2=C1 BVHAUCIEPCLLTR-UHFFFAOYSA-N 0.000 description 1
- CTLWADGFBXQYRM-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-3-prop-2-enoxy-1H-quinazoline-2,4-dione Chemical compound N12C=CC=CC2=C(OC)C(C)=C1C(=O)C1=CC=C(NC(=O)N(OCC=C)C2=O)C2=C1 CTLWADGFBXQYRM-UHFFFAOYSA-N 0.000 description 1
- DBBGRBQRMJKDTI-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-3-propyl-1H-quinazoline-2,4-dione Chemical compound C1=CC=CN2C(C(=O)C3=CC=C4NC(=O)N(C(C4=C3)=O)CCC)=C(C)C(OC)=C21 DBBGRBQRMJKDTI-UHFFFAOYSA-N 0.000 description 1
- WZDKOUGNRAXXJD-UHFFFAOYSA-N 6-(1-methoxy-2-methylindolizine-3-carbonyl)-N-methyl-4-oxo-1H-quinoline-3-carboxamide Chemical compound C1=CC=CN2C(C(=O)C3=CC=C4NC=C(C(C4=C3)=O)C(=O)NC)=C(C)C(OC)=C21 WZDKOUGNRAXXJD-UHFFFAOYSA-N 0.000 description 1
- NRVNGTDZJGMUNY-UHFFFAOYSA-N 6-(1-methoxy-2-phenylindolizine-3-carbonyl)-2-phenyl-3,1-benzoxazin-4-one Chemical compound N12C=CC=CC2=C(OC)C(C=2C=CC=CC=2)=C1C(=O)C(C=C1C(=O)O2)=CC=C1N=C2C1=CC=CC=C1 NRVNGTDZJGMUNY-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-TZSSRYMLSA-N ADRIAMYCIN Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 1
- 102100001248 AKT1 Human genes 0.000 description 1
- ZKHQWZAMYRWXGA-KQYNXXCUSA-N Adenosine triphosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-N 0.000 description 1
- 210000000577 Adipose Tissue Anatomy 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N Allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N Ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 206010002943 Apert's syndrome Diseases 0.000 description 1
- 210000001367 Arteries Anatomy 0.000 description 1
- 206010003246 Arthritis Diseases 0.000 description 1
- 210000001130 Astrocytes Anatomy 0.000 description 1
- 206010003571 Astrocytoma Diseases 0.000 description 1
- 102100015655 BCL2L1 Human genes 0.000 description 1
- 102100007325 BIRC3 Human genes 0.000 description 1
- 108010037417 Baculoviral IAP Repeat-Containing 3 Protein Proteins 0.000 description 1
- 206010060999 Benign neoplasm Diseases 0.000 description 1
- 210000001772 Blood Platelets Anatomy 0.000 description 1
- 102000000905 Cadherins Human genes 0.000 description 1
- 108050007957 Cadherins Proteins 0.000 description 1
- YQEZLKZALYSWHR-UHFFFAOYSA-N Calypsol Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010007554 Cardiac failure Diseases 0.000 description 1
- 210000000845 Cartilage Anatomy 0.000 description 1
- 229920002301 Cellulose acetate Polymers 0.000 description 1
- 210000003161 Choroid Anatomy 0.000 description 1
- 208000000094 Chronic Pain Diseases 0.000 description 1
- 206010008909 Chronic hepatitis Diseases 0.000 description 1
- 229940096422 Collagen Type I Drugs 0.000 description 1
- 102000002585 Contractile Proteins Human genes 0.000 description 1
- 108010068426 Contractile Proteins Proteins 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- 229940117173 Croton Oil Drugs 0.000 description 1
- 201000006526 Crouzon syndrome Diseases 0.000 description 1
- 229960000684 Cytarabine Drugs 0.000 description 1
- UHDGCWIWMRVCDJ-CCXZUQQUSA-N Cytosar Chemical compound O=C1N=C(N)C=CN1[C@H]1[C@@H](O)[C@H](O)[C@@H](CO)O1 UHDGCWIWMRVCDJ-CCXZUQQUSA-N 0.000 description 1
- FBPFZTCFMRRESA-KAZBKCHUSA-N D-Mannitol Natural products OC[C@@H](O)[C@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KAZBKCHUSA-N 0.000 description 1
- 229940030606 DIURETICS Drugs 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 229960004679 Doxorubicin Drugs 0.000 description 1
- 238000001061 Dunnett's test Methods 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- 102000001301 EGF receptors Human genes 0.000 description 1
- 108060006698 EGF receptors Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 102000033147 ERVK-25 Human genes 0.000 description 1
- 210000003989 Endothelium, Vascular Anatomy 0.000 description 1
- XYIBRDXRRQCHLP-UHFFFAOYSA-N Ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 1
- 102100015617 FGF17 Human genes 0.000 description 1
- 101700000156 FGF17 Proteins 0.000 description 1
- 101700012851 FGF6 Proteins 0.000 description 1
- 102100007407 FGF6 Human genes 0.000 description 1
- 102100015613 FGF8 Human genes 0.000 description 1
- 101700012405 FGF8 Proteins 0.000 description 1
- 102100015612 FGF9 Human genes 0.000 description 1
- 101700084870 FGF9 Proteins 0.000 description 1
- 101710002377 FLG Proteins 0.000 description 1
- 210000001035 Gastrointestinal Tract Anatomy 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 208000005017 Glioblastoma Diseases 0.000 description 1
- 206010018987 Haemorrhage Diseases 0.000 description 1
- 206010019280 Heart failure Diseases 0.000 description 1
- 102000008055 Heparan Sulfate Proteoglycans Human genes 0.000 description 1
- 108010088992 Heparan Sulfate Proteoglycans Proteins 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N Heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 229960002897 Heparin Drugs 0.000 description 1
- 208000006454 Hepatitis Diseases 0.000 description 1
- LJQLCJWAZJINEB-UHFFFAOYSA-N Hexafluorophosphate Chemical compound F[P-](F)(F)(F)(F)F LJQLCJWAZJINEB-UHFFFAOYSA-N 0.000 description 1
- OQLKNTOKMBVBKV-UHFFFAOYSA-N Hexamidine Chemical compound C1=CC(C(=N)N)=CC=C1OCCCCCCOC1=CC=C(C(N)=N)C=C1 OQLKNTOKMBVBKV-UHFFFAOYSA-N 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 210000000987 Immune System Anatomy 0.000 description 1
- HOBCFUWDNJPFHB-UHFFFAOYSA-N Indolizine Chemical class C1=CC=CN2C=CC=C21 HOBCFUWDNJPFHB-UHFFFAOYSA-N 0.000 description 1
- 206010022114 Injury Diseases 0.000 description 1
- 206010022680 Intestinal ischaemia Diseases 0.000 description 1
- 210000000936 Intestines Anatomy 0.000 description 1
- 208000009289 Jackson-Weiss syndrome Diseases 0.000 description 1
- 210000001503 Joints Anatomy 0.000 description 1
- 206010023421 Kidney fibrosis Diseases 0.000 description 1
- 108009000252 Lung fibrosis Proteins 0.000 description 1
- 210000004698 Lymphocytes Anatomy 0.000 description 1
- 210000002540 Macrophages Anatomy 0.000 description 1
- 235000019759 Maize starch Nutrition 0.000 description 1
- 210000002264 Mammary Glands, Animal Anatomy 0.000 description 1
- 210000004293 Mammary Glands, Human Anatomy 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 210000004688 Microtubules Anatomy 0.000 description 1
- 102000028664 Microtubules Human genes 0.000 description 1
- 108091022031 Microtubules Proteins 0.000 description 1
- 210000004088 Microvessels Anatomy 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 208000010125 Myocardial Infarction Diseases 0.000 description 1
- AEXITZJSLGALNH-UHFFFAOYSA-N N'-hydroxyethanimidamide Chemical compound CC(N)=NO AEXITZJSLGALNH-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 210000000440 Neutrophils Anatomy 0.000 description 1
- 208000008558 Osteophyte Diseases 0.000 description 1
- 229940055729 Papain Drugs 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 108091005771 Peptidases Proteins 0.000 description 1
- 201000004014 Pfeiffer syndrome Diseases 0.000 description 1
- PARWUHTVGZSQPD-UHFFFAOYSA-N Phenylsilane Chemical compound [SiH3]C1=CC=CC=C1 PARWUHTVGZSQPD-UHFFFAOYSA-N 0.000 description 1
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 1
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 1
- 210000002307 Prostate Anatomy 0.000 description 1
- 108010067787 Proteoglycans Proteins 0.000 description 1
- 102000016611 Proteoglycans Human genes 0.000 description 1
- 208000005069 Pulmonary Fibrosis Diseases 0.000 description 1
- 206010038934 Retinopathy proliferative Diseases 0.000 description 1
- 229940069575 Rompun Drugs 0.000 description 1
- 108010084592 Saporins Proteins 0.000 description 1
- 210000002966 Serum Anatomy 0.000 description 1
- 210000002356 Skeleton Anatomy 0.000 description 1
- 229940054269 Sodium Pyruvate Drugs 0.000 description 1
- 210000000278 Spinal Cord Anatomy 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- 210000001179 Synovial Fluid Anatomy 0.000 description 1
- 102000013530 TOR Serine-Threonine Kinases Human genes 0.000 description 1
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N Tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- ITMCEJHCFYSIIV-UHFFFAOYSA-N Trifluoromethanesulfonic acid Chemical compound OS(=O)(=O)C(F)(F)F ITMCEJHCFYSIIV-UHFFFAOYSA-N 0.000 description 1
- 206010064390 Tumour invasion Diseases 0.000 description 1
- 210000003708 Urethra Anatomy 0.000 description 1
- 210000003932 Urinary Bladder Anatomy 0.000 description 1
- 102100015249 VEGFA Human genes 0.000 description 1
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 1
- 206010047139 Vasoconstriction Diseases 0.000 description 1
- 229960001600 Xylazine Drugs 0.000 description 1
- FPQVGDGSRVMNMR-JCTPKUEWSA-N [[(Z)-(1-cyano-2-ethoxy-2-oxoethylidene)amino]oxy-(dimethylamino)methylidene]-dimethylazanium;tetrafluoroborate Chemical compound F[B-](F)(F)F.CCOC(=O)C(\C#N)=N/OC(N(C)C)=[N+](C)C FPQVGDGSRVMNMR-JCTPKUEWSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 201000010028 acrocephalosyndactylia Diseases 0.000 description 1
- 230000001154 acute Effects 0.000 description 1
- 210000001789 adipocyte Anatomy 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 210000000648 angioblast Anatomy 0.000 description 1
- 239000004037 angiogenesis inhibitor Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000003288 anthiarrhythmic Effects 0.000 description 1
- 230000001396 anti-anti-diuretic Effects 0.000 description 1
- 230000000692 anti-sense Effects 0.000 description 1
- 230000002785 anti-thrombosis Effects 0.000 description 1
- 200000000014 benign neoplasm Diseases 0.000 description 1
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N benzohydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 1
- 239000002876 beta blocker Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 201000004569 blindness Diseases 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004709 cell invasion Effects 0.000 description 1
- 230000009087 cell motility Effects 0.000 description 1
- 238000003570 cell viability assay Methods 0.000 description 1
- 230000000973 chemotherapeutic Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 231100000749 chronicity Toxicity 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 230000000295 complement Effects 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 230000001472 cytotoxic Effects 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 125000003963 dichloro group Chemical group Cl* 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 238000006471 dimerization reaction Methods 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- LCGLNKUTAGEVQW-UHFFFAOYSA-N dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 239000002934 diuretic Substances 0.000 description 1
- 229940079593 drugs Drugs 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N edta Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 230000003511 endothelial Effects 0.000 description 1
- 239000000262 estrogen Substances 0.000 description 1
- IAFPWUZNVMYZSQ-UHFFFAOYSA-N ethyl 2-[6-(1-methoxy-2-phenylindolizine-3-carbonyl)-2,4-dioxo-1H-quinazolin-3-yl]acetate Chemical compound C1=C2C(=O)N(CC(=O)OCC)C(=O)NC2=CC=C1C(=O)C(N1C=CC=CC1=C1OC)=C1C1=CC=CC=C1 IAFPWUZNVMYZSQ-UHFFFAOYSA-N 0.000 description 1
- NTNZTEQNFHNYBC-UHFFFAOYSA-N ethyl 2-aminoacetate Chemical compound CCOC(=O)CN NTNZTEQNFHNYBC-UHFFFAOYSA-N 0.000 description 1
- KMYDQEYURRFHMT-UHFFFAOYSA-N ethyl 6-(1-methoxy-2-methylindolizine-3-carbonyl)-1-methyl-4-oxoquinoline-3-carboxylate Chemical compound C1=CC=CN2C(C(=O)C3=CC=C4N(C)C=C(C(C4=C3)=O)C(=O)OCC)=C(C)C(OC)=C21 KMYDQEYURRFHMT-UHFFFAOYSA-N 0.000 description 1
- STZWVBWPHRIVOH-UHFFFAOYSA-N ethyl 6-(1-methoxy-2-methylindolizine-3-carbonyl)-4-oxo-1H-quinoline-3-carboxylate Chemical compound C1=CC=CN2C(C(=O)C3=CC=C4NC=C(C(C4=C3)=O)C(=O)OCC)=C(C)C(OC)=C21 STZWVBWPHRIVOH-UHFFFAOYSA-N 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000003203 everyday Effects 0.000 description 1
- 101700023228 fgf8a Proteins 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037240 fusion proteins Human genes 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 201000002406 genetic disease Diseases 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000003394 haemopoietic Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 239000001866 hydroxypropyl methyl cellulose Substances 0.000 description 1
- 229920003088 hydroxypropyl methyl cellulose Polymers 0.000 description 1
- 235000010979 hydroxypropyl methyl cellulose Nutrition 0.000 description 1
- 230000001969 hypertrophic Effects 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- JMANUKZDKDKBJP-UHFFFAOYSA-N imidazo[1,5-a]pyridine Chemical class C1=CC=CC2=CN=CN21 JMANUKZDKDKBJP-UHFFFAOYSA-N 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 125000004247 indolizin-1-yl group Chemical group [H]C1=C([H])C(*)=C2C([H])=C([H])C([H])=C([H])N12 0.000 description 1
- 230000000977 initiatory Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004068 intracellular signaling Effects 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N iodine atom Chemical group [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 229960003299 ketamine Drugs 0.000 description 1
- 230000000670 limiting Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 235000015250 liver sausages Nutrition 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 230000036244 malformation Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- VEVKDDMOSSHHRG-UHFFFAOYSA-N methyl 2-[6-(1-methoxy-2-methylindolizine-3-carbonyl)-2,4-dioxo-1H-quinazolin-3-yl]acetate Chemical compound C1=CC=CN2C(C(=O)C3=CC=C4NC(=O)N(C(C4=C3)=O)CC(=O)OC)=C(C)C(OC)=C21 VEVKDDMOSSHHRG-UHFFFAOYSA-N 0.000 description 1
- RZHVUJGTMPZLAD-UHFFFAOYSA-N methyl 2-[[2-(dimethylamino)-2-oxoethyl]carbamoylamino]-5-(1-methoxy-2-methylindolizine-3-carbonyl)benzoate Chemical compound C1=C(NC(=O)NCC(=O)N(C)C)C(C(=O)OC)=CC(C(=O)C=2N3C=CC=CC3=C(OC)C=2C)=C1 RZHVUJGTMPZLAD-UHFFFAOYSA-N 0.000 description 1
- QRSMVUSMWJEMRV-UHFFFAOYSA-N methyl 2-amino-5-(1-methoxy-2-phenylindolizine-3-carbonyl)benzoate Chemical compound C1=C(N)C(C(=O)OC)=CC(C(=O)C=2N3C=CC=CC3=C(OC)C=2C=2C=CC=CC=2)=C1 QRSMVUSMWJEMRV-UHFFFAOYSA-N 0.000 description 1
- IZBYNBRZJFRLEF-UHFFFAOYSA-N methyl 2-amino-5-(2-methyl-1-phenylmethoxyindolizine-3-carbonyl)benzoate Chemical compound C1=C(N)C(C(=O)OC)=CC(C(=O)C=2N3C=CC=CC3=C(OCC=3C=CC=CC=3)C=2C)=C1 IZBYNBRZJFRLEF-UHFFFAOYSA-N 0.000 description 1
- YTNWEMCHMMSKLN-UHFFFAOYSA-N methyl 2-amino-5-(2-methylindolizine-3-carbonyl)benzoate Chemical compound C1=C(N)C(C(=O)OC)=CC(C(=O)C=2N3C=CC=CC3=CC=2C)=C1 YTNWEMCHMMSKLN-UHFFFAOYSA-N 0.000 description 1
- CSSHBCYOJLEUJD-UHFFFAOYSA-N methyl 3-[2-methyl-3-(2-methyl-4-oxo-1H-quinazoline-6-carbonyl)indolizin-1-yl]benzoate Chemical compound COC(=O)C1=CC=CC(C2=C3C=CC=CN3C(C(=O)C=3C=C4C(=O)NC(C)=NC4=CC=3)=C2C)=C1 CSSHBCYOJLEUJD-UHFFFAOYSA-N 0.000 description 1
- KQSSATDQUYCRGS-UHFFFAOYSA-N methyl glycinate Chemical compound COC(=O)CN KQSSATDQUYCRGS-UHFFFAOYSA-N 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000000877 morphologic Effects 0.000 description 1
- 210000000663 muscle cells Anatomy 0.000 description 1
- 210000000107 myocyte Anatomy 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N n-methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- PSZYNBSKGUBXEH-UHFFFAOYSA-M naphthalene-1-sulfonate Chemical class C1=CC=C2C(S(=O)(=O)[O-])=CC=CC2=C1 PSZYNBSKGUBXEH-UHFFFAOYSA-M 0.000 description 1
- 230000001613 neoplastic Effects 0.000 description 1
- ZHCAAFJSYLFLPX-UHFFFAOYSA-N nitrocyclohexatriene Chemical group [O-][N+](=O)C1=CC=C=C[CH]1 ZHCAAFJSYLFLPX-UHFFFAOYSA-N 0.000 description 1
- 125000004433 nitrogen atoms Chemical group N* 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000004193 piperazinyl group Chemical group 0.000 description 1
- 125000003386 piperidinyl group Chemical group 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 230000003389 potentiating Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000002062 proliferating Effects 0.000 description 1
- 230000000069 prophylaxis Effects 0.000 description 1
- 230000002633 protecting Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 125000003226 pyrazolyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- WMGPFQVKYDCOKM-UHFFFAOYSA-N quinoline-3-carboxamide;hydrochloride Chemical compound Cl.C1=CC=CC2=CC(C(=O)N)=CN=C21 WMGPFQVKYDCOKM-UHFFFAOYSA-N 0.000 description 1
- 102000027656 receptor tyrosine kinases Human genes 0.000 description 1
- 108091007921 receptor tyrosine kinases Proteins 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- RADGOBKLTHEUQO-UHFFFAOYSA-N ruthenium(4+) Chemical compound [Ru+4] RADGOBKLTHEUQO-UHFFFAOYSA-N 0.000 description 1
- 231100000241 scar Toxicity 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained Effects 0.000 description 1
- 201000010874 syndrome Diseases 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 125000000335 thiazolyl group Chemical group 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 125000002088 tosyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1C([H])([H])[H])S(*)(=O)=O 0.000 description 1
- LXZZYRPGZAFOLE-UHFFFAOYSA-L transplatin Chemical compound [H][N]([H])([H])[Pt](Cl)(Cl)[N]([H])([H])[H] LXZZYRPGZAFOLE-UHFFFAOYSA-L 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 238000004704 ultra performance liquid chromatography Methods 0.000 description 1
- 230000025033 vasoconstriction Effects 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Abstract
The invention relates to compounds corresponding to formula (I) : N R1 O R3 R4 R2 (I) in which - R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to one of formula (A), (B) or (C) below : N N O O Ra Ra' N N O RbRb' N O RcRc'' Rc' (A) (B) (C) in which the wavy lines represent the phenyl nucleus to which R3 and R4 are attached. Preparation process and therapeutic use.
Description
INDOLIZINE DERIVATIVES, PROCESS FOR THE PREPARATION THEREOF AND THERAPEUTIC USE THEREOF
The present invention relates to indolizine derivatives which are inhibitors of FGFs (Fibroblast Growth Factors), to the process for the preparation thereof and to the therapeutic use thereof.
FGFs are a family of polypeptides synthesized by a large number of cells during embryonic development and by cells of adult tissues in various pathological conditions.
Indolizine derivatives, which are antagonists of the binding of FGFs to their receptors, are described in international patent applications WO 03/084956 and WO 2005/028476, while imidazo[1,5-a]pyridine derivatives which are FGF antagonists are described in international patent application WO 2006/097625. Novel indolizine derivatives, which are antagonists of the binding of FGFs to their receptors, have now been identified.
The subject of the present invention is thus compounds, indolizine derivatives, corresponding to formula (I):
in which:
- R· represents . a hydrogen or halogen atom, . an alkyl group optionally substituted with -COOR5, . an alkenyl group optionally substituted with -COOR5, . a -COOR5 or -CONRSR6 group, . an -NRsCOR6 or -NR5-SO2R6 group, . an -OR5, -O-Alk-ORs, -O-Alk-COOR5) -O-Alk-ORS, -O-Alk-NRgRe, -O-AlkNR7R8 group, aL
or . an aryl group, in particular phenyl, or a heteroaryl group, said aryl or heteroaryl group being optionally substituted with one or more groups selected from: halogen atoms, alkyl groups, cycloalkyl groups, -COOR5, -CF3i -OCF3, -CN, -C(NH2)NOH, -ORS, -O-Alk-COORr, -O-Alk-NRSR6, -O-Alk-NR7Re, -Alk-OR51 -Alk-COOR5l -CONR5Re, -CO-NR5-OR6i -CO-NRs-S02R7, -CONR5-Alk-NR5R6, -CONR5-Alk-NR7R8, -Alk-NR5R6, -NR5Rç, -NC(O)N(CH3)2. -CO-Alk, -CO(OAIk)nOH, COO-Alk-NR5Re. COO-Alk-NR7Re and 5-membered heteroaryl groups, said heteroaryl groups being optionally substituted with one or more groups selected from halogen atoms and alkyl, -CF3i -CN, -COOR5, -AlkORS, -Alk-COOR5, -CONR5Re, -CONR7R8, -CO-NR5-ORS, -CO-NR5-SO2R6. -NR.Re and -Alk-NR5Re groups, or with a hydroxyl group or with an oxygen atom,
- n is an integer ranging from 1 to 3,
- R2 represents:
. a hydrogen atom, . an alkyl group, . a phenyl group optionally substituted with one or more alkyl groups,
- R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to one of formula (A), (B) or (C) below:
in which the wavy lines represent the phenyl nucleus to which R3 and R4 are attached and:
. Ra represents a hydrogen atom or an alkyl, haloalkyl, -Alk-CF3, -Alk-COORg, -Alk’-COORs , -Alk-CONR5R6, -Alk’-CONR5Re, -Alk-CONR7R8, -Alk-NR5Re, -AlkCONRs-ORe, -Alk-NR7R8, -Alk-cycloalkyl, -Alk-O-Rs, -Alk-S-Rs, -Alk-CN, -OR5, -OAlkCOORs, -NR5R6, -NR5-COOR6 -Alk-aryl, -Alk-O-aryl, -Alk-O-heteroaryl,
-Alk-heteroaryl or heteroaryl group, where the aryl or heteroaryl group is optionally substituted with one or more halogen atoms and/or alkyl, cycloalkyl, -CF3, -OCF3, -O-Rs or -S-R5 groups, . Ra· represents a hydrogen atom or a linear, branched, cyclic or partially cyclic alkyl group, or an -Alk-OR5, -Alk-NR5Rc or -Alk-NR7Re group, Ra' being optionally substituted with one or more halogen atoms, . Rb represents a hydrogen atom or an alkyl or -Alk-COOR5 group, . Rb represents a hydrogen atom or an alkyl, haloalkyl, cycloalkyl, phenyl or -Alk-COORg group, . Rc represents a hydrogen atom or an alkyl, -CN, -COORS1 -CO-NR5R6, -CONR7R8 -CO-NRg-Alk-NRsRe, -CONR5-Alk-OR5, -CONR5SO2R5l -Alk-aryl or -Alk-heteroaryl group, where the aryl or heteroaryl group is optionally substituted with one or more halogen atoms and/or alkyl, cycloalkyl, -CF3, -OCF3, -O-alkyl or -S-alkyl groups, . Rc represents a hydrogen atom or an alkyl group, . RC represents a hydrogen atom or an alkyl, alkenyl, haloalkyl, cycloalkyl, -Alk-NRsR^, -Alk-NR7R8, -Alk-OR5 or -Alk-SR5 group,
- R5 and Re, which may be identical or different, represent hydrogen atoms, haloalkyl groups or alkyl groups, cycloalkyl groups or an Ms (mesyl) group,
- R7 and R8i which may be identical or different, represent hydrogen atoms or alkyl or phenyl groups, or else R7 and R8 together form a 3- to 8-membered saturated ring which can optionally contain a heteroatom,
- Aik represents a linear or branched alkylene chain, and
- Aik' represents a linear, branched, cyclic or partially cyclic alkylene chain, these compounds being optionally in the form of a pharmaceutically acceptable salt thereof.
The compounds of formula (I) may comprise one or more asymmetric carbon atoms. They can therefore exist in the form of enantiomers or of diastereoisomers. These enantiomers and diastereoisomers, and also mixtures thereof, including racemic mixtures, are part of the invention.
The compounds of formula (I) can exist in the form of bases or of acids or can be salified with acids or bases, in particular pharmaceutically acceptable acids or bases. Such addition salts are part of the invention. These salts are advantageously prepared with pharmaceutically acceptable acids or bases, but the salts of other acids or bases that are of use, for example, for purifying or isolating the compounds of formula (I) are also part of the invention.
The compounds of formula (I) can also exist in the form of hydrates or of solvates, namely in the form of associations or combinations with one or more molecules of water or with a solvent. Such hydrates or solvates are also part of the invention.
In the context of the invention, and unless otherwise mentioned in the text, the term:
- “alkyl is intended to mean: a linear or branched, saturated hydrocarbon-based aliphatic group containing from 1 to 6 carbon atoms;
- “cycloalkyl is intended to mean: a cyclic alkyl group comprising from 3 to 8 ring members, containing between 3 and 6 carbon atoms and optionally comprising one or more heteroatoms, for example 1 or 2 heteroatoms, such as nitrogen and/or oxygen, said cycloalkyl group being optionally substituted with one or more halogen atoms and/or alkyl groups. By way of examples, mention may be made of cyclopropyl, cyclopentyl, piperazinyl, pyrrolidinyl and piperidinyl groups;
- “partially cyclic alkyl group is intended to mean: an alkyl group of which only a part forms a ring;
- “alkylene” is intended to mean: a linear or branched divalent alkyl group containing from 1 to 6 carbon atoms;
- “halogen” is intended to mean: a chlorine, fluorine, bromine or iodine atom, preferably a chlorine or fluorine atom;
- “haloalkyl” is intended to mean: an alkyl chain in which all or some of the hydrogen atoms are replaced with halogen atoms, such as fluorine atoms;
- “alkenyl is intended to mean: an alkyl group comprising an ethylenic unsaturation; and
- “aryl” is intended to mean: a cyclic aromatic group containing between 5 and 10 carbon atoms, for example a phenyl group;
- “heteroaryl” is intended to mean: a cyclic aromatic group containing between 3 and 10 atoms, including one or more heteroatoms, for example between 1 and 4 heteroatoms, such as nitrogen, oxygen or sulphur, this group comprising one or more, preferably one or two, rings. The heterocycles may comprise several condensed rings.
bL
The heteroaryls are optionally substituted with one or more alkyl groups or an oxygen atom. By way of examples, mention may be made of thienyl, pyridinyl, pyrazolyl, imidazolyl, thiazolyl and triazolyl groups;
- “5-membered heteroaryl is intended to mean: a heteroaryl group consisting of a
5-membered ring comprising 1 to 4 heteroatoms (such as oxygen and/or nitrogen atoms), optionally substituted with one or more alkyl groups or a hydroxyl group or with an oxygen atom. Mention may, for example, be made of oxadiazolyl and tetrazolyl groups.
Among the compounds of formula (I) according to the invention, mention may be made of a subgroup of compounds in which Ri represents an -OR5, -O-Alk-OR5, -COOR5 or -OAlk-COORg group or a phenyl group optionally substituted with one or more alkyl or -COOR5 groups, in which Rs represents a hydrogen atom or an alkyl group containing from 1 to 4 carbon atoms, and Aik represents an alkylene chain containing 1 or 2 carbon atoms, or a heteroaryl group, preferably a pyridinyl group.
Another subgroup of compounds of formula (1) according to the invention is such that R1 represents an -OR5, -O-Alk-ORS or -O-Alk-COOR5 group or a phenyl group optionally substituted with one or more alkyl or -COOR5 groups, in which R5 represents a hydrogen atom or a methyl group, and Aik represents an alkylene chain containing 1 or 2 carbon 20 atoms, or a heteroaryl group, preferably a pyridinyl group.
Advantageously, Rt represents an -OR5, -O-Alk-OR5 or -O-Alk-COOR6 group or a phenyl group optionally substituted with a -COOR5 group, in which R5 represents a hydrogen atom or a methyl group, and Aik represents an alkylene chain containing 2 carbon atoms.
Among the compounds of formula (I) according to the invention, mention may be made of another subgroup of compounds in which R2 represents an alkyl group containing from 1 to 4 carbon atoms or a phenyl group.
Advantageously, R2 represents a methyl or phenyl group.
Among the compounds of formula (I) according to the invention, mention may be made of another subgroup of compounds in which R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle 35 corresponding to one of formula (A), (B) or (C) defined above and in which:
bl . Ra represents a hydrogen atom or an alkyl or haloalkyl, -OR5i -Alk-OR5, -Alk'-COOR5, -NR5Re, -Alk-NR7Re, -Alk-CN, -NR5-COOR6, -Alk’-CO-NR6R6, -Alk-CO-NR5ORe or -O-Alk-COORS group, or a heteroaryl, -Alk-heteroaryl or -Alk-aryl group in which the aryl or heteroaryl group is optionally substituted with an alkyl group or a halogen atom, . Ra· represents a hydrogen atom or an alkyl or -Alk-OR5 group, . Rb represents a hydrogen atom or an alkyl or -Alk-COOR5 group, . Rb- represents a hydrogen atom or an alkyl, haloalkyl or -Alk-COOR5 group, . Rc represents a hydrogen atom or an alkyl, -COOR5, CN, -CO-NR5R6, -CONR7Re, Alk-heteroaryl or heteroaryl group, . Rc represents a hydrogen atom or an alkyl group, . Rc· represents a hydrogen atom or an alkyl or alkenyl group, . said alkyl or alkenyl groups mentioned above containing from 1 to 4 carbon atoms, . R5 and Rs represent hydrogen atoms or alkyl or haloalkyl groups, said alkyl and haloalkyl groups containing from 1 to 4 carbon atoms, . R7 and Re represent hydrogen atoms or alkyl groups containing from 1 to 4 carbon atoms, or together form a 5- or 6-membered saturated ring, . Aik represents a linear or branched alkylene chain containing from 1 to 4 carbon atoms, and . Aik’ represents a linear, branched, cyclic or partially cyclic alkylene chain containing from 1 to 4 carbon atoms.
Among the compounds of formula (I), mention may also be made of the compounds of the subgroup defined above in which R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to either of formulae (A) and (C).
Another subgroup corresponds to the compounds of formula (I) in which R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a nitrogenous heterocycle of formula (C) in which:
Rc represents a hydrogen atom or an alkyl, -COOR5, CN, -CO-NR5R6. -CO-NR7R8, Alk-heteroaryl or heteroaryl group, . Rc represents a hydrogen atom or an alkyl group, . Rc· represents a hydrogen atom or an alkyl or alkenyl group, •ftl . said alkyl or alkenyl groups mentioned above containing from 1 to 4 carbon atoms, . R5 and Rs represent hydrogen atoms or alkyl or haloalkyl groups, said alkyl and haloalkyl groups containing from 1 to 4 carbon atoms, . R7 and Re represent hydrogen atoms or alkyl groups containing from 1 to 4 carbon atoms, or together form a 5- or 6-membered saturated ring, . Aik represents a linear or branched alkylene chain containing from 1 to 4 carbon atoms, and . Aik’ represents a linear, branched, cyclic or partially cyclic alkylene chain containing from 1 to 4 carbon atoms.
Among the compounds which are the subjects of the invention, mention may be made of the following compounds:
6-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-1,2-dimethyl-4-oxo-1,4dihydroquinoline-3-carboxamide
6-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-1 -methyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid
2-(6-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin3(2H)-yl}-N,N'-dimethytacetamide
6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-3-propylquinazoline-2,4(1H,3H)dione {6-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin3(2H)-yl} acetic acid methyl {6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4d i hydroq u inazolin-3(2H)-y I} acetate
6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2-methylquinazolin-4(3H)-one
146-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin3(2H)-yl}-N,N-dimethylcyclopropanecarboxamide
6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-1,2-dimethyl-4-oxo-1,4-dihydroq u inoline-3-carboxamide
6-((1 -methoxy-2-methylindolizin-3-yl)cart)onyl]-3-methylquinazoline-2,4(TH,3H)dione.
6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-N-methyl-4-oxo-1,4-dihydroquinoline-3-carboxamide
N-1-dimethyl-6-[(2-methylindolizin-3-yl)carbonyl]-4-oxo-1,4-dihydroquinoline-316295 carboxamide.
In the following text, the term “protective group” is intended to mean a group which makes it possible, firstly, to protect a reactive function such as a hydroxyl or an amine during a synthesis and, secondly, to regenerate the intact reactive function at the end of synthesis. Examples of protective groups and also methods of protection and deprotection are given in “Protective Groups in Organic Synthesis, Green et al., 3rd Edition (John Wiley & Sons, Inc., New York).
In the remainder of the text, the term “leaving group” is intended to mean a group that can be readily cleaved from a molecule by breaking a heterolytic bond, with the departure of a pair of electrons. This group can thus be readily replaced with another group during a substitution reaction, for example. Such leaving groups are, for example, halogens or an activated hydroxyl group, such as a mesyl, tosyl, triflate, acetyl, para-nitrophenyl, etc. Examples of leaving groups and also methods for the preparation thereof are given in Advances in Organic Chemistry”, J. March, 3rd Edition, Wiley Interscience, p. 310-316.
In accordance with the invention, the compounds of general formula (I) can be prepared according to the processes hereinafter.
Scheme 1 presents a pathway for obtaining the compounds of formula (I) in which R3 and R4 together form a nitrogenous heterocycle of formula (A) as defined above, R, represents an -OR5, -O-Alk-OR5, -COOR5, -O-Alk-COOR5, -O-Alk-OR5, O-Alk-NR5R6 or -O-Alk-NR7R8 group, and R2 represents a group as defined above.
Scheme 1 (Method 1):
The compound of formula II (obtained according to a Tschitschibabin reaction described in WO 03084956) in which R, and R2 are as defined for the compound of formula I, is condensed with the compound of formula III in order to obtain the compound of formula IV. The compound of formula IV is subjected to a basic hydrolysis reaction in order to obtain the compound of formula V. The esterification of the compound of formula V produces the compound of formula VI. By reacting triphosgene, the isocyanate corresponding to the compound of formula VI is formed, which is condensed with an amine of formula RaNH2 in order to obtain the urea of formula VII. The compound of formula VII is subjected to a cyclization reaction in a basic medium in order to obtain the compound of formula VIII. The compound VIII is subjected to an alkylation reaction in the presence of a base and of a halogenated derivative Ra'X in order to obtain the compound of formula I in which R2 is as defined above.
Scheme 2 presents a pathway for obtaining the compounds of formula (I) in which R3 and R4 together form a nitrogenous heterocycle of formula (A) as defined above, Ri is as defined above, except for an -ORS, -O-Alk-OR5, -COOR5, -O-Alk-COOR5, -O-Alk-OR5, O-Alk-NR5R<3 or -O-Alk-NR7R8 group, and R2 represents a group as defined above.
The compound of formula IX (obtained according to a Tschitschibabin reaction described in WO 03084956), in which R2 is as defined for the compound of formula I, is condensed with the compound of formula III in order to obtain the compound of formula X. The compound of formula X is subjected to a basic hydrolysis reaction in order to obtain the compound of formula XI. The esterification of the compound of formula XI results in the compound of formula XII. By reacting N-Bromosuccinimide, the compound of formula XIII is formed. By reacting triphosgene, the isocyanate corresponding to the compound of formula XIII is formed, which is condensed with an amine of formula RaNH2 in order to obtain the urea of formula XIV. The compound of formula XIV is subjected to a cyclization reaction in a basic medium, in order to obtain the compound of formula XV. The compound of formula XV is subjected, in the presence of a palladium catalyst, of a ligand and of a base,
- to a reaction with phenylboronic or heteroarylboron ic or phenylboronate ester or heteroarylboronate ester derivatives according to a Suzuki coupling,
- or else to a cyanation reaction with zinc cyanide, followed by an acid hydrolysis, in order to obtain the compound of formula XVI. The compound XVI is subjected to an alkylation reaction in the presence of a base and of a halogenated derivative Ra'X in order to obtain the compound of formula I in which R2 is as defined above and Ri is as defined above, except for an -OR5, -O-Alk-OR5, -COOR5, -O-Alk-COOR5, -O-Alk-ORE, O-Alk-NR5R6 or -O-Alk-NR7Re group.
ft
Scheme 3 presents a pathway for obtaining the compounds of formula (I) in which R3 and R4 together form a nitrogenous heterocycle of formula (B) as defined above, and in which R, is as defined above except for a aryl or heteroaryl group optionally substituted with one or more alkyl, -OR6, -NR5Re or -COOR5 groups, and R2 is as defined above.
Scheme 3 (Method 3):
The compound of formula V in which R1 is as defined above, except for a phenyl group optionally substituted with one or more alkyl or -COOR6 groups, is subjected to a condensation reaction with an acid anhydride in order to obtain the compound of formula XVII in which R1 and R2 are as defined above. The compound XVII is subjected to a substitution reaction in order to obtain the compound of formula I in which R1 and R2 are as defined above.
Scheme 4 presents a pathway for obtaining the compounds of formula (I) in which R3 and R4 together form a nitrogenous heterocycle of formula (B) as defined above, and in which R< represents an aryl or heteroaryl group optionally substituted with one or more alkyl, -OR5, -NRsRç or -COOR5 groups, and R2 represents a group as defined above.
Scheme 4 (Method 4):
(R^OJjO
The compound of formula XIII is subjected to a saponification reaction in a basic medium in order to obtain the compound XVII). The compound XVIII is subjected to a condensation reaction with an acid anhydride in order to obtain the compound of formula XIX. The compound XIX is subjected to a substitution reaction in order to obtain the compound of formula XX. The compound of formula XX is subjected, in the presence of a 10 palladium catalyst, of a ligand and of a base, to a reaction with phenylboronic or heteroarylboronic or phenylboronate ester or heteroaryl boronate ester derivatives according to a Suzuki coupling, in order to obtain the compound of formula I in which FE and R2 are as defined above.
Scheme 5 presents a pathway for obtaining the compounds of formula (I) in which R3 and R4 together form a nitrogenous heterocycle of formula (C) as defined above, and in which R1 represents an -OR5, -O-Alk-OR5, -COOR51 -O-Alk-COOR5, -O-Alk-OR5, O-Alk-NRsRe or -O-Alk-NR7R8 group, and R2 is as defined above.
AC
Scheme 5 (Method 5):
Ft,
R,
(XXVIII)
The compound V is subjected to a condensation reaction in order to obtain the compound XXI. The compound XXI is subjected to an alkylation reaction in the presence of a base and of a halogenated derivative R<-X or of a protective group in order to obtain the compound XXII. The compound XXII is subjected to a condensation reaction with a malonic derivative in order to obtain the compound XXIII in which Rc' and Rc are as 10 defined above. The compound XXIII is subjected to a deprotection reaction in order to obtain the compounds of formula I in which R, and R2 are as defined above.
Scheme 6 presents a pathway for obtaining the compounds of formula (I) in which R3 and R4 together form a nitrogenous heterocycle of formula (C) as defined above and in which 15 Ri represents an aryl or heteroaryl group, where the aryl or heteroaryl group is optionally substituted with one or more alkyl, -OR5, -NR5R5 or -COOR5 groups, and Rc· preferentially represents an alkyl and Rc·· and R2 are as defined above.
Scheme 6 (Method 6):
The compound XVIII is subjected to a condensation reaction in order to obtain the compound XXIV. The compound XXIV is subjected to an alkylation reaction in the presence of a base and of a halogenated derivative RC X or of a protective group in order to obtain the compound XXV. The compound XXV is subjected to a condensation reaction with a malonic derivative in order to obtain the compound XXVI in which Rc' and Rc are as defined above. The compound XXVI is subjected, in the presence of a palladium catalyst, of a ligand and of a base, to a reaction with phenylboronic or heteroarylboronic or phenylboronate ester or heteroarylboronate ester derivatives according to a Suzuki coupling, in order to obtain the compound of formula XXVII. The compound XXVII is subjected to a deprotection reaction in order to obtain the compounds of formula I in which R4 and R2 are as defined above.
Scheme 7 presents a pathway for obtaining the compounds of formula (I) in which R3 and R4 together form a nitrogenous heterocycle of formula (C) with Rç- representing a hydrogen and Rc and Rc- as defined above, and in which R1 represents a hydrogen or an -OR5, -O-Alk-OR5, -COOR5, -O-Alk-COOR5. -O-Alk-ORS, O-Alk-NR5RC or -O-Alk-NR7R8 group, and R2 is as defined above.
Scheme 7 (Method 7):
The compound of formula II, in which R, and R2 are as defined above, is condensed with
4-nitrobenzoic acid chloride in order to obtain the compound XXVIII. The compound XXVIII is subjected to a reduction in the presence of iron and of acetic acid in order to obtain the compound XXIX. The compound XXIX is subjected to a condensation reaction in order to obtain the compound XXX. The compound XXX is subjected to an alkylation reaction in the presence of a halide R^X and of a base in order to obtain the compound of formula I in which Ri and R2 are as defined above.
In the preceding schemes, the starting compounds and the reactants, when the method for preparing them is not described, are commercially available or described in the literature, or else can be prepared according to methods which are described therein or which are known to those skilled in the art.
A subject of the invention, according to another of its aspects, is also the compounds of formulae (I) to (XXX) defined above. These compounds are of use as synthesis intermediates for the compounds of formula (I).
The following examples describe the preparation of certain compounds in accordance with the invention. These examples are not limiting and merely illustrate the present invention. The numbers of the compounds exemplified refer back to those given in the table hereinafter, which illustrates the chemical structures and the physical properties of some compounds according to the invention.
The reactants and intermediates, when their preparation is not explained, are known in the literature or commercially available. Some intermediates that are of use for preparing the compounds of formula I may also serve as final products of formula (I), as will become apparent in the examples given hereinafter. Similarly, some compounds of formula (I) of the invention can serve as intermediates that are of use for preparing other compounds of formula (I) according to the invention.
By way of example, the compounds of formula (I) are selected from the following compounds:
2-(6-(( 1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin-3(2H)y l}-N, N'-d i methylacetamide,
2- {6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-1-methyl-2,4-dioxo-1,4-dihydro- q u inazolin-3(2H)-yl}-N, N'-dimethylacetamide,
6-((1-methoxy-2-methylindolizin-3-yl)carbonyl]-3-[(3-methyl-1,2,4-oxadiazol-5yl)methyl]quinazoline-2,4(1H,3H)-dione,
3- (3-(2,4-dioxo-3-propyl-1,2,3,4-tetrahydroquinazolin-6-yl)carbonyl}-2-methylindolizin-1yljbenzoic acid, (6-[(1-methoxy-2-phenylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetic acid,
Ethyl ((6-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin3(2H)-yl}oxy)acetate,
3-amino-6-[(1-methoxy-2-methylindolizin-3yl)carbonyl]quinazoline-2,4(1H,3H)-dione, 6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2-methylquinazolin-4(3H)-one, 3-{2-methyl-3-[(2-methyl-4-oxo-3,4-dihydroquinazolin-6-yl)carbonyl]indolizin-1-yl}benzoic acid,
6-{[1(2-methoxyethoxy)-2-methylindolizin-3-yl]carbonyl)-3-propylquinazoline-2,4(1H3H)dione,
6-(( 1 -methoxy-2-methylindolizin-3-yl)carbonyl]-1 -methyl-4-oxo-1,4-dihydroquinoline-3carboxylic acid,
6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2-methyl-4-oxo-1,4-dihydroquinoline-3carboxylic acid,
6-(( 1 -methoxy-2-methylindolizin-3-yl)carbonyl]-/V-methyi-4-oxo-1,4-dihydroquinoline-3carboxamide, /V-1-dimethyl-6-[(2-methylindolizin-3-yl)carbonyl]-4-oxo-1,4-dihydroquinoline-3carboxamide,
N-1-dimethyl-6-{[2-methyl-1-(pyridin-4-y1)indolizin-3-yl]carbonyl}-4-oxo-1,4-dihydro16295 quinoline-3-carboxamide hydrochloride.
Abbreviations
- DMF: N,N-dimethylformamtde
- THF: tetrahydrofuran
- DBU: 1,8-diazabicyclo[5.4.0]undec-7-ene
- HBTU: 0-benzotriazol-1-yl-N,N,N',N'-tetramethyiuronium hexafluorophosphate
- DIEA: Diisopropylethylamine
- DME: Ethylene glycol dimethyl ether
- TOTU: 0-[(ethoxycarbony[)cyanomethyleneamino]-N,N,N’,N'-tetramethyluronium tetrafluoroborate
The NMR analyses were carried out on Bruker Avance 250MHz, 300MHz and 400MHz instruments.
- The melting points were measured on a Buchi B-450 instrument.
- The mass spectrometry analyses were earned out on a Waters Alliance 2695 (UV: PDA996, MS: LCZ), Alliance 2695 (UV: PDA 996, MS: ZQ (simple Quad) ZQ1), Alliance 2695 (UV: PDA 996, MS: ZQ (simple Quad) ZQ2), Waters UPLC Acquity (UV: Acquity PDA, MS: SQD (simple Quad) SQW), Agilent MSD, Waters ZQ, or Waters SQD instrument.
Example 1: (Compound No 35)
2-{6-[(1-Methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin3(2H)-yl}-N,N'-dimethylacetamide
Methyl 2-amino-5-[(1 -methoxy-2-methylindolizin-3-yl)carbonyl]benzoate
1.51 ml (24.26 mmol) of methyl iodide are added, under an inert atmosphere at ambient temperature, to 8 g (23.1 mmol) of the sodium salt of 2-amino-5-[(1-methoxy-2methylindoiizin-3-yl)carbonyl]benzoic acid (described in WO 03/084956) in 130 ml of DMF. After stirring for 1 hour, water is added. The precipitate formed is filtered off, rinsed with water, and then dried under reduced pressure at 50°C overnight. 7.17 g of a yellow solid are obtained.
MH+: 339
Methyl 2-({[2-(dimethylamino)-2-oxoethyl]carbamoyl}amino)-5-[(1 -methoxy-2methy li ndolizi n-3-yl)carbonyl] benzoate
0.798 g (2.69 mmol) of triphosgene diluted in 10 ml of dioxane is added, under an inert atmosphere at ambient temperature, to 1.3 g (3.84 mmol) of methyl 2-amino-5-[(1methoxy-2-methylindolizin-3-yl)carbonyl]benzoate in 50 ml of dioxane. After stirring for 1 hour, 1.25 g (7.68 mmol) of Ν,Ν-dimethylglycînamide acetate and 2.68 ml (19.21 mmol) of triethylamine are added. The reaction medium is stirred overnight at ambient temperature and then hydrolysed with water. The aqueous phase is extracted with dichloromethane. The organic phase obtained is dried over sodium sulphate, filtered, and then concentrated under reduced pressure. 1.8 g of a yellow solid are obtained.
Melting point: 228UC
MH+ = 467
2-(6-(( 1-Methoxy-2-methy lindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroq u inazol in-3(2H)-y l)-N,N’-dimethylacetamide
0.69 ml (4.63 mmol) of DBU is added, at ambient temperature under an inert atmosphere, to 1.8 g (3.86 mmol) of methyl 2-({[2-(dimethylamino)-2-oxoethyl]carbamoyl}amino)-5-[(1methoxy-2-methylindolizin-3-yl)carbonyl]benzoate in 25 ml of THF. The reaction medium is stirred overnight at ambient temperature. The THF is concentrated under reduced pressure. The residue is taken up in water. The aqueous phase is extracted with dichloromethane. The organic phase obtained is dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The yellow solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. The orange foam obtained is taken up in a minimum amount of methanol. After the addition of water, the precipitate obtained is filtered off, rinsed with water, and then dried under reduced pressure at 50°C overnight. 1.14 g of a yellow powder are obtained.
Melting point: 290°C
MH+ = 435 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.82 (S, 3H), 2.85 <s, 3H), 3.08 (s, 3H), 3.83 (S, 3H), 4.75 (s, 2H), 6.95 (t, J=6.85 Hz, 1H), 7.19-7.24 (m, 1H), 7.32 (d, J=8.43, 1H), 7.66 (d, J=8.87 Hz, 1H), 7.91 (d, 4=8.47 Hz, 1H), 8.09 (d, J=2.02 Hz, 1H), 9.53 (d, J=7.26 Hz, 1H), 11.83 (s, 1H).
Example 2: (Compound No. 68)
2-(6-((1 -Methoxy-2-methylindolizin-3-yl)carbonyl]-1 -methyl-2,4-dioxo-1,4dihydroquinazolin-3(2H)-yl}-N, Ν' -dimethylacetamide
0,04 ml (0.69 mmol) of methyl iodide and 0.225 g (0.69 mmol) of caesium carbonate are added, under an inert atmosphere at ambient temperature, to 0.150 g (0.35 mmol) of 2-(6-(( 1-methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin-3(2H)yl}-N,N’-dimethylacetamide in 5 ml of DMF. The reaction medium is stirred for 2.5 hours at ambient temperature and then hydrolysed with water. The aqueous phase is extracted with ethyl acetate. The organic phase obtained is washed with water, dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The residue is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. The solid obtained is taken up in a minimum amount of methanol. After the addition of water, the precipitate obtained is filtered off, rinsed with water, and then dried under reduced pressure at 50°C overnight. 0.135 g of a yellow solid is obtained.
Melting point: 276°C
MH+: 449 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.82 (s, 3H), 2.85 (s, 3H), 3.09 (s, 3H), 3.60 (s, 3H), 3.83 (s, 3H), 4.81 (s, 2H), 6.97 (t, J=7 05 Hz, 1H), 7.21-7.26 (m, 1H), 7.62 (d, J=8.75 Hz, 1H), 7.67 (d, J=8.75 Hz, 1H), 8.02 (d, J=8.67H, 1H), 8.19 (d, J=2.19 Hz, 1H), 9.75 (d, J=7.13 Hz, 1H).
Example 3: (Compound No. 36)
6-[(1-Methoxy-2-methylindolizin-3-yl)carbonyl]-3-[(3-methyl-1,2,4-oxadiazol-5yl)methyl]quinazoline-2,4(1 H,3H) -dione
Methyl {6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl}acetate
1.22 g (4.14 mmol) of triphosgene diluted in 15 ml of dioxane are added, under an inert atmosphere at ambient temperature, to 2 g (5.91 mmol) of methyl 2-amino-5-[(1methoxyindolizin-3-yl)carbonyl]benzoate in 65 ml of dioxane. The reaction medium is stirred for 1 hour at ambient temperature and then 1.48 g (11.82 mmol) of methyl glycinate and 4.12 ml (29.55 mmol) of triethylamine are added. The reaction medium is stirred for 18 hours and then 1.08 g (5.91 mmol) of DBU are added. After stirring for 24 hours, the medium is hydrolysed with water. The aqueous phase is extracted with dichloromethane. The organic phase obtained is washed with water, dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The solid is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. The solid obtained is recrystallized, under hot conditions, from methanol. 1.5 g of a yellow solid are obtained.
Melting point: 253°C
MH+ = 422
6-[(1-Methoxy-2-methylindolizin-3-yl)carbonyl]-3-[(3-methyl-1,2,4-oxadiazol-5yl)methyl]quinazoline-2,4(1 H,3H)-dione
0.14 g (0.37 mmol) of HBTU, 0.21ml (1.23 mmol) of DIEA and then 0.18 g (1.23 mmol) of (1E)-N'-hydroxyethanimidamide are added, under an inert atmosphere at ambient temperature, to 0.1 g (0.25 mmol) of methyl {6-[(1-methoxy-2-methylindolizin-3yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin-3(2/-/)-yl)acetate in 5 ml of DMF. The reaction medium is heated at 90° C for 24 hours. After hydrolysis with water, the reaction medium is extracted with ethyl acetate. The organic phase is washed with a saturated aqueous solution of sodium hydrogen carbonate and then with water, dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The yellow solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. 0.046 g of a yellow solid is obtained.
Melting point: 176°C
MH+: 446 1 H-NMR (D6-DMSO, 500 MHz) δ ppm:
1.82 (s, 3H), 2.30 (s, 3H), 3.82 (s, 3H), 5.36 (s, 2H), 6.96 (t, J=7.04 Hz, 1H), 7.20-7.24 (m, 1H), 7.35 (d, J=8.48 Hz, 1H), 7.66 (d, J=8.81 Hz, 1H), 7.94 (d, J=8.32 Hz, 1H), 8.11 (d, 4=1.92 Hz, 1H), 9.54 (d, J=7.43 Hz, 1H), 12.01 (s, 1H).
Example 4: (Compound No. 14)
Sodium salt of 3-(3-((2,4-dioxo-3-propyl-1,2,3,4-tetrahydroquinazolin-6-yi)carbonyl}2-methylindolizin-1-yl]benzoic acid
Methyl 2-amino-5-[(1 -bromo-2-methylindolizin-3-yl)carbonyl]benzoate
0.492 g (2.73 mmol) of N-bromosuccinimide is added, under an inert atmosphere at ambient temperature, to 0.812 g (2.6 mmol) of methyl 2-amino-5-[(2-methylindolizin-3yl)carbonyl]benzoate in 17 ml of dichloromethane. The reaction medium is stirred for 2 hours and then hydrolysed with water. The aqueous phase is extracted with dichloromethane. The organic phase obtained is washed with a saturated aqueous solution of sodium hydrogen carbonate and then with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with dichloromethane. 0.9 g of a yellow solid is obtained.
MH+: 387, 389
Methyl 2-amino-5-({1-[3-(methoxycarbonyl)phenyl]-2-methylindolizin-3yl}carbonyl)benzoate
0.229 g (1.27 mmol) of [3-(methoxycarbonyl)phenyl]boronic acid, 0.492 g (2.12 mmol) of potassium phosphate dihydrate and 0.024 g (0.02 mmol) of tetrakis (triphenylphosphine)palladium are added, under an argon atmosphere at ambient temperature, to 0.410 g (1.06 mmol) of methyl 2-amino-5-[(1-bromo-2-methylindolizin-3yl)carbonyl]benzoate in 8 ml of a DME/H2O (5/1) mixture. The reaction medium is heated at 90°C for 18 hours. The reaction medium is extracted with dichloromethane, washed with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with dichloromethane. 309 mg of a yellow solid are obtained.
Melting point: 232°C
MH+: 443
Methyl 5-({1-[3-(methoxycarbonyl)phenyI]-2-methylindolizin-3-yl}carbonyl)-2[(propylcarbamoyl)amino]benzoate
0.143 mg (0.47 mmol) of triphosgene diluted in 2 ml of dioxane are added, under an inert atmosphere at ambient temperature, to 308 mg (0.68 mmol) of methyl 2-amino-5({1-[3-(methoxycarbonyl)phenyl]-2-methylindolizin-3-yl)carbonyl)benzoate in 5.6 ml of dioxane. The reaction medium is stirred for 2 hours at ambient temperature and then 0.28 ml (2.03 mmol) of triethylamine, and 0.11 ml (1.35 mmol) of n-propylamine diluted in 4 ml of dioxane are added. After stirring for 2 hours, the reaction medium is hydrolysed with water. The aqueous phase is extracted with dichloromethane. The organic phase obtained is washed with a 1N aqueous solution of hydrochloric acid, and then with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture.
215 mg of a yellow solid are obtained.
Melting point: 143°C hL
MH+; 496
Sodium salt of 3-{3-[(2,4-dioxo-3-propyl-1,2,3,4-tetrahydroquinazolin-6yl)carbonyl]-2-methylindolizin-1-yl}benzoic acid
0.96 ml (0.96 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.203 mg (0.39 mmol) of methyl 5-({1-[3-(methoxycarbonyl)phenyl]-2-methyIindolizin-3-yl}carbonyl)-2-[(propylcarbamoyl)amino]benzoate in 4 ml of methanol. The reaction medium is refluxed for 7 hours.
The reaction medium is acidified with a 1N aqueous solution of hydrochloric acid. The precipitate obtained is filtered off, rinsed with water, and dried under reduced pressure at 50°C overnight.
0.31 ml (0.31 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.156 g (0.33 mmol) of the solid obtained. The reaction medium is stirred for one hour and then diisopropyl ether is added. The precipitate obtained is filtered off, rinsed with diisopropyl ether, and then dried under reduced pressure at 50°C overnight. 155 mg of a yellow solid are obtained.
Melting point: 361 °C
MH+: 504 1 H-NMR (D6-DMSO, 400 MHz) δ ppm:
0.88 (t, J=7.97 Hz, 3H), 1.52-1.64 (m, 2H), 1.96 (s, 3H), 3.80-3.88 (m, 2H), 6.94 (t, J=6.78 Hz, 1H), 7.12 (d, J=8.38 Hz, 1H), 7.16-7.22 (m, 1H), 7.34 (d, J=7.58 Hz, 1H), 7.39 (t, J=758 Hz, 1H), 7.51 (d, J=8.78 Hz, 1H), 7.80-7.86 (m, 2H), 7.92-7.95 (m, 1H), 8.17 (d, J=2 Hz, 1H), 9.33 (d, J=7.58 Hz, 1H).
Example 5: (Compound No. 24)
Sodium salt of (6-[(1-methoxy-2-phenylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4dihydroquinazolin-3{2H)-yl}acetic acid
6-[(1-Methoxy-2-phenylindolizin-3-yl)carbonyl]-2-phenyl-4H-3,1-benzoxazin-4one
2.25 ml (16.12 mmol) of triethylamine and 3 g (13.44 mmol) of 1-methoxy-2phenylindolizine (according to the method described in WO 03/084956) diluted in 20 ml of dichloroethane are added, under an inert atmosphere at ambient temperature, to 4.22 g (14.78 mmol) of 4-oxo-2-phenyl-4H-3,1-benzoxazine-6-carboxylic acid (described in WO 06/097625) in 100 ml of dichloroethane. After stirring overnight at ambient temperature, the reaction medium is filtered, and rinsed with dichloroethane. The filtrate is washed with water, dried over sodium sulphate, filtered, and concentrated under reduced pressure. The residue is filtered through a silica pâté, elution being carried out with dichloromethane. 4.4 g of a yellow solid are obtained.
MH+: 473
2-Amino-5-[(1 -methoxyindolizin-3-yl)carbonyl]benzoic acid
1.56 g (27.94 mmol) of potassium hydroxide dissolved in 4 ml of water are added, at ambient temperature, to 4.4 g (9.31 mmol) of 6-((1 -methoxy-2-phenylindolizin-3yl)carbonyl]-2-phenyl-4/7-3,1-benzoxazin-4-one in 50 ml of N-methylpyrrolidone. The reaction medium is heated at 80°C for 24 hours. The reaction medium is poured into a 1N aqueous solution of hydrochloric acid. The precipitate formed is filtered off and rinsed with water. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. 3.05 g of a green solid are obtained.
Melting point: 106°C.
MH+: 387
Methyl 2-amino-5-[(1-methoxy-2-phenylindolizin-3-yl)carbonyl]benzoate
0.54 ml (8.63 mmol) of methyl iodide and 2.8 g (8.63 mmol) of caesium carbonate are added, under an inert atmosphere at ambient temperature, to 3.03 g (7.84 mmol) of 2-amino-5-[(1-methoxyindolizin-3-yl)carbonyl]benzoic acid in 50 ml of DMF. After stirring for 3 hours at ambient temperature, water is added. The precipitate formed is filtered off, rinsed with water, and then dried under reduced pressure at 50°C overnight. The solid obtained is purified by silica gel column chromatography, elution being carried out with dichloromethane. 1.98 g of a yellow solid are obtained.
MH+: 401
Ethyl {6-((1 -methoxy-2-phenylindolizin-3-yl)carbonyfl-2,4-dioxo-1,4dihydroquinazolin-3(2H)-yl)acetate
0.208 g (0.7 mmol) of triphosgene diluted in 15 ml of dioxane is added, under an inert atmosphere at ambient temperature, to 0.4 g (1 mmol) of methyl 2-amino-5-[(1methoxyindolizin-3-yl)carbonyl]benzoate tn 50 ml of dioxane. After stirring for 1 hour, 0.279 g (2 mmol) of ethyl glycinate and 0.70 ml (5 mmol) of triethylamine are added. After stirring at ambient temperature for 2 hours, the reaction medium is hydrolysed with water.
After an overnight period at ambient temperature, the aqueous phase is extracted with dichloromethane. The organic phase obtained is washed with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. 0.362 g of a yellow solid is obtained.
Melting point: 221 °C
MH+ = 498
Sodium salt of (6-((1-methoxy-2-phenylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4d ihydroqui nazol in-3(2H)-yl}acetic acid
0.75 ml (0.75 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.312 mg (0.63 mmol) of ethyl {6-[(1-methoxy-2-phenylindolizin3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl)acetate in 10 ml of methanol. The reaction medium is refluxed for 7 hours.
The reaction medium is acidified with a 1N aqueous solution of hydrochloric acid. The precipitate obtained is filtered off, rinsed with water, and dried under reduced pressure at 50°C overnight.
0.52 ml (0.52 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.250 g (0.53 mmol) of the solid obtained. The reaction medium is stirred for one hour and then diisopropyl ether is added. The precipitate obtained is filtered off, rinsed with diisopropyi ether, and then dried under reduced pressure at 50°C overnight. 0.237 g of a yellow solid is obtained.
Melting point: 337°C
MH+: 470 1 H-NMR (D6-DMSO, 400 MHz) δ ppm:
3.64 (s, 3H), 4.07 (s, 2H), 6.70 (d, J=8.55 Hz, 1H), 7.00-7.1 (m, 6H), 7.21-7.27 (m, 1H), 7.49 (d, J=8.37 Hz, 1H), 7.76 (d, 3=9.07 Hz, 1H), 7.88 (d, J=1.92Hz, 1H), 9.55 (d, J=7.15Hz, 1H), 11.27 (s, 1H).
Example 6: (Compound No. 34)
Ethyl ( {6-((1-m ethoxy-2-methyl indo I izin-3-y l)car bony I]-2,4-di oxo-1,4-dihydroquinazolin-3(2H)-yl}oxy)acetate
Methyl 5-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2-([(prop-2-en-1 -yloxy)16295 carbamoyljam inojbenzoate
0.251 g (0.83 mmol) of triphosgene diluted in 3 ml of dioxane is added, under an inert atmosphere at ambient temperature, to 0.4 g (1.18 mmol) of methyl 2-amino-5-[(1methoxy-2-methylindolizin-3-yl)carbonyl]benzoate in 10 ml of dioxane. After stirring for
2.5 hours, 0.267 g (2.36 mmol) of 0-prop-2-en-1-ylhydroxylamine and 0.82 ml (5.91 mmol) of triethylamine are added. The reaction medium is stirred for one hour and then hydrolysed with water. The aqueous phase is extracted with dichloromethane. The organic phase obtained is washed with a 1N aqueous solution of hydrochloric acid and a saturated aqueous solution of sodium chloride, and then dried over sodium sulphate, filtered, and concentrated under reduced pressure. 0.581 g of a yellow solid is obtained. MH+: 438
6-[(1-Methoxy-2-methylindolizin-3-yl)carbonyl]-3-(prop-2-en-1-yloxy)quinazoline-2,4(1 H, 3 H)-dione
1.27 ml (1.27 mmol) of a 1N aqueous solution of sodium hydroxide are added, at ambient temperature, to 0.370 mg (0.85 mmol) of methyl 5-((1-methoxy-2-methylindolizin3-yl)cart>onyl]-2-{[(prop-2-en-1-yloxy)carbamoyl]amino}benzoate in 5 ml of methanol. The reaction medium is refluxed for 1 hour.
The reaction medium is acidified with a 1N aqueous solution of hydrochloric acid.
The aqueous phase is extracted with ethyl acetate. The organic phase is washed with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with dichloromethane. 0.293 g of a yellow solid is obtained.
Melting point: 258°C
MH+: 406
3-Hydroxy-6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]quinazoline2,4(1H,3H)-dione
0.15 ml (1.18 mmol) of phenylsilane and 0.030 g (0.03 mmol) of tetrakis (triphenylphosphine)palladium are added, under an inert atmosphere at 0°C, to 0.276 g (0.65 mmol) of 6-[(1-methoxy-2-methylindo)izin-3-yl)cart)onyl]-3-(prop-2“en-1-yloxy)quinazoline-2,4(1/-/,3H)-dione in 7 ml of dichloromethane. The reaction medium is stirred for 4 hours at ambient temperature and then filtered. The precipitate is rinsed with dichloromethane. The solid is taken up in a 1N aqueous solution of sodium hydroxide.
After the addition of a 1N aqueous solution of hydrochloric acid, the precipitate obtained is filtered off, rinsed with water, and dried under reduced pressure overnight at 50°C. 0 208 mg of a yellow solid is obtained.
Melting point: 300°C
MH+: 366
Ethyl ({6-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4dihydroquinazolin-3(2H)-yl}oxy)acetate
0.11 ml (0.99 mmol) of ethyl bromoacetate and then 0.14 ml (0.99 mmol) of triethylamine are added, at ambient temperature under an inert atmosphere, to 0.36 g (0.99 mmol) of 3-hydroxy-6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]quinazoline2,4(1 H,3H)-dione in 12.5 ml of ethanol. The reaction medium is stirred for 18 hours and then 0.14 ml (0.99 mmol) of triethylamine and 0.11 ml (0.99 mmol) of ethyl bromoacetate are added. After stirring for 18 hours at ambient temperature, the reaction medium is concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol mixture. 217 mg of a yellow powder are obtained.
MH+ = 452
Melting point = 230°C 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.05-1.25 (t, 3H), 1.82 (s, 3H), 3.64 (s, 3H), 4.16-4.22 (q, 2H), 4.77 (s, 2H), 6.97-6.97 (t, 1H), 7.20-7.24 (t, 1H), 7.28-7.30 (d, 1H), 7.65-7.67 (d, 1H), 7.88-7.91 (d, 1H), 8.08 (s, 1H), 9.52-9.54 (d, 1H), 11.9 (s, 1H).
Example 7: (Compound No. 51) 3-Amino-6-[(1-methoxy-2-niethylindolizin-3yl)carbonyl]quinazoline-2,4(1H,3H)-dione
0.123 g (0.41 mmol) of triphosgene is added, under an inert atmosphere at ambient temperature, to 0.2 g (0.6 mmol) of methyl 2-amino-5-[(1-methoxy-2-methylindolizin-3yl)carbonyl]benzoate in 10 ml of dioxane. After stirring for 10 minutes, 58 yl (1.2 mmol) of hydrazine hydrate and 0.4 ml (3 mmol) of triethylamine are added. The reaction medium is stirred for 3 hours and then hydrolysed with water. The aqueous phase is extracted with ethyl acetate. The organic phase obtained is dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. 16 mg of a yellow solid are obtained.
Melting point: 220°C
MH+ = 365 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.81 (s, 3H), 3.82 (s, 3H), 5.52 (s, 2H), 6.95 (t, J=6.95 Hz, 1H), 7.18-7.24 (m, 1H), 7.31 (d, J=8.69 Hz, 1H), 7.66 (d, J=8.69 Hz, 1H), 7.88 (d, J=8.69 Hz, 1H), 8.09 (d, J=2.09 Hz, 1H), 9.52 (d, J=6.95 Hz, 1H), 1.90 (s, 1H).
Example 8: (Compound No. 15)
6-((1-Methoxy-2-methylindolizin-3-yl)carbonyl]-2-methylquinazolin-4(3H)-one
6-((1 -Nlethoxy-2-methylindolizin-3-yl)carbony l]-2-methyl-4H-3,1 -benzoxazin-4one
0.100g (0.31 mmol) of 2-amino-5-[(1-methoxy-2-methylindolizin-3-yl)carbonyljbenzoic acid (Example 150 described in WO 03/084956) in 1 ml of acetic anhydride is refluxed for 3 hours. The reaction medium is concentrated under reduced pressure. 0.107 g of a yellow solid is obtained.
Melting point: 218°C
6-[(1-Methoxy-2-methylindolizin-3-yl)carbonyl]-2-methylquinazolin-4(3H)-one
0.100g (0.29 mmol) of 6-((1-methoxy-2-methylindolizin-3-yl)carbonyl]-2-methyl-4H3,1-benzoxazin-4-one in 2 ml of a 20% aqueous ammonia solution are heated for 2 hours at 50°C and then hydrolysed with 3 ml of 10% aqueous sodium hydroxide solution and brought to 50°C for 2 hours. The reaction medium is acidified with a 1N aqueous solution of hydrochloric acid, to pH = 9. The precipitate obtained is filtered off, rinsed with water and then dried under reduced pressure at 40°C overnight. The solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 67 mg of a yellow solid are obtained.
Melting point: 290°C
MH+: 348 1 H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.75 (s, 3H), 2.39 (s, 3H), 3.82 (s, 3H), 6.98 (t, J=7.07 Hz, 1H), 7.22-7.27 (m, 1H), 7.667.70 (m, 2H), 7.94 (d, J=8.19 Hz, 1H), 8.20(d, J=2 23 Hz, 1H), 9.61 (d, J=7.07 Hz, 1H), 12.39 (s, 1H).
YiC
Example 9: (Compound No. 43)
Sodium salt of 3-{2-methyl-3-[(2-methyl-4-oxo-3,4-dihydroquinazolin-6-yl)carbonyl]indolizin-1 -yljbenzoic acid
2-Amino-5-[(1-bromo-2-methylindolizin-3-yl)carbonyl]benzoic acid
4.92 ml (4.92 mmol) of a 1N aqueous solution of sodium hydroxide are added, at ambient temperature, to 1.91 g (4.69 mmol) of methyl 2-amino-5-[(1-bromo-2methylindolizin-3-yl)carbonyl!benzoate in 30 ml of methanol. The reaction medium is refluxed for 10 hours and then hydrolysed with a 1N aqueous solution of hydrochloric acid. The aqueous phase is extracted with ethyl acetate. The organic phase obtained is washed with water, dried over sodium sulphate, filtered, and concentrated under reduced pressure. The solid obtained is rinsed with diisopropyl ether and dichloromethane, and dried under reduced pressure overnight at 50°C. 1.55 g of a yellow solid are obtained. MH+: 374
Melting point: 230°C
6-[(1-Bromo-2-methylindolizin-3-yl)carbonyl]-2-methylquinazolin-4(3H)-one
0.450 g (1.15 mmol) of 2-amino-5-[(1-bromo-2-methylindolizin-3-yl)carbonyljbenzoic acid in 3.79 ml of acetic anhydride are refluxed for 1.5 hours under an inert atmosphere. The reaction medium is concentrated under reduced pressure.
0.457 g (1.15 mmol) of the solid obtained in 8 ml of a 0.5N aqueous solution of ammonia in dioxane are heated at 50cC for 1 hour. After the addition of diisopropyl ether, the precipitate formed is filtered off, rinsed with water, and then dried under reduced pressure at 50°C overnight. 182 mg of a yellow solid are obtained.
MH+: 348
Methyl 3-{2-methyl-3-[(2-methyl-4-oxo-3,4-dihydroquinazolin-6-yl)carbonyl]indolizin-1-yl}benzoate
0.139 g (0.78 mmol) of [3-(methoxycarbonyl)phenyl]boronic acid, 0.321 g (1.29 mmol) of potassium phosphate dihydrate dissolved in 0.81ml of water, and 0.0149 g (0.01 mmol) of tetrakis (triphenylphosphine)palladium are added, under an argon atmosphere at ambient temperature, to 0.256 g (0.65 mmol) of 6-[(1-bromo-2methylindolizin-3-yl)carbonyl]-2-methylquinazolin-4(3H)-one in 9 ml of DMF. The reaction medium is microwave-heated at 150°C for 15 minutes. After dilution with ethyl acetate, the organic phase is washed with a IN aqueous solution of hydrochloric acid and then a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol ¢95/2) mixture. 172 mg of a yellow solid are obtained.
Melting point. 232°C
MH+: 452
Sodium salt of 3-(2-methyl-3-[(2-methyl-4-oxo-3,4-dihydroquinazolin-6yl)carbonyl]indolizin-1-yl}benzoic acid
0.45 ml (0.45 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.171 g (0.38 mmol) of methyl 3-(2-methyl-3-[(2-methyl-4-oxo-
3,4-dihydroquinazolin-6-yl)carbonyl]indolizin-1-yl)benzoate in 4 ml of methanol. The reaction medium is refluxed for 10 hours and then hydrolysed with a 1N aqueous solution of hydrochloric acid. The aqueous phase is extracted with ethyl acetate. The organic phase obtained is washed with water, dried over sodium sulphate, filtered, and concentrated under reduced pressure. The solid obtained is rinsed with water and then dried under reduced pressure overnight at 50°C. 0.12 ml (0.12 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.056 g of the solid obtained, in 4 ml of methanol. The reaction medium is stirred for one hour and then diisopropyl ether is added. The precipitate obtained is filtered off, rinsed with diisopropyl ether, and then dried under reduced pressure at 50°C overnight. 58 mg of a yellow solid are obtained.
Melting point: 344°C
MH+: 438 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.83 (s, 3H), 2.40 (s, 3H), 7.04 (t, J=6.70 Hz, 1H), 7.25-7.44 (m, 3H), 7.55 (d, 4=8.04 Hz, 1H), 7.70 (d, 4=8.71 Hz, 1H), 7.85 (d, 4=6.70 Hz, 1H), 7.92 (s, 1H), 8.04 (d, 4=8.04 Hz, 1H), 8.31 (s, 1H), 9.59 (d, 4=6.70 Hz, 1H), 12.53 (s, 1H).
Example 10: (Compound No. 48) 6-([1(2-Methoxyethoxy)-2-methylindolizin-3-yl]carbonyl}-3-propylquinazoline2,4(1 H,3H)-dione
Methyl 2-anrino-5-[(1-hydroxy-2-methylindolizin-3-yl)carbonyl]benzoate
0.365 mg (5.79 mmol) of ammonium formate and 0.102 g (0.1 mmol) of palladiumon-carbon (10%) are added, at ambient temperature under an inert atmosphere, to 0.8 g (1.93 mmol) of methyl 2-amino-5-([1-(benzyloxy)-2-methylindolizin-3-yl]carbonyl}benzoate in 30 ml of DMF. The reaction medium is stirred for 3 hours at ambient temperature and then filtered. The palladium is rinsed with ethyl acetate. The organic phase is washed with water, dried over sodium sulphate, filtered, and concentrated under reduced pressure. A green oil is obtained.
MH+: 325
Methyl 2-amino-5-{[1-(2-methoxyethoxy)-2-methylindolizin-3-yl]carbonyl}benzoate
0.161 g (1.16 mmol) of 1-bromo-2-methoxyethane and 0.359 mg (1.16 mmol) of caesium carbonate are added, under an inert atmosphere at ambient temperature, to 0.313 g (0.97 mmol) of methyl 2-amino-5-([1-hydroxy-2-methylindolizin-3-yl]carbonyljbenzoate in 10 ml of DMF. The reaction medium is stirred for 24 hours at ambient temperature, hydrolysed with water, and then acidified with a 1N aqueous solution of hydrochloric acid. The aqueous phase is extracted with ethyl acetate. The organic phase obtained is washed with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and then concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. 150 mg of a yellow oil are obtained. MH+: 383
Methyl 5-{[1-(2-methoxyethoxy)-2-methylindolizin-3-yl]carbonyl}-2[(propylcarbamoyl)amino]benzoate
0.108 g (0.37 mmol) of triphosgene diluted in 1 ml of dioxane is added, under an inert atmosphere at ambient temperature, to 0.2 g (0.52 mmol) of methyl 2-amino-5-{[1(2-methoxyethoxy)-2-methylindolizin-3-yl]carbonyl}benzoate in 5 ml of dioxane. The reaction medium is stirred for 1 hour at ambient temperature and then 0.22 ml (1.57 mmol) of triethylamine and 0.09 ml (1.05 mmol) of n-propylamine are added. After stirring for 18 hours, the reaction medium is hydrolysed with water. The aqueous phase is extracted with dichloromethane. The organic phase obtained is dried over sodium sulphate, filtered, and concentrated under reduced pressure. The solid obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. 170 mg of a yellow solid are obtained.
Melting point: 125°C
MH+: 468
VvV
6-([1(2-Methoxyethoxy)-2-methylindolizin-3-yl]carbonyl}-3-propylquinazoline2,4(1 H, 3 H) -dione
0.44 ml (0.44 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.17 g (0.36 mmol) of methyl 5-{[1 -(2-methoxyethoxy)-2methylindolizin-3-yl]carbonyl}-2-[(propylcarbamoyl)amino]benzoate in 5 ml of methanol. The reaction medium is refluxed for 7 hours.
The reaction medium is acidified with a 1N aqueous solution of hydrochloric acid. The precipitate obtained is filtered off, rinsed with water, and dried under reduced pressure at 50°C overnight.
mg of a yellow solid are obtained.
Melting point: 215°C
MH+: 436 1H-NMR (D6-DMSO, 400 MHz) S ppm:
0.89 (t, J=7.17 Hz, 3H), 1.55-1.67 (m, 2H), 1.82 (s, 3H), 3.31 (s, 3H), 3.56-3.61 (m, 2H), 3.83-3.90 (m, 2H), 4.05-4.10 (m, 2H), 6.95 (t, J=7.17 Hz, 1H), 7.19-7.24 (m, 1H), 7.27 (d, J=8.44 Hz, 1H), 7.63 (d, J=8.86 Hz, 1H), 7.87 (d, 3=8.44 Hz, 1H), 8.10 (d, 3=2.11 Hz, 1H), 9.51 (d, 3=7.17 Hz, 1H), 1.7 (s, 1H).
Example 11: (Compound No. 62)
Sodium salt of 6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-1-methyl-4-oxo-1,4dihydroquinolîne-3-carboxylic acid ( 1 -Methoxy-2-methytindolizin-3-yl)(4-nitrophenyl)methanone
1.8 ml (12.92 mmol) of triethylamine are added, at ambient temperature under an inert atmosphere, to 1,7 g (10.77 mmol) of 1-methoxy-2-methylindolizine in 15 ml of dichloroethane, followed, dropwise, by 2.2 g (11.85 mmol) of 4-nitrobenzoic acid chloride. The reaction medium is stirred for 30 minutes at ambient temperature, hydrolysed with a saturated aqueous solution of sodium hydrogen carbonate and then extracted with dichloromethane. The organic phase is washed with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, and then concentrated under reduced pressure. The residue obtained is washed with diethyl ether. 3 g of an orange solid are obtained.
MH+: 311
Melting point: 151 °C 'hL (4-Aminophenyl)(1 -methoxy-2-methylindolizin-3-yl) methanone
1.93 g (34.46 mmol) of iron and 8.21 ml (143.57 mmol) of glacial acetic acid are added to 2.97 g (9.57 mmol) of (1-methoxy-2-methylindolizin-3-yl)(4nitrophenyl)methanone in 120 ml of a 2/1 mixture of water and ethanol. The reaction medium is heated at 80°C for 3 hours. The reaction medium is extracted with ethyl acetate. The organic phase is washed with a saturated aqueous solution of sodium hydrogen carbonate and then with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, and then concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being earned out with a dichloromethane/methanol (90/10) mixture. 2.58 g of a yellow solid are obtained.
MH+: 281
Ethyl 6-[(1-methoxy-2-methylindolizin-3-yI)carbonyl]-4-oxo-1,4-dihydroq u inol ine-3-carboxy late
0.36 ml of diethyl ethoxymethylene malonate is added, under an inert atmosphere at ambient temperature, to 0.4 g (1.43 mmol) of (4-aminophenyl)(1-methoxy-2methylindolizin-3-yl)methanone in 6 ml of toluene. The reaction medium is heated at 110°C for 1 h 45 and then concentrated under reduced pressure. The residue obtained is dissolved in 8.2 ml of diphenyl ether and then heated at 230°C for 1 h 20. After the addition of diisopropyl ether and pentane at ambient temperature, the precipitate formed is filtered off and rinsed with pentane. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 142 mg of a yellow powder are obtained.
Melting point 271°C
MH+: 405
Ethyl 6-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-1 -methyl-4-oxo-1,4di hyd roq u inoli ne-3-carboxy late
3.8 g (27.89 mmol) of potassium carbonate and 1.74 ml (27.89 mmol) of methyl iodide are added, at ambient temperature under an inert atmosphere, to 10 g ¢23.24 mmol) of ethyl 6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-4-oxo-1,4dihydroquinoline-3-carboxylate in 100 ml of DMF. The reaction medium is heated at 90°C for 1 h 30. The reaction medium is filtered through talc, diluted with dichloromethane, and then washed with water. The organic phase is dried with sodium sulphate and then concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 9.1 g of a yellow solid are obtained.
Melting point: 258°C
MH+:419
Sodium salt of 6-((1-methoxy-2-methylindolizin-3-yl)carbonyl]-1-methyl-4-oxo-
1,4-dihydroquinoline-3-carboxylic acid
0.34 ml (0.34 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.348 g (0.83 mmol) of ethyl 6-[(1-methoxy-2-methylindolizin-3yl)carbonyl]-1-methyl-4-oxo-1,4-dihydroquinoline-3-carboxylate in a 4 ml mixture of tbutanol and water (1/1). The reaction medium is refluxed for 2 hours.
The reaction medium is acidified with a 1N aqueous solution of hydrochloric acid. The precipitate obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture.
0.56 ml (0.56 mmol) of a 1N aqueous solution of sodium hydroxide is added to 0.231 g of the solid obtained, in 4 ml of methanol. The reaction medium is stirred for one hour and then diethyl ether is added. The precipitate obtained is filtered off, rinsed with diethyl ether and then dried under reduced pressure at 50°C overnight. 265 mg of a yellow solid are obtained.
Melting point: 258eC
MH+: 391 1 H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.75 (s, 3H), 3.8 (s, 3H), 3.96 (s, 3H), 6.96 (t, J=6.43 Hz, 1H), 7.22 (t, J=6.89, 1H), 7.66 (d, J=8.72 Hz, 1H), 7.82 (d, >8.27 Hz, 1H), 7.96 (d, >8 27 Hz, 1H), 8.45 (s, 1H), 8.69 (s, 1H), 9.57 (d, >7.35 Hz, 1H).
Example 12: (Compound No. 73)
Sodium salt of 6-[(1-methoxy-2-fnethylindolizin-3-yl}carbonyl]-2-methyl-4-oxo-1,4dihydroquinoline-3-carboxylîc acid
6-[(1-Methoxy-2-methylindolizin-3-yl)carbonyl]-1-prop-2-en-1-yl-2H-3,1benzoxazine-2,4(1 H)-dione
0.5 ml (5.71 mmol) of allyl bromide and 0.19 g (4.28 mmol) of sodium hydride at 60% are added, under an inert atmosphere at ambient temperature, to 1 g (2.85 mmol) of
6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2/7-3,1-benzoxazine-2,4(1/-/)-dione in 15 ml of DMF. The reaction medium is stirred for 2 hours at ambient temperature and then concentrated under reduced pressure. After the addition of ice to the residue, the precipitate formed is filtered off, rinsed with water, and dried under reduced pressure at 50°C overnight. 0.773 g of a yellow solid is obtained.
MH+: 391
Ethyl 6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2-methyl-4-oxo-1-prop-2en-1 -yl-1,4-dihydroquinoline-3-carboxylate
0.49 ml (3.80 mmol) of ethyl acetoacetate diluted in 20 ml of anhydrous DMF is added, under an inert atmosphere at ambient temperature, to 0.66 g (1.52 mmol) of 6-((1 methoxy-2-methylindolizin-3-yl)carbonyl]-1 -prop-2-en-1 -yl-2H-3,1 -benzoxazine-2,4(1 H)dione in 30 ml of DMF. The reaction medium is stirred at ambient temperature overnight and then extracted with ethyl acetate. The organic phase obtained is washed with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and then concentrated under reduced pressure.
The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. 0.441 g of a yellow solid is obtained.
Melting point: 101 °C
MH+: 459
Ethyl 6-((1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2-methyl-4-oxo-1,4d ihyd roq u inol ine-3-carboxylate
6.7 mg (0.02 mmol) of dichloro(2,6,10-dodecatriene)-1,12-diyl ruthenium(IV) are added, at ambient temperature under an inert atmosphere, to 0.307 (0.67 mol) of ethyl 6[(1 -methoxy-2-methylindolizin-3-yl)carbonyl]-2-methyl-4-oxo-1 -prop-2-en-1 -yl-1,4dihydroquinoline-3-carboxylate in 12 ml of a mixture of DMFt-butanol and water (1/1). The reaction medium is microwave-heated for 30 minutes at 120°C and then extracted with ethyl acetate. The organic phase obtained is washed with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, filtered, and concentrated under reduced pressure. The precipitate obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture. 94 mg of a yellow solid are obtained.
Melting point: 257°C γΛ
MH+: 419
Sodium salt of 6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2-inethyl-4-oxo-
1,4-dihydroquinoline-3-carboxylic acid
0.32 ml (0.32 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.066 g (0.16 mmol) of ethyl 6-[(1-methoxy-2-methylindolizin-3yl)carbonyl]-2-methyM-oxo-1,4-dihydroquinoline-3-carboxylate in 4 ml of ethanol. The reaction medium is refluxed for 2 hours.
The reaction medium is acidified with a 1N aqueous solution of hydrochloric acid. The precipitate obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (95/5) mixture.
0.04 ml (0.04 mmol) of a 1N aqueous solution of sodium hydroxide is added to 0.019 g of the solid obtained, in 2 ml of methanol. The reaction medium is stirred for one hour and then diethyl ether is added. The precipitate obtained is filtered off, rinsed with diethyl ether and then dried under reduced pressure at 50°C overnight. 16 mg of a yellow solid are obtained.
MH+: 391 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.79 (s, 3H), 2.76 (s, 3H), 3.83 (s, 3H), 6.91 (t, J=6.28 Hz, 1H), 7.17 (t, J=7.70 Hz, 1H), 7.61-7.77 (m, 3H), 8.31 (s, 1H), 9.50 (d, J=6.56 Hz, 1H).
Example 13: (Compound No. 96) 6-[(1-Methoxy-2-methylindolizin-3-yl)carbonyl]-N-methyl-4-oxo-1,4-dihydroqui noli ne-3-carboxam ide
6-[(1-Methoxy-2-methylindolizin-3-yl)carbonyl]-4-oxo-1,4-dihydroquinoline-3carboxylic acid
3.07 ml (37.09 mmol) of a 1N aqueous solution of sodium hydroxide are added, at ambient temperature, to 3 g (7.42 mmol) of ethyl 6-[(1-methoxy-2-methylindolizin-3yl)carbonyl]-4-oxo-1,4-dihydroquinoline-3-cartooxylate in 36 ml of a mixture of t-butanol and water (1/1). The reaction medium is refluxed for 2 hours.
The reaction medium is acidified with a 1N aqueous solution of hydrochloric acid. The precipitate obtained is rinsed with ethyl acetate, with methanol and then with water, and dried under reduced pressure overnight at 50°C. 1.8 g of a yellow-green solid are obtained.
K
At the same time, the organic phase is washed with a saturated solution of sodium chloride, dried over sodium sulphate, and concentrated under reduced pressure. The residue obtained is rinsed with ether, and dried under reduced pressure overnight at 50°C. 0.85 g of a yellow solid is obtained.
Melting point: 289°C
MH+: 377
6-[( 1 -Methoxy-2-methylindolizin-3-yl)carbonyI]-A/-methyl-4-oxo-1,4dihydroquinoline-3 -carboxamide
0.36 g (5.31 mmol) of methylamine hydrochloride, 1.3 g (3.99 mmol) of TOTU and 1.37 g (10.63 mmol) of DIEA are added to 1 g (2.66 mmol) of 6-[(1-methoxy-2methylindolizin-3-yl)carbonyl]-4-oxo-1,4-dihydroquinoline-3-carboxylic acid in 23 ml of anhydrous DMF. The reaction medium is stirred at ambient temperature under a nitrogen atmosphere for 8 h. 0.36 g (5.33 mmol) of methylamine hydrochloride is added to the reaction medium. After 18 h at ambient temperature, the reaction medium is hydrolysed with a 1N solution of HCI and then extracted with ethyl acetate. The organic phase is washed with a saturated solution of sodium chloride, dried over sodium sulphate, and then concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 0.06 g of a yellow solid is obtained.
Melting point: 324°C
MH+ = 390 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.75 (s, 3 H) 2.86 (d, 4=4.8 Hz, 3 H) 3.82 (s, 3 H) 6.99 (td, 4=6.9, 1.3 Hz, 1 H) 7.25 (ddd, 4=8.8, 6.8, 0.9 Hz, 1 H) 7.68 (d, 4=8.8 Hz, 1 H) 7.81 (d, 4=8.5 Hz, 1 H) 7.96 (dd, 4=8.6, 2.0 Hz, 1 H) 8.40 (d, 4=1.9 Hz, 1 H) 8.80 (s, 1 H) 9.61 (d, 4=7.1 Hz, 1 H) 9.70 - 9.82 (m, 1 H) 12.88 (br. s., 1 H).
Example 14: (Compound No. 105)
N-1 -Dimethyl-6-[(2-methylindolizin-3-yl)carbonyI]-4-oxo-1,4-dihydroquinoline-3carboxamide (2-Methylindolizin-3-y1)(4-nitrophenyl)methanone
4.54 ml (32.52 mmol) of triethylamine are added, at ambient temperature under an inert atmosphere, to 3.56 g (27.14 mmoles) of 2-methylindolizine in 15 ml of dichloroethane, followed, dropwise, by 5.53 g (29.85 mmol) of 4-nitrobenzoic acid chloride. The reaction medium is stirred for 18 h at ambient temperature, hydrolysed with a saturated aqueous solution of sodium hydrogen carbonate and then extracted with dichloromethane. The organic phase is washed with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, and then concentrated under reduced pressure. The residue obtained is washed with diethyl ether. 5.69 g of a yellow solid are obtained.
MH+: 281
Melting point: 149°C (4-Aminophenyl)(2-methylindolizin-3-yl)methanone
5.66 g (86.57 mmol) of zinc and 20.63 ml (360.71 mmol) of glacial acetic acid are added to 6.74 g (24.05 mmol) of (2-methylindolizin-3-yl)(4-nitrophenyl)methanone in 120 ml of a 2/1 mixture of water and ethanol. The reaction medium is heated at 80°C for 4 hours. 0.57 g (8.7 mmol) of zinc and 2.06 ml of glacial acetic acid are added. Refluxing is maintained for 1 hour. At ambient temperature, the reaction medium is filtered off. The residue obtained is rinsed with ethyl acetate and with methyl THF. The organic phase is washed with a saturated aqueous solution of sodium hydrogen carbonate and then with a saturated aqueous solution of sodium chloride, dried over sodium sulphate, and then concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 4.9 g of a yellow solid are obtained.
MH+: 251
Melting point: 186°C
Ethyl 6-[(2-methylindolizin-3-yl)carbonyI]-4-oxo-1,4-dihydroquinoline-3carboxylate
1.69 ml of diethyl ethoxymethylene malonate are added, under an inert atmosphere at ambient temperature, to 1.83 g (6.8 mmol) of (4-aminophenyl)(2-methylindolizin-3yl)methanone in 23 ml of toluene. The reaction medium is heated at 110°C for 1 h 45 and then concentrated under reduced pressure. The residue obtained is dissolved in 45 ml of diphenyl ether and then heated at 230°C for 30 minutes. After the addition of diisopropyl ether at ambient temperature, the precipitate formed is filtered off, rinsed with diisopropyl ether, with methanol and then with dichloromethane, and dried under reduced pressure at 50°C overnight. 1.2 g of a yellow powder are obtained.
MH+: 375
Ψι b
Melting point 287’C
Ethyl 6-[(2-methylindolizin-3-yl)carbonyl]-1-methyl-4-oxo-1,4-di hydroquinoline3-carboxylate
1.53 g (11.12 mmol) of potassium carbonate and 0.69 ml (11.12 mmol) of methyl iodide are added, at ambient temperature under an inter atmosphere, to 3.73 g (9.27 mmol) of ethyl 6-[(2-methylindolizin-3-yl)carbonyl]-4-oxo-1 T4-dihydroquinoline-3carboxylate in 100 ml of DMF. The reaction medium is heated at 90°C for 2 h. 0.384 g (2.78 mmol) of potassium carbonate and 0.173 ml (2.78 mmol) of methyl iodide are added and then the heating is continued for 40 minutes. The reaction medium is hydrolysed with water and then extracted with ethyl acetate and with dichloromethane. The organic phase is washed with a saturated solution of sodium chloride, dried over sodium sulphate, and then concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 3.15 g of a yellow solid are obtained.
Melting point: 232°C
MH+: 389
6-[(2-Methylindolizin-3-yl)carbonyl]-1 -methyl-4-oxo-1,4-di hydroquinol ine-3carboxylic acid
0.27 ml (3.22 mmol) of a 1N aqueous solution of sodium hydroxide is added, at ambient temperature, to 0.5 g (1.29 mmol) of ethyl 6-[(2-methylindolizin-3-yl) carbonyl]-1methyl-4-oxo-1,4-dihydroquinoline-3-carboxylate in 9 ml of a mixture of t-butanol and water (1/1). The reaction medium is refluxed for 1 hour, acidified with a 1N aqueous solution of hydrochloric acid at ambient temperature, and then extracted with dichloromethane. The organic phase is washed with water, dried over sodium sulphate, and concentrated under reduced pressure. The residue obtained is rinsed with ether and then dried under reduced pressure at 50°C. 448 mg of a yellow solid are obtained.
Melting point: 308°C
MH+: 361
A/-1-Dimethyl-6-[(2-methylindolizin-3-yl)carbonyl]-4-oxo-1,4-dihydroquinoline3-carboxamide
0.16 g (2.44 mmol) of methylamine hydrochloride, 0.6 g (1.59 mmol) of HBTU and 0.74 ml (4.27 mmol) of DIEA are added to 0.44 g (1.22 mmol) of 6-[(2-methylindolizin-3 yl)carbonyl]-1-methyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid in 7 ml of anhydrous DMF. The reaction medium is stirred at ambient temperature under a nitrogen atmosphere for 5 h 30. 0.16 g (2.44 mmol) of methylamine hydrochloride, 602 mg (1.29 mmol) of HBTU and 0.74 ml (4.27 mmol) of DIEA are added to the reaction medium. After 48 h at ambient temperature, the reaction medium is hydrolysed with a saturated solution of sodium hydrogen carbonate and then extracted with dichloromethane. The organic phase is washed with a saturated solution of sodium chloride, dried over sodium sulphate, and then concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 0.273 g of a yellow solid is obtained. Melting point: 328°C
MH+ = 374 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.85 (s, 3 H) 2.86 (d, /=4.8 Hz, 3 H) 4.08 (s, 3 H) 6.53 (s, 1 H) 7.01 (td, /=6.9, 1.3 Hz, 1 H) 7.24 - 7.33 (m, 1 H) 7.67 (d, /=8.8 Hz, 1 H) 7.96 (d, /=8.8 Hz, 1 H) 8.06 (dd, /=8.7, 2.1 Hz, 1 H) 8.48 (d, /=2.0 Hz, 1 H) 8.92 (s, 1 H) 9.61 (d, /=7.0 Hz, 1 H) 9.67 - 9.76 (m, 1 H).
Example 15: (Compound No. 106)
AM -Dimethyl-6-([2-methyl-1-(pyridin-4-yl)indolizin-3-yr]carbonyl}-4-oxo-1,4* dihydroquinoline-3-carboxamide hydrochloride
6-[(1-Bromo-2-methylindolizin-3-yl)carbonyl]-AM-dimethyl-4-oxo-1,4dihydroquinoline-3-carboxamide
0.108 mg (0.6 mmol) of N-bromosuccinimide is added, at ambient temperature under a nitrogen atmosphere, to 0.188 g (0.5 mmol) of N-1-dimethyl-6-[(2-methylindolizin3-yl)carbonyl]-4-oxo-1,4-dihydroquinoline-3-carboxamide in 6 ml of dichloromethane. After stirring for 3 h at ambient temperature, the reaction medium is hydrolysed with a saturated solution of sodium hydrogen carbonate and then extracted with dichloromethane. The organic phase is washed with a saturated solution of sodium chloride, dried over sodium sulphate, and then concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 0.217 g of a yellow solid is obtained. MH+ = 453
N-1 -Dimethyl-6-([2-methyl-1 -(pyriciin-4-yl)inclolizin-3-yl]carbonyl}-4-oxo-1,4d ihydroqui noli ne-3-carboxamide
0.061 g (0.29 mmol) of 4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)pyridine, 0.178 g (0.72 mmol) of potassium phosphate dihydrate and 0.0055 g (0.004 mmol) of tetrakis (triphenylphosphine)palladium are added, under an argon atmosphere at ambient temperature, to 0.108 g (0.24 mmol) of 6-[(1-bromo-2-methylindolizin-3-yl)carbonyl]-N-1dimethyl-4-oxo-1,4-dihydroquinoline-3-carboxamide in 2.5 ml of DMF. The reaction medium is microwave-heated for 15 minutes at 150°C. The reaction medium is filtered through talc. The residue obtained is washed with dichloromethane and with methanol. The organic phase is concentrated under reduced pressure. The residue obtained is purified by silica gel column chromatography, elution being carried out with a dichloromethane/methanol (90/10) mixture. 53 mg of a yellow solid are obtained.
This solid is taken up in 2 ml of methanol. 0.16 ml (0.16 mmol) of a 1N solution of HCI is added at ambient temperature under a nitrogen atmosphere. After stirring for 5 minutes, ether is added. The precipitate obtained is filtered off, rinsed with ether, and then dried under reduced pressure at 50°C overnight. 55 mg of a yellow solid are obtained.
Melting point 228°C
MH+ = 451 1H-NMR (D6-DMSO, 400 MHz) δ ppm:
1.99 (s, 3 H) 2.87 (d, 7=4.7 Hz, 3 H) 4.09 (s, 3 H) 7.20 (t, 7=6.5 Hz, 1 H) 7.48 - 7.55 (m, 1 H) 7.93 (d, 7=9.0 Hz, 1 H) 7.99 (d, 7=8.9 Hz, 1 H) 8.02 (d, 7=5.6 Hz, 2 H) 8.19 (dd, 7=8.8, 2.0 Hz, 1 H) 8.65 (d, 7=2.0 Hz, 1 H) 8.83 (d, 7=6.5 Hz, 2 H) 8.94 (s, 1 H) 9.46 (d, 7=7.0 Hz, 1 H) 9.65-9.74 (m, 1 H).
The table which follows illustrates the chemical structures and the physical properties of some compounds according to the invention. In this table:
- Me and Et represent, respectively, methyl and ethyl groups;
- the wavy line represents the bond attached to the rest of the molecule;
- Mp represents the melting point of the compound, expressed in degrees Celsius;
- M+H+ represents the mass of the compound, obtained by LC-MS (Liquid Chromatography - Mass Spectroscopy).
Table
(Ο
No. | Ri | Ra | d- | Salt | Mp (°C) | M+H* |
1 | -OMe | Me | / | 292 | 392 | |
2 | -OMe | Me | / | 343 | 350 | |
3 | -OMe | Me | / | 285 | 334 | |
4 | -OMe | Me | dl·· | ! | 298 | 364 |
5 | -OMe | Me | ! | 277 | 392 | |
6 | -OMe | Me | o o N-V dl· | HCI | 268 | 461 |
7 | -OMe | Me | \ °\ -dl· | / | 260 | 421 |
8 | -OMe | Me | o -W | HCI | 255 | 447 |
9 | -OMe | Me | /} | / | 317 | 378 |
10 | -OMe | Me | / | 345 | 432 | |
11 | -OMe | Me | Na | 351 | 408 | |
13 | -OMe | Me | ! | 313 | 407 | |
14 | Me | Na | 361 | 482 | ||
15 | -OMe | Me | 1-» | / | 287 | 348 |
16 | -OMe | Me | / | 291 | 402 |
AV
17 | -OMe | Me | ° ^OH | / | 294 | 394 |
18 | -OMe | Me | ! | 292 | 408 | |
19 | -OMe | Me | ! | 211 | 420 | |
20 | OMe | Me | 0 o- dfl | ! | 254 | 422 |
21 | -OMe | Me | Na | 333 | 422 | |
22 | phenyl | Me | o o-~y YP | ! | 246 | 482 |
23 | -OMe | Me | PP | ! | 147 | 406 |
24 | -OMe | phenyl | o ° Pp° | Na | 337 | 470 |
25 | -OMe | phenyl | Ppy | ! | 220 | 498 |
26 | -OMe | Me | O | / | 213 | 422 |
27 | -OMe | Me | Ο d?- | / | 266 | 408 |
28 | -OMe | Me | o p-d dfi | / | 230 | 436 |
29 | -OMe | Me | O dd° | ! | 191 | 420 |
30 | -OMe | Me | dd \ | ! | 149 | 466 |
31 | -OMe | Me | q o~~~ dd°° | ! | 176 | 436 |
32 | -OMe | Me | dd | Na | 344 | 406 |
33 | -OMe | phenyl | / | 250 | 484 |
34 | -OMe | Me | 0 0 n z~O O-s*·” | / | 230 | 452 |
35 | -OMe | Me | \ O | / | 290 | 435 |
36 | -OMe | Me | 0 | ! | 176 | 446 |
37 | -OMe | Me | o | ! | 145 | 389 |
38 | -OMe | Me | 0 λ-ΝΖ^ | Na | 339 | 432 |
39 | -OMe | Me | ^Y° ϊχ 1 o \ | ! | 297 | 437 |
40 | -OMe | phenyl | H o .Nn/P | ! | 353 | 483 |
41 | -OMe | phenyl | / Ο N-- | ! | 313 | 497 |
42 | -OMe | phenyl | 0 | / | 274 | 499 |
43 | Me | Na | 344 | 438 | ||
44 | -OMe | phenyl | ά... Γχ i i | Na | 304 | 484 |
45 | -OMe | phenyl | O | / | 228 | 508 |
46 | -OMe | Me | / | 267 | 446 | |
47 | -OMe | Me | O z° | Na | 310 | 392 |
48 | -O-(CH2)2och3 | Me | ! | 215 | 436 | |
49 | -OMe | Me | „ N n Q V— 1 k?~N ~O?-° | Na | / | 418 |
50 | -OMe | phenyl | Na | 321 | 496 |
V f
51 | -OMe | Me | / | 220 | 365 | |
52 | -OMe | Me | Na | 283 | 422 | |
53 | -OMe | Me | PP | ! | 266 | 423 |
54 | -OMe | Me | ! | 268 | 449 | |
55 | -OMe | Me | o H Q—/ dp | ! | 226 | 479 |
56 | -OMe | Me | 0 °\ o/~~~ | ! | 262 | 419 |
57 | -OMe | phenyl | Q NEt, 'dp | ! | 236 | 525 |
58 | -OMe | phenyl | PP (chiral) | ! | 249 | 484 |
59 | -OMe | Me | / | 249 | 436 | |
60 | -OMe | phenyl | LLJ y | ! | ! | 512 |
61 | -OMe | Me | o λΛ--ο ? | ! | 101 | 459 |
62 | -OMe | Me | 0 θ \\ | Na | 258 | 391 |
63 | -OMe | Me | ! | 150 | 450 | |
64 | -OMe | phenyl | ! | 265 | 511 | |
65 | -OMe | phenyl | . 1 q '= N-- (chiral) | ! | 225 | 511 |
66 | -OMe | phenyl | > ώ · | ! | 307 | 511 |
67 | -OMe | phenyl | dp | / | 324 | 539 |
68 | -OMe | Me | \ O N-~_ rF | ! | 276 | 449 |
69 | -OMe | Me | . /' | ! | 290 | 461 |
70 | -OMe | Me | 0 °\ /-- | ! | ! | 433 |
71 | -OMe | Me | o o 4 --y H | 1 | 257 | 419 |
72 | -OMe | Me | 0 ο Ά ΑΛ-Ο | Na | 254 | 405 |
73 | -OMe | Me | 0 O A γζ~Ό Ά. /z N | Na | ! | 391 |
74 | -OMe | Me | O 0 \k Α/^ΝΜθ., k-GZ Ny | ! | 268 | 432 |
75 | -OMe | Me | 0 0 'X Χ/^ΝΗΜβ Z/ N | / | 258 | 418 |
76 | -OMe | Me | 0 0 A V^ / ’NH2 | / | 313 | 404 |
77 | -OMe | Me | O 0 \\ z/^N X | l | 91 | 461 |
78 | -OMe | Me | o o \\ zZ N X | Na | 267 | 433 |
79 | X'. | Me | X X. | HCI | 264 | 519 |
80 | χΟ^γΟΗ O | Me | X.. X | Na | 246 | 590 |
81 | χζΧγΟΗ 0 | Me | ’’’N\f ''X..X ’’’’F -¾ X. X-ZZ~N | Na | 267 | 562 |
82 | OMe | Me | Q 0 \\ V· /Z~ N H | ! | 271 | 405 |
83 | OMe | Me | O ο Ά H | Na | 270 | 377 |
84 | OMe | Me | 0 Άη? | ! | ! | 333 |
85 | OMe | Me | /-Λί°Ν V z/'N H | ! | 325 | 358 |
86 | OMe | Me | conh2 Pr | ! | 224 | 432 |
87 | OMe | Me | A ° V/N νζ~~Ν 'L /Z~~N v-^Z H | Na | 336 | 401 |
88 | OMe | Me | CONMe2 Me | / | 298 | 418 |
89 | OMe | Me | O O 'X V/'-NHMe V__jZ~N Me | / | 294 | 404 |
T16295
90 | OMe | Me | 0 Me | / | 207 | 444 |
91 | OMe | Me | COOEt ? | / | 144 | 518 |
0 ^~o | ||||||
92 | OMe | Me | o 0 AZ~-o ? | ! | 216 | 488 |
0 | ||||||
93 | OMe | Me | COOEt zZ'N | ! | 163 | 463 |
< OMe | ||||||
94 | OMe | Me | O O \\ 1 Ao \\ V~~N | Na | 289 | 435 |
( OMe |
Vit
95 | OMe | Me | O 0 z Me | OMe | / | 208 | 448 |
0 0 A | 'NHMe | ||||||
96 | OMe | Me | / | 324 | 390 | ||
V Z^NZ --7 H | |||||||
O 0 Λ | ~NHPr | ||||||
97 | OMe | Me | / | 220 | 432 | ||
—-P \ Me | |||||||
O O A | 'NHMe | ||||||
98 | OMe | Me | \ /—nz ) | / | 239 | 448 | |
( OMe | |||||||
O | CN | ||||||
99 | OMe | Me | ! | 304 | 372 | ||
k //^ ---7 \ Me | |||||||
COOEt | |||||||
100 | OMe | Ph | t zZN --77 \ Me | ! | / | 481 | |
0 Ο Λ | ~~O | ||||||
101 | OMe | Ph | Na | 240 | 453 | ||
t. // N ^--7 \ Me |
(?) L·
102 | Η | Me | 0 | COOEt ~N \ Me | I | 232 | 389 |
103 | bO-(CH2)2och3 | Me | 0 ~~o | 0 L / 0 'N \ Me | Na | / | 435 |
0 | 0 \ Z^O | ||||||
104 | Me | / | 163 | 488 | |||
t./ | N Me | ||||||
0 | CONHMe | ||||||
105 | Η | Me | / | 328 | 374 | ||
N Me | |||||||
o | CONHMe | ||||||
106 | X) | Me | ~~0- | N | HCI | 228 | 451 |
Me | |||||||
0 | CONHMe | ||||||
107 | .Ο | Me | ^0- | N Me | HCI | 324 | 451 |
o | CONHMe | ||||||
A | |||||||
108 | AJk.OH | Me | 0J-- | Na | 311 | 494 | |
π ο | N Me | ||||||
o | CONHMe | ||||||
109 | O-(CH2)2- och3 | Me | Λ0 | N \ | ! | / | 448 |
Me |
110 | Me | CONHMe Me | HCl | / | 501 | |
111 | Ph | Me | 0 o \\ ° Me | Na | 521 | |
CONHMe | ||||||
112 | Ph | Me | 'N Me | / | 450 |
The compounds according to the invention were the subject of pharmacological assays for determining their FGF-inhibiting effect.
Example 16: FGF-2-induced in vitro angiogenesis of HUVEC cells
In order to demonstrate the ability of the FGF-R antagonists of the present invention to inhibit FGF-induced angiogenesis, in vitro angiogenesis experiments were carried out with human endothelial cells of HUVEC type stimulated with FGF-2 or b-FGF.
To do this, matrices composed of matrigel (growth factor reduced matrigel, Becton Dickinson 356230) and collagen (rat tail collagen type I, Becton Dickinson 354236) are deposited, at a rate of 160 pl, into each chamberslide well (Biocoat Cellware collagen. Type I, 8-well culturesides: Becton Dickinson 354630), or 60 μΙ per well of 96-well plates (Biocoat collagen I cellware, Becton Dickinson 354407). The matrix is prepared by mixing 1/3 of matrigel, 1 mg/ml final concentration of collagen, NaOH (0.1N) (0.026x the volume of collagen in μΙ) and 1x PBS, and the volume is then adjusted with water. The gels are kept at 37°C for 1 hour so as to allow them to polymerize. Next, the human vein endothelial cells (HUVECs ref: C-12200 - Promocell) were seeded at 15 x 103 or 6 * 103 cells/well in 400 or 120 μΙ (for the 8-well or 96-well plates respectively) of EBM medium (Clonetics C3121) + 2% FBS + 10 pg/ml hEGF. They were stimulated with 1 or 3 ng/ml of FGF-2 (R&D systems, 133-FB-025; Invitrogen, PHG0026) for 24 h at 37°C in the presence of 5% CO2. After 24 hours, the length of the network of microtubules formed was measured using a computer-assisted image analysis system (Imagenia Blocom, Courtaboeuf, France) and the total length of the pseudotubules in each well was determined. The average total length of the microcapillary network was calculated in pm for each condition corresponding to the average of 6 replicates.
Stimulation with FGF2 makes it possible to induce the formation of new tubules. An FGF-R antagonist is considered to be active in this test as long as it is capable of partially inhibiting this angiogenesis at a dose less than or equal to 300 nM.
Example of screening for FGF-R antagonists
In this experiment, the molecules are evaluated at 3 and 30 nM on induction of the angiogenesis of HUVEC human cells by FGF-2. Antagonist compounds No. 87, 88, 89 and 90 are declared active since they exhibit an inhibitory activity of pseudotubule formation which is greater than or equal to 20% at a dose less than or equal to 300 nM.
Table 1: In vitro angiogenesis of HUVEC cells stimulated with FGF-2 and effect of FGF-R antagonists (inhibition of angiogenesis as a percentage of the control)
Percentage inhibition of angiogenesis (%) | ||
Compounds No. | 3 nM | 30 nM |
87 | 41 | 33 |
88 | 39 | 33 |
89 | 39 | 46 |
90 | 26 | 46 |
96 | 123 | 129 |
105 | 25 | 105 |
Example 17: FGF-2-induced in vitro proliferation of HUVEC cells
In order to demonstrate the ability of the FGF-R antagonists of the present invention to inhibit FGF-induced cell proliferation, in vitro proliferation experiments were carried out with human endothelial cells of HUVEC type stimulated with FGF-2 or b-FGF.
To do this, HUVEC human vein endothelial cells (promocell, C-12200) are seeded at a rate of 5000 cells per well of a 96-well plate (Biocoat collagen I cellware, Becton Dickinson 354650) in 100 μ! of RPMI 1640 deprivation medium (Invitrogen, 31872-025) supplemented with 0.5% or 1% FCS, 2 mM glutamine, 1x sodium pyruvate (Invitrogen, 11360-039) and 1x NEAA (Invitrogen, 11140-035), overnight at 37°C in the presence of 5% CO2. The following morning, the medium is suctioned-off and replaced with 50 pl of deprivation medium containing the antagonists at a 2x concentration, to which are added 50 μΙ of FGF-2 (R&D systems, 133-FB-025; Invitrogen, PHG0026) at 0.2 ng/ml (i.e. 2x). After 48 or 72 h, 100 μΙ of Cell Titer-GLO™ Luminescent Cell Viability Assay (Promega, G7571) are added for 10 min in order to measure, by means of a luminometer, the amount of ATP present in the cells and which is in relation to the number of cells per well corresponding to the cell proliferation.
The antagonists of the present invention are considered to be active as long as they are capable of inhibiting FGF-2-induced proliferation of HUVEC cells at a 'éÎL dose less than or equal to 300 nM.
Example of HUVEC cell proliferation induced by FGF-2 and inhibited by FGF-R antagonists
Compounds No. 66 and No. 69 inhibit the FGF-2-induced cell proliferation since, in their presence, a reduction in proliferation of greater than or equal to 20% is observed for doses less than or equal to 300 nM.
Table 2: Cell proliferation of HUVEC cells stimulated with FGF-2 and effect of
FGF-R antagonists (inhibition of proliferation as percentage of the control)
Percentage inhibition of angiogenesis (%) | ||
Compounds No. | 30 nM | 300 nM |
69 | 26 | 49 |
66 | 17 | 45 |
96 | 123 | 129 |
105 | 14 | 123 |
More generally, all the compounds according to the invention are active, at the dose of 300 nM, in in vitro angiogenesis of HUVEC cells induced by FGF-2 or in in vitro proliferation of HUVEC cells induced by FGF-2.
Example 18: Model of inflammatory angiogenesis in mice
Angiogenesis is required for the development of chronic inflammatory diseases such as rheumatoid arthritis. The formation of new vessels allows not only the perfusion of pathological tissues, but also the transport of cytokines responsible for establishing the chronicity of the disease.
The model described by Colville-Nash et al., in 1995, makes it possible to study pharmacological agents capable of modulating the occurrence of angiogenesis in an inflammatory context. The model is developed on OF1 female mice (Charles River Laboratories) weighing approximately 25 g, and by groups of
12. The animals are anaesthetized with sodium pentobarbital (60mg/kg; Sanofi Nutrition Santé animale)) intraperitoneally. An air pocket is created on the back of the mouse by subcutaneous injection of 3 ml of air. After they have awoken, the animals receive a treatment generally by gavage, and receive an injection of 0.5 ml of Freund’s adjuvant (Sigma) with 0.1% of croton oil (Sigma) in the pocket. Seven
K days later, the mice are again anaesthetized and placed on a hot plate at 40°C. One ml of carmine red (Aldrich Chemicals, 5% in 10% of gelatin) is injected into the tail vein. The animals are then placed at 4°C for 2-3 hours. The skins are then taken and dried for 24 h in an oven at 56°C. The dry tissues are weighed and placed in
1.8 ml of digestion solution (2 mM dithiothreitol, 20 mM Νθ2ΗΡΟ4, 1 mM EDTA, 12 U/ml papain) for 24 h. The dye is then dissolved in 0.2 ml of 5M NaOH. The skins are centrifuged at 2000 rpm for 10 min at ambient temperature. The supernatants are filtered through 0.2 pm cellulose acetate membranes. The filtrates are read in a spectrophotometer at 492 nm against a carmine red calibration range. Two parameters are studied: the dry weight of the granuloma and the amount of dye after digestion of the tissues. The results are expressed as mean values (± sem). The differences between the groups are tested with an ANOVA followed by a Dunnett’s test, of which the reference group is the “solvent control group.
The FGF-R antagonists are evaluated between 1 and 50 mg/kg using methylcellulose/tween (0.6% v/v) as vehicle or any other vehicle which allows the active ingredient to be solubilized. The molecules are administered daily, orally (one or two times a day) by gavage. The antagonists of the present invention are considered to be active as long as they enable a significant reduction in the angiogenic parameter, i.e. a reduction in the amount of carmine red dye in the skins of the animals tested.
Example of evaluation of FGF-R antagonists in the model of inflammatory angiogenesis in mice. Compounds No. 76 and No. 35 (example 1) at 10 or 30 mg/kg, after one week of daily treatment, significantly reduce the two parameters measured: the weight of the granuloma (dry weight of the skin) corresponding to the inflammation part of the model, and the dye content corresponding to the angiogenesis.
Table 3: Effect of the FGF-R antagonists, in a model of inflammatory angiogenesis, on the dry weight of the skins or on their content of carmine red dye.
Model of inflammatory angiogenesis | % inhibition of the inflammatory parameter (mass of the granuloma) | % inhibition of the angiogenic parameter (dye content) |
Compound No. 76; 10 mg/kg | 19 | 23 |
Compound No. 62 (example 11); 10 mg/kg | 38 | 43 |
Compound No. 35 (example 1 ); 30 mg/kg | 36 | 36 |
Compound No. 1; 30 mg/kg | 24 | 44 |
Compound No. 11; 10 mg/kg | 23 | 14 |
Compound No. 20; 30 mg/kg | 28 | 25 |
Compound No. 15 (example 8); 30 mg/kg | 21 | 21 |
Compound No. 69; 30 mg/kg | 35 | 11 |
Compound No. 76; 10 mg/kg | 19 | 23 |
Example 19: 4T1 orthotopic mammary carcinoma model in mice
In order to evaluate the effect of the FGF-R antagonists in a murine tumour model, 4T1 mouse mammary carcinoma cells are injected into the mammary gland. The cells proliferate until the formation of a tumour after infiltration of the cells of the tumour microenvironment.
The 4T1 cells are cultured in RPMI 1640 medium containing 10% FCS and 1% glutamine, supplemented with 1 mg/ml of geneticin. On the day of the injection into the mouse, the 4T1 cell concentration is adjusted to 2 χ 106 cells/ml in PBS in order to inject 1 χ 10s cells in 50 yl.
Mice (Balb/c, female, Charles River, approximately 8+/-2 weeks old) are anaesthetized by intraperitoneal injection of a mixture of 5% Rompun (xylazine), 10% Imalgene (ketamine) and 85% NaCI, in a proportion of 10 ml/kg. The injection zone (top-right nipple) is disinfected with hexomedine. After having vortexed the cells, 50 pl are removed in a syringe and injected into the nipple with a 26G needle. The day of injection corresponds to D1. There are 15 mice in each group of mice (10 mice will be devoted to the ELISA assays and 5 mice to the histology). The FGF-R antagonists are evaluated at between 1 and 50 mg/kg in methylcellulose/tween (0.6% v/v) or any other vehicle which makes it possible to solubilize the active ingredient. The molecules are administered daily, orally (one or two times a day) by gavage, this taking place from D5 to D21, which is the day before the samples are taken. From D5, the tumours are measured as soon as possible, every two days, or even every day at the end of the experiment, using a caliper (sliding caliper). It is done in the following way: the longest length (L) and the perpendicular to the centre (I) are measured in mm. The volume in mm3 is then defined by means of the mathematical formula which determines the volume of an ellipsoid: (I2 χ L) χ 0.52. On the day the samples are taken, generally D22, the mice are sacrificed by means of an excess of sodium pentobarbital after having measured the volume of the tumours. The tumours are then cleared, photographed and weighed. The lungs are also removed and the metastases are counted after boin staining.
The antagonists of the present invention are considered to be active as long as they allow a significant reduction in the volume of the tumour and/or any number of lung metastases.
Example of 4T1 mammary carcinoma in mice
The compounds considered to be active in the inflammatory angiogenesis model are evaluated in the 4T1 mammary carcinoma model in mice at between 1 and 50 mg/kg and showed a reduction in tumour volume of up to 37% and a decrease in the number of lung metastases of up to 38%.
It therefore appears that the compounds of formula (I) according to the present invention, by virtue of their FGF antagonist effect, reduce in vitro and in vivo, angiogenesis, tumour growth and metastasization.
Generally, FGFs and their receptors play an important role, by means of autocrine, paracrine or juxtacrine secretions, in phenomena where there is dysrégulation of the stimulation of cancer cell growth. Furthermore, FGFs and their receptors affect tumour angiogenesis which plays a predominant role both on tumour growth and also on metastasization phenomena.
Angiogenesis is a process in which new capillary vessels are generated from preexisting vessels or by mobilization and differentiation of bone marrow cells. Thus, both uncontrolled proliferation of endothelial cells and mobilization of angioblasts from the bone marrow are observed in tumour neovascularization processes. It has been shown, in vitro and in vivo, that several growth factors stimulate endothelial proliferation, and in particular FGF-1 or a-FGF and FGF-2 or b-FGF. These two factors induce proliferation, migration and protease production by endothelial cells in culture and neovascularization in vivo. a-FGF and b-FGF interact with endothelial cells by means of two classes of receptors, high-affinity receptor tyrosine kinases (FGF-Rs) and low-affinity receptors of heparin sulphate proteoglycan type (HSPGs) located at the surface of cells and in extracellular matrices. Although the paracrine role of these two factors on endothelial cells is widely described, these FGFs could also intervene on the cells through an autocrine process. Thus, FGFs and their receptors represent very relevant targets for therapies aimed at inhibiting angiogenesis processes (Keshet E, Ben-Sasson SA., J. Ciin. invest, (1999), Vol. 501, pp. 104-1497; Presta M, Rusnati M, Dell’Era P, Tanghetti E, Urbinati C, Giuliani R et al. New York: Plenum Publishers, (2000), pp. 7-34, Billottet C, Janji B, Thiery J.P., Jouanneau J, Oncogene, (2002) Vol. 21, pp. 8128-8139).
Moreover, systematic studyes aimed at determining the expression due to FGFs and their receptors (FGF-Rs) of various types of tumour cells demonstrate that a cell response to these two factors is functional in a large majority of human tumour lines studied. These results support the hypothesis that an FGF receptor antagonist could also inhibit tumour cell proliferation (Chandler LA, Sosnowski BA, Greenlees L, Aukerman SL, Baird A, Pierce GF., Int.J.Cancer, (1999), Vol. 58, pp. 81-451).
FGFs play an important role in the growth and maintenance of prostate cells. It has been shown, both in animal models and in humans, that an impairment in the cell response to these factors plays an essential role in the progression of prostate cancer. Specifically, in these pathological conditions, both an increase in the production of a-FGF, b-FGF, FGF-6, FGF-8 etc., by the fibroblasts, stromal cells, residual basal cells and endothelial cells present in the tumour and an increase in the expression of FGF receptors and ligands by the tumour cells are recorded. Thus, a paracrine stimulation of prostate cancer cells takes place, and this process appears to be a major component of this pathological condition. A compound which has an FGF receptor antagonist activity, such as the compounds of the present invention, may represent a therapy of choice in these pathological conditions (Giri D, Ropiquet F., Clin.Cancer Res., (1999), Vol. 71, pp. 5-1063; Doll JA, Reiher FK, Crawford SE, Pins MR, Campbell SC, Bouck NP., Prostate, (2001), Vol. 305, pp. 49-293) (Sahadevan et al., 2007) (Kwabi-Addo et al., 2004).
Several studies show the presence of FGFs and of their receptors, FGF-Rs, both in human breast tumour lines (in particular MCF7) and in tumour biopsies. These
K factors appear to be responsible, in this pathological condition, for the appearance of the very aggressive phenotype and induce a strong metastasization. Thus, a compound which has FGF-R receptor antagonist activity, such as the compounds of formula I, may represent a therapy of choice in these pathological conditions (Vercoutter-Edouart A-S, Czeszak X, Crépin M, Lemoine J, Boilly B, Le Bourhis X et al., Exp.Cell Res., (2001), Vol. 262, pp. 59-68) (Schwertfeger, 2009).
Cancerous melanomas are tumours which induce metastases with a high frequency and which are very resistant to the various chemotherapy treatments. The angiogenesis processes play a predominant role in the progression of a cancerous melanoma. Furthermore, it has been shown that the probability of the occurrence of metastases increases very greatly with the increase in the vascularization of the primary tumour. Melanoma cells produce and secrete various angiogenic factors, including a-FGF and b-FGF. Moreover, it has been shown that inhibition of the cellular effect of these two factors by means of the soluble FGF-R1 receptor blocks melanoma tumour cell proliferation and survival in vitro and blocks tumour progression in vivo. Thus, a compound which has an FGF receptor antagonist activity, such as the compounds of the present invention, may represent a therapy of choice in these pathological conditions (Rofstad EK, Halsor EF., Cancer Res., (2000); Yayon A, Ma Y-S, Safran M, Klagsbrun M, Halaban R., Oncogene, (1997), Vol. 14, pp. 2999-3009).
Glyoma cells produce a-FGF and b-FGF in vitro and in vivo, and have various FGF receptors at their surface. This therefore suggests that these two factors play a pivotal role, by means of an autocrine and paracrine effect, in the progression of this type of tumour. Furthermore, like most solid tumours, the progression of gliomas and their ability to induce metastases is highly dependent on the angiogenic processes in the primary tumour. It has also been shown that FGF-R 1 receptor antisenses block human astrocytoma proliferation. In addition, naphthalenesulphonate derivatives are described for inhibiting the cellular effects of a-FGF and b-FGF in vitro and the angiogenesis induced by these growth factors in vivo. An intracerebral injection of these compounds induces a very significant increase in apoptosis and a considerable decrease in angiogenesis, reflected by a considerable regression of gliomas in rats. Thus, a compound which has an a-FGF antagonist and/or b-FGF antagonist and/or FGF receptor antagonist activity, such as the compounds of the present invention, may represent a therapy of choice in these pathological conditions (Yamada SM, Yamaguchi F, Brown R, Berger MS,
AV
Morrison RS, Glia , (1999), Vol. 76, pp. 28-66; Auguste P, Gürsel DB, Lemière S, Reimers D, Cuevas P, Carceller F et al., Cancer Res., (2001), Vol. 26, pp. 61-1717) (Loilome et al., 2008).
Active angiogenesis is also described for hepatocarcinomas or hepatocellular carcinoma (HCC). In vivo, tumour progression in HCCs requires a considerable supply of oxygen and nutrients. Hepatocarcinomas are tumours which are typically angiogenic, because a drastic modification is observed with respect to arterial vascularization, and this results in the acquisition of an uvasive and metastatic potential (Tanaka et al., 2006). FGFs participate actively in the development of tumour angiogenesis within HCCs and are frequently associated with the inflammatory process. They are also overexpressed in the context of chronic hepatitis and liver sclerosis (Uematsu et al., 2005) and the serum FGF level has been correlated with the clinicopathological progression of HCCs. Furthermore, the FGF-R4 receptor, and also FGF-R1, have been described as participating actively in HCC tumour genesis (Huang et al., 2006) (Nicholes et al., 2002). The antagonists of the present invention may therefore be a treatment of choice for hepatocellular carcinomas or hepatocarcinomas.
In lung cancers of NSCLC (Non-Small Cell Lung Cancer) type, recent studyes show that b-FGF, FGF-9, FGF-R 1 and FGF-R2 are regularly coexpressed in NSCLC cancer lines and especially in those resistant to anti-EGFR treatment such as gefitinib. These expressions are connected to the capacity for proliferation via autocrine cell signalling and anchorage-independent growth of tumours of NSCLC type and mainly the type insensitive to treatment with gefitinib (Marek et al., 2008). Furthermore, b-FGF has been suggested as playing an important role in the survival of NSCLC cells during treatment by chemotherapy, by inducing the overexpression of the anti-apoptotic proteins BCL-2, BCL-X, XlAP or BIRC3 (Pardo et al., 2002, 2003 and 2006). Thus, an FGF receptor antagonist, such as those of the present invention, may represent a therapy of choice for lung cancers of NSCLC type, alone or in combination with EGF receptor inhibitors or chemotherapies.
In approximately 10% of gastric cancers, this FGF-R2 gene amplification is observed. This amplification is associated with a poor vital prognosis for cancers of diffuse type. The proliferation of tumour cells may be ligand-independent or dependent on paracrine activation by FGF-7 (Turner et al., 2010). The antagonists of the present invention may therefore be a treatment of choice for gastric cancers.
U
More recently, the potential role of pro-angiogenic agents in leukaemias and lymphomas has been documented. Indeed, in general, it has been reported that cell clones in these pathological conditions can be destroyed naturally by the immune system or switch into an angiogenic phenotype which promotes their survival and then their proliferation. This change in phenotype is induced by an overexpression of angiogenic factors, in particular by macrophages, and/or a mobilization of these factors from the extracellular matrix (Thomas DA, Giles FJ, Cortes J, Albitar M, Kantarjian HM., Acta Haematol, (2001), Vol. 207, pp. 106-190). Among the angiogenic factors, b-FGF has been detected in many lymphoblastic and hematopoietic tumour cell lines. FGF receptors are also present on the majority of these lines, suggesting a possible autocrine cellular effect of a-FGF and b-FGF inducing proliferation of these cells. Moreover, it has been reported that bone marrow angiogenesis via paracrine effects is correlated with the progression of some of these pathological conditions.
More particularly, it has been shown, in CLL (chronic lymphocytic leukaemia) cells, that b-FGF induces an increase in anti-apoptotic protein (Bcl2) expression, resulting in an increase in the survival of these cells, and that it therefore participates considerably in their cancerization. in addition, the b-FGF levels measured in these cells are very well-correlated with the stage of clinical advancement of the disease and the resistance to the chemotherapy applied in this pathological condition (fludarabine). Thus, a compound which has an FGF receptor antagonist activity, such as the compounds of the present invention, may represent a therapy of choice, either alone or in combination with fludarabine or other products that are active in this pathological condition (Thomas DA, Giles F J, Cortes J, Albitar M, Kantarjian HM., Acta Haematol, (2001), Vol. 207, pp. 106-190; Gabrilove JL, Oncologist, (2001), Vol. 6, pp. 4-7).
Furthermore, it has been shown in many recent studies that FGFs and FGF-Rs participate actively in the resistance of tumour and/or endothelial cells to treatments by chemotherapy, radiotherapy or else anti-VEGF treatments. These resistances use various cell mechanisms, such as protection against apoptosis by positive regulation of the Bcl-xl protein by FGF-R4 in the case of breast cancer resistance to doxorubicin (Roidl et al., 2009) or by FGF-2 production in the case of resistance of bladder tumours to cisplatin (Miyake et al., 1998), by activation of the PÎ3K/AKT pathway by the FGF2/FGF-R1 couple in the case of resistance of acute myeloidal leukaemia cells to cytarabin (Karajannis et al., 2006), by stimulation of the RAS/MAP-K, PI3-K and mTOR pathway by FGF-1 for certain breast tumours resistant to anti-oestrogen treatments (Manuvakhova et al., 2006). The FGFs/FGF-Rs couple is also involved in resistance to anti-VEGF treatments in the case of pancreatic carcinomas (Casanovas et al., 2005) or of glioblastomas (Batchelor et al., 2007) or else in radiotherapy resistance phenomena (Gu et al., 2004; Moyal et al., 2009). Thus, the compounds of the present invention could be combined with existing therapies in order to limit the appearance of resistance phenomena.
Furthermore, tumour invasion, which is one of the marks of malignancy, consists of the translocation of tumour cells from the initial neoplastic locus to the surrounding host tissues, allowing the tumour to penetrate into the vascular endothelium in order to circulate and to form metastatic loci remote from the primary tumour. An increasing number of recent articles suggest that changes in the tissue architecture at the periphery of the tumour appear to be responsible for the epithelialmesenchymal transition (EMT) process. EMT is a cell process by which epithelial cells modulate their phenotype and acquire mesenchymal cell properties through the disruption of intercellular adhesion and an increase in cell motility, thus playing an essential role in tumour progression by conferring an invasive and metastatic phenotype on carcinomas. Growth factors such as FGFs participate in this cell process by virtue of their stimulatory activity on cell migration and invasion, but also, as regards FGF receptors, by virtue of their ability to interact with cadherins, thus facilitating tumour cell migration (Cowin et al., 2005). The FGF-R antagonists described herein may be used for preventing these metastatic phases in a large number of cancers.
A correlation exists between the bone marrow angiogenesis process and “extramedullar disease” in CML (chronic myelomonocytic leukaemia). Various studies demonstrate that the inhibition of angiogenesis, in particular by means of a compound which has an FGF receptor antagonist activity, could represent a therapy of choice in this pathological condition.
The proliferation and migration of vascular smooth muscle cells contributes to intimal hypertrophy of the arteries and thus plays a predominant role in atherosclerosis and in restenosis after angioplasty and endoarterectomy.
In vivo studies show, after lesion of the carotid “balloon injury, a local production of a-FGF and of b-FGF. In this same model, an anti-FGF2 neutralizing antibody inhibits vascular smooth muscle cell proliferation and thus decreases intimal hypertrophy.
A chimeric protein consisting of FGF2 linked to a molecule such as saporin inhibits vascular smooth muscle cell proliferation in vitro and intimal hypertrophy in vivo (Epstein CE, Siegall CB, Biro S, Fu YM, FitzGerald D., Circulation, (1991), Vol. 87, pp. 84-778; Waltenberger J., Circulation, (1997), pp. 96-4083).
Thus, FGF receptor antagonists, such as the compounds of the present invention, represent a therapy of choice, either alone or in combination with compounds that are antagonists of other growth factors involved in these pathological conditions, such as PDGF, in the treatment of pathological conditions related to vascular smooth muscle cell proliferation, such as atherosclerosis, post-angioplasty restenosis or restenosis following the implantation of endovascular prostheses (stents) or during aortocoronary bypasses.
Cardiac hypertrophy occurs in response to a stress of the ventricular wall induced by an overload in terms of pressure or volume. This overload can be the consequence of numerous physiopathological states, such as hypertension, AC (aortic coarctation), myocardial infarction, and various vascular disorders. The consequences of this pathological condition are morphological, molecular and functional changes such as cardiac myocyte hypertrophy, matrix protein accumulation and foetal gene reexpression. b-FGF is implicated in this pathological condition. Specifically, the addition of b-FGF to cultures of newborn rat cardiomyocytes modifies the profile of the genes corresponding to the contractile proteins, resulting in a foetal-type gene profile. In a complementary manner, adult rat myocytes show a hypertrophic response under the effect of b-FGF, this response being blocked by anti-b-FGF neutralizing antibodies. Experiments carried out in vivo in b-FGF-knock-out transgenic mice show that b-FGF is the major factor stimulating cardiac myocyte hypertrophy in this pathological condition (Schultz JeJ, Witt SA, Nieman ML, Reiser PJ, Engle SJ, Zhou M ef al., J.CIin. Invest., (1999),
Vol. 19, pp. 104-709). Thus, a compound, such as the compounds of the present invention, which has an FGF receptor antagonist activity represents a therapy of choice in the treatment of heart failure and any other pathological condition associated with cardiac tissue degeneration. This treatment could be carried out alone or in combination with the common treatments (beta-blockers, diuretics, angiotensic antagonists, antiarrythmics, anti-calcium agents, antithrombotics, etc.).
Vascular disorders due to diabetes are characterized by an impairment of vascular reactivity and of blood flow, hyperpermeability, an exacerbated proliferative response and an increase in matrix protein deposits. More specifically, a-FGF and b-FGF are present in the preretinol membranes of patients having diabetic retinopathies, in the membranes of the underlying capillaries and in the vitreous humour of patients suffering from proliferative retinopathies. A soluble FGF receptor capable of binding both a-FGF and b-FGF is developed in diabetes-related vascular disorders (Tilton RG, Dixon RAF, Brock TA., Exp. Opin. Invest. Drugs, (1997), Vol. 84, pp. 6-1671). Thus, a compound, such as the compounds of formula I, which has an FGF receptor antagonist activity represents a therapy of choice, either alone or in combination with compounds that are antagonists of other growth factors involved in these pathological conditions, such as VEGF.
Fibrosis is the abnormal formation of scar tissues following a tissue lesion, and results in a chronic and progressive impairment of the affected organs that can result in serious dysfunction of the affected organ. It can occur in all tissues, but is mainly prevalent in organs exposed to chemical or biological attacks, such as the lungs, the skin, the kidneys, the digestive tract, the liver, etc. FGFs participate in this cell process by promoting the production and accumulation of extracellular matrices by fibroblasts, the proliferation of said fibroblasts and infiltration into many organs such as the kidneys or the lungs (Khalil et al., 2005) (Strutz et al., 2003). Antagonists of the activity of these FGFs, such as the molecules of the present invention, may be used alone or in combination in the treatment of fibrosis.
Rheumatoid arthritis (RA) is a chronic disease with an unknown aetiology. Although it affects many organs, the most serious form of RA is a progressive synovial inflammation of the joints resulting in destruction. Angiogenesis appears to considerably affect the progression of this pathological condition. Thus, a-FGF and b-FGF have been detected in the synovial tissue and in the joint fluid of patients suffering from RA, indicating that this growth factor is involved in the initiation and/or ¢1 the progression of this pathological condition. In models of AIA (adjuvant-induced model of arthritis) in rats, it has been shown that the overexpression of b-FGF increases the severity of the disease, whereas an anti-b-FGF neutralizing antibody blocks the progression of RA (Malemud, 2007) (Yamashita A, Yonemitsu Y, Okano S, Nakagawa K, Nakashima Y, Irisa T ef a/., J.Immunol., (2002), Vol. 57, pp. 168450 ; Manabe N, Oda H, Nakamura K, Kuga Y, Uchida S, Kawaguchi H, Rheumatol, (1999), Vol. 20, pp. 38-714). Thus, the compounds according to the invention represent a therapy of choice in this pathological condition.
Recent scientific articles document the involvement of b-FGF in neuropathic pain. Specifically, an increase in astroglial b-FGF production is observed in astrocytes following a spinal cord lesion (Madiai et al., 2003). This b-FGF contributes to neuropathic pain due to contact or allodynia. Treatment using an anti-FGF2 neutralizing antibody reduces this mechanical allodynia (Madiai et al., 2005). The antagonists of the present invention are treatments of choice for pain by inhibiting the effect of FGF-2 on these receptors.
It has also been described that the level of growth factors having a pro-angiogenic activity, such as FGF-1 and -2, are greatly increased in the synovial fluid of patients suffering from osteoarthritis. In this type of pathological condition, a considerable modification is recorded in the balance between the pro- and anti-angiogenic factors inducing the formation of new vessels, and consequently, the vascularization of non vascularized structures, such as joint cartilages or intervertebral discs. Thus, angiogenesis represents a key factor in bone formation (osteophytes), thus contributing to the progression of the disease. Additionally, the (nervation of the new vessels can also contribute to the chronic pain associated with this pathological condition (Walsh DA., Curr Opin Rheumatol. 2004 Sep; 16(5):609-15). Thus, the compounds according to the invention represent a therapy of choice in this pathological condition.
IBD (inflammatory bowel disease) includes two forms of chronic inflammatory diseases of the intestine: UC (ulcerative colitis) and Crohn’s disease (CD). IBD is characterized by an immune dysfunction reflected by an inappropriate production of inflammatory cytokines inducing the establishment of a local microvascular system. This angiogenesis of inflammatory origin results in an intestinal ischemia induced by vasoconstriction. High circulating and local levels of b-FGF have been measured in patients suffering from these pathological conditions (Kanazawa S, Tsunoda T,
Onuma E, Majima T, Kagiyama M, Kkuchi K., American Journal of Gastroenterology, (2001), Vol. 28, pp 96-822 ; Thom M, Raab Y, Larsson A, Gerdin B, Hallgren R., Scandinavian Journal of Gastroenterology, (2000), Vol. 12, pp. 35408). The compounds of the invention which exhibit a high anti-angiogenic activity in an inflammatory angiogenesis model represent a therapy of choice in these pathological conditions.
Another disease which has a considerable inflammatory component and for which a strong implication of FGFs and FGF-Rs is described is benign prostatic hyperplasia (BPH). BPH is a disease related to ageing which is characterized by hyperplasia of the glandular tissues and of the stroma around the urethra until it becomes obstructed. At the cellular level, this pathological condition involves hyperplasia of the basal cells, an increase in the stroma) mass, amplified matrix deposit or else a reduction in tissue elasticity (Untergasser et al., 2005). FGFs participate in the development of this disease by stimulating the proliferation of the prostatic stroma and epithelial cells, and in particular FGF-7 or KGF, but also FGF-2 or FGF-17 (Wang 2008, Boget 2001, Giri 2001). In addition, FGFs promote the transdifferentiation step by modifying epithelial cell/stromal cell interactions, in combination with TGF-β (Untergasser 2005). Finally, certain receptors, such as FGF-R1, are overexpressed in BPH, promoting induction of the pathological condition and potentiating the paracrine effects of FGF-2 (Boget 2001). An antagonist of the effect of these FGFs is therefore a treatment of choice for benign prostatic hyperplasia.
Psoriasis is a chronic skin disease caused by a hyperproliferation of the epidermal kératinocytes, while clear cell acanthoma (CCA) is a benign neoplasm of the epidermis which also involves an abnormal proliferation of kératinocytes. These two skin diseases have similar histological characteristics despite different underlying causes: a thickening of the epidermis, inflammatory infiltrations of lymphocytes and neutrophils, dilation and tortuosity of the papillary capillaries. In both cases, KGF or FGF-7 plays a predominant role in the development of the pathological condition (Kovacs et al., 2006) (Finch et al., 1997). The use of the antagonists of the present invention may make it possible to slow down the development of such skin diseases.
FGF-R1, -R2 and -R3 receptors are involved in chronogenesis and osteogenesis processes. Mutations resulting in the expression of FGF-Rs that are always activated have been connected to a large number of human genetic diseases reflected by malformations of the skeleton, such as Pfeiffer syndrome, Crouzon syndrome, Apert syndrome, Jackson-Weiss syndrome and Bear-Stevenson cutis gyrate syndrome. Some of these mutations affect more particularly the FGF-R3 receptor, resulting in particular in achondroplasias (ACH), hyperchondroplasias (HCH) and TD (thanatophoric dysplasia); ACH being the most common form of dwarfism. From a biochemical point of view, the sustained activation of these receptors takes place via a dimerization of the receptor in the absence of ligand (Chen L, Adar R. , Yang X. Monsonego E.O., LI C., Hauschka P.V, Yagon A. and Deng C.X., (1999), The Joum. Of Clin. Invest., Vol. 104, n° 11, pp. 1517-1525). Thus, the compounds of the invention which exhibit an FGF antagonist or FGF receptor antagonist activity and which inhibit FGF-R-dependent intracellular signalling represent a therapy of choice in these pathological conditions.
It is also known that adipose tissue is one of the rare tissues that, in adults, can develop or regress. This tissue is highly vascularized and a very dense network of microvessels surrounds each adipocyte. These observations have resulted in the testing of the effect of anti-angiogenic agents on adipose tissue development in adults. Thus, it appears that, in pharmacological models in ob/ob mice, the inhibition of angiogenesis is reflected by significant weight loss in the mice (Rupnick MA et al, (2002), PNAS, Vol. 99, No. 16, pp. 10730-10735). Furthermore, FGFs appear to be key regulators of adipogenesis in humans (Hutley et al., 2004). Thus, an FGF receptor antagonist compound which has a powerful anti-angiogenic activity may represent a therapy of choice in obesity-related pathological conditions.
By virtue of their low toxicity and their pharmacological and biological properties, the compounds of the present invention are of use in the treatment and prevention of any carcinoma which has a high degree of vascularization, such as lung, breast, prostate, oesophageal, pancreatic, liver, colon or kidney carcinomas, or which induces metastases, such as coion, breast, liver or stomach carcinomas, or melanomas, or which is sensitive to a-FGF or to b-FGF in an autocrine manner or else in pathological conditions of glioma type, lymphomas and leukaemias or, finally, in any therapy-resistance phenomenon. These compounds represent a therapy of choice, either alone or in combination with a chemotherapy, a radiotherapy or any other suitable treatment. The compounds according to the invention are also of use in the treatment and prevention of cardiovascular diseases, such as atherosclerosis, or restenosis post-angioplasty, in the treatment of diseases related to complications occurring following the implantation of endovascular stents and/or aortocoronary bypasses or other vascular grafts, and cardiac hypertrophy or vascular complications of diabetes, such as diabetic retinopathies. The compounds according to the invention are also of use in the treatment and prevention of chronic inflammatory diseases such as rheumatoid arthritis, IBD or benign prostatic hyperplasia. Finally, the compounds according to the invention can be used in the treatment and prevention of achondroplasias (ACH), hypochondroplasias (HCH) and TD (thanatophoric dysplasia), as also in the treatment of obesity.
The products according to the invention are also of use in the treatment and prevention of macular degeneration, in particular age-related macular degeneration (or ARMD). A major characteristic of the loss of sight in adults Is the neovascularization and the subsequent haemorrhages which cause considerable functional disorders in the eye and which are reflected by early blindness. Recently, studying the mechanisms involved in ocular neovascularization phenomena has made it possible to demonstrate the involvement of pro-angiogenic factors in these pathological conditions. By using a laser-induced choroidial neoangiogenesis model, it has been possible to confirm that the products according to the invention also make it possible to modulate neovascularization of the choroid.
Moreover, the products of the invention can be used in the treatment or prevention of thrombopenias due in particular to anticancer chemotherapy. It has in fact been demonstrated that the products of the invention can improve circulating platelet levels during chemotherapy.
Finally, the products according to the invention are of use in the treatment and prevention of skin diseases, such as psoriasis or clear cell acanthoma, in combating the progression of liver, kidney or lung fibrosis, and also in the treatment of neuropathic pain.
A subject of the invention is, according to another of its aspects, medicaments which comprise a compound of formula (I), or an addition salt thereof with a pharmaceutically acceptable acid or base, or else a hydrate or a solvate of the compound of formula (I).
According to another of its aspects, the present invention relates to pharmaceutical ή( compositions comprising, as active ingredient, a compound of formula (I) according to the invention. These pharmaceutical compositions contain an effective dose of at least one compound according to the invention, or a pharmaceutically acceptable salt or a hydrate or solvate of said compound, and also at least one pharmaceutically acceptable excipient. Said excipients are selected, according to the pharmaceutical form and the method of administration desired, from the usual excipients which are known to those skilled in the art.
In the pharmaceutical compositions of the present invention for oral, sublingual, subcutaneous, intramuscular, intravenous, topical, local, intratracheal, intranasal, transdermal or rectal administration, the active ingredient of formula (I) above, or optional salt, solvate or hydrate thereof, can be administered in unit administration form, as a mixture with conventional pharmaceutical excipients, to animals and to human beings for the prophylaxis or the treatment of the disorders or the diseases mentioned above.
The suitable unit administration forms comprise forms for oral administration, such as tablets, soft or hard gel capsules, powders, granules and oral solutions or suspensions, sublingual, buccal, intratracheal, intraocular or intranasal administration forms, forms for administration by inhalation, topical, transdermal, subcutaneous, intramuscular or intravenous administration forms, rectal administration forms, and implants. For topical application, the compounds according to the invention can be used in creams, gels, ointments or lotions.
The pharmaceutical compositions according to the present invention are preferably administered orally.
By way of example, a unit administration form of a compound according to the invention in tablet form may comprise the following components:
Compound according to the invention 50.0 mg
Mannitol 223.75 mg
Sodium croscaramellose 6.0 mg
Maize starch 15.0 mg
Hydroxypropylmethylcellulose 2.25 mg
Magnesium stearate 3.0 mg
A L
The present invention also relates to a pharmaceutical composition as defined above, as a medicament.
A subject of the present invention is also the use of a compound of formula (I), as defined above, for use thereof in the treatment and prevention of diseases requiring a modulation of FGFs.
A subject of the present invention is also the use of a compound of formula (I), as defined above, for use thereof in the treatment and prevention of cancers, in particular carcinomas which have a high degree of vascularization, such as lung, breast, prostate, pancreatic, colon, kidney and oesophageal carcinomas, cancers which induce metastases, such as colon cancer, liver cancer and stomach cancer, melanomas, gliomas, lymphomas and leukaemias.
A compound of formula (I) according to the present invention can be administered alone or in combination with one or more compound(s) which has (have) an antiangiogenic activity or with one or more cytotoxic compound(s) (chemotherapy), or else in combination with a radiation treatment. Thus, a subject of the present invention is also the use of a compound of formula (I), as defined above, in combination with one or more anticancer active ingredient(s) and/or with radiotherapy.
A subject of the present invention is also the use of a compound of formula (I), as defined above, in the treatment and prevention of cardiovascular diseases, such as atherosclerosis or post-angioplasty restenosis, diseases related to complications occurring following the implantation of endovascular stents and/or aortocoronary bypasses or other vascular grafts, cardiac hypertrophy, or vascular complications of diabetes, such as diabetic retinopathies.
A subject of the present invention is also the use of a compound of formula (I), as defined above, in the treatment or prevention of chronic inflammatory diseases such as rheumatoid arthritis or IBD.
A subject of the present invention is also the use of a compound of formula (I), as defined above, in the treatment or prevention of osteoarthritis, achondroplasias (ACH), hypochondroplasias (HCH) and TD (thanatophoric dysplasia).
Ή
A subject of the present invention is also the use of a compound of formula (I), as defined above, in the treatment or prevention of obesity.
A subject of the present invention is also the use of a compound of formula (I), as defined above, in the treatment or prevention of macular degeneration, such as age-related macular degeneration (ARMD).
The compositions according to the invention, for oral administration, contain recommended doses of 0.01 to 700 mg. There may be particular cases where higher or lower dosages are appropriate; such dosages do not depart from the context of the invention. According to the usual practice, the dosage appropriate for each patient is determined by the physician according to the method of administration and the age, weight and response of the patient, and also according to the degree of progression of the disease.
According to another of its aspects, the present invention also relates to a method for treating the pathological conditions indicated above, which comprises the administration, to a patient, of an effective dose of a compound according to the invention, or a pharmaceutically acceptable salt, hydrate or solvate thereof.
0 DEC. 2012 sari
enave
CABINET/ propné BP 500 YTél. 22 21 3 E-mail'.
meroun
Claims (18)
1. Compound of formula (I):
(I) in which:
- Rt represents . a hydrogen or halogen atom, . an alkyl group optionally substituted with -COOR5, . an alkenyl group optionally substituted with -COOR5, . a -COOR5 or -CONRSR6 group, , an -NR5CORe or -NRs-SO2R6 group, . an -ORS, -O-Alk-ORg, -O-Alk-COORS, -O-Alk-OR6, -O-Alk-NR5R6 or -O-Alk-NR7R8 group or . an aryl group, in particular phenyl, or a heteroaryl group, said aryl or heteroaryl group being optionally substituted with one or more groups selected from: halogen atoms, alkyl groups, cycloalkyl groups, -COORS, -CF3, -OCF3, -CN, -C(NH2)NOH, -ORs, -0-Alk-COOR5, -O-Alk-NR5R61 -O-Alk-NR7RB, -Alk-OR5, -Alk-COOR5, -CONRjRe, -CO-NR5-OR6, -CO-NR5-SO2R7, -CONR6-Alk-NR5Rc, -CONR5-Alk-NR7Re, -Alk-NR6R6, -NR5Re, -NC(O)N(CH3)2 -CO-Alk, -CO(OAIk).,OH, -COO-Alk-NR5R6, -COO-Alk-NR7Re and 5-membered heteroaryl groups, said heteroaryl groups being optionally substituted with one or more groups selected from halogen atoms and alkyl, -CF3, -CN, -COOR5, -Alk-OR5, -Alk-COOR5, -CONR5R6, -CONR7R8, -CO-NR5-OR6, -CO-NRs-SO2R6, -NR5R6 and -Alk-NR5Re groups, or with a hydroxyl group or with an oxygen atom,
- n is an integer ranging from 1 to 3,
- R2 represents:
. a hydrogen atom, . an alkyl group, . a phenyl group optionally substituted with one or more alkyl groups, ifiC
- R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to one of formula (A), (B) or (C) below:
(A) (B) in which the wavy lines represent the phenyl nucleus to which R3 and R4 are attached and:
. Rg represents a hydrogen atom or an alkyl, haloalkyl, -Alk-CF3, -Alk-COORs, -Alk’-COOR5 , -Alk-CONR5R6, -Alk’-CONR5R6, -Alk-CONR7R8, -AlkNR5R6, -AlkCONR5-OR6, -Alk-NR7Re, -Alk-cycloalkyl, -Alk-O-R51 -Alk-S-Rs, -Alk-CN, -OR5i -OAIkCOOR51 -NR5R(5, -NRg-COORe, -Alk-aryl, -Alk-O-aryl, -Alk-O-heteroaryl, -Alk-heteroaryl or heteroaryl group, where the aryl or heteroaryl group is optionally substituted with one or more halogen atoms and/or alkyl, cycloalkyl, -CF3, -OCF3, -O-R5 or -S-R5 groups, . Ra· represents a hydrogen atom or a linear, branched, cyclic or partially cyclic alkyl group, or an -Alk-OR5, -Alk-NR5R6 or -Alk-NR7R8 group, Ra being optionally substituted with one or more halogen atoms, . Rb represents a hydrogen atom or an alkyl or -Alk-COOR5 group, . Rb· represents a hydrogen atom or an alkyl, haloalkyl, cycloalkyl, phenyl or -Alk-COORS group, . Rc represents a hydrogen atom or an alkyl, -CN, -COOR5, -CO-NRjRf, -CONR7R8, -CO-NRs-Alk-NRsRe, -CONR5-Alk-OR5, -CONR5SO2R5, -Alk-aryl or -Alk-heteroaryl group, where the aryl or heteroaryl group is optionally substituted with one or more halogen atoms and/or alkyl, cycloalkyl, -CF3, -OCF3, -O-alkyl or-S-alkyl groups, . Rc· represents a hydrogen atom or an alkyl group, . Rc represents a hydrogen atom or an alkyl, alkenyl, haloalkyl, hL cycloalkyl, -Alk-NR5Re, -Alk-NR7R8l -Alk-OR5 or -Alk-SR5 group,
- R5 and Re, which may be identical or different, represent hydrogen atoms, haloalkyl groups or alkyl groups, cycloalkyl groups or an Ms group,
- R7 and RSl which may be identical or different, represent hydrogen atoms or alkyl or phenyl groups, or else R7 and R8 together form a 3- to 8-membered saturated ring which can optionally contain a heteroatom,
- Aik represents a linear or branched alkylene chain, and
- Aik’ represents a linear, branched, cyclic or partially cyclic alkylene chain, optionally in the form of a pharmaceutically acceptable salt thereof.
2. Compound according to Claim 1, in which R-, represents an -OR5, -OAlk-OR5, -COOR5 or -O-Alk-COOR5 group or a phenyl group optionally substituted with one or more alkyl or -COOR5 groups, in which Rs represents a hydrogen atom or an alkyl group containing from 1 to 4 carbon atoms, and Aik represents an alkylene chain containing 1 or 2 carbon atoms, or a heteroaryl group, preferably a pyridinyl group.
3. Compounds according to Claim 1 or 2, in which Ri represents an -OR5, -O-Alk-ORS or -O-Alk-COORS group or a phenyl group optionally substituted with one or more alkyl or -COOR5 groups, in which R5 represents a hydrogen atom or a methyl group, and Aik represents an alkylene chain containing 1 or 2 carbon atoms, or a heteroaryl group, preferably a pyridinyl group.
4. Compounds of formula (I) according to Claims 1 to 3, in which R2 represents an alkyl group containing from 1 to 4 carbon atoms or a phenyl group.
5. Compounds of formula (I) according to any one of Claims 1 to 4, in which R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to one of formula (A), (B) or (C) defined above and in which:
. Ra represents a hydrogen atom or an alkyl or haloalkyl, -OR5i -Alk-OR5, -Alk’-COOR5, -NR5Re, -Alk-NR7R8, -Alk-CN, -NR5-COOR6. -Alk’-CO-NR5R6, ùC
-Alk-CO-NRg-ORe or -0-Alk-COOR6 group, or a heteroaryl, -Alk-heteroaryl or -Alkaryl group in which the aryl or heteroaryl group is optionally substituted with an alkyl group or a halogen atom, . Ra· represents a hydrogen atom or an alkyl or -Alk-OR5 group, . Rb represents a hydrogen atom or an alkyl or -Alk-COOR5 group, . Rb· represents a hydrogen atom or an alkyl, haloalkyl or -Alk-COOR5 group, . Rc represents a hydrogen atom or an alkyl, -COORSl CN, -CO-NRsRe or -CO-NR7Re group, a heteroaryl or an Alk-heteroaryl, . Rc represents a hydrogen atom or an alkyl group, . Rc· represents a hydrogen atom or an alkyl or alkenyl group, . said alkyl or alkenyl groups mentioned above contain from 1 to 4 carbon atoms, . R5 and Rs represent hydrogen atoms or alkyl or haloalkyl groups, said alkyl and haloalkyl groups containing from 1 to 4 carbon atoms, . Ry and RB represent hydrogen atoms or alkyl groups containing from 1 to 4 carbon atoms, or together form a 5- or 6-membered saturated ring, . Aik represents a linear or branched alkylene chain containing from 1 to 4 carbon atoms, and . Aik’ represents a linear, branched, cyclic or partially cyclic alkylene chain containing from 1 to 4 carbon atoms.
6. Compounds of formula (I) according to Claim 5, in which R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to either of formulae (A) and (C), the radicals Ra, Ra’, Rc, Rc’ and Rc being as defined in Claim 1.
7. Compound of formula (I) according to Claim 5, in which R3 and R4 together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to formula (C), Rc, Rc’ and Rc being as defined in Claim 1.
8. Compounds of formula (I) according to any one of Claims 1 to 5, selected from the following compounds:
2-{6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin16295
3(2/7)-yl)-N,N’-dimethylacetamide,
2- (6-(( 1-methoxy-2-methylindolizin-3-yl)carbonyl]-1-methy l-2,4-dioxo-1,4-dihydroquinazolin-3(2/7)-yl]-N,N*-dimethylacetamide,
6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-3-[(3-methyl-1,2,4-oxadiazol-5yl)methyl]quinazoline-2,4(1/7,3/7)-dione,
3- (3-(2,4-dioxo-3-propyl-1,2,3,4-tetrahydroquinazolin-6-yl)carbonyl}-2-methylindolizin-1-yl}benzoic acid, (6-((1-methoxy-2-pheny[indolizin-3-yl)carbonyl]-2,4-dioxo-1,4-dihydroquinazolin3(2H)-yl}acetic acid,
Ethyl ((6-(( 1-methoxy-2-methylindolizin-3-yl)carbonyll-2,4-dioxo-1,4-dihydroquinazolin-3(2H)-yl}oxy)acetateI
3-a m ino-6-(( 1 -methoxy-2-methylindolizin-3yl)carbony l]q ui nazoline-2,4( 1H, 3/7)-dione, 6-((1-methoxy-2-methylindolizin-3-yl)carbonyl]-2-methylquinazolin-4(3/7)-one, 3-{2-methyl-3-[(2-methyl-4-oxo-3,4-dihydroquinazolin-6-yl)carbonyl]indolizin-1-yl}benzoic acid,
6-((1 (2-methoxyethoxy )-2-methylindolizin-3-yl]carbonyl}-3-propylquinazoline2,4(1/7,3/7)-dione, 6-((1-methoxy-2-methylindolizin-3-yl)carbonyl]-1-methyl-4-oxo-1,4-dihydroquinoline3-carboxylic acid,
6-[(1-methoxy-2-methylindolizin-3-yl)carbonyl]-2-methyl-4-oxo-1,4-dihydroquinoline3-carboxylic acid,
6-((1 -methoxy-2-methylindo(izin-3-yl)carbonyl]-N-methyl-4-oxo-1,4-dihydroquinoline3-carboxamide,
A/-1-dimethyl-6-[(2-methylindolizin-3-yl)carbonyl]-4-oxo-1,4-dihydroquinoline-3carboxamide,
N-1-dimethyl-6-([2-methyl-1-(pyridin-4-yl)indolizin-3-yl]carbonyl}-4-oxo-1,4-dihydroquinol ine-3-carboxamide hydrochloride.
9. Process for preparing the compounds of formula (I) according to any one of Claims 1 to 7 in which R3 and FU together form, with the carbon atoms of the phenyl nucleus to which they are attached, a 6-membered nitrogenous heterocycle corresponding to formula (A), F) represents an -OR5, -O-Alk-OR5, -COORg, -O-AlkCOOR5, -O-Alk-0R5, O-Alk-NR5R6 or -O-Alk-NR7Re group, and R2 is as defined in Claim 1, characterized in that:
- the compound of formula (II) is condensed with the compound of formula (III) in order to obtain the compound of formula (IV)
- the compound of formula (IV) is subjected to a basic hydrolysis reaction in order to obtain the compound of formula (V):
- an esterification of the compound of formula (V) is carried out and the compound of formula (VI) is obtained:
- the compound of formula (VI) is subjected to the action of triphosgene so as to form the isocyanate corresponding to the compound of formula (VI), and then this isocyanate is condensed with an amine of formula RaNH2, Ra being as defined in Claim 1, in order to obtain the urea of formula (VII),
- the compound of formula (VII) is subjected to a cyclization reaction in a basic medium, in order to obtain the compound of formula (VIII):
- the compound of formula (VIII) is subjected to an alkylation reaction in the presence of a base and of a halogenated derivative Ra’X, Ra’ being as defined in Claim 1 and X being a halogen.
10. Process for preparing compounds of formula (I) according to any one of Claims 1 to 7 in which R3 and R4 together form a nitrogenous heterocycle of formula (A) and in which R-ι is as defined in Claim 1, with the proviso that Ri does not represent one of the following groups: -OR6, -O-Alk-OR5, -COOR5, -O-AlkCOOR6, -O-Alk-OR5, O-Alk-NR5R6 and -O-Alk-NR7R8, R2 being as defined in Claim 1, characterized in that:
- the compound of formula (IX) (IX) is condensed with the compound of formula (111) in order to obtain the compound of formula (X)
- the compound of formula (X) is subjected to a basic hydrolysis reaction in order to obtain the compound of formula (XI):
5 - an esterification of the compound of formula (XI) is carried out and the compound of formula (XII) is obtained:
- the compound of formula (XII) is reached with N-bromosuccinimide and the compound of formula (XIII) is obtained:
- the compound of formula (XIII) is subjected to the action of triphosgene and the isocyanate corresponding to the compound of formula (XIII) is obtained, which is condensed with an amine of formula RaNH2, Ra being as defined in Claim 1, in order to obtain the urea of formula (XIV):
- the compound of formula (XIV) is subjected to a cyclization reaction in a basic medium in order to obtain the compound of formula (XV):
- the compound of formula (XV) is subjected, in the presence of a palladium catalyst, of a ligand and of a base:
to a reaction with phenylboronic or heteroarylboronic or phenylboronate ester or heteroarylboronate ester derivatives according to a Suzuki coupling, . or else to a cyanation reaction with zinc cyanide, followed by an acid hydrolysis, in order to obtain the compound of formula (XVI):
- the compound of formula (XVI) is subjected to an alkylation reaction in the presence of a base and of a halogenated derivative Ra’X, Ra’ being as defined in Claim 1 and X being a halogen.
11. Process for preparing the compounds of formula (I) according to any one of Claims 1 to 8 in which R3 and R» together form a nitrogenous heterocycle of formula (C), in which R, represents an -OR5, -O-Alk-OR5, -COOR5, -O-Alk-COOR5l -O-Alk-OR5, O-Alk-NR5R6 or -O-Alk-NR7R8 group, and R5, Re and R2 are as defined in Claim 1, characterized in that:
- the compound of formula (II):
is condensed with the compound of formula (III):
St in order to obtain the compound of formula (IV):
- the compound of formula (IV) is subjected to a basic hydrolysis reaction in order to obtain the compound of formula (V):
*1 the compound (V) is subjected to a condensation reaction in order to obtain the compound (XXI):
- the compound (XXI) is subjected to an alkylation reaction in the presence of a base and of a halogenated derivative RcX, Rc” being as defined in Claim 1 and X being a halogen, or of a protective group, and the compound of formula (XXII) is obtained:
- the compound (XXII) is subjected to a condensation reaction with a malonic derivative in order to obtain the compound of formula (XXIII):
(XXIII) in which Rc’ and Rc are defined in Claim 1,
- the compound of formula (XXIII) is subjected to a deprotection reaction.
12. Process for preparing the compounds of formula (I) according to any one of Claims 1 to 8 in which R3 and Ra together form a nitrogenous heterocycle of formula (C), Ri represents an aryl or heteroaryl group, optionally substituted with one or more alkyl, -ORS, NRsRe or -COORS groups, Rc’ preferably 10 represents an alkyl, Rc R5, R6 and R2 being defined in Claim 1, characterized in that:
- the compound of formula (IX):
is condensed with the compound of formula (III):
in order to obtain the compound of formula (X):
- the compound of formula (X) is subjected to a basic hydrolysis reaction in order to obtain the compound of formula (XI):
AL
- an esterification of the compound of formula (XI) is carried out and the compound of formula (XII) is obtained:
5 - the compound of formula (XII) is reacted with N-bromosuccinimide and the compound of formula (XIII) is obtained.
- the compound of formula (XIII) is subjected to a saponification reaction in a basic medium in order to obtain the compound XVIII:
- the compound (XVIII) is subjected to a condensation reaction in order to obtain the compound (XXIV):
- the compound of formula (XXIV) is subjected to an alkylation reaction in the
15 presence of a base and of a halogenated derivative RC”X, Rc” being as defined in
Claim 1 and X being a halogen, or of a protective group, in order to obtain the •flL·16295 compound of formula (XXV):
- the compound of formula (XXV) is subjected to a condensation reaction with a malonic derivative in order to obtain the compound of formula (XXVI):
in which Rc’ and Rc are as defined in Claim 1,
- the compound of formula (XXVI) is subjected, in the presence of a palladium catalyst, of a ligand and of a base, to a reaction with phenylboronic or heteroarylboronic or phenylboronate ester or heteroarylboronate ester derivatives according to a Suzuki coupling, in order to obtain the compound of formula (XXVII):
(XXVII)
- the compound of formula (XXVII) is subjected to a deprotection reaction.
13. Process for preparing the compounds of formula (I) according to any one of Claims 1 to 7, in which R3 and R4 together form a nitrogenous heterocycle of formula (C), where Rc’ represents a hydrogen, Rc and Rc” being as defined in Claim 1, and Ri represents hydrogen or an -ORS, -O-Alk-OR5, -COOR5, O-Alk-COORSl -O-Alk-OR5, O-Alk-NR5R« or -O-Alk-NR7R8 group being as defined in Claim 1, characterized in that:
- the compound of formula (II):
is condensed with 4-nitrobenzoic acid chloride and the compound of formula (XXVIII) is obtained:
- the compound of formula (XXVIII) is subjected to a reaction in the presence of iron and of acetic acid and the compound of formula (XXIX) is obtained:
- the compound of formula (XXIX) is subjected to a condensation reduction and the compound of formula (XXX) is obtained:
- the compound of formula (XXX) is subjected to an alkylation reaction in the presence of a halide RcX, Rc” being as defined in Claim 1 and X being a halogen, and in the presence of a base.
14. Pharmaceutical composition containing, as active ingredient, a compound of formula (I) according to any one of Claims 1 to 8, optionally in combination with one or more suitable inert excipients.
u
15.
Compound according to any one of Claims 1 to 8, for use thereof in the treatment and prevention of diseases requiring a modulation of b-FGFs.
16.
Compound according to any one of Claims 1 to 8, for use thereof in the treatment and prevention of cancers, in particular carcinomas which have a high degree of vascularization, such as lung, breast, prostate, pancreatic, colon, kidney and oesophageal carcinomas, cancers which induce metastases, such as colon cancer, liver cancer and stomach cancer, melanomas, gliomas, lymphomas, leukaemias, and also thrombopenias.
17. Compound according to Claim 16, for use thereof in combination with one or more anticancer active ingredient(s) and/or with radiotherapy and/or with any anti-VEGF treatment.
18. Compound according to any one of Claims 1 to 8, for use thereof in the treatment and prevention of cardiovascular diseases, such as atherosclerosis or post-angioplasty restenosis, diseases related to complications that occur following the implantation of endovascular stents and/or aortocoronary bypasses or other vascular grafts, cardiac hypertrophy, vascular complications of diabetes, such as diabetic retinopathies, liver, kidney and lung fibroses, neuropathic pain, chronic inflammatory diseases, such as rheumatoid arthritis or IBD, prostatic hyperplasia, psoriasis, clear cell acanthoma, osteoarthritis, achondroplasias (ACH), hypochondroplasias (HCH), TD (thanatophoric dysplasia), obesity, and macular degeneration, such as age-related macular degeneration (ARMD).
90 pages ORIGINAL
SANOFI
PAR PROCURATION
2 0 DEC. 2012
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1055477 | 2010-07-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
OA16295A true OA16295A (en) | 2015-04-24 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DK2590975T3 (en) | Indolizine derivatives, MANUFACTURING METHOD THEREOF AND THERAPEUTIC USE THEREOF | |
DK2590976T3 (en) | Imidazopyridine, MANUFACTURING METHOD THEREOF AND THERAPEUTIC USE THEREOF | |
EP2791137B1 (en) | Pyrazolopyridine derivatives, preparation process therefor and therapeutic use thereof | |
OA16295A (en) | Indolizine derivatives, process for the preparation thereof and therapeutic use thereof. | |
US10138235B2 (en) | Pyrazolopyridine derivatives, preparation process therefor and therapeutic use thereof | |
OA16296A (en) | Imidazopyridine derivatives, process for the preparation thereof and therapeutic use thereof. |