OA12415A - Fluid mixing system. - Google Patents

Fluid mixing system. Download PDF

Info

Publication number
OA12415A
OA12415A OA1200300147A OA1200300147A OA12415A OA 12415 A OA12415 A OA 12415A OA 1200300147 A OA1200300147 A OA 1200300147A OA 1200300147 A OA1200300147 A OA 1200300147A OA 12415 A OA12415 A OA 12415A
Authority
OA
OAPI
Prior art keywords
mixer
tub
slurry
cernent
tank
Prior art date
Application number
OA1200300147A
Inventor
Joeel Rondeau
Pierre Vigneaux
Original Assignee
Sofitech Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofitech Nv filed Critical Sofitech Nv
Publication of OA12415A publication Critical patent/OA12415A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C7/00Controlling the operation of apparatus for producing mixtures of clay or cement with other substances; Supplying or proportioning the ingredients for mixing clay or cement with other substances; Discharging the mixture
    • B28C7/02Controlling the operation of the mixing
    • B28C7/022Controlling the operation of the mixing by measuring the consistency or composition of the mixture, e.g. with supply of a missing component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/59Mixing systems, i.e. flow charts or diagrams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/50Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle
    • B01F25/53Circulation mixers, e.g. wherein at least part of the mixture is discharged from and reintroduced into a receptacle in which the mixture is discharged from and reintroduced into a receptacle through a recirculation tube, into which an additional component is introduced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2111Flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2111Flow rate
    • B01F35/21112Volumetric flow rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2112Level of material in a container or the position or shape of the upper surface of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/211Measuring of the operational parameters
    • B01F35/2117Weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/213Measuring of the properties of the mixtures, e.g. temperature, density or colour
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2132Concentration, pH, pOH, p(ION) or oxygen-demand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/21Measuring
    • B01F35/2134Density or solids or particle number
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/20Measuring; Control or regulation
    • B01F35/22Control or regulation
    • B01F35/221Control or regulation of operational parameters, e.g. level of material in the mixer, temperature or pressure
    • B01F35/2211Amount of delivered fluid during a period
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/80Forming a predetermined ratio of the substances to be mixed
    • B01F35/88Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise
    • B01F35/881Forming a predetermined ratio of the substances to be mixed by feeding the materials batchwise by weighing, e.g. with automatic discharge
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B21/00Methods or apparatus for flushing boreholes, e.g. by use of exhaust air from motor
    • E21B21/06Arrangements for treating drilling fluids outside the borehole
    • E21B21/062Arrangements for treating drilling fluids outside the borehole by mixing components
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B33/00Sealing or packing boreholes or wells
    • E21B33/10Sealing or packing boreholes or wells in the borehole
    • E21B33/13Methods or devices for cementing, for plugging holes, crevices or the like
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/131Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components
    • G05D11/132Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by measuring the values related to the quantity of the individual components by controlling the flow of the individual components
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D11/00Control of flow ratio
    • G05D11/02Controlling ratio of two or more flows of fluid or fluent material
    • G05D11/13Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means
    • G05D11/135Controlling ratio of two or more flows of fluid or fluent material characterised by the use of electric means by sensing at least one property of the mixture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/28Mixing cement, mortar, clay, plaster or concrete ingredients
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2101/00Mixing characterised by the nature of the mixed materials or by the application field
    • B01F2101/49Mixing drilled material or ingredients for well-drilling, earth-drilling or deep-drilling compositions with liquids to obtain slurries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F2215/00Auxiliary or complementary information in relation with mixing
    • B01F2215/04Technical information in relation with mixing
    • B01F2215/0409Relationships between different variables defining features or parameters of the apparatus or process

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Fluid Mechanics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Accessories For Mixers (AREA)
  • Measuring Volume Flow (AREA)
  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Abstract

A method for continuously mixing a borehole fluid such as cement includes using a measurement of the solid fraction of a cement slurry as it is being mixed to determine the ratio of the solid and liquid components to be added to the slurry. A system for mixing the includes a liquid material (water) supply including a flow meter; a solid material (cement) supply; a mixer which receives the liquid and solid materials and includes an output for delivering materials from the mixer to a delivery system; a device for measuring the amount of material in the mixer; and a flow meter in the output; wherein measurements from the flow meters and the device for measuring the amount of material in the mixer are used to control the amount of solid and/or liquid material added to the mixer.

Description

1 012415
The présent invention relates to a System for mixing fluids containing solid and liquid materialssuch as cernent. In particular the invention provides a System for the continuons mixing ofcements or other fluids used in the drilling, completion or stimulation of boreholes such as oil orgas wells.
When a well such as an oil or gas well has been drilled, it is often desired to isolate the variousproducing zones form each other or from the well itself in order to stabilise the well or preventfluid communication between the zones or shut off unwanted fluid production such as water.This isolation is typically achieved by installing a tubular casing in the well and filling theannulus between the outside of the casing and the wall of the well (the formation) with cernent.The cernent is usually placed in the annulus by pumping a slurry of the cernent down the casingsuch that it exits at the bottom of the well and passes back up the outside of the casing to fill theannulus. While it is possible to mix the cernent as a batch prior to pumping into the well, it hasbecome désirable to effect continuous mixing of the cernent slurry at the surface just prior topumping into the well. This has been found to provide better control of cernent properties andmore efficient use of materials.
The cernent slurries used in such operations comprise a mixture of dry and liquid materials. Theliquid phase is typically water and so is readily available and cheap. The solid materials defmethe slurry and cernent properties when added to the water and mixed, the amount of solidmaterials in the slurry being important. Since the liquid phase is constant, the amount of solidmaterial added is usually monitored by measuring the density of the slurry and maintaining thisat the desired level by controlling the amount of the solid material being added. Figure 1 shows aschematic diagram of a prior art mixing System. In the System of Figure 1, mix water is pumpedfrom a feed supply 10 via a pump 12 to a mixer 14 which feeds into a mixing tub 16. The feedsupply 10 comprises a pair of displacement tanks 11,11’ each with separate outlets connected toa valve 13 which in tum feeds the pump 12. Two methods are commonly used to détermine theamount of water supplied: 2 012445 1. Proximity switches installée! on the shaft of the pump 12 count a number of puises perrotation. Each puise corresponds to a displacement volume. This method is sensitive to pumpefficiency. 2. Displacement volume is measured by counting the number of tanks pumped down-hole. Thismeasurement method is sensitive to human error in level reading, switching from on tank toanother and tank exact capacity. Even more an error in the number of tanks counted can hâvemany conséquences (over displacement can resuit in wet shoe, under displacement can resuit inno pressure bump or cernent left in the casing).
Solid materials are delivered to the mixer 14 from a surge can 18 or directly from a cernent silovia a flow control valve 20 and are carried into the mixing tub 16 with the mix water. Thecontents of the mixing tub 16 are recirculated through a recirculation pipe 22 and pump 24 to themixer 14. The recirculation pipe 22 also includes a densitometer 26 which provides ameasurement of the density of the slurry in the mixing tub 16. An output 28 is provided forslurry to be fed from the mixing tub 16 to further pumps (not shown) for pumping into the well.Control of the slurry mixture is achieved by controlling the density in the mixing tub 16 asprovided by the densitometer 26 by addition of solid material so stay at a predetermined level forthe slurry desired to be pumped. The densitometer 26 is typically a non-radioactive device suchas a Coriolis meter.
While this system is effective for slurries using materials of much higher density than water, it isnot effective for slurries using low density solid materials, especially when the density of thesolids is close to that of water. In such cases, a density measurement is not sensitive enough tocontrol the amounts of solid material added to the necessary accuracy.
The présent invention seeks to provide a mixing System which avoid the problem of densitymeasurement described above.
In its broadest aspect, the présent invention comprises using a measurement of the solid fractionof a fluid as it is being mixed to détermine the ratio of the solid and liquid components added tothe slurry. 3 012415
The invention is particularly applicable to the mixing of borehole cernent slurries, in which case,solids fraction is determined as (slurry vol - water vol)/slurry vol. An alternative but relatedparameter is porosity, determined as water vol/slurry vol (porosity + solids fraction =1). A System for mixing cernent in accordance with the invention comprises a liquid (water) supply5 including a device for measuring the amount of liquid supplied; a solid material supply; a mixerwhich receives the liquid and solid materials and includes an output for delivering materials fromthe mixer to a delivery System; a device for measuring the amount of material in the mixer; and aflow meter in the output; wherein measurements from the flow meters and the device formeasuring the amount of material in the mixer are used to control the amount of solid material 10 added to the mixer.
The flow meters can be mass flow meters or volumétrie flow meters. Any suitable form of metercan be used, for example Coriolis meters or electromagnetic meters.
The mixer will typically include a tank or tub, in which case the device for measuring the amountof material in the mixer can be a level sensor. Such a level sensor is preferably a time domain 15 reflectometry- or radar-type device although acoustic or float devices can also be used. It ispreferred to mount such a device in an arrangement for damping transient fluctuations in the tanklevel, for example in an arrangement of concentric slotted tubes. An alternative or additionalform of sensor can be a load cell which can be used to indicate the weight of the tank, or apressure sensor. 20 The device for measuring the amount of liquid supplied can be a flow meter or a level sensor ofthe types described above. When the liquid supply includes one or more displacement tanks, alevel sensor is preferred
Where the mixer includes some form of recirculation of the slurry through the tank, it is important that the output flow meter is downstream of this recirculation. 4 012415
Where the solid materials comprise cernent and other solid additives added separately to the mixer, separate flow meters can also be provided for each separate supply of additives.
In its simplest form, the measurement of solid fraction is used as a guide for the operator to addsolids, particularly cernent, to the slurry as it is mixed. In more advanced versions, thecalculation of solids fraction is used to control the addition of solids directly by means of anautomatic control System.
The invention also provides an improved method for calculating displacement volume from aSystem comprising at least one displacement tank, comprising measuring the level of liquid inthe tanks over time and calculating displacement as: Σ (V(hln) - V(h2n)) where: V(h) is the exact volume of the tank at level (h); hln is the start level of the n th displaced tank volume; and h2n is the stop level of the n th displaced tank volume.
Examples of the présent invention will now be described with reference to the accompanyingdrawing, in which:
Figure 1 shows a prior art mixing System;
Figure 2 shows a mixing System according to a first embodiment of the invention;
Figure 3 shows the components of a tank level sensor;
Figure 4 shows the components of the level sensor assembled;
Figure 5 shows a schematic of the tank level measurement; and
Figure 6 shows a mixing System according to a second embodiment of the invention.
The system shown in Figure 2 is used for the continuous mixing of cernent for oil well cementing operations and comprises a supply of mix water 100 feeding, via a pump 102 and a flow meter 104 to a mixing system 106. 5 0124 15
The supply of mix water comprises a pair of displacement tanks 101, each having a separate output connected to a valve 103 whiçh supplies the pump 102. Level sensors 105 are included in each displacement tank 101 for determining the amount of water supplied to the pump 102. In another version (not shown), the level sensors are omitted. The amount of water supplied is determined in the manner described below.
The mixing System 106 also receives solid materials from a surge can 108 (or altemativelydirectly from a surge can) which are admitted through a valve 110. The mixed solid and liquidmaterials are delivered through a feed pipe 112 to a mixing tub 114. The mixing tub 114 has afirst outlet 116 connected to a recirculation pump 118 which feeds the slurry drawn from the tub114 back into the mixing System. The tub 114 is provided with a level sensor 120 and/or a loadsensor 122 to provide an indication of the tank contents and any change in contents over time. Asecond output 124 is provided from the tub 114 which leads, via a second pump 126 and asecond flow meter 128 to the pumping System from which it is delivered to the well (not shown).An alternative method of delivery (shown in dashed line in Figure 2) has an output 124’ takenfrom the recirculation line via a flow meter 128’ to the well. Other arrangements are alsopossible. The pumps 102, 118, 126 are of the usual type found in well cementing Systems, forexample centrifugal pumps. Likewise, the flow meters 104, 128’ are conventional, for exampleCoriolis meters such as those that hâve been used as densitometers in previous applications.Different types of pumps and meters each hâve advantages and disadvantages that are wellknown in the art and can be selected according to requirements.
Figures 3-5 show details of the level sensors used in the displacement tanks and tub and themanner of installation. The sensor comprises a Krohne radar sensor 200, a stainless Steel rod 202,an inner slotted sleeve 204 and an outer slotted sleeve 206. The rod 202 is screwed onto thesensor 200 and the inner sleeve 204 mounted over the rod 202 and attached to a flange on thesensor 200. The outer sleeve 206 is mounted over the inner sleeve 204 to which it is attached.
For use in the displacement tanks, each displacement tank receives a level sensor. This sensorgives an accurate measurement of the liquid level in the tank. The exact volume versus level is 6 °1?415 required to calculate the displaced volume. In case the tank cross section profile is not accuratelyknown a so-called tank calibration is performed. A water meter equipped with a digital outputmeasures the exact displacement tank volume versus tank level. This operation is performed onlyonce for each tank. To supply water to the System, the valve 103 is operated to allow water toflow from one or other tank to the pump 102. When a tank discharge valve is opened, a devicesuch as an end switch, pressure switched or any other appropriate device is used to begincalculation of the displacement volume. Displacement volume is then computed as: Σ (V(hln) - V(h2n))
Where: V(h) is the exact volume of the tank at level (h) hln start level of the n th displaced tank volume h2n stop level of the n th displaced tank volume
When the level in the tank in use becomes low, the supply is switched to the other tank.
Switching operation from one tank to another can either be manual or automated and when onetank is emptying the other one is filled up for further use. Since the level sensors can be used togive an instantaneous measurement of the amount of water provided to the System, it is possibleto confirm the data provided by the flow meter 104, or even to replace the need for this flowmeter completely. When the flow meter is présent, it is not essential to hâve the level sensors inthe displacement tanks.
This method of determining the displacement volume can be applied to other forms of cementingoperation than the ones described here, and has the advantage that it is relatively insensitive topump efficiency or operator error as found in the previous Systems.
For use in the mixing tub, the sensor arrangement is installed in the mixing tub 114 in thevertical position and in a location where the slurry is renewed as the mixing occurs, to avoidlocation in a dead zone where cernent might set. The sensor provides a measurement of thedifférence between the length of the rod 202 {LM) and the level of slurry in the tub level {TL).The free tub level {FTL) is obtained by: FTL = LM-TL. 7
It will be appreciated that the exact form of level sensor is not important to the overall effect of the invention. What is important is to obtain an indication of the variation versus time of the tub slurry volume (called “tub flow” in this document). This can be obtained using a float or a load sensor or combinations of any of these or any other sensor giving this information. 5 The outputs of the flow sensors and level sensors are used to monitor the solid fraction of theslurry in the following manner:
The solid fraction computation is based on the balance between incoming and outgoing volumes(or flow rates) as expressed in the following relationship: ôwater ôcement ~~ ôslurry ôtub 10 where Qtub is the tub rate.
Tub rate is the variation versus time of the tub volume and is considered as positive while the tublevel increases and négative while it decreases. The smaller the tub cross section, the moresensitive the measurement will be to change. Qtub is given by: 15 where Sz„z, is the tub cross section and dh, dt tub is the tub level variation over time. In the simplest case, the tub section is constant and the tub rate becomes the product of the tub levelvariation/time and the tub cross section.
The solids fraction at time t is computed as the ratio of (slurry vol - water vol) over the totalslurry volume présent at time t in the tub. The variation in tub slurry volume Viub(t + <5?)- Vlub(t) 20 can be expressed as: ν,Λ (t + St)- V,b (z) = [β„„ (z)+β„.„ (z) - β.,„, (z)J « Stwhich can be rewritten as: ^(<+«)-^(0=c». W»· U M b *· 8 0124 15
In the same way, the variation in the water volume présent in the tub at time t
Vwaler 0 + <0 ~ ^wa,er (0 is equal to the incoming water volume minus the amount of water présentin the slurry leaving the tub, and can be expressed as: {t + δί}- Vwoter(t) = [Qwater0-(1 ~ SolidFraction{t))* Qslurry (/)]*δί.
Solid Fraction is then expressed as:
SolidFraclion(t + <0 = 1-
Vvater 0 + 0 “ O ~ SolidFractionÇt)) * Qdurry 0J * δί rJfï+QjtYa
The calculation requires that the initial conditions be known if it is to be accurate ab initio, i.e. isthe tub empty, full of water or containing slurry already. The calculation will ultimately stabiliseindependently of the initial conditions, the time taken to do this depending on the tub volume and the output flow rate Qsiurry·
These calculations are conveniently performed using a computer, in which case themeasurements can be provided directly from the sensors via a suitable interface. A preferredscreen display will show the various flow rates or levels, together with the desired solids fraction(calculated when designing the slurry). The mixing process is controlled by adjusting the amountof cernent and/or water added to the mixer so as to maintain the calculated solids fraction at thedesired level. Altematively, the results of the calculations can be fed to an automatic controlSystem which adjusts the rate at which the components are delivered to the mixing System.
The System described above Works well when the dry ingrédients (blend of cernent + additives)are delivered pre-mixed to the well site from another location. In this case essentially the samemeasurements and calculations as described above are performed, merely substituting Qbiend forQcement- If it is desired to mix the dry materials on site as part of the continuous mixing process, aslightly different approach is required. Figure 6 shows a mixing System according to anotherembodiment of the invention and uses a numbering scheme which foliows that of Figure 2. TheSystem of Figure 6 comprises an additional dry material supply 130 which admits the dryproducts to the mixing System 106 via a mass flow meter 132 (other flow measurement meanscan also be used) and a control valve 134. In this case, the basic control équation becomes:
9 012415 where four of the five variables are know and Qcement is the most difficult parameter to measureaccurately. Where multiple dry additives are to be added, the supply can comprise separatematerial supplies, each with a flow meter and valve. Additional terms Qadditivei, Qadditive2, etc., areincluded in the control équation.
It will be appreciated that changes can be made in implémentation while still remaining withinthe scope of using solid fraction as the property monitored to effect control of the mixing.
For example, the method can be applied to the mixing of other borehole fluids such asstimulation fluids (fracturing fluids) or even drilling fluids (mud). In the case of fracturing fluids,the gel and proppant (liquid and solid phases) are usually mixed using a pod blender and theproportion of gel and proppant controlled using a densitometer (usually radioactive) downstreamof the mixer/blender. The use of radioactive sensors generates many environmental issues andwhile Coriolis-type meters are an alternative, they are know to hâve limitations in respect of flowrate when used this way. The présent invention allows control of proppant and gel concentrationsby means of flow meters without the need to rely on densitometer measurements.
Gel and mixed fluid flow rates are measured by means of electromagnetic flow meters. Theamount of proppant is directly deduced from the folio wing relationship: Ôgel + Qproppant QhiixedFluid
Proppant concentration (in Pounds Per Gallon Added or “PPA”) can be a function of solidfraction as defined above and expressed as the following: PPA=Proppant Density*Solid Fr action/(1-Solid Fraction).
Thus the solid fraction measurement methodology described above in relation to cernent can beapplied to fracturing fluids by determining proppant density rather than cernent density.
This approach has the advantage of not requiring the use of radioactive densitometers thusavoiding limitations placed on use for regulatory reasons and without the flow rate performancelimitations of other measurement techniques. The equipment and control System is essentially thesame as that used in the cementing System described above.

Claims (1)

10 012415 CLAIMS 10 15 20 2 A System for mixing a cernent slurry comprising: i) a liquid material supply (101) including a device (104) for measuring the amountof liquid material supplied; ii) a solid cernent supply ( 108); iii) a mixer including a tub (114) which receives the liquid and solid cernent andincludes an output (124) for delivering materials from the mixer to a deliverysystem; iv) a flow meter ( 128) in the output (124); and v) a computing device, characterised in that the system further comprises a device (120) for measuring the amount of materialin the mixer; the computing device receives the output from the device (120) for measuring theamount of material in the mixer and from the flow meters (104, 128) and isarranged to calculate the variation in the amount of material in the tub (114) overtime, and the solid fraction of the mixture; and the calculated solid fraction is used to control the relative amounts of solid andliquid material added to the mixer. A system as claimed in claim 1, wherein the flow meters are selected from mass flowmeters and volumétrie flow meters. A system as claimed in any preceding claim , wherein the flow meters are selected fromCoriolis meters and electromagnetic meters. 11 ο 12415 4 A System as claimed in any preceding claim, wherein the mixer comprises a mixingsection and the tub, mixed materials being fed from the mixing section to the mixing tub,and a portion of the materials in the tub being recirculated to the mixing section. 5 A System as claimed in claim 4, wherein the device comprises a level sensor in the tub. 5 6 A System as claimed in claim 4, wherein the device comprises a load sensor which measures the weight of the tub. 7 A System as claimed in any of claims-4 - 8, wherein recirculation of material takes placeupstream of the flow meter in the output. 8 A System as claimed in any preceding claim, comprising separate supplies of cernent and 10 dry additives, a flow meter being provided to measure the rate of flow of the dry additives. 9 A System as claimed in claim 8, wherein the supply of dry additives comprises multipleseparate supplies of additives, each with its own flow meter. 10 A System as claimed in any preceding claim, wherein the liquid supply includes at least 15 one tank. 11 A System as claimed in claim 10, wherein the device for measuring the amount of liquidsupplied comprises a level sensor in the tank or a flow meter which measures the amountof liquid flowing from the tank. 12 012415 12 A method of mixing a cernent slurry, wherein the cernent and liquid components arecontinuously delivered to a mixer and the cernent slurry is continuously removed fromthe mixer for use, the method comprising: i) measuring the flow rate of liquid components into the mixer; and 5 ii) measuring the flow rate of slurry removed ffom the mixer; characterised by iii) measuring the amount of slurry in the mixer; iv) using the measurements of flow rate and amount of slurry to calculate the solidfraction of the fluid; and 10 (v) controlling the delivery of cernent and/or liquid components to the mixer according to the calculated solid fraction. 13 A method as claimed in claim 12, wherein additives are delivered to the mixer separatelyfrom cernent, the method further comprising measuring the flow rate of the additives delivered to the mixer. 15 14 A method as claimed in claim 12 or 13 wherein the mixer includes a tub, the measurement of the amount of slurry in the mixer comprising a measurement of the amount of slurry in the tub. 15 A method as claimed in claim 14, wherein a portion of the slurry in the tub is recirculatedinto the mixer as solid and liquid components are added. 20 16 A method as claimed in claim 15, wherein the recirculation takes place upstream of the measurement of the flow rate of slurry removed from the mixer. 17 A method as claimed in any of daims 12 -16, wherein liquid components are delivered for mixing from a liquid supply including at least one tank, the method further including the steps of measuring the level of liquid in the tank over time and computing 25 displacement volume as: Σ (V(hln) - V(h2n)) 13 012415 where: V(h) is the exact volume of the tank at level (h) hln is the start level of the n th displaced tank volume; and h2n is the stop level of the n th displaced tank volume.
OA1200300147A 2000-11-29 2001-10-04 Fluid mixing system. OA12415A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US09/726,784 US6491421B2 (en) 2000-11-29 2000-11-29 Fluid mixing system

Publications (1)

Publication Number Publication Date
OA12415A true OA12415A (en) 2006-04-18

Family

ID=24920002

Family Applications (1)

Application Number Title Priority Date Filing Date
OA1200300147A OA12415A (en) 2000-11-29 2001-10-04 Fluid mixing system.

Country Status (16)

Country Link
US (4) US6491421B2 (en)
EP (1) EP1356188B1 (en)
CN (1) CN1256500C (en)
AR (1) AR031355A1 (en)
AT (1) ATE277271T1 (en)
AU (2) AU2002223029B2 (en)
BR (1) BR0115636B1 (en)
CA (1) CA2429292C (en)
DE (1) DE60105852T8 (en)
DK (1) DK1356188T3 (en)
EA (1) EA004368B1 (en)
EG (1) EG23123A (en)
MX (1) MXPA03004660A (en)
NO (1) NO329657B1 (en)
OA (1) OA12415A (en)
WO (1) WO2002044517A1 (en)

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6491421B2 (en) * 2000-11-29 2002-12-10 Schlumberger Technology Corporation Fluid mixing system
EP1405705A4 (en) * 2001-06-20 2006-11-29 Ohbayashi Corp Weighing equipment for concrete material
US20050135185A1 (en) * 2002-02-28 2005-06-23 Duell Alan B. System and method for forming a slurry
DE10239189A1 (en) * 2002-08-21 2004-03-04 Endress + Hauser Flowtec Ag, Reinach Device and method for mixing two fluids
BRPI0318085B1 (en) * 2003-02-05 2016-10-11 Micro Motion Inc determination of the proportion of holding agent added to fracture fluid by means of coriolis flowmeter
GB2401070B (en) * 2003-04-28 2007-12-05 Dynamic Proc Solutions Plc Mixing device
US7013971B2 (en) * 2003-05-21 2006-03-21 Halliburton Energy Services, Inc. Reverse circulation cementing process
EP1508417A1 (en) * 2003-07-24 2005-02-23 Services Petroliers Schlumberger Blending system
US6832652B1 (en) 2003-08-22 2004-12-21 Bj Services Company Ultra low density cementitious slurries for use in cementing of oil and gas wells
US20070149076A1 (en) * 2003-09-11 2007-06-28 Dynatex Cut-resistant composite
US7290447B1 (en) * 2003-10-07 2007-11-06 Bj Services Company Density measuring apparatus containing a densimeter and a method of using the same in a pipeline
US7344299B2 (en) * 2003-10-21 2008-03-18 Mp Equipment Company Mixing system and process
US20060272819A1 (en) * 2004-01-16 2006-12-07 Halliburton Energy Services, Inc. Methods of preparing settable fluids comprising particle-size distribution-adjusting agents, and associated methods
US20050155763A1 (en) * 2004-01-16 2005-07-21 Reddy B. R. Settable fluids comprising particle-size distribution-adjusting agents and methods of use
US7204304B2 (en) * 2004-02-25 2007-04-17 Halliburton Energy Services, Inc. Removable surface pack-off device for reverse cementing applications
US7284898B2 (en) * 2004-03-10 2007-10-23 Halliburton Energy Services, Inc. System and method for mixing water and non-aqueous materials using measured water concentration to control addition of ingredients
WO2005098377A1 (en) * 2004-03-16 2005-10-20 Tribo Flow Separations, Llc Instruments, related systems, and methods for monitoring or controlling foaming
US7337077B2 (en) * 2004-04-28 2008-02-26 Canon Kabushiki Kaisha Program for calculating displacement of fluid and method for acquiring variables
SE0401616L (en) * 2004-06-23 2005-09-20 Atlas Copco Rock Drills Ab Method and device for automatic mixing of water and cement for rock bolting
US7290612B2 (en) * 2004-12-16 2007-11-06 Halliburton Energy Services, Inc. Apparatus and method for reverse circulation cementing a casing in an open-hole wellbore
US7252147B2 (en) * 2004-07-22 2007-08-07 Halliburton Energy Services, Inc. Cementing methods and systems for initiating fluid flow with reduced pumping pressure
US7290611B2 (en) * 2004-07-22 2007-11-06 Halliburton Energy Services, Inc. Methods and systems for cementing wells that lack surface casing
US7322412B2 (en) * 2004-08-30 2008-01-29 Halliburton Energy Services, Inc. Casing shoes and methods of reverse-circulation cementing of casing
ITVI20040227A1 (en) 2004-09-24 2004-12-24 Peron Srl Unipersonale PROCEDURE FOR OBTAINING A MIXTURE FOR THE CONSTRUCTION OF SUBSTRATES FOR FLOORING AND A RELATIVE MIXING DEVICE
US7303008B2 (en) * 2004-10-26 2007-12-04 Halliburton Energy Services, Inc. Methods and systems for reverse-circulation cementing in subterranean formations
US7284608B2 (en) * 2004-10-26 2007-10-23 Halliburton Energy Services, Inc. Casing strings and methods of using such strings in subterranean cementing operations
US7303014B2 (en) * 2004-10-26 2007-12-04 Halliburton Energy Services, Inc. Casing strings and methods of using such strings in subterranean cementing operations
US7356427B2 (en) * 2005-01-04 2008-04-08 Halliburton Energy Services, Inc. Methods and systems for estimating a nominal height or quantity of a fluid in a mixing tank while reducing noise
US7308379B2 (en) * 2005-04-14 2007-12-11 Halliburton Energy Services, Inc. Methods and systems for estimating density of a material in a mixing process
US7494263B2 (en) * 2005-04-14 2009-02-24 Halliburton Energy Services, Inc. Control system design for a mixing system with multiple inputs
US7353874B2 (en) * 2005-04-14 2008-04-08 Halliburton Energy Services, Inc. Method for servicing a well bore using a mixing control system
US20070002679A1 (en) * 2005-07-01 2007-01-04 Sharma Vinayak G Liquid proportioning system
US20110235460A1 (en) * 2005-07-22 2011-09-29 Schlumberger Technology Corporation Method and apparatus to optimize the mixing process
EP1745840A1 (en) * 2005-07-22 2007-01-24 Services Petroliers Schlumberger Apparatus and method for mixing a liquid material and a flowable powdery material to obtain a slurry
US7357181B2 (en) * 2005-09-20 2008-04-15 Halliburton Energy Services, Inc. Apparatus for autofill deactivation of float equipment and method of reverse cementing
US20070089678A1 (en) * 2005-10-21 2007-04-26 Petstages, Inc. Pet feeding apparatus having adjustable elevation
US7533729B2 (en) * 2005-11-01 2009-05-19 Halliburton Energy Services, Inc. Reverse cementing float equipment
GB2432903B (en) * 2005-12-02 2008-02-13 Schlumberger Holdings Blending system for solid/fluids mixtures
US7392840B2 (en) * 2005-12-20 2008-07-01 Halliburton Energy Services, Inc. Method and means to seal the casing-by-casing annulus at the surface for reverse circulation cement jobs
US7561943B2 (en) * 2005-12-30 2009-07-14 Halliburton Energy Services, Inc. Methods for volumetrically controlling a mixing apparatus
US20070171765A1 (en) * 2005-12-30 2007-07-26 Dykstra Jason D Systems for volumetrically controlling a mixing apparatus
US7567856B2 (en) * 2005-12-30 2009-07-28 Halliburton Energy Services, Inc. Methods for determining a volumetric ratio of a material to the total materials in a mixing vessel
US20070153624A1 (en) * 2005-12-30 2007-07-05 Dykstra Jason D Systems for determining a volumetric ratio of a material to the total materials in a mixing vessel
JP4410195B2 (en) * 2006-01-06 2010-02-03 株式会社東芝 Semiconductor device and manufacturing method thereof
US20070201305A1 (en) * 2006-02-27 2007-08-30 Halliburton Energy Services, Inc. Method and apparatus for centralized proppant storage and metering
WO2007109862A1 (en) * 2006-03-29 2007-10-04 Zeobond Research Pty Ltd Dry mix cement composition, methods and systems involving same
FR2900088B1 (en) * 2006-04-20 2010-09-24 Europ Equipement CONCRETE PLANT
US8328409B2 (en) * 2006-05-11 2012-12-11 Rineco Chemical Industries, Inc. Method and device for agitation of tank-stored material
US7464757B2 (en) * 2006-06-16 2008-12-16 Schlumberger Technology Corporation Method for continuously batch mixing a cement slurry
US8622608B2 (en) * 2006-08-23 2014-01-07 M-I L.L.C. Process for mixing wellbore fluids
US7597146B2 (en) * 2006-10-06 2009-10-06 Halliburton Energy Services, Inc. Methods and apparatus for completion of well bores
WO2008044017A2 (en) * 2006-10-10 2008-04-17 Halliburton Energy Services,Inc. Process control architecture with hydrodynamic correction
US7533728B2 (en) 2007-01-04 2009-05-19 Halliburton Energy Services, Inc. Ball operated back pressure valve
US20080196889A1 (en) * 2007-02-15 2008-08-21 Daniel Bour Reverse Circulation Cementing Valve
US8550690B2 (en) * 2007-04-13 2013-10-08 Construction Research & Technology Gmbh Method and device for dispensing liquids
KR20080098951A (en) * 2007-05-08 2008-11-12 한국지질자원연구원 Automated recirculation system for large particle size analysis
US20080298163A1 (en) * 2007-06-01 2008-12-04 Jean-Louis Pessin Vibration Assisted Mixer
US7654324B2 (en) * 2007-07-16 2010-02-02 Halliburton Energy Services, Inc. Reverse-circulation cementing of surface casing
US20090107676A1 (en) * 2007-10-26 2009-04-30 Saunders James P Methods of Cementing in Subterranean Formations
WO2009065858A1 (en) * 2007-11-19 2009-05-28 M-I Swaco Norge As Wellbore fluid mixing system
US20090157329A1 (en) * 2007-12-14 2009-06-18 Glenn Weightman Determining Solid Content Concentration in a Fluid Stream
US7775106B2 (en) * 2008-02-01 2010-08-17 Schlumberger Technology Corporation Non-contact radar based level measurement device
US8251570B2 (en) * 2008-08-25 2012-08-28 Baker Hughes Incorporated Method for blending of concentrations for dilution on the fly
US8132463B2 (en) * 2008-12-18 2012-03-13 Cameron International Corporation Method and apparatus for detecting voids in a pipe
CA2649197A1 (en) * 2008-12-24 2010-06-24 Gasfrac Energy Services Inc. Proppant control in an lpg frac system
US8177411B2 (en) * 2009-01-08 2012-05-15 Halliburton Energy Services Inc. Mixer system controlled based on density inferred from sensed mixing tub weight
US10264029B2 (en) 2009-10-30 2019-04-16 Time Warner Cable Enterprises Llc Methods and apparatus for packetized content delivery over a content delivery network
ES2338093B1 (en) * 2009-11-26 2011-05-31 Cavosa, Obras Y Proyectos, S.A. PRODUCT MIXING DEVICE.
US20110127034A1 (en) * 2009-11-30 2011-06-02 Schlumberger Technology Corporation Preparation of setting slurries
KR101162239B1 (en) * 2010-03-17 2012-07-04 김성호 concrete mix apparatus reducing cost of plant, install and drive
US8596354B2 (en) 2010-04-02 2013-12-03 Schlumberger Technology Corporation Detection of tracers used in hydrocarbon wells
WO2011160199A1 (en) * 2010-06-21 2011-12-29 Gasfrac Energy Services Inc. Proppant control in an lpg frac system
GB201101075D0 (en) 2011-01-21 2011-03-09 Labminds Ltd Automated solution dispenser
US9670809B2 (en) 2011-11-29 2017-06-06 Corning Incorporated Apparatus and method for skinning articles
US9254583B2 (en) 2012-01-23 2016-02-09 Quipip, Llc Systems, methods and apparatus for providing comparative statistical information for a plurality of production facilities in a closed-loop production management system
US9836801B2 (en) 2012-01-23 2017-12-05 Quipip, Llc Systems, methods and apparatus for providing comparative statistical information in a graphical format for a plurality of markets using a closed-loop production management system
JP6363597B2 (en) 2012-07-18 2018-07-25 ラブマインズ リミテッド Automated solution dispenser
US20140041322A1 (en) 2012-08-13 2014-02-13 Schlumberger Technology Corporation System and method for delivery of oilfield materials
CN102979468B (en) * 2012-12-28 2016-01-06 中国石油化工股份有限公司 A kind of grouting system with metering device
WO2014144206A1 (en) 2013-03-15 2014-09-18 Weatherford/Lamb, Inc. Direct slurry weight sensor for well operation mixing process
MX2015017039A (en) * 2013-08-06 2016-08-18 Halliburton Energy Services Inc Method and apparatus for zonal isolation of subterranean formations using set-on-demand slurries.
US10633174B2 (en) 2013-08-08 2020-04-28 Schlumberger Technology Corporation Mobile oilfield materialtransfer unit
US10150612B2 (en) 2013-08-09 2018-12-11 Schlumberger Technology Corporation System and method for delivery of oilfield materials
MX2016002590A (en) * 2013-08-30 2016-06-14 Praxair Technology Inc Control system and apparatus for delivery of a non-aqueous fracturing fluid.
US20150060044A1 (en) * 2013-08-30 2015-03-05 William Scharmach Control system and apparatus for delivery of a non-aqueous fracturing fluid
US10611051B2 (en) 2013-10-15 2020-04-07 Corning Incorporated Systems and methods for skinning articles
US9239296B2 (en) 2014-03-18 2016-01-19 Corning Incorporated Skinning of ceramic honeycomb bodies
AU2013408252B2 (en) 2013-12-20 2017-10-19 Halliburton Energy Services, Inc. Method and apparatus for improving mixing of cement slurry
US10184928B2 (en) 2014-01-29 2019-01-22 Quipip, Llc Measuring device, systems, and methods for obtaining data relating to condition and performance of concrete mixtures
US11819810B2 (en) 2014-02-27 2023-11-21 Schlumberger Technology Corporation Mixing apparatus with flush line and method
US11453146B2 (en) 2014-02-27 2022-09-27 Schlumberger Technology Corporation Hydration systems and methods
US10137420B2 (en) 2014-02-27 2018-11-27 Schlumberger Technology Corporation Mixing apparatus with stator and method
CN103912258B (en) * 2014-04-02 2016-05-04 中国石油集团川庆钻探工程有限公司长庆井下技术作业公司 A kind of mechanism that controls crosslinking agent
MX2016014601A (en) * 2014-05-12 2017-02-23 Schlumberger Technology Bv Hydration systems and methods.
US10551819B2 (en) 2014-12-11 2020-02-04 Schlumberger Technology Corporation Automated multi-silo aggregate management
CN104481435A (en) * 2014-12-16 2015-04-01 四机赛瓦石油钻采设备有限公司 Batch-type liquid agent adding system and liquid adding method
EP3254165B1 (en) 2015-02-06 2021-04-28 LabMinds Ltd Automated solution dispenser
EP3078413A1 (en) * 2015-03-27 2016-10-12 Uniflex Co., Ltd. Mixing capacity measuring device
US11192731B2 (en) 2015-05-07 2021-12-07 Halliburton Energy Services, Inc. Container bulk material delivery system
CN104857888A (en) * 2015-05-20 2015-08-26 卓达新材料科技集团有限公司 Automatic batching system
AU2015402766A1 (en) 2015-07-22 2017-05-18 Halliburton Energy Services, Inc. Mobile support structure for bulk material containers
US10569242B2 (en) 2015-07-22 2020-02-25 Halliburton Energy Services, Inc. Blender unit with integrated container support frame
WO2017023587A1 (en) * 2015-08-04 2017-02-09 Quipip, Llc Devices, systems, methods and apparatus for obtaining, presenting and using comparative performance data for batches produced in a production facility
CA2996055C (en) 2015-11-25 2022-04-26 Halliburton Energy Services, Inc. Sequencing bulk material containers for continuous material usage
AU2015417390B2 (en) * 2015-12-15 2021-10-14 Halliburton Energy Services, Inc. Cement supply control systems and methods
WO2017111968A1 (en) 2015-12-22 2017-06-29 Halliburton Energy Services, Inc. System and method for determining slurry sand concentration and continuous calibration of metering mechanisms for transferring same
US10087709B2 (en) 2016-02-26 2018-10-02 Baker Hughes, A Ge Company, Llc Well cementing methods and apparatuses
US10589238B2 (en) 2016-03-14 2020-03-17 Schlumberger Technology Corporation Mixing system for cement and fluids
WO2017160283A1 (en) * 2016-03-15 2017-09-21 Halliburton Energy Services, Inc. Mulling device and method for treating bulk material released from portable containers
WO2017164880A1 (en) 2016-03-24 2017-09-28 Halliburton Energy Services, Inc. Fluid management system for producing treatment fluid using containerized fluid additives
WO2017171797A1 (en) 2016-03-31 2017-10-05 Halliburton Energy Services, Inc. Loading and unloading of bulk material containers for on site blending
WO2017204786A1 (en) 2016-05-24 2017-11-30 Halliburton Energy Services, Inc. Containerized system for mixing dry additives with bulk material
CA3024330C (en) 2016-07-21 2021-06-08 Halliburton Energy Services, Inc. Bulk material handling system for reduced dust, noise, and emissions
CA3027695C (en) 2016-07-28 2021-11-30 Halliburton Energy Services, Inc. Modular bulk material container
US11338260B2 (en) 2016-08-15 2022-05-24 Halliburton Energy Services, Inc. Vacuum particulate recovery systems for bulk material containers
WO2018038723A1 (en) 2016-08-24 2018-03-01 Halliburton Energy Services, Inc. Dust control systems for discharge of bulk material
US11066259B2 (en) 2016-08-24 2021-07-20 Halliburton Energy Services, Inc. Dust control systems for bulk material containers
US11186318B2 (en) 2016-12-02 2021-11-30 Halliburton Energy Services, Inc. Transportation trailer with space frame
CN106861485A (en) * 2017-03-03 2017-06-20 吉姆西半导体科技(无锡)有限公司 Chemical liquid feed system and supply method
CN107505020A (en) * 2017-09-28 2017-12-22 青岛软控机电工程有限公司 Piston volume formula material measuring system
US11395998B2 (en) 2017-12-05 2022-07-26 Halliburton Energy Services, Inc. Loading and unloading of material containers
CN110142870A (en) * 2018-02-12 2019-08-20 三川德青工程机械有限公司 Automatic mixing pulping system and method
CN109078900B (en) * 2018-09-10 2020-07-14 中国石油化工集团有限公司 Well cementation car pipeline cleaning process
CN109569419B (en) * 2018-12-28 2021-05-11 象山华民汽车配件有限公司 Automobile tire blanking receiving equipment utilizing gravity centrifugation instant fault
CN109834838B (en) * 2019-03-08 2021-02-23 山东大学 Automatic slurry preparation system and preparation method thereof
US11821284B2 (en) 2019-05-17 2023-11-21 Schlumberger Technology Corporation Automated cementing method and system
CN110385085A (en) * 2019-07-31 2019-10-29 洛阳绿潮环保科技有限公司 A method of control is infused by intelligence and realizes the more trade mark hydraulic oil of on-line blending
US11845046B2 (en) 2019-10-08 2023-12-19 Industrial Dielectrics, Inc. Mixing system and method of using the same
WO2021207692A1 (en) * 2020-04-10 2021-10-14 ConsTruc Industries, LLC Cellular concrete wet mix blending
CN111781097B (en) * 2020-07-27 2023-02-24 路德环境科技股份有限公司 Quantitative analysis method for slurry curing batching test based on gel index
CN112191187A (en) * 2020-09-10 2021-01-08 翔天菌业集团股份有限公司 Edible fungus stick raw material stirring machine capable of achieving accurate proportioning and using method
CN112895140B (en) * 2021-01-22 2022-03-08 中联重科股份有限公司 Stirring main machine
US20220267104A1 (en) * 2021-02-23 2022-08-25 SonDance Solutions LLC Methods and Systems to Control Percent Solids in Conveyance Pipe
US11939862B2 (en) 2021-09-27 2024-03-26 Halliburton Energy Services, Inc. Cementing unit power on self test
US11852134B2 (en) 2021-11-04 2023-12-26 Halliburton Energy Services, Inc. Automated mix water test
US11643908B1 (en) 2021-11-04 2023-05-09 Halliburton Energy Services, Inc. Automated configuration of pumping equipment
US12012842B2 (en) * 2021-11-17 2024-06-18 Halliburton Energy Services, Inc. Predictive pump maintenance based upon utilization and operating conditions
CN115090204A (en) * 2022-06-08 2022-09-23 齐齐哈尔市茂尔农业有限公司 Potassium sulphate production adds device with raw materials science ratio

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3379421A (en) * 1966-12-14 1968-04-23 Westinghouse Electric Corp Control of material processing device
GB2057166B (en) * 1979-08-24 1983-06-02 Wimpey Lab Ltd Slurry-producing apparatus
US4353482A (en) 1980-01-23 1982-10-12 Halliburton Company Additive metering control system
US4397561A (en) * 1981-05-11 1983-08-09 William A. Strong Slurry production system
JPS58152715A (en) 1982-03-05 1983-09-10 Hitachi Ltd Automatic controller of slurry concentration
US4475818A (en) * 1983-08-25 1984-10-09 Bialkowski Wojciech L Asphalt coating mix automatic limestone control
US4779186A (en) * 1986-12-24 1988-10-18 Halliburton Company Automatic density control system for blending operation
NL8700131A (en) * 1987-01-20 1988-08-16 Frederik Christiaan Blees METHOD AND APPARATUS FOR PREPARING CONCRETE
US4896968A (en) * 1987-04-15 1990-01-30 Atlantic Richfield Company Cement storage and mixing system
US5018868A (en) * 1987-04-15 1991-05-28 Atlantic Richfield Company Cement storage and mixing system
US4764019A (en) * 1987-09-01 1988-08-16 Hughes Tool Company Method and apparatus for mixing dry particulate material with a liquid
US4886367A (en) * 1988-05-27 1989-12-12 Halliburton Company Apparatus for adding a selected additive into a mixture
US4863277A (en) * 1988-12-22 1989-09-05 Vigoro Industries, Inc. Automated batch blending system for liquid fertilizer
US5012589A (en) 1989-06-16 1991-05-07 Magnetrol International Displacement servo gauge
US5775803A (en) 1989-08-02 1998-07-07 Stewart & Stevenson Services, Inc. Automatic cementing system with improved density control
US5522459A (en) 1993-06-03 1996-06-04 Halliburton Company Continuous multi-component slurrying process at oil or gas well
DE4434264C2 (en) 1994-09-24 1998-07-30 Volker Dipl Ing Teuchert Procedure for automatic testing and compliance with the dosing accuracy of multi-component dosing systems
US5590976A (en) * 1995-05-30 1997-01-07 Akzo Nobel Ashpalt Applications, Inc. Mobile paving system using an aggregate moisture sensor and method of operation
US5653533A (en) * 1995-11-13 1997-08-05 Abc Techcorp. Apparatus and method for introducing liquid additives into a concrete mix
US6491421B2 (en) * 2000-11-29 2002-12-10 Schlumberger Technology Corporation Fluid mixing system

Also Published As

Publication number Publication date
NO329657B1 (en) 2010-11-22
ATE277271T1 (en) 2004-10-15
AR031355A1 (en) 2003-09-17
EA200300616A1 (en) 2003-10-30
US20040100858A1 (en) 2004-05-27
AU2002223029B2 (en) 2007-06-21
CA2429292A1 (en) 2002-06-06
US6491421B2 (en) 2002-12-10
DE60105852T2 (en) 2006-02-02
US6786629B2 (en) 2004-09-07
US7226203B2 (en) 2007-06-05
NO20032446L (en) 2003-05-28
CN1484730A (en) 2004-03-24
CA2429292C (en) 2009-07-14
WO2002044517A1 (en) 2002-06-06
EG23123A (en) 2004-04-28
DE60105852T8 (en) 2006-04-27
BR0115636A (en) 2003-09-23
CN1256500C (en) 2006-05-17
DE60105852D1 (en) 2004-10-28
US20030072208A1 (en) 2003-04-17
MXPA03004660A (en) 2003-09-04
EP1356188B1 (en) 2004-09-22
AU2302902A (en) 2002-06-11
US7056008B2 (en) 2006-06-06
US20060221762A1 (en) 2006-10-05
EA004368B1 (en) 2004-04-29
DK1356188T3 (en) 2005-01-31
NO20032446D0 (en) 2003-05-28
US20020093875A1 (en) 2002-07-18
BR0115636B1 (en) 2008-11-18
EP1356188A1 (en) 2003-10-29

Similar Documents

Publication Publication Date Title
CA2429292C (en) Fluid mixing system
AU2002223029A1 (en) Fluid mixing system
CA2653553C (en) A method for continuously batch mixing a cement slurry
US8177411B2 (en) Mixer system controlled based on density inferred from sensed mixing tub weight
US7660648B2 (en) Methods for self-balancing control of mixing and pumping
US9695670B2 (en) Direct slurry weight sensor for well operation mixing process
US7249500B2 (en) Determination of amount of proppant added to a fracture fluid using a coriolis flow meter
WO1995010028A1 (en) Multiphase flowmeter for measuring flow rates and densities
WO2006048599A1 (en) System and method for forming a slurry
CN100528319C (en) Particulate flow control process
US20030161211A1 (en) Control system and method for forming slurries
US7290447B1 (en) Density measuring apparatus containing a densimeter and a method of using the same in a pipeline
Vigneaux et al. Mixing cement by solids fraction instead of density
GB2219105A (en) Controlling a property of a mixture
RU2308700C2 (en) Method and device for determining concentration of filler with coriolis flow meter
KR100810534B1 (en) Determination of amount of proppant added to a fracture fluid using a coriolis flow meter
SU1715924A1 (en) Apparatus for continuous batching of bituminous materials