NZ792154A - Treating refractory migraine - Google Patents

Treating refractory migraine

Info

Publication number
NZ792154A
NZ792154A NZ792154A NZ79215417A NZ792154A NZ 792154 A NZ792154 A NZ 792154A NZ 792154 A NZ792154 A NZ 792154A NZ 79215417 A NZ79215417 A NZ 79215417A NZ 792154 A NZ792154 A NZ 792154A
Authority
NZ
New Zealand
Prior art keywords
antibody
cgrp
subject
monoclonal antibody
administered
Prior art date
Application number
NZ792154A
Inventor
Ernesto Aycardi
Marcelo Bigal
Original Assignee
Teva Pharmaceuticals International Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teva Pharmaceuticals International Gmbh filed Critical Teva Pharmaceuticals International Gmbh
Publication of NZ792154A publication Critical patent/NZ792154A/en

Links

Abstract

Disclosed herein are methods of treating or reducing incidence of migraine and/or at least one secondary symptom associated with refractory migraine in a subject having refractory migraine comprising administering to the subject a 5 monoclonal antibody that modulates the CGRP pathway. Compositions for use in the disclosed methods are also provided. Antagonist antibody G1 and antibodies derived from G1 directed to CGRP are also described. or use in the disclosed methods are also provided. Antagonist antibody G1 and antibodies derived from G1 directed to CGRP are also described.

Description

TREATING REFRACTORY MIGRAINE Cross Reference to Related Applications This application claims the benefit of priority of U S Application No. 62/399, 180, filed on September 23, 2016 and U.S. Application No. 62i558,557, filed on September s 14, 2017. This application is also a divisional of New Zealand Application No. 751935.
The contents of these prior ations are hereby incorporated by reference in their ties.
Background Migraine is a prevalent neurological condition characterized by attacks of headache and associated symptoms, such as , vomiting, photophobia, andior phonophobia. In US and Western Europe, the overall prevalence of migraine ers is 11 % of the l population (6% males; 15-18% females). The two most common forms of ne, migraine without aura and migraine with aura, occur on less than days per month and are referred to as episodic forms of migraine (EM) (Lipton et 1s al, Neurology 68(5):343-349, 2007). However, 3% to 6% of individuals with EM evolve, in any given year, to a significantly more disabling condition called chronic migraine (CM) (Scher et al, Pain 106(1-2):81-89, 2003). Individuals with CM present with headaches of any severity on 15 or more days per month and have full-blown migraine on at least 8 days per month. A sizable proportion of individuals with CM experience daily headaches and, therefore, faces considerable disability (Bigal and , Neurology 71(11):848-855, 2008) Preventive drug treatment of migraine may be appropriate in a number of instances, including where frequency of attacks per month is two or higher, or where a patient's quality of life is ly impaired (Evers et al, Europ. J. Neural. 16:968- 981, 2009). A number of drugs from different pharmacological categories (e.g. beta blockers, nvulsants) have been approved for migraine prevention or have class A evidence to SL1pport their Lise. However, patient response and tolerance to some of these medications varies, and compliance and adherence to these medications can be poor (Puledda et al., J. Neural Mar 20. doi: 10.1007/s004158434, 2017).
Calcitonin gene-related peptide (CGRP) is a eptide that has been found to be involved in migraine ses, both lly and peripherally (Eftekhari and Edvinsson, Ther. Adv. Neural. Disord. 3(6):369-378, 2010, Olesen, Cephalagia 31(5):638, 2011). r levels of CGRP are increased during migraine attacks, and intravenous (iv) CGRP administration s migraine-like headache in most individuals with migraine (Ashina etal., Neurology 55(9): 1335-1340, 2000, Hansen et al., Cephalagia 30(1):1179-1186, 2010). CGRP is involved in the pathophysiology of migraine at all , peripherally (vasodilation, inflammation, and protein extravasation), at the trigeminal ganglion, and inside the brain (Ho et al., Nat. Rev.
Neurol. 6(10):573-582, 2010). s have shown that inhibition of CGRP or antagonizing CGRP receptor has demonstrated efficacy in the treatment of EM (Bigal et al., Lancet Neurol. 14:1081-1090, 2015a, Hewitt et al., Cephalagia 31 (6):712-722, 2011, Ho et al., Lancet 372(9656):2115-2123, 2008. Olesen et al., N. Engl. J. Med. 350(11):1104-1110, 2004) and CM (Bigal etal., Lancet Neurol. 14:1091-1100, 2015b).
Monoclonal antibodies that modulate the CGRP pathway thus represent a class of promising therapeutic ates for patients who failed prior preventative treatment for CM and EM Summary Disclosed herein are anti-CGRP antagonist antibodies and methods of using the same for preventing, treating, or reducing incidence of migraine in a t having refractory migraine (i.e., a subject who does not respond ble to prior preventative migraine ents). Also disclosed herein are methods of preventing, treating, or reducing incidence of migraine in a subject having refractory migraine comprising administering to the subject a monoclonal antibody that modulates the CGRP pathway. s of preventing, treating, or reducing incidence of at least one ary m associated with refractory migraine in a subject comprising administering to the subject a monoclonal antibody that modulates the CGRP pathway are also provided. In some ments, the amount of the onal antibody administered to the patient can be about 225 mg to about 1000 mg, e g., about 675 mg or about 900 mg. Accordingly, in some aspects, the methods of preventing, treating, or reducing incidence of migraine in a subject having refractory migraine can comprise administering to the subject a monoclonal antibody that modulates the CGRP pathway, wherein the amount of the monoclonal antibody administered to the patient can be about 225 mg to about 1000 mg, e.g., about 675 mg or about 900 mg. In other aspects, the s of preventing, treating, or reducing incidence of at least one secondary symptom associated with refractory migraine in a subject can comprise administering to the subject a monoclonal antibody that modulates the CGRP y are also provided, wherein the amount of the monoclonal antibody stered to the patient can be about 225 mg to about 1000 mg, e g., about 675 mg or about 900 mg.
In one embodiment, the dosing regimen comprises administering an initial antibody dose (or starting antibody dose) of about 675 mg subcutaneously, followed by a monthly antibody dose of about 225 mg subcutaneously for, e.g., about two months, three months, four months, five months, six months, seven months, eight months, nine months, ten , 11 months, or 12 months, or even a period of greater than one year (e.g., 18 months, two years, or three years). Yet another dosing regimen comprises administering an l or ng dose of about 900 mg intravenously in an infusion over about 60 minutes, followed by doses of about 900 mg administered intravenously in an infusion over about 60 s every quarter for, e.g., about one year, two years, three years, four years, or five years. Yet another dosing regimen ses administering an initial or starting dose of about 675 mg administered subcutaneously, followed by doses of about 675 mg administered subcutaneously every r for, e.g., about one year, two years, three years, four years, or five years.
Suitable administration schedules e, but are not limited to, monthly or quarterly doses, or a single dose. In some embodiments, the monoclonal antibody can be administered y. For example, the monoclonal dy can be administered monthly for 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, or more months. In some aspects, the monoclonal antibody can be administered monthly for three or more months. When administered monthly, the dose of the monoclonal antibody administered to the patient can be about 225 mg to about 900 mg.
The monoclonal dy can be administered as a single dose. When administered as a single dose, the dose of the monoclonal antibody administered to the patient can be about 675 mg to about 1000 mg.
The treating or reducing can comprise reducing the number of headache hours of any severity, reducing the number of monthly headache days of any severity, reducing the use of any acute headache tions (e.g., migraine-specific acute headache medications), reducing a 6-item Headache Impact Test (HIT-6) disability score, improving 12-Item Short Form Health Survey (SF-12) score (Ware et al., Med Care 4:220-233, 1996), reducing Patient Global Impression of Change (PGIC) score (Hurst et al.: J Manipulative Physiol Ther 27:26-35: 2004), improving Sport ConCuSSion ASSeSment tool 3 (SCAT-3) score (McCrory et al. British Journal of Sports Medicine 47:263-266, 2013), or any combination f. In some ments, the number of monthly headache days can be reduced for at least seven days after a single administration.
In some embodiments, monthly headache hours experienced by the subject after said administering is reduced by 40 or more hours (e.g., 45, 50, 55, 60, 65, 70, 75, 80, or more) from a pre-administration level in the subject. y headache hours may be reduced by more than 60 hours. In some embodiments, monthly headache hours experienced by the subject after said administering are reduced by % or more (e.g., 30%, 35%, 40%, 45%, 50%, or more) relative to a preadministration level in the subject. Monthly headache hours may be reduced by 40% or more. In some embodiments, monthly headache days experienced by the subject after said administering is reduced by three or more days (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more days) from a pre-administration level in the subject. In some embodiments, the number of monthly headache days can be reduced by at least about 50% from a ministration level in the subject. Thus, in some aspects, the number of y headache days can be reduced by at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, or at least about 90%.
In some ments, the administering can be subcutaneous administration.
In some embodiments, the administering can be intravenous administration. In some embodiments, the administering can comprise utilizing a pre-filled syringe, pre-filled syringe with a needle safety device, injection pen, or auto-injector comprising a dose of the monoclonal antibody. In some embodiments, the monoclonal dy can be formulated at a concentration of at least 150 mg/mL. In some embodiments, the monoclonal dy can be administered in a volume of less than 2 mL, e.g., about 1.5 ml.
In some ments, the method further comprises administering to the subject a second agent simultaneously or sequentially with the monoclonal antibody.
In an embodiment, the second agent is an acute headache treatment (e.g., a migraine- specific acute headache treatment). Accordingly, the second agent can be any of analgesics (e.g., acetylsalicylic acid, fen, naproxen, diclofenac, paracetamol, acetylsalicylic acid plus paracetamol plus caffeine, metamizol, phenazon, or tolfenamic acid); antiemetics (e g., metoclopramide or domperidon); ergot alkaloids (e.g., ergotamine te or dihydroergotamine); and triptans, i.e., 5-HT1 ts (e.g.: sumatriptan, zolmitriptan, iptan, rizatriptan, almotriptan, eletriptan, or frovatriptan).
In some embodiments, monthly use of the second agent by the subject is decreased by at least about 15%, e.g.. at least 16%, 17%, 18%, 20%, 22%, 25%, 28%, %, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, or at least about 95%, after administering the onal antibody. In some embodiments, the second agent is a triptan.
In some embodiments, the subject is a human.
The monoclonal antibody can be an anti-CGRP nist antibody. In some embodiments, the monoclonal antibody is a human or humanized monoclonal antibody. In some embodiments, the monoclonal antibody comprises (a) an antibody having a CDR H1 as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4: a CDR H3 as set forth in SEQ ID NO:5; a CDR L1 as set forth in SEQ ID NO:6; a CDR L2 as set forth in SEQ ID NO:7; and a CDR L3 as set forth in SEQ ID NO:8: or (b) a variant of an antibody according to (a) as shown in Table 6.
Also disclosed are methods of decreasing a number of monthly headache hours experienced by a subject having tory migraine. In one embodiment the method ses administering to the subject an amount of a onal antibody that modulates the CGRP pathway, wherein the monoclonal antibody is in an amount effective to decrease the number of monthly headache hours by at least 20 (e.g., 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 or more headache hours) after a single dose. In some embodiments, the number of monthly headache hours is reduced by at least about 50 hours. In one embodiment, the method comprises administering to the subject an amount of a monoclonal antibody that modulates the CGRP pathway, wherein the monoclonal antibody is in an amount effective to decrease the number of monthly headache hours by at least 15% (e.g., 20%, 25%, 30%, 35%, 40%, or more) after a single dose. In some embodiments, the number of monthly headache hours is reduced by at least about 30%. In some embodiments, the monoclonal antibody is an anti-CGRP antagonist dy. In some ments, the amount of the monoclonal antibody administered to the patient is about 225 mg to about 1000 mg. In some embodiments: the monoclonal antibody is administered monthly. In some embodiments, the monoclonal antibody is stered as a single dose. In some embodiments, the administering is subcutaneous or intravenous administration. In some embodiments, the monoclonal antibody is formulated at a concentration of at least 150 mg/mL. In some embodiments, the monoclonal antibody is administered in a volume of less than 2 mL e.g.: about 1.5 mL. In some embodiments, the subject is human. In some embodiments, the monoclonal antibody is human or humanized. In some embodiments, the monoclonal antibody comprises (a) an antibody having a CDR H1 as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID NO:5; a CDR L1 as set forth in SEQ ID NO:6: a CDR L2 as set forth in SEQ ID NO:7; and a CDR L3 as set forth in SEQ ID NO:8; or (b) a variant of an antibody according to (a) as shown in Table 6.
Also disclosed are methods of decreasing a number of monthly headache days experienced by a subject having refractory migraine. In one embodiment, the method comprises stering to the subject an amount of a monoclonal antibody that modulates the CGRP pathway, wherein the monoclonal antibody is in an amount effective to decrease the number of y headache days by at least 3 (e.g., 3, 4, , 6,7, 8, 9, 10, 11, 12, 13. 14, 15, 16, 17, 18, 19, 20 or more headache days) after a single dose. In some ments, the number of monthly headache days is d by at least about 6 headache days. In some embodiments, the number of monthly headache days can be reduced by at least about 50% from a pre-administration level in the subject. Thus, in some aspects, the number of monthly headache days can be reduced by at least about 50%, at least about 55%, at least about 60%, at least about 65%, at least about 70%, at least about 75%, at least about 80%, or at least about 90%. In some embodiments, the onal antibody is an GRP antagonist antibody. In some embodiments, the amount of the monoclonal antibody administered to the patient is about 225 mg to about 1000 mg. In some ments, the monoclonal antibody is administered monthly. In some embodiments, the monoclonal antibody is stered as a single dose. In some embodiments, the administering is subcutaneous or intravenous stration. In some embodiments, the monoclonal antibody is formulated at a concentration of at least 150 mg/mL. In some embodiments, n the monoclonal antibody is administered in a volume of less than 2 mL e.g.? about 1.5 ml. In some ments, the t is human. In some embodiments, the monoclonal antibody is human or humanized In some embodiments, the monoclonal antibody comprises (a) an antibody having a CDR H1 as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID NO:5; a CDR L1 as set forth in SEQ ID NO:6; a CDR L2 as set forth in SEQ ID NO:7; and a CDR L3 as set forth in SEQ ID NO:8; or (b) a variant of an antibody ing to (a) as shown in Table 6.
Also disclosed are methods of decreasing use of any acute headache medication in a subject having refractory ne, comprising administering to the subject a monoclonal antibody (e.g.: anti-CGRP antagonist antibody) that modulates the CGRP pathway, wherein the monoclonal antibody is in an amount ive to decrease monthly use of the headache medication by the subject by at least 15% (e.g.: %, 25%, 30%, 35%, 40%, or more). In some embodiments, the acute headache medication is selected from the group consisting of 5-HT1 agonists, triptans, opiates, ergot alkaloids, and non-steroidal anti-inflammatory drugs (NSAIDs). In some embodiments, the acute headache medication is selected from sics (e.g.. acetylsalicylic acid, ibuprofen, naproxen, diclofenac, paracetamol, acetylsalicylic acid plus paracetamol plus caffeine, metamizol, phenazon, or tolfenamic acid); antiemetics (e.g., metoclopramide or domperidon); ergot alkaloids (e.g., ergotamine tartrate or dihydroergotamine); and triptans, i.e., 5-HT1 agonists (e.g., sumatriptan, riptan, iptan, rizatriptan, almotriptan, ptan, or frovatriptan). In some embodiments, the acute headache tion is a triptan. In some embodiments, the amount of the monoclonal antibody administered to the patient is about 225 mg to about 1000 mg, e.g., about 675 mg or about 900 mg. In some embodiments, the monoclonal antibody is administered monthly In some embodiments, the monoclonal antibody is administered as a single dose In some embodiments, the administering is subcutaneous or intravenous administration. In some embodiments, the monoclonal antibody is formulated at a tration of at least 150 mg/mL. In some embodiments, wherein the monoclonal antibody is stered in a volume of less than 2 mL, e.g., about 1.5 mL. In some embodiments, the subject is human. In some embodiments, the monoclonal antibody is human or humanized In some embodiments, the monoclonal antibody comprises (a) an antibody having a CDR HI as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID N0:5; a CDR L1 as set forth in SEQ ID N0:6; a CDR L2 as set forth in SEQ ID N0:7; and a CDR L3 as set forth in SEQ ID N0:8; or (b) a variant of an antibody according to (a) as shown in Table 6.
In one aspect, the invention provides a method of preventing, treating, or reducing incidence of migraine in a subject having refractory migraine comprising subcutaneously administering to the t a loading dose of a monoclonal antibody (e.g., monoclonal anti-CGRP-antagonist antibody) in an amount that modulates the CGRP pathway, wherein the amount of the monoclonal dy is about 225 mg to about 1000 mg; e.g., about 675 mg (e.g., three subcutaneous injections of 225 mg each): followed by monthly aneous injections of about 100 mg to about 1000 mg; e.g.. about 225 mg; for about one to 12 consecutive months, e.g., five consecutive months.
In some embodiments, the s include selecting a subject who does not d favorably to a migraine treatment selected from the group ting of topiramate, carbamazepine, divalproex sodium, sodium valproate, ic acid, flunarizine, candesartan, pizotifen, ptyline, venlafaxine, nortriptyline, duloxetine. atenolol, nadolol, metoprolol, propranolol, bisopropol, timolol, and onabotulinumtoxinA. In some embodiments, the s include selecting a subject who does not d favorably to a ne treatment selected from the group consisting of topiramate, carbamazepine, divalproex sodium, sodium valproate, flunarizine, pizotifen, amitriptyline, venlafaxine, ptyline, duloxetine, atenolol, nadolol, metoprolol, propranolol, l, and onabotulinumtoxinA. In some embodiments, the methods include selecting a subject who does not respond favorably to a migraine treatment selected from the group consisting of propranolol, metoprolol, atenolol, bisopropol, mate, amitriptyline, flunarizine, candesartan, onabotulinumtoxinA, and valproic acid. In some embodiments, the methods include selecting a subject who does not respond favorably to a migraine treatment selected from propranolol/metoprolol, topiramate, flunarizine, valproate/divalproex, amitriptyline, venlafaxine, pril, candesartan, and locally approved products (e.g. so oxeterone or fen). In other embodiments, the methods include selecting a subject who does not respond favorably to one or more migraine treatments of the following classes: beta-blockers, anticonvulsants, tricyclics, calcium channel blockers, angiotensin II receptor antagonists. For example, the subject may have documented inadequate response (in a medical chart or by treating physician’s confirmation) to at least two preventive medications (from different clusters: as defined . Or, the subject may have documented inadequate response (in a medical chart or by treating ian's mation) to two to four classes of prior preventive medications (from; e.g., different clusters, as defined below). As another example, the subject may have documented inadequate response (in a medical chart or by treating physician’s confirmation) to two to three classes of prior preventive medications (from different clusters, as defined below) and a valrproate (e.g., divalproex sodium, sodium valproate, or valproic acid).
Inadequate response is defined as: no clinically gful improvement per treating physician’s judgement, after at least three months of therapy at a stable dose considered appropriate for migraine prevention according to accepted country ines, or when treatment has to be interrupted because of adverse events that made it intolerable by the patient or the drug is contraindicated or not suitable for the patient. The three month period may not apply if the drug is intolerable or contraindicated or not suitable for the patient. For onabotulinumtoxinA, an uate response is defined as: no ally meaningful improvement per treating physician’s judgement, after at least six months of therapy at a stable dose ered appropriate for migraine prevention according to accepted country guidelines, or when treatment has to be interrupted e of adverse events that made it intolerable by the patient.
Or, if onabotulinumtoxinA is a previous preventative medication, at least two sets of injections and three months should have passed since the last set of injections.
In some embodiments, the clusters are as follows: • r A: topiramate, carbamazepine, roex sodium, and sodium valproate • cluster B: flunarizine and pizotifen • cluster C: ptyline, venlafaxine, nortriptyline, and duloxetine • cluster D: atenolol, nadolol, metoprolol, propranolol, and timolol • cluster E: ulinumtoxinA In some embodiments, the clusters are as follows: • cluster A: beta-blockers: propranolol, metoprolol, atenolol, and bisopropol • cluster B: anticonvulsants: topiramate • cluster C: tricyclics: amitriptyline • cluster D: calcium channel blocker: flunarizine • cluster E: angiotensin II receptor antagonist: artan • cluster F: onabotulinumtoxinA • r G: valproic acid Additional clusters (which may be included with either of the groups of clusters above include: cluster a: an angiotensin-converting enzyme (ACE) tor, such as lisinopril cluster b: a benzocycloheptene-based drug: such as pizotifen cluster c: an antidepressant, such as amitriptyline (Elavil), trazodone (Desyrel), and mine (Tofranil), and venlafaxine r d: an anticonvulsant such as oin (Dilantin) or carbamazepine (Tegretol) cluster e: oxeterone In one aspect, the invention es a method of preventing, treating, or reducing incidence of migraine in a subject having refractory migraine sing administering to the subject a single dose of a monoclonal antibody (e g., monoclonal GRP-antagonist antibody) in an amount that modulates the CGRP pathway, n the amount of the monoclonal antibody is about 225 mg to about 1000 mg, e.g., about 675 mg or about 900 mg. In an embodiment, the subject is refractory to at least two different preventative treatments selected from topiramate, onabotulinumtoxinA, and valproic acid. In an embodiment, the subject is refractory to preventative ent with mate, onabotulinumtoxinA, and valproic acid.
In one aspect, the invention provides a method of preventing, treating, or reducing incidence of migraine in a subject having refractory migraine comprising administering to the subject a monoclonal antibody (e.g.. monoclonal anti-CGRP- antagonist antibody) in an amount that modulates the CGRP pathway, wherein the amount of the monoclonal antibody is about 225 mg to about 1000 mg, e.g., about 675 so mg or about 900 mg. In an embodiment, the subject is refractory to at least two different preventative treatments selected from topiramate, onabotulinumtoxinA, and valproic acid. In an embodiment, the subject is refractory to preventative treatment with topiramate. onabotulinumtoxinA, and valproic acid. In some embodiments, the monoclonal antibody is administered as a single dose.
In a further embodiment, the invention provides methods for preventing, treating, rating, controlling, reducing incidence of, or delaying the development or progression of migraine in an individual diagnosed with refractory migraine (see, e.g., the criteria bed herein) comprising administering to the individual an effective amount of an anti-CGRP antagonist antibody in combination with at least one additional acute headache medication or agent useful for treating migraine. Such additional agents include, e.g., 5-HT1-like agonists (and agonists acting at other 5- HT1 sites), triptans, opiates, , ergot alkaloids, and non-steroidal anti-inflammatory drugs (NSAIDs).ln some embodiments, the acute headache medication is selected from analgesics (e.g., acetylsalicylic acid, ibuprofen, naproxen, diclofenac, paracetamol, acetylsalicylic acid plus paracetamol plus caffeine, metamizol, phenazon, or tolfenamic acid); antiemetics (e.g., metoclopramide or domperidon); ergot alkaloids (e.g., ergotamine tartrate or dihydroergotamine); and triptans, i.e.. 5- HT1 agonists (e.g., sumatriptan, zolmitriptan, iptan, rizatriptan, almotriptan, ptan, or frovatriptan).
Non-limiting examples of 5-HT1 agonists that can be used in combination with an anti-CGRP dy include a class of compounds known as triptans, such as sumatriptan, zolmitriptan, naratriptan, rizatriptan, eletriptan, iptan. and frovatriptan. Ergot alkaloids and related compounds are also known to have 5-HT agonist ty and have been used to treat headaches. Included among these compounds are mine tartrate, ergonovine maleate, and ergoloid tes (e.g., dihydroergocornine, dihydroergocristine, dihydroergocryptine, and oergotamine mesylate (DHE 45)).
Non-limiting examples of NSAIDs (as an acute headache medication) that can be used in combination with an anti-CGRP antibody e aspirin, diclofenac, diflusinal, etodolac, fenbufen, fenoprofen, flufenisal, flurbiprofen, ibuprofen, indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, so nabumetone, naproxen, oxaprozin, phenylbutazone, piroxicam, sulindac, tolmetin or zomepirac, cyclooxygenase-2 (COX-2) tors, celecoxib; rofecoxib: meloxicam; 2; L-745,337; NS398; or a ceutically acceptable salt thereof.
In one embodiment, the anti-CGRP antagonist antibody used in any of the methods described above is any of the antibodies as described herein.
In some embodiments, the anti-CGRP antagonist antibody recognizes a human CGRP. In some embodiments, the anti-CGRP antagonist antibody binds to both human a-CGRP and (3-CGRP. In some embodiments, the anti-CGRP antagonist antibody binds human and rat CGRP. In some embodiments, the anti-CGRP antagonist antibody binds the C-terminal fragment having amino acids 25-37 of CGRP.
In some embodiments, the anti-CGRP antagonist antibody binds a C-terminal epitope within amino acids 25-37 of CGRP.
In some embodiments, the anti-CGRP nist antibody is a monoclonal antibody. In some embodiments, the anti-CGRP antagonist antibody is humanized.
In some embodiments, the antibody is human. In some embodiments, the anti-CGRP antagonist antibody is antibody G1 (as described herein). In some embodiments, the anti-CGRP antagonist antibody comprises one or more CDR(s) (such as one, two, three, four, five, or, in some ments, all six CDRs) of antibody G1 or variants of G1 shown in Table 6. In still other embodiments, the anti-CGRP antagonist antibody comprises the amino acid sequence of the heavy chain variable region shown in Figure 5 (SEQ ID NO:1) and the amino acid sequence of the light chain le region shown in Figure 5 (SEQ ID NO:2).
In some embodiments, the antibody comprises a modified constant region, such as a constant region that is immunologically inert (including partially immunologically , e g., does not trigger complement ed lysis, does not stimulate antibody-dependent cell mediated cytotoxicity (ADCC), does not activate microglia, or having reduced one or more of these ties. In some ments, the constant region is modified as described in Eur. J. Immunol. (1999) 3-2624; PCT Application No. PCT/GB99/01441; and/or UK Patent Application No. 9809951.8.
In other embodiments, the antibody comprises a human heavy chain lgG2 constant region comprising the following mutations: A330P331 to S330S331 (amino acid numbering with nce to the pe lgG2 sequence). Eur. J. l. (1999) 29:2613-2624. In some embodiments, the heavy chain constant region of the antibody is a human heavy chain lgG1 with any of the following ons: 1) A327A330P331 to G327S330S331; 2) E233L234L235G236 (SEQ ID NO:48) to P233V234A235 with G236 deleted; 3) E233L234L235 to P233V234A235; 4) E233L234L235G236A327A330P331 (SEQ ID NO:49) to P233V234A235G327S330S331 (SEQ ID NO:50) with G236 deleted; 5) E233L234L235A327A330P331 (SEQ ID N0:51) to P233V234A235G327S330S331 (SEQ ID NO:50); and 6) N297 to A297 or any other amino acid except N. in some embodiments, the heavy chain constant region of the dy is a human heavy chain lgG4 with any of the following mutations: E233F234L235G236 (SEQ ID NO:52) to 34A235 with G236 deleted; E233F234L235 to P233V234A235; and S228L235 to P228E235.
In still other embodiments, the constant region is aglycosylated for N-linked io glycosylation. In some embodiments, the constant region is aglycosylated for N-linked glycosylation by mutating the oligosaccharide attachment residue (such as Asn297) and/or flanking es that are part of the N-glycosylation ition sequence in the constant region. In some ments, the constant region is aglycosylated for N-linked glycosylation. The constant region may be aglycosylated for N-linked is glycosylation enzymatically or by expression in a glycosylation ent host cell.
The binding affinity (Kn) of an anti-CGRP antagonist antibody to CGRP (such as human a-CGRP as measured by surface plasmon nce at an appropriate temperature, such as 25 or 37 °C) can be about 0.02 to about 200 nM. In some embodiments, the binding affinity is any of about 200 nM, about 100 nM, about 50 nM, about 10 nM, about 1 nM, about 500 pM, about 100 pM, about 60 pM, about 50 pM, about 20 pM. about 15 pM, about 10 pM. about 5 pM, or about 2 pM. in some embodiments, the g affinity is less than any of about 250 nM. about 200 nM, about 100 nM, about 50 nM, about 10 nM, about 1 nM, about 500 pM, about 100 pM, or about 50 pM. in some embodiments, the g affinity is less than about 50 nM.
The anti-CGRP antagonist antibody may be administered prior to. during, and/or after a migraine in the subject having refractory migraine. In some embodiments, the anti-CGRP antagonist antibody is administered prior to the subject experiencing symptoms of a migraine. Administration of an anti-CGRP antagonist antibody can be by any means known in the art, including: orally, intravenously, subcutaneously, rterially, intramuscularly, intranasally (e.g., with or without inhalation), intracardially. intraspinally, intrathoracically, intra peritonea I ly, intraventricularly, sublingually, transdermally, and/or via tion. Administration may be systemic, e g., intravenously, or localized. In some embodiments, an initial or starting dose and one or more additional doses are administered the same wayr i.e.. subcutaneously or intravenously. In some embodiments, the one or more additional doses are administered in a different way than the initial dose: i.e.: the initial dose may be administered intravenously and the one or more additional doses may be administered subcutaneously.
In another aspect, the invention provides use of an anti-CGRP antagonist antibody for the manufacture of a medicament for use in any of the methods bed herein.
In another aspect, the invention provides a pharmaceutical composition for preventing, treating, or ng migraine in a subject having refractory migraine sing an effective amount of an anti-CGRP antagonist dy, in combination with one or more ceutically acceptable excipients.
In another , the invention provides a kit for use in any of the methods bed herein. In some embodiments, the kit comprises a container a composition comprising an anti-CGRP antagonist antibody described herein, in combination with a pharmaceutically acceptable carrier, and instructions for using the composition in any of the methods described herein.
In some ments, the methods provided herein utilize GRP antagonist antibodies and polypeptides derived from antibody G1 or its variants shown in Table 6. Accordingly, in one aspect, the invention es an antibody G1 (interchangeably termed "G1" and 8125”) that is produced by expression vectors having ATCC Accession Nos. 66 and PTA-6867. For example, in one embodiment is an antibody sing a heavy chain produced by the expression vector with ATCC Accession No. PTA-6867. In a further embodiment is an antibody comprising a light chain produced by the expression vector with ATCC Accession No.
PTA-6866. The amino acid sequences of the heavy chain and light chain variable regions of G1 are shown in Figure 5. The complementarity determining region (CDR) portions of antibody G1 (including Chothia and Kabat CDRs) are also shown in Figure . It is understood that reference to any part of or entire region of G1 encompasses ces produced by the expression vectors having ATCC Accession Nos. PTA- 6866 and PTA-6867, and/or the sequences depicted in Figure 5 In some embodiments, the invention also provides antibody variants of G1 with amino acid sequences depicted in Table 6.
In some embodiments, the dy ses a Vh domain that is at least 85%, at least 86%, at least 87%. at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97% at least 98%, at least 99% or 100% identical in amino acid sequence to SEQ ID NO:1.
In some embodiments, the antibody comprises a Vl domain that is at least 85%, at least 86%, at least 87%. at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97% at least 98%, at least 99% or 100% identical in amino acid sequence to SEQ ID NO:2.
In some embodiments, the antibody comprises a heavy chain sequence that is at least 85%, at least 86%. at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97% at least 98%, at least 99% or 100% identical in amino acid sequence to SEQ ID NO:11.
In some embodiments, the antibody comprises a light chain sequence that is at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97% at least 98%, at least 99% or 100% cal in amino acid sequence to SEQ ID NO:12.
In some embodiments, the dy comprises a fragment or a region of the antibody G1 or its variants shown in Table 6. In one embodiment, the fragment is a light chain of the antibody G1. In another embodiment, the fragment is a heavy chain of the antibody G1. In yet another embodiment, the fragment contains one or more variable regions from a light chain and/or a heavy chain of the antibody G1. In yet another embodiment, the fragment contains one or more le regions from a light chain and/or a heavy chain shown in Figure 5 In yet r embodiment, the fragment contains one or more CDRs from a light chain and/or a heavy chain of the antibody G1.
In some embodiments, the polypeptide (such as an antibody) comprises the amino acid sequence of KASKXaaVXaaTYVS (SEQ ID NO:53), wherein Xaa at position 5 is R, W, G, L, or N: and wherein Xaa at position 7 is T, A, D, G, R; S, W. or V. In some embodiments, the amino acid sequence of KASKXaaVXaaTYVS (SEQ ID NO:53) is CDR1 of an antibody light chain.
In some embodiments, the polypeptide (such as an antibody) comprises the amino acid sequence of XaaXaaSNRYXaa (SEQ ID NO:54). wherein Xaa at position 1 is G or A; wherein Xaa at position 2 is A or H; and wherein Xaa at position 7 is L, T, I, or S. In some embodiments, the amino acid ce of XaaXaaSNRYXaa (SEQ ID NO:54) is CDR2 of an antibody light chain.
In some embodiments, the polypeptide (such as an antibody) comprises the amino acid sequence of EIRSXaaSDXaaXaaATXaaYAXaaAVKG (SEQ ID NO:55), n Xaa at position 5 is E, R, K, Q, or N; n Xaa at position 8 is A, G, N, E, H, S, L, R, C, F, Y, V, D, or P; wherein Xaa at position 9 is S, G, T, Y. C, E, L, A, P, I, to N, R, V, D. orM; wherein Xaa at position 12 is H or F; wherein Xaa at position 15 is E or D. In some embodiments, the amino acid sequence of EIRSXaaSDXaaXaaATXaaYAXaaAVKG (SEQ ID NO:55) is CDR2 of an antibody heavy chain.
In some embodiments, the antibody is a human antibody. In other is embodiments, the dy a humanized antibody. In some embodiments, the dy is monoclonal, in some embodiments, the antibody (or polypeptide) is ed. In some embodiments, the antibody (or polypeptide) is substantially pure.
The heavy chain constant region of the antibodies may be from any types of constant region, such as IgG. IgM, IgD, IgA, and IgE; and any isotypes, such as lgG1, lgG2, lgG3, and lgG4.
In some embodiments, the antibody comprises a modified constant region as described herein.
In one aspect, the ion provides a composition for use in decreasing a number of monthly headache hours experienced by a subject with refractory ne.
In one embodiment, the use comprises stering to the subject an amount of a monoclonal antibody that modulates the CGRP pathway, wherein the monoclonal dy is in an amount effective to decrease the number of monthly headache hours by at least 20 (e g., 25, 30, 35, 40, 45, 50, 55, 60, 65, 70 or more headache hours) after a single dose. In some embodiments, the number of monthly headache hours is reduced by at least about 50 hours. In one embodiment, the use comprises stering to the subject an amount of a monoclonal antibody that modulates the CGRP pathway, wherein the monoclonal antibody is in an amount effective to decrease the number of monthly headache hours by at least 15% (e.g., 20%, 25%, %; 35%, 40%, or more) after a single dose. In some embodiments, the number of monthly headache hours is reduced by at least about 30%. In some ments, the monoclonal dy is an anti-CGRP antagonist antibody. In some embodiments, the amount of the monoclonal antibody administered to the patient is about 675 mg to about 1000 mg. In some embodiments, the onal antibody is administered monthly. In some embodiments, the monoclonal antibody is stered as a single dose. In some embodiments, the administering is subcutaneous or intravenous administration. In some ments, the monoclonal antibody is formulated at a concentration of at least 150 mg/mL. In some ments, wherein the monoclonal antibody is administered in a volume of less than 2 ml_. In some embodiments, the subject is human. In some embodiments, the monoclonal antibody is human or humanized. In some embodiments, the monoclonal antibody comprises (a) an antibody having a CDR H1 as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID NO:5; a CDR L1 as set forth in SEQ ID NO:6; a CDR L2 as set forth in SEQ ID NO:7: and a CDR L3 as set forth in SEQ ID NO:8; or (b) a variant of an antibody according to (a) as shown in Table 6.
In one aspect, the invention provides a composition for use in decreasing a number of monthly headache days experienced by a subject with refractory migraine.
In one embodiment, the use comprises stering to the subject an amount of a monoclonal antibody that modulates the CGRP pathway, wherein the monoclonal antibody is in an amount effective to decrease the number of monthly headache days by at leasts (e.g., 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or more headache days) after a single dose. In some ments, the number of monthly headache days is reduced by at least about 6 headache days. In some ments, the monoclonal antibody is an anti-CGRP antagonist antibody. In some ments, the amount of the monoclonal antibody administered to the t is about 675 mg to about 1000 mg. In some embodiments, the monoclonal antibody is stered monthly. In some embodiments, the monoclonal antibody is administered as a single dose. In some embodiments, the administering is subcutaneous or intravenous administration. In some embodiments, the monoclonal antibody is formulated at a concentration of at least 150 mg/mL. In some embodiments, wherein the monoclonal antibody is administered in a volume of less than 2 mL, e.g., about 1.5 mL In some embodiments, the subject is human. In some embodiments, the monoclonal antibody is human or humanized. In some embodiments, the monoclonal dy comprises (a) an antibody having a CDR HI as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID NO:5; a CDR L1 as set forth in SEQ ID NO:6; a CDR L2 as set forth in SEQ ID NO:7; and a CDR L3 as set forth in SEQ ID NO:8; or (b) a variant of an antibody according to (a) as shown in Table 6.
In one aspect, the invention provides a composition for use in sing use of any acute headache medication in a subject with refractory migraine, sing administering to the subject a monoclonal antibody (e.g., anti-CGRP antagonist antibody) that tes the CGRP pathway: wherein the monoclonal antibody is in an amount effective to se monthly use of the acute he medication by the subject by at least 15% (e.g.s 20%, 25%, 30%: 35%, 40%, or more). In some embodiments, the headache medication is selected from the group consisting of 5- HT1 agonists, triptans, opiates, ergot ids, and non-steroidal nflammatory drugs (NSAIDs). In some embodiments, the headache medication is a triptan or ergot compound. In some embodiments, the acute headache medication is selected from the group consisting of analgesics (e.g., acetylsalicylic acid, ibuprofen, en, diclofenac, paracetamol, acetylsalicylic acid plus paracetamol plus caffeine, metamizol, on, or tolfenamic acid); antiemetics (e.g., metoclopramide or domperidon); ergot alkaloids (e.g., ergotamine tartrate or oergotamine); and triptans, i.e., 5-HT1 agonists (e.g., sumatriptan, zolmitriptan, naratriptan, rizatriptan, almotriptan, eletriptan. or frovatriptan). In some embodiments, the amount of the monoclonal antibody administered to the patient is about 675 mg to about 1000 mg.
In some embodiments, the monoclonal antibody is administered monthly. In some embodiments, the monoclonal antibody is stered as a single dose. In some embodiments, the administering is subcutaneous or intravenous administration. In some embodiments, the monoclonal antibody is formulated at a concentration of at least 150 mg/mL. In some embodiments, wherein the monoclonal antibody is administered in a volume of less than 2 mL, e.g., about 1.5 mL In some embodiments, the subject is human. In some embodiments, the monoclonal antibody is human or humanized. In some embodiments, the monoclonal antibody comprises (a) an antibody having a CDR H1 as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID NO:5; a CDR LI as set forth in SEQ ID N0:6; a CDR L2 as set forth in SEQ ID N0:7: and a CDR L3 as set forth in SEQ ID N0:8; or (b) a variant of an antibody according to (a) as shown in Table 6.
In one aspect, the invention provides a composition for use in of preventing, treating, or reducing incidence of migraine in a subject having refractory migraine comprising administering to the subject a single dose of a monoclonal antibody (e.g., monoclonal anti-CGRP-antagonist antibody) in an amount that modulates the CGRP pathway, wherein the amount of the monoclonal antibody administered to the patient is about 675 mg to about 1000 mg.
Brief Description of the Drawings Figure 1 is a table showing binding affinities of 12 murine dies for different e substituted human a-CGRP fragments. Binding affinities were measured at ^0 using Biacore by flowing Fabs across CGRPs on the chip. The boxed values represent the loss in affinity of alanine mutants relative to parental fragment, 25-37 (italic), except K35A, which was derived from a 19-37 parent. "a" indicates affinities for 19-37 and 25-37 fragments are the mean average ± standard ion of two independent measurements on different sensor chips. "tl" indicates these interactions deviated from a simple bimolecular interaction model due to a ic off rate, so their affinities were determined using a conformational change model. Grey-scale key: white (1.0) tes parental affinity; light grey (less than 0.5) indicates higher affinity than parent; dark grey (more than 2) indicates lower affinity than parent; and black indicates that no binding was detected.
Figures 2A and 2B show the effect of administering CGRP 8-37 (400 nmol/kg), antibody 4901 (25 mg/kg), and antibody 7D11 (25 mg/kg) on skin blood flow measured as blood cell flux after electrical pulse stimulation for 30 s. CGRP 8-37 was administered intravenously (iv) 3-5 min before electrical pulse stimulation. Antibodies were administered intraperitoneal (IP) 72 hours before electrical pulse stimulation.
Each point in the graphs represents AUC of one rat treated under the conditions as indicated. Each line in the graphs ents average AUC of rats d under the condition as ted. AUC (area under the curve) equals to Aflux x Atime. "Aflux" represents the change of flux units after the electrical pulse ation; and " ents the time period taken for the blood cell flux level to return to the level before the electrical pulse stimulation.
Figure 3 shows the effect of administering different dosage of dy 4901 (25 mg/kg, 5 mg/kg: 2.5 mg/kg, or 1 mg/kg) on skin blood flow measured as blood cell flux after electrical pulse stimulation for 30 seconds. Antibodies were administered intravenously (IV) 24 hours before electrical pulse stimulation. Each point in the graph represents AUC of one rat treated under the conditions as indicated. The line in the graph represents average AUC of rats treated under the condition as indicated.
Figures 4A and 4B show the effect of administering antibody 4901 (1 mg/kg or mg/kg, i.v.), antibody 7E9 (10 mg/kg: i.v.), and antibody 8B6 (10 mg/kg, i.v.) on skin blood flow measured as blood cell flux after electrical pulse stimulation for 30 seconds.
Antibodies were administered enously (i.v.) followed by electrical pulse stimulation at 30 min. 60 min: 90 min; and 120 min after antibody administration. Y axis represents percent of AUC as compared to level of AUC when no antibody was administered (time 0). X axis represents time (minutes) period between the administration of antibodies and electrical pulse stimulation indicates P < 0.05: is and indicates P< 0.01, as compared to time 0. Data were analyzed using oneway ANOVA with a Dunnett's Multiple comparison test.
Figure 5 shows the amino acid sequence of the heavy chain variable region (SEQ ID NO:1) and light chain variable region (SEQ ID NO:2) of antibody G1. The Kabat CDRs are in bold text, and the Chothia CDRs are underlined. The amino acid residues for the heavy chain and light chain variable region are numbered sequentially.
Figure 6 shows epitope mapping of antibody G1 by peptide competition using Biacore. N-biotinylated human oCGRP was captured on SA sensor chip. G1 Fab (50 nM) in the absence of a competing peptide or pre-incubated for 1 hour with 10 pM of a competing peptide was flowed onto the chip. Binding of G1 Fab to the human a- CGRP on the chip was measured. Y axis ents percentage of binding d by the presence of the competing peptide compared with the binding in the absence of the ing peptide.
DETAILED DESCRIPTION In some aspects, the ion sed herein es s for preventing, treating, and/or reducing incidence of migraine in an in a subject having refractory migraine by administering to the dual a therapeutically effective amount of an GRP antagonist antibody.
In some aspects, the invention disclosed herein also provides anti-CGRP antagonist antibodies and polypeptides derived from G1 or its variants shown in Table 6, or compositions thereof, for use in treating and/or ng incidence of migraine in a subject having tory migraine.
General ques The ce of the various aspects of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology: cell biology, biochemistry and immunology, which are within the skill of the art. Such ques are explained fully in the literature, such as. Molecular Cloning: A Laboratory Manual, second edition (Sambrook et al., 1989) Cold Spring Harbor Press; Oligonucleotide Synthesis (M.J. Gait, ed.; 1984); Methods in Molecular Biology, Humana Press; Cell Biology: A Laboratory Notebook (J.E. Cellis, ed., 1998) Academic Press: Animal Cell Culture (R.l. Freshney, ed., 1987); Introduction to Cell and Tissue e (J.P. Mather and P.E. Roberts, 1998) Plenum Press: Cell and Tissue Culture: Laboratory Procedures (A. Doyle, J.B. Griffiths, and D.G. Newell, eds., 998) J. Wiley and Sons; Methods in Enzymology (Academic Press. Inc.); Handbook of Experimental Immunology (D.M. Weir and C.C. ell, eds.); Gene Transfer Vectors for Mammalian Cells (J.M. Miller and M R. Calos, eds., 1987); Current Protocols in Molecular Biology (F.M. Ausubel et al., eds., 1987); PCR: The Polymerase Chain Reaction, (Mullis et al., eds., 1994); Current Protocols in Immunology (J.E. Coligan et al., eds., 1991): Short Protocols in Molecular Biology (Wiley and Sons, 1999); Immunobiology (C.A. Janeway and P. Travers, 1997); Antibodies (P. Finch, 1997); Antibodies: a cal approach (D. Catty., ed., IRL Press. 1988-1989); Monoclonal antibodies: a practical approach (P. rd and C.
Dean, eds., Oxford University Press, 2000); Using antibodies: a laboratory manual (E. Harlow and D. Lane (Cold Spring Harbor Laboratory Press, 1999): The dies (M. Zanetti and J.D. Capra, eds., Harwood ic hers, 1995).
Definitions As used herein, “about" when used in reference to numerical ranges, cutoffs, or specific values is used to indicate that the recited values may vary by up to as much as 10% from the listed value. Thus, the term “about" is used to encompass variations of ± 10% or les$; variations of ± 5% or lessr variations of ± 1% or less, variations of ± 0.5% or less, or variations of ± 0.1% or less from the specified value.
An “antibody" is an immunoglobulin molecule capable of specific binding to a , such as a carbohydrate, polynucleotide; lipid: polypeptide, etc., through at least one antigen recognition site, located in the variable region of the immunoglobulin molecule. As used herein, the term encompasses not only intact polyclonal or monoclonal antibodies, but also fragments thereof (such as Fab, Fab, F(ab’)2, Fv), single chain (ScFv), mutants f, fusion proteins comprising an dy portion (such as domain antibodies), and any other ed configuration of the immunoglobulin molecule that comprises an antigen recognition site. An antibody es an antibody of any class, such as IgG, IgA, or IgM (or sub-class thereof), and the antibody need not be of any particular class. Depending on the antibody amino acid sequence of the constant domain of its heavy chains, globulins can be assigned to different classes. There are five major classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, and several of these may be further divided into subclasses (isotypes), e.g., lgG1, lgG2. lgG3, lgG4, IgAI, and lgA2. The heavy-chain constant domains that correspond to the ent classes of immunoglobulins are called alpha, delta, epsilon, gamma, and mu, respectively. The subunit structures and threedimensional configurations of different classes of immunoglobulins are well known.
As used , "monoclonal antibody" refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are cal except for possible naturally-occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to polyclonal antibody preparations, which typically include different antibodies directed against different inants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. The er "monoclonal" indicates the character of the dy as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring tion of the antibody by any particular method. For example, the monoclonal antibodies to be used in accordance with the present invention may be made by the oma method first described by Kohler and Milstein, 1975, Nature, 256:495, or may be made by recombinant DNA methods such as described in U.S. Patent No. 4.816,567. The monoclonal antibodies may also be isolated from phage libraries generated using the techniques described in McCafferty et al., 1990. Nature: 348:552-554, for example.
As used herein! ized" antibodies refer to forms of non-human (e.g.; murine) antibodies that are specific chimeric immunoglobulins, immunoglobulin chains, or fragments f (such as Fv, Fab, Fab', F(ab')2 or other antigen-binding subsequences of antibodies) that contain minimal ce derived from non-human immunoglobulin. For the most part humanized antibodies are human immunoglobulins (recipient antibody) in which es from a complementarity determining region (CDR) of the ent are replaced by residues from a CDR of a non-human species (donor antibody) such as mouse, rat or rabbit having the d specificity, affinity, and, biological activity. In some instances, Fv framework region (FR) residues of the human immunoglobulin are replaced by corresponding nonhuman residues. Furthermore, the humanized antibody may comprise es that are found r in the recipient antibody nor in the imported CDR or framework sequences, but are included to further refine and optimize dy performance. In general, the zed antibody will comprise ntially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody optimally also will comprise at least a portion of an immunoglobulin constant region or domain (Fc), typically that of a human immunoglobulin. dies may have Fc regions ed as described in WO 99/58572. Other forms of humanized antibodies have one or more CDRs (one, two, three, four, five, six) which are altered with respect to the original antibody, which are also termed one or more CDRs 'derived from" one or more CDRs from the original antibody.
As used herein, "human antibody" means an antibody having an amino acid sequence corresponding to that of an antibody produced by a human and/or has been made using any of the techniques for making human antibodies known in the art or disclosed herein. This definition of a human antibody includes dies comprising at least one human heavy chain polypeptide or at least one human light chain polypeptide. One such example is an antibody comprising murine light chain and human heavy chain polypeptides. Human antibodies can be produced using various techniques known in the art. In one embodiment, the human antibody is selected from a phage library, where that phage library ses human antibodies an et al., 1996, Nature hnology, 14:309-314; Sheets et al., 1998, PNAS, (USA) 95:6157-6162; Hoogenboom and Winter, 1991, J. Mol. Biol., 1; Marks et al., 1991, J. Mol. Biol., 222:581). Human antibodies can also be made by introducing human immunoglobulin loci into transgenic animals, e.g., mice in which the nous immunoglobulin genes have been partially or completely inactivated.
This approach is described in U.S. Patent Nos. 5,545,807; 5,545,806; 5,569,825; ,625,126; 425; and 5.661.016. Alternatively, the human antibody may be prepared by alizing human B lymphocytes that produce an antibody directed against a target antigen (such B lymphocytes may be recovered from an individual or may have been immunized in vitro). See, e.g., Cole et al., Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, p. 77 (1985); Boerner et al., 1991, J. Immunol., 147 (1):86-95; and U.S. Patent No. 5,750,373.
As used herein, the term "calcitonin gene-related peptide" and "CGRP” refers to any form of calcitonin gene-related peptide and variants thereof that retain at least part of the activity of CGRP. For example. CGRP may be a-CGRP or (3-CGRP. As used herein, CGRP includes all mammalian species of native sequence CGRP, e.g., human, canine, feline, equine, and bovine.
As used herein, an !‘anti-CGRP antagonist antibody” (interchangeably termed "anti-CGRP antibody") refers to an antibody that is able to bind to CGRP and inhibit CGRP biological activity and/or downstream pathway(s) mediated by CGRP signaling.
An anti-CGRP antagonist antibody encompasses antibodies that modulate, block, antagonize, suppress or reduce (including significantly) CGRP biological activity, or otherv/ise antagonize the CGRP pathway, including downstream pathways ed by CGRP signaling, such as or binding and/or ation of a cellular response to CGRP. For purpose of the t invention, it will be explicitly tood that the term -CGRP antagonist antibody” encompasses all the previously identified terms, , and functional states and characteristics whereby CGRP , CGRP biological activity (including but not limited to its ability to mediate any aspect of headache), or the consequences of the biological activity, are substantially nullified, decreased, or neutralized in any meaningful degree. In some embodiments, an anti- CGRP antagonist antibody binds CGRP and prevents CGRP binding to a CGRP or. In other embodiments, an anti-CGRP antibody binds CGRP and prevents tion of a CGRP receptor. Examples of GRP nist antibodies are provided herein.
As used herein, the terms ,!G1,” ody G1,” TEV-48125;” and fremanezumab are used interchangeably to refer to an anti-CGRP antagonist antibody produced by expression vectors having deposit numbers of ATCC 67 and ATCC PTA-6866. The amino acid sequence of the heavy chain and light chain variable regions are shown in Figure 5. The CDR portions of antibody G1 (including Chothia and Kabat CDRs) are diagrammatically depicted in Figure 5. The polynucleotides encoding the heavy and light chain variable regions are shown in SEQ ID NO:9 and SEQ ID NO:10. The G1 heavy chain full antibody amino acid sequence is shown in SEQ ID NO:11. The G1 light chain full antibody amino acid ce is shown in SEQ ID NO: 12. The characterization and processes for making antibody G1 (and variants thereof) are described in Examples 1-4 infra, as well as PCT Application No. , which is hereby incorporated by reference in its entirety The terms “polypeptide’’, “oligopeptide”, “peptide” and “protein” are used interchangeably herein to refer to polymers of amino acids of any length. The polymer may be linear or branched, it may comprise modified amino acids, and it may be interrupted by non-amino acids. The terms also encompass an amino acid polymer that has been modified naturally or by intervention; for example, disulfide bond formation, glycosylation, lipidation. acetylation, phosphorylation, or any other manipulation or modification, such as conjugation with a labeling component. Also included within the definition are. for example, polypeptides containing one or more analogs of an amino acid (including, for e, unnatural amino acids, etc.), as well as other cations known in the art. It is tood that, because the polypeptides of this invention are based upon an antibody, the polypeptides can occur as single chains or associated chains.
Polynucleotide,” or “nucleic acid,” as used interchangeably herein, refer to polymers of nucleotides of any length, and include DNA and RNA. The nucleotides can be deoxyribonucleotides, ribonucleotides, ed nucleotides or bases, and/or their s, or any substrate that can be incorporated into a r by DNA or RNA polymerase. A polynucleotide may comprise modified nucleotides, such as methylated nucleotides and their analogs. If present, modification to the nucleotide structure may be imparted before or after assembly of the polymer. The sequence of nucleotides may be interrupted by non-nucleotide components. A cleotide may be further ed after polymerization, such as by conjugation with a ng component. Other types of cations include; for example, , substitution of one or more of the naturally occurring nucleotides with an analog, internucleotide modifications such as, for example, those with uncharged linkages (e g., methyl phosphonates, phosphotriesters, phosphoamidates, carbamates, etc.) and with charged linkages (e.g., phosphorothioates, phosphorodithioates, etc.), those containing pendant moieties, such as, for example, proteins (e.g., nucleases, toxins, antibodies, signal peptides, ply-L-lysine, etc.), those with alators (e.g., acridine, psoralen, etc.), those containing ors (e.g., metals, radioactive metals, boron, oxidative metals, etc.), those containing alkylators, those with modified linkages (e.g., alpha anomeric nucleic acids, etc.), as well as unmodified forms of the polynucleotide(s). Further, any of the hydroxyl groups ordinarily present in the sugars may be replaced, for example, by onate groups, phosphate groups, protected by standard protecting groups, or activated to e additional linkages to additional nucleotides, or may be conjugated to solid supports. The 5: and 3: terminal OH can be phosphorylated or substituted with amines or organic capping group moieties of from 1 to 20 carbon atoms. Other hydroxyls may also be derivatized to standard ting groups. Polynucleotides can also contain analogous forms of ribose or deoxyribose sugars that are generally known in the art, including, for e, 2! methyl-, 2,allyl, 2'-fluoro- or 2:-azido-ribose, carbocyclic sugar analogs, eric sugars, epimeric sugars such as arabinose. xyloses or lyxoses, pyranose sugars, furanose sugars, sedoheptuloses, acyclic analogs and abasic nucleoside analogs such as methyl riboside. One or more phosphodiester linkages may be replaced by alternative linking groups. These alternative g groups include, but are not limited to, embodiments n phosphate is replaced by P^SHhioate”), P(S)S (“dithioate”), (0)NR2 ate”), P(0)R, P(0)0R\ CO or CH2 (“formacetal”), in which each R or R: is independently H or substituted or unsubstituted alkyl (1-20 C) optionally so containing an ether () linkage, aryl, l, cycloalkyl, cycloalkenyl or araldyl. Not all linkages in a polynucleotide need be identical. The preceding description applies to all polynucleotides referred to herein, including RNA and DNA.
As used , refractory migraine patients (or '‘subject having refractory ne1’) are considered refractory if they have a documented inadequate response (in a medical chart or by treating physician’s confirmation) to at least two tive medications (from a different cluster, defined below). Refractory migraine patients can also be considered tory if they have a documented inadequate response (in a medical chart or by treating physician's confirmation) to two to four classes of prior preventive medications (from different cluster, as defined below), e.g., uate response to two s of prior preventive mendications, inadequate response to three classes of prior tative medications, or an inadequate response to four classes of prior preventative medications.
Inadequate se is defined as: no clinically meaningful improvement per treating physician’s judgement, after at least three months of therapy at a stable dose considered appropriate for migraine prevention according to accepted country ines, or when ent has to be interrupted e of adverse events that made it intolerable by the patient or the drug is contraindicated or not suitable for the patient. The three-month period may not apply if the drug is intolerable or indicated or not suitable for the patient. For onabotulinumtoxinA, an inadequate response is defined as: no clinically meaningful improvement per treating physician’s judgement, after at least six months of therapy at a stable dose considered appropriate for migraine tion ing to accepted country guidelines, or when treatment has to be interrupted because of adverse events that made it intolerable by the patient.
Or, if onabotulinumtoxinA is a previous preventative medication, at least two sets of injections and three months should have passed since the last set of injections.
In some embodiments, the clusters are as follows: • cluster A: mate, carbamazepine, divalproex sodium, and sodium valproate • cluster B: flunarizine and pizotifen • cluster C: amitriptyline, venlafaxine, nortriptyline, and duloxetine • cluster D: atenolol, nadolol, metoprolol, propranolol, and timolol • cluster E: onabotulinumtoxinA In some embodiments, the clusters are as follows: • cluster A: beta-blockers: propranolol, metoprolol, atenolol, and bisopropol • cluster B: anticonvulsants: topiramate • cluster C: lics: amitriptyline • cluster D: calcium channel blocker: flunarizine • cluster E: ensin II receptor antagonist: candesartan • cluster F: onabotulinumtoxinA • cluster G: valproic acid Within this group of clusters, a subject has refractory migraine if the patient has an inadequate response to two to four classes of preventative headache medications.
For example, a subject has refractory migraine if the patient has an inadequate response to two or three medications each from different clusters (A: B, C, D. E: F) and valproic acid (cluster G).
Additional clusters include: • cluster a: an angiotensin-converting enzyme (ACE) inhibitor, such as lisinopril, • cluster b: a benzocycloheptene-based drug; such as pizotifen • cluster c: an pressant, such as amitriptyline (Elavil), trazodone (Desyrel), and imipramine (Tofranil), and venlafaxine • cluster d: an anticonvulsant such as phenytoin (Dilantin) or carbamazepine • cluster e: oxeterone A skilled practitioner will be readily able to ize and/or diagnose a subject with a refractory migraine.
As used herein, “preventing’1 is an approach to stop migraine from occurring or existing in a subject, who is not already experiencing ne. As used herein, “treatment” is an approach for obtaining beneficial or d clinical s. For purposes of this invention, beneficial or desired clinical results include, but are not limited to, one or more of the following: improvement in any aspect of a refractory migraine, including lessening severity, alleviation of pain intensity, and other associated symptoms, ng frequency of recurrence, reducing the muber of monthly headache days or hours, increasing the quality of life of those suffering from tory migraine, and decreasing dose of other medications (e.g., acute headache medication) ed to treat the refractory migraine.
"Reducing incidence” of ne means any of reducing ty (which can include reducing need for and/or amount of (e.g., exposure to) other drugs and/or therapies generally used for this condition, including, for example, mine, dihydroergotamine, or triptans), duration, and/or frequency (including, for example, delaying or increasing time to next episodic attack in an individual). As is understood by those skilled in the art, individuals may vary in terms of their response to treatment, and, as such, for example, a “method of reducing incidence of migraine in an individual” reflects administering the GRP antagonist dy based on a reasonable expectation that such administration may likely cause such a reduction in incidence of migraine in that particular individual.
“Ameliorating” migraine or one or more symptoms of refractory migraine means a lessening or improvement of one or more symptoms of migraine in a subject having refractory migraine as compared to not administering an anti-CGRP antagonist antibody. orating” also includes shortening or ion in duration of a As used , "controlling refractory migraine " refers to maintaining or reducing severity or duration of one or more symptoms of migraine, e.g., the frequency of migraine attacks in an individual having refractory migraine (as compared to the level before treatment) For example, the duration or ty of head pain, or frequency of attacks is reduced by at least about any of 10%, 20%, 30%, 40%, 50%, 60%, or 70% in the individual as compared to the level before treatment.
As used , a "headache hour” refers to an hour during which a subject experiences headache. Headache hours can be expressed in terms of whole hours (e.g., one headache hour, two headache hours, three headache hours, etc.) or in terms of whole and partial hours (e.g., 0.5 headache hours, 1.2 headache hours, 2.67 headache hours, etc.). One or more headache hours may be described with respect to a ular time interval. For example, “daily headache hours” may refer to the number of headache hours a subject ences within a day interval (e.g., a 24-hour period). In another example, “weekly headache hours” may refer to the number of he hours a subject experiences within a week interval (e.g., a 7-day period).
As can be appreciated, a week interval may or may not correspond to a calendar week.
In another example, “monthly headache hours” may refer to the number of headache hours a t experiences within a month interval. As can be appreciated, a month interval (e.g., a period of 28, 2S, 30, or 31 days) may vary in terms of number of days depending upon the particular month and may or may not correspond to a calendar month. In yet another example, “yearly headache hours” may refer to the number of headache hours a subject experiences within a year interval. As can be appreciated, a year interval (e g., a period of 365 or 366 days) may vary in terms of number of days depending upon the particular year and may or may not correspond to a calendar year.
As used herein, a “headache day” refers to a day during which a t experiences headache. Headache days can be expressed in terms of whole days (e.g.: one headache day, two headache days, three he days, etc.) or in terms of whole and partial days (e.g., 0.5 headache days, 1.2 headache days, 2.67 he days, etc.). One or more headache days may be described with t to a ular time interval. For example, “weekly headache days” may refer to the number of headache days a subject experiences within a week interval (e.g., a 7-day period). As can be appreciated, a week interval may or may not correspond to a calendar week. In another example, ly headache days” may refer to the number of headache days a subject experiences within a month interval. As can be appreciated, a month interval (e.g., a period of 28, 29, 30, or 31 days) may vary in terms of number of days depending upon the particular month and may or may not correspond to a calendar month. In yet another example, ‘‘yearly headache days” may refer to the number of headache days a subject experiences within a year interval. As can be appreciated, a year interval (e.g., a period of 365 or 366 days) may vary in terms of number of days ing upon the ular year and may or may not correspond to a calendar year.
As used therein, “delaying” the development of ne means to defer, hinder, slow, retard, stabilize, and/or postpone progression of the disease in a subject having refractory migraine. This delay can be of varying lengths of time, depending on the history' of the disease and/or individuals being treated. As is evident to one skilled in the art, a sufficient or significant delay can, in effect, encompass prevention, in that the individual does not p migraine, especially after being diagnosed with refractory migraine due to inadequate response to prior preventative treatments. A method that “delays” development of the symptom is a method that reduces probability of developing the symptom in a given time frame and/or reduces extent of the symptoms in a given time frame, when ed to not using the method. Such comparisons are typically based on clinical studies, using a statistically significant number of subjects.
Development" or “progression” of migraine means l manifestations and/or ensuing progression of the disorder in a subject having refractory migraine. pment of migraine can be detectable and assessed using standard clinical techniques as well known in the art.
As used hereim an “effective dosage’’ or “effective " of drug, compound, or pharmaceutical composition is an amount sufficient to effect beneficial or d results. For lactic use, cial or desired s include results such as eliminating or reducing the risk, lessening the severity, or delaying the onset of the disease, including biochemical, histological and/or behavioral symptoms of the disease, its complications and intermediate pathological phenotypes presenting during pment of the disease. For therapeutic use, beneficial or desired results include clinical results such as reducing pain intensity, duration, or frequency of refractory ne attack, and decreasing one or more symptoms resulting from refractory migraine (biochemical, histological and/or behavioral), including its complications and intermediate pathological phenotypes presenting during development of the disease, increasing the quality of life of those suffering from the disease, decreasing the dose of other medications required to treat the disease, enhancing effect of r medication, and/or delaying the progression of the disease of patients. An effective dosage can be stered in one or more administrations. For purposes of this disclosure, an effective dosage of drug, compound, or pharmaceutical composition is an amount sufficient to accomplish prophylactic or therapeutic treatment either directly or indirectly. As is understood in the clinical context, an effective dosage of a drug, compound, or pharmaceutical composition may or may not be achieved in conjunction with r drug, nd, or pharmaceutical composition. Thus, an “effective dosage" may be considered in the context of stering one or more therapeutic agents, and a single agent may be considered to be given in an effective amount if, in conjunction with one or more other , a desirable result may be or is achieved.
An “individual” or a "subject" is a mammal, more preferably a human. Mammals also include, but are not limited to, farm animals, sport animals, pets, primates, horses, so dogs, cats, mice and rats.
A. Methods for preventing, treating, or reducing refractory migraine and/or at least one secondary symptom associated with tory migraine In one aspect the invention provides methods of ting, treating, or reducing incidence of ne in a subject having refractory migraine. In another aspect, the invention provides a method of treating or reducing incidence of at least one secondary symptom associated with refractory migraine in a subject. In some embodiments, the method comprises administering to the individual an effective amount of an antibody or polypeptides derived from the antibody that modulates the CGRP pathway (e.g., a monoclonal anti-CGRP antagonist antibody).
In another aspect, the ion provides methods for preventing, ameliorating, controlling, reducing incidence of, or delaying the progression of migraine in an individual having tory migraine or ms ated with the diagnosis of tory migraine comprising administering to the individual an effective amount of an antibody that modulates the CGRP pathway or an anti-CGRP antagonist antibody in combination with additional agent(s) useful for treating migraine, for example, the additional agent(s) can be an acute headache medication.
Such onal agents include, but are not limited to. 5-HT agonists, triptans, NSAIDs, analgesics, antiemetics, ergot alkaloids. For example, the antibody and the at least one additional acute migrainte tion can be concomitantly administered, i.e., they can be given in close enough temporal proximity to allow their individual therapeutic effects to overlap.
Additional miting es of additional acute ne agents that may be administered in combination with an anti-CGRP antagonist antibody include one or more of: (i) an opioid sic, e g., morphine, heroin, hydromorphone, oxymorphone, levorphanol, levallorphan, methadone, meperidine, fentanyl, cocaine, codeine, dihydrocodeine, oxycodone, hydrocodone, propoxyphene, nalmefene, nalorphine, naloxone, naltrexone, buprenorphine, butorphanol, nalbuphine or pentazocine; (ii) a roidal antiinflammatory drug (NSAID), e.g., aspirin, diclofenac, diflusinal, so etodolac, fenbufen, fenoprofen, flufenisal, flurbiprofen, ibuprofen. indomethacin, ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, nabumetone, naproxen, oxaprozin, butazone, piroxicam, sulindac, tolmetin or zomepirac, cyclooxygenase-2 (COX-2) inhibitors, xib; rofecoxib: meloxicam; JTE-522; L-745.337; NS398; or a pharmaceutically acceptable salt thereof; (iii) a barbiturate sedative, e.g., amobarbital, aprobarbital, butabarbital, butabital (including butalbital combinations, e.g., butalbital/aspirin/caffeine (Fiorinal®, Actavis) or ital/paracetamol/caffeine (Fioricet®, Cardinal Health)), mephobarbital, metharbital, methohexital, pentobarbital, phenobartital, secobarbital, talbutal, theamylal or thiopental; or a pharmaceutically acceptable salt thereof; (iv) a barbiturate analgesic, e.g., butalbital or a pharmaceutically acceptable salt thereof or a ition comprising butalbital. (v) a iazepine having a sedative action, e.g., chlordiazepoxide, clorazepate, diazepam, flurazepam, lorazepam, oxazepam, temazepam, or triazolam or a pharmaceutically acceptable salt thereof; (vi) an Hi antagonist having a sedative action, e.g., diphenhydramine, pyrilamine, promethazine, chlorpheniramine, or chlorcyclizine or a pharmaceutically acceptable salt thereof; (vii) a sedative such as glutethimide, meprobamate, methaqualone or dichloralphenazone or a pharmaceutically acceptable salt thereof; (viii) a skeletal muscle relaxant, e.g., baclofen, prodol, chlorzoxazone, cyclobenzaprine, arbamol or orphrenadine or a pharmaceutically acceptable salt f; (ix) an NMDA receptor antagonist, e.g., methorphan ((+)hydroxy-N- methylmorphinan) or its metabolite rphan ((+)hydroxy-N-methylmorphinan), ketamine, memantine, pyrroloquinoline quinone or cis(phosphonomethyl) piperidinecarboxylic acid or a pharmaceutically acceptable salt thereof; (x) an alpha-adrenergic, e.g., sin, tamsulosin, clonidine or 4-amino-6,7- dimethoxy(5-methanesulfonamido-1!2:3,4-tetrahydroisoquinolyl)(2-pyridyl) quinazoline; (xi) a COX-2 inhibitor, e.g., celecoxib, rofecoxib or valdecoxib; (xii) a ar analgesic, in particular paracetamol; so (xiii) a neuroleptic such as droperidol; (xiv) a vanilloid receptor t (e.g., resinferatoxin) or antagonist (e.g., capsazepine); (xv) a local anaesthetic, such as mexiletine: (xxii) a corticosteroid, such as dexamethasone; (xxiii) a nin receptor agonist or antagonist; (xxiv) a cholinergic (nicotinic) sic; (xxv) tramadol: (xxvi) a PDEV inhibitor such as sildenafil, vardenafil ortaladafil; (xxvii) an 2-delta ligand such as gabapentin or alin; and (xxviii) a cannabinoid.
Those skilled in the art will recognize the difference between administration of a drug for the acute treatment of migraine and for migraine prophylaxis (i.e.; for the preventative treatment of ne).
Those skilled in the art will be able to determine appropriate dosage amounts for particular agents to be used in combination with an GRP antibody. For example, sumatriptan may be stered in a dosage from about 0.01 to about 300 mg. In some cases, sumatriptan may be administered in a dosage from about 2 mg to about 300 mg, e.g.: about 5 mg to about 250 mg, about 5 mg to about 200 mg: about 5 mg to about 100 mg. about 5 mg to about 50 mg, or about 5 mg to about 25 mg. When administered non-parenterally, the typical dosage of sumatriptan is from about 25 to about 100 mg with about 50 mg being generally preferred, e.g., about 45 mg: about 55 mg. or about 60 mg. When sumatriptan is administered parenterally. the preferred dosage is about 6 mg, e.g., about 5 mg: about 7 mg, or about 8 mg. r, these dosages may be varied according to methods standard in the art so that they are zed for a particular patient or for a particular combination therapy.
Further, for example, celecoxib may be administered in an amount of between 50 and 500 mg, e.g., about 50 mg to about 400 mg, about 50 mg to about 300 mg, about 50 mg to about 200 mg, about 50 mg to about 100 mg, about 100 mg to about 400 mg, or about 200 mg to about 300 mg. Further, the label for any approved acute headache medication can also provide appropriate dosage amounts for the desired result.
In another aspect, the disclosure provides a method of preventing, treating, or reducing incidence of migraine in a subject having refractory migraine comprising administering to the subject a monoclonal dy (e.g., a monoclonal, anti-CGRP antagonist antibody) that modulates the CGRP pathway. In some embodiments, the amount of the monoclonal antibody administered on each of the plurality of days may be between 0.1 mg - 5000 mg, 1 mg - 5000 mg, 10 mg - 5000 mg, 100 mg - 5000 mg; 1000 mg - 5000 mg; 0.1 mg - 4000 mg, 1 mg - 4000 mg, 10 mg - 4000 mg, 100 mg - 4000 mg, 1000 mg - 4000 mg, 0.1 mg - 3000 mg, 1 mg - 3000 mg, 10 mg - 3000 mg, 100 mg - 3000 mg, 1000 mg - 3000 mg, 0.1 mg - 2000 mg. 1 mg - 2000 mg, mg - 2000 mg, 100 mg - 2000 mg, 1000 mg - 2000 mg, 0.1 mg - 1000 mg, 1 mg -1000 mg, 10 mg -1000 mg, or 100 mg - 1000 mg. In some embodiments, the amount is between about 225 mg and about 1000 mg, e.g., about 675 mg or about 900 mg.
An exemplary dosing regimen comprises stering an l antibody dose of about 675 mg subcutaneously, followed by a monthly antibody dose of about 225 mg aneously for, e g., about two months, three months, four months, five months, six months, seven months, eight months, nine months, ten months, 11 , or 12 months, or even a period of greater than one year (e g., 18 months, two years, or three years). Another exemplary dosing regimen comprises administering an initial antibody dose of about 225 mg subcutaneously, followed by a monthly antibody dose of about 225 mg aneously for, e.g., about two months, three months, four months, five months, six months, seven months, eight months, nine months, ten , 11 months, or 12 months, or even a period of r than one year (e.g., 18 months, two years, or three years). Yet another dosing regimen comprises administering an initial antibody dose of about 900 mg intravenously in an infusion over about 60 minutes, followed by doses of about 900 mg administered intravenously in an infusion over about 60 minutes every quarter for, e.g., one year, two years, three years, four years, or five years. Yet another dosing regimen comprises administering an initial or starting dose of about 675 mg administered subcutaneously, followed by doses of about 675 mg administered aneously every quarter for, e.g., about one year, two years, three years, four years, or five years. However, other dosage regimens may be , depending on the pattern of pharmacokinetic decay that the practitioner wishes to e. In some embodiments, the initial dose (i.e., starting dose) and one or more of the additional doses are administered the same way, e.g., subcutaneously or intravenously. In some embodiments, the one or more additional doses are administered in a different way than the initial or starting dose, e.g., the initial dose so may be administered intravenously and the one or more additional doses may be stered subcutaneously.
In another aspect, the disclosure provides a method of preventing, treating, or reducing incidence of migraine in a subject having refractory migraine comprising administering to the subject a single dose of a monoclonal antibody (e.g.. a monoclonal; anti-CGRP antagonist antibody) in an amount that modulates the CGRP pathway. In some embodiments, the single dose may be an amount of antibody between 0.1 mg - 5000 mg, 1 mg - 5000 mg, 10 mg -5000 mg, 100 mg - 5000 mg, 1000 mg - 5000 mg, 0.1 mg - 4000 mg, 1 mg - 4000 mg, 10 mg - 4000 mg, 100 mg - 4000 mg, 1000 mg - 4000 mg, 0.1 mg - 3000 mg, 1 mg - 3000 mg, 10 mg - 3000 mg, 100 mg - 3000 mg, 1000 mg - 3000 mg, 0.1 mg - 2000 mg, 1 mg - 2000 mg, 10 mg - 2000 mg, 100 mg - 2000 mg, 1000 mg - 2000 mg. 0.1 mg - 1000 mg, 1 mg -1000 mg, mg - 1000 mg or 100 mg - 1000 mg. In some embodiments, the single dose may io be an amount of antibody between 225 mg and about 1000 mg, e g., about 225 mg, about 675 mg or about 900 mg. In another embodiment, the single dose may be an amount of antibody between 675 mg and 900 mg.
In another aspect, the disclosure provides a method of preventing, treating, or reducing incidence of migraine in a t having refractory ne comprising is administering to the subject a monthly dose of a monoclonal antibody (e.g., a monoclonal. anti-CGRP antagonist antibody) in an amount that modulates the CGRP pathway. In some embodiments, the single dose may be an amount of antibody between 0.1 mg - 5000 mg, 1 mg - 5000 mg, 10 mg -5000 mg, 100 mg - 5000 mg, 1000 mg - 5000 mg, 0.1 mg - 4000 mg, 1 mg - 4000 mg, 10 mg - 4000 mg, 100 mg - 4000 mg, 1000 mg - 4000 mg, 0.1 mg - 3000 mg, 1 mg - 3000 mg, 10 mg - 3000 mg, 100 mg - 3000 mg. 1000 mg - 3000 mg, 0.1 mg - 2000 mg. 1 mg - 2000 mg. 10 mg - 2000 mg, 100 mg - 2000 mg, 1000 mg -2000 mg. 0.1 mg - 1000 mg, 1 mg-1000 mg, mg - 1000 mg or 100 mg - 1000 mg. In some embodiments, the monthly dose may be an amount of antibody between about 225 mg and about 1000 mg, e.g., about 225 mg, about 675 mg or about 900 mg. An ary dosing regimen comprises stering an initial antibody dose of about 675 mg subcutaneously, followed by a monthly antibody dose of about 225 mg aneously for, e.g., about two months, three months, four months, five months, six months, seven months, eight months, nine months, ten months, 11 months, or 12 months, or even a period of greater than one year (e.g., 18 months, two years, or three years). Another exemplary dosing regimen comprises administering an initial antibody dose of about 225 mg subcutaneously, followed by a y antibody dose of about 225 mg subcutaneously for, e.g., about two , three months, four months, five months, six months, seven months, eight months, nine months, ten months, 11 months, or 12 , or even a period of greater than one year(e.g.. 18 months, two years, or three years). Yet another dosing n comprises administering an initial antibody dose of about 900 mg intravenously in an infusion over about 60 minutes, followed by doses of about 900 mg administered intravenously in an infusion over about 60 minutes every quarter for, e.g., one year, two years, three years, four years, or five years. Yet another dosing n ses administering an initial or starting dose of about 675 mg administered subcutaneously, followed by doses of about 675 mg administered subcutaneously every quarter for, e.g., about one year, two years, three years, four years, or five years. r, other dosage regimens may be useful, depending on the pattern of pharmacokinetic decay that the practitioner wishes to achieve. In some embodiments, the initial dose (i.e., starting dose) and one or more of the additional doses are stered the same way, e.g., subcutaneously or intravenously. In some embodiments, the one or more additional doses are administered in a different way than the initial or starting dose, e.g., the initial dose may be stered enously and the one or more additional doses may be administered subcutaneously.
In another , the disclosure provides a method of decreasing a number of monthly headache hours experienced by a t having refractory migraine, comprising administering to the subject an amount of a monoclonal antibody (e.g., a onal, anti-CGRP antagonist antibody) that modulates the CGRP pathway. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the number of monthly headache hours by at least 0.1, 1, 5, 10. 15,20,25, , 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100 or more headache hours after a single dose, monthly dose, or quarterly dose. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the number of monthly headache hours by at least 20 headache hours after a single dose, monthly dose, or quarterly dose. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the number of monthly headache hours by at least 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115. 120, 125, or more headache hours. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the number of monthly headache hours by at least 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more after a single dose. In some embodiments, the monoclonal can be in an amount effective to decrease the number of monthly headache hours by at least 15%, 20%, 25%, 30%, 35%. 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more after a single dose, monthly dose, or quarterly dose.
In another aspect, the disclosure provides a method of sing a number of monthly headache days experienced by a subject having refractory migraine, comprising stering to the subject an amount of a monoclonal antibody (e.g., a monoclonal, anti-CGRP antagonist antibody) that modulates the CGRP y. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the number of monthly headache days by at least 3, 4, 5. 6, 7, 8, 9, 10. 11, 12, 13, 14, 15, 16, 17,18, 19, 20, or more headache days after a single dose. In some ments, the monoclonal antibody can be in an amount effective to decrease the number of monthly headache days by at least 3, 4, 5, 6. 7, 8, 9, 10, 11, 12, 13, 14. 15, 16, 17, 18, 19, 20, or more headache days after a monthly dose or quarterly dose. In some ments, the monoclonal antibody can be in an amount effective to decrease the number of monthly headache days by at least 0.1%, 1%, 2%, 3%, 4%, %. 6%, 7%, 8%, 9%, 10%, 15%. 20%, 25%. 30%, 35%, 40%. 45%, 50%, 55%. 60%. 65%: 70%, 75%, 80%: 85%: 90%, 95%, 99%, or more after a single dose, monthly dose, or quarterly dose.
In another aspect the disclosure provides a method of decreasing use of an acute headache tion in a subject having refractory migraine, comprising administering to the subject a monoclonal antibody (e g., a monoclonal anti-CGRP antagonist antibody) that modulates the CGRP pathway. In some embodiments: the monoclonal antibody can be in an amount effective to decrease daily, y, quarterly, and/or yearly use of the anti-headache medication by the subject by at least 0.1%, 1%, 2%, 3%, 4%, 5%, 6%: 7%, 8%: 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more. In some ments, the onal antibody can be in an amount effective to decrease monthly use of the anti-headache medication by the subject by at least 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%. 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more. The anti-headache medication can be any type of acute headache medication described herein. The acute headache medication can be migrainespecific hedache medications, which are identifiable to one of skill in the art (e.g., triptans and ergot compounds). miting examples of acute headache medications include, for example, 5-HT1 agonists (and agonists acting at other 5-HT1 sites), triptans (eg., sumatriptan, riptan, naratriptan, rizatriptan, eletriptan, almotriptan, afrovatriptan), ergot alkaloids (e.g., ergotamine tartrate, ergonovine e. and ergoloid mesylates (eg., dihydroergocornine, dihydroergocristine, dihydroergocryptine, and dihydroergotamine mesylate (DHE 45)) and non-steroidal anti-inflammatory drugs s) (e.g.; aspirin, diclofenac, diflusinal, etodolac, fenbufen, fenoprofen, flufenisal, flurbiprofen, ibuprofen, thacin. ketoprofen, ketorolac, meclofenamic acid, mefenamic acid, nabumetone, naproxen, oxaprozin, phenylbutazone, piroxicam, sulindac. tolmetin orzomepirac, xygenase-2 (COX- 2) inhibitors, celecoxib; rofecoxib; meloxicam; JTE-522; L-745.337; NS398; or a pharmaceutically acceptable salt thereof), opiates/opiods (e.g., codeine, one), and barbituates.
In another aspect, the disclosure provides a method of decreasing the monthly average number of days of use of a migraine-specific acute headache medication in a subject having refractory migraine, comprising administering to the subject a onal antibody (e.g., a monoclonal anti-CGRP antagonist antibody) that modulates the CGRP pathway. In some embodiments, the onal antibody can be in an amount effective to se the monthly average number of days of use of the acute headache medication by at least 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. or more days after a single dose. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the monthly average number of days of use of the acute headache medication by at least 3, 4, 5, 6, 7, 8, 9, ,11,12,13,14,15,16.17,18,19,20, or more days after a monthly dose or quarterly dose. In some embodiments, the migraine-specific acute headache medication is a triptan or ergot compound.
In r aspect, the disclosure es a method of decreasing the monthly average number of days with nausea and/or vomiting experienced by a subject having refractory migraine, comprising administering to the subject an amount of a so onal antibody (e.g., a monoclonal, anti-CGRP antagonist antibody) that modulates the CGRP pathway. In some embodiments, the onal antibody can be in an amount effective to decrease the number of monthly nausea and/or vomiting days by at least 3, 4, 5. 6, 7, 8. 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nausea and/or vomiting days after a single dose. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the number of monthly nausea and/or ng days by at least 3: 4, 5, 6, 7. 8: 9: 10: 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nausea and/or vomiting days after a monthly dose or quarterly dose. In some embodiments, the monoclonal antibody can be in an amount effective to se the number of monthly nausea and/or vomiting days by at least 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more after a single dose, y dose, or quarterly dose.
In another aspect, the disclosure provides a method of decreasing the monthly e number of days with photophobia and/or phonophobia experienced by a subject having refractory migraine, comprising administering to the subject an amount of a monoclonal antibody (e.g., a monoclonal, anti-CGRP antagonist antibody) that modulates the CGRP pathway. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the number of monthly hobia and/or hobia days by at least 3, 4, 5, 6, 7, 8, 9, 10. 11, 12, 13, 14. 15, 16. 17, 18. 19, , or more photophobia and/or phonophobia days after a single dose. In some embodiments, the monoclonal antibody can be in an amount effective to decrease the number of monthly photophobia and/or phonophobia days by at least 3, 4. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,20, or more photophobia and/or phonophobia days after a monthly dose or quarterly dose. In some embodiments, the monoclonal antibody can be in an amount effective to se the number of monthly photophobia and/or hobia days by at least 0.1%, 1%, 2%, 3%, 4%, 5%, 6%, 7%, 8%, 9%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more after a single dose, monthly dose, or quarterly dose.
In another aspect, the sure es a method of improving the quality of life of a subject having refractory migraine, comprising administering to the subject a monoclonal antibody (e.g., a monoclonal anti-CGRP antagonist antibody) that so modulates the CGRP pathway. In some embodiments, changes in quality of life are self-reported by the subject. In some embodiments, changes in the quality of life of a subject are measured using a Migraine-Specific Quality of Life (MSQOL) onnaire. The MSQOL questionnaire, and various versions thereof, are known in the art.
In another aspect, the sure provides a method of improving the health- related quality of life of a subject, comprising administering to the subject a monoclonal antibody (e.g., a onal anti-CGRP antagonist antibody) that modulates the CGRP pathway. In some embodiments, changes in health-related quality of life are self-reported by the subject. In some embodiments, changes in the health-related quality of life of a subject are measured using a EuroQol-5 ion (EQ 5D) questionnaire. The EQ 5D questionnaire, and various versions thereof, are known in the art.
In another aspect, the disclosure provides a method of reducing the lity due to migraine of a subject having refractory migraine, comprising administering to the subject a monoclonal antibody (e.g., a monoclonal anti-CGRP antagonist antibody) that modulates the CGRP pathway. In some embodiments, changes in lity due to migraine are eported by the subject. In some embodiments, changes in disability due to ne of a subject are measured using a 6-item Headache Impact Test (HIT-6). The HIT-6, and various versions thereof, are known in the art.
In another aspect, the disclosure provides a method of reducing the disability due to migraine of a subject having refractory migraine, comprising administering to the subject a onal antibody (e.g., a monoclonal anti-CGRP nist antibody) that modulates the CGRP pathway. In some embodiments, changes in disability due to ne are self-reported by the subject. In some embodiments, changes in disability due to migraine of a subject are measured using a ne Disability Assessment (MIDAS) questionnaire. The MIDAS questionnaire, and various versions thereof, are known in the art.
In another aspect, the disclosure provides a method of reducing depression in a subject, comprising administering to the subject having refractory migraine a monoclonal antibody (e.g., a onal anti-CGRP antagonist dy) that tes the CGRP pathway. In some embodiments, changes in depression status so are self-reported by the subject. In some embodiments, changes in the depression status of a subject are measured using the two-item Patient Health Questionnaire (PHQ-2) or the nine-item Patient Health Questionnaire (PHQ-9). In some embodiments, changes in the depression status of a subject are measured using the two-item Patient Health Questionnaire (PHQ-2) and the nine-item Patient Health Questionnaire ).
In another aspect the disclosure provides a method of improving the work tivity and activity of a subject having tory migraine, comprising administering to the t a monoclonal antibody (e.g., a monoclonal anti-CGRP antagonist antibody) that tes the CGRP pathway. In some embodiments, changes in work productivity and activity are self-reported by the subject. In some embodiments, changes in the the work productivity and activity of a subject are measured using the Work Productivity and Activity Impairment (WPAI) onnaire.
The WPAI questionnaire, and various versions thereof, are known in the art.
With respect to all methods described herein, references to antibodies (e.g.; monoclonal antibodies that modulate the CGRP pathway, anti-CGRP antagonist antibodies, monoclonal anti-CGRP antagonist antibodies) also include compositions comprising one or more of these agents. Accordingly, such a composition may be used according to a method referring to an antibody described herein. These compositions may further comprise suitable excipients, such as pharmaceutically acceptable ents as described ere herein.
An antibody described herein (e.g., a monoclonal antibody, an anti-CGRP antagonist antibody, a monoclonal anti-CGRP antagonist antibody) can be administered to an dual or subject in any eutic dose, via any suitable route and in any suitable formulation. It should be apparent to a person skilled in the art that the examples described herein are not intended to be limiting but to be illustrative of the techniques available. ingly, in some embodiments, an antibody described herein can be administered to a subject in accord with known methods, such as intravenous administration, e.g., as a bolus or by continuous on over a period of time, e.g.. about 10 minutes, about 20 minutes, about 30 minutes, about 40 minutes, about 50 minutes, about 60 minutes, about 90 minutes, about 120 minutes, about 180 minutes, or about 240 s. The antibody described herein can also be administered to the subject by subcutaneous, uscular, intraperitoneal, intracerebrospinal, intra-articular, sublingually, intra­ arterial. intrasynovial, via insufflation, intrathecal, oral, inhalation, intranasal (e.g., with or without inhalation), buccal, rectal, transdermal, intracardiac, intraosseous, intradermal, transmucosal, vaginal, itreal, rticular, local, epicutaneous, or topical routes. Administration can be systemic, e.g., intravenous administration, or localized. Commercially available nebulizers for liquid formulations, including jet nebulizers and ultrasonic nebulizers are useful for administration. Liquid formulations can be directly zed and lyophilized powder can be nebulized after reconstitution. Alternatively, an antibody described herein can be aerosolized using a fluorocarbon formulation and a metered dose inhaler, or inhaled as a lyophilized and milled powder.
In some embodiments, an antibody described herein can be administered via site-specific or ed local delivery techniques. Examples of site-specific or targeted local delivery techniques include various implantable depot sources of the antibody or local delivery catheters, such as infusion catheters, an indwelling catheter, or a needle catheter, synthetic grafts, adventitial wraps, shunts and stents or other implantable s, site specific carriers, direct injection, or direct application. See e.g., PCT Publication No. WO 00/53211 and U S. Patent No. 5,981,568, which are hereby incorporated by reference in their entireties.
Various formulations of an dy bed herein may be used for administration. In some ments, an antibody may be administered neat. In some embodiments, antibody and a pharmaceutically acceptable excipient may be in various formulations. Pharmaceutically acceptable excipients are known in the art, and are vely inert substances that facilitate administration of a pharmacologically ive substance. For e, an excipient can give form or consistency, or act as a diluent. Suitable excipients include but are not limited to stabilizing agents, g and emulsifying agents, salts for varying rity. encapsulating agents, buffers, and skin penetration enhancers. Excipients as well as formulations for parenteral and nonparenteral drug delivery are set forth in Remington. The Science and Practice of Pharmacy 20th Ed. Mack Publishing (2000).
In some ments, these agents, including antibodies described herein, may be formulated for administration by injection (e.g., intravenously, subcutaneously, intraperitoneally, intramuscularly, etc.). Accordingly, these agents can be combined so with pharmaceutically acceptable vehicles such as saline, Ringer’s solution, dextrose solution, and the like. The particular dosage regimen, i.e.. dose, timing and repetition, will depend on the particular individual and that individual’s l history.
In some embodiments, these agents, including antibodies bed herein, may be formulated for peripheral administration. Such formulations can be administered peripherally via any suitable eral route, ing intravenously and subcutaneously. An agent prepared for peripheral administration can include a nce, ment, and/or antibody that is not delivered centrally, spinally, hecally, or directly into the CNS. Non-limiting examples of peripheral administration routes include a route which is oral, sublingual, buccal, topical, , via inhalation, transdermal, subcutaneous, intravenous, intra-arterial, intramuscular, intracardiac, intraosseous, intradermal, intraperitoneal, transmucosal, vaginal, intravitreal, intra-articular, peri-articular, local, or epicutaneous.
Therapeutic formulations of the antibodies used in accordance With the present disclosure can be prepared for storage and/or use by mixing an antibody having the desired degree of purity with optional pharmaceutically acceptable carriers, ents or stabilizers (Remington, The Science and Practice of Pharmacy 20th Ed. Mack hing (2000)), and can in some cases be in the form of lyophilized formulations or aqueous solutions. Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed. A therapeutic formulation of an antibody may se one or more pharmaceutically acceptable carriers, excipients or stabilizes with non-limiting examples of such species that e buffers such as phosphate, e, and other organic acids; salts such as sodium chloride; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride; benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens, such as methyl or propyl paraben; catechol; resorcinol; exanol; 3- pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids (e.g., at trations of 0.1 mM to 100 mM, 0.1 mM to 1 mM, 0.01 mM to 50 mM, 1 mM to 50 mM, 1 mMtoSOmM, 1 mMto20mM, 10mMto25mM) such as glycine, glutamine, so methionine, asparagine, histidine, arginine, or lysine; monosaccharides, harides, and other carbohydrates including glucose, mannose, or ns; chelating agents (e.g., at concentrations of 0.001 mg/mLto 1 mg/mL, 0.001 mg/mL to 1 mg/mL, 0.001 mg/mL to 0.1 mg/mL, 0.001 mg/mL to 0.01 mg/mL, 0.01 mg/mL to 0.1 mg/mL) such as EDTA (e.g., um EDTA dihydrate); sugars (e.g., at concentrations of 1 mg/mL to 500 mg/mL, 10 mg/mL to 200 mg/mL; 10 mg/mL to 100 mg/mL, 50 mg/mL to 150 mg/mL) such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein xes); and/or non-ionic surfactants (e.g., at concentrations of 0.01 mg/mL to 10 mg/mL. 0.01 mg/mL to 1 mg/mL, 0.1 mg/mL to 1 mg/mL. 0.01 mg/mL to 0.5 mg/mL) such as TWEEN™ (e.g polysorbate (e.g., rbate 20, polysorbate 40, polysorbate 60, polysorbate 80)), PLURONICS™ or polyethylene glycol (PEG).
An antibody formulation may be characterized in terms of any of a variety of physical properties. For example, a liquid antibody formulation may have any suitable pH for therapeutic efficacy, safety and storage. For example, the pH of a liquid antibody formulation may be from pH 4 to about pH 9, from about pH 5 to about pH 8, from about pH 5 to about pH 7 or from about pH 6 to about pH 8. In some embodiments, a liquid antibody formulation may have a pH of about 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0. 9.5. or about 10 or higher or lower.
In another example, a liquid antibody formulation may have any suitable viscosity for therapeutic efficacy, safety and storage. For example, the viscosity of a liquid dy formulation may be from about 0.5 centipoise (cP) to about 100 cP, about 1 cP to about 50 cP, about 1 cP to about 20 cP, about 1 cP to about 15 cP. or about 5 cP to about 15 cP at 25°C. In some embodiments, a liquid antibody formulation may have a viscosity of about 0.5 cP, 1 cP. 1.2 cP, 1.4 cP, 1.6 cP, 1.8 cP. 2.0 cP, 2.2 cP, 2.4 cP. 2.6 cP, 2.8 cP, 3.0 cP, 3.2 cP, 3.4 cP, 3.6 cP, 3.8 cP, 4.0 cP, 4.2 cP, 4.4 cP, 4.6 cP. 4.8 cP, 5.0 cP, 5.2 cP, 5.4 cP, 5.6 cP, 5.8 cP. 6.0 cP, 6.2 cP, 6.4 cP, 6.6 cP, 6.8 cP. 7.0 cP, 7.2 cP, 7.4 cP, 7.6 cP, 7.8 cP, 8.0 cP. 8.2 cP, 8.4 cP, 8.6 cP, 8.8 cP, 9.0 cP, 9.2 cP, 9.4 cP, 9.6 cP. 9.8 cP, 10.0 cP, 10.2 cP, 10.4 cP, 10.6 cP. 10.8 cP, 11.0 cP, 11.2 cP, 11.4 cP, 11.6 cP, 11.8 cP, 12.0 cP, 12.2 cP, 12.4 cP, 12.6 cP, 12.8 cP. 13.0 cP, 13.2 cP, 13.4 cP, 13.6 cP. 13.8 cP, 14.0 cP, 14.2 cP, 14.4 cP, 14.6 cP, 14.8 cP, or about 15.0 cP at 25°C or the ity may be higher or lower.
In another example, a liquid antibody formulation may have any suitable conductivity for therapeutic efficacy, safety and storage. For example, the conductivity of a liquid dy ation may be from about 0.1 millisiemens per centimeter (mS/cm) to about 15 mS/cm, 0.1 mS/cm to 10 mS/cm, 0.1 mS/cm to 5 mS/cm, 0.1 mS/cm to 2 mS/cm or 0.1 mS/cm to 1.5 mS/cm. In some embodiments, a liquid antibody formulation may have a conductivity of 0.19 mS/cm, 0.59 mS/cm, 1.09 mS/cm. 1.19 mS/cm, 1.29 mS/cm, 1.39 mS/cm, 1.49 mS/cm, 1.59 mS/cm: 1.69 mS/cm; 1.79 mS/cm, 1.89 mS/cm, 1.99 mS/cm, 2.09 mS/cm, 2.19 mS/cm, 2.29 mS/cm; 2.39 mS/cm, 2.49 mS/cm, 2.59 mS/cm, 2.69 mS/cm, 2.79 mS/cm: 2.89 mS/cm. 2.99 mS/cm, 3.09 mS/cm, 3.19 mS/cm, 3.29 mS/cm, 3.39 mS/cm, 3.49 mS/cm. 3.59 mS/cm, 3.69 mS/cm, 3.79 mS/cm, 3.89 mS/cm, 3.99 mS/cm: 4.09 mS/cm; 4.19 mS/cm, 4.29 mS/cm, 4.39 mS/cm, 4.49 mS/cm, 4.59 mS/cm, 4.69 mS/cm. 4.79 mS/cm, 4.89 mS/cm, 4.99 mS/cm, 5.09 mS/cm, 6.09 mS/cm, 6.59 mS/cm. 7.09 mS/cm, 7.59 mS/cm, 8.09 mS/cm, 8.59 mS/cm, 9.09 mS/cm: 9.59 mS/cm. 10.09 mS/cm, 10.59 mS/cm, 11.09 mS/cm, 11.59 mS/cm, 12.09 mS/cm, 12.59 mS/cm, 13.09 mS/cm, 13.59 mS/cm, 14.09 mS/cm, 14.59 mS/cm, or about .09 mS/cm or the conductivity may be higher or lower.
In another example, a liquid antibody formulation may have any le osmolality for therapeutic efficacy, safety, and e. For example, the osmolality of a liquid antibody ation may be from about 50 milliosmole per kilogram (mOsm/kg) to about 5000 mOsm/kg. about 50 mOsm/kg to about 2000 mOsm/kg, about 50 mOsm/kg to about 1000 mOsm/kg, about 50 mOsm/kg to about 750 mOsm/kg, or about 50 mOsm/kg to about 500 mOsm/kg. In some embodiments, a liquid dy formulation may have an osmolality of about 50 mOsm/kg, 60 mOsm/kg, 70 mOsm/kg, 80 mOsm/kg, 90 mOsm/kg, 100 mOsm/kg 120 mOsm/kg, 140 mOsm/kg. 160 mOsm/kg. 180 mOsm/kg. 200 g. 220 mOsm/kg. 240 mOsm/kg, 260 mOsm/kg, 280 mOsm/kg, 300 mOsm/kg, 320 mOsm/kg, 340 mOsm/kg, 360 mOsm/kg, 380 mOsm/kg, 400 g, 420 mOsm/kg, 440 mOsm/kg, 460 mOsm/kg, 480 g, 500 mOsm/kg, 520 mOsm/kg; 540 mOsm/kg, 560 mOsm/kg, 580 mOsm/kg, 600 mOsm/kg, 620 mOsm/kg, 640 mOsm/kg, 660 mOsm/kg, 680 mOsm/kg, 700 g, 720 mOsm/kg, 740 mOsm/kg, 760 mOsm/kg, 780 mOsm/kg, 800 mOsm/kg, 820 mOsm/kg, 840 mOsm/kg, 860 mOsm/kg, 880 mOsm/kg, 900 mOsm/kg, 920 mOsm/kg, 940 mOsm/kg, 960 mOsm/kg, 980 mOsm/kg, 1000 mOsm/kg, 1050 mOsm/kg, 1100 mOsm/kg, 1150 mOsm/kg, 1200 mOsm/kg, 1250 mOsm/kg, 1300 mOsm/kg. 1350 g, 1400 mOsm/kg, 1450 mOsm/kg, about 1500 mOsm/kg, or the osmolality may be higher or lower.
Liposomes ning antibody can be prepared by methods known in the art. such as described in Epstein, et al., Proc. Natl. Acad. Sci. USA 82:3688 (1985); Hwang: et al., Proc. Natl Acad. Sci. USA 77:4030 (1980); and U.S. Patent Nos. 4,485;045 and 4;544,545. mes with enhanced circulation time are disclosed in U.S. Patent No. 5,013,556. Particularly useful liposomes can be generated by the reverse phase evaporation method with a lipid ition sing phosphatidylcholine; cholesterol and rivatized phosphatidylethanolamine (PEG-PE). Liposomes are extruded through s of d pore size to yield liposomes with the desired diameter.
The active ingredients may also be entrapped in microcapsules prepared, for example, by coacervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsules and poly-(methylmethacylate) microcapsules, respectively, in colloidal drug delivery systems (for example, liposomes, n microspheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington, The Science and Practice of Pharmacy 20th Ed. Mack Publishing (2000).
Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations e semipermeable es of solid hydrophobic polymers containing the antibody, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate). or 'poly(v nylalcohol)), polylactides (U.S. Patent No. 3,773,919). copolymers of L-glutamic acid and 7 ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), sucrose acetate isobutyrate, and -(-)hydroxybutyric acid.
The formulations to be used for in vivo administration should generally be sterile. This is y accomplished by, for example, filtration through e filtration membranes. Therapeutic antibody compositions are generally placed into a container so having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
The itions ing to the present invention may be in unit dosage forms such as tablets, pills, capsules, powders, granules, solutions or suspensions, or suppositories, for oral, parenteral or rectal administration, or administration by inhalation or insufflation. In some cases, a unit dosage form may be supplied in a led receptacle (e g., a prefilled syringe) useful in administering the unit dosage to a subject.
In some embodiments, a formulation comprising an antibody (e g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP nist antibody, monoclonal anti-CGRP nist antibody) described herein may be prepared for any suitable route of administration with an antibody amount ranging from about 0.1 mg to about 3000 mg. about 1 mg to about 1000 mg, about 100 mg to about 1000 mg, or about 100 mg to about 500 mg, about 200 mg to about 800 mg, about 500 mg to about 1500 mg, about 1500 mg to about 2500 mg, or about 2000 mg to about 3000 mg. In some cases, a formulation sing an antibody (e.g., monoclonal antibody that tes the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti- CGRP antagonist antibody) described herein may comprise an antibody amount of, at most, or at least about 0.1 mg, 1 mg, 100 mg, 1 mg, 10 mg, 25 mg, 50 mg, 75 mg, 100 mg, 125 mg, 150 mg, 175 mg, 200 mg, 225 mg, 250 mg, 275 mg, 300 mg, 325 mg. 350 mg, 375 mg. 400 mg, 450 mg, 475 mg, 500 mg, 525 mg, 550 mg, 575 mg, 600 mg, 625 mg, 650 mg, 675 mg, 700 mg, 725 mg, 750 mg, 775 mg, 800 mg, 825 mg, 850 mg, 875 mg, 900 mg, 925 mg, 950 mg, 975 mg, 1000 mg, 1100 mg, 1200 mg, 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, 1800 mg, 1900 mg, 2000 mg. or about 3000 mg.
In some embodiments, a liquid formulation comprising an antibody (e.g., monoclonal antibody that modulates the CGRP y, GRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) described herein may be prepared for any suitable route of administration with an antibody concentration ranging from about 0.1 mg/mL to about 500 mg/mL, about 0.1 mg/mL to about 375 mg/mL about 0.1 mg/mL to about 250 mg/mL, about 0.1 to about 175 mg/mL, about 0.1 to 100 mg/mL. about 1 mg/mL to about 500 mg/mL, about 1 mg/mL to about 375 mg/mL, about 1 mg/mL to about 300 mg/mL, about 1 mg/mL to 250 mg/mL, about 1 mg/mL to 200 mg/mL, about 1 mg/mL to 150 mg/mL, about 1 mg/mL to about 100 mg/mL, about 10 mg/ mL to 500 mg/mL, about 10 mg/mL to about 375 mg/mL, about mg/mL to 250 mg/mL, about 10 mg/mL to about 150 mg/mL, about 10 mg/mL to 100 mg/mL, about 100 mg/mL to 500 mg/mL, about 100 mg/mL to 450 mg/mL, about 100 mg/mL to 400 mg/mL, about 100 mg/mL to about 350 mg/mL, about 100 mg/mL to about 300 mg/mL about 100 mg/mL to about 250 mg/mL, 100 mg/mL to 200 mg/mL; or about 100 mg/mL to about 150 mg/mL. In some embodiments, a liquid formulation may comprise an antibody described herein at a concentration of; of at most, of at least or less than about 0.1, 0.5, 1, 5, 10,15 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105 110, 115, 120, 125, 130. 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360. 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, or about 500 mg/mL.
An antibody ation may comprise one or more components including the antibody and other species described elsewhere herein The antibody and other components may be in any suitable amount and/or any suitable concentration for eutic efficacy of the antibody, safety and storage. In one example, an antibody formulation may be a solution comprising about 51.4 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP y), 16-20 mM histidine, 0.1 mg/mL methionine, 84 mg/mL trehalose dihydrate, 0.05 mg/mL disodium EDTA dihydrate, and 0.2 mg/mL polysorbate 80.
In another example, an antibody formulation may comprise about 200 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 15 mM arginine, 78 mg/mL sucrose, 0.3 mg/mL EDTA, and 0.1 mg/mL polysorbate 80.
In another example, an antibody formulation may comprise about 175 mg/mL antibody (e.g., antibody G1, r anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 20 mM glycine, 88 mg/mL trehalose dihydrate, 0.015 mg/mL EDTA, and 0.25 mg/mL polysorbate 80.
In r example, an antibody ation may comprise about 225 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 23 mM asparagine, 84 mg/mL sorbitol, 0.1 mg/mL EDTA, and 0.15 mg/mL polysorbate 60.
In another example, an dy formulation may comprise about 150 mg/mL dy (e.g., antibody G1, another anti-CGRP antagonist antibody, or a onal antibody that modulates the CGRP pathway), 17 mM asparagine, 74 mg/mL mannitol, 0.025 mg/mL EDTA. and 0.2 mg/mL polysorbate 80.
In r example, an antibody formulation may comprise about 100 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a onal dy that modulates the CGRP pathway), 16 mM arginine, 87 mg/mL mannitol, 0.025 mg/mL EDTA, and 0.15 mg/mL polysorbate 20.
In another example, an antibody formulation may comprise about 250 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that tes the CGRP pathway), 25 mM histidine, 74 mg/mL mannitol, 0.025 mg/mL EDTA, and 0.25 mg/mL polysorbate 20.
In r example, an antibody formulation may comprise about 50 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 19 mM arginine, 84 mg/mL sucrose, 0.05 mg/mL EDTA, and 0.3 mg/mL polysorbate 80.
In another example, an dy formulation may se about 125 mg/mL antibody (e.g., dy G1, r GRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 22 mM glycine, 79 mg/mL trehalose dihydrate, 0.15 mg/mL EDTA, and 0.15 mg/mL polysorbate 80.
In another example, an antibody formulation may be a solution comprising about 175 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 20 mM histidine, 0.1 mg/mL methionine, 84 mg/mL trehalose dihydrate, 0.05 mg/mL disodium EDTA dihydrate, and 0.2 mg/mL polysorbate 80.
In another example, an antibody formulation may se about 200 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist dy, or a monoclonal antibody that modulates the CGRP pathway), 30 mM arginine, 78 mg/mL sucrose, 0.3 mg/mL EDTA, and 0.1 mg/mL polysorbate 80.
In another example, an antibody formulation may comprise about 175 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 20 mM glycine, 88 mg/mL trehalose dihydrate, 0.015 mg/mL EDTA, and 0.15 mg/mL polysorbate 80.
In another example, an dy formulation may comprise about 150 mg/mL antibody (e.g., antibody G1, r anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 20 mM histidine, 84 mg/mL sucrose, 0.05 mg/mL EDTA, and 0.2 mg/mL polysorbate 80.
In another example, an antibody formulation may comprise about 225 mg/mL dy (e.g.: antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 23 mM histidine, 84 mg/mL sorbitol, 0.1 mg/mL EDTA, and 0.15 mg/mL polysorbate 60.
In another example, an antibody formulation may comprise about 150 mg/mL antibody (e.g., antibody G1, another GRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 17 mM asparagine, 74 mg/mL mannitol, 0.3 mg/mL EDTA, and 0.2 mg/mL polysorbate 80.
In another example, an antibody formulation may comprise about 100 mg/mL antibody (e g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 16 mM arginine, 87 mg/mL mannitol, 0.025 mg/mL EDTA, and 0.25 mg/mL polysorbate 20.
In another example, an antibody formulation may comprise about 250 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist dy, or a monoclonal antibody that modulates the CGRP pathway), 25 mM histidine, 89 mg/mL mannitol, 0.025 mg/mL EDTA, and 0.25 mg/mL polysorbate 20.
In another example, an antibody formulation may comprise 125 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal antibody that modulates the CGRP pathway), 29 mM arginine, 84 mg/mL sucrose, 0.05 mg/mL EDTA, and 0.3 mg/mL rbate 80.
In another example, an antibody ation may comprise 150 mg/mL dy (e.g., antibody G1, another anti-CGRP nist antibody, or a monoclonal antibody that tes the CGRP pathway), 25 mM asparagine, 84 mg/mL mannitol, 0.05 mg/mL EDTA, and 0.2 mg/mL polysorbate 80.
In another example, an antibody ation may comprise 145 mg/mL antibody (e.g., antibody G1, another anti-CGRP antagonist antibody, or a monoclonal dy that modulates the CGRP pathway), 22 mM histidine, 72 mg/mL trehalose ate, 0.05 mg/mL EDTA, and 0.1 mg/mL polysorbate 80.
An antibody bed herein can be administered using any suitable method, including by injection (e.g., intravenously, subcutaneously, intraperitoneally, intramuscularly, etc.). Antibodies can also be administered via tion, as described . In some cases, an antibody may be administered y with or without inhalation. Generally, for administration of an antibody described herein, an initial candidate dosage can be about 2 mg/kg. For the e of the present invention, a typical daily dosage might range from about any of 3 pg/kg to 30 pg/kg to 300 pg/kg to 3 mg/kg, to 30 mg/kg to 100 mg/kg or more! depending on the factors mentioned above. For example: dosage of about 1 mg/kg, about 2.5 mg/kg, about 5 mg/kg: about 10 mg/kg, about 25 mg/kg, and about 30 mg/kg may be used. For repeated administrations over several days or longer, depending on the ion, the treatment is sustained until a desired suppression of symptoms occurs or until sufficient therapeutic levels are achieved, for example, to reduce pain. An exemplary dosing regimen comprises administering an initial or starting dose of about 8.5 mg/kg, or about 10 mg/kg, followed by a maintenance dose of about 2.8 mg/kg of an antibody, or followed by a maintenance dose of about 2.8 mg/kg every other week. Another exemplary dosing regimen comprises administering a dose of about 100 mg, 125 mg, 150 mg, 200 mg. 225 mg, 250 mg, 275 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg, about 675 mg, or about 900 mg to a subject once per month (e.g., approximately every 28 days) intravenously in an infusion over about one hour, or subcutaneously. For e, an exemplary dosing regimen can comprise administering an initial antibody dose of about 225 mg subcutaneously, followed by a monthly antibody dose of about 225 mg aneously for, e.g., about two months, three months, four months, five months, six , seven months, eight months, nine months, ten months, 11 months, or 12 months, or even a period of greater than one year (e.g., 18 months, two years, or three years). Another exemplary dosing regimen comprises administering an initial antibody dose of about 675 mg subcutaneously, followed by a monthly antibody dose of about 225 mg subcutaneously for, e.g., about two months, three months, four months, five months, six months, seven , eight months, nine months, ten months, 11 months, or 12 months, or even a period of greater than one year (e.g.. 18 months, two years, or three years). Yet r dosing regimen comprises stering an initial or ng dose of about 900 mg intravenously in an on over about 60 minutes, followed by doses of about 900 mg administered intravenously in an on over about 60 minutes every quarter for, so e.g., one year, two years, three years, four years, or five years. Yet another dosing regimen ses administering an initial or starting dose of about 675 mg administered subcutaneously, followed by doses of about 675 mg administered subcutaneously every quarter for, e.g., about one year, two years, three years, four years, or five years. However, other dosage regimens may be useful, depending on the pattern of pharmacokinetic decay that the practitioner wishes to achieve. For example, in some embodiments, dosing from about one to about four times a week is contemplated. The ss of this y is easily monitored by conventional techniques and assays. The dosing regimen (including the CGRP antagonist(s) used) can vary over time.
In some embodiments, the dose or amount of an antibody (e.g.. monoclonal dy that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist dy) described herein and administered to a subject may range from about 0.1 ug to about 3000 mg, 1 mg to 1000 mg, 100 mg to 1000 mg, 100 mg to 500 mg, 0.1 mg to 5000 mg. 1 mg to 4000 mg, 250 mg to 1000 mg, 500 mg to 1000 mg, 100 mg to 900 mg, 400 mg to 900 mg, 10 mg to 3000 mg, 10 mg to 2000 mg, 100 mg to 2000 mg, 150 mg to 2000 mg, 200 mg to 2000 mg. 250 mg to 2000 mg, 300 mg to 2000 mg. 350 mg to 2000 mg. 400 mg to 2000 mg, 450 mg to 2000 mg, 500 mg to 2000 mg, 550 mg to 2000 mg, 600 mg to 2000 mg, 650 mg to 2000 mg, 700 mg to 2000 mg, 750 mg to 2000 mg, 800 mg to 2000 mg, 850 mg to 2000 mg, 900 mg to 2000 mg, 950 mg to 2000 mg, or 1000 mg to 2000 mg. In some embodiments, the dose or amount of an antibody described herein and administered to a subject may be. may be at most, may be less than, or may be at least about 0.1 ug, 1 ug, 100 ug, 1 mg, 10 mg, 25 mg, 50 mg, 75 mg, 100 mg. 125 mg, 150 mg, 175 mg, 200 mg. 225 mg, 250 mg, 275 mg, 300 mg, 325 mg, 350 mg. 375 mg, 400 mg, 450 mg, 475 mg, 500 mg, 525 mg, 550 mg, 575 mg, 600 mg, 625 mg, 650 mg, 675 mg, 700 mg. 725 mg, 750 mg, 775 mg. 800 mg, 825 mg, 850 mg, 875 mg, 900 mg, 925 mg, 950 mg, 975 mg, 1000 mg, 1100 mg, 1200 mg. 1300 mg, 1400 mg, 1500 mg, 1600 mg, 1700 mg, 1800 mg, 1900 mg, 2000 mg, or about 3000 mg. In some embodiments, the amount is between about 225 mg to about 1000 mg, e.g., about 225 mg, about 675 mg or about 900 mg. An exemplary dosing regimen comprises administering an initial antibody dose of about 225 mg subcutaneously, followed by a y dy dose of about 225 mg subcutaneously for, e.g., about two months, so three months, four months, five , six months, seven months, eight months, nine months, ten months. 11 months, or 12 months, or even a period of greater, than one year (e.g., 18 months, two years, or three years). An exemplary dosing regimen comprises administering an initial antibody dose of about 675 mg aneously, followed by a monthly antibody dose of about 225 mg subcutaneously for. e.g.; about two months, three months, four months, five months, six months, seven , eight , nine months, ten months, 11 months, or 12 months, or even a period of greater than one year (e.g., 18 months, two years, or three years). Yet another dosing regimen comprises administering an initial or starting dose of about 900 mg intravenously in an infusion over about 60 minutes, followed by doses of about 900 mg administered intravenously in an infusion over about 60 minutes every quarter for, e.g., one year, two years, three years, four years, or five years. Yet another dosing io regimen comprises administering an initial or starting dose of about 675 mg administered subcutaneously, followed by doses of about 675 mg administered subcutaneously every quarter for, e.g., about one year, two years, three years, four years, or five years. However, other dosage regimens may be useful, depending on the pattern of cokinetic decay that the practitioner wishes to e.
In some embodiments, the dose or amount of an antibody (e.g.. monoclonal antibody that modulates the CGRP y, anti-CGRP antagonist antibody, monoclonal GRP nist antibody) described herein and administered to a subject may range from about 0.1 to 500, 0.1 to 100, 0.1 to 50. 0.1 to 20, 0.1 to 10, 1 to 10, 1 to 7, 1 to 5 or 0.1 to 3 mg/kg of body weight. In some embodiments, the dose or amount of an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) bed herein and administered to a subject may be, may be at most, may be less than, or may be at least about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5. 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0. 8.5. 9.0, 9.5, 10.0, 10.5, 11.0. 11.5, 12.0, 12.5, 13.0, 13.5, 14.0, 14.5, 15.0, 15.5, 16.0, 16.5, 17.0, 17.5, 18.0, 18.5, 19.0, 19.5, 20, 21, 22, 23, 24, 25, 26, 27, 28. 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41,42. 43, 44. 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90. 95, 100, 110, 120, 130, 140, 150, 160. 170, 180, 190, 200, 225, 250, 275, 300, 325, 350, 375, 400, 425, 450. 475, or about 500 mg/kg of body weight.
In some embodiments, the frequency at which a dose or amount of an antibody (e.g., monoclonal dy that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) described herein is stered to a subject may vary. In some embodiments, a single dose of antibody may be given to a t across y. In some embodiments, the frequency at which a dose or amount of an antibody is administered to a subject is constant (e.g.; stered about once per month or about once per quarter). In some embodiments: the frequency at which a dose or amount of an antibody is administered to a subject is about every quarter for about one year, two years, three years, four years, or five years. In some embodiments, the frequency at which a dose or amount of an antibody described herein is stered to a subject is variable (e.g., an initial or starting dose followed by a dose at once per month, followed by additional doses at about three months and about seven months). In some embodiments, the frequency at which an antibody is administered to a subject is, is at least, is less than, or is at most about one, two, three, four, five, or six time(s) per day. In some embodiments, the ncy at which an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal GRP antagonist antibody) is administered to a subject is, is at least, is less than, or is at most about one, two, three, four, five, or six dose(s) per day.
In some embodiments, the frequency at which a dose or amount of an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal GRP nist antibody) described herein is administered to a subject is, is at least, is less than, or is at most one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, en, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, or twenty time(s) per every one, two, three, four. five, six, seven, eight, nine, ten, , twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, twenty-two, twenty-three, twentyfour , twenty-five, twenty-six, twenty-seven, twenty-eight, twenty-nine, thirty, thirty-one, thirty-two, thirty-three, thirty-four, thirty-five, thirty-six, thirty-seven, -eight, thirty- nine, forty, forty-one, forty-two, forty-three, forty-four, forty-five, forty-six, forty-seven, eight, forty-nine, fifty, fifty-five, sixty, sixty-five, seventy, seventy-five, eighty, eighty-five, ninety, ninety-five, one-hundred, one-hundred tv/enty-five, one-hundred fifty, one-hundred , or ndred day(s).
In some embodiments, the frequency at which a dose or amount of an antibody (e.g., monoclonal antibody that modulates the CGRP y, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) described herein is administered to a subject is, is at least, is less than, or is at most one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, or twenty time(s) per every' one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, en, fifteen, sixteen, seventeen, eighteen, en, twenty, twenty-one, -two, twenty-three, twenty- four, -five, twenty-six, twenty-seven, -eight, twenty-nine, thirty, thirty-one, thirty-two, thirty-three, thirty-four, thirty-five, thirty-six, thirty-seven, thirty-eight, thirtynine , forty, forty-one, two, forty-three, forty-four, forty-five, forty-six, forty-seven, forty-eight, forty-nine, fifty, fifty-five, sixty, sixty-five, seventy, seventy-five, eighty, eighty-five, ninety, ninety-five, or one-hundred week(s). In some embodiments, the frequency at which an antibody (e g., monoclonal antibody that modulates the CGRP y, anti-CGRP antagonist antibody, onal anti-CGRP antagonist antibody) described herein is administered to a subject is less than one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or fifteen dose(s) per week.
In some embodiments, the frequency at which a dose or amount of an antibody (e.g., onal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) is administered to a subject is, is at least, is less than, or is at most about one. two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, or twenty ) per every month, every two months, every three months, every four months, every five months, every six months, every seven months, every eight months, every' nine months, every ten months, every eleven months, every twelve months, every thirteen months, every fourteen months, every fifteen months, every sixteen months, every seventeen months, or every eighteen month(s). In some embodiments, the frequency at which a dose or amount of an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) is administered to a subject is about one time per every one month. In some embodiments, the frequency at which a dose or amount of an dy (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) is administered to a t is about one time per every three months. In some ments, the frequency at which an antibody (e.g., onal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti- CGRP antagonist antibody) described herein is administered to a t is less than about one, two, three, four five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, or fifteen dose(s) per month. In some ments, a dose or amount of an antibody may be administered (e.g., subcutaneously or intravenously in an infusion) to a subject one time, two times, three times, four times, five times, six times, seven times, eight times, nine times, ten times or more per month.
In some embodiments, an antibody in a dose or amount of about 50 mg, 100 mg 150 mg, 200 mg, 225 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg. 500 mg, 550 mg, 600 mg. 650 mg, 675 mg, 700 mg, 750 mg, 800 mg, 850 mg, 900 mg, 950 io mg, 1000 mg, 1050 mg, 1100 mg, 1150 mg, 1200 mg, 1250 mg, 1300 mg, 1350 mg, 1400 mg, 1450 mg, 1500 mg, 1550 mg, 1600 mg, 1650 mg, 1700 mg, 1750 mg, 1800 mg, 1850 mg, 1900 mg, 1950 mg, 2000 mg. 2050 mg, 2100 mg, 2150 mg, 2200 mg, 2250 mg, 2300 mg, 2350 mg, 2400 mg, 2450 mg, 2500 mg, 2550 mg. 2600 mg, 2650 mg, 2700 mg, 2750 mg, 2800 mg, 2850 mg, 2900 mg, 2950 mg, 3000 mg, or more is may be administered (e.g., subcutaneously or intravenously in an infusion) to a subject once per month. In some embodiments, an antibody in a dose or amount of between about 0.1 mg to 5000 mg, 1 mg to 4000 mg, 10 mg to 3000 mg, 10 mg to 2000 mg, 100 mg to 2000 mg, 150 mg to 2000 mg. 200 mg to 2000 mg, 250 mg to 2000 mg, 300 mg to 2000 mg, 350 mg to 2000 mg. 400 mg to 2000 mg, 450 mg to 2000 mg, 500 mg to 2000 mg, 550 mg to 2000 mg. 600 mg to 2000 mg, 650 mg to 2000 mg, 700 mg to 2000 mg, 750 mg to 2000 mg. 800 mg to 2000 mg. 850 mg to 2000 mg. 900 mg to 2000 mg, 950 mg to 2000 mg, or about 1000 mg to 2000 mg may be administered (e.g., subcutaneously or intravenously in an infusion) to a subject once per month. In some embodiments, between about 225 mg and about 1000 mg, e.g., about 225 mg of antibody are administered once per month. An ary dosing regimen comprises administering an initial antibody dose of about 675 mg subcutaneously, ed by a y antibody dose of about 225 mg subcutaneously for, e.g., about two months, three months, four months, five months, six months, seven months, eight months, nine months, ten months, 11 months, or 12 months, or even a period of greater than one year (e.g., 18 , two years, or three years). However, other dosage regimens may be useful, depending on the n of pharmacokinetic decay that the practitioner wishes to achieve.
In some embodiments, an antibody in a dose or amount of about 50 mg, 100 mg 150 mg, 200 mg, 225 mg; 250 mg: 300 mg; 350 mg, 400 mg: 450 mg. 500 mg; 550 mg, 600 mg. 650 mg, 675 mg, 700 mg, 750 mg: 800 mg: 850 mg. 900 mg, 950 mg; 1000 mg: 1050 mg, 1100 mg, 1150 mg, 1200 mg, 1250 mg, 1300 mg, 1350 mg, 1400 mg, 1450 mg, 1500 mg, 1550 mg, 1600 mg, 1650 mg, 1700 mg, 1750 mg, 1800 mg, 1850 mg, 1900 mg, 1950 mg, 2000 mg. 2050 mg, 2100 mg, 2150 mg, 2200 mg, 2250 mg, 2300 mg, 2350 mg, 2400 mg, 2450 mg, 2500 mg, 2550 mg, 2600 mg, 2650 mg, 2700 mg, 2750 mg, 2800 mg, 2850 mg, 2900 mg, 2950 mg, 3000 mg, or more may be stered (e.g., subcutaneously or intravenously in an on) to a subject every three months. In some embodiments, an antibody in a dose or amount of between about 0.1 mg to 5000 mg, 1 mg to 4000 mg, 10 mg to 3000 mg, 10 mg to 2000 mg, 100 mg to 2000 mg, 150 mg to 2000 mg, 200 mg to 2000 mg, 250 mg to 2000 mg, 300 mg to 2000 mg, 350 mg to 2000 mg, 400 mg to 2000 mg, 450 mg to 2000 mg, 500 mg to 2000 mg, 550 mg to 2000 mg, 600 mg to 2000 mg, 650 mg to 2000 mg, 700 mg to 2000 mg, 750 mg to 2000 mg, 800 mg to 2000 mg, 850 mg to 2000 mg, 900 mg to 2000 mg, 950 mg to 2000 mg, or 1000 mg to 2000 mg may be administered (e.g., subcutaneously or intravenously in an infusion) to a subject every three months. In some embodiments, between about 225 mg to about 1000 mg is administered once every three months or less, e.g., about 675 mg is administered subcutaneously about every three months or about 900 mg is administered about every three months intravenously in an infusion. An exemplary dosing regimen comprises stering an l or starting dose of about 900 mg intravenously in an infusion over about 60 minutes, followed by doses of about 900 mg administered enously in an infusion over about 60 minutes every three months for one year, two years, three years, four years, or five years. Another exemplary dosing regimen comprises administering an initial or starting dose of about 675 mg administered subcutaneously, followed by doses of about 675 mg administered subcutaneously every three months for about one year, two years, three years, four years, or five years.
However, other dosage regimens may be useful, depending on the pattern of pharmacokinetic decay that the practitioner wishes to achieve.
In some ments, an antibody in a dose or amount of about 50 mg, 100 mg 150 mg, 200 mg, 225 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg. 650 mg, 675 mg, 700 mg, 750 mg, 800 mg, 850 mg. 900 mg, 950 mg; 1000 mgr 1050 mg, 1100 mgr 1150 mg, 1200 mg, 1250 mg, 1300 mg, 1350 mg, 1400 mg, 1450 mg, 1500 mg, 1550 mg, 1600 mg, 1650 mg, 1700 mg. 1750 mg, 1800 mg, 1850 mg, 1900 mg, 1950 mg, 2000 mg. 2050 mg, 2100 mg, 2150 mg, 2200 mg, 2250 mg, 2300 mg, 2350 mg, 2400 mg, 2450 mg, 2500 mg, 2550 mg, 2600 mg, 2650 mg, 2700 mg, 2750 mg, 2800 mg, 2850 mg, 2900 mg, 2950 mg. 3000 mg, or more may be administered (e g., subcutaneously or intravenously in an infusion) to a t every six months. In some embodiments, an antibody in a dose or amount of between about 0.1 mg to 5000 mg, 1 mg to 4000 mg, 10 mg to 3000 mg, 10 mg to 2000 mg, 100 mg to 2000 mg, 150 mg to 2000 mg. 200 mg to 2000 mg, 250 mg to 2000 mg, 300 mg to 2000 mg, 350 mg to 2000 mg. 400 mg to 2000 mg, 450 mg to 2000 mg, 500 mg to 2000 mg, 550 mg to 2000 mg. 600 mg to 2000 mg, 650 mg to 2000 mg, 700 mg to 2000 mg, 750 mg to 2000 mg. 800 mg to 2000 mg, 850 mg to 2000 mg, 900 mg to 2000 mg, 950 mg to 2000 mg, or 1000 mg to 2000 mg may be administered (e.g., subcutaneously or enously in an infusion) to a subject every/ six months.
In some ments, between 225 mg to 1000 mg is administered once every six months or less. However, other dosage regimens may be useful, ing on the pattern of pharmacokinetic decay that the practitioner wishes to achieve.
In some embodiments, the frequency at which a dose or amount of an antibody (e.g., monoclonal antibody that tes the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) is administered to a subject (e.g., subcutaneously or intravenously) is. is at least, is less than, or is at most one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, fourteen, fifteen, n, seventeen, eighteen, nineteen, or twenty time(s) per every quarter. As can be appreciated, a “quarter” can refer to a time period of a quarter year or may also refer to a calendar quarter such as a time period of January/ 1 - March 31, April 1 - June 30, July 1 - September 30, or October 1 - December 31. In some cases, a “quarter” may refer to a time period of approximately three months.
In some embodiments, an antibody in a dose or amount of about 50 mg, 100 mg 150 mg, 200 mg, 225 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg. 500 mg, 550 mg, 600 mg. 650 mg, 675 mg, 700 mg, 750 mg, 800 mg, 850 mg. 900 mg, 950 mg, 1000 mg, 1050 mg, 1100 mg, 1150 mg, 1200 mg, 1250 mg, 1300 mg, 1350 mg, 1400 mg, 1450 mg, 1500 mg, 1550 mg, 1600 mg, 1650 mg, 1700 mg, 1750 mg, 1800 mg, 1850 mg, 1900 mg, 1950 mg, 2000 mg, 2050 mg, 2100 mg, 2150 mg, 2200 mg, 2250 mg, 2300 mg, 2350 mg, 2400 mg, 2450 mg, 2500 mg, 2550 mg. 2600 mg, 2650 mg, 2700 mg, 2750 mg, 2800 mg, 2850 mg, 2900 mg, 2950 mg. 3000 mg, or more may be administered (e g., subcutaneously or intravenously in an infusion) to a subject every quarter. In some embodiments, an antibody in a dose or amount of between about 0.1 mg to 5000 mg, 1 mg to 4000 mg, 10 mg to 3000 mg, 10 mg to 2000 mg, 100 mg to 2000 mg, 150 mg to 2000 mg. 200 mg to 2000 mg, 250 mg to 2000 mg, 300 mg to 2000 mg, 350 mg to 2000 mg. 400 mg to 2000 mg, 450 mg to 2000 mg, 500 mg to 2000 mg, 550 mg to 2000 mg. 600 mg to 2000 mg, 650 mg to 2000 mg, 700 mg to 2000 mg, 750 mg to 2000 mg. 800 mg to 2000 mg, 850 mg to 2000 mg, 900 mg to 2000 mg, 950 mg to 2000 mg, or 1000 mg to 2000 mg may be administered (e.g., subcutaneously or intravenously in an infusion) to a subject every r. An ary dosing regimen comprises administering an initial or starting dose of about 900 mg intravenously in an infusion over about 60 minutes, ed by doses of about 900 mg administered intravenously in an infusion over about 60 minutes every quarter for one year, two years, three years, four years, or five years. Another exemplary dosing regimen comprises administering an initial or starting dose of about 675 mg administered subcutaneously, followed by doses of about 675 mg administered subcutaneously every quarter for about one year, two years, three years, four years, or five years. However, other dosage regimens may be useful, depending on the pattern of pharmacokinetic decay that the practitioner wishes to achieve.
In some embodiments, the frequency at which a dose or amount of an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) is administered is, is at least, is less than, or is at most about one, two. three, four, five, six, seven, eight, nine, ten, eleven, , thirteen, fourteen, fifteen, sixteen, seventeen, eighteen, nineteen, or twenty time(s) per every' year, every two years, every three years, every four years, or every five years. In some ments, the frequency at which an antibody (e.g.; monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist dy, monoclonal anti-CGRP antagonist dy) is administered to a subject is so less than one, two. three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, en, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, two , twenty-three, twenty-four or twenty-five dose(s) per year.
In some embodiments, an antibody in a dose or amount of about 50 mg, 100 mg 150 mg, 200 mg, 225 mg, 250 mg, 300 mg, 350 mg, 400 mg, 450 mg, 500 mg, 550 mg, 600 mg. 650 mg, 675 mg, 700 mg, 750 mg, 800 mg, 850 mg. 900 mg, 950 mg, 1000 mg, 1050 mg, 1100 mg, 1150 mg, 1200 mg, 1250 mg, 1300 mg, 1350 mg, 1400 mg, 1450 mg, 1500 mg, 1550 mg, 1600 mg, 1650 mg, 1700 mg, 1750 mg, 1800 mg, 1850 mg, 1900 mg, 1950 mg, 2000 mg, 2050 mg, 2100 mg, 2150 mg, 2200 mg, 2250 mg, 2300 mg, 2350 mg, 2400 mg, 2450 mg, 2500 mg, 2550 mg. 2600 mg, 2650 mg, 2700 mg, 2750 mg, 2800 mg, 2850 mg, 2900 mg, 2950 mg. 3000 mg, or more may be administered to a subject once per year. In some embodiments, an antibody io in a dose or amount of between about 0.1 mg to 5000 mg, 1 mg to 4000 mg, 10 mg to 3000 mg, 10 mg to 2000 mg, 100 mg to 2000 mg. 150 mg to 2000 mg, 200 mg to 2000 mg, 250 mg to 2000 mg, 300 mg to 2000 mg, 350 mg to 2000 mg, 400 mg to 2000 mg, 450 mg to 2000 mg, 500 mg to 2000 mg, 550 mg to 2000 mg, 600 mg to 2000 mg, 650 mg to 2000 mg, 700 mg to 2000 mg, 750 mg to 2000 mg, 800 mg to 2000 is mg, 850 mg to 2000 mg, 900 mg to 2000 mg, 950 mg to 2000 mg, or 1000 mg to 2000 mg may be administered to a subject every once per year, in some embodiments, between about 450 mg and about 2000 mg is administered once every year or less.
In some embodiments, a method may comprise stering an antibody (e.g., onal dy that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP nist antibody) described herein to a subject on a ity of days. Two, three, four, five, six, seven, eight or more days of the plurality of days may be more than 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26. 27, 28, 29, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 or more days apart. In some embodiments, two of the plurality of days are more than one, two, three, four, five, six, seven, eight, nine, ten, eleven, twelve, thirteen, en, fifteen, sixteen, seventeen, eighteen, nineteen, twenty, twenty-one, -two, twenty-three, twenty-four, twenty-five, twenty-six, twenty-seven, twenty-eight, twentynine , thirty or more days apart. Moreover, in some embodiments, the amount of antibody administered on a first day of the plurality of days may be different (e.g., higher or lower) than the amount of the antibody administered on a second day.
In some embodiments, an initial dose (which can also be referred to as a loading dose or a starting dose) of an antibody (e.g.. monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti- CGRP antagonist antibody) described herein may be stered to a subject followed by administration of one or more additional doses at desired intervals. In some embodiments, the initial dose (or ng dose) and one or more of the additional doses are the same dose. In some embodiments, the one or more additional doses are a different dose than the initial or starting dose. In some embodiments, the initial dose and one or more of the additional doses are administered the same way, i.e.; subcutaneously or intravenously. In some embodiments, the one or more additional doses are administered in a different way than the l dose, e.g.. the initial dose may be administered intravenously and the one or more additional doses may be administered subcutaneously. In some embodiments, the frequency at which the one or more additional doses are administered is constant (e.g., every month or every three months). In some embodiments, the frequency at which the one or more additional doses are administered is variable (e.g.. one additional dose administered at one month following the initial dose, followed by another additional dose at three months following the initial dose). Any ble and/or therapeutic regimen of initial loading dose, additional doses, and frequency (e.g., including those described herein) of additional doses may be used. An exemplary regimen includes an l loading dose of about 225 mg anti CGRP antagonist antibody administered subcutaneously, followed by subsequent maintenance doses of about 225 mg of the antibody stered subcutaneously at one month intervals. An exemplary regimen includes an l loading dose of about 675 mg anti-CGRP antagonist antibody administered aneously, followed by uent maintenance doses of about 225 mg of the antibody administered subcutaneously at one month intervals. Yet r exemplary regimen includes an initial dose of about 900 mg anti-CGRP antagonist antibody administered enously in an infusion over about 60 minutes, followed by subsequent maintenance doses of about 900 mg GRP antagonist antibody administered intravenously in an infusion over about 60 minutes at three month intervals. Another exemplary regimen comprises an initial or ng dose of about 675 mg anti-CGRP antagonist antibody administered subcutaneously, followed by subsequent maintenance doses of about 675 mg anti CGRP antagonist antibody stered subcutaneously at three month intervals.
In some embodiments, an initial dose (or ng dose) of an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) of about 0.1 1 ,ug, 100 ,ug, 1 mg, 10 mg, 25 mg, 50 mg, 75 mg, 100 mg, 125 mg, 150 mg, 175 mg, 200 mg, 225 mg, 250 mg, 275 mg, 300 mg, 325 mg, 350 mg, 375 mg, 400 mg, 450 mg, 475 mg, 500 mg, 525 mg. 550 mg, 575 mg, 600 mg, 625 mg, 650 mg, 675 mg, 700 mg, 725 mg, 750 mg, 775 mg, 800 mg, 825 mg, 850 mg, 875 mg, 900 mg, 925 mg, 950 mg, 975 mg, 1000 mg, 1500 mg, 2000 mg, or about 3000 mg may be administered to a subject followed by one or more additional doses of the antibody of about 0.1 ,ug, 1 ug. 100 ug. 1 mg. 10 mg. 25 mg, 50 mg, 75 mg, 100 mg, 125 mg, 150 mg. 175 mg, 200 mg, 225 mg, 250 mg, 275 mg, 300 mg, 325 mg, 350 mg, 375 mg, 400 mg, 450 mg, to 475 mg, 500 mg. 525 mg, 550 mg, 575 mg, 600 mg, 625 mg, 650 mg, 675 mg, 700 mg, 725 mg, 750 mg, 775 mg, 800 mg, 825 mg, 850 mg, 875 mg, 900 mg, 925 mg, 950 mg, 975 mg, 1000 mg, 1500 mg, 2000 mg, or about 3000 mg. An exemplary regimen includes an initial loading dose of about 225 mg anti CGRP antagonist antibody administered subcutaneously, followed by subsequent maintenance doses of about 225 mg of the antibody administered subcutaneously at one month intervals.
An exemplary n includes an initial loading dose of about 675 mg anti-CGRP nist dy administered aneously, followed by subsequent maintenance doses of about 225 mg of the antibody administered subcutaneously at one month intervals. Yet another exemplary regimen includes an initial dose of about 900 mg anti-CGRP antagonist antibody administered intravenously in an infusion over about 60 minutes, followed by subsequent maintenance doses of about 900 mg anti-CGRP antagonist antibody administered intravenously in an infusion over about 60 minutes at three month intervals. Another exemplary regimen comprises an initial or starting dose of about 675 mg anti-CGRP antagonist antibody administered subcutaneously, followed by uent maintenance doses of about 675 mg anti- CGRP nist antibody administered aneously at three month als.
In some embodiments, a dose or amount of antibody (e.g.. monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti- CGRP antagonist antibody) described herein may be divided into ses and administered as multiple sub-doses, depending, for e, on the route of administration and/or particular formulation administered. For example, in cases where a dose is administered subcutaneously, the subcutaneous dose may be divided into multiple sub-doses and each sub-dose administered at a different site in order to avoid, for example, a larger single subcutaneous injection at a single site. For example, an enous dose of 900 mg may be d into four sub-doses of 225 mg each. As another example, a subcutaneous dose of 675 mg may be divided into three sub-doses of 225 mg each and each 225 mg dose may be administered at a different site, which can help minimize the volume injected at each site. The division of sub-doses may be equal (e.g.; three equal sub-doses) or may be unequal (e.g.: three sub-doses, two of the sub-doses twice as large as the other sub-doses).
In some embodiments, the number of doses of antibody administered to a subject over the course of ent may vary depending upon, for example, achieving reduced incidence of a refractory migraine and/or secondary symptom associated with a tory migraine in the subject. For example, the number of doses administered over the course of treatment may be, may be at least, or may be at most 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44. 45, 46, 47, 48, 49, 50, or treatment may be given indefinitely. In some cases, treatment may be acute such that at most 1,2,3, 4, 5, or 6 doses are administered to a subject for treatment.
In some embodiments, a dose (or sub-dose) or amount of an antibody (e.g., monoclonal antibody that tes the CGRP pathway, anti-CGRP antagonist dy, monoclonal GRP antagonist dy) described herein may be formulated in a liquid formulation and stered (e.g., via subcutaneous injection, via intravenous injection) to a subject. In such cases, the volume of liquid formulation comprising antibody may vary depending upon, for example, the concentration of antibody in the liquid formulation, the desired dose of antibody, and/or the route of administration used. For example, the volume of liquid formulation comprising an antibody described herein and administered (e.g., via an ion, such as, for example, a subcutaneous injection or an intravenous infusion) to a subject may be from about 0.001 ml to about 10.0 ml, about 0.01 mL to about 5.0 mL, about 0.1 ml_ to about 5 mL, about 0.1 mL to about 3 mL. about 0.5 mL to about 2.5 mL, or about 1 mL to about 2.5 mL. For example, the volume of liquid formulation comprising an antibody (e.g., monoclonal antibody that tes the CGRP pathway, anti-CGRP antagonist dy, monoclonal anti-CGRP antagonist antibody) described herein and administered (e.g., via an injection, such as, for example, a subcutaneous injection, or an intravenous infusion) to a subject may be. may be at least, may be less than: or may be at most about 0.001, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.10, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0. 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.5, 6.0. 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, or about 10.0 mL.
In some embodiments, a dose (or sub-dose) or amount of an antibody (e.g " j monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) described herein may be supplied in prefilled receptacles useful in administering antibody to a subject. Such prefilled receptacles may be designed for self-administration or for administration by another. For example, a dose (or sub-dose) or amount of antibody described herein may be supplied as a liquid ation in pre-filled syringes, pre-filled syringes with a needle safety device, injection pens, or auto-injectors. In such examples, the pre-filled es may be designed for self-administration or for stration by another. In some cases, the pre-filled syringes or auto-injectors may be designed for aneous administration and/or intravenous administration.
For the e of the present invention, the appropriate dosage of an antibody may depend on the antibody (or compositions thereof) employed, the type and severity of the ary symptom, the type and severity of the refractory migraine or other condition to be treated, whether the agent is administered for preventive or therapeutic purposes, previous therapy, the t’s clinical history and response to the agent, and the discretion of the attending physician. Typically, the ian will ster an antibody, until a dosage is reached that achieves the desired result. Dose and/or frequency can vary over course of treatment.
Empirical considerations, such as the ife, generally will contribute to the determination of the dosage. For example, antibodies that are compatible with the human immune system, such as humanized antibodies or fully human antibodies, may be used to prolong half-life of the antibody and to prevent the antibody being attacked by the host's immune system. Frequency of administration may be ined and adjusted over the course of therapy, and is generally, but not necessarily, based on treatment and/or suppression and/or ration and/or delay of refractory ne or other condition. Alternatively, sustained continuous release formulations of antibodies may be appropriate. Various formulations and devices for achieving sustained release are known in the art.
In one embodiment, dosages for an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, onal anti- CGRP antagonist antibody) described herein may be determined empirically in individuals who have been given one or more administration(s) of the antibody.
Individuals are given incremental s of an antibody. To assess cy of an antibody, an indicator of the disease can be followed.
Administration of an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody) in accordance with the methods of the t invention can be continuous or intermittent, depending, for example, upon the recipient’s physiological condition, r the purpose of the administration is therapeutic or prophylactic, and other factors known to skilled tioners. The administration of an dy may be essentially continuous over a ected period of time or may be in a series of spaced dose, e.g., either before, during, or after developing refractory migraine; before; during; before and after; during and after; before and during; or before, during, and after developing refractory migraine. Administration can be before, during and/or after any event likely to give rise to refractory migraine.
In some embodiments, more than one antibody may be present. At least one, at least two, at least three, at least four, at least five different, or more antibodies can be present. Generally, those antibodies may have complementary activities that do not adversely affect each other. An antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist dy, monoclonal anti- CGRP antagonist antibody) described herein can also be used in conjunction with other CGRP antagonists or CGRP receptor antagonists. For example, one or more of the following CGRP antagonists may be used: an anti-sense molecule directed to a CGRP (including an anti-sense molecule directed to a nucleic acid ng CGRP), a CGRP inhibitory compound, a CGRP structural analog, a nt-negative mutation of a CGRP receptor that binds a CGRP, and an GRP receptor antibody. An antibody can also be used in conjunction with other agents that serve to enhance and/or ment the effectiveness of the agents. sis or assessment of refractory migraine is well-established in the art. ment may be performed based on subjective measures: such as patient characterization of symptoms and medical history documenting inadequate response to prior preventative treatments. In some ments, assessment of refractory migraine may be via headache hours, as described elsewhere herein. For example, assessment of refractory migraine may be in terms of daily headache hours, weekly headache hours, monthly headache hours and/or yearly headache hours. In some cases, headache hours may be as ed by the subject.
Treatment efficacy can be assessed by methods well-known in the art. For example, pain relief may be assessed. Accordingly, in some embodiments, pain relief is subjectively observed after 1, 2, or a few hours after administering an anti-CGRP antibody. In some embodiments, frequency of refractory migraine attacks is tively observed after administering an anti-CGRP antibody.
In some embodiments, a method for preventing, treating, or reducing incidence of migraine in a subject having refractory migraine as described herein may reduce incidence of migraine after a single administration of an antibody (e.g.. monoclonal antibody that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP nist antibody) described herein for an extended period of time. For example, incidence of migraine may be reduced for at least 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20. 21,22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33. 34, 35. 36, 37, 38, 39. 40, 41, 42, 43. 44. 45. 46, 47. 48, 49, 50 or more days after a single stration.
In some embodiments, a method for ng or reducing incidence of migraine in a subject as described herein (i.e., having refractory ne) may reduce the number of headache hours experienced by a subject from a pre-administration level after administration of one or more doses of an antibody (e g., monoclonal antibody that tes the CGRP pathway, GRP antagonist antibody, onal anti- CGRP antagonist antibody) described herein to the subject. For example, daily headache hours experienced by the subject after administering one or more doses of an antibody to the subject may be reduced by 0.5, 1, 2, 3, 4. 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18. 19, 20. 21, 22, 23, or 24 headache hours from a pre­ administration level in the t. In some cases, daily headache hours experienced by the subject after administering one or more doses of an antibody to the subject may be reduced by 0.5%, 1%, 5%, 10%, 15%. 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99%, or more relative to a pre­ stration level in the subject. In another example, weekly headache hours experienced by the subject after administering one or more doses of an antibody to the subject may be d by 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60. 65, 70, 75 or more headache hours from a pre-administration level in the subject. In some cases, weekly headache hours experienced by the subject after administering one or more doses of an dy to the subject may be reduced by 0.5%, 1%, 5%, 10%, %, 20%, 25%, 30%, 35%, 40%. 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, io 90%, 95%, 99%, or more relative to a pre-administration level in the subject. In another example, monthly headache hours experienced by the subject after administering one or more doses of an antibody to the subject may be reduced by 0.5, 1, 5, 10, 15, 20. 25, 30, 35, 40, 45. 50, 55, 60, 65, 70. 75, 80, 85, 90, 95. 100, 105, 110, 115, 120, 125, or more headache hours from a pre-administration level. In some is cases, monthlyheadache hours experienced by the subject after administering one or more doses of an antibody to the subject may be reduced by 0.5%, 1%, 5%, 10%, %, 20%, 25%, 30%, 35%, 40%. 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 39% or more relative to a pre-administration level in the subject.
In some embodiments, a method for treating or reducing incidence of migraine in a subject having refractory migraine as described herein may reduce the number of headache days experienced by a subject from a pre-administration level after administration of one or more doses of an antibody (e.g., monoclonal antibody that modulates the CGRP pathway, anti-CGRP nist antibody, monoclonal anti- CGRP antagonist antibody) described herein to the subject. For e, weekly headache days experienced by the subject after administering one or more doses of an dy to the t may be reduced by 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4. 4.5, 5, 5.5, 6, 6.5, or 7 headache days from a pre-administration level in the subject. In some cases, weekly he days experienced by the subject after administering one or more doses of an antibody to the subject may be reduced by 0.5%, 1%, 5%, 10%, 15%, 20%. 25%, 30%, 35%, 40%. 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, 99% or more relative to a pre-administration level in the subject. In another example, monthly headache days enced by the subject after administering one or more doses of an antibody to the subject may be reduced by 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20 or more headache days from a pre-administration level.
In some embodiments, a method may comprise administering to a subject one or more additional agent(s) simultaneously or sequentially with an antibody (e.g.: monoclonal dy that modulates the CGRP pathway, anti-CGRP antagonist antibody, monoclonal anti-CGRP antagonist antibody). In some embodiments, an onal agent may be an acute he medication such as 5-HT1 agonists, triptans, ergot alkaloids, opiates, and NSAIDs) bed elsewhere herein. In some embodiments, a therapeutic effect may be greater as compared to use of an antibody or one or more additional agent(s) alone. Accordingly, a synergistic effect between an antibody and the one or more additional agents may be achieved.
B. Anti-CGRP antagonist antibodies In some embodiments, the s of the invention use an antibody, which can be an anti-CGRP antagonist antibody. An anti-CGRP antagonist antibody can refer to any antibody molecule that blocks, suppresses or reduces ding icantly) CGRP biological activity, including downstream pathways mediated by CGRP signaling, such as receptor binding and/or elicitation of a cellular response to CGRP.
An anti-CGRP antagonist antibody can exhibit any one or more of the following characteristics: (a) bind to CGRP; (b) block CGRP from binding to its receptor(s); (c) block or decrease CGRP receptor activation (including, but not limited to, cAMP activation); (d) inhibit CGRP biological ty or downstream pathways mediated by CGRP signaling function; (e) prevent, ameliorate, or treat any aspect of refractory migraine; (f) increase clearance of CGRP; and (g) inhibit (reduce) CGRP synthesis, production or release. GRP antagonist antibodies are known in the art. See e.g., Tan et al., Clin. Sci. (Lond). 89:565-73, 1995; Sigma (Missouri, US), product number C7113 (clone #4901); Plourde etal., Peptides 5-1229, 1993.
In some embodiments, the antibody reacts with CGRP in a manner that inhibits CGRP, and/or the CGRP pathway, including downstream pathways ed by the CGRP signaling function. In some embodiments, the anti-CGRP antagonist dy recognizes human CGRP. In some embodiments, the anti-CGRP nist antibody binds to both human a-CGRP and (5-CGRP. In some ments, the anti-CGRP antagonist antibody binds human and rat CGRP. In some embodiments, the anti- CGRP antagonist antibody binds the inal fragment having amino acids 25-37 of CGRP In some embodiments, the anti-CGRP antagonist antibody binds a C- terminal epitope within amino acids 25-37 of CGRP.
The dies useful in the present invention can ass monoclonal antibodies, polyclonal antibodies, antibody fragments (e g.. Fab, Fab\ F(ab,)2, Fv. Fc: etc.), chimeric antibodies, bispecific antibodies, heteroconjugate dies, single chain (ScFv), mutants thereof, fusion proteins comprising an antibody portion (e.g., a domain antibody), humanized antibodies, and any other modified configuration of the immunoglobulin molecule that comprises an antigen recognition site of the required specificity, including glycosylation variants of antibodies, amino acid sequence variants of antibodies, and covalently modified antibodies. The antibodies may be murine, rat, human, or any other origin (including chimeric or humanized antibodies).
In some embodiments, the anti-CGRP antagonist antibody is a monoclonal antibody. In some embodiments, the anti-CGRP antagonist antibody is humanized.
In some embodiments, the antibody is human. In some embodiments, the anti-CGRP antagonist antibody is antibody G1 (as bed herein). In some embodiments, the GRP nist antibody comprises one or more CDR(s) (such as one, two, three, four, five, or, in some embodiments, all six CDRs) of antibody G1 or variants of G1 shown in Table 6. In still other embodiments, the anti-CGRP antagonist antibody comprises the amino acid sequence of the heavy chain le region shown in Figure 5 (SEQ ID NO:1) and the amino acid ce of the light chain le region shown in Figure 5 (SEQ ID NO:2) In still other embodiments, the anti-CGRP antagonist antibody comprises a heavy chain full antibody amino acid sequence shown in SEQ ID NO:11 and a light chain full dy amino acid sequence shown in SEQ ID NO:12.
In some embodiments, the antibody comprises a light chain variable region (LCVR) and a heavy chain variable region (HCVR) selected from the groups consisting of: (a) LCVR 17 (SEQ ID NO:58) and HCVR22 (SEQ ID NO:59); (b) LCVR18 (SEQ ID NO:60) and HCVR23 (SEQ ID NO:61); (c) LCVR 19 (SEQ ID NO:62) and HCVR24 (SEQ ID NO:63); (d) LCVR20 (SEQ ID NO:64) and HCVR25 (SEQ ID NO:65); (e) LCVR21 (SEQ ID NO:66) and HCVR26 (SEQ ID NO:67); (f) LCVR27 (SEQ ID NO:68) and HCVR28 (SEQ ID NO:69): (g) LCVR29 (SEQ ID NO:70) and HCVR30 (SEQ ID N0:71); (h) LCVR31 (SEQ ID NO:72) and HCVR32 (SEQ ID NO:73); (i) LCVR33 (SEQ ID NO:74) and HCVR34 (SEQ ID NO:75); (j) LCVR35 (SEQ ID NO:76) and HCVR36 (SEQ ID NO:77); and (k) LCVR37 (SEQ ID NO:78) and HCVR38 (SEQ ID NO:79).
Sequences of these regions are provided herein. Other examples of anti-CGRP antibodies are described in 11520110305711 (SEQ ID NOs^ 6, 7, 12; 16. 19, 24, 29, 34, and 39), US20120294802, US20120294797 (SEQ ID NOs:51-60), which are hereby incorporated by nce in their entireties. For example, dies with any of the following sequences may be used. io Ab6 Variable region Light chain (humanized) protein sequence (US20120294797) QVLTQSPSSLSASVGDRVTINCQASQSVYHNTYLAWYQQKPGKVPKQUYDASTLA FSGSGSGTDFTLTISSLQPEDVATYYCLGSYDCTNGDCFVFGGGTKVEIK R (SEQ ID NO:80) 16 Ab6 Light chain (humanized) Full length protein sequence (US20120294/97) QVLTQSPSSLSASVGDRVTINCQASQSVYHNTYLAVWQQKPGKVPKQLIYDASTLA SGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCLGSYDCTNGDCFVFGGGTKVEIK RTVAAPSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQES VTEQDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:81) Ab6 Variable region heavy chain ized) protein ce (US20120294797) EVQLVESGGGLVQPGGSLRLSCAVSGIDLSGYYMNWVRQAPGKGLEWVGVIGING ATYYASWAKGRFTISRDNSKTTVYLQMNSLRAEDTAVYFCARGDIWGQGTLVTVS S (SEQ ID NO:82) Ab6 Fleavy chain (humanized) Full length protein sequence - yeast produced (US20120294797) EVQLVESGGGLVQPGGSLRLSCAVSGIDLSGYYMNWVRQAPGKGLEVWG VICING ATYYASWAKGRFTISRDNSKTTVYLQMNSLRAEDTAVYFCARGDIWGQGTLVTVS SASTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPA VLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDARVEPKSCDKTHTCPP CPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSFIEDPEVKFNVWVDGVEV PREEQYASTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAK GQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTP PVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO:83) Ab6 le region Light chain ized) protein sequence CDRI (US20120294797) QASQSVYHNTYLA (SEQ ID NO:84) io Ab6 Variable region Light chain (humanized) protein sequence CDR2 (US20120294797) DASTLAS (SEQ ID NO:85) Ab6 Variable region Light chain (humanized) protein sequence CDR3 (US20120294797) LGSYDCTNGDCFV (SEQ ID NO:86) Ab6 Variable region heavy chain (humanized) protein sequence CDRI (US20120294797) GYYMN (SEQ ID NO:87) Ab6 Variable region heavy chain (humanized) protein ce CDR2 (US20120294797) IGINGATYYASWAKG (SEQ ID NO:88) Ab6 Variable region heavy chain (humanized) protein sequence CDR3 (US20120294797) GDI (SEQ ID NO:89) Light chain variable region protein sequence CDR3 (1)5201103057H) QQGDALPPT (SEQ ID NO:90) Light chain variable region protein ce CDR1 (US20110305711) RASKDISKYL (SEQ ID NO:91) Light chain variable region protein sequence CDR2 (US20110305711) YTSGYSH (SEQ ID NO:92) Heavy chain variable region protein seguence CDR1 (US20110305711) GYTFGNYWMQ (SEQ ID NO:93) io Heavy chain variable region protein seguence CDR2 (US20110305711) AIYEGTGKTVYIQKFAD (SEQ ID NO:94) Heavy chain variable region protein sequence CDR3 (US20110305711) LSDYVSGFGY (SEQ ID NO:95) Light chain le region protein sequence (US20110305711) DIQMTQSPSSLSASVGDRVTITCRASKDISKYLNWYQQKPGKAPKLLIYYTSGYHSG VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGDALPPTFGGGTKVEIK (SEQ ID NO: 96) Heavy chain variable region protein ce (U520110305711) QVQLVQSGAEVKKPGSSVKVSCKASGYTFGNYWMQVWRQAPGQGLEWMGAIYE GTGKTVYIQKFADRVTITADKSTSTAYMELSSLRSEDTAVYYCARLSDYVSGFGYW GQGTTVTVSS (SEQ ID NO:97) Light chain n sequence (US20110305711) DIQMTQSPSSLSASVGDRVTITCRASKDISKYLNWYQQKPGKAPKLLIYYTSGYHSG VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGDALPPTFGGGTKVEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQ\A/KVDNALQSGNSQESVTEQDS KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ ID NO:98) Heavy chain protein sequence (US20110305711) QVQLVQSGAEVKKPGSSVKVSCKASGYTFGNYWMQVWRQAPGQGLEWMGAIYE GTGKTVYIQKFADRVTITADKSTSTAYMELSSLRSEDTAVYYCARLSDYVSGFGYW GQGTTVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPE P VTVSWN S GA LTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTKTYTCNVDHKPSNTKVDKRVESK YGPPCPPCPAPEAAGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQEDPEVQFN W^YVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKGLPS SIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIAVEWESNGQ PENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEALHNHYTQKSL SLSLG (SEQ ID NO:99) In some ments, the antibody comprises a modified nt region, such as a nt region that is immunologically inert bed herein. In some embodiments, the constant region is modified as described in Eur. J. Immunol. (1999) 29:2613-2624; PCI Application No. PCT/GB99/01441; and/or UK Patent Application No. 9809951.8. In other embodiments, the antibody comprises a human heavy chain !gG2 constant region comprising the following mutations: A330P331 to S330S331 (amino acid numbering with reference to the wildtype lgG2 sequence). Eur. J.
Immunol. (1999) 29:2613-2624. In some embodiments, the antibody comprises a constant region of lgG4 sing the following mutations: E233F234L235 to 34A235. In still other embodiments, the constant region is aglycosylated for ed glycosylation. In some embodiments, the constant region is aglycosylated for N-linked ylation by mutating the oligosaccharide attachment residue (such as Asn297) and/or flanking residues that are part of the N-glycosylation ition sequence in the constant region. In some ments, the constant region is aglycosylated for N-linked glycosylation. The constant region may be aglycosylated for N-linked glycosylation enzymatically or by expression in a glycosylation deficient host cell.
The binding affinity (Kd) of an anti-CGRP antagonist antibody to CGRP (such as human a-CGRP) can be about 0.02 to about 200 nM. In some embodiments, the binding affinity is any of about 200 nM, about 100 nM, about 50 nM, about 10 nM, about 1 nM, about 500 pM, about 100 pM, about 60 pM, about 50 pM, about 20 pM, about 15 pM, about 10 pM, about 5 pM, or about 2 pM. In some embodiments, the binding affinity is less than any of about 250 nM. about 200 nM. about 100 nM. about 50 nM; about 10 nM, about 1 nM; about 500 pM, about 100 pM; or about 50 pM.
One way of determining binding affinity of dies to CGRP is by measuring binding affinity of monofunctional Fab fragments of the antibody. To obtain monofunctional Fab fragments, an antibody (for example. IgG) can be d with papain or expressed recombinantly. The affinity of an anti-CGRP Fab fragment of an dy can be determined by surface pi asm on nce (BiacoreSOOO™ surface plasmon resonance (SPR) system, Biacore, INC, Piscataway NJ) equipped with preimmobilized streptavidin sensor chips (SA) using HBS-EP running buffer (0.01 M HEPES, pH 7.4, 0.15 NaCI, 3 mM EDTA. 0.005% v/v tant P20). Biotinylated human CGRP (or any other CGRP) can be diluted into HBS-EP buffer to a tration of less than 0.5 pg/mL and injected across the individual chip channels using variable contact times, to achieve two ranges of antigen density, either 50-200 response units (RU) for detailed kinetic studies or 800-1,000 RU for ing assays, is Regeneration studies have shown that 25 mM NaOH in 25% v/v ethanol effectively removes the bound Fab while keeping the activity of CGRP on the chip for over 200 injections. Typically, serial dilutions (spanning concentrations of 0.1-1 Ox estimated Kd) of purified Fab samples are injected for 1 min at 100 uL/mmute and dissociation times of up to 2 hours are allowed. The concentrations of the Fab proteins are determined by ELISA and/or SDS-PAGE electrophoresis using a Fab of known concentration (as determined by amino acid analysis) as a standard. Kinetic association rates (k0n) and dissociation rates (k0ft) are obtained simultaneously by fitting the data globally to a 1:1 Langmuir binding model (Karlsson, R. Roos, H.
Fagerstam, L. Petersson, B. (1994). Methods Enzymology 6. 99-110) using the BIAevaluation program. Equilibrium dissociation constant (Kd) values are calculated as kotf/kon This protocol is suitable for use in determining binding affinity of an antibody to any CGRP, including human CGRP, CGRP of r mammalian (such as mouse CGRP, rat CGRP, primate CGRP), as well as different forms of CGRP (such as a and p form). g affinity of an antibody is generally measured at 25‘ C, but can also so be measured at 37JC. dies, ing anti-CGRP antagonist antibodies, may be made by any method known in the art. The route and le of immunization of the host animal are generally in keeping with ished and conventional techniques for antibody stimulation and production, as further described herein. General techniques for production of human and mouse antibodies are known in the art and are described herein.
It is contemplated that any ian subject including humans or antibody producing cells therefrom can be manipulated to serve as the basis for production of mammalian, including human, hybridoma cell lines. Typically, the host animal is inoculated intraperitoneally, intramuscularly, orally, subcutaneously, lantar, and/or intradermally with an amount of immunogen, including as described .
Antibodies (e.g., anti-CGRP antagonist antibodies) and ptides derived from antibodies can be identified or characterized using methods known in the art, whereby reduction, amelioration, or neutralization of a CGRP biological activity is detected and/or measured. For example, anti-CGRP antagonist antibody can also be identified by incubating a candidate agent with CGRP and monitoring any one or more of the following characteristics: (a) bind to CGRP; (b) block CGRP from binding to its receptor(s); (c) block or decrease CGRP receptor activation (including cAMP activation); (d) inhibit CGRP ical activity or ream pathways mediated by CGRP signaling function; (e) prevent, ameliorate, or treat any aspect of refractory migraine; (f) increase clearance of CGRP; and (g) inhibit e) CGRP synthesis, production or release. In some embodiments, an anti-CGRP antagonist antibody or polypeptide is identified by incubating a candidate agent with CGRP and monitoring binding and/or attendant reduction or neutralization of a biological activity of CGRP.
The binding assay may be performed with purified CGRP polypeptide(s). or with cells naturally expressing, or transfected to express, CGRP polypeptide(s). In one embodiment, the binding assay is a competitive binding assay, where the ability of a candidate antibody to compete with a known anti-CGRP antagonist for CGRP binding is ted. The assay may be performed in various formats, including the ELISA format. In other embodiments, an anti-CGRP antagonist dy is fied by incubating a candidate agent with CGRP and monitoring binding and attendant inhibition of CGRP receptor activation expressed on the surface of a cell. In some embodiments, an anti-CGRP receptor antibody can be used in any of the s described . For example, GRP receptor dies, as described in US20100172895 and U.S. Patent No. 9,102,731, which are hereby incorporated by reference in their entireties, may be used. Therefore, antibodies with any of the following sequences may be used.
Light chain variable region protein sequence CDR1 (U.S. Patent No. 9.102,731) SGSSSNIGNNYVS (SEQ ID NO:100) Light chain variable region protein sequence CDR2 (U.S. Patent No. 9.102.731) DNNKRPS (SEQ ID NO:101) io Light chain variable region protein sequence CDR3 (U.S. Patent No. 731) GTWDSRLSAW (SEQ ID NO: 102) Heavy chain variable region protein sequence CDR1 (U.S. Patent No. 731) SFGMH (SEQ ID NQ:103) Heavy chain variable region n seguence CDR2 (U.S. Patent No. 9.102.731) VISFDGSIKYSVDSVKG (SEQ ID NO: 104) Heavy chain variable region n sequence CDR3 (U.S. Patent No. 9.102.731) DRLNYYDSSGYYHYKYYGMAV (SEQ ID NO: 105) Light chain variable region protein sequence (U.S. Patent No. 9.102.731) QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRP SGIPDRFSGSKSGTSTTLGITGLQTGDEADYYCGTWDSRLSAWFGGGTKLTVL (SEQ ID NO:106) Heavy chain le region protein seguence (U.S. Patent No. 9,102,731) QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFGMHWVRQAPGKGLEVWAVISFD GSIKYSVDSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCARDRLNYYDSSGYY HYKYYGMAVWGQGTTVTVSS (SEQ ID NO: 107) Light chain n sequence (U.S. Patent No. 9,102./31) MDMRVPAQLLGLLLLWLRGARCQSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNY VSWYQQLPGTAPKLLIYDNNKRPSGIPDRFSGSKSGTSTTLGITGLQTGDEADYYC GTWDSRLSAVVFGGGTKLTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYP G A VTV A WK A DGSPVKAGVETTKPSKQSNNKYAASSYLSLTP EQ WKSH R SYS C Q V THEGSTVEKTVAPTECS (SEQ ID NO: 108) Heavy chain protein sequence (U.S- Patent No. 9,102,731) MDMRVPAQLLGLLLLWLRGARCQVQLVESGGGVVQPGRSLRLSCAASGFTFSSF GMHWVRQAPGKGLEWVAVISFDGSIKYSVDSVKGRFTISRDNSKNTLFLQMNSLR AEDTAVYYCARDRLNYYDSSGYYHYKYYGMAVWGQGTTVTVSSASTKGPSVFPL APCSRSTSESTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSS VVTVPSSNFGTQTYTCNVDHKPSNTKVDKTVERKCCVECPPCPAPPVAGPSVFLF PPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNWYVDGVEVHNAKTKPREEQFNS TFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPAPIEKTISKTKGQPREPQVYTLPPS NQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPMLDSDGSFFLYSK LTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK (SEQ ID NO:109) Following initial identification, the ty of a candidate antibody (e g., anti- CGRP antagonist dy) can be further confirmed and refined by ays, known to test the targeted biological activities. Alternatively, bioassays can be used to screen candidates directly. Some of the methods for identifying and characterizing anti- CGRP antagonist antibody or polypeptide are described in detail in the es.
Antibodies, including anti-CGRP antagonist antibodies, may be characterized using methods well known in the art. For example, one method is to identify the epitope to which it binds, or ‘‘epitope mapping.” There are many methods known in the art for mapping and characterizing the location of es on proteins, including solving the crystal structure of an antibody-antigen complex, competition assays, gene fragment expression assays, and tic peptide-based assays, as described, for example, in Chapter 11 of Harlow and Lane, Using Antibodies, a Laboratory Manual, Cold Spring Harbor Laboratory Press. Cold Spring Harbor, New York, 1999.
Yet another method which can be used to characterize an antibody, ing an anti-CGRP antagonist antibody, is to use competition assays with other antibodies known to bind to the same antigen, i.e., various fragments on CGRP, to determine if the anti-CGRP antagonist antibody binds to the same epitope as other antibodies.
Competition assays are well known to those of skill in the art.
C. Antibody G1 and related antibodies, polypeptides, polynucleotides, vectors and host cells This invention encompasses compositions, ing pharmaceutical compositions, comprising antibody G1 and its variants shown in Table 6 or polypeptide derived from antibody G1 and its variants shown in Table 6; and polynucleotides comprising sequences encoding G1 and its variants or the polypeptide. In some embodiments, compositions comprise one or more dies or polypeptides (which may or may not be an dy) that bind to CGRP, and/or one or more polynucleotides comprising sequences encoding one or more antibodies or polypeptides that bind to CGRP. These compositions may r comprise suitable excipients, such as ceutically acceptable ents including buffers, which are well known in the art.
In some embodiments, the anti-CGRP antagonist antibodies and polypeptides of the invention are terized by any (one or more) of the following characteristics, (a) bind to CGRP; (b) block CGRP from binding to its receptor(s); (c) block or decrease CGRP receptor tion ding cAMP activation); (d) inhibit CGRP biological activity or downstream pathways mediated by CGRP signaling on; (e) prevent, ameliorate, or treat any aspect of refractory migraine; (f) increase clearance of CGRP; and (g) inhibit (reduce) CGRP synthesis, production or release.
In some embodiments, the invention provides any of the following, or compositions (including pharmaceutical compositions) comprising any of the following: (a) antibody G1 or its variants shown in Table 6; (b) a fragment or a region of antibody G1 or its variants shown in Table 6; (c) a light chain of antibody G1 or its variants shown in Table 6; (d) a heavy chain of antibody G1 or its variants shown in Table 6: (e) one or more variable region(s) from a light chain and/or a heavy chain of antibody G1 or its variants shown in Table 6; (f) one or more CDR(s) (one, two. three, four, five or six CDRs) of dy G1 or its variants shown in Table 6; (g) CDR H3 from the heavy chain of dy G1; (h) CDR L3 from the light chain of antibody G1 or its variants shown in Table 6: (i) three CDRs from the light chain of antibody G1 or its variants shown in Table 6; (j) three CDRs from the heavy chain of antibody G1 or its variants shown in Table 6; (k) three CDRs from the light chain and three CDRs from the heavy chain: of antibody G1 or its variants shown in Table 6; and (I) an antibody comprising any one of (b) through (k). In some embodiments, the invention also provides polypeptides comprising any one or more of the above.
The CDR ns of dy G1 (including Chothia and Kabat CDRs) are diagrammatically depicted in Figure 5. ination of CDR s is well within the skill of the art. It is understood that in some embodiments, CDRs can be a combination of the Kabat and Chothia CDR (also termed "combined CDRs" or "extended CDRs"). In some embodiments, the CDRs are the Kabat CDRs. In other embodiments, the CDRs are the Chothia CDRs. In other words, in embodiments with more than one CDR, the CDRs may be any of Kabat, Chothia, combination CDRs, or combinations thereof.
In some embodiments, the invention provides a polypeptide (which may or may not be an antibody) which comprises at least one CDR, at least two, at least three, or at least four, at least five, or all six CDRs that are substantially identical to at least one CDR, at least two, at least three, at least four, at least five or all six CDRs of G1 or its variants shown in Table 6. Other embodiments include antibodies which have at least two, three, four, five, or six CDR(s) that are substantially identical to at least two, three, four, five or six CDRs of G1 or derived from G1. In some embodiments, the at least one, two, three, four, five, or six CDR(s) are at least about 85%, 86%, 87%, 88%, 89%, 90%, 95%, 96%, 97%, 98%, or 99% identical to at least one, two, three, four, five or six CDRs of G1 or its ts shown in Table 6. It is understood that, for purposes of this ion, binding specificity and/or overall activity is generally retained, although the extent of activity may vary compared to G1 or its variants shown in Table 6 (may be greater or lesser).
In some embodiments, the ion also provides a polypeptide (which may or may not be an dy) which comprises an amino acid sequence of G1 or its variants shown in Table 6 that has any of the following: at least 5 contiguous amino acids, at so least 8 contiguous amino acids, at least about 10 contiguous amino acids, at least about 15 contiguous amino acids, at least about 20 contiguous amino acids, at least about 25 contiguous amino acids, at least about 30 contiguous amino acids of a sequence of G1 or its variants shown in Table 6, wherein at least 3 of the amino acids are from a variable region of G1 (Figure 5) or its variants shown in Table 6. In one embodiment, the le region is from a light chain of G1. In another embodiment, the variable region is from a heavy chain of G1. An exemplary ptide has contiguous amino acid (lengths described above) from both the heavy and light chain le s of G1. In another ment, the 5 (or more) contiguous amino acids are from a complementarity determining region (CDR) of G1 shown in Figure 5.
In some embodiments, the contiguous amino acids are from a variable region of G1.
The binding affinity (Kd) of an GRP antagonist antibody and polypeptide to CGRP (such as human a-CGRP) can be about 0.06 to about 200 nM. In some ments, the binding ty is any of about 200 nM, 100 nM, about 50 nM, about nM, about 1 nM, about 500 pM, about 100 pM, about 60 pM, about 50 pM, about pM, about 15 pM, about 10 pM, about 5 pM, or about2 pM. In some embodiments, the binding affinity is less than any of about 250 nM, about 200 nM. about 100 nM: about 50 nM. about 10 nM, about 1 nM. about 500 pM, about 100 pM, or about 50 pM.
The antibodies provided herein can be made by procedures known in the art.
The polypeptides can be produced by proteolytic or other degradation of the antibodies, by recombinant methods (i.e., single or fusion polypeptides) as bed above or by chemical synthesis. Polypeptides of the antibodies, especially r polypeptides up to about 50 amino acids, are conveniently made by chemical synthesis. Methods of chemical synthesis are known in the art and are commercially available. For example, an antibody could be produced by an automated polypeptide synthesizer employing the solid phase method. See also, U.S. Patent Nos. 5,807,715; 4,816,567; and 6,331,415.
In another alternative, the antibodies can be made recombinantly using procedures that are well known in the art. In one embodiment, a polynucleotide comprises a sequence encoding the heavy chain and/or the light chain variable regions of antibody G1 shown in SEQ ID NO:9 and SEQ ID NO:10. In another embodiment, the polynucleotide comprising the nucleotide sequence shown in SEQ ID NO:9 and SEQ ID NO:10 are cloned into one or more vectors for expression or propagation. The sequence encoding the antibody of interest may be maintained in a vector in a host cell and the host cell can then be expanded and frozen for future use.
Vectors (including expression vectors) and host cells are further described herein.
In some embodiments, the ion also encompasses single chain variable region fragments (ilscFv::) of antibodies of this invention, such as G1. Single chain variable region fragments are made by linking light and/or heavy chain variable s by using a short linking peptide. Bird et al. (1988) Science 242:423-426. An example of a linking e is (GGGGS)3 (SEQ ID NO:57) which bridges approximately 3.5 nm between the carboxy terminus of one variable region and the amino terminus of the other variable region. Linkers of other sequences have been ed and used.
Bird et al. . Linkers can in turn be modified for additional functions, such as attachment of drugs or attachment to solid supports. The single chain ts can be produced either recombinantly or synthetically. For synthetic production of scFv: an automated synthesizer can be used. For recombinant production of scFv; a suitable plasmid containing polynucleotide that encodes the scFv can be uced into a suitable host cell, either eukaryotic, such as yeast plant, insect or mammalian cells, or prokaryotic, such as E. coli. Polynucleotides encoding the scFv of interest can be made by routine manipulations such as ligation of polynucleotides. The resultant scFv can be isolated using standard n purification techniques known in the art.
Other forms of single chain antibodies, such as diabodies are also encompassed. Diabodies are bivalent, bispecific dies in which VH and VL domains are expressed on a single ptide chain, but using a linker that is too short to allow for g between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g.. Holliger, P., et al. (1993) Proc. Natl. Acad Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123).
For example, ific antibodies, monoclonal antibodies that have binding specificities for at least two different antigens, can be prepared using the antibodies disclosed herein. Methods for making bispecific antibodies are known in the art (see, e.g., Suresh et al., 1986, Methods in Enzymology 121:210). Traditionally, the recombinant production of bispecific antibodies was based on the coexpression of two globulin heavy chain-light chain pairs, with the two heavy chains having different specificities (Millstein and Cuello, 1983, Nature 305. 537-539).
According to one approach to making bispecific antibodies, antibody variable domains with the desired binding specificities (antibody-antigen combining sites) are fused to immunoglobulin constant domain sequences. The fusion preferably is with an globulin heavy chain constant domain, comprising at least part of the hinge, CH2 and CHS regions. It is preferred to have the first heavy chain constant region (CH1), containing the site necessary for light chain binding, t in at least one of the fusions. DMAs encoding the immunoglobulin heavy chain fusions and, if d, the immunoglobulin light chain, are inserted into separate expression vectors, and are cotransfected into a suitable host organism. This es for great flexibility in adjusting the mutual proportions of the three polypeptide fragments in embodiments when unequal ratios of the three polypeptide chains used in the construction provide the m yields. It is. however, possible to insert the coding sequences for two or all three polypeptide chains in one expression vector when the expression of at least two polypeptide chains in equal ratios results in high yields or when the ratios are of no particular significance.
In one approach, the ific antibodies are composed of a hybrid immunoglobulin heavy chain with a first binding specificity in one arm, and a hybrid immunoglobulin heavy chain-light chain pair (providing a second binding specificity) in the other arm. This asymmetric structure, with an immunoglobulin light chain in only one half of the bispecific molecule, facilitates the separation of the desired bispecific compound from ed immunoglobulin chain combinations. This approach is described in PCT Publication No. WO 94/04690.
Heteroconjugate dies, sing two covalently joined dies, are also within the scope of the invention. Such antibodies have been used to target immune system cells to unwanted cells (U S. Patent No. 980), and for treatment of HIV infection (PCT application publication Nos. WO 91/00360 and WO 92/200373; EP 03089). Heteroconjugate antibodies may be made using any convenient cross- linking methods. Suitable cross-linking agents and techniques are well known in the art. and are described in U.S. Patent No. 4,676.980.
Chimeric or hybrid antibodies also may be prepared in vitro using known methods of synthetic protein chemistry, ing those involving cross-linking agents.
For example, immunotoxins may be constructed using a disulfide exchange reaction so or by forming a thioether bond. Examples of suitable reagents for this purpose include iminothiolate and methylmercaptobutyrimidate.
Humanized antibody comprising one or more CDRs of dy G1 or its variants shown in Table 6, or one or more CDRs derived from antibody G1 or its variants shown in Table 6 can be made using any methods known in the art. For example: four general steps may be used to humanize a onal antibody.
In some embodiments: the invention encompasses modifications to antibody G1 or its ts shown in Table 6, including functionally equivalent antibodies which do not significantly affect their properties and variants which have enhanced or decreased activity and/or affinity. For example, the amino acid sequence of antibody G1 or its variants shown in Table 6 may be mutated to obtain an antibody with the desired binding ty to CGRP. Modification of polypeptides is routine practice in the art and need not be described in detail herein. Modification of polypeptides is exemplified in the Examples. Examples of modified polypeptides include polypeptides with conservative substitutions of amino acid residues, one or more deletions or additions of amino acids which do not icantly deleteriously change the functional activity, or use of al analogs.
Amino acid sequence insertions include amino- and/or carboxyl-terminal fusions g in length from one e to polypeptides containing a hundred or more residues, as well as intrasequence insertions of single or multiple amino acid residues. Examples of terminal insertions include an antibody with an inal methionyl residue or the antibody fused to an epitope tag. Other insertional ts of the antibody molecule include the fusion to the N- or C-terminus of the antibody of an enzyme or a polypeptide which increases the serum half-life of the dy.
Substitution variants have at least one amino acid residue in the antibody molecule removed and a different e inserted in its place. The sites of greatest interest for substitutional mutagenesis include the hypervariable regions, but FR alterations are also contemplated. vative substitutions are shown in Table 1 under the heading of "conservative substitutions". If such substitutions result in a change in biological activity, then more substantial changes, denominated "exemplary substitutions" in Table 1, or as r described below in reference to amino acid classes, may be introduced and the products screened.
Table 1: Amino Acid Substitutions Orig nal Residue Conservative Substitutions Exemplary Substitutions Ala (A) Val Val; Leu; lie Arg (R) Lys Lys Gin; Asn Asn (N) Gin Gin His; Asp. Lys; Arg Asp (D) Glu Glu Asn Cys (C) Ser Ser Ala Gin (Q) Asn Asn; Glu Glu (E) Asp Asp; Gin Gly (G) Ala Ala His (H) Arg Asn; Gin; Lys; Arg lie (I) Leu Leu; Val; Met; Ala Phe; Node u cine Leu (L) Me Norleucine; lie; Val; Met; Ala: Lys (K) Arg Arg Gin; Asn Met (M) Leu Leu; Phe; Me Phe (F) Tyr Leu; Val; lie; Ala Tyr Pro (P) Ala Ala Ser (S) Thr Thr Thr (T) Ser Ser Trp (W) Tyr Tyr; Phe Tyr (Y) Phe Trp Phe; Thr; Ser Val (V) Leu Me; Leu; Met; Phe Ala; Norleucine Substantial modifications in the biological ties of the dy are accomplished by selecting substitutions that differ significantly in their effect on maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for example: as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain.
Naturally occurring residues are divided into groups based on common side-chain properties; (1) Non-polar; Norleucine, Met Ala, Val, Leu: lie; (2) Polar without : Cys, Ser: Thr. Asn, Gin; (3) Acidic (negatively charged): Asp, Glu; (4) Basic (positively charged): Ly$r Arg; (5) es that influence chain orientation: Gly: Pro; and (6) Aromatic: Trp: Tyr, Phe, His.
Non-conservative substitutions are made by exchanging a member of one of these classes for another class.
Any cysteine residue not involved in maintaining the proper conformation of the antibody also may be substituted, generally with serine, to improve the ive stability of the molecule and prevent aberrant cross-linking. Conversely, cysteine bond(s) may be added to the dy to improve its stability, particularly where the antibody is an antibody fragment such as an Fv fragment.
Amino acid modifications can range from changing or modifying one or more amino acids to complete gn of a region, such as the variable region. s in the variable region can alter binding ty and/or specificity. In some embodiments, no more than one to five consen/ative amino acid substitutions are made within a CDR domain. In other embodiments, no more than one to three conservative amino acid substitutions are made within a CDR domain. In still other embodiments, the CDR domain is CDR H3 and/or CDR L3.
Modifications also include glycosylated and nonglycosylated ptides, as well as polypeptides with other post-translational modifications, such as, for example, glycosylation with different sugars, acetylation, and orylation. Antibodies are glycosylated at conserved positions in their constant regions (Jefferis and Lund, 1997, Chem. Immunol. -128; Wright and Morrison, 1997, H 15:26-32). The oligosaccharide side chains of the immunoglobulins affect the protein’s function (Boyd et al., 1996, Mol. Immunol. 32:1311-1318; Wttwe and Howard, 1990, Biochem. 29:4175-4180) and the intramolecular interaction between portions of the glycoprotein, which can affect the conformation and ted three-dimensional surface of the glycoprotein (Hefferis and Lund, supra; Wyss and Wagner, 1996, Current Opin.
Biotech. 7:409-416). Oligosaccharides may also serve to target a given glycoprotein to certain molecules based upon specific recognition structures. Glycosylation of antibodies has also been reported to affect antibody-dependent cellular cytotoxicity (ADCC). In ular, CHO cells with tetracycline-regulated expression of (3(1,4)-N- acetylglucosaminyltransferase III (GnTIII), a glycosyltransferase catalyzing formation of ing GIcNAc, was reported to have ed ADCC activity (Umana et aL 1999: Mature Biotech. 17:176-180).
Glycosylation of antibodies is lly either N-linked or O-linked. N-linked refers to the attachment of the carbohydrate moiety to the side chain of an asparagine residue. The tripeptide sequences asparagine-X-serine: asparagine-X-threonine: and asparagine-X-cysteine, where X is any amino acid except proline, are the recognition sequences for enzymatic attachment of the ydrate moiety to the asparagine side chain. Thus, the presence of either of these tripeptide sequences in a ptide creates a potential glycosylation site. O-linked glycosylation refers to the attachment of one of the sugars N-acetylgalactosamine, galactose, or xylose to a hydroxyamino acid, most commonly serine or threonine, although 5-hydroxyproline or 5- hydroxylysine may also be used.
Addition of glycosylation sites to the antibody is conveniently accomplished by altering the amino acid sequence such that it contains one or more of the above- described tripeptide sequences (for N-linked glycosylation sites). The alteration may also be made by the on of, or substitution by, one or more serine or threonine residues to the sequence of the original antibody (for O-linked glycosylation sites).
Other methods of modification include using coupling techniques known in the art. including, but not limited to, enzymatic means, oxidative substitution and chelation.
Modifications can be used, for e, for attachment of labels for immunoassay.
Modified G1 polypeptides can be made using established procedures in the art and can be screened using standard assays known in the art, some of which are bed below and in the es.
In some embodiments of the invention, the antibody comprises a modified constant region, such as a constant region that is immunologically inert or partially inert, e g., does not r complement mediated lysis, does not stimulate dy- dependent cell mediated cytotoxicity (ADCC), or does not activate microglia; or have reduced activities (compared to the fied antibody) in any one or more of the following: triggering complement mediated lysis, stimulating antibody-dependent cell mediated cytotoxicity (ADCC), or activating microglia. Different modifications of the constant region may be used to achieve optimal level and/or combination of effector functions. See, for example, Morgan et al., logy 86:319-324 (1995); Lund et al., J. Immunology 157:4963-9 157:4963-4969 : Idusogie et al., J. Immunology 164:4178-4184 (2000); Tao etal., J. Immunology 143: 2595-2601 (1989); and Jefferis et aL Immunological s 163:59-76 (1998). In some embodiments: the constant region is modified as described in Bur. J. Immunol. (1999) 29:2613-2624; PCI Application No. PCT/GB99/01441; and/or UK Patent ation No. 9809951.8. In other embodiments, the dy comprises a human heavy chain lgG2 constant region comprising the following mutations: A330P331 to S330S331 (amino acid numbering with reference to the wildtype lgG2 sequence). Bur. J. Immunol. (1999) 29:2613-2624. In still other embodiments, the constant region is aglycosylated for N- linked ylation. In some embodiments, the constant region is aglycosylated for N-linked glycosylation by mutating the glycosylated amino acid e or flanking residues that are part of the N-glycosylation recognition sequence in the constant region. For example, osylation site N297 may be mutated to A, Q, K, or H. See, Tao et al., J. Immunology 143: 601 (1989); and Jefferis et al., Immunological Reviews 163:59-76 . In some embodiments, the constant region is aglycosylated for ed glycosylation. The nt region may be sylated for N-linked glycosylation enzymatically (such as removing carbohydrate by enzyme PNGase), or by expression in a glycosylation deficient host cell.
Other antibody modifications include antibodies that have been modified as described in PCT Publication No. WO 99/58572, published November 18, 1999.
These antibodies comprise, in addition to a binding domain directed at the target molecule, an effector domain having an amino acid sequence substantially homologous to all or part of a constant domain of a human immunoglobulin heavy chain. These dies are capable of binding the target molecule without triggering significant complement dependent lysis, or cell-mediated destruction of the target. In some embodiments, the effector domain is capable of specifically binding FcRn and/or FcyRIlb. These are typically based on chimeric domains derived from two or more human immunoglobulin heavy chain Ch2 domains. Antibodies modified in this manner are particularly suitable for use in chronic antibody therapy, to avoid inflammatory and other adverse reactions to conventional antibody y.
In some embodiments, the invention includes affinity matured embodiments.
For example, affinity matured antibodies can be produced by procedures known in the art (Marks et al., 1992, hnology, 10:779-783; Barbas et al., 1994, Proc Nat.
Acad. Sci, USA 91:3809-3813; Schier et al.. 1995, Gene, 169:147-155; Yelton et al., 1995r J. l., 94-2004; Jackson et al., 1995r J. Immunol., 154(7):3310-9; Hawkins et al, 1992, J. Mol. Biol., 226:889-896; and W02004/058184).
In some embodiments, the invention also encompasses fusion proteins comprising one or more fragments or regions from the antibodies (such as G1) or polypeptides of this invention. In one embodiment, a fusion polypeptide is provided that comprises at least 10 contiguous amino acids of the variable light chain region shown in SEQ ID NO:2 (Figure 5) and/or at least 10 amino acids of the variable heavy chain region shown in SEQ ID NO:1 (Figure 5). In other embodiments, a fusion polypeptide is provided that ses at least about 10, at least about 15, at least about 20, at least about 25, or at least about 30 contiguous amino acids of the variable light chain region shown in SEQ ID NO:2 (Figure 5) and/or at least about 10, at least about 15, at least about 20, at least about 25, or at least about 30 contiguous amino acids of the variable heavy chain region shown in SEQ ID NO:1 (Figure 5). In another embodiment, the fusion polypeptide ses a light chain variable region and/or a heavy chain variable region of G1, as shown in SEQ ID NO:2 and SEQ ID NO:1 of Figure 5. In another embodiment, the fusion polypeptide comprises one or more CDR(s) of G1. In still other ments, the fusion polypeptide comprises CDR H3 and/or CDR L3 of antibody G1. For purposes of this invention, an G1 fusion protein contains one or more G1 antibodies and another amino acid sequence to which it is not attached in the native molecule, for example, a heterologous sequence or a homologous sequence from another region. ary heterologous sequences include, but are not limited to a "tag" such as a FLAG tag or a 6His tag (SEQ ID NO:56).
Tags are well known in the art.
In some embodiments, the invention also provides compositions (including pharmaceutical compositions) and kits sing antibody G1, and/or any or all of the antibodies or ptides described herein.
Preferably, the ntage of sequence identity" is determined by comparing two optimally aligned sequences over a window of comparison of at least 20 positions, wherein the portion of the polynucleotide or polypeptide sequence in the comparison so window may comprise ons or deletions (i.e., gaps) of 20 percent or less, usually to 15 percent, or 10 to 12 percent, as ed to the reference sequences (which does not comprise additions or deletions) for optimal alignment of the two sequences.
The percentage is calculated by determining the number of positions at which the identical c acid bases or amino acid residue occurs in both sequences to yield the number of matched positions: dividing the number of matched positions by the total number of positions in the reference sequence (i.e., the window size) and multiplying the results by 100 to yield the percentage of sequence identity.
Variants may also, or alternatively, be substantially homologous to a native gene, or a portion or ment thereof. Such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA sequence ng a native antibody (or a mentary sequence).
D. Compositions In some embodiments, compositions used in a method of the invention comprise an effective amount of an antibody (e.g.s anti-CGRP antagonist antibody, monoclonal antibody that modulates the CGRP pathway) or an antibody derived ptide described herein. Examples of such compositions, as well as how to formulate, are also bed in an r section and below. In one ment, the composition further comprises a CGRP antagonist. In some embodiments, the composition comprises one or more monoclonal antibodies that modulate the CGRP pathway. In some embodiments, the composition comprises one or more anti-CGRP nist antibodies. In some embodiments, the anti-CGRP antagonist antibody recognizes human CGRP. In some embodiments, the anti-CGRP antagonist antibody is humanized. In some embodiments, the anti-CGRP antagonist antibody comprises a nt region that does not trigger an unwanted or undesirable immune response, such as antibody-mediated lysis or ADCC. In some embodiments, the anti-CGRP antagonist antibody comprises one or more CDR(s) of antibody G1 (such as one, two, three, four, five, or, in some embodiments, all six CDRs from G1). In some embodiments, the anti-CGRP antagonist antibody is human.
It is tood that the compositions can comprise more than one antibody (e.g., more than one anti-CGRP antagonist antibody — a mixture of anti-CGRP nist dies that recognize different epitopes of CGRP). Other exemplary so compositions comprise more than one GRP antagonist antibodies that recognize the same epitope(s), or different species of anti-CGRP antagonist antibodies that bind to different epitopes of CGRP.
A composition can further se pharmaceutically acceptable carriers, ents, or stabilizers (Remington: The Science and practice of Pharmacy 20th Ed. (2000) Lippincott Williams and Wilkins, Ed. K. E. Hoover). Acceptable carriers, excipients, or stabilizers are nontoxic to recipients at the dosages and concentrations employed. A therapeutic formulation of an antibody may comprise one or more pharmaceutically able carriers, ents or stabilizes with miting examples of such species that include buffers such as phosphate, citrate, and other organic acids; salts such as sodium chloride; antioxidants including ascorbic acid and methionine; preservatives (such as octadecyldimethylbenzyl ammonium chloride; hexamethonium chloride: benzalkonium chloride, benzethonium chloride; phenol, butyl or benzyl alcohol; alkyl parabens, such as methyl or propyl paraben; catechol; resorcinol; cyclohexanol; 3-pentanol; and m-cresol); low molecular weight (less than about 10 residues) polypeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids (e.g., at concentrations of 0.1 mM to 100 mM, 0.1 mM to 1 mM: 0.01 mM to 50 mM, 1 mM to 50 mM, 1 mM to 30 mM. 1 mM to 20 mM, 10 mM to 25 mM) such as glycine, glutamine, methionine, asparagine, histidine, arginine, or lysine; monosaccharides, disaccharides, and other carbohydrates including glucose, mannose, or ns; chelating agents (e g., at concentrations of 0.001 mg/mL to 1 mg/mL, 0.001 mg/mL to 1 mg/mL, 0.001 mg/mL to 0.1 mg/mL, 0.001 mg/mL to 0.01 mg/mL) such as EDTA (e.g., disodium EDTA dihydrate); sugars (e.g., at trations of 1 mg/mL to 500 mg/mL, 10 mg/mL to 200 mg/mL, 10 mg/mL to 100 mg/mL, 50 mg/mL to 150 mg/mL) such as sucrose, mannitol, trehalose or sorbitol; salt-forming counter-ions such as sodium; metal complexes (e.g., Zn-protein xes); and/or non-ionic surfactants (e.g., at concentrations of 0.01 mg/mL to 10 mg/mL, 0.01 mg/mL to 1 mg/mL, 0.1 mg/mL to 1 mg/mL, 0.01 mg/mL to 0.5 mg/mL) such as TWEEN M (e.g., polysorbate (e.g., polysorbate 20, polysorbate40, polysorbate 60, rbate 80)), PLURONICS™ or polyethylene glycol (PEG). Pharmaceutically acceptable ents are further described herein.
An antibody (e.g., an anti-CGRP antagonist antibody) and compositions thereof can also be used in conjunction with other agents that serve to enhance and/or complement the effectiveness of the agents.
E. Kits In one aspect, the invention also provides kits for use in the instant methods.
Kits can include one or more containers comprising an antibody described herein (e.g.; an anti-CGRP antagonist antibody (such as a humanized antibody)) or polypeptide described herein and instructions for use in accordance with any of the methods described herein. Generally, these instructions comprise a description of administration of the dy to treat, ameliorate or prevent refractory migraine according to any of the methods described herein. The kit may further comprise a description of selecting an individual suitable for treatment based on identifying whether that individual has refractory migraine or whether the individual is at risk of having refractory migraine. In still other embodiments, the instructions comprise a description of administering an antibody (e.g.; anti-CGRP antagonist antibody) to an individual at risk of having tory migraine.
In some embodiments, the dy is a humanized antibody. In some embodiments, the antibody is human. In other embodiments, the dy is a monoclonal antibody. In some embodiments, the antibody comprises one or more CDR(s) of dy G1 (such as one, two, three, four, five, or, in some embodiments, all six CDRs from G1).
The instructions relating to the use of an antibody (e.g., anti-CGRP antagonist antibody) generally include ation as to dosage, dosing schedule, and route of administration for the intended treatment. The containers may be unit doses, bulk es (e g., multi-dose packages) or sub-unit doses. Instructions supplied in the kits are lly n instructions on a label or package insert (e g., a paper sheet included in the kit), but machine-readable instructions (e.g., instructions d on a ic or optical storage disk) are also acceptable.
The label or package insert indicates that the composition is used for treating, ameliorating and/or preventing migraine in a t having refractory migraine.
Instructions may be ed for practicing any of the methods described herein.
The kits of this invention are in le packaging. Suitable packaging so includes, but is not limited to, vials, bottles, jars, flexible packaging (e.g., sealed Mylar or plastic bags), and the like. Also contemplated are packages for use in combination with a specific device, such as an inhaler, nasal administration device (e.g., an atomizer) or an infusion device such as a minipump. A kit may have a sterile access port (for example the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). The container may also have a sterile access port (for e the container may be an intravenous solution bag or a vial having a stopper pierceable by a hypodermic injection needle). At least one active agent in the composition is an anti-CGRP antagonist antibody and/or a monoclonal antibody that modulates the CGRP pathway. The container may further se a second pharmaceutically active agent.
Kits may optionally provide additional components such as buffers and interpretive information. Normally, the kit comprises a container and a label or package (s) on or associated with the container.
Further aspects and ments of the present invention are set out in the following numbered paragraphs: 1. A method of treating a refractory migraine in a subject the method comprising: selecting a subject who does not respond favorably to a migraine treatment selected from the group consisting of mate; carbamazepine, divalproex sodium, sodium valproate, flunarizine, pizotifen, amitriptyline, axine. nortriptyline, duloxetine, atenolol, nadolol, metoprolol, propranolol, timolol, and onabotulinumtoxinA; and administering to the subject a eutically effective amount of a monoclonal antibody that modulates the calcitonin gene-related peptide (CGRP) pathway. 2. The method of paragraph 1, n the subject does not respond favorably to the ne treatment after about three months and/or develops adverse side effects. 3. The method of paragraph 1, wherein the monoclonal antibody is administered to the t intravenously or subcutaneously. 4. The method of paragraph 1, wherein the monoclonal antibody is administered at a dose of about 675 mg. 5. The method of paragraph 4, wherein the monoclonal antibody is administered at a dose of about 225 mg in three separate injections. 6. The method of paragraph 1, wherein the monoclonal antibody is administered at a dose of about 675 mg followed by subsequent doses of about 225 mg at one month intervals. 7. The method of paragraph 1, wherein the monoclonal antibody is stered at a dose of about 675 mg followed by five uent doses of about 225 mg at one month intervals. 8. The method of paragraph 1, wherein the administering comprises administering the antibody to the subject from a pre-filled syringe, pre-filled syringe so with a needle safety device, injection pen, or auto-injector sing a dose of the monoclonal antibody. 9. The method of paragraph 1, wherein the monoclonal antibody is administered as a formulation comprising the antibody at a concentration of at least about 150 mg/mL.
. The method of paragraph 1, wherein the monoclonal antibody is administered in a volume of less than 2 ml_. 11. The method of paragraph 1, wherein the monoclonal antibody is an anti CGRP antagonist antibody. 12. The method of paragraph 1, wherein the monoclonal antibody is human or humanized. 13. The method of paragraph 1, wherein the monoclonal antibody is a humanized anti-CGRP antagonist dy. 14. The method of aph 1, wherein the monoclonal antibody comprises a CDR HI as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID NO:5; a CDR LI as set forth in SEQ ID NO:6; a CDR L2 as set forth in SEQ ID NO:7; and a CDR L3 as set forth in SEQ ID NO:8.
. The method of paragraph 1, wherein the monoclonal dy is an lgG1. lgG2, lgG3: or lgG4 antibody. 16. The method of paragraph 1, wherein the subject is human. 17. The method of aph 1, comprising administering to the subject a second agent simultaneously or sequentially with the monoclonal antibody. 18. The method of paragraph 17, wherein monthly use of the second agent by the subject is decreased by at least 15% after stering the monoclonal antibody. 19. A composition for use in accordance with any of the preceding paragraphs The following Examples are provided to rate but not limit the invention.
It is tood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or s in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application. All publications, patents, and patent ations cited herein are hereby incorporated by reference in their entirety for all purposes to the same extent as if each individual ation, patent or patent ation were specifically and individually indicated to be so incorporated by reference.
Examples Example 1; Generation and characterization of monoclonal antibodies directed against CGRP Generation of GRP antibodies. To generate anti-CGRP antibodies that have cross-species reactivity for rat and human CGRP, mice were immunized with -100 pg of human a-CGRP or (3-CGRP ated to KLH in adjuvant (50 pi per footpad, 100 pi total per mouse) at various intervals. Immunization was generally performed as described in Geerligs HJ etal., 1989, J. Immunol. Methods 124:95-102; Kenney JS et al., 1989, J. Immunol. Methods 7-166; and Wicher K etal., 1989, Int. Arch. Allergy Appl. Immunol. 89:128-135. Mice were first immunized with 50 pg of human a-CGRP or (3-CGRP ated to KLH in CFA (complete Freund's adjuvant).
After 21 days, mice were secondly zed with 25 pg of human (3-CGRP (for mice first immunized with human a-CGRP) or a-CGRP (for mice first immunized with human (3-CGRP) conjugated to KLH in I FA (incomplete Freund's adjuvant). Twenty-three days later after the second immunization, third immunization was performed with 25 pg of rat a-CGRP conjugated to KLH in IFA. Ten days later, dy titers were tested using ELISA. Forth immunization was performed with 25 pg of the peptide (rat a- LH) in IFA 34 days after the third immunization. Final booster was performed with 100 pg soluble peptide (rat a-CGRP) 32 days after the forth immunization.
Splenocytes were obtained from the immunized mouse and fused with NSO myeloma cells at a ratio of 10:1. with polyethylene glycol 1500. The hybrids were plated out into 96-well plates in DM EM containing 20% horse serum and 2-oxaloacetate/pyruvate/insulin (Sigma), and hypoxanthine/aminopterin/thymidine selection was begun. On day 8, 100 pi of DM EM containing 20% horse serum was added to all the wells. Supernatants of the hybrids were screened by using dy capture immunoassay. Determination of antibody class was done with class-specific so second antibodies.
A panel of monoclonal antibody-producing cell lines was selected based on their binding to human and rat CGRP for further characterization. These antibodies and characteristics are shown below in Tables 2 and 3. cation and Fab fragment preparation. Monoclonal dies selected for further characterization were purified from supernatants of hybridoma cultures using protein A affinity chromatography. The atants were equilibrated to pH 8. The supernatants were then loaded to the protein A column MabSelect (Amersham Biosciences # 1702) equilibrated with PBS to pH 8. The column was washed with 5 column volumes of PBS: pH 8. The antibodies were eluted with 50 mM citrate- phosphate buffer, pH 3. The eluted antibodies were neutralized with 1 M Phosphate Buffer, pH 8. The ed antibodies were dialyzed with PBS, pH 7.4. The antibody concentrations were determined by SDS-PAGE, using a murine monoclonal antibody standard curve.
Fabs were prepared by papain proteolysis of the full antibodies using Immunopure Fab kit (Pierce # 44885) and purified by flow through protein A chromatography following manufacturer instructions. Concentrations were determined by ELISA and/or SDS-PAGE electrophoresis using a standard Fab of known concentration mined by amino acid analysis), and by A280 using 1OD=0.6 mg/ml (or theoretical equivalent based on the amino acid sequence).
Affinity ination of the Fabs. Affinities of the anti-CGRP monoclonal dies were ined at either 25C,C or 37CC using the BIACORE3000™ surface plasmon resonance (SPR) system (Biacore, INC, Piscataway NJ) with the manufacture's own running buffer. HBS-EP (10 mM HEPES pH 7.4, 150 mM NaCL 3 mM EDTA; 0.005% v/v polysorbate P20). Affinity was determined by capturing N-terminally biotinylated CGRP peptides (custom ordered from GenScript Corporation, New Jersey or Global Peptide Services, do) via pre-immobilized streptavidin on SA chip and measuring binding kinetics of antibody Fab titrated across the CGRP surface. Biotinylated CGRP was diluted into HBS-EP and injected over the chip at a tration of less than 0.001 mg/ml. Using variable flow time across the individual chip channels, two ranges of antigen density were achieved: <50 response units (RU) for ed kinetic studies and about 800 RU for tration studies and screening. Two- or three-fold serial dilutions typically at concentrations spanning 1 liM - 0.1 nM (aimed at 0.1-1 Ox estimated Kc) of purified Fab fragments were injected for 1 minute at 100 [jL/rnin and dissociation times of 10 minutes were allowed. After each binding cycle: surfaces were regenerated with 25 mM NaOH in 25% v/v ethanol which was tolerated over hundreds of . Kinetic association rate (k0n) and dissociation rate (k0tf) were obtained simultaneously by fitting the data to a 1:1 Langmuir binding model (Karlsson, R. Roos, H. Fagerstanr L. Petersson, B. (1994).
Methods Enzymology 6. 99-110) using the BIAevaluation program. Global equilibrium dissociation constants (Kd) or "affinities” were calculated from the ratio Kd = k0ff/kon.
Affinities of the murine Fab fragments are shown in Tables 2 and 3.
Epitope g of the murine anti-CGRP antibodies. To determine the epitope that anti-CGRP antibodies bind on human a-CGRP, binding ties of the Fab fragments to various CGRP fragments were measured as bed above by ing N-terminally biotinylated CGRP fragments amino acids 19-37 and amino acids 25-37 on a SA sensor chip. Figure 1 shows their binding affinities measured at °C. As shown in Figure 1. all antibodies, except antibody 4901, bind to human a- CGRP fragments 19-37 and 25-37 with affinity similar to their binding affinity to full length human a-CGRP (1-37). Antibody 4901 binds to human a-CGRP fragment 25- 37 with six-fold lower affinity than binding to full length human a-CGRP fragment, due mainly to a loss in off-rate. The data indicate that these anti-CGRP antibodies generally bind to the C-terminal end of CGRP. e scanning was performed to further characterize amino acids in human a-CGRP involved in binding of anti-CGRP antibodies. Different variants of human a- CGRP with single alanine substitutions were generated by e synthesis. Their amino acid sequences are shown in Table 4 along with all the other peptides used in the Biacore analysis. Affinities of Fab fragments of the anti-CGRP antibodies to these variants were determined using e as described above. As shown in Figure '\ , all 12 antibodies target a C-terminal epitope, with amino acid F37 being the most crucial residue. Mutation of F37 to alanine significantly lowered the ty or even completely d out binding of the anti-CGRP antibodies to the peptide. The next most important amino acid residue is G33; however, only the high affinity antibodies (7E9, 8B6. 10A8, and 7D11) were affected by e replacement at this position.
Amino acid residue S34 also plays a significant, but lesser, role in the binding of these four high affinity antibodies.
Table 2. Characteristics of the anti-CGRP monoclonal dies' binding to human a-CGRP and their antagonist activity dies K-j to human o Kd to human a- Cell-based blocking ICsc (nM binding CGRP at 25rC CGRP at 37'C human a-CGRP sites) at 25°C (nM) (nM) binding to its (room temp.) receptor at 25"C measured in (measured by cAMP igand binding activation)________ assay.__________ 7E9 1.0 0.9 Yes 2.5 8B6 1.1 1.2 Yes 4.0 10A8 2.1 3.0 Yes n.d. 7D11 4.4 5.4 Yes n.d. 6H2 9.3 42 Yes 12.9 4901 61 139 Yes 58 14E10 80 179 Yes n.d. 9B8 85 183 No n.d. 13C2 94 379 No n.d. 14A9 148 581 No n.d. 6D5 210 647 No n.d. 1C5 296 652 No n.d.
Note: Antibody 4901 is commercially available (Sigma, Product No. C7113) n.d. = not determined Table 3. Characteristics of the GRP monoclonal antibodies' binding to rat a-CGRP and antagonist activity Antibodies Kd to rat a-CGRP at Cell-based blocking of In vivo blocking in 37'C (nM) binding of rat a-CGRP saphenous nerve to its receptor at 25°C assay (measured by cAMP activation) 4901 3.4 Yes Yes 7E9 47 Yes Yes 6H2 54 No No 8B6 75 Yes Yes 7D11 218 Yes Yes 10A8 451 No n.d. 9B8 876 No n.d. 14E10 922 No n.d. 13C2 > 1000 No n.d. 14A9 > 1000 No n.d. 6D5 > 1000 No n.d. 1C5 > 1000 No n.d. "n.d." indicates no test was performed for the antibody.
Table 4. Amino acid sequences of human a-CGRP nts (SEQ ID NOS: 15-40) and related es (SEQ ID NOS:41-47). All peptides are C-terminally amidated except SEQ ID NOS:36-40. Residues in bold indicate point mutations.
CGRP Amino acid sequence SEQ ID NO 1-37 (WT) CVTHRLAGLLSRSGGWKNNFVPTNVGSKAF 15 8-37 VTHRLAGLLSRSGGWKNNFVPTNVGSKAF 16 19-37 SGGWKNNFVPTNVGSKAF 17 P29A (19-37) SGGWKNNFVATNVGSKAF 18 K35A (19-37) SGGVVKNNFVPTNVGSAAF 19 K35E (19-37) SGGVVKNNFVPTNVGSEAF 20 K35M (19-37) SGGVVKNNFVPTNVGSMAF 21 K35Q (19-37) SGGVVKNNJFVPTNVGSQAF 22 F37A (19-37) NNFVPTNVGSKAA 23 -38A NNFVPTNVGSKAFA 24 -37 NNFVPTNVGSKAF 25 F27A (25-37) NNAVPTNVGSKAF 26 V28A (25-37) N NFAPTNVGSKAF 27 P29A (25-37) NNFVATNVGSKAF 28 T30A (25-37) NNFVPANVGSKAF 29 N31A (25-37) NNFVPTAVGSKAF 30 V32A (25-37) NNFVPTNAGSKAF 31 G33A ) NNFVPTNVASKAF 32 S34A ) NVGAKAF 33 F37A (25-37) NNFVPTNVGSKAA 34 26-37 NFVPTNVGSKAF 35 19COOH SGGWKNNFVPTNVGSKAF 36 19COOH SGGVVKNNFVPTNVGSKA 37 1COOH ACDTATCVTHRLAGLLSRSGGWKNNFVPTNVGSKA 38 1COOH ACDTATCVTHRLAGLLSRS 39 1COOH ACDTATCVTHRLA 40 rata (1-37) SCNTATCVTHRLAGLLSRSGGVVKDNFVPTNVGSEAF 41 rata (19-37) SGGVVKDNFVPTNVGSEAF 42 human ft (1-37) ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF 43 rat p (1-37) CVTHRLAGLLSRSGGVVKDNFVPTNVGSKAF 44 Human calcitonin CMLGTYTQDFNKFHTFPQTAIGVGAP 45 d-32)__________ Human amylm (1- KCNTATCATQRLANFLVHSSNNFGAILSSTNVGSNTY 46 Human YRQSMNNFQGLRSFGCRFGTCTVQKLAHQIYQFTDK 4/ adrenomedullin DKDNVAPRSKISPGGY (1-52)________ Example 2: Screening of anti-CGRP antagonist antibodies using in vitro assays Murine anti-CGRP antibodies were further screened for antagonist activity in vitro using cell based cAMP activation assay and binding assay.
Antagonist activity measured by cAMP assay. Five microliters of human or rat a-CGRP (final concentration 50 nM) in the presence or absence of an anti-CGRP antibody (final concentration 1-3000 nM), or rat oCGRP or human a-CGRP (final concentration 0.1 nM-10 uM; as a positive control for c-AMP activation) was sed into a 384-well plate (Nunc, Cat. No. 264657). Ten microliters of cells (human SK-NMC if human a-CGRP is used, or rat L6 from ATCC if rat a-CGRP is used) in ation buffer (20 mM HEPES, pH 7.4, 146 mM NaCL 5 mM KCI: 1 mM CaCI2, 1 mM MgCb: and 500 pM 3-lsobutylmethylxanthine (IBMX)) were added into thev^ells of the plate. The plate was incubated at room temperature for 30 minutes.
After the incubation, cAMP activation was performed using HitHunter17 Enzyme Fragment Complementation Assay ed Biosystems) following manufacture's instruction. The assay is based on a genetically engineered |}-galactosidase enzyme that consists of two fragments -termed Enzyme Acceptor (EA) and Enzyme Donor (ED). When the two fragments are ted, the enzyme is inactive. When the fragments are together they can recombine spontaneously to form active enzyme by a process called complementation. The EFC assay platform utilizes an ED-cAMP peptide conjugate in which cAMP is recognized by anti-cAMP. This ED fragment is capable of ciation with EA to form active enzyme. In the assay. anti-cAMP antibody is optimally titrated to bind ED-cAMP conjugate and inhibit enzyme formation.
Levels of cAMP in cell lysate samples compete with ED-cAMP conjugate for binding to the anti-cAMP antibody. The amount of free ED conjugate in the assay is proportional to the concentration of cAMP. Therefore, cAMP is ed by the formation of active enzyme that is quantified by the turnover of ctosidase luminescent substrate. The cAMP activation assay was performed by adding 10 ul of lysis buffer and anti-cAMP antibody (1:1 ratio) following by incubation at room temperature for 60 min. Then 10 pi of ED-cAMP reagent was added into each well and incubated for 60 minutes at room ature. After the incubation, 20 pi of EA t and CL mixture (containing the substrate) (1:1 ratio) was added into each well and incubated for 1-3 hours or overnight at room ature. The plate was read at 1 second/well on PMT instrument or 30 seconds/place on imager. The antibodies that inhibit activation of cAMP by a-CGRP were fied (referred to as "yes") in Tables 2 and 3 above. Data in Tables 2 and 3 indicate that antibodies that trated antagonist activity in the assay generally have high affinity. For example, antibodies having Kd (determined at 25°C) of about 80 nM or less to human a-CGRP or having Ku (determined at 37CC) of about 47 nM or less to rat a-CGRP showed antagonist activity in this assay.
Radioligand binding assay. Binding assay was performed to measure the IC50 of anti-CGRP antibody in blocking the CGRP from binding to the receptor as described previously. Zimmennann et al.: Peptides 16:421-4. 1995; Mallee et aL J. Biol. Chem. 277:14294-8, 2002. Membranes (25 ,ug) from SK-N-MC cells were incubated for 90 min at room temperature in incubation buffer (50 mM CI, pH 7.4, 5 mM MgCb, 0.1% BSA) containing 10 pM 125l-human a-CGRP in a total volume of 1 mL To determine inhibition concentrations (IC50), antibodies or unlabeled CGRP (as a control), from a about 100 fold higher stock solution were dissolved at varying trations in the incubation buffer and incubated at the same time with membranes and 10 pM 125l-human a-CGRP. Incubation was terminated by filtration through a glass microfiber filter (GF/B, 1 \im) which had been blocked with 0.5% polyethylemimine. Dose response curves were plotted and Kj values were ined by using the equation: Kj = +Oligand]/Kd); where the equilibrium dissociation nt Kd = 8 pM for human a-CGRP to CGRP1 or as present in SK-N-MC cells, and Bmax = 0.025 pmol/mg n. The ed IC50 value (in terms of IgG molecules) was converted to binding sites (by multiplying it by 2) so that it could be compared with the affinities (Kd) determined by Biacore (see Table 2).
Table 2 shows the IC50 of murine antibodies 7E9, 8B6, 6H2 and 4901. Data indicate that antibody affinity generally correlates with IC50: antibodies with higher affinity (lower Kd values) have lower IC50 in the radioligand g assay.
Example 3: Effect of anti-CGRP antagonist antibodies on skin vasodilatation induced by stimulation of rat saphenous nerve To test antagonist activity of anti-CGRP antibodies, effect of the antibodies on skin vasodilatation by stimulation of rat saphenous nerve was tested using a rat model described previously. Escott et al.; Br. J. Pharmacol. 110:772-776, 1993. In this rat model, electrical stimulation of saphenous nerve induces e of CGRP from nerve endings, resulting in an increase in skin blood flow'. Blood flow in the foot skin of male Sprague Dawley rats (170-300 g, from Charles River Hollister) was measured after saphenous nerve stimulation Rats were maintained under anesthesia with 2% isoflurane. ium tosylate (30 mg/kgr administered i.v.) was given at the beginning of the experiment to ze nstriction due to the concomitant stimulation of sympathetic fibers of the saphenous nerve. Body temperature was maintained at 37°C by the use of a rectal probe thermostatically ted to a temperature controlled heating pad. Compounds including antibodies, positive l (CGRP 8-37): and vehicle (PBS, 0.01% Tween 20) were given intravenously through the right femoral vein, except for the experiment shown in Figure 3, the test compound and the control were injected through tail vein, and for experiments shown in Figures 2A and 2B; antibodies 4901 and 7D11 were injected intraperitoneally (IP). Positive control compound CGRP 8-37 (vasodilatation antagonist), due to its short ife, was given 3-5 min before nerve stimulation at 400 nmol/kg (200 ul). Tan et al., Clin. Sci. 89:656- 73, 1995. The dies were given in different doses (1 mg/kg, 2.5 mg/kg, 5 mg/kg; mg/kg, and 25 mg/kg).
For experiments shown in Figures 2A and 2B, antibody 4901 (25 mg/kg), antibody 7D11 (25 mg/kg), or vehicle control (PBS with 0.01% Tween 20) was administered intraperitoneally (IP) 72 hours before the electrical pulse stimulation. For experiment shown in Figure 3, antibody 4901 (1 mg/kg, 2.5 mg/kg, 5 mg/kg, or mg/kg) or vehicle control (PBS with 0.01% Tween 20) was administered enously 24 hours before the electrical pulse stimulation. After administration of the antibodies or vehicle l, the saphenous nerve of the right hindlimb was exposed surgically, cut proximally and covered with plastic wrap to prevent drying. A laser Doppler probe was placed over the dorsal side of the w skin, which is the region ated by the saphenous nerve. Skin blood flow, measured as blood cell flux, was monitored with a laser Doppler flow meter. When a stable base-line flux (less than 5% variation) was established for at least 5 minutes, the nerve was placed over platinum bipolar electrodes and electrically stimulated with 60 pulses (2 Hz, 10 V. 1 ms, for 30 seconds) and then again 20 minutes later. Cumulative change in skin blood flow was estimated by the area under the flux-time curve (AUC, which is equal to change in flux multiplied by change in time) for each flux response to electrical pulse so stimulation. The average of the blood flow response to the two stimulations was taken.
Animals were kept under anesthesia for a period of one to three hours.
As shown in Figure 2A and Figure 2B, blood flow increase stimulated by applying electronic pulses on saphenous nerve was inhibited by the presence of CGRP 8-37 (400 nmol/kg, administered i.v.), antibody 4901 (25 mg/kg, administered ip): or antibody 7D11 (25 mg/kg; administered ip) as ed to the control. CGRP 8-37 was administered 3-5 minutes before the saphenous nerve stimulation: and antibodies were administered 72 hours before the saphenous nerve stimulation. As shown in Figure 3: blood flow increase stimulated by applying electronic pulses on saphenous nerve was inhibited by the presence of dy 4901 at different doses (1 mg/kg; 2.5 mg/kg, 5 mg/kg; and 25 mg/kg) administered intravenously at 24 hours before the saphenous nerve stimulation.
For experiments shown in Figures 4A and 4B; saphenous nerve was exposed surgically before antibody administration. The ous nerve of the right mb was exposed surgically, cut proximally and covered with c wrap to t drying.
A laser Doppler probe was placed over the medio-dorsal side of the hindpaw skin, which is the region innervated by the saphenous nerve. Skin blood flow, measured as blood cell flux, was red with a laser Doppler flow meter. Thirty to forty-five minutes after bretylium tosylate injection, when a stable base-line flux (less than 5% variation) was established for at least 5 minutes, the nerve was placed over platinum bipolar electrodes and electrically stimulated (2 Hz. 10V, 1 ms, for 30 seconds) and again 20 minutes later. The average of the blood flow flux se to these two stimulations was used to establish the baseline response (time 0) to electrical stimulation. Antibody 4901 (1 mg/kg or 10 mg/kg), antibody 7E9 (10 mg/kg), antibody 8B6 (10 mg/kg), or vehicle (PBS with 0.01% Tween 20) were then stered intravenously (i.v.). The nerve was subsequently stimulated (2Hz, 10V, 1 ms, for 30 sec) at 30 minutes, 60 minutes, 90 minutes, and 120 minutes after antibody or vehicle administration. Animals were kept under anesthesia for a period of approximately three hours. Cumulative change in skin blood flow was estimated by the area under the flux-time curve (AUC. which is equal to change in flux multiplied by change in time) for each flux response to electrical pulse stimulations.
As shown in Figure 4A, blood flow increase stimulated by ng electronic pulses on saphenous nerve was significantly inhibited by the presence of antibody 4901 1 mg/kg administered i.v., when electronic pulse stimulation was applied at 60 minutes, 90 minutes, and 120 minutes after the antibody administration, and blood flow increase stimulated by applying electronic pulses on saphenous nerve was significantly ted by the presence of antibody 4901 10 mg/kg administered i.v., when electronic pulse stimulation was d at 30 minutes, 60 minutes, 90 minutes, and 120 minutes after the antibody administration. Figure 4B shows that blood flow se stimulated by applying electronic pulses on saphenous nerve was significantly inhibited by the presence of antibody 7E9 (10 mg/kg, administered i.v.) when electronic pulse stimulation was applied at 30 min, 60 min. 90 min, and 120 min after antibody administration, and by the presence of antibody 8B6 (10 mg/kg, stered i.v.) when onic pulse stimulation was d at 30 min after antibody administration.
These data te that antibodies 4901, 7E9, 7D11, and 8B6 are ive in blocking CGRP activity as measured by skin vasodilatation induced by stimulation of rat saphenous nerve.
Example 4. Characterization of anti-CGRP antibody G1 and its variants Amino acid ces for the heavy chain variable region and light chain variable region of anti-CGRP antibody G1 are shown in Figure 5. The following methods were used for expression and characterization of antibody G1 and its variants.
Expression vector used. Expression of the Fab fragment of the antibodies was under control of an IPTG inducible lacZ promoter similar to that described in Barbas (2001) Phage display: a laboratory manual, Cold Spring Harbor, NY, Cold Spring Harbor Laboratory Press pg. 2.10. Vector pCombSX), however, modifications included addition and expression of the following additional domains: the human Kappa light chain constant domain and the CH1 constant domain of lgG2 human immunoglobulin, Ig gamma-2 chain C , protein accession number P01859; Immunoglobulin kappa light chain (Homo s), protein accession number CAA09181.
Small scale Fab preparation From E. coli transformed (either using electroporation-competent TGI cells or chemically-competent Top 10 cells) with a Fab library, single colonies were used to inoculate both a master plate (agar LB + carbenicillin (50 pg/mL) + 2% glucose) and a working plate (2 mL/well, 96-well/plate) where each well contained 1.5 mL LB + carbenicillin (50 pg/mL) + 2% glucose. A gas permeable adhesive seal (ABgene, Surrey, UK) was d to the plate. Both plates were incubated at SO^C for 12-16 hours; the working plate was shaken vigorously.
The master plate was stored at 4°C until needed, while the cells from the working plate were pelleted (4000 rpm. 4:C, 20 minutes) and resuspended in 1.0 mL LB + carbenicillin (50 pg/mL) + 0.5 mM IPTG to induce expression of Fabs by us shaking for 5 hours at 30:>C. Induced cells were centrifuges at 4000 rpm! 4nC for 20 minutes and resuspended in 0.6 mL Biacore HB-SEP buffer (10 mM HEPES pH 7.4, 150 mM NaCI, 3 mM EDTA, 0.005% v/v P20). Lysis of HB-SEP resuspended cells was accomplished by freezing (-80';C) and then thawing at 37!iC. Cell lysates were centrifuged at 4000 rpm, 4°C for 1 hour to separate the debris from the Fab-containing supernatants, which were subsequently filtered (0.2 pm) using a Millipore Multiscreen Assay System 96-Well Filtration Plate and vacuum manifold. Biacore was used to analyze filtered supernatants by injecting them across CGRPs on the sensor chip.
Affinity-selected clones expressing Fabs were rescued from the master plate; which provided template DNA for PCR, cing, and plasmid preparation.
Large scale Fab preparation. To obtain kinetic parameters, Fabs were expressed on a larger scale as follows. Erlenmeyer flasks containing 150 mL LB + carbenicillin (50 pg/mL) + 2% e were inoculated with 1 mL of a ‘starter” overnight culture from an affinity-selected Fab-expressing E. coli clone. The remainder of the starter culture (-3 mL) was used to e plasmid DNA (QIAprep mini-prep, Qiagen kit) for cing and further manipulation. The large culture was incubated at 30:;,C with us shaking until an ODeoonm of 1.0 was attained (typically 12-16 h). The cells were pelleted by centrifuging at 4000 rpm, 4UC for 20 minutes, and resuspended in 150 mL LB + carbenicillin (50 M9/rnL) + 0.5 mM IPTG. After 5 hours expression at 30'C, cells were pelleted by centrifuging at 4000 rpm, 4°C for 20 s, resuspended in 10 mL e HBS-EP buffer, and lysed using a single freeze (-80°C)/thaw (37°C) cycle. Cell lysates were pelleted by centrifuging at 4000rpm, 4°C for one hour, and the supernatant was collected and filtered (0.2um).
Filtered supernatants were loaded onto Ni-NTA superflow sepharose (Qiagen, ia, CA) columns equilibrated with PBS, pH 8, then washed with 5 column volumes of PBS, pH 8. dual Fabs eluted in different fractions with PBS (pH 8) + 300 mM Imidazole. Fractions containing Fabs were pooled and dialyzed in PBS, then quantified by ELISA prior to affinity characterization.
Full antibody preparation. For expression of full antibodies, heavy and light chain le regions were cloned in mammalian expression s and transfected using lipofectamine into HEK 293 cells for transient expression. Antibodies were purified using protein A using standard methods.
Vector pDb.CGRP.hFcGI is an expression vector comprising the heavy chain of the G1 antibody, and is suitable for transient or stable sion of the heavy chain.
Vector pDb.CGRP.hFcGI has nucleotide sequences corresponding to the following s: the murine cytomegalovirus promoter region (nucleotides 7-612); a synthetic intron (nucleotides 613-1679); the DHFR coding region (nucleotides 688-1253); human growth hormone signal peptide (nucleotides 1899-1976); heavy chain variable region of G1 (nucleotides 1977-2621): human heavy chain lgG2 constant region containing the following mutations: A330P331 to S330S331 (amino acid numbering with nce to the wildtype lgG2 sequence; see Eur. J. Immunol. (1999) 29:2613- 2624). Vector pDb.CGRP.hFcGI was deposited at the ATCC on July 15; 2005; and was assigned ATCC Accession No. PTA-6867.
Vector pEb.CGRP.hKGI is an expression vector comprising the light chain of the G1 antibody, and is suitable for transient expression of the light chain. Vector RP.hKGI has nucleotide sequences corresponding to the following s: the murine cytomegalovirus promoter region (nucleotides 2-613); human EF-1 intron (nucleotides 614-1149); human growth hormone signal peptide (nucleotides 1160- 1237): antibody G1 light chain variable region (nucleotides 1238-1558); human kappa chain constant region (nucleotides 1559-1882). Vector pEb.CGRP.hKGI was deposited at the ATCC on July 15, 2005, and was assigned ATCC Accession No.
PTA-6866.
Biacore assay for affinity determination. Affinities of G1 monoclonal dy and its variants were determined at either 25°C or 37:C using the BIACORE3000' surface n resonance (SPR) system (Biacore, INC, Piscataway NJ). Affinity was determined by ing N-terminally biotinylated CGRP or fragments via preimmobilized streptavidin (SA sensor chip) and measuring the g kinetics of antibody G1 Fab fragments or variants ed across the CGRP or fragment on the chip. All Biacore assays were ted in HBS-EP running buffer (10 mM HEPES pH 7.4, 150 mM NaCI, 3 mM EDTA, 0.005% v/v polysorbate P20). CGRP surfaces were prepared by diluting the N-biotinylated CGRP to a concentration of less than 0.001 mg/mL into FIBS-EP buffer and injecting it across the SA sensor chip using variable contact times. Low capacity surfaces, ponding to capture levels <50 se units (RU) were used for high-resolution kinetic studies, whereas high capacity surfaces (about 800 RU of captured CGRP) were used for concentration studies, screening, and solution affinity determinations. Kinetic data were obtained by diluting antibody G1 Fab ly in two- or three-fold increments to concentrations ng 1uM-0.1nM (aimed at 0.1-1 Ox estimated Kd). Samples were typically injected for 1 minute at 100 uL/min and dissociation times of at least 10 minutes were allowed. After each binding cycle: surfaces were regenerated with 25 mM NaOH in % v/v ethanol, which was tolerated over hundreds of cycles. An entire titration series (typically generated in duplicate) was fit globally to a 1:1 ir binding model using the BIAevaluation program. This returned a unique pair of association and dissociation kinetic rate constants (respectively: k0n and k0ff) for each binding interaction whose ratio gave the equilibrium dissociation constant (Kd = korr/kon).
Affinities (Kd ) ined in this way are listed in Tables 6 and 7.
High-resolution analysis of binding interactions with ely slow offrates.
For interactions with extremely slow offrates (in particular antibody G1 Fab binding to human a-CGRP on the chip at 25°C), affinities were ed in a two-part experiment.
The protocol described above was used with the ing modifications. The association rate constant (k0n) was determined by injecting a 2-fold titration series (in duplicate) spanning 550 nM-1 nM for 30 seconds at 100 pL/min and ng only a 30 second dissociation phase. The dissociation rate constant (k0ff) was determined by injecting three concentrations (high: medium, and low) of the same titration series in duplicate for 30 seconds and allowing a 2-hour dissociation phase. The affinity (Kd) of each interaction was obtained by combining the k0n and k0ff values ed in both types of experiments, as shown in Table 5.
Determining solution affinity by Biacore. The solution ty of antibody G1 for rat a-CGRP and F37A (19-37) human a-CGRP was measured by Biacore at 37°C.
A high capacity CGRP chip surface was used (the high-affinity human a-CGRP was chosen for ion purposes) and HBS-EP g buffer was flowed at 5 pL/min.
Antibody G1 Fab fragment at a constant concentration of 5 nM (aimed to be at or below the expected Kd of the solution-based interaction) was pre-incubated with competing peptide, either rat a-CGRP or F37A (19-37) human a-CGRP, at final concentrations spanning 1 nM to 1 pM in 3-fold serial dilutions. Antibody G1 Fab ons in the absence or presence of solution-based competing peptider were injected across CGRP on the chip and the ion of binding responses detected at the chip surface as a result of solution competition was monitored. These binding responses were converted to Tree Fab concentrations1’ using a calibration curve, which was constructed by titrating antibody G1 Fab alone (5: 2.5, 1.25, 0.625, 0.325 and 0 nM) across the CGRP on the chip. Tree Fab concentrations” were plotted against the concentration of competing on-based peptide used to generate each data point and fit to a solution affinity model using the BIAevaluation software. The solution affinities determined (indirectly) in this way are shown in Tables 5 and 7 and were used to validate the affinities ed when Fabs are injected directly across N- biotinylated CGRPs on a SA chip. The close agreement between the affinities determined by these two methods confirms that tethering an N-biotinylated version of the CGRP to the chip does not alter its native solution binding activity.
Table 5 below shows the binding affinities of antibody G1 to human a-CGRP; human |3-CGRP; rat a-CGRP, and rat (3-CGRP determined by Biacore, by flowing Fab fragments across inylated CGRPs on a SA chip. To better resolve the affinities of binding interactions with extremely slow es, affinities were also determined in a two-part experiment to complement this assay orientation, the solution affinity of the rat a-CGRP interaction was also determined (as described above). The close agreement of the ties measured in both assay orientations confirms that the g affinity of the native rat a-CGRP in solution is not altered when it is N- biotinylated and tethered to a SA chip.
Table 5. Binding affinities of dy G1 Fabs titrated across CGRPs on the chip CGRP on chip Temp fC) k,n (1/Ms) kifr (1/s) Kd (nM) Human a-CGR^ 25 1.86 x10 s 7.80 x10*e 0.042 (7%, n=4)* Human oCGR3 37 5.78 x 105 3.63 x 10-5 0.063 (4%, n=2)x Human ft-CGR? 37 4.51 x 10s 6.98 x 10-- 0.155 Rat a-CGRP 25 5.08 x104 6.18 x10'5 1.22 (12%, n=2)* Rat a-CGRP 37 1.55 x 105 3.99 x10-4 2.57* (Solution Kd=10 (50%, n=4)** Rat ft-CGRP 37 5.16 x 10s 7.85 x 10 s 0.152 *Affinities for a-CGRPs (rat and human) were determined in a high-resolution two-part experiment, in which the dissociation phase was monitored for 2 hours (the values for kon, kott, and Kd represent the e of n replicate experiments with the standard deviation expressed as a percent variance). ties for p-CGRPs (rat and human) were determined by global analysis using only a 20-min dissociation phase, which was not accurate enough to quantify their extremely offrates (their offrates are likely slower than stated here and therefore their affinities are likely even higher). Antibody G1 Fab dissociated extremely slowly from all CGRPs t a-rat CGRP) with offrates that approached the resolution limit of the Biacore assay (especially at 25°C).
**Solution affinity determined by ing the depletion of binding responses detected at CGRP on the chip for antibody G1 Fab pre-incubated with solution-based rat a-CGRP competitor.
Table 6 below shows antibodies having the amino acid ce variation as ed to antibody G1 and their affinities to both rat a-CGRP and human a-CGRP.
All amino acid tutions of the variants shown in Table 6 are described relative to the sequence of G1. The binding affinities of Fab fragments were determined by Biacore by g them across CGRPs on a SA chip.
Table 6. Amino acid sequences and binding affinity data for antibody G1 variants determined at 37°C by Biacore.
Clone L1 L2 H2 HC-FW3 a-rat a-rat a-human a-human koff (1/s) Kd (nM) koff (1/s) Kd (nM) G1 3.99x10^ 2.57 3.63 x1Q'5 C.Q63 M1 A100L 1.10x1 O'3 1.73x1 O'4 M2 L99A 2.6x1 Q-3 58 3.1x10-4 3 A100R M3 L99A 2.0x103 61 2.1x10 4 1.7 A100S M4 L99A 1.52x103 84.4 6.95x10 5 0.43 A100V M5 L99A 7.35x10-4 40.8 3.22x1 O'5 0.20 A100Y M6 L99N 7.84x10-4 43.6 1.33x10*4 0.83 M7 L99N 9.18x1 O’4 51.0 2.43x10*4 1.52 A100C M8 L99N 7.45x10'4 41.4 9.20x1 O'5 0.58 A100G M9 L99N n.d. n.d. 1.00x1 O'5 C.06 A100Y M10 L99S 1.51x1 O'3 83.9 1.73x10*4 1.08 A100S M11 L99S 4.83x1 O'3 268.3 2.83x1 O'4 1.77 A100T Clone L1 L2 H2 HC-FW3 a-rat a-rat a-human a-human kcft (1/s) Kp (nM) kcff (1/s) Kp (nM) M12 L99S 1.94x10--- 107.8 1.01x1 O'4 0.63 A100V M13 L99T 1.84x1 O’3 102.2 1.86x1 O'4 1.16 A100G M14 L99T n.d. n.d. 1.00x10 5 0.06 A100K Ml 5 L99T 1.15x103 63.9 1.58x10 5 0.10 A1 OOP M16 L99T 9.96x1 O'41 55.3 1.65x1 O'4 1.03 A100S Ml 7 L99T 2.06x1 O'3 114.4 1.85x10*4 1.16 A100V M18 L99V 1.22x1 O'3 67.8 7.03x1 O'5 0.44 A100G Ml 9 L99V n.d. n.d. 1.00x1 O*5 0.06 A100R M20 R28W L99R 1.44x10*3 80.0 1.36x1 O'4 0.85 A100L M21 R28W L99S 6.95x1 Q-4 15.2 1.42x1 O'4 1.23 M22 R28W L99T 1.10x1 O'3 61.1 1.16x10*4 0.73 M23 R28G L99T 7.99x10-4 44.4 1.30x10*4 0.81 A100V M24 R28L L99T 1.04x1 O'3 57.8 1.48x1 O'4 0.93 A100V M25 R28N L99T 1.4x1Q-3 76 1.4x1 O^’ 1.3 A100V M26 R28N A57G L99T 9.24x10-4 51.3 1.48x1 O’4 0.93 A100V M27 R28N L99T 0'3 189.4 3.57x1 O'4 2.23 T30A A100V M28 R28N E54R L99T 1.25x1 O'3 69.4 9.96x1 O'5 0.62 T30D A57N A100V M29 R28N L99T 3.59x1 O'3 199.4 0*4 2.38 T30G A100V M30 R28N E54K L99T 6.38x1 O'3 354.4 5.90x10*4 3.69 T30G A57E A100V M31 R28N E54K L99T 3.61x1 O'3 200.6 3.47x1 O'4 2.17 T30G A57G A100V M32 R28N E54K L99T 2.96x1 O*3 164.4 2.71x1 O'4 1.69 T30G A57H A100V M33 R28N E54K L99T 9.22x1 O*3 512.2 7.50x1 O’4 4.69 T30G A57N A100V M34 R28N E54K L99T 2.17x1 O*3 120.6 6.46x1 O'4 4.04 T30G A57N A100V M35 R28N L54K L99T 3.99x10-3 221.7 3.39x10-4 2.12 T30G A57S A100V M36 R28N L99T 4.79x10-3 266.1 2.39x10-4 1.49 T30R A100V M37 R28N A57G L99T 1.45x103 80.6 2.26x10 4 1.41 T30S A100V M38 R28N L99T 5.1 IxlO'3 283.9 2.18x10'4 1.36 T30W A100V M39 R28N G50A A57N L99T 9.95x1 O'3 552.8 4.25x10*4 2.66 Clone L1 L2 H2 HC-FW3 a-rat a-rat a-human o-human kcft (1/s) Kp (nM) kofi (1/s) Kp (nM) L56T S53Y A10OV M40 R28N G50A E54K L99T 0.36 20000.0 1.28x1 O'3 8.00 L56T A57L AlOOV M41 R28N G50A E54K L99T 4.53x103 251.7 2.10x10 4 1.31 L56T A57N A100V M42 R28N G50A E54K L99T 7.52x103 417.8 4.17x10 4 2.61 L56T A57N A100V M43 R28N G50A E54K L99T 4.53x1 O'3 251.7 2.63x1 O'4 1.64 L56T A57N A100V M44 R28N G50A E54K L99T 6.13x10-3 443 2.10x10-4 2.05 L56T A57N A100V M45 R28N G50A E54K L99T 5.58x1 O'3 259 2.11x1 Q'4 1.85 L56 I A57N A100V M46 R28N G50A E54K L99T 2.94x1 O'3 163.3 5.39x1 O’4 3.37 L56T A57N A100V M47 R28N G50A E54K L99T 8.23x10-3 457.2 3.32x1 O*4 2.08 L56T A57N A100V M48 R28N G50A E54K L99T 0.0343 1905 6 8.42x1 O'4 5.26 L56T A57N A100V M49 R28N G50A E54K L99T 0.0148 822.2 5.95x1 O’4 3.72 L56T A57N A100V M50 R28N G50A E54K L99T 5.30x10-3 294.4 4.06x1 O*4 2.54 L56T A57R A100V M51 R28N L56I E54K L99T 1.18x1 O’3 65.6 1.31x1 O'4 0.82 A57G A100V M52 R28N L56I E54K L99T 2.29x1 O'3 127.2 2.81x10 1.76 A57N A100V M53 R28N L56I E54K L99T 1.91x103 106.1 0 4 2.34 A57N A100V M54 R28N G50A E54K L99T 2.16x1 O'3 120.0 1.79x1 O'3 11.19 T30A A57N AlOOV M55 R28N L56S E54K L99T 5.85x1 O'3 325.0 4.78x1 O*4 2.99 T30A A57N A100V M56 R28N L56S E54K L99T 9.35x1 O'3 519.4 4.79x10*4 2.99 T30D A57N AlOOV M57 R28N L56S E54K L99T 0.0104 1.200 3.22x1 O'4 3.08 T30D A57N A100V Clone L1 L2 H2 HC-FW3 a-rat a-rat a-human a-human kcft (1/s) Kp (nM) kcff (1/s) Kp (nM) M58 R28N L56S E54K L99T No binding n.d. 1.95x1 O'3 12.19 T30D A57N A100V 1161F M59 R28N L56S E54K L99T 0.0123 683.3 5.24x10-4 3.28 T30D A57N A100V M60 R28N L56S E54K L99T 0.0272 1511 1 9.11x10 4 5.69 T30D A57N A100V M61 R28N A51H E54G L99T 5.21x10*2 289.4 4.59x1 O’4 2.87 T30G A57N A100V M62 R28N A51H E54K L99T 5.75x1 O'3 242 5.57x1 O'4 5.86 T30G L56T A57N A100V M63 R28N G50A E54K L99T 2.65x1 O'3 147.2 1.50x1 O*3 9.38 T30G A57N A100V S58 I M64 R28N G50A E54K L99T 0.0234 1300 0 1.32x1 O'3 8.25 T30G A57N A100V M65 R28N G50A E54K L99T 4.07x10-3 226.1 8.03x1 O*4 5.02 T30G L56I A57C A100V M66 R28N L56I E54K L99T 5.11x1 O'3 283.9 5.20x1 O'4 3.25 T30G A57E A100V M67 R28N L56I E54K L99T 1.71x10*3 95.0 8.20x10-4 5.13 T30G A57F A100V M68 R28N L56I E54K L99T 6.76x10-3 375.6 4.28x1 O*4 2.68 T30G A57N A100V M69 R28N L56I E54K L99T 1.81x1 O'3 100.6 7.33x1 O'4 4.58 T30G A57N A100V M70 R28N L56I E54K L99T 6.07x1 O'3 337.2 5.59x1 O'4 3.49 T30G A573 A100V M71 R28N L56I E54K L99T 2.12x103 117.8 0 3 8.00 T30G A57Y A100V M72 R28N L56S E54K L99T 3.95x103 219.4 4.00x10 4 2.50 T30G A100V M73 R28N L56S E54K L99T 3.00x1 O’3 166.7 2.55x1 O’4 1.59 T30G A57N A100V M74 R28N L56S E54K L99T 6.03x1 O*3 335.0 5.97x1 O'4 3.73 T30G A57S A100V M75 ' R28N L56S E54K L99T 1.87x10*2 1038.9 1.16x10*3 7.25 T30G A57V A100V M76 R28N G50A A57G L99T 1.16x1 O'3 64.4 3.64x1 O'4 2.28 T30S L56I A100V M77 R28N G50A E54K L99T 0.0143 794.4 4.77x1 O*4 2.98 T30S L56T A57D A100V Clone L1 L2 H2 HC-FW3 a-rat a-rat n a-human kcft (1/s) Kp (nM) kcft (1/s) Kp (nM) M78 R28N G50A E54K L99T 0.167 9277 8 1.31x1 O'3 8.19 T30S L56T A57N A100V M79 R28N G50A E54K L99T 0.19 10555.6 1.29x1 O'3 8.06 T30S L56T A57P A100V M80 R28N L56I E54K L99T 0.0993 5516 7 2.09x10 3 13.06 T30S A57N A100V M81 R28N L56S E54K L99T 4.29x1 O'3 238.3 4.90x1 O'4 3.06 T30S A57N A100V M82 R28N A51H A57N L99T 6.99x1 O'3 388.3 8.77x10*4 5.48 T30V L56T A100V M83 R28N A51H E54K L99T No binding n.d. 9.33x10*4 5.83 T30V L56T A57N A100V M84 R28N A51H E54N L99T 1.76x1 O'2 977.8 1.08x1 O*3 6.75 T30V L56T A57N A100V All CDRs including both Kabat and Chothia CDRs. Amino acid es are numbered sequentially (see Figure 5). All clones have H3 sequences identical to G1.
Kd= koff/kon. All korr values were determined in a screening mode except those that are underlined, which were obtained by global analysis of a Fab concentration series (G1 was analyzed in a high-resolution mode). ined Kd values were therefore determined experimentally by measuring k(,M. Other k„M values were estimated to be the same as M25. n.d. = not determined To determine the epitope on human a-CGRP that is recognized by antibody G1, Biacore assays bed above were used. Fluman a-CGRP was purchased as an N-biotinylated version to enable its high-affinity capture via SA sensor chips. The binding of G1 Fab nt to the human a-CGRP on the chip in the absence or presence of a CGRP peptide was determined. Typically, a 2000:1 mol peptide/Fab solution (e.g., 10 pM peptide in 50nM G1 Fab) was injected across human a-CGRP on the chip. Figure 6 shows the percentage of binding blocked by competing peptide.
Data shown in Figure 6 indicate that peptides that block 100% binding of G1 Fab to human a-CGRP are 1-37 (WT), 8-37, 26-37, P29A (19-37), K35A (19-37), K35E (19- 37), and K35M (19-37) of human a-CGRP; 1-37 of (3-CGRP (WT); 1-37 of rat a-CGRP (WT); and 1-37 of rat (3-CGRP (WT). All these peptides are ed at the C- terminus. Peptides F37A (19-37) and 19-37 (the latter not amidated at the C-terminus) of human a-CGRP also blocked about 80% to 90% of binding of G1 Fab to human o CGRP. Peptide 1-36 (not amidated at the C-terminus) of human a-CGRP blocked about 40% of binding of G1 Fab to human a-CGRP. Peptide fragment 19-36 (amidated at the inus) of human ; peptide fragments 1-13 and 1-19 of human a-CGRP (neither of which are amidated at the C-terminus); and human amylin; calcitonin, and adrenomedullin (all amidated at the C-terminus) did not compete with binding of G1 Fab to human a-CGRP on the chip. These data demonstrate that G1 targets a C-terminal epitope of CGRP and that both the identity of the most terminal residue (F37) and its amidation is important for binding.
Binding affinities of G1 Fab to variants of human a-CGRP (at 37°C) was also determined. Table 7 below shows the affinities as measured directly by titrating G1 Fab across N-biotinylated human a-CGRP and variants on the chip. Data in Table 7 indicate that antibody G1 binds to a C-terminal epitope with F37 and G33 being the most important residues. G1 does not bind to CGRP when an extra amino acid e ne) is added at the C-terminal (which is ed).
Table 7. g affinities of G1 Fab to human a-CGRP and variants measured at 37°C (see Table 4 for their amino acid sequences) CGRP on chip ko„ (1/Ms) kctt (1/s) Kp (nM) 1-37 (WT) 4.68x105 7.63x10-5 0 16 (high resolution Kp - 0.06) 19-37 4.60x105 7.30x1 O'5 0 16 -37 3.10x105 8.80x1 O'5 0 28 F27A (25-37) 3.25x10s 1.24x104 0 38 V28A ) 3.32x10 s 9.38x1 O’5 0 28 P29A (25-37) 2.26x10s 1.78x1 O’4 0 79 T3QA (25-37) 1.79x10 s 8.41x1 O'5 0 47 N31A (25-37) 2.17x10s 1.14x1 O'4 0 53 V32A (25-37) 2.02x10s 3.46x1 O'4 1 71 G33A (25-37) 2.07x10s ' 0.0291 141 S34A (25-37) 2.51x10s 7.64x1 O'4 3 04 K35A (19-37) 2.23x10 s 2.97x1 O'4 1 33 K35E (19-37) 5.95x104 5.79x1 O'4 9 73 K35M (19-37) 2.63x10s 1.34x104 0 51 K35Q (19-37) 1.95x10s 2.70x1 O*4 1 38 F37A (25-37) 8.90x104 8.48x1 O'3 95 (solution Kd = 172 nM) 38A (25-38A) No binding detected The above data indicate that the epitope that dy G1 binds is on the C- al end of human a-CGRP, and amino acids 33 and 37 on human a-CGRP are important for binding of antibody G1. Alsor the amidation of residue F37 is important for g.
Example 5. Clinical Study A clinical study is ted to evaluate the efficacy and safety of fremanezumab for prophylactic ent of migraine in patients with inadequate response to prior preventive treatments. Fremanezumab (TEV-48125) is a fully humanized IgG 2a/kappa monoclonal antibody for administration by the subcutaneous route for the preventive ent of migraine. Fremanezumab is a potent, selective calcitonin gene-related peptide (CGRP) binder that blocks both CGRP isoforms (a and P CGRP) from binding to the CGRP receptor.
Objectives The primary objective of the study is to demonstrate the efficacy of fremanezumab administered as monthly and quarterly subcutaneous (sc) injections to adult patients with migraine with inadequate se to two to four classes of prior preventive treatments as compared with placebo.
The secondary objective of the study is to further evaluate the efficacy of fremanezumab administered as monthly and quarterly sc injections to adult patients with migraine with inadequate response to two to four classes of prior preventive treatments as ed with placebo.
A secondary objective of the study is to evaluate the safety and tolerability of fremanezumab stered as monthly and quarterly sc injections to adult patients with migraine with inadequate response to two to four classes of prior preventive treatments as compared with placebo.
The exploratory objectives are as s: • to further evaluate the efficacy of fremanezumab in adult migraine patients with inadequate response to two to four classes of prior preventive ents • to evaluate immunogenicity and impact of antidrug antibody (ADA) on clinical outcome • to explore the correlation n pharmacokinetic parameters and efficacy of fremanezumab • to explore the relationship between genetic polymorphisms, migraine onset/severity and efficacy and safety of fremanezumab Clinical Study Design A multicenter, randomized, double-blind, placebo-controlled, parallel-group study with an open-lable period is conducted to evaluate the efficacy, safety, and tolerability of monthly and quarterly subcutaneous (sc) fremanezumab compared with placebo in patients with chronic migraine (CM) and episodic migraine (EM) with inadequate response to prior preventive treatments. The study will t of a screening visit, a run-in period (28 days), a 12-week double-blind, placebo-controlled treatment period, a 12-week open-label period, and a follow-up visit 6.0 months after the last dose of fremanezumab for ADA blood sample collection. At the end of the open-label treatment period (4 weeks after the last dose) an end of treatment study visit (visit 8) will be led and patients should return to the care of their treating physicians. Patients should be treated with standard of care after withdrawal from or ation of the 24-week treatment period/study, as appropriate.
Double-blind period At the baseline visit (visit 2), patients are randomly assigned to a treatment group with fremanezumab (2 different dose regimens) or placebo in a 1:1:1 ratio as follows: • For ts with CM: o sc administration of 675 mg of fremanezumab at visit 2 followed by monthly sc administration of 225 mg of fremanezumabfor 2 months or o sc administration of 675 mg of fremanezumab at visit 2 followed by monthly sc stration of of matching o for 2 months or o 3 monthly doses of ng o • For patients with EM: o sc administration of fremanezumab at 225 mg plus 2 matching placebo injections as first dose followed by monthly sc administration of 225 mg of fremanezumab for 2 months or o sc administration of fremanezumab at 675 mg as first dose followed by monthly sc administration of matching placebo for 2 months or o 3 y doses of matching placebo Open-label period After visit 4. all patients completing the double-blind period enter the open-label period. All patients (CM and EM) will receive sc 225 mg of fremanezumab monthly for 3 months, (visits 5: 6, and 7).
Randomization and treatment assignment for the double-blind period is performed using electronic interactive response technology (IRT). The study is stratified based on CM or EM: gender, country: and a special treatment failure group defined as patients who must have had inadequate response to ic acid. In addition, patients in the special ent failure group must have had inadequate response to 2 to 3 other classes of migraine preventive medications, as defined herein.
The proportion of CM and EM ts in the study should be approximately 50:50 in each subgroup.
The open-label period will not be randomized as all patients will e the same y dose (225 mg fremanezumab).
CM is defined as: Patient fulfills the ing criteria for CM in prospectively collected baseline information during the 28-day run-in period: • he occurring on >15 days • On >8 days, fulfilling any of the following: c ICHD-3 diagnostic criteria C and D for 1.1 Migraine without aura o ICHD-3 criteria B and C for 1.2 Migraine with aura c Probable migraine (a migraine subtype where only 1 migraine criterion is missing) o The patient used a n or ergot derivative to treat established headache.
EM is d as: The patient fulfills the following criteria for EM in prospectively collected baseline information during the 28-day run-in period: • Headache occurring >6 days but <15 days • On >4 days: fulfilling any of the following: o ICHD-3 diagnostic criteria C and D for 1.1 Migraine without aura c ICHD-3 criteria B and C for 1.2 Migraine with aura o Probable migraine (a migraine subtype where only 1 migraine criterion is g) o The patient used a triptan or ergot derivative to treat an established d treatment is administered sc once a month (approximately every 28 days) for a total of 3 doses (visits 2r 3, and 4) and open-label treatment is administered for a total of 3 doses (visits 5. 6, and 7). Final study assessments are performed at visit 8 (end-of-treatment [EOT] visit), approximately 4 weeks after administration of last dose of fremanezumab. A follow-up visit is scheduled 6.0 months (> 5 half-lives) after the last study drug administration for ADA blood sampling. Patients who discontinue early will have the follow-up visit 6.0 months after the last dose. The total duration of patient participation in the study is planned to be 50 weeks including a run-in period lasting 28 days, a double-blind treatment period lasting 12 weeks, an open-label period lasting 12 weeks, and 1 follow-up visit at week 46. Patients are expected to complete the entire duration of the study, including the open-label period and the follow-up visit.
The end of study is defined as the last visit of the last patient (follow-up visit, visit 9). However, an interim database lock occurs following the end of the double­ blind ent period of the last patient for analysis of that portion of the study data.
A second m lock will occur following the end of the open-label period. The total study on, ing the 6.0-month follow-up-period, is approximately 2 years.
Endpoints The primary efficacy nt is the mean change from baseline (28-day run- in period) in the monthly average number of migraine days during the 12-week period after the 1 st dose of fremanezumab.
Secondary endpoints to further demonstrate efficacy include: • The proportion of ts reaching at least 50% reduction in the monthly average number of migraine days during the 12-week period after the 1st dose of fremanezumab.
• The mean change from baseline (28-day run-in period) in the monthly average number of headache days of at least moderate severity during the k period after the 1st dose of fremanezumab.
• The mean change from baseline (28-day run-in period) in the monthly average number of migraine days during the 4-week period after the 1st dose of ezumab.
The proportion of patients reaching at least 50% ion in the monthly average number of ne days during the 4-week period after the 1st dose of fremanezumab.
The mean change from baseline (28-day run-in period) in the monthly average number of days of use of any acute headache medications during the 12-week period after the 1st dose of fremanezumab.
The mean change from baseline (28-day run-in period) in the number of headache days of at least moderate severity during the 4-week period after the 1st dose of fremanezumab.
Secondary nts to demonstrate safety and tolerability include: • The occurrence of adverse events throughout the study.
• Analysis of clinical laboratory (serum chemistry: hematology: coagulation and urinalysis) test results at specified time points.
• Analysis of vital signs lic and diastolic blood pressure; oral ature, and pulse rate) measurements at each visit. Note: In addition, oxygen saturation and respiratory rate will be measured in cases of suspected anaphylaxis and severe ensitivity.
Analysis of d electrocardiogram (ECG) findings at specified time points The use of concomitant medication for adverse events during the study.
The number (%) of patients who did not complete the study due to e events.
Analysis of ally significant changes in physical examinations, including body weight.
Occurrence of severe hypersensitivity/anaphylaxis reactions.
Suicidal ideations and behaviors as measured by the eC-SSRS.
Exploratory objectives to demonstrate efficacy • To evaluate the efficacy of fremanuzumab in adult migraine patients with inadequate response to two to four classes of prior preventative treatments Exploratory endpoints for the double-blind period are as s: • The proportion of patients reaching at least 75% reduction in the monthly e number of migraine days during the 12-week period after the 1st dose of study drug.
• The proportion of patients reaching total (100%) response (no headache) during the 12-week period after the 1st dose of study drug.
• The proportion of patients reaching total (100%) response (no headache) for at least one month during the 12-week period after the 4th dose of study drug • The mean change from baseline (28-day run-in period) in the monthly average number of headache hours of at least moderate severity during the 12-week period after the (1st) dose of the study drug.
• The proportion of patients reaching at least 50% reduction in the number of migraine days during the 4-week period after the 1st dose of study drug for whom this level of effect is ned throughout the 12-week period after the 1st dose of study drug.
• The proportion of patients reaching at least 75% ion in the number of migraine days during the 4-week period after the 1st dose of study drug for whom this level of effect is sustained throughout the 12-week period after the 1st dose of study drug.
The mean change from baseline y run-in period) in the monthly average number of days with nausea or vomiting during the 12-week period after the 1st dose of study drug.
The mean change from baseline (28-day run-in period) in the monthly e number of days with photophobia and phonophobia during the 12-week period after the 1st dose of study drug.
The mean change from baseline (28-day run-in period) in the y average number of days of use of migraine-specific acute headache medications (triptans and ergot compounds) during the 12-week period after the 1st dose of study drug.
The mean change from baseline (28-day run-in period) in the number of ne days during the k period after the 1st dose of study drug for patients who failed topiramate for migraine in the past.
The mean change from baseline (28-day run-in period) in the number of migraine days during the 12-week period after the 1st dose of study drug for patients who failed onabotulinumtoxinA for migraine in the past.
The mean change from baseline (28-day run-in period) in the number of migraine days during the 12-week period after the 1st dose of study drug for patients who failed valproic acid for migraine in the past.
The mean change from baseline (28-day run-in period) in the number of migraine days during the 12-week period after the 1st dose of study drug for the subset of patients who failed 2 to 3 classes of preventive medications and valproic acid for migraine in the past.
The proportion of patients reaching at least 50% reduction in the monthly average number of migraine days during the 12-week period after the 1st dose of fremanezumab for the subset of patients who failed 2 to 3 s of preventive medications and valproic acid for migraine in the past The mean change from baseline (day 0) in disability score, as ed by the 6-item Headache Impact Test (HIT-6), at 4 weeks after administration of the 3rd dose of study drug.
• The mean change from baseline (day 0) in lity score, as measured by the ne Disability Assessment (MIDAS) questionnaire; at 4 weeks after the administration of the 3rd dose of study drug.
• The mean change from baseline (day 0) in quality of life, as measured by the MigraineSpecific Quality of Life (MSQOL) questionnaire, at 4 weeks after administration of the 3rd dose of study drug.
• The mean change from baseline (day 0) in the health status, as measured by the EuroQol-5 Dimension -5L) questionnaire at 4 weeks after administration of the 3rd dose of study drug.
• The mean change from baseline (day 0) in t depression status, as measured by the 2 item Patient Health Questionnaire (PHQ-2) and 9-item Patient Health Questionnaire (PHQ-9), at 4 weeks after administration of the 3rd dose of study drug.
• The mean change from baseline (day 0) in patient work productivity and activity impairment, as measured by the Work Productivity and Activity Impairment (WPAI) questionnaire, at 4 weeks after administration of the 3rd dose of study drug.
• The mean change from ne (day 0) of patient satisfaction, as measured by the Patient Global Impression of Change (PGIC) scale, at 4 weeks after the 3rd dose of study drug.
Exploratory nts for the open-label period are: • The mean change from baseline (28-day run-in period) in the monthly average number of migraine days during the 12-week period after the 4th dose of fremanezumab.
• The tion of patients reaching at least 50% reduction from baseline (28- day run-in ) in the monthly average number of migraine days during the 12-week period after the 4th dose of fremanezumab.
• The mean change from baseline (28-day run-in period) in the monthly average number of headache days of at least moderate severity during the 12-week period after the 4th dose of fremanezumab.
• The mean change from ne (28-day run-in period) in the monthly average number of days of use of any acute headache medications during the 12-week period after the 4th dose of fremanezumab.
• The proportion of patients reaching at least 75% reduction from baseline (28- day run-in period) in the monthly average number of migraine days during the 12-week period after the 4th dose of study drug.
• The proportion of patients reaching total (100%) se (no he) during the 12-week period after the 4th dose of study drug.
• The proportion of ts reaching total (100%) response (no headache) for at least one month during the 12-week period after the 4th dose of study drug.
• The mean change from baseline (28-day run-in period) in the monthly average number of headache hours of at least moderate severity during the 12-week period after the 4th dose of the study drug.
• The proportion of patients reaching at least 50% reduction from baseline (28- day run-in period) in the number of migraine days during the 4-week period after the 4th dose of study drug for whom this level of effect is sustained throughout the 12-week period after the 4th dose of study drug.
• The proportion of patients reaching at least 75% ionfrom baseline (28- day run-in period)in the number of migraine days during the 4-week period after the 4th dose of study drug for whom this level of effect is sustained throughout the 12-week period after the 4th dose of study drug.
• The mean change from baseline (28-day run-in ) in the monthly average number of days with nausea or vomiting during the 12-week period after the 4th dose of study drug.
• The mean change from baseline (28-day run-in period) in the monthly average number of days with photophobia and hobia during the 12-week period after the 4th dose of study drug.
• The mean change from baseline (28-day run-in ) in the monthly average number of days of use of migraine-specific acute headache medications (triptans and ergot compounds) during the 12-week period after the 4th dose of study drug.
• The mean change from baseline (28-day run-in ) in the number of migraine days during the 12-week period after the 4th dose of study drug for patients who failed topiramate for migraine in the past.
• The mean change from baseline (28-day run-in period) in the number of migraine days during the 12-week period after the 4th dose of study drug for patients who failed onabotulinumtoxinA for migraine in the past.
• The mean change from baseline (28-day run-in period) in the number of migraine days during the 12-week period after the 4th dose of study drug for patients who failed valproic acid for migraine in the past.
• The mean change from ne (28-day run-in period) in the number of migraine days during the 12-week period after the 4th dose of study drug for patients who failed 2 to 3 classes of preventive medications in addition to valproic acid for migraine in the past.
• The proportion of patients reaching at least 50% reduction from baseline (28- day run-in ) in the monthly average number of ne days during the 12-week period after the 4th dose of fremanezumab for patients who failed 2 to 3 classes of tive medications in addition to ic acid for ne in the past.
• The mean change from baseline (day 0) in disability score, as measured by the HIT-6; at 4 weeks after administration of the 6th dose of study drug.
• The mean change from baseline (day 0) in disability score, as measured by the MIDAS questionnaire, at 4 weeks after the administration of the 6th dose of study drug.
• The mean change from baseline (day 0) in quality of life, as measured by the MSQOL questionnaire, at 4 weeks after administration of the 6th dose of study drug.
• The mean change from baseline (day 0) in the health statuses measured by the EQ-5D-5L onnaire at 4 weeks after administration of the 6th dose of study drug.
• The mean change from baseline (day 0) in patient depression status, as measured by the PHQ-2 and PHQ-9, at 4 weeks after administration of the 6th dose of study drug.
• The mean change from baseline (day 0) in patient work productivity and activity ment, as measured by the WPAI questionnaire, at 4 weeks after administration of the 6th dose of study drug.
• The mean change from baseline (day 0) of patient satisfaction, as measured by the PGIC scale, at 4 weeks after the 6th dose of study drug.
Exploratory endpoints for both the -blind and open-label periods: • To evaluate the immunogenicity response of fremanezumab and the impact of ADAs on clinical outcomes in patients exposed to sc fremanezumab.
• To explore the relationship between genetic polymorphisms (including those within the calcitonin gene-related peptide (CGRP) receptor-ligand complex, in migraine-associated susceptibility genes, and in as-yet undiscovered loci) versus ne onset/severity, adverse events to medication and fremanezumab cy.
Study tion The study population is composed of male and female patients, aged 18 to 70 years, inclusive, with a history of migraine (as defined by International Classification of Headache Disorders, 3rd revision [ICHD-3] criteria [IHS 2013]) for at least 12 months prior to screening and sis of episodic or chronic migraine prospectively documented via a review of headache data recorded daily in an electronic daily headache diary device during a 28-day run-in period.
At the time of ing, patients must have documented inadequate response to two to four classes of prior preventive migraine tions within the past 10 years (in medical chart or by treating physician’s confirmation).
A subset of these patients (at least 120 patients) must have documented inadequate response to 2 to 3 classes of prior preventive medications and in addition inadequate se to valproic acid. All inadequate responses must be within the past 10 years (in medical chart or by treating physician's confirmation).
Prior migraine preventive medications are as s (see Martelletti et al., J.
Headache Pain, 47, 2014); • beta-blockers: propranolol, metoprolol, atenolol, and bisopropol anticonvulsants: topiramate tricyclics: amitriptyline calcium channel blocker: izine angiotensin II receptor antagonist: candesartan onabotulinumtoxinA valproic acid The use of the medications listed above on a daily basis for other indications is disallowed for the duration of the study. Any of the listed medications are allowed if given as l or eye drops. Other medications in the same classes but not included in this list are allowed.
Inadequate response to prior preventative migraine medications (including ic acid) is defined as: • Patients must have documented inadequate response (in medical chart or by ng physician’s confirmation) to two to four classes of prior preventive medications from the list above less of which class the medication belongs to.
• Inadequate response is defined as: no clinically meaningful improvement per treating physician s judgment after at least 3 months of therapy at a stable dose considered appropriate for migraine prevention according to accepted y guidelines: or when treatment has to be upted e of adverse events that made it intolerable by the patient or the drug is contraindicated or not suitable for the patient. The 3 month period does not apply if the drug is intolerable or contraindicated or not suitable for the patient.
If onabotulinumtoxinA is the previously failed preventive medication, at least 2 sets of injections and 3 months must have passed since the last set of injections prior to the screening visit. so Patient Inclusion Criteria Patients are included in the study only if they meet all of the ing criteria: a. The patient is capable of giving signed informed consent. b. Male or female patient aged 18 to 70 years, inclusive. c. The patient has a diagnosis of migraine with onset at <50 years of age. d. The patient is in good health in the opinion of the investigators as determined by medical history: physical examination, laboratory tests, and ECG. e. Body weight >45 kg and body mass index (BMI) within the range 17.5 to 34.9 kg/m2 (inclusive). f. The patient has a history of migraine (according to ICHD-3 criteria [IHS 2013]) or clinical judgment suggests a migraine diagnosis (not better accounted for by another ICHD-3 diagnosis) for >12 months prior to screening. g. The patient fulfills the following ia for migraine in prospectively collected ne information during the 28-day run-in period: For ts with CM: • Headache occurring on >15 days • On >8 days, fulfilling anyof the following: ICHD-3 diagnostic criteria C and D for 1.1 Migraine without aura II. ICHD-3 criteria B and C for 1.2 Migraine with aura Probable migraine (a migraine subtype where only 1 migraine criterion is missing) IV. The patient used a triptan or ergot derivative to treat an established he For patients with EM: • Headache occurring >6 days • On >4 days, fulfilling any of the following: i. ICHD-3 diagnostic criteria C and D for 1.1 Migraine without aura ii. ICHD-3 ia B and C for 1.2 Migraine with aura iii. Probable migraine (a migraine subtype where only 1 migraine criterion is missing) iv. The patient used a triptan or ergot tive to treat an established headache h. At the time of ing, the patient must have documented inadequate se to two to four classes of prior preventive migraine medications, as d herein, within the past 10 years (in medical chart or by treating physician's mation). uate se to prior preventive migraine medications (including valproic acid) is defined as: no clinically meaningful improvement per treating physician’s judgment, after at least 3 months of therapy at a stable dose considered appropriate for migraine prevention according to accepted country guidelines, or when treatment has to be interrupted because of adverse events that made it rable for the t or the medication is contraindicated or unsuitable for the prophylactic treatment of migraine for the t. The 3-month period does not apply if the drug is intolerable or contraindicated. If onabotulinumtoxinA is the previous preventive medication, at least 2 sets of injections and 3 months must have passed since the last set of injections prior to the screening visit. i. The patient agrees not to te any migraine medications, as defined herein, during the run-in period, double-blind treatment , and open-label period.
At the screening visit, at least five half-lives of these medications must have passed since the patient has been on any migraine preventive medication, as defined herein. j. Other prescription medications not defined as prior migraine preventive medication as defined herein must have been on stable doses for at least 2 months at the screening visit with no expectation to change during the double­ blind treatment period of the study. k. The patient demonstrated compliance with the electronic headache diary during the run-in period by entry of headache data on a minimum of 24 days cumulative during the run-in period (~85% diary compliance). l. Women may be included only if they have a negative serum beta-human chorionic gonadotropin G) test at ing, are sterile, or postmenopausal. m. Women of childbearing potential (WOCBP) whose male partners are potentially fertile (e.g.: no vasectomy) must use highly effective birth control methods for the duration of the study and the follow-up period (i.e., starting at ing) and for 6.0 months after tinuation of IMP. n. Men must be sterile, or if they are potentially fertile/reproductively competent (not surgically [eg, vasectomy] or congenitally sterile) and their female partners are of childbearing potential, must use, together with their female partners, able birth control methods for the duration of the study and for 6.0 months after discontinuation of the IMP. o. The patient must be willing and able to comply with study restrictions, to remain at the clinic for the required duration during the study period and to return to the clinic for the follow-up evaluations. t Exclusion Criteria Patients are excluded from participating in this study if they meet any of the following criteria: a. At the time of screening visit, patient is receiving any preventive migraine medications, as defined herein, less of the medical indication for more than 5 days and expects to continue with these medications. b. Patient has received onabotulinumtoxinA for migraine or for any medical or cosmetic reasons requiring injections in the head, face, or neck during the 3 months before screening visit. c. The patient uses medications containing opioids (including e) or barbiturates ding ital/aspirin/caffeine [Fiorinal©, s plc]: butalbital/paracetamol/caffeine [Fioricet®, Cardinal ], or any other combination containing butalbital) on more than 4 days during the run-in period for the treatment of ne or for any other reason. d. The patient has used an intervention/device (e.g.. scheduled nerve blocks and transcranial magnetic stimulation) for migraine during the 2 months prior to screening. e. The patient uses ns/ergots as preventive therapies for migraine. f. Patient uses non-steroidal anti-inflammatory drugs (NSAIDs) as preventive therapy for migraine on nearly daily basis for other indications. Note: Low dose aspirin (e.g., 81 mg) used for cardiovascular disease prevention is allowed. g- The patient suffers from unremitting headaches, defined as having headaches for more than 80% of the time he/she is awake, and less than 4 days without headache per month. Daily headache is acceptable if the patient has headaches 80% or less of the time he/she is awake on most days. h. The patient has a clinically significant hematological, cardiac, renal, endocrine, pulmonary, gastrointestinal, genitourinary, ogic, hepatic, or ocular disease that, in the n of the investigator, could jeopardize or would compromise the patient’s ability to participate in this study. i. Evidence or medical history of clinically significant psychiatric issues that, in the opinion of the investigator, could jeopardize or would compromise the patient s ability to participate in this study including major depression, panic disorder, or generalized anxiety disorder, any suicide attempt in the past or suicidal ideation with a specific plan in the past two years prior to screening or t suicidal ideation as ed by eC-SSRS. j. History of clinically significant cardiovascular e or vascular ischemia (such as myocardial, neurological [e g., cerebral ischemia], peripheral ity ischemia, or other ischemic event) or thromboembolic events (arterial or venous thrombotic or embolic events), such as cerebrovascular accident (including ent ischemic attacks), deep vein osis, or pulmonary embolism. k. History of human immunodeficiency virus, tuberculosis, or chronic hepatitis B or C ion. l. Past or current history of cancer, except for appropriately d nonmelanoma skin carcinoma in the last 5 years. m. Pregnant or lactating female patients or female patients who plan to become pregnant during the study. n. Participation in a clinical study of a new chemical entity or a prescription medicine within 2 months before screening (or 3 months in case of biologies if the half-life of the biologies is unknown) or 5 half-lives, whichever is longer, or is currently participating in another study of an IMP (or a medical device). o. Any prior re to a monoclonal antibody targeting the CGRP pathway (such as AMG 334, ALD304, LY2951742, or fremanezumab). p. Any finding in the baseline 12-lead EGG considered clinically significant in the judgment of the investigator. q. Any finding that, in the judgment of the investigator, is a clinically significant abnormality, including serum chemistry, hematology, coagulation, and urinalysis test values (abnormal tests may be repeated for mation). r. Hepatic s (alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase) >1.5 * the upper limit of the normal (ULN) range after confirmation in a repeat test or suspected hepatocellular damage that fulfills criteria for Hy:s law at screening. s. Serum creatinine >1.5 x the ULN! clinically significant proteinuria, or evidence of renal disease at screening. t. The patient has a y of alcohol abuse during the 2 years prior to screening. u. The patient has a history of drug abuse during the past 2 years or drug dependence during the past 5 years. v. The patient cannot participate or sfully complete the study, in the opinion of their healthcare provider or the investigator for any of the following reasons: • mentally or legally incapacitated or unable to give t for any reason • in custody due to an administrative or a legal decisiom under tutelage; or being admitted to a sanitarium or social institution • unable to be contacted in case of emergency • has any other condition which: in the n of the investigator, makes the t inappropriate for inclusion in the study w. The patient is a study center or sponsor employee who is directly involved in the study or the relative of such an employee. x. The patient has been previously screen failed for the study.
Antibody Sequences G1 heavy chain variable region amino acid sequence (SEQ ID NO:1) SGGGLVQPGGSLRLSCAASGFTFSNYWISWVRQAPGKGLEVWAEIRSES YAEAVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCLAYFDYGLAIQNY WGQGTLVTVSS G1 light chain variable region amino acid sequence (SEQ ID NO:2) EIVLTQSPATLSLSPGERATLSCKASKRVTTYVSWYQQKPGQAPRLLIYGASNRYL GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCSQSYNYPYTFGQGTKLEIK G1 CDR H1 (extended CDR) (SEQ ID NO:3) GFTFSNYWIS G1 CDR H2 (extended CDR) (SEQ ID N0:4) EIRSESDASATHYAEAVKG G1 CDR H3 (SEQ ID N0:5) YFDYGLAIQNY G1 CDR L1 (SEQ ID N0;6) KASKRVTTYVS G1 CDR L2 fSEQ ID NO:7) GASNRYL G1 CDR L3 (SEQ ID NO:8) SQSYNYPYT G1 heavy chain le region nucleotide sequence (SEQ ID NO:9) GAAGTTCAGCTGGTTGAATCCGGTGGTGGTCTGGTTCAGCCAGGTGGTTCCCT GCGTCTGTCCTGCGCTGCTTCCGGTTTCACCTTCTCCAACTACTGGATCTCCTG GGTTCGT CAGGCTCCT GGTAAAGGT CT GGAAT GGGTT GCT G AA ATCCGTTCCG AATCCGACGCGTCCGCTACCCATTACGCTGAAGCTGTTAAAGGTCGTTTCACCA TCTCCCGTGACAACGCTAAGAACTCCCTGTACCTGCAGATGAACTCCCTGCGTG ACACCGCTGTTTACTACTGCCTGGCTTACTTTGACTACGGTCTGGCTA TCCAGAACTACTGGGGTCAGGGTACCCTGGTTACCGTTTCCTCC G1 light chain variable region nucleotide sequence (SEQ ID NO: 10) GA AATCGTT CT G ACCC AGT CCCCGGCT ACCCTGTCCCT GTCCCCAGGT GAACGT G CTACCCTGTCCTGCAAAGCTTCCAAACGGGTTACCACCTACGTTTCCTGGTACCAG CCCGGTCAGGCTCCTCGTCTGCTGATCTACGGTGCTTCCAACCGTTACCT CGGTATCCCAGCTCGTTTCTCCGGTTCCGGTTCCGGTACCGACTTCACCCTGACCA TCTCCTCCCTGGAACCCGAAGACTTCGCTGTTTACTACTGCAGTCAGTCCTACAAC TACCCCTACACCTTCGGTCAGGGTACCAAACTGGAAATCAAA G1 heavy chain full antibody amino acid sequence (including ed lqG2 as described herein) (SEQ ID NO: 11) EVQLVESGGGLVQPGGSLRLSCAASGFTFSNYWISVWRQAPGKGLEWVAEIRSES DASATHYAEAVKGRFTISRDNAKNSLYLQMNSLRAEDTAVYYCLAYFDYGLAIQNY VTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVSWNSG A LTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV DRIVER KCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVQFNW YVDGVEVHNAKTKPREEQFNSTFRVVSVLTVVHQDWLNGKEYKCKVSNKGLPSSI EKTISKTKGQPREPQVYTLPPSREEMTKNQVSLTCLVKGFYPSDIAVEWESNGQPE NNYKTTPPMLDSDGSFFLYSKLTVDKSRW'QQGNVFSCSVMHEALHNHYTQKSLSL G1 light chain full antibody amino acid sequence (SEQ ID NO: 12) SPATLSLSPGERATLSCKASKRVTTYVSWYQQKPGQAPRLLIYGASNRYL GIPARFSGSGSGTDFTLTISSLEPEDFAVYYCSQSYNYPYTFGQGTKLEIKRTVAAP SVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTEQDS KDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC G1 heavy chain full antibody nucleotide sequence (including modified lqG2 as bed herein) (SEQ ID NO:13) GAAGTTCAGCT GGTT GAATCCGGT GGTGGTCT GGTTC AGCCAGGT CT GCGTCTGTCCTGCGCTGCTTCCGGTTTCACCTTCTCCAACTACTGGATCTCCTG GGTT CGI CAGGCT CCTGGT AAAGGTCT GGAAT GGGTTGCT GAAATCCGTTCCG AATCCGACGCGTCCGCTACCCATTACGCTGAAGCTGTTAAAGGTCGTTTCACCA TCTCCCGTGACAACGCTAAGAACTCCCTGTACCTGCAGATGAACTCCCTGCGTG CTGAAGACACCGCTGTTTACTACTGCCTGGCTTACTTTGACTACGGTCTGGCTA TCCAGAACTACTGGGGTCAGGGTACCCTGGTTACCGTTTCCTCCGCCTCCACC AAGGGCCCATCTGTCTTCCCACTGGCCCCATGCTCCCGCAGCACCTCCGAGAG CACAGCCGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCAGAACCTGTGACCG TGTCCTGGAACTCTGGCGCTCTGACCAGCGGCGTGCACACCTTCCCAGCTGTC CT GCAGT CCTCAGGTCTCT ACTCCCT CAGCAGCGT GGT GACCGT GCCATCCAG CAACTTCGGCACCCAGACCTACACCTGCAACGTAGATCACAAGCCAAGCAACA CCA AGGT CGAC AAGACCGT GGAG AGA AAGTGTT GTGTGGAGT GTCCACCTTGT CCAGCCCCTCCAGTGGCCGGACCATCCGTGTTCCTGTTCCCTCCAAAGCCAAA GGACACCCTGATGATCTCCAGAACCCCAGAGGTGACCTGTGTGGTGGTGGACG TGTCCCACGAGGACCCAGAGGTGCAGTTCAACTGGTATGTGGACGGAGTGGAG GT GC AC AACGCCAAGACCAAGCC GGAGCAGTT CAACT CCACCTT CAG AGTGGT GAGCGT GCT GACCGT GGT GGACTGGCTGAACGGAAAGGAG T AT AAGT GTAAGGT GTCCAACAAGGGACT GCCAT CCAGCATCGAGAAG ACCAT C TCCAAGACCAAGGGACAGCCAAGAGAGCCACAGGTGTATACCCTGCCCCCATC C AGAG AGGAGAT GACCAAG AACCAGGT GTCCCTGACCT GTCT GGT GA AGGGAT TCTATCCATCCGACATCGCCGTGGAGTGGGAGTCCAACGGACAGCCAGAGAAC AACTATAAGACCACCCCTCCAATGCTGGACTCCGACGGATCCTTCTTCCTGTAT T CCAAGCTG ACCGT GGACAAGT CCAGAT GGCAGCAGGGAAACGT GTT CT CTT G TTCCGTGATGCACGAGGCCCTGCACAACCACTATACCCAGAAGAGCCTGTCCC CAGGAAAGTAA is G1 light chain full antibody nucleotide sequence (SEQ ID NO:14) GAAATCGTTCTGACCCAGTCCCCGGCTACCCTGTCCCTGTCCCCAGGTGAACG TGCTACCCTGTCCTGCAAAGCTTCCAAACGGGTTACCACCTACGTTTCCTGGTA CCAGCAGAAACCCGGTCAGGCTCCTCGTCTGCTGATCTACGGTGCTTCCAACC GTTACCTCGGTATCCCAGCTCGTTTCTCCGGTTCCGGTTCCGGTACCGACTTCA CCCT GACCATCTCCTCCCT GGAACCCGAAGACTTCGCT GTTTACTACT GCAGTC AGTCCTACAACTACCCCTACACCTTCGGTCAGGGTACCAAACTGGAAATCAAAC GCACTGTGGCTGCACCATCTGTCTTCATCTTCCCTCCATCTGATGAGCAGTTGA AATCCGGAACTGCCTCTGTTGTGTGCCTGCTGAATAACTTCTATCCGCGCGAGG CCAAAGTACAGTGGAAGGTGGATAACGCCCTCCAATCCGGTAACTCCCAGGAG AGTGTCACAGAGCAGGACAGCAAGGACAGCACCTACAGCCTCAGCAGCACCCT GACCCTGAGCAAAGCAGACTACGAGAAACACAAAGTCTACGCCTGCGAAGTCA CCCATCAGGGCCTGAGTTCTCCAGTCACAAAGAGCTTCAACCGCGGTGAGTGC Amino acid sequence comparison of human and rat CGRP (human g-CGRP (SEQ ID NO:15); human B-CGRP (SEQ ID NO:43): rat g-CGRP (SEQ ID NO:41): and rat B-CGRP (SEQ ID NO:44)) NH2-ACDTATCVTHRLAGLLSRSGGVVKNNFVPTNVGSKAF-CONH2 (human a- CGRP) NH2-ACNTATCVTHRLAGLLSRSGGMVKSNFVPTNVGSKAF-CONH2 (human p- CGRP) NH2-SCNTATCVTHRLAGLLSRSGGWKDNFVPTNVGSEAF-CONH2 (rat a-CGRP) NH2-SCNTATCVTHRLAGLLSRSGGVVKDNFVPTNVGSKAF-CONH2 (rat (3-CGRP) Light chain variable region LCVR17 amino acid sequence (SEQ ID NO:58) SPSSLSASVGDRVTITCRASQDIDNYLNWYQQKPGKAPKLLIYYTSEYHS SGSGSGTDFTFTISSLQPEDIATYYCQQGDALPPTFGQGTKLEIK Heavy chain variable region HCVR22 amino acid sequence (SEQ ID NO:59) QVQLVQSGAEVKKPGASVKVSCKASGYTFGNYWMQWVRQAPGQGLEWMGAIYE GTGDTRYIQKFAGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARLSDYVSGFSY WGQGTLVTVSS Light chain variable region LCVR16 amino acid sequence (SEQ ID NQ:60) DIQMTQSPSSLSASVGDRVTITCRASQDIDNYLNWYQQKPGKAPKLLIYYTSEYHS GVPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQGDALPPTFGQGTKLEIK Heavy chain le region HCVR23 amino acid sequence (SEQ ID NO:61) QVQLVQSGAEVKKPGASVKVSCKASGYTFGNYWMQWVRQAPGQGLEWMGAIYE GTGKTVYIQKFAGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARLSDYVSGFSY WGQGTLVTVSS Light chain variable region LCVR19 amino acid sequence (SEQ ID NO:62) DIQMTQSPSSLSASVGDRVTITCRASKDISKYLNWYQQKPGKAPKLLIYYTSGYHSG VPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGDALPPTFGGGTKVEIK Heavy chain le region HCVR24 amino acid sequence (SEQ ID NO;63) QVQLVQSGAEVKKPGSSVKVSCKASGYTFGNYWMQVWRQAPGQGLEWMGAIYE GTGKTVYIQKFADRVTITADKSTSTAYMELSSLRSEDTAVYYCARLSDYVSGFGYW GQGTTVTVSS Light chain variable region LCVR20 amino acid sequence (SEQ ID NO:64) DIQMTQSPSSLSASVGDRVTITCRASRPIDKYLNWYQQKPGKAPKLLIYYTSEYHSG VPSRFSGSGSGTDFTFTISSLQPEDIATYYCQQGDALPPTFGQGTKLEIK Heavy chain variable region HCVR25 amino acid sequence (SEQ ID NO:65) QVQLVQSGAEVKKPGASVKVSCKASGYTFGNYWMQWVRQAPGQGLEWMGAIYE GTGKTVYIQKFAGRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARLSDYVSGFGY VTVSS is Light chain variable region LCVR21 amino acid sequence (SEQ ID NO;66) DIQMTQSPSSLSASVGDRVTITCRASQDIDKYLNWYQQKPGKAPKLLIYYTSGYHS GVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQGDALPPTFGGGTKVEIK Heavy chain variable region HCVR26 amino acid sequence (SEQ ID NO:67) QVQLVQSGAEVKKPGSSVKVSCKASGYTFGNYWMQWVRQAPGQGLEWMGAIYE GTGKTVYIQKFAGRVTITADKSTSTAYMELSSLRSEDTAVYYCARLSDYVSGFGYW GQGTTVTVSS Light chain variable region LCVR27 amino acid sequence (SEQ ID NO;68) PSSLSASVGDRVTINCQASQSVYHNTYLAWYQQKPGKVPKQLIYDASTLA SGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCLGSYDCTNGDCFVFGGGTKVEIK Heavy chain variable region HCVR28 amino acid sequence (SEQ ID NO;69) EVQLVESGGGLVQPGGSLRLSCAVSGIDLSGYYMNWVRQAPGKGLEWVGVIGING ATYYASWAKGRFTISRDNSKTTVYLQMNSLRAEDTAVYFCARGDIWGQGTLVTVS Light chain variable region LCVR29 amino acid sequence (SEQ ID NO;7Q) QVLTQSPSSLSASVGDRVTINCQASQSVYDNNYLAWYQQKPGKVPKQLIYSTSTLA SGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCLGSYDCSSGDCFVFGGGTKVEIK Heavy chain variable region HCVR30 amino acid sequence (SEQ ID NO:71) EVQLVESGGGLVQPGGSLRLSCAVSGLDLSSYYMQVWRQAPGKGLEWVGVIGIN DNTYYASWAKGRFTISRDNSKTTVYLQMNSLRAEDTAVYFCARGDIWGQGTLVTV Light chain variable region LCVR31 amino acid sequence (SEQ ID NO:72) QVLTQSPSSLSASVGDRVTINCQASQSVYDNNYLAWYQQKPGKVPKQUYSTSTLA SGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCLGSYDCSSGDCFVFGGGTKVEIK Heavy chain le region HCVR32 amino acid sequence (SEQ ID NO:73) EVQLVESGGGLVQPGGSLRLSCAVSGLDLSSYYMQVWRQAPGKGLEVWGVIGIN DNTYYASWAKGRFTISRDNSKTTVYLQMNSLRAEDTAVYFCARGDIWGQGTLVTV Light chain variable region LCVR33 amino acid sequence (SEQ ID NO:74) PSPVSAAVGSTVTINCQASQSVYHNTYLAWYQQKPGQPPKQLIYDASTLA SGVPSRFSGSGSGTQFTLTISGVQCNDAAAYYCLGSYDCTNGDCFVFGGGTEVVV Heavy chain variable region HCVR34 amino acid sequence (SEQ ID NO:75) QSLEESGGRLVTPGTPLTLTCSVSGIDLSGYYMNWVRQAPGKGLEWIGVIGINGAT YYASWAKGRFTISKTSSTTVDLKMTSLTTEDTATYFCARGDIWGPGTLVTVSS Light chain variable region LCVR35 amino acid sequence (SEQ ID NQ:/6) QVLTQSPSSLSASVGDRVTINCQASQSVYHNTYLAWYQQKPGKVPKQLIYDASTLA SGVPSRFSGSGSGTDFTLTISSLQPEDVATYYCLGSYDCTNGDCFVFGGGTKVEiK Heavy chain le region HCVR36 amino acid sequence (SEQ ID NO:77) EVQLVESGGGLVQPGGSLRLSCAVSGIDLSGYYMNWVRQAPGKGLEVWGVIGING ATYYASWAKGRFTISRDNSKTTVYLQMNSLRAEDTAVYFCARGDIWGQGTLVTVS Light chain variable region LCVR37 amino acid sequence (SEQ ID NO;/8) QSVLTQPPSVSAAPGQKVTISCSGSSSNIGNNYVSWYQQLPGTAPKLLIYDNNKRP SGIPDRFSGSKSGTSTTLGITGLQTGDEADYYCGTWDSRLSAVVFGGGTKLTVL Heavy chain variable region HCVR38 amino acid sequence (SEQ ID NO:79) QVQLVESGGGVVQPGRSLRLSCAASGFTFSSFGMHWVRQAPGKGLEWVAVISFD GSIKYSVDSVKGRFTISRDNSKNTLFLQMNSLRAEDTAVYYCARDRLNYYDSSGYY HYKYYGMAVWGQGTTVTVSS

Claims (36)

WHAT IS CLAIMED IS:
1. A method of treating migraine in a subject, the method comprising: selecting a subject who does not respond favorably to a preventative migraine treatment ed from the group consisting of topiramate, carbamazepine; 5 roex sodium; sodium valproate, valproic acid; flunarizine; candesartan; pizotifen, amitriptyline, venlafaxine, nortriptyline, duloxetine. ol, l, metoproloL propranolol pol, timolol, and onabotulinumtoxinA; and administering to the subject a therapeutically effective amount of a monoclonal antibody that modulates the calcitonin gene-related peptide (CGRP) 10 pathway.
2. The method of claim 1, wherein the preventative migrainte treatment is selected from the group consisting of mate; carbamazepine: divalproex sodium, sodium valproate, izine, pizotifen, amitriptyline, venlafaxine, nortriptyline, duloxetine, 15 atenolol, nadolol, metoprolol, propranolol, timolol, and onabotulinumtoxinA.
3. The method of claim 1, wherein the preventative migraine treatment is selected from the group consisting of propranolol, metoprolol, atenolol, bisopropol, mate, amitriptyline, flunarazine, candesartan, onabotulinumtoxinA, and ic 20 acid.
4. The method of any one of claims 1 to 3, wherein the subject does not respond favorably to two or more preventative migraine treatments. 25 5. The method of claim 4, wherein each preventative migraine treatment is selected from a ent cluster, wherein the clusters are defined as follows: cluster A: propranolol, metoprolol, atenolol, and bisopropol cluster B: topiramate cluster C: ptyline 30 cluster D: flunarizine cluster E: candesartan cluster F: onabotulinumtoxinA; and cluster G: valproic acid.
5
6. The method of any one of claims 1 to 5, n the subject does not respond bly to the preventative migraine treatment after about three months and/or develops adverse side effects.
7. The method of any one of claims 1 to 5, wherein one of the preventative migraine io treatments is onabotulinumtoxinA and the subject does not d favorably to onabotulinumtoxinA treatement after about six months and/or develops adverse side effects.
8. The method of claim 1, wherein the monoclonal antibody is administered to the 15 subject intravenously or subcutaneously.
9. The method of claim 1, wherein the monoclonal antibody is stered at a dose of about 675 mg. 20
10. The method of claim 1, wherein the monoclonal antibody is administered at a dose of about 225 mg in three separate ions.
11. The method of claim 1, n the monoclonal antibody is administered at a dose of about 675 mg followed by subsequent doses of about 225 mg at one month 25 intervals.
12. The method of claim 1, wherein the monoclonal antibody is administered at a dose of about 675 mg followed by five subsequent doses of about 225 mg at one month intervals.
13. The method of claim 1, wherein the monoclonal antibody is administered at a dose of about 225 mg followed by subsequent doses of about 225 mg at one month intervals. 5
14. The method of claim 1, wherein the onal dy is administered at a dose of about 675 mg followed by subsequent doses of about 675 mg administered every quarter.
15. The method of claim 14: wherein the monoclonal antibody is administered 10 subcutaneously.
16. The method of claim 1, wherein the administering comprises administering the antibody to the subject from a pre-filled syringe, lled syringe with a needle safety device, injection pen, or auto-injector comprising a dose of the monoclonal 15 antibody.
17. The method of claim 1, wherein the monoclonal antibody is administered as a formulation comprising the antibody at a concentration of at least about 150 mg/mL. 20
18. The method of claim 1, wherein the monoclonal antibody is administered in a volume of less than 2 ml.
19. The method of claim 1, n the monoclonal antibody is an anti CGRP antagonist antibody.
20. The method of claim 1, wherein the monoclonal antibody is human or humanized.
21. The method of claim 1, wherein the onal antibody is a humanized anti- 30 CGRP nist antibody.
22. The method of claim 1, wherein the monoclonal antibody comprises a CDR HI as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID N0:5; a CDR L1 as set forth in SEQ ID N0:6: a CDR L2 as set forth in SEQ ID N0:7: and a CDR L3 as set forth in SEQ ID N0:8.
23. The method of claim 1, wherein the monoclonal antibody is an IgGt lgG2; lgG3 5 or lgG4 antibody.
24. The method of claim 1, wherein the subject is human.
25. The method of claim 1, comprising administering to the t a second agent 10 simultaneously or sequentially with the monoclonal antibody, wherein the second agent is an acute he medication.
26. The method of claim 25: wherein monthly use of the second agent by the subject is sed by at least 15% after administering the monoclonal antibody
27. A method of treating migraine in a t, the method comprising: selecting a subject who does not respond favorably to two to four different classes of preventative migraine treatment selected from the group consisting of beta-blockers: anticonvulsants, tricyclics, calcium channel blockers, angiotensin II 20 receptor antagonists, onabotulinumtoxinA, and valproates; and stering to the subject a therapeutically effective amount of a monoclonal antibody that modulates the calcitonin gene-related peptide (CGRP) pathway. 25
28. The method of claim 27, wherein the monoclonal antibody is an anti CGRP antagonist antibody.
29. The method of claim 27, wherein the monoclonal antibody is human or humanized.
30. The method of claim 27, wherein the monoclonal antibody is a zed anti- CGRP nist antibody.
31. The method of claim 27; wherein the monoclonal antibody comprises a CDR H1 as set forth in SEQ ID NO:3; a CDR H2 as set forth in SEQ ID NO:4; a CDR H3 as set forth in SEQ ID NO:5; a CDR L1 as set forth in SEQ ID NO:6: a CDR L2 as set forth in SEQ ID NO:7: and a CDR L3 as set forth in SEQ ID NO:8.
32. The method of claim 27; wherein the monoclonal dy is administered at a dose of about 675 mg followed by subsequent doses of about 675 mg administered every quarter. 10
33. The method of claim 32: wherein the monoclonal antibody is administered subcutaneously.
34. The method of claim 27: n the monoclonal antibody is an lgG1, lgG2 lgG3, or lgG4 antibody.
35. The method of claim 27, wherein the subject is human.
36. A composition for use in accordance with any of the preceding claims s<1111111 Ms 2 Sim■' «lllll: ■WvvvWvWX I S3 *« **| «» *« yW xW ;S:: :%a; •• ■■ n ^ '^11 n! c- : «♦*; w*; &* a :•• I S! ll»» 115Si oS|S3 SSI B'l.**! ••: 11 ■■ II g J ^ ^ ^ -1 :■■ i ■■$ v***« «1^ O 5SS M 2 ■ o oS S S S J O ■&■• o o I ^ ^ ^ rv ^ ^ ^ ^ o o o o 2S5SSS333 S’ililSlSjsHi a Ji ^ ^ ^ <3^ ^.y ^ ^ %• I * » ^5 ^ *$ J- «4 W II M S*'*^ ^ ^ o « ^ * ^ ^ ^ ^ 4? **« ^ •^•. <. < O ^ 'H 3. 4$ ^ 4| 4 ^ r'N 2^ ^ b i ^ ^ ^ ^ <^s <3^: ?N$ ^s$ ? w ^ ^ . Jt C> ^ . ^ x ? O ^ T ^ b 5k wt XV'.V 2N ^ ^:< ?>' yfe ^ ^ f ^ i IsIlaiiiSiS’S i- j zc *•*—— w 4901 25mg/kg IP 72h pre^stim
NZ792154A 2016-09-23 2017-09-22 Treating refractory migraine NZ792154A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US62/399,180 2016-09-23
US62/558,557 2017-09-14

Publications (1)

Publication Number Publication Date
NZ792154A true NZ792154A (en) 2022-09-30

Family

ID=

Similar Documents

Publication Publication Date Title
US20230242631A1 (en) Treating refractory migraine
US11555064B2 (en) Treating headache comprising administering an antibody to calcitonin gene-related peptide
US20200102377A1 (en) Treating cluster headache
US20230235032A1 (en) Antagonist Antibodies Directed Against Calcitonin Gene-Related Peptide and Methods Using Same
US20200148761A1 (en) Preventing, treating, and reducing (persistent) post-traumatic headache
NZ792154A (en) Treating refractory migraine
EA040890B1 (en) TREATMENT OF REFRACTORY MIGRAINE
EA043536B1 (en) ANTAGONISTIC ANTIBODIES DIRECTED AGAINST THE PEPTIDE ENCODED BY THE CALCITONIN GENOME AND METHODS OF THEIR APPLICATION
NZ724442B2 (en) Antagonist antibodies directed against calcitonin gene-related peptide and methods using same