NZ788137A - A medicament and method for treating pain - Google Patents

A medicament and method for treating pain

Info

Publication number
NZ788137A
NZ788137A NZ788137A NZ78813719A NZ788137A NZ 788137 A NZ788137 A NZ 788137A NZ 788137 A NZ788137 A NZ 788137A NZ 78813719 A NZ78813719 A NZ 78813719A NZ 788137 A NZ788137 A NZ 788137A
Authority
NZ
New Zealand
Prior art keywords
ibuprofen
dosage form
medicament
solid oral
oral dosage
Prior art date
Application number
NZ788137A
Inventor
Callahan Matt
Murphy Maura
Original Assignee
Aft Pharmaceuticals Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aft Pharmaceuticals Limited filed Critical Aft Pharmaceuticals Limited
Publication of NZ788137A publication Critical patent/NZ788137A/en

Links

Abstract

method of treating pain by administering a medicament in the form of a solid oral dosage form comprising 325 mg (± 5%) of acetaminophen and 97.5 (± 5%) mg of ibuprofen, or 500 mg (± 5%) of acetaminophen and 150 mg (± 5%) of ibuprofen, wherein the ibuprofen has a [D50] between 1 and 9 μm and the dosage form has been prepared by milling the ibuprofen together with the acetaminophen . sage form has been prepared by milling the ibuprofen together with the acetaminophen .

Description

PHARMACEUTICAL COMPOSTION CONTAINING ACETOMINOPHEN AND IBUPROFEN BACKGROUND For various non-steroidal anti-inflammatory drugs (NSAIDs) there is evidence that high, early plasma concentrations result in better early pain relief, better overall pain relief, longer lasting pain relief and lower rates of remedication (Moore et al. (2015) British Journal of Clinical Pharmacology 80:381). For ibuprofen, more rapid absorption can result in earlier and higher maximum plasma trations and this results in earlier onset of analgesia and better overall and longer g analgesia in dental pain models. The effect of fast acting formulations can be significant. In one study, 200 mg of a fast acting formulation of an ibuprofen salt produced the same or better analgesia as 400 mg ibuprofen acid, and with a reduced requirement for onal analgesic use (Moore et al. (2014) Pain 155:14). It is possible to alter the pharmacokinetics of ibuprofen by ng the particle size to below 1,000 nm (WO 2010/121328).
SUMMARY Described herein is a solid oral unit dosage pharmaceutical composition containing acetaminophen (325 mg ± 5%) and ibuprofen (97.5 mg ± 5%) having a higher maximum plasma concentration for ibuprofen ed to a composition called Maxigesic 325. Also described is a solid oral unit dosage pharmaceutical composition containing acetaminophen (500 mg ± 5%) and ibuprofen (150 mg ± 5%). These dosage forms are referred to as Rapid Maxigesic 325 and Rapid Maxigesic 500, respectively. This sure features these ceutical compositions as well as methods for producing and using such itions. While this document refers to acetaminophen hout, it should be understaood that this is also known as paracetamol.
The solid oral dosage forms described herein include ibuprofen (free acid) that is particularly y dissolving in vitro. The impact of increased in vitro dissolution rates on pharmacokinetic parameters is highly le. In the case of the present dosage forms, the rapidly dissolving ibuprofen results in a product with meaningfully higher Cmax for ibuprofen. Significantly, the ibuprofen in the present dosage forms has a particle size that is larger than 1,000 nm.
Described herein is a solid oral dosage form comprising 325 mg (± 5%) of acetaminophen and 97.5 mg (± 5%) of fen or 500 mg (± 5%) of acetaminophen and 150 mg (± 5%) of ibuprofen, wherein the ibuprofen has a [D50] between 1 and 9 μm.
In various embodiments: the fen has a [D10] between 1 and 3 μm; the fen has a [D90] between 3 and 16 μm; the fen has a [D50] between 2 and 8 μm, a [D10] between 1 and 3 μm and a [D90] between 4 and 16 μm; the dissolution rate of ibuprofen in the solid oral dosage form is such that, when tested using USP Apparatus II (paddles) set to rotation speed of 50 rpm in 900 mL of 50 mM pH 5.8 ate buffer at 37 °C, wherein 80% or more (e.g., at least 85% to 95% or 95% to 100%) of the ibuprofen dissolves in 15 minutes or less; the dosage form is a tablet (e.g., a coated ); the [D90] to [D50] ratio is between 4:1 and 1.5:1; the [D90] to [D50] ratio is between 3:1 and 1.5:1; the [D50] to [D10] ratio is between 4:1 and 1.5:1; and the [D50] to [D10] ratio is between 3:1 and 1.5:1.
In some cases, the dosage form is prepared by a process comprising jet milling a composition comprising 21-23% wt/wt ibuprofen and 73-75% wt/wt acetaminophen. In some cases, the composition subjected to jet milling further comprises a surfactant (e.g., sodium lauryl sulfate).
Also described is a method for treating pain (e.g., mild to moderate acute pain) comprising administering a dose of 1, 2 or 3 units of the solid oral dosage form comprising 325 mg (± 5%) of acetaminophen and 97.5 mg (± 5%) of ibuprofen. In some cases, the administration is 1, 2, 3 or 4 times daily.
Also described is a method for treating pain (e.g., mild to moderate acute pain) comprising administering a dose of 1 or 2 units of the solid oral dosage form comprising 500 mg (± 5%) of acetaminophen and 150 mg (± 5%) of ibuprofen. In some cases, the administration is 1, 2, 3 or 4 times daily.
Also described is a method for ing a pharmaceutical composition, comprising jet milling a composition comprising acetaminophen, fen and a surfactant (e.g. sodium lauryl sulfate), wherein the ratio of acetaminophen to ibuprofen is 3:1 (w/w), under conditions and for a time to reduce the particle size of the ibuprofen to a median particle size, on a volume average basis between 2 and 8 μm.
Also described is a method for preparing a pharmaceutical composition, comprising jet milling a composition sing inophen, ibuprofen and a tant (e.g. sodium lauryl sulfate), wherein the ratio of acetaminophen to ibuprofen is 3:1 (w/w), under conditions and for a time to achieve a median bulk particle size between 4 and 15 μm.
In some cases: the [D90] of the fen in Rapid Maxigesic 325 and Rapid Maxigesic 500 is greater than 2 μm (e.g., greater than 3, 4, 5 6, 7, 8, 9, 10, 11 or 12 μm) and less than one of: 18 μm, 17 μm 16 μm; 14 μm, and 13 μm (preferably 3-17 μm 3-16 μm or 4-15 μm); the [D50] of the ibuprofen greater than 1 μm, 1.5 μm, 2 μm, 2.5 μm, 3 μm, 3.5 μm, 4 μm, 4.5 μm, 5 μm , 5.5 μm, 6 μm), but less than 12 μm, 10 μm, 9 μm, or 8 μm (preferably 1-11 μm, 1-10 μm, 2-10 μm, 2-9 μm); the [D10] of the ibuprofen is less than 7 μm (e.g., 6.5, 6, 5.5, 5, 4.5, 4, 3.5, 3, 2.5, 2, or 1.5 μm), but greater than 100 nm; the ratio of [D90] to [D50] is between 4:1 and 2:1; and the ratio of [D50] to [D10] is between 3:1 and 1.5:1 (all measurements on a volume average basis).
Also described herein is a method for treating pain, e.g., mild to moderate acute pain, comprising administering to a patient in need thereof a therapeutically effective dose (acetaminophen 975 mg (± 5%) + ibuprofen 292.5 mg (± 5%)) of the Rapid Maxigesic 325 unit dosage form (acetaminophen 325 mg (± 5%) + ibuprofen 97.5 mg (± 5%)/unit dose) up to 4 times a day (acetaminophen 3,900 mg (± 5%) + ibuprofen 1,170 mg (± 5%)/day).
Also described herein is a method for treating pain, e.g., mild to moderate acute pain, comprising administering to a t in need thereof a therapeutically ive dose (acetaminophen 1,000 mg (± 5%) + fen 300 mg (± 5%)) of the Rapid Maxigesic 500 unit dosage form (acetaminophen 500 mg (± 5%) + ibuprofen 150 mg (± 5%)/unit dose) up to 4 times a day (acetaminophen 4,000 mg (± 5%) + ibuprofen 1,200 mg (± 5%)/day).
Additional dosage regimes for Rapid Maxigesic 325 include: 1 unit dose given 1, 2, 3 or 4 times daily; 2 unit doses given 1, 2, 3 or 4 times daily; and 3 unit doses given 1, 2, 3 or 4 times daily.
Additional dosage regimes for Rapid Maxigesic 500 include: 1 unit dose given 1, 2, 3 or 4 times daily and 2 unit doses given 1, 2, 3 or 4 times daily.
The dissolution rate of the ibuprofen in a coated tablet containing 97.5 mg (± 5%) of ibuprofen is such that when tested in 900 ml of pH 5.8 phosphate buffer (50mM) using USP Apparatus II at 50 rpm and 37°C, at least 75%, 80% or 85% ibuprofen dissolves in 15 min or less (e.g., 14 min or less, 13 min or less, e.g., 85% can dissolve in 15 min). For example, at least 85% can dissolve in 12-19 minutes.
The dissolution rate of the ibuprofen in a coated tablet containing 150 mg (± 5%) of ibuprofen is such that when tested in 900 ml of pH 5.8 phosphate buffer (50mM) using USP tus II at 50 rpm and 37°C, is such that at least 75%, 80% or 85% fen dissolves in 15 min or less (e.g., 14 min or less, 13 min or less, e.g., 85% can dissolve in 15 min). For example, at least 85% can dissolve in 12-19 minutes.
The dosage form can include various excipients. For example, the dosage form can include one or more of: a diluent, ant, disintegrant, binder and wetting agent. For example, the dosage form can include one or more of: magnesium stearate, povidone, lactose, microcrystalline cellulose atinized starch, ellose, sodium starch glycolate, sodium starch fumarate, sodium lauryl sulfate, and croscarmellose sodium. The tablet can be uncoated or, preferably, coated with a suitable coating agent.
The dry milling apparatus used is preferably a jet mill (e.g., a spiral jet mill).
In another aspect, the disclosure comprises a method for manufacturing a pharmaceutical composition as described herein comprising the step of ing a composition comprising ibuprofen and acetaminophen prepared by a method described herein or a ition as described herein, together with one of a diluent, lubricant, ent, disintegrant, and wetting agent, to produce a pharmaceutically able solid dosage form.
The disclosure described herein may include one or more ranges of values (e.g. size, concentration etc.). A range of values will be understood to include all values within the range, including the values defining the range, and values adjacent to the range that lead to the same or substantially the same outcome as the values immediately adjacent to that value which defines the boundary to the range.
Throughout this specification, unless the t requires ise, the word “comprise” or variations, such as “comprises” or “comprising” will be understood to imply the inclusion of a stated r, or group of rs, but not the exclusion of any other integers or group of integers. It is also noted that in this disclosure, and particularly in the claims and/or paragraphs, terms such as “comprises”, “comprised”, “comprising” and the like can mean “includes”, “included”, ding”, and the like.
“Therapeutically effective amount” as used herein with respect to methods of treatment and in particular drug dosage, shall mean that dosage that provides the ic pharmacological response for which the drug is administered in a significant number of subjects in need of such treatment. It is emphasized that “therapeutically effective amount,” administered to a particular subject in a particular instance will not always be effective in treating the es described herein, even though such dosage is deemed a “therapeutically effective amount” by those skilled in the art. It is to be further understood that drug dosages are, in particular ces, measured as oral dosages, or with nce to drug concentrations as measured in blood.
Those skilled in the art will appreciate that the disclosure described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the disclosure includes all such variations and modifications. The disclosure also includes all of the steps, features, compositions and materials referred to or indicated in the specification, individually or collectively and any and all combinations or any two or more of the steps or features.
The present disclosure is not to be limited in scope by the specific embodiments described herein, which are intended for the purpose of ification only. Functionally lent products, itions and methods are clearly within the scope of the disclosure as described herein.
In terms of disclosure, this document hereby envisages and discloses each item, parameter, step or other feature mentioned herein in combination with one or more of any of the other items, parameters, steps or other features mentioned herein, in each case regardless of r such combination is claimed.
Other aspects and advantages of the disclosure will become apparent to those skilled in the art from a review of the ensuing description.
DETAILED DESCRIPTION Described herein are s rapid release, solid oral dosage forms containing 325 mg acetaminophen and 97.5 mg of ibuprofen with higher maximum plasma concentration of ibuprofen compared to a dosage form referred to as sic 325. Also described below are various rapid release, solid oral dosage forms containing 500 mg acetaminophen and 150 mg of ibuprofen with higher plasma concentration of ibuprofen compared to a dosage form referred to a Maxigesic 500. sic 325 tablets may contain acetaminophen (325 mg) and ibuprofen (97.5 mg) and Maxigesic 500 tablets may contain acetaminophen (500 mg) and ibuprofen (150 mg). Both are given in single doses of up to three s for the lower strength and up to two tablets for the higher th. The amount of acetaminophen delivered in a single dose is similar in both cases being either up to three tablets of Maxigesic 325: acetaminophen 975mg and ibuprofen 292.5mg or two tablets sic 500: acetaminophen 1000mg and ibuprofen 300mg.
Particle Size For ements made using laser diffraction, the term “median particle size” is defined as the median particle diameter as determined on an lent spherical particle volume basis.
Where the term median is used, it is understood to describe the particle size that divides the population in half such that 50 % of the population on a volume basis is greater than or less than this size. The median particle size is written as: [D50] or D[50] or [D50], D50, D(0.50) or D[0.5] or similar. As used herein [D50] or D[50] or [D50], D50, D(0.50) or D[0.5] or similar shall be taken to mean median particle size.
The term “Dx of the particle size distribution” refers to the xth percentile of the distribution on an equivalent spherical particle volume basis; thus, D90 refers to the 90th percentile, D95 refers to the 95th percentile, and so forth. Taking D90 as an example this can often be written as, [D90] or D[90] or [D90], D(0.90) or D[0.9] or similar. With respect to the median le size and Dx an upper case D or lowercase d are interchangeable and have the same meaning.
The term “D(3,2)” is referred to as the area-weighted mean size or the Sauter diameter; the term “D(4,3)” is referred to as the volume-weighted mean size. Detailed descriptions of how these values are calculated are known in the art and can be found in, for example, ISO 9276- 2:2014(E).
For many of the materials t to the methods of this disclosure the particle size can be easily measured. Where the active material has poor water solubility and the matrix it is milled in has good water lity the powder can simply be dispersed in an aqueous t. In this scenario the matrix dissolves leaving the active material dispersed in the solvent. This size of the particles in the suspension can then be measured by laser light ction.
Medicaments The medicaments of the present disclosure may include the pharmaceutically acceptable material, optionally together with a grinding matrix or at least a portion of the grinding matrix, combined with one or more pharmaceutically acceptable carriers, as well as other agents commonly used in the preparation of ceutically acceptable compositions.
As used herein "pharmaceutically acceptable carrier" may include any and all solvents, dispersion media, coatings, antibacterial and antifungal , isotonic and absorption delaying agents, and the like that are physiologically compatible. ceutical acceptable rs according to the disclosure may include one or more of the following examples: (1) surfactants and polymers including, but not limited to polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), sodium lauryl sulfate, polyvinylalcohol, crospovidone, polyvinylpyrrolidone- polyvinylacrylate copolymer, ose derivatives, hydroxypropylmethyl cellulose, hydroxypropyl cellulose, carboxymethylethyl cellulose, hydroxypropyllmethyl ose phthalate, rylates and polymethacrylates, urea, sugars, polyols, and their polymers, emulsifiers, sugar gum, , organic acids and their salts, vinyl pyrrolidone and vinyl acetate; and/or (2) binding agents such as various celluloses and cross-linked polyvinylpyrrolidone, rystalline cellulose, povidone; and/or (3) filling agents such as lactose monohydrate, lactose anhydrous, microcrystalline cellulose and various es; and/or (4) lubricating agents such as colloidal silicon dioxide, talc, stearic acid, magnesium te, calcium stearate, sodium stearyl fumarate; and/or (5) sweeteners such as any natural or artificial sweetener including sucrose, l, sodium saccharin, cyclamate, aspartame, and acesulfame K; and/or (6) flavoring agents; and/or (7) preservatives such as potassium sorbate, methylparaben, propylparaben, benzoic acid and its salts, other esters of parahydroxybenzoic acid such as butylparaben, alcohols such as ethyl or benzyl l, phenolic chemicals such as phenol, or quarternary compounds such as benzalkonium chloride; and/or (8) buffers; and/or (9) Diluents such as pharmaceutically acceptable inert fillers, such as microcrystalline ose, lactose, dibasic calcium phosphate, saccharides, and/or mixtures of any of the foregoing; and/or (10) wetting agents such as docusate sodium, sodium lauryl sulfate, phospholipids, poloxamer, polysorbate 80, sorbitan esters, tricaprylin, glyceryl monooleate, myristyl alcohol and mixtures f; and/or (11) disintegrants; such as croscarmellose sodium, crospovidone, sodium starch glycolate, and/or (12) effervescent agents such as effervescent couples such as an organic acid (e.g., citric, tartaric, malic, fumaric, adipic, succinic, and alginic acids and anhydrides and acid salts), or a carbonate (e.g. sodium carbonate, ium carbonate, magnesium carbonate, sodium e carbonate, L-lysine carbonate, and arginine carbonate) or bicarbonate (e.g. sodium bicarbonate or potassium bicarbonate); and/or (13) other pharmaceutically acceptable excipients.
Example 1: Attritor Milling and Jet g Improve ution of Ibuprofen Attritor milling of an active pharmaceutical ingredient (API), whether dry or wet, most often takes place in the presence of a milling matrix, i.e., one or more non-active ingredients that can assist in particle size reduction of the API. For example, in a dry milling process, the API can be milled in the presence of lactose or another suitable excipient. Such milling can be used to reduce the median le size to less than 1,000 nm. Due to the high drug load desired for the present dosage form, the acetaminophen was used as the milling matrix for the attritor g studies bed below.
Ibuprofen, acetaminophen and sodium lauryl sulfate (SLS) were milled in an attritor mill using the conditions described in Table 1.
Table 1: Milling Conditions for Attritor Mill Formula Processing parameters Ingredient % w/w Atritor Mill 0.5 gallon, 1S Ibuprofen 22.5% Media: powder ratio 35:1 Acetaminophen 75.5% Milling speed 500 rpm (APAP) Sodium Lauryl Sulfate 2.0% Milling time 40min (SLS) Total 100% yield 51.8% The attritor milling (Table 1) of a mixture of acetaminophen, ibuprofen and sodium lauryl sulfate at a 200g scale was successful in that the median particle size of the ibuprofen was reduced to the submicron range (Table 2). Moreover, the dissolution rate of the ibuprofen in the milled material, either attritor milled or jet milled, was faster than that of the unmilled API (Table 3). However, the attritor milling yield was relatively low due to caking of the milled Co-jet milling was investigated as an ative approach that might increase yield and improve scale. The formula in Table 1 was processed in a 4” jet mill with 100 psig pressure. As shown in Table 2, the ibuprofen within the co-jet milled formulation (acetaminophen/ibuprofen/SLS) was larger in size compared to the fen produced by attritor milling.
Table 2: Particle size of ibuprofen Dv10 (μm) Dv50 (μm) Dv90 (μm) Ibuprofen (starting al) 24.2 51.3 94.5 Attritor-milled intermediate 0.282 0.617 2.05 -milled intermediate 1.63 2.73 4.44 Both milled formulations had substantially faster ibuprofen dissolution compared to the unmilled formulation, demonstrating that particle size reduction improved the ibuprofen dissolution rate. r, while the attritor milled al had much smaller particle size for ibuprofen than the co-jet milled material, the dissolution rates of ibuprofen for both milled als (Table 3) were similar. This suggests that the co-jet milled material could overcome the dissolution rate limited solubility of ibuprofen, despite the fact that the median particle size was greater than 1,000 nm.
Table 3: Ibuprofen dissolution rate in acetaminophen/ibuprofen powder formulations Prior to milling Attritor milled Co-Jet-milled Time % ibuprofen %RSD % ibuprofen %RSD % ibuprofen %RSD (min) Dissolved n=3 ved n=3 Dissolved n=3 2 34.4 4.4 82.5 5.5 96.0 1.3 49.2 6.6 94.9 1.7 103.0 0.4 62.3 7.4 100.1 0.5 103.5 0.4 68.3 9.6 103.5 0.8 104.7 1.2 73.1 8.8 103.1 0.2 105.6 0.3 45 75.8 6.7 103.3 0.9 104.0 0.3 Infinity 91.6 2.1 104.7 1.9 102.9 1.2 Particle Size Particle size was measured by first dispersing the sample in 0.1% HPC, 0.01N HCl and sonicating for 1 minute with a probe sonicator. The sonicated samples were added to the laser light diffractor wet sample unit, filled with 0.1% HPC in 0.01N HCl, d for 5 minutes and then the sample was measured.
Dissolution Rate The dissolution of selected powder intermediate formulations was tested using the USP Apparatus II, with 900 mL of 50mM pH 5.8 media at 37°C and a 50 rpm paddle speed. The powder was added to the top of the media-filled vessels, and samples were d by HPLC to obtain the results.
Example 2: Co-jet Milling Provides Improved Dissolution for Ibuprofen The jet milling s suggested that it could provide a means for preparing a dosage form containing a high drug load of both ibuprofen and acetaminophen. Jet milling was further investigated by manufacturing a powder formulation using two different jet milling methods, both of which ed the formula in Table 4. In the first process, ibuprofen was jet milled alone and then blended with the acetaminophen, SLS and hydroxypropyl cellulose. In the second process, all four ingredients were blended and then co-jet milled.
Table 4: Formulation for comparisons of jet milling and co-jet milling Formula Ingredient % w/w Ibuprofen 22% Acetaminophen (APAP) 74% Sodium Lauryl Sulfate (SLS) 2% Hydroxypropyl cellulose (HPC) 2% Total 100% The particle size of jet-milled ibuprofen, whether jet-milled alone or co-jet milled with acetpminophen, SLS and HPC was similar, as shown in Table 5.
Table 5: Particle size of jet milled and co-jet milled ibuprofen Dv10 (μm) Dv50 (μm) Dv90 (μm) Jet milled ibuprofen 1.46 2.53 3.97 Co-Jet-milled ibuprofen, 1.31 2.51 4.32 APAP, SLS, HPC It was unexpectedly found that when fen was size d by co-jet g with acetaminophen, SLS and hydroxypropyl cellulose, the dissolution rate was improved relative to ibuprofen that was size reduced by jet milling in the absence of inophen, SLS and hydroxypropyl cellulose e the fact that the two methods yielded similarly-sized ibuprofen particles. Table 6 presents data on the ution rate of 1) jet-milled fen that was blended with acetaminophen, SLS and hydroxypropyl cellulose after jet milling; and 2) ibuprofen that was co-jet milled with acetaminophen, SLS and hydroxypropyl cellulose.
It can be seen from the dissolution data in Table 6 that the ibuprofen co-jet milled with acetaminophen, SLS and HPC fully dissolved within 2 minutes whereas the ibuprofen milled in the absence of acetaminophen, SLS and HPC took 10 minutes to exceed 85% dissolved. Hence, the presence of acetaminophen, SLS and HPC in the milling improve the dissolution rate of similarly sized fen.
Table 6: ution data for jet milled and co-jet milled ibuprofen Jet-milled ibuprofen subsequently Ibuprofen co-jet milled with blended with inophen, SLS, acetaminophen, SLS, and hydroxypropyl hydroxypropyl cellulose cellulose Time Avg % ibuprofen %RSD Avg % ibuprofen %RSD (min) dissolved (n=3) dissolved (n=3) 2 80.0 13.9 100.0 0.6 83.1 14.3 104.5 0.4 86.8 11.4 104.6 0.6 89.6 9.6 104.8 0.7 94.2 6.5 104.8 0.7 45 98.4 3.8 104.6 0.6 The particle size and dissolution rate methods were the same as those described in Example 1.
Example 3: Preparation of examples of Rapid Maxigesic 325 Tablets and Rapid sic 500 Tablets Acetaminophen (75.41 % w/w), fen (22.62 % w/w) and sodium lauryl sulfate (1.97 % w/w) were blended together, and the blend was milled using a spiral jet mill to achieve a target bulk particle size of Dv50 <4.5 micron and Dv90 <14 microns. The milled blend (“Drug Product Intermediate” or DPI) was then blended with excipients and wet granulated using a high shear mixer and fluid bed dryer. The granulation was screened/milled, blended with lubricant and compressed into s. The tablets were then film coated. Table 7 shows the formulation of the milled intermediate, and Tables 8 and 9 show the tablet formulations.
Table 7: Example of Drug Product Intermediate for Rapid Maxigesic 325 and 500 Ingredient % w/w Acetaminophen, USP 75.41 Ibuprofen, USP 22.62 Sodium Lauryl Sulfate, USP 1.97 100.00 Table 8: Example of Tablet Formulation for Rapid Maxigesic (325) Rapid Maxigesic 325 Tablet (325mg acetaminophen, 97.5mg ibuprofen) Intragranular % w/w mg/tablet Drug Product Intermediate • 75.41% APAP 74.75 431.0 • 22.62% Ibuprofen • 1.97% SLS Microcrystalline Cellulose (Avicel PH101) 9.00 51.9 Lactose Monohydrate se 310) 11.74 67.7 Croscarmellose Sodium (Ac-di-Sol) 2.00 11.5 Povidone (K30) 2.00 11.5 Purified Water qs - extragranular Magnesium stearate 0.50 2.9 Total tablet core 100.00 576.6 Film coating Opadry II 57U18539, White (hypromellose, um e, polydextrose, talc, 2.25 13.0 maltodextrin, medium chain triglycerides) Total 593.8mg Table 9: Example of Tablet Formulation for Rapid sic (500) Rapid Maxigesic 500 Tablet (500mg acetaminophen, 150mg ibuprofen) Intragranular % w/w mg/tablet Drug Product Intermediate • 75.41% APAP 74.75 663.0 • 22.62% Ibuprofen • 1.97% SLS Microcrystalline Cellulose (Avicel PH101) 9.00 79.8 Lactose Monohydrate (Lactose 310) 11.74 103.8 Croscarmellose Sodium (Ac-di-Sol) 2.00 17.7 Povidone (K30) 2.00 17.7 Purified Water qs extragranular Magnesium te 0.50 4.4 Total tablet core 100.00 887.0 Film coating Opadry II 57U18539, White (hypromellose, titanium dioxide, polydextrose, talc, 2.00 17.7 maltodextrin, medium chain triglycerides) Total 904.7 Particle Size l lots of DPI were analyzed to determine the particle size of ibuprofen within the co-jet milled intermediate. All g was conducted using laser light ction. To measure ibuprofen particle size the DPI was dispersed in an aqueous media in which the acetaminophen and SLS are soluble (0.1% HPC in 0.01N HCl), leaving only the poorly soluble ibuprofen suspended for particle size testing. ically, the powder was directly added to the sample chamber and stirred for 5 minutes, then the sample measurement was taken. The results of this analysis are in Table 10.
Table 10: Particle size data for Rapid Maxigesic DPI Ibuprofen Lot D10 (µm) D50 (µm) D90 (µm) -1 2.15 4.19 8.22 -2 1.67 3.03 5.48 -3 1.72 3.45 6.95 -4 2.55 5.26 10.6 -5 2.35 4.84 9.97 -6 2.97 6.89 14.3 -7 3.15 7.30 14.7 Dissolution Rate The dissolution of selected tablet formulations was tested using the USP Apparatus II, with 900mL of 50mM pH 5.8 media at 37°C and a 50 rpm paddle speed. One tablet was added to each illed vessel, and samples were d by HPLC to obtain the results.
The film coating is present to aid in swallowing, mask taste, and for pharmaceutical elegance.
Film coatings typically take a few minutes to dissolve, creating a small lag time in the dissolution. To facilitate comparison, both film coated and uncoated core tablets were studied.
The tablets in these lots were prepared using the DPIs in Table 11. The results of this analysis are depicted in Table 11.
Table 11. Dissolution of Rapid Maxigesic 325 Ibuprofen dissolution in pH 5.8 buffer LOT 12-A LOT 12-B LOT 12-C LOT 12-D LOT 12- E d) (coated) (uncoated) (uncoated) (uncoated) time %RSD %RSD %RSD %RSD %RSD avg % n=6 avg % n=6 avg % n=6 avg % n=6 avg % n=6 54 18.1 28 28.2 47 10.2 50 9.4 63 7.6 94 5.4 78 7.8 80 4.6 87 2.2 95 2.3 98 2.4 93 2.5 94 0.3 96 0.9 101 0.9 100 1.6 96 1.4 95 1 98 1.6 102 0.7 100 1.6 97 0.8 96 0.3 97 1.6 102 0.8 45 101 0.8 98 0.5 96 0.6 97 1.9 102 0.6 In a separate study, the dissolution rate of ibuprofen in two ent lots of Rapid Maxigesic 325 tablets (prepared as described above) was compared to that of sic Tablets 325 (measured in pH 5.8 phosphate buffer, as described above). The results are presented in Table 12. A similar comparison was performed for Rapid Maxigesic 500 and Maxigesic 500 tablets. The results are shown in Table 13.
Table 12. Dissolution of Rapid Maxigesic 325 and Maxigesic 325 Tablets in pH 5.8 Phosphate Buffer Rapid Maxigesic 325 Rapid Maxigesic 325 Maxigesic 325 (Lot X) (Lot Y) % Ibuprofen % RSD % Ibuprofen % RSD % Ibuprofen % RSD Time (min) dissolved (n=12) dissolved (n=12) dissolved (n=12) 57 13.7 81 8.1 42 12.2 91 3.0 95 1.6 59 5.6 95 2.9 98 1.7 69 5.5 97 1.3 99 1.3 77 4.3 98 1.2 100 1.0 84 4.5 45 99 1.0 100 1.0 89 3.1 F2 34 28 Reference Table 13: Dissolution of Maxigesic 500 and Rapid Maxigesic 500 Tablets in pH 5.8 Phosphate Buffer Rapid Maxigesic 500 Maxigesic 500 (Lot Z) % Ibuprofen % Ibuprofen Time (min) % RSD (n=6) % RSD (n=6) dissolved dissolved 80.8 8.9 42.6 14.5 95.6 3.1 65.2 11.3 98.1 2.2 72.2 6.9 99.7 1.5 77.1 3.3 100.8 1.3 83.1 2.7 45 100.8 1.5 88.1 2.2 F2 34 Reference From the results describe above, it can be seen that it is possible to prepare solid oral dosages forms with greatly improved ution of ibuprofen, e the ibuprofen having a median particle size (on a volume average basis) that is larger than 1 micron.
Example 4: Pharmacokinetic Analysis of Rapid Maxigesic 325 in comparison to Maxigesic 325 A clinical study was undertaken in which the Cmax for ibuprofen and the Cmax for acetaminophen was assessed in both the fasting and fed states.
This data was tested using individual 90% CI, two-tailed, unpaired t-tests. Comparisons were made between Maxigesic Rapid 325 and sic 325 in either fed or fasting conditions. This allows for a significant difference to be detected at 10% or P≤0.1. The study protocol already used a 90% CI to calculate the mean differences in the mean log transformed data of inophen and ibuprofen.
For acetaminophen in the fasting state there was no statistically significant ence in Cmax n the formulations Table 13.
Table 13: Acetaminophen fasting Cmax Maxigesic 325 and Rapid Maxigesic 325 Difference between means -459.1 ± 1665 90% confidence interval -3243 to 2325 Percentage ence between means -2.99% For ibuprofen in the fasting state there was a statistically significant difference in Cmax between the formulations (Table 14) Table 14: Ibuprofen fasting Cmax sic 325 and Rapid Maxigesic 325 Difference between means -2727 ± 1443 90% confidence interval -5138 to -315.6 Percentage difference between means 11.93% This is an important advantage of the present dosage forms since dosing on an empty stomach is advised in order to achieve fast onset of pain relief.
For acetaminophen in the fed state there was no statistically significant difference in Cmax between the formulations (Table 15).
Table 15: Acetaminophen fed Cmax Maxigesic 325 and Rapid Maxigesic 325 Difference n means -813.1 ± 996 90% confidence interval -2478 to 851.7 Percentage difference between means 7.82% For ibuprofen in the fed state there was no statistically significant difference in Cmax between the formulations, although a significant increase was again observed (Table 16) Table 16: Ibuprofen fed Cmax Maxigesic 325 and Rapid Maxigesic 325 Difference between means 2344 ± 1362 90% confidence interval 67.02 to 4622 tage difference n means 12.68% To ize, in both studies, fed and fasting, the Cmax of ibuprofen in Maxigesic Rapid (325) was significantly higher than Maxigesic (325). The 90% confidence intervals did not p with 0 which shows a significant difference between the means. There was a difference of >11% between the ibuprofen means, consistent with the Maxigesic Rapid formulation delivering higher Cmax drug concentrations of ibuprofen.
Example 5: Phamacokinetic analysis of Maxigesic 325.
A pharmacokinetic analysis of the Maxigesic 325 formulation described above was conducted under fed and fasting conditions. The results of this study are presented in Tables 17-20.
Table 17: Ibuprofen PK Values for Maxigesic Rapid 325 in Fasting condition cokinetic Parameter (N=30) Cmax (ng/ml) 25579.823 ± 5996.24 AUC0→t (ng.h/ml) 91888.7 ± 24015.73 AUC0→∞ (ng.h/ml) 95621.9 ± 28252.68 tmax (h) * 1.25 (0.25-3.00) Kel (l/h) 0.3076 ± 0.06 t1/2el (h) 2.35 ± 0.57 AUC0→t / AUC0→∞ 0/0 96.82 ± 3.22 Table 18: Ibuprofen PK Values for Maxigesic Rapid 325 in Fed Condition Pharmacokinetic Parameter (N=30) Cmax (ng/ml) 20834.673 ± 5506.39 AUC0→t (ng.h/ml) 71286.1 ± 16546.13 AUC0→∞ (ng.h/ml) 73449.6 ± 17660.44 tmax (h) * 1.25 (0.75 -6.00) Kel (l/h) 0.3222 ± 0.05 t1/2el (h) 2.19 ± 0.31 AUC0→t / AUC0→∞ 0/0 97.25 ± 1.42 Table 19: inophen PK Values for Maxigesic Rapid 325 in Fasting Condition Pharmacokinetic Parameter ® (N=29) Cmax ) 14877.280 ± 5969.64 AUC0→t (ng.h/ml) 44637.6 ± 11784.46 AUC0→∞ (ng.h/ml) 47437.2 ± 13053.06 tmax (h) * 0.75 (0.25-2.00) Kel (l/h) 0.2233 ± 0.05 t1/2el (h) 3.25 ± 0.75 AUC0→t / AUC0→∞ 0/0 94.43 ± 2.54 Table 20: Acetaminophen PK Values for Maxigesic Rapid 325 in Fed Condition cokinetic Parameter (N=30) Cmax (ng/ml) 11214.182 ± 4084.46 AUC0→t (ng.h/ml) 39826.6 ± 11211.91 AUC0→∞ (ng.h/ml) 42381.0 ± 12086.45 tmax (h) * 1.25 (0.50-6.00) Kel (l/h) 0.2303 ± 0.03 t1/2el (h) 3.05 ± 0.37 AUC0→t / AUC0→∞ 0/0 94.16 ± 2.30 Other Embodiments Any ations, patents, and patent applications mentioned in this specification are incorporated herein by reference to the same extent as if each independent publication or patent ation was specifically and individually indicated to be incorporated by reference.
While the invention has been described in on to certain preferred embodiments it should be understood that modifications and improvements can occur without departing from the scope of the following claims.

Claims (33)

1. A medicament in the form of a solid oral dosage form comprising 325 mg (± 5%) of inophen and 97.5 (± 5%) mg of ibuprofen, or 500 mg (± 5%) of acetaminophen and 150 mg (± 5 5%) of fen, wherein the ibuprofen has a [D50] between 1 and 9 μm and the dosage form has been prepared by milling the ibuprofen together with the acetaminophen .
2. A medicament in the form of a solid oral dosage form ing to claim 1, comprising: (a) 325 mg of acetaminophen and 97.5 mg of ibuprofen; or 10 (b) 500 mg of acetaminophen and 150 mg of ibuprofen.
3. The medicament in the form of the solid dosage form of claim 1 or 2, wherein the ibuprofen has a [D10] between 1 and 3 μm. 15
4. The ment in the form of the solid dosage form of claim 1 or 2, wherein the ibuprofen has a [D90] between 3 and 16 μm.
5. The medicament in the form of the solid dosage form of claim 1 or 2, wherein the ibuprofen has a [D50] between 2 and 8 μm, a [D10] between 1 and 3 μm and a [D90] between 4 and 16 20 μm.
6. The medicament in the form of the solid oral dosage form of claim 1 or 2, n the dissolution rate of ibuprofen in the solid oral dosage form is such that, when tested using USP Apparatus II (paddles) set to rotation speed of 50 rpm in 900 mL of 50 mM pH 5.8 phosphate buffer at 37 °C, 25 wherein 80% or more of the ibuprofen dissolves in 15 minutes or less.
7. The medicament in the form of the solid oral dosage form of claim 6, wherein at least 85% to 95% of the ibuprofen dissolves in 15 minutes or less. 30
8. The medicament in the form of the solid oral dosage form of claim 6, wherein at least 95% to 100% of the ibuprofen dissolves in 10 minutes or less.
9. The medicament in the form of the solid oral dosage form of claim 1 or 2, n the dosage form is a tablet.
10. The medicament in the form of the solid oral dosage form of claim 1 or 2, wherein the 5 tablet is coated.
11. The medicament in the form of the solid oral dosage form of claim 1 or 2, wherein the [D90] to [D50] ratio is between 4:1 and 1.5:1. 10
12. The medicament in the form of the solid oral dosage form of claim 1 or 2, wherein the [D90] to [D50] ratio is between 3:1 and 1.5:1.
13. The medicament in the form of the solid oral dosage form of claim 1 or 2, wherein the [D50] to [D10] ratio is between 4:1 and 1.5:1. 15
14. The medicament in the form of the solid oral dosage form of claim 1 or 2, wherein the [D50] to [D10] ratio is between 3:1 and 1.5:1.
15. The medicament in the form of the solid oral dosage form of claim 1 or 2, wherein the solid oral dosage form is a coated tablet.
16. The medicament in the form of the solid oral dosage form of claim 1 or 2, prepared by a 20 process comprising jet milling a composition sing 21-23% wt/wt ibuprofen and 73-75% wt/wt acetaminophen.
17. The medicament in the form of the solid oral dosage form of claim 16, wherein the ition subjected to jet milling further comprises a surfactant.
18. The medicament in the form of the solid oral dosage form of claim 17, wherein the 25 surfactant is sodium lauryl sulfate.
19. The medicament in the form of the solid oral dosage form of claim 6, n 85% to 95% of the ibuprofen dissolves in 15 minutes.
20. The medicament in the form of the solid oral dosage form of claim 6, wherein 95% to 100% of the ibuprofen dissolves in 10 minutes.
21. Use of 325 mg (± 5%) of acetaminophen and 97.5 (± 5%) mg of fen, or 500 mg (± 5%) of acetaminophen and 150 mg (± 5%) of ibuprofen, wherein in each case the ibuprofen has a [D50] between 1 and 9 μm, in the manufacture of a medicament in the form of a solid oral dosage form for treating pain, wherein the dosage form has been prepared by milling the ibuprofen together with the 5 acetaminophen and is to be administered as: a) a dose of 1, 2 or 3 units of the lower dose solid oral dosage form; or b) a dose of 1 or 2 units of the higher dose solid oral dosage form.
22. The use of claim 21, n in each case the administration is 1, 2, 3 or 4 times daily.
23. The use of claim 21 or 22, wherein the pain is mild to moderate acute pain. 10
24. The medicament in the form of the solid oral dosage form of claim 1, which has been prepared by g the ibuprofen together with the inophen and surfactant.
25. The ment in the form of the solid oral dosage form of claim 24, wherein the surfactant comprises polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), sodium lauryl sulfate, polyvinylalcohol, crospovidone, polyvinylpyrrolidone- polyvinylacrylate copolymer, cellulose derivatives, 15 hydroxypropylmethyl cellulose, hydroxypropyl ose, carboxymethylethyl cellulose, hydroxypropyllmethyl cellulose phthalate, polyacrylate and polymethacrylate, urea, sugar, polyol, and their polymers, emulsifiers, sugar gum, , organic acids and their salts, vinyl pyrrolidone or vinyl acetate.
26. The medicament in the form of the solid oral dosage form of claim 24, wherein the 20 surfactant comprises Sodium Lauryl Sulfate.
27. The medicament in the form of the solid oral dosage form of claim 1, wherein the milling comprises jet milling.
28. The medicament in the form of the solid oral dosage form of claim 24, wherein the 25 milling ses jet milling.
29. The medicament in the form of the solid oral dosage form of claim 25, wherein the milling comprises jet milling.
30. The medicament in the form of the solid oral dosage form of claim 26, wherein the milling ses jet milling.
31. The medicament in the form of the solid dosage form of any one of claims 1-20 or 24- 30, wherein the amounts of acetaminophen and ibuprofen are as stated, but excluding the ± 5% in 5 each case.
32. A method of treating pain by stering a medicament in the form of a solid oral dosage form comprising 325 mg (± 5%) of acetaminophen and 97.5 (± 5%) mg of ibuprofen, or 500 mg (± 5%) of acetaminophen and 150 mg (± 5%) of ibuprofen, wherein the ibuprofen has a [D50] between 1 and 9 μm and the dosage form has been prepared by g the ibuprofen together with the 10 acetaminophen .
33. A medicament comprising two solid oral dosage forms, each comprising 500 mg (± 5%) of acetaminophen and 150 mg (± 5%) of ibuprofen, wherein the ibuprofen has a [D50] between 1 and 9 μm and the dosage form has been prepared by milling the ibuprofen together with the acetaminophen, 15 ally also with an excipient.
NZ788137A 2019-02-27 2019-11-19 A medicament and method for treating pain NZ788137A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16287836 2019-02-27

Publications (1)

Publication Number Publication Date
NZ788137A true NZ788137A (en) 2022-05-27

Family

ID=

Similar Documents

Publication Publication Date Title
JP5622703B2 (en) Rapid release pharmaceutical composition of pharmaceutical substance
TWI484957B (en) Pharmaceutical dosage form comprising nifedipine or nisoldipine and an angiotensin ii antagonist and/or a diuretic
US11872317B2 (en) Pharmaceutical composition containing acetominophen and ibuprofen
EP2180883B1 (en) Pharmaceutical composition containing dihydropyridine calcium channel antagonist and method for the preparation thereof
DK2421513T3 (en) UNKNOWN FORMULATION WITH INDOMETHACIN
US20100247649A1 (en) Pharmaceutical formulations comprising telmisartan and hydrochlorothiazide
EP3290030A1 (en) Diclofenac formulation
AU2005247047B2 (en) Oral delivery system
US20090263478A1 (en) Carvedilol forms, compositions, and methods of preparation thereof
US20140348909A1 (en) Pharmaceutical compositions of lurasidone
EP2117511A2 (en) Pharmaceutical formulation comprising neurokinin antagonist
WO2010111264A2 (en) Rasagiline formulations
JP2010536798A (en) Method and composition for controlling bioavailability of poorly soluble drugs
US20140343076A1 (en) Pharmaceutical compositions of lurasidone
US20140243383A1 (en) Pharmaceutical compositions of silodosin
NZ788137A (en) A medicament and method for treating pain
EP3251661B1 (en) Raloxifene sprinkle composition
WO2023198640A1 (en) Modified release pharmaceutical formulations comprising deferiprone