NZ762169B2 - Stabilizing features in a wear member assembly - Google Patents

Stabilizing features in a wear member assembly Download PDF

Info

Publication number
NZ762169B2
NZ762169B2 NZ762169A NZ76216917A NZ762169B2 NZ 762169 B2 NZ762169 B2 NZ 762169B2 NZ 762169 A NZ762169 A NZ 762169A NZ 76216917 A NZ76216917 A NZ 76216917A NZ 762169 B2 NZ762169 B2 NZ 762169B2
Authority
NZ
New Zealand
Prior art keywords
wear member
nose
cavity
bearing
inwardly protruding
Prior art date
Application number
NZ762169A
Other versions
NZ762169A (en
Inventor
Mohamad Bilal
Isai Diaz
Original Assignee
Hensley Industries Inc
Filing date
Publication date
Priority claimed from US15/589,647 external-priority patent/US10508418B2/en
Application filed by Hensley Industries Inc filed Critical Hensley Industries Inc
Publication of NZ762169A publication Critical patent/NZ762169A/en
Publication of NZ762169B2 publication Critical patent/NZ762169B2/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/40Special vehicles
    • B60Y2200/41Construction vehicles, e.g. graders, excavators
    • B60Y2200/412Excavators
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/2816Mountings therefor
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/2816Mountings therefor
    • E02F9/2825Mountings therefor using adapters
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/2816Mountings therefor
    • E02F9/2833Retaining means, e.g. pins
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2808Teeth
    • E02F9/2858Teeth characterised by shape
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/28Small metalwork for digging elements, e.g. teeth scraper bits
    • E02F9/2883Wear elements for buckets or implements in general

Abstract

hollow ground-engaging wear member 701 attachable to a support structure 212 may include a leading end 708 arranged to engage ground and a rear end having a cavity 702 formed therein, the cavity 702 having an inner surface and having a longitudinally extending axis 718, the cavity having a front portion 720 and having a rear portion 722 adjacent the rear end, the inner surface having horizontally separated opposing inner walls and having vertically separated opposing inner walls angled with respect to the longitudinally extending axis 718 and forming an upper inner surface and a lower inner surface, the upper inner surface and the lower inner surface each having a centrally disposed, inwardly protruding surface portion 721a arranged to provide a bearing fit with the support structure 212, each inwardly protruding surface portion being disposed only in the rear portion of the cavity and shaped to form an arc 706, the inwardly protruding surface portion being arranged to support vertically imposed loads at the leading end. There are a pair of holes 206 in the respective horizontally separated opposing inner walls, where each hole of the pair of holes is arranged to receive a locking pin. Each hole 206 comprises a portion that is forwardly of each inwardly protruding surface portion 721a.

Description

A hollow ground-engaging wear member 701 attachable to a t structure 212 may include a leading end 708 arranged to engage ground and a rear end having a cavity 702 formed therein, the cavity 702 having an inner surface and having a longitudinally ing axis 718, the cavity having a front portion 720 and having a rear portion 722 adjacent the rear end, the inner surface having horizontally separated opposing inner walls and having ally separated opposing inner walls angled with respect to the longitudinally extending axis 718 and forming an upper inner surface and a lower inner surface, the upper inner surface and the lower inner surface each having a centrally disposed, inwardly protruding surface portion 721a arranged to provide a bearing fit with the t structure 212, each inwardly protruding surface portion being disposed only in the rear portion of the cavity and shaped to form an arc 706, the inwardly protruding surface portion being arranged to support vertically imposed loads at the leading end. There are a pair of holes 206 in the tive ntally separated opposing inner walls, where each hole of the pair of holes is arranged to receive a locking pin. Each hole 206 comprises a portion that is forwardly of each inwardly protruding surface portion 721a. 762169 B2 STABILIZING FEATURES IN A WEAR MEMBER ASSEMBLY CAL FIELD This sure is generally directed to ground engaging wear member lies including adapters for securing excavating wear members to bucket lips.
More particularly, this disclosure is directed to stabilizing load bearing surfaces between adjacent wear s.
BACKGROUND Material displacement apparatuses, such as excavating buckets found on uction, mining, and other earth moving equipment, often include replaceable wear portions such as earth engaging teeth. These are often removably attached to larger base structures, such as excavating buckets, and come into abrasive, wearing contact with the earth or other material being displaced. For example, excavating tooth assemblies provided on digging equipment, such as excavating buckets and the like, typically comprise a relatively massive adapter portion which is suitably anchored to the forward bucket lip. The adapter portion typically es a dly projecting nose. A replaceable tooth typically includes a rear-facing cavity that releasably es the adapter nose. To retain the tooth on the adapter nose, generally aligned transverse openings may be formed on both the tooth and the adapter nose, and a le connector structure is driven into and forcibly retained within the aligned openings to releasably anchor the replaceable tooth on its associated adapter nose.
During normal operations, the tooth experiences loading in multiple directions. If the tooth is not positioned on the nose in a stable manner, the loads enced by the tooth can cause additional wear on the adapter. A need accordingly exists for an improved r nose and corresponding opening in the tooth.
SUMMARY According to some example implementations, a wear member assembly may include a nose attachable to a bucket lip. The nose may include a rear portion having a first set of eight substantially planar surfaces converging toward a longitudinal axis of the nose towards a distal end of the rear n. The first set of substantially planar surfaces may include a first subset of surfaces having a top and bottom surface, a second subset of side es, and a third subset of surfaces that se bearing surfaces. The third subset of surfaces being angled and positioned between the first subset of surfaces and the second subset of es. The nose may also include a forward portion oned forwardly adjacent to the rear portion, the forward portion having a second set of eight substantially planar surfaces converging toward the longitudinal axis of the nose towards the distal end of the forward portion. The second set of substantially planar surfaces may include a fourth subset having a top and bottom surface, a fifth subset of side surfaces, and a sixth subset of surfaces that comprise bearing surfaces, the sixth set of surfaces being angled and positioned between the first subset of surfaces and the second subset of surfaces. The wear member assembly may also include a wear member having a cavity opening toward a rearward end, the cavity comprising rear and forward bearing surfaces corresponding to the third subset of surfaces and the sixth subset of surfaces.
According to some example implementations, a wear member includes a cavity having a rear portion having a first set of eight surfaces converging toward a longitudinal axis at a first angle towards a distal end of the rear portion. The first set of substantially planar surfaces may include a top and bottom surface, a set of side surfaces, and a set of diagonal surfaces that comprise bearing surfaces. The cavity may further include a forward portion positioned forwardly adjacent to the rear portion, the d portion having a second set of eight surfaces converging toward the longitudinal axis at a second angle that is less than the first angle. The cavity may further include a set of s positioned at least partially along the diagonal surfaces, the pockets having inwardly facing vertical surfaces.
According to some example implementations, a wear member assembly may e an adapter nose having a rear portion having a cross-sectional width and a cross-sectional , the cross-sectional width being different than the cross- nal height, the rear portion having two non-bearing surfaces and four ntially planar bearing surfaces, the two non-bearing surfaces being substantially horizontal in cross-section and the four substantially planar bearing surfaces being oblique in cross-section, a first two of the four substantially planar bearing surfaces being disposed on a first lateral side of the two substantially planar non-bearing surfaces, and a second two of the four substantially planar bearing surfaces being disposed on a second lateral side of the two substantially planar non-bearing surfaces, wherein at a distal end of the rear portion, the cross-sectional width of either of the two non-bearing surfaces is different than the cross-sectional width of any one of the four substantially g surfaces.
According to some example implementations, a wear member includes a cavity having rear portion and a forward portion. The rear portion may have a cross- sectional width and a cross-sectional height, the cross-sectional width being different than the cross-sectional . The cavity may have two substantially planar non- g surfaces and four substantially planar bearing es. The two ntially planar non-bearing surfaces may be substantially horizontal in cross-section and the four substantially planar bearing surfaces may be oblique in cross-section. A first two of the four substantially planar bearing surfaces may be disposed on a first lateral side of the two ntially planar non-bearing surfaces, and a second two of the four substantially planar bearing es may be disposed on a second lateral side of the two substantially planar non-bearing surfaces. At a distal end of the rear portion, the cross-sectional width of either of the two substantially planar non-bearing surfaces may be different than the cross-sectional width of any one of the four substantially bearing surfaces.
The present disclosure is directed to a wear member assembly having a particularly shaped g e disposed on a wear member nose, such as an adapter nose, and a corresponding shaped bearing surface on an additional wear member introduced over the nose. It is to be understood that both the foregoing l ption and the following drawings and detailed description are exemplary and explanatory in nature and are intended to provide an understanding of the present disclosure without limiting the scope of the present disclosure. In that regard, additional aspects, features, and advantages of the present disclosure will be apparent to one skilled in the art from the following.
The present disclosure is ed to stabilizing load bearing surfaces on wear members that provide stability and support during ground engaging digging/material cement operations. In some implementations, the present sure describes a hollow ground-engaging wear member attachable to a support structure may include a leading end arranged to engage ground and a rear end having a cavity formed therein.
The cavity may have an inner surface and having a longitudinally extending axis and a front n and having a rear portion adjacent the rear end. The inner surface may have horizontally separated opposing inner walls and having vertically separated opposing inner walls forming an upper inner e and a lower inner surface. The upper inner surface and the lower inner surface may each have a centrally disposed, inwardly protruding g surface portion arranged to provide a g ?t with the support structure. Each inwardly protruding bearing e portion may be disposed in the rear portion of the cavity and may have a transverse width less than a longitudinal length and receivable in a depression of the support structure. The inwardly protruding g surface portion may be arranged to support vertically imposed loads at the leading end.
According to some example implementations, the present disclosure is directed to a support structure arranged to receive a wear member, the support structure may include a nose arranged to receive a cavity of the wear member. The nose may include a front portion having a plurality of outwardly facing surfaces, the outwardly facing surfaces angled with respect to a longitudinal axis of the nose at a ?rst angle. The nose may further e a rear portion having two horizontally ted outwardly facing surfaces, and two vertically separated dly facing surfaces including an upward surface and a downward surface, the horizontally separated outwardly facing surfaces and the vertically separated dly facing surfaces being angled with respect to the longitudinal axis at a second angle that is different than the ?rst angle. The nose may further include a ?rst concave bearing e positioned on the upward facing surface. The nose may further include a second concave bearing surface positioned on the downward facing surface.
According to additional e implementations, the present sure is directed to a wear member may include a cavity arranged to ?t over a nose of an adapter. The cavity may e a front n having a plurality of inwardly facing surfaces, the inwardly facing surfaces angled with respect to a longitudinal axis of the cavity at a ?rst angle. The cavity may include a rear portion having two horizontally separated inwardly facing surfaces, and two vertically separated inwardly facing surfaces including an upward surface and a downward surface, the horizontally separated inwardly facing surfaces and the vertically separated inwardly facing surfaces being angled with respect to the longitudinal axis at a second angle that is different than the first angle. The cavity may include a first convex bearing surface positioned on the upward facing surface. The cavity may include a second convex bearing e oned on the downward facing surface.
According to yet more example implementations, the present disclosure is directed to a wear member assembly may include an adapter having a rear end arranged to secure the adapter to a bucket lip and a forward end having a nose. The wear member may also include an upward facing substantially planar surface at least partially scribing an upward facing concave bearing surface and a downward facing substantially planar surface at least partially circumscribing a rd facing concave bearing surface. The wear member assembly may also include a wear member having a forward end ed to engage ground and a rear end having a cavity. The cavity may include a downward facing surface having a first d protrusion extending therefrom, the first outward protrusion arranged to fit within the upward facing concave bearing surface. The cavity may include an upward facing surface having a second outward protrusion extending rom, the second outward sion arranged to fit within the downward facing concave bearing surface.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate implementations of the systems, devices, and methods disclosed herein and together with the description, serve to n the principles of the present disclosure.
Fig. 1 is view of an earth ng wear member assembly according to an example incorporating principles described herein.
Fig. 2 illustrates a perspective view of an adapter nose with a bearing surface portion on a top and bottom surface according to an e incorporating principles described herein.
Figs. 3A and 3B are diagrams showing longitudinal cross-sectional views of the beating surface portion in the nose of the adapter according to an e incorporating principles bed .
Figs. 4A and 4B are diagrams showing transverse cross-sectional views of the bearing surface portion in the nose according to an example incorporating principles described herein.
Fig. 5 is a top view of the nose with a g surface portion according to an example incorporating principles described herein.
Fig. 6 is a front view of the nose with a bearing surface portion according to an example incorporating principles described herein.
Fig. 7A is a perspective view of a tooth having a protrusion corresponding to the bearing surface portion in the nose according to an example incorporating principles described herein.
Fig. 7B is a udinal cross-sectional view of the tooth with the protrusion according to an example incorporating principles described herein.
Figs. 8 and 9 are transverse cross-sectional views of the tooth with the protrusion according to an example incorporating principles described herein.
Fig. 10 is a rear view of the tooth looking into the cavity according to an example incorporating principles described herein.
Fig. 11A is an exploded ctive view of an earth ng wear member assembly according to one example of principles described herein.
Fig. 11B illustrates an adapter nose looking along the udinal axis of the nose according to one e of principles described herein.
Fig. 11C illustrates a side view of the adapter nose according to one example of principles described .
Fig. 12A rates the tooth looking into the cavity according to one example of principles described herein.
Fig. 12B illustrates a cross-sectional side view of the tooth assembly according to one example of ples described herein.
Fig. 13 illustrates a perspective view of the adapter nose according to one example of principles described herein.
Fig. 14A illustrates an adapter nose with torsion control features ing to one example of principles described herein.
Fig. 14B rates a side view of an adapter nose with torsion control features according to one example of principles described herein.
Fig. 14C illustrates a perspective view of an adapter nose with n control features according to one example of principles described .
Fig. 14D illustrates a top view of an adapter nose with torsion control es according to one example of principles described herein.
Fig. 15 illustrates a diagram showing a tooth having a cavity designed to fit an adapter nose with torsion control features according to one example of principles described herein.
Fig. 16A illustrates a cross-section of the adapter nose orthogonal to the longitudinal axis according to one example of principles described herein.
Fig. 16B illustrates a cross-section of the adapter nose with torsion l features onal to the longitudinal axis according to one example of principles described herein.
Fig. 16C illustrates a cross-section of the forward portion of the adapter nose according to one example of principles described herein.
Fig. 16D illustrates a cross-section of the r nose with offset torsion control features according to one e of principles described herein.
These Figures will be better understood by reference to the following ed Description.
DETAILED DESCRIPTION For the purposes of ing an understanding of the ples of the present disclosure, reference will now be made to the entations illustrated in the drawings and speci?c language will be used to describe them. It will nevertheless be understood that no limitation of the scope of the disclosure is intended. Any alterations and further modi?cations to the described devices, instruments, methods, and any further application of the principles of the present disclosure are fully contemplated as would ly occur to one skilled in the art to which the disclosure relates. In addition, this disclosure describes some elements or features in detail with respect to one or more entations or Figures, when those same elements or features appear in subsequent Figures, t such a high level of detail. It is fully contemplated that the features, components, and/or steps described with respect to one or more implementations or Figures may be combined with the features, components, and/or steps described with respect to other implementations or Figures of the present disclosure. For simplicity, in some instances the same or similar reference numbers are used throughout the gs to refer to the same or like parts.
The present disclosure is ed to an earth engaging wear member assembly that includes an adapter nose securable to a bucket lip. The earth engaging wear member assembly also includes a tooth or other wear member, such as an intermediate adapter, that is securable to the r nose. The wear member includes a rear facing cavity designed to fit over the adapter nose. The nose may include a front set of surfaces and a rear set of surfaces, and in some implementations, both the front set of surfaces and the rear set of surfaces may form a substantially octagonal shape in transverse cross-section. Various es of both the front set of surfaces and the rear set of surfaces may be fit (or bearing) surfaces while other surfaces of the front set of surfaces and rear set of surfaces may be non-fit (or non-bearing) es.
In some particular embodiments, the top surface and the bottom surface of the rear set of surfaces may be fit surfaces and include an interference bearing feature such as a protrusion on one of the tooth or r and a matching indent on the other of the tooth or adapter. These may cooperate to distribute vertical loading in a manner assisting with stability and alignment of the wear member on the adapter nose. As used herein, a fit surface is a load bearing surface.
In some implementations, the adapter of the earth engaging wear assembly includes fit surfaces on angled side surfaces. These fit es may be disposed in a manner that es stabilizing contact on more than one fit surface when the earth ng wear assembly is subjected to a vertical load or a horizontal load. For example, an applied vertical downward load may be supported by two angled fit surfaces, and an applied vertical upward load may be supported by two separate angled fit es. Likewise, a left horizontal load may be supported by two angled fit surfaces and a right horizontal load may be supported by two angled fit surfaces.
In some implementations, a set of angled fit es are disposed at a distal or leading portion of the adapter nose and another set of angled fit surfaces are disposed at a proximal or trailing portion of the adapter nose. In this manner, a wear member, such as a tooth, may be supported by angled fit surfaces at both at the distal end and the proximal end of the adapter nose.
Fig. 1 is view of an exemplary earth engaging wear member assembly 100 according to one example of the present disclosure. In the implementation shown, the earth engaging wear member assembly 100 includes a tooth (or wear member) 104, an adapter 102, and a locking pin 106. In this example, the wear assembly 100 also includes a shroud wear member 108. The r 102 includes a hole (not shown) for receiving the g pin 106. The tooth 104 also includes a hole through which the locking pin 106 can be ed. The locking pin 106 may secure the tooth 104 onto the adapter 102. The adapter 102 may also be referred to herein as a support structure since it provides stabilizing support to an additional component, which in this implementation is the tooth 104.
Fig. 2 rates a perspective view of the adapter 102. According to the present example, the adapter 102 es a front end 201 and a rear end 212. The front end 201 includes a nose 203 and the rear end 212 includes a pair of bifurcated legs 214a, 214b arranged to secure the r 102 to a bucket lip (not shown). A longitudinal axis 211 is shown through the front and 201 and the rear end 212. A transverse axis 215 is shown for reference in a position that would run parallel to an edge of the bucket lip (not shown).
According to the t example, the nose 203 includes a front n 205, a rear portion 207, and an intermediate portion 209 extending between the front portion 205 and the rear portion 207. The front portion 205 includes a forward facing end surface 220 and a plurality of outwardly facing surfaces 202 in an octagonal arrangement adjacent the end surface 220. In this implementation, each of the surfaces 202 is angled with respect to the longitudinal axis 211. Further, at least four of the surfaces are angled relative to the transverse axis 215. In some examples, at least four of the plurality of surfaces 202 may be load bearing fit surfaces. For e, in some implementations, the surfaces 202 may include angled surfaces 202a, 202b, 202c, and 202d as load bearing fit surfaces. In other implementations, the surfaces 202 may include vertical and horizontal surfaces 202e, 202f, 202g, and 202h as load bearing fit surfaces. In some implementations, each of the surfaces 202 may be substantially planar, while in other implementations, only four of the eight surfaces 202 are substantially planar. In yet other implementations, a different number of the eight surfaces 202 are substantially planar.
In the present example, the rear portion 207 also includes a plurality of outwardly facing surfaces 204 in an octagonal arrangement. Each of the surfaces 204 are angled with respect to the longitudinal axis. Each of the rear surfaces 204 may be angled differently with respect to the udinal axis. For example, the side surfaces 204f, 204h may be angled differently with t to the longitudinal axis than are the top and bottom surfaces 204e, 204g. In the present example, the rear surfaces 204 are angled with t to the longitudinal axis at a ent angle than the front surfaces 202. ically, the rear surfaces 204 are angled at a greater angle with respect to the longitudinal axis than the front surfaces 202. In the examples the various front surfaces 202 may have ent angles with respect to the longitudinal axis.
Likewise, the rear surfaces 204 have different angles with respect to the longitudinal axis. In such examples, the average angle at which each of the rear surfaces 204 converges toward the longitudinal axis may be greater than the average angle at which the front surfaces 202 converge towards the longitudinal axis. As shown in the ctive view of Fig. 2, the rear surfaces 204 include angled surfaces 204a, 204b, 204c. The opposing side of the nose 203 includes an additional angled surface 204d, which is fied in Figs. 4A and 4B, for example. The rear surfaces 204 also include a top surface 204e and a side surface 204h. The nose 203 also includes a bottom surface 204g and an opposite side surface 204f which are identified in Figs. 4A and 4B, for e. The rear surfaces 204 may also be bearing or fit surfaces.
In some es, each of the rear surfaces 204 may be g fit surfaces. In some examples, only the angled es 204a, 204b, 204c, 204d may be fit surfaces. In some es, only the horizontal and vertical surfaces 204e, 204f, 204g, 204h, may be fit surfaces. In some implementations, each of the es 204 may be substantially planar, while in other implementations, only four of the eight surfaces 204 are substantially planar. In yet other implementations, a different number of the surfaces 204 are substantially planar.
In the t example, the intermediate portion 209 includes a plurality of outwardly facing surfaces 216. These outwardly facing surfaces 216 may extend between and ect the surfaces 202 and the surfaces 204. In some implementations, the surfaces 216 may be angled differently than the surfaces 202 and the surfaces 204 relative to the longitudinal axis 211. Referring to Fig. 2, the outwardly facing surfaces 216 may include a plurality of es including, among other surfaces, an upper facing surface 216a, a lower facing surface 216b (Figs. 3A and 3B). In this implementation, the side surfaces of the intermediate portion 209 may n a hole 206. Additional angled surfaces 216c, 216d, 216e, 216f (best seen in Figs. 5 and 6), are disposed about the ediate portion of the nose.
With reference to Figs. 2, 3A, 3B, 5, and 6, the upper facing surface 216a of the intermediate portion 209 may extend at an angle different than both the adjacent upper surface 204e of the rear n 207 and the adjacent top surface 202e of the front portion 205. ingly, the upper facing surface 216a may be non-planar with the adjacent upper surface 204e of the rear n 207 and non-planar with the adjacent top surface 202e of the front portion 205. In a similar manner, the lower facing surface 216b of the intermediate portion 209 may extend at an angle different than both the adjacent bottom surface 204g of the rear portion 207 and the bottom e 202g of the front portion 205.
In the present example, the top surface 204e es a concave bearing surface 210 positioned thereon. In some examples, the top surface 204e circumscribes the concave bearing surface 210. In some implementations, the concave bearing e 210 bridges the intersection of the upper facing surface 216a and the top surface 204e. The concave bearing surface 210, in this implementation, is an indentation that may cooperate with a corresponding protrusion on the wear member 104 to provide load bearing stability as well as lateral stability. While not seen from this perspective view, the nose 203 may also have a similar concave bearing surface portion on the bottom surface that is opposite the top surface 204e. In some implementations, the concave bearing surface on the bottom e may be shaped identically to the concave bearing surface 210 on the top surface 204e. In the present example, the concave bearing surface 210 is ntially elliptical in shape.
Other shapes are contemplated as well. For example, instead of being elliptical in shape, the concave bearing surface 210 may be circular or may have some other con?guration.
The nose 203 also includes a hole 206 that extends from the side surface 204h to the opposing side surface (not shown in this perspective). In this implementation, the hole 206 is formed in the ediate portion 209 of the nose 203. The hole 206 is sized and shaped to receive a locking pin. In the present example, the hole 206 is positioned forward of the e g surface 210. In other words, at least a portion of the concave bearing surface 210 is positioned rd of the hole 206. In some examples, the entire concave bearing surface 210 may be positioned rearward of the hole 206. In other implementations, the hole 206 extends only partially through the nose 203. A corresponding hole 206 may be formed in the opposing side of the nose 203. In these implementations, two separate locking pins may be used to secure the wear member 104 to the adapter 102 (see Fig.
The nose also includes torsion control surfaces 230b, 230d. Torsion control surfaces 230a, 230c are illustrated in Figs. 4B and 6. The n control features 230a, 230b, 230c, and 230d may be substantially planar es that are outward facing and are sized and shaped to fit against corresponding surfaces within the cavity of the tooth, which will be bed in further detail below. In the present example, the torsion control surfaces 230a, 230b, 230c, 230d respectively intersect the angled surfaces 204a, 204b, 204c, 204d of the rear portion 207. Particularly, the torsion control surfaces 230a, 230b, 230c, 230d intersect the angled surfaces 204a, 204b, 204c, 204d near where such surfaces meet the al surfaces 204f, 204h. In some examples, the torsion control surfaces 230a, 230b, 230c, 230d may be ?ush with the vertical surfaces 204f, 204h.
In some examples, the angled surfaces of both the front surfaces 202 and the rear surfaces 204 may be bearing (or fit) es. Specifically, surfaces 202a, 202b, 202c, 202d, 204a, 204b, 204c, 204d may be bearing surfaces. Additionally, the horizontal and top surfaces of the front surfaces 202 and the rear surfaces 204 may be non-bearing (or t) surfaces. Speci?cally, surfaces 202e, 202f, 202g, 202h, 204e, 204f, 204g, 204h may be non-bearing es. Other combinations of bearing and non-bearing surfaces are contemplated as well.
Figs. 3A and 3B are diagrams showing longitudinal cross-sectional views of a portion of the adapter 102, showing the upper concave bearing surfaces 210 and a lower e bearing surface 213. Fig. 3B in particular shows the bearing surface portion 213 in the bottom surface 204g of the nose of the adapter 102. In some embodiments, the top surface 204e and the bottom surface 204g may both be fit surfaces. In such a case, other surfaces, such as the side surfaces or angled surfaces may be either fit or non-fit surfaces. For e, it may be the case that all angled surfaces are non-fit surfaces while the top, bottom, and side surfaces are fit es.
As indicated above, some implementations of the concave bearing surface 210 bridge the intersection of the upper facing surface 216a and the top surface 204e. In such implementations, the upper facing e 216a may be a non-fit surface, while the concave bearing surface 210 forms a fit surface. In some examples, the concave surfaces 210, 213 may be aring surfaces. In such examples, various combinations of the ntal, vertical, and angled surfaces may be fit surfaces, and in some instances, only the angled surfaces are fit surfaces. It may be the case that all surfaces are fit surfaces. Other combinations of fit and t surfaces are contemplated. For example, the angled surfaces may be fit surfaces while the horizontal and vertical surfaces are non-fit surfaces in a manner similar to that described below in the text accompanying Figs. 11A-16D.
The bottom concave bearing surface 213 may be ntially cal to the top concave bearing surface portion 210. In some examples, the position and shape of the bottom concave bearing surface portion 213 may mirror the position and shape of the top concave bearing surface portion 210. ingly, similar to the arrangement described above, the bottom concave bearing surface 213 may bridge the ection of the lower facing surface 216b and the bottom surface 204g. In such implementations, the bottom facing surface 216b may be a non-fit surface, while the lower concave bearing surface 213 forms a fit surface. In some examples, the bottom concave bearing surface n 213 may be longitudinally offset from the top e bearing surface portion 210. For example, the bottom concave bearing surface portion 213 may be closer or r from the front of the nose than the top concave bearing surface portion 210.
The concave bearing surface ns 210, 213 in this implementation are formed as indents that have smooth rounded es as the shape transitions from the concave surface to the ?at upper surface 204e. The indentation provides lateral stability to the rear of the wear member 104 when subjected to loading during use. In addition, when vertical loads are directed onto the leading tip of the wear member 104, the indentation distributes the load at the rear portion of the wear member and the load is transferred through the concave g surface portions 210, 213 to the adapter (or an intermediate r if so equipped). In addition, the load bearing concave surface portions 210, 213 provide a smooth surface, with curved sides that aid in lateral stability. Accordingly, lateral loads at the leading tip of the wear member 104 that result in opposite loads at the end of the wear member may be alleviated to some extent by the curved lateral sides of the concave bearing surface portions 210, 213. As can be seen, the ations are formed on the top surface 204e that is longitudinally angled so as to face the leading end surface 220 of the adapter 102. Accordingly, corresponding protrusions on the inner surface of the wear member 104 may fit directly into the indented bearing surface portion 210 and 213.
Figs. 4A and 4B are diagrams showing erse cross-sectional views of the concave g surface portions 210, 213 in the adapter 102. Figs. 4A and 4B also show each of the rear surfaces 204. ically, Figs. 4A and 4B illustrate upwardly facing top e 204e, outwardly facing side surfaces 204f, 204h, and downwardly facing bottom surface 204g. Figs. 4A and 4B also illustrate outwardly facing angled surfaces 204a, 204b, 204c, 204d. In the exemplary implementation shown, the concave bearing surface portions 210, 213 are formed in the rear portion 207 only in the upwardly facing top surface 204e and the downwardly facing bottom surface 204g, while the outwardly facing side surfaces 204f, 204h and the outwardly facing angled es 204a, 204b, 204c, 204d are all formed to be relatively planar.
This may provide additional fit surface support for vertical loading on a supported tooth 104, while providing standard support for horizontal or side to side loading.
Fig. 5 is a top view of the nose 203 of the r 102. The e bearing surface portion 210 is shown ing into and across the intersection of the upper facing surface 216a and the top surface 204e. In some examples, the transverse width 504 of the concave bearing surface portion 210 may be within a range of about 60-80 percent of the transverse width 508 of the top surface 204e. In some examples, the transverse width 504 of the concave g surface portion 210 may be about 70% of the transverse width 508 of the top e 204e. The udinal length 502 of the concave bearing surface portion 210 may be similar to the transverse width 504 of the concave g surface portion 210. In some es, the longitudinal length 502 of the concave bearing surface portion 210 may be within a range of about 0-50 percent larger than the transverse width 504. The concave bearing surface portion 210 may be sized to provide stability and increase the surface area of the top surface 204e while minimizing ing of the adapter 102 through stress risers.
Accordingly, the depth of the indented bearing surface n may be selected to provide the necessary balance of stability and strength. In some implementations, the depth of the bearing surface portion is selected to be within a range of about 0.1 inch to about 0.625 inch, although other depths are contemplated.
Fig. 6 is a front, slightly tilted view of the adapter 102 with the concave bearing surface portion 210. Fig. 6 also illustrates top surface 204e and top surface 202e, and the top surface 216a. Fig. 6 also illustrates rear angled surfaces 204a, 204b, front angled surfaces 202a, 202b, and intermediate non-bearing surfaces 216c and 216f.
Fig. 7A is a perspective view of the wear member 104 that includes protrusions extending from inner surfaces of the cavity. The wear member 104 may also be referred to as a hollow ground-engaging wear member. Although the wear member 104 may also be referred to as a tooth, the wear member 104 may also form an intermediate r or other wear member configured to be supported by or to support other wear members. The wear member 104 includes a leading end 708 at the front end 701 of the wear member. The leading end 708 is arranged to engage or penetrate the ground, and may generally be referred to as the working end. The wear member 104 also includes a rear end, which has a cavity (shown in cross-section in Fig. 7B) that is sized and shaped to receive the nose 203 of the adapter 102.
In the present example, the side 709 of the wear member 104 includes a hole 711 that is sized and shaped to receive the locking pin 106 (Fig. 1). In some implementations, the opposing side of the wear member 104 may include a similar hole. The hole 711 may be positioned such that when the wear member 104 is properly set on the nose 203, the hole 711 is aligned with the hole 206 of the adapter 102. Thus, the locking pin 106 may be inserted through both holes 206, 711 and set so as to hold the wear member 104 on the adapter 102.
In the present example, the wear member 104 includes a wear indicator 731.
The wear indicator 731 may be a divot or indentation in the wear member 104 that indicates to an operator when the wear member 104 should be replaced. Speci?cally, the wear member 104 wears as it is used for digging operations. When it wears to a point where the bottom of the wear indicator 731 is ?ush with the rest of the wear member 104, then this indicates to an operator that it is time to replace the wear member 104. The wear indicator 731 may be sized and shaped so that it has a depth associated with an expected amount of wear before the wear member 104 should be replaced. This expected amount of wear may be based on historical data that represents the manner in which the wear member 104 wears during normal operations. The wear indicator 731 may be positioned in other places on the wear member 104 as well.
Fig. 7B is a udinal cross-sectional view of the wear member 104 showing an upper sion 706 and a lower protrusion 707 arranged to correspond to the concave bearing es 210, 213 on the adapter 102. The wear member 104 includes the g end 708 and a rear end 703. A cavity 702 is formed in the rear end 703, extending longitudinally inward from the rear end 703. The cavity 702 opens to the rear of the wear member 104 and is shaped and sized to fit over the nose 203 of the adapter 102.
In some implementations, the cavity 702 is shaped to have surfaces corresponding with the s surfaces of the nose 203. In some entations, since not all es are fit surfaces, only the fit surfaces of the cavity 702 and the nose 203 have the same shape. That is, the cavity 702 may be contoured so that fit surfaces of the cavity 702 match fit surfaces of the adapter 102. Because of this, the descriptions applied herein relating to outer surfaces of the nose 203 are equally applicable to inner surfaces of the cavity 702 of the wear member 104. r to the nose 203, the cavity 702 includes a front portion 720, a rear portion 722, and an intermediate portion 724. The cavity 702 also includes a longitudinal axis 718 that in this entation is coaxial with the longitudinal axis of the wear member 104. A transverse axis 719 (Figs. 7A and 10) extends perpendicular to the longitudinal axis 718 and is arranged to lie substantially parallel to a leading end of a bucket lip.
According to the t example, the cavity 702 includes a front portion 720, an intermediate portion 724, and a rear portion 722. The front portion 720 es a plurality of substantially planar inwardly facing surfaces 721a, 721b, 721e, 721f, 721g in an octagonal shape (not all eight surfaces are shown in the cross- sectional view of Fig. 7B). These es 721a, 721b, 721e, 721f, 721g may correspond to some of the outwardly facing surfaces 202 of the front portion 205 of the adapter 102. As described above, some surfaces 202 of the front n 205 may be fit surfaces while some may be non-fit surfaces. The fit surfaces of the adapter 102 may fit with the fit surfaces of the cavity 702 while the non-fit surfaces of the adapter 102 may have slightly different shapes than the non-fit es of the cavity 702 or may be offset from the non-fit surfaces of the cavity 702.
The intermediate portion 724 includes a plurality of substantially planar inwardly facing surfaces 723a, 723b, 723e, 723f, 723g (not all surfaces are shown in the cross-sectional view of Fig. 7B). These surfaces 723a, 723b, 723e, 723f, 723g may correspond to some of the outwardly facing surfaces 216 of the intermediate portion 209 of the adapter 102. Specifically, the fit surfaces of the adapter 102 may fit with the fit surfaces of the cavity 702 while the non-fit surfaces of the r 102 may have slightly different shapes than the non-fit surfaces of the cavity 702 or may be offset from the non-fit surfaces of the cavity 702.
The rear portion 722 es a plurality of substantially planar inwardly facing surfaces 704a, 704b, 704c, 704d, 704e, 704f, 704g 704h in an nal shape (some surfaces are better shown in Figs. 8A and 8B). These surfaces include an upper inner surface 704e and a lower inner surface 704g (which are vertically separated, horizontally separated side surfaces 704f, 704h, upper angled inner surfaces 704a, 704c, and lower angled inner surfaces 704b, 704g. These surfaces 704a, 704b, 704c, 704d, 704e, 704f, 704g 704h may correspond to the dly facing surfaces 204 of the front portion 207 of the adapter 102. cally, the ?t surfaces of the adapter 102 may ?t with the ?t surfaces of the cavity 702 while the non-?t surfaces of the adapter 102 may have ly different shapes than the non-?t es of the cavity 702 or may be offset from the non-?t surfaces of the cavity 702.
The cavity 702 includes an upper inward facing surface 704e that is designed to ?t with the upward facing e 204e of the nose 203. In some implementations, the upper inward facing surface 204e may be substantially planar.
The upper inward facing surface 704e also includes an upper protrusion 706 extending therefrom. The upper protrusion 706 may also be described as an inwardly protruding bearing surface portion 706 since it protrudes inwardly toward a longitudinal axis 718 of the wear member 104 and the cavity 702. The upper ly protruding bearing surface portion 706 is sized and shaped to ?t with the concave bearing surface n 210 of the nose 203. Similarly, the cavity es a lower inward facing surface 704g that is designed to ?t with the downward facing surface 204g of the nose 203. The lower inward facing surface 704g also includes an inwardly protruding bearing surface portion 707. The cavity also includes other surfaces that correspond to the surfaces 202, 204 of the nose 203. The inwardly bearing surface portions 706, 707 are convex and are arranged to support vertically imposed loads at the leading end.
The protrusions 706, 707 may be centrally located on their respective surfaces 704e, 704g. Thus, the protrusions 706, 707 may be circumscribed by planar portions of surfaces 704e, 704g. Additionally, the protrusions 706, 707 may be laterally offset from each other if the corresponding concave bearing surface portions 210, 213 of the nose 203 are offset from each other. Both the upper protrusion 706 and the lower protrusion 706 may form a cross-sectional arc having tangents at oblique angles. In some examples, there may be only a single protrusion 706 on the upper surface 704 and only a single protrusion 707 on the lower surface 704g. In some examples, however, there may be additional protrusions on each surface 704e, 704g.
In the present example, the surfaces of the protrusions 706, 707 may act as bearing surfaces t the bearing surface portions 210, 213 of the adapter nose 203.
Thus, the interference features that comprise the sions 706, 707 and the bearing e portions 210, 213 may provide additional support for loads in various directions. Furthermore, by their curved nature, the protrusions and indentations provide lateral stability as well as act as vertical bearing surfaces.
The cavity 702 may also e a hole 725 that aligns with hole 206 when the wear member 104 is placed on the adapter 102. Such alignment allows for the locking pin to be inserted therethrough. In some examples, the wear member 104 may e a single hole on one side of the cavity and in some examples, the wear member 104 may include two holes, one on each side of the cavity 702.
The cavity 702 also includes inward facing torsion control surfaces 727a, 727c. Torsion l surfaces 727b, 727d are shown in Fig. 10. The inward facing torsion control surfaces 727a, 727b, 727c, 727d are sized and shaped to fit against the outward facing torsion control features 230a, 230b, 230c, 230d of the adapter nose.
Figs. 8 and 9 are transverse cross-sectional views of the tooth with the protrusion. Fig. 8 illustrates ally separated opposing inner walls 704e, 704g, which correspond to walls 204e, 204g of the nose 203. Fig. 8 also illustrates horizontally separated opposing inner walls 704f, 804h, which correspond to walls 204f, 204h of the nose 203. Fig. 8 also rates the transversely angled inward facing walls 704a, 704b, 704c, 704d that correspond to outward facing ersely angled walls 204a, 204b, 204c, 204d of the nose 203.
Fig. 10 is a rear view of the tooth looking into the cavity 702. Looking into the cavity, the surfaces 721a, 721b, 721c, 721d, 721e, 721f, 721g, 721h of the front portion 720 of the cavity 702 can be seen. Additionally, the surfaces 723a, 723b, 723c, 723d, 723e, 723f, 723g, 723h of the intermediate portion 724 of the cavity 702 can be seen. Furthermore, surfaces 704a, 704b, 704c, 704d, 704e, 704g as well as the protrusions 706, 707 may be seen.
While the concave bearing surface portions 210, 213 and protrusions 706, 707 are substantially elliptical in shape, some embodiments may have nal shaped bearing surface portions and protrusions. In some es, the bearing surface portions may be placed in the side surface near or adjacent the holes 206, 711 through which the lock pin is inserted. Because the protrusions 706, 707 are sized and shaped to match the size and shape of the concave bearing surface portions, the description of either one applies equally to the other.
Although the indentations are described on the adapter 102 and the protrusions are described on inner surfaces of the wear member 104, it should be noted that some implementations are oppositely ed to have the sion on the adapter 102 and the indentations on the wear member 104.
The present disclosure is also directed to an earth engaging wear member assembly that includes an adapter nose securable to a bucket lip and a tooth. The nose es angled bearing surfaces arranged to be received into a cavity of the tooth.
The cavity includes bearing surfaces that correspond with and engage the bearing surfaces of the nose. According to some examples, the adapter nose may include a forward portion at the distal end of the nose and a rear portion at the proximal end of the nose. The rear portion may include eight substantially planar surfaces that converge towards the longitudinal axis of the nose. The forward n also may include eight ntially planar surfaces that converge towards the longitudinal axis of the nose, but at a shallower angle. In some entations, both the d portion and the rear portion thus have substantially octagonal-shaped cross-sections.
In some implementations, in the rear portion, the horizontal and vertical surfaces of the octagonal-shaped cross-section may be non-bearing surfaces and the angled es (e.g., the non-horizontal and non-vertical surfaces) may be bearing surfaces.
In the forward portion the angled surfaces may be g surfaces as well.
Fig. 11A is an exploded perspective view of an earth ng wear member assembly 10. According to the present example, the wear member assembly 10 includes a nose 1100 and a wear member 1200. An exemplary implementation of the wear member 1200 is a tooth 1200. In another implementation, the wear member 1200 is an intermediate adapter. Other wear members are contemplated. The nose 1100 includes a forward portion 1124 and a rear portion 1122. In the example shown, the nose 1100 extends from a base structure that is shown as a block but represents any onal attachment ure that make support the nose including a bucket receiving n having bifurcated adapter legs, similar to the adapter 102 in Fig. 1.
In some implementations, the nose is securable to a bucket lip of an excavator. The nose may form a part of an adapter or an intermediate adapter, and may also be referred to herein as a support structure since it provides stabilizing support to an onal component, which in this implementation is the tooth 1200. The nose 1100 also includes a hole 12 for receiving a locking pin. In the present example, the nose includes torsion control features 18. The tooth 1200 also includes a hole 14 through which the locking pin can be inserted. Since any of a number of known locking pins may be employed here, details of the locking pin are not included. The tooth 1200 also includes a rear facing cavity (not shown in Fig. 11A) and a ground engaging end as a leading end 16. An axis 1105 extends through the wear member assembly 10.
Fig. 11B shows a view of the nose 1100 looking along the longitudinal axis 1105 ofthe nose 1100. Fig. 11C shows a side view of the nose 1100, looking along a transverse axis 1107. The transverse axis 1107 is aligned in a position that would run parallel to an edge of the bucket lip (not shown). As described above, the nose 1100 may be secured to a bucket lip and includes a forward portion 1124 and a rear portion 1122. The rear portion 1122 es a set of eight substantially planar surfaces.
Particularly the set es a subset having a top surface 1108a and a bottom surface 1108b, a subset of two side es 1106a, 1106b, and a subset of four angled surfaces 1110a, 1110b, 1110c, 1110d. The top and bottom surfaces may be referred to as horizontal surfaces and the side surfaces may be referred to as vertical surfaces because such surfaces are horizontal and vertical in cross-section. The four angled surfaces 1110a, 1110b, 1110c, 1110d may be bearing surfaces arranged to contact and interface with surfaces of the tooth 1200. Because each bearing surface is angled, each bearing surface is able to resist both horizontal and vertical loading. The angled surfaces may also be referred to as al or oblique surfaces. Both the horizontal surfaces 1108a, 1108b and the al surfaces 1106a, 1106b may be non-bearing surfaces.
In this exemplary implementation, each of the eight substantially planar surfaces converges s the udinal axis 1105 of the nose 1100. In some examples, the angle of the eight substantially planar es with respect to the longitudinal axis 1105 may be within a range of about 5-25 degrees. In some examples, the angle may be within a range of about 8-15 s. Other ranges are contemplated as well. In this implementation, the top and bottom surfaces 1108a, 1108b may be wider than the side surfaces 1106a, 1106b. Thus, the octagon-shaped cross-section may be different in width 1132 than in height 1134. This helps with torsion control and stability.
In the exemplary implementation shown, the forward portion 1124 also includes a set of eight substantially planar surfaces. Particularly the set es a subset having a top surface 1114a and a bottom surface 1114b, a subset of two side surfaces 1112a, 1112b, and a subset of four angled surfaces 1116a, 1116b, 1116c, 1116d. The four angled surfaces 1116a, 1116b, 1116c, 1116d may be bearing surfaces arranged to contact and interface with surfaces of the tooth 1200. Because each bearing surface is angled, each bearing surface is able to resist both horizontal and vertical loading. The top and bottom surfaces 1114a, 1114b may also be non- bearing surfaces. In some examples, the side surfaces 1112a, 1112b may be bearing surfaces. In some examples, however, the side surfaces 1112a, 1112b may be non- bearing surfaces. In some implementations, the non-bearing surfaces of the front portion or 1124 or the rear portion 1122 may not be substantially planar.
In some implementations, each of the eight substantially planar surfaces of the d n 1124 ges towards the longitudinal axis 1105 of the nose 1100 but at an angle that is shallower than the angle at which the eight substantially planar surfaces of the rear portion 1122 converge s the longitudinal axis 1105.
In some examples, the angle of the eight substantially planar es of the forward n 1124 with respect to the longitudinal axis 1105 may be within a range of about 0-15 degrees. In some examples, the angle may be within a range of about 1-8 degrees. Additionally, the top and bottom es 1114a, 1114b may be wider than the side services 1112a, 1112b. Thus, the n-shaped cross-section is different in width 1132 than it is in height 1134. This also helps with stability and torsion control.
In some examples, the ratio of top or bottom surface width to side surface width is different in the forward portion 1124 than it is in the rear portion 1122. For example, the ratio of top or bottom surface width to side surface width may be greater in the d portion 1124 than it is in the rear portion 1122.
Fig. 12A shows a view of the tooth 1200 looking into the cavity 1205. Fig. 12B is a cross-sectional view of the tooth 1200 along the longitudinal axis 1105, taken along lines 12B-12B in Fig. 12A. The cavity 1205 is formed in the rear end 1209 of the tooth 1200, extending longitudinally inward from the rear end 1204. The cavity 1205 has bearing es that correspond to and ace with the bearing es of the nose 1100. It also has reference longitudinal axis 1105 and transverse axis 1107. The cavity 1205 also includes a front portion 1224 and a rear portion 1222.
The rear portion 1222 includes a set of eight substantially planar surfaces. ingly, in this exemplary implementation, the set of ntially planar surfaces includes a subset of having a top surface 1208a and a bottom surface 1208b, a subset of two side surfaces 1206a, 1206b, and a subset of four angled surfaces 1210a, 1210b,1210c,1210d. The four angled surfaces 1210a, 1210b, 1210c, 1210d may be bearing surfaces. Because each bearing surface is angled, each bearing surface is able to resist both horizontal and vertical loading that may be applied to the tooth 1200 during use. Both the top and bottom surfaces 1208a, 1208b and the side surfaces 1206a, 1206b may be non-bearing surfaces. In some examples, the non- g surfaces may not be substantially planar. For example, the non-bearing surfaces may be curved.
The forward portion 1224 also includes a forward set of eight substantially planar surfaces. ularly the forward set includes a subset having a top 1214a surface and a bottom surface 1214b, a subset of two side surfaces 1212a, 1212b, and a subset of four angled surfaces 1216a, 1216b, 1216c, 1216d. The four angled surfaces 1216a, 1216b, 1216c, 1216d may be g surfaces. Again, because each bearing surface is angled, each bearing surface is able to resist both horizontal and vertical loading. The horizontal es 1214a, 1214b may also be non-bearing surfaces. In some examples, the vertical surfaces 1212a, 1212b may be bearing surfaces. In some examples, however, the vertical es 1212a, 1212b may be non-bearing surfaces.
Referring now to Fig. 11C, the nose 1100 includes a rear surface 1101 and a front octagonal-shaped abutment surface 1118. The front abutment surface 1118 may have an octagonal shape. The front abutment surface 1118 may be a ?t surface as it is designed to make contact with a front abutment surface 1218 of the cavity 1205 (shown in Figs. 12A and 12B). The front abutment surface 1218 of the cavity 1205 may also have an octagonal shape. The rear surface 1201 at the rear end 1109 of the tooth 1200 may or may not make contact with the rear e 1101 of the nose 1100.
In some implementations, the nose 1100 and the tooth 1200 may be designed symmetrically so that the tooth can be rotated 180 degrees and still ?t appropriately on the tooth. This allows the tooth 1200 to be ?ipped after a certain period of wear.
The tooth 1200 may then continue to be used in the ?ipped position. This s the life of the tooth 1200.
Fig. 13 is a perspective view of the nose 1100. In addition to the substantially planar surfaces 1106a, 1106b, 1108a, 1108b, 1110a, 1110b, 1110c, 1112a,1112b,1114a,1114b,1116a,1116b,1116c,1116d, both the forward portion 1124 and the rear portion 1122 may have curved es positioned n the planar surfaces. In implementations having the rear surface 1101, the nose 1100 may e surfaces 1302 disposed between and transitioning from the rear surface 1101 to the eight ntially planar surfaces 1106a, 1106b, 1108a, 1108b, 1110a, 1110b, 1110c, 1110d of the rear portion 1122. The nose 1100 may also include elongated curved surfaces 1304 between adjacent edges of each of the planar surfaces 1106a, 1106b,1108a,1108b, 1110a,1110b,1110c, 1110d, 1112a,1112b, 1114a, 1114b, 1116a, 1116b, 1116c, 1116d in both the forward portion 1124 and the rear portion 1122. The nose 1100 may also include curved surfaces 1306 positioned between the planar surfaces 1106a, 1106b, 1108a, 1108b, 1110a, 1110b, 1110c, 1110d of the rear portion 1122 and the planar surfaces of the forward portion 1124. The nose 1100 may also include curved surfaces 1308 positioned between the front abutment surface 1118 and the planar surfaces 1112a, 1112b, 1114a, 1114b, 1116a, 1116b, 1116c, 1116d of the forward portion 1124. In some implementations, these curved surfaces may be fillets or rounds intended to minimize locational stress during use. The curved surfaces may also help provide clearance for the cavity of the wear member.
In some examples, the cross-sectional width W1 of the top and bottom non- bearing surfaces 1108a, 1108b is different at the distal end 1307 of the rear portion 1122 than the sectional width W3 at the proximal end 1305 of the rear portion 1122. For example, the cross-sectional width W1 of the top and bottom non-bearing surfaces 1108a, 1108b may be smaller at the distal end 1307 of the rear n 1122 than the cross-sectional width W3 at the proximal end 1305 of the rear portion 1122 or vice versa. Furthermore, the cross-sectional width W2 of the bearing surfaces 1110a, 1110b, 1110c, and 1110d at the distal end 1307 of the rear portion 1122 may be different than the cross-sectional width W4 at the proximal end 1305. For example, the cross-sectional width W2 of the bearing surfaces 1110a, 1110b, 1110c, and 1110d at the distal end 1307 of the rear n 1122 may be smaller than the cross-sectional width W4 at the proximal end 1305 or vice versa. Furthermore, the cross-sectional width W1 of the top and bottom surfaces 1108a, 1108b at the distal end 1307 of the rear portion 1122 may be different than the cross-sectional width W2 of the bearing surfaces 1110a, 1110b, 1110c, 1110d at the distal end 1307 of the rear portion 1122. For example, the cross-sectional width W1 of the top and bottom surfaces 1108a, 1108b at the distal end 1307 of the rear portion 1122 may be smaller than the cross-sectional width W2 of the bearing surfaces 1110a, 1110b, 1110c, 1110d at the distal end 1307 of the rear n 1122 or vice versa. Furthermore, the cross- nal width W3 of the top and bottom es 1108a, 1108b at the proximal 1305 end of the rear portion 1122 may be different than the cross-sectional width W4 of the bearing surfaces 1110a, 1110b, 1110c, 1110d at the proximal end 1305 of the rear portion 1122. For example, the cross-sectional width W3 of the top and bottom surfaces 1108a, 1108b at the proximal 1305 end of the rear portion 1122 may be greater than the cross-sectional width W4 of the bearing surfaces 1110a, 1110b, 1110c, 1110d at the al end 1305 of the rear portion 1122 or vice versa.
Fig. 14A shows a view of an illustrative adapter nose 1400 with torsion control features 1402a, 1402b, 1402c, 1402d that resist nal movement of the wear member 1200 with respect to the nose 1100. Fig. 14B shows a side view of the adapter nose 1400 with torsion control features. Fig. 14C is a perspective view of the adapter nose 1400 with torsion control features. Fig. 14D is a top view of the adapter nose 1400 with torsion control features. In the exemplary implementation shown, the adapter nose 1400 includes the angled bearing surfaces described with reference to Figs. 11A, 11B, 11C, and 13. For convenience, these bearing es will not be described again with reference to Figs. 14A, 14B, 14C, and 14D. The torsion control features 1402a, 1402b, 1402c, 1402d comprise tions that extend from the nose 1400. Each of the torsion control features includes a al, planar, outwardly facing surfaces 1404a, 1404b, 1404c, 1404d. The torsion control features 1402a, 1402b, 1402c, 1402d are positioned near the rearward end of the adapter nose 1400.
The torsion l features 1402a, 1402b, 1402c, 1402d are also positioned such that the vertical surfaces 1404a, 1404b, 1404c, 1404d intersect the angled bearing surfaces 1110a, 1110b, 1110c, 1110d of the nose 1400. As illustrated in Fig. 14D, the vertical surfaces 1404a, 1402b, 1402c, 1404d are tapered towards the longitudinal axis. This allows the tooth 1200 to be d from the nose 1100 more easily.
As best seen in the side view of Fig. 14B, the torsion control features 1402a, 1402b, 1402c, 1402d are contained within the boundary created by the planar surfaces 1108a and 1108b. In the exemplary embodiment shown, the adapter nose 1400 includes torsion control features 1402a, 1402b disposed on an upper portion and includes n control es 1402c, 1402d disposed on a lower portion. In some implementations, the adapter nose 1400 includes torsion control features on only one of the upper portion or the lower portion. Also, in the implementation shown, the torsion control features 1402a, 1402b are shown vertically aligned with the torsion control features 1402c, 1402d. In some implementations, the torsion control features are not vertically d.
Fig. 15 is a diagram showing a tooth 1500 having a cavity 1505 ed to fit an adapter nose, such as the adapter nose 1400, with torsion control features, such as the torsion control features 1402a, 1402b, 1402c, 1402d. The cavity 1505 may include r of pockets 1502a, 1502b, 1502c, 1502d. The pockets 1502a, 1502b, 1502c, 1502d may be designed to receive the torsion control features 1402a, 1402b, 1402c, 1402d of the adapter nose 1400. In the ary implementation shown, the pockets 1502a, 1502b, 1502c, 1502d e vertical, planar, inward-facing surfaces 1504a, 1504b, 1504c, 1504d that pond to the vertical surfaces 1404a, 1404b, 1404c, 1404d of the adapter nose 1400. Thus, the vertical surfaces 1404a, 1404b, 1404c, 1404d of the nose 1400 are designed to engage and interface with the vertical surfaces 1504a, 1504b, 1504c, 1504d of the tooth 1500 so as to resist twisting movement between the nose 1400 and the tooth 1500. The tooth 1500 may have, as indicated with reference to Figs 12A and 12B, planar bearing surfaces that interface with planar bearing surfaces on the adapter nose 1400.
Fig. 16A shows a cross-section of the adapter nose 1100 orthogonal to the longitudinal axis (e.g., 1105, Fig. 11B) in an assembled condition. ingly, Fig. 16A also illustrates the cross-section of the tooth 1200. As illustrated, the angled g surfaces 1110a, 1110b, 1110c, 1110d of the nose 1100 fit against the angled bearing surfaces 1210a, 1210b, 1210c, 1210d of the tooth 1200. These angled bearing surfaces minimize or prevent both vertical and lateral movement of the tooth 1200 relative to the adapter nose 1100. In some examples, there may be a gap between the horizontal non-bearing surfaces 1108a, 1108b of the nose and the horizontal non- bearing surfaces 1208a, 1208b of the tooth 1200. Likewise, there may be a gap n the vertical non-bearing surfaces 1106a, 1106b of the nose and the vertical non-bearing surfaces 1206a, 1206b of the tooth 1200. In some examples, however, the non-bearing surfaces of both the nose 1100 and the tooth 1200 may make contact when the tooth 1200 is fit over the nose 1100. Because of the angled bearing surfaces, both al and lateral movement may be minimized.
Fig. 16B shows a cross-section orthogonal to the longitudinal axis of the adapter nose 1400 with torsion control features. As described above, the vertical surfaces 1404a, 1404b, 1404c, 1404d of the nose 1400 fit against the vertical surfaces 1504a, 1504b, 1504c, 1504d of the tooth 1500. Thus, the torsion control features 1402a, 1402b, 1402c, 1402d are arranged to resist ng movement and torsion between the nose 1400 and the tooth 1500. This may help stabilize the tooth 1500 on the adapter nose 1400 during use.
Fig. 16C shows a cross-section of the forward portion of the adapter nose 1100. Fig. 16C also illustrates the cross-section of the tooth 1200. As rated, the angled bearing surfaces 1116a, 1116b, 1116c, 1116d of the nose 1100 fit against the angled bearing surfaces 1216a, 1216b, 1216c, 1216d ofthe tooth 1200. In some examples, there may be a gap between the horizontal non-bearing surfaces 1114a, 1114b of the nose and the horizontal non-bearing surfaces 1214a, 1214b of the tooth 1200. In the present example, the vertical surfaces 1112a, 1112b of the nose 1100 and the vertical surfaces 1212a, 1212b of the tooth 1200 are bearing es and thus there is no gap n them. In some examples, however, there may be a gap between the vertical surfaces 1112a, 1112b of the nose 1100 and the vertical es 1212a, 1212b of the tooth 1200. In this exemplary implementation, the angled g surfaces 1116c and 1116d are adjacent to, but do not form a part of, a bottom surface 1114b of the adapter nose 1100. This angled design may, in some instances, extend the useful life of the adapter nose 1100. It is not uncommon during use for an operator to wear a bottom portion of a tooth away, inadvertently exposing and g a bottom surface of the adapter nose 1100. In conventional systems utilizing a bottommost surface of an adapter nose as a bearing surface, such where may adversely affect the stability of a subsequent tooth placed on the adapter nose. A worn bearing surface may introduce wobble, further accelerating wear, and potentially permanently damaging the adapter nose. r, the ary implementation disclosed herein includes bearing surfaces on angled bottom surfaces, rather than a horizontal bottom e. Because of this, if an operator inadvertently wears away a portion of a bottom surface of the adapter nose, the angled bearing surfaces may still provide stability to the tooth in both the ntal and vertical directions. This may increase the useful life of the r nose because the tooth may be properly supported even with a worn bottom surface of the adapter nose.
Fig. 16D illustrates a cross-section of the adapter nose 1450 with offset torsion control features. For example, surface 1454a is offset from surface 1454c.
Similarly, surface 1454b is offset from surface 1454d. The tooth 1550 includes corresponding surfaces 1554a, 1554b, 1554c, 1554d. The offsets are such that the tooth 1550 can still be ?ipped upside down and fit on the nose 1450. In other words, the tooth is engageable with the adapter nose 1450 in two rotational positions.
Although described as having eight planar surfaces, some implementations of the adapter noses and the teeth described herein include four angled planar surfaces and less than four planar vertical or horizontal surfaces. In some implementations, the r noses and teeth described herein e a round or arcing outer surface connecting two adjacent planar angled surfaces. For example, some implementations do not include the side vertical, with rounds connecting the adjacent surfaces 106a and 1106b. In these implementations, the surfaces 1106a and 1106b may be replaced with a round surface connecting planar bearing surfaces 1110a and 1110c. The tooth may be formed to match. In some implementations, the adapter nose may be formed with eight planar surfaces, but the cavity of the tooth, such as cavity 1205, may be formed with only six planar es. In some examples, the vertical surfaces 1206a and 1206b described herein may be d, while the cavity 1205 may still be formed to engage and fit the planar angled bearing surfaces of the adapter nose.
US. Provisional Application No. 62/441,756 filed January 3, 2017 and entitled "Connector with Clamp Spring for an Earth Engaging Wear Member Assembly" and US. ional Application No. ,424 filed May 12, 2016 and ed "Fastener for a Wear Member Assembly," and US. Application15/589,647 ?led May 8, 2017, ed "Stabilizing Features in a Wear Member Assembly" are hereby incorporated by reference in the entirety.
Persons of ordinary skill in the art will appreciate that the implementations encompassed by the present disclosure are not d to the particular exemplary implementations described above. In that regard, although illustrative implementations have been shown and described, a wide range of modi?cation, change, combination, and substitution is contemplated in the foregoing disclosure. It is tood that such variations may be made to the foregoing without departing from the scope of the present disclosure. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the t disclosure.
MARKED-UP COPY

Claims (14)

1. A hollow ground-engaging wear member attachable to a support structure, the wear member sing: a leading end ed to engage ground and a rear end having a cavity formed therein, the cavity having an inner surface and having a longitudinally extending axis, the cavity having a front portion and having a rear portion nt the rear end, the inner surface having horizontally separated ng inner walls and having vertically separated opposing inner walls angled with respect to the longitudinally extending axis and forming an upper inner e and a lower inner the upper inner surface and the lower inner surface each having a centrally disposed, inwardly protruding surface portion arranged to provide a bearing fit with the support structure, each inwardly protruding surface portion being disposed only in the rear portion of the cavity and shaped to form an arc, the inwardly protruding e portion being arranged to support vertically imposed loads at the leading end; a pair of holes in the respective horizontally separated opposing inner walls, each hole of the pair of holes arranged to receive a locking pin, and wherein each hole comprises a portion that is forwardly of each inwardly protruding surface portion.
2. The wear member of claim 1, wherein each protruding bearing surface portion forms a cross-sectional arc having tangents at oblique .
3. The wear member of claim 1 or claim 2, wherein the upper inner surface and the lower inner surface each have only one single, centrally disposed, inwardly protruding bearing surface portion.
4. The wear member of claim 1 to 3, wherein the inwardly protruding g surface of the upper inner surface and the inwardly protruding bearing surface of the lower inner surface are oned at least partially rearward of the pair of holes. MARKED-UP COPY
5. The wear member of any one of claims 1 to 4, wherein the ly protruding bearing surface of the upper inner surface is longitudinally d with the inwardly protruding bearing surface of the lower inner surface.
6. The wear member of any one of the claims 1 to 4, wherein the inwardly protruding bearing surface of the upper inner e is longitudinally offset from the inwardly protruding bearing surface of the lower inner surface.
7. The wear member of any one of the claims 1 to 6, wherein the inwardly protruding g surfaces are substantially elliptical.
8. The wear member of any one of the claims 1 to 7, wherein a transverse width of the inwardly protruding bearing surface of the upper inner surface is within a range of about 60-80% of a width of the upper inner surface.
9. The wear member of any one of the claims 1 to 8, wherein a longitudinal length of the inwardly protruding bearing surface of the upper inner surface is within a range of about 1-50 t larger than a transverse width of the inwardly protruding bearing surface of the upper inner e.
10. The wear member of any one of the claims 1 to 9, n the cavity includes a front portion, and intermediate n, and a rear portion, wherein the inwardly protruding bearing surface portion bridges an intersection of the intermediate portion and the rear portion.
11. The wear member of claim 10, wherein the intermediate portion comprises at least one non-bearing surface angled toward a longitudinal axis of the wear , the non-bearing e of the intermediate portion being angled differently than the two non-bearing surfaces of the rear portion and angled differently than the two nonbearing surfaces of the forward portion.
12. A support structure arranged to receive a wear member, the support structure comprising: -UP COPY a nose arranged to fit within a cavity of the wear member, the nose sing: a front portion having a plurality of outwardly facing es, the outwardly facing surfaces angled with respect to a longitudinal axis of the nose at a first angle; a rear portion having two horizontally separated outwardly facing surfaces, and two vertically separated outwardly facing surfaces, the horizontally separated outwardly facing surfaces and the ally separated outwardly facing surfaces being angled with respect to the longitudinal axis at a second angle that is different than the first angle; a first concave surface positioned on one of the vertically separated outwardly facing surfaces, the first concave surface being disposed only in the rear portion and shaped to form an arc; a second concave surface positioned on the other of the vertically separated outwardly facing surfaces, the second concave surface being disposed only in the rear portion and shaped to form an arc; and a pair of holes in the two horizontally separated dly facing es, each hole of the pair of holes arranged to receive a locking pin, and n each hole comprises a portion that is disposed forwardly of the first concave surface and the second concave surface.
13. The support structure of claim 12, wherein a longitudinal length of the concave surfaces is larger than a transverse width of the concave surfaces.
14. The support structure of claim 12 or claim 13, wherein a transverse width of the concave surfaces is about 70% of a width of the vertically separated outwardly facing surfaces.
NZ762169A 2017-05-11 Stabilizing features in a wear member assembly NZ762169B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662335789P 2016-05-13 2016-05-13
US201762441779P 2017-01-03 2017-01-03
US15/589,647 US10508418B2 (en) 2016-05-13 2017-05-08 Stabilizing features in a wear member assembly
NZ752778A NZ752778B2 (en) 2016-05-13 2017-05-11 Stabilizing features in a wear member assembly

Publications (2)

Publication Number Publication Date
NZ762169A NZ762169A (en) 2023-09-29
NZ762169B2 true NZ762169B2 (en) 2024-01-04

Family

ID=

Similar Documents

Publication Publication Date Title
AU2021282515B2 (en) Stabilizing features in a wear member assembly
NZ762169B2 (en) Stabilizing features in a wear member assembly
NZ762171B2 (en) Stabilizing features in a wear member assembly
NZ752778B2 (en) Stabilizing features in a wear member assembly
NZ762166B2 (en) Stablizing features in a wear member assembly
OA19418A (en) Stabilizing features in a wear member assembly.