NZ761414A - Diarylhydantoin compounds - Google Patents

Diarylhydantoin compounds Download PDF

Info

Publication number
NZ761414A
NZ761414A NZ761414A NZ76141406A NZ761414A NZ 761414 A NZ761414 A NZ 761414A NZ 761414 A NZ761414 A NZ 761414A NZ 76141406 A NZ76141406 A NZ 76141406A NZ 761414 A NZ761414 A NZ 761414A
Authority
NZ
New Zealand
Prior art keywords
mmol
mixture
nmr
mhz
compounds
Prior art date
Application number
NZ761414A
Other versions
NZ761414B2 (en
Inventor
Charles L Sawyers
Michael E Jung
Charlie D Chen
Samedy Ouk
Derek Welsbie
Chris Tran
John Wongvipat
Dongwon Yoo
Original Assignee
Univ California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Univ California filed Critical Univ California
Publication of NZ761414A publication Critical patent/NZ761414A/en
Publication of NZ761414B2 publication Critical patent/NZ761414B2/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

The disclosure relates to the diphenylhydantoin compound RD53 and a pharmaceutically acceptable salt thereof, and the use of this compound for the manufacture of a medicament for the treatment of hyperproliferative disorder selected from prostate cancer (particularly hormone sensitive prostate cancer), benign prostate hyperplasia, breast cancer and ovarian cancer.

Description

DIARYLHYDANTOIN CONEPOUNDS FIELD OF THE INVENTION The present invention relates to diarylhydantoin compounds including diarylthiohydantoins, and methods for synthesizing them and using them in the treatment of hormone refractory prostate cancer. This application claims priority from US. provisional applications bearing serial numbers 60/756,552, 60/750,351, and 60/680,835, the cations of which are hereby incorporated by reference.
BACKGROUND OF THE INVENTION Prostate cancer is the most common incidence of cancer and the second leading cause of cancer death in Western men. When the cancer is confined locally, the disease can be cured by surgery or ion. r, 30% of such cancer relapses with distant metastatic disease and others have advanced disease at diagnoses. Advanced disease is treated by castration and/or administration of antiandrogens, the so-called androgen deprivation y. Castration lowers the circulating levels of androgens and reduces the activity of androgen receptor (AR). Administration of antiandrogens blocks AR function by competing away androgen g, therefore, reducing the AR activity. Although initially effective, these treatments quickly fail and the cancer becomes hormone tory.
Recently, overexpression of AR has been identified and validated as a cause of hormone refractory te cancer. See Chen, C.D., Welsbie, D.S., Tran, C., Back, S.H., Chen, R., la, R., Rosenfeld, M.G., and Sawyers, C.L., Molecular determinants of resistance to antiandrogen therapy, Nat.
Med, 10: 33-39, 2004, which is hereby orated by reference. Overexpression of AR is sufficient to cause progression from hormone sensitive to hormone refractory prostate cancer, suggesting that better AR inhibitors than the current drugs can slow the progression of prostate cancer. It was demonstrated that AR and its ligand binding are ary for growth of hormone refractory prostate cancer, indicating that AR is still a target for this disease. It was also demonstrated that pression of AR converts anti—androgens from antagonists to agonists in e refractory prostate cancer (an AR antagonist inhibits AR ty and an AR agonist stimulates AR activity). Data from this work explains why castration and anti-androgens fail to prevent prostate cancer progression and reveals unrecognized properties of hormone tory prostate cancer.
Bicalutamide (brand name: Casodex) is the most commonly used ndrogen. While it has an inhibitory effect on AR in hormone sensitive prostate cancer, it fails to suppress AR when cancer s hormone refractory. Two weaknesses of current antiandrogens are blamed for the failure to prevent prostate cancer progression from the hormone ive stage to the hormone refiactory disease and to effectively treat hormone refractory prostate cancer. One is their weak antagonistic activities and the other is their strong agonistic activities when AR is overexpressed in hormone refractory prostate cancer. Therefore, better AR inhibitors with more potent antagonistic activities and minimal agonistic activities are needed to delay disease progression and to treat the fatal hormone refractory prostate cancer.
Nonsteroidal ndrogens, such as bicalutamide, have been preferred over steroidal compounds for prostate cancer because they are more selective and have fewer side effects. This class of compounds has been described in many patents such as U.S. Patent Number 578, U.S. Pat. No. ,411,981, U.S. Pat. No. 5,705,654, PCT International Applications WO 97/00071 and WO 00/17163, and U.S. hed Patent Application Number 2004/0009969, all of which are hereby incorporated by reference.
U.S. Patent No. 5,434,176 es broad claims which ass a very large number of nds, but tic routes are only presented for a small fraction of these compounds and pharmacological data are only presented for two of them, and one skilled in the art could not readily envision other specific compounds.
Because the mechanism of hormone refractory prostate cancer was not known, there was no biological system to test these compounds described in these patents for their effect on hormone refractory prostate cancer. Particularly, the ability of AR overexpression in hormone refractory prostate cancer to switch inhibitors from antagonists to agonists was not recognized. Some new properties of hormone refractory prostate cancer are reported in PCT applications USO4/42221 and USOS/05529, which are hereby incorporated by reference. PCT ational Application USOS/05529 ted a methodology for identifying androgen receptor antagonist and t teristics of nds.
However, for each compound produced, the time consuming process of determining the antagonist and agonist characteristics of a compound must be determined. That is, there is no method to accurately predict characteristics relevant to treating prostate cancer from the chemical structure of a compound alone.
There is a need for new thiohydantoin compounds having desirable pharmacological properties, and synthetic pathways for preparing them. Because activities are sensitive to small structural changes, one compound may be effective in treating prostate cancer, whereas a second compound may be ineffective, even if it differs from the first compound only ly, say by the replacement of a single substituent.
Identification of nds which have high potency to nize the en activity, and which have minimal agonistic activity should me hormone refractory prostate cancer (HRPC) and avoid or slow down the progression of hormone sensitive prostate cancer (HSPC). Therefore, there is a need in the art for the identification of selective tors of the androgen receptor, such as modulators which are non-steroidal, non-toxic, and tissue selective.
SUMMARY OF THE INVENTION It is an object of the invention to provide a compound having strong antagonistic activities with minimal agonistic activities against AR. These compounds inhibit the growth of hormone refractory prostate cancer. These compounds inhibit the growth of hormone refractory prostate cancer. It is an alternative object of the invention to provide a novel compound and/or pharmaceutical composition and/or use of a compound in the manufacture of a medicament for the treatment of hormone refractory prostate cancer and/or benign prostate hyperplasia and/or breast cancer and/or ovarian cancer. It is a further alternative object of the invention to at least provide the public with a useful choice.
The invention includes a compound having the a wherein X is selected from the group consisting of trifluoromethyl and iodo, wherein W is (followed by page 3a) selected from the group consisting of O and NR5, wherein R5 is selected from the group consisting of H, methyl, and wherein D is S or O and E is N or O and G is alkyl, aryl, substituted alkyl or tuted aryl; or D is S or O and E-G together are C1-C4 lower alkyl, [FOLLOWED BY PAGE 4] -3a- n R1 and R2 together comprise eight or fewer carbon atoms and are ed from the group consisting of alkyl, substituted alkyl including haloalkyl, and, together with the carbon to which they are linked, a cycloalkyl or substituted cycloalkyl group, wherein R3 is ed from the group consisting of hydrogen, halogen, methyl, C1—C4 , formyl, etoxy, trifluoromethyl, cyano, nitro, hydroxyl, phenyl, amino, methylcarbamoyl, methoxycarbonyl, acetamido, methanesulfonamino, methanesulfonyl, 4-methanesulfonyl~1—piperazinyl, piperazinyl, and C1-C6 alkyl or alkenyl optionally substituted with hydroxyl, methoxycarbonyl, cyano, amino, amido, nitro, carbamoyl, or substituted carbamoyl including methylcarbamoyl, dimethylcarbamoyl, and hydroxyethylcarbamoyl, id="p-14" id="p-14" id="p-14" id="p-14" id="p-14" id="p-14" id="p-14" id="p-14" id="p-14" id="p-14" id="p-14"
[0014] wherein R4 is selected from the group consisting of hydrogen, halogen, alkyl, and haloalkyl, and wherein R3 is not methylaminomethyl or dimethylaminomethyl.
R5 may be r , ‘:S ):S O HN O > X" 3C H3C CH3 9 OT The compound may have the formula 22111 i, 0%,,"4 wherein R3 is selected from the group ting of hydroxy, methylcarbamoyl, methylcarbamoylpropyl, carbamoylethyl, methylcarbamoylmethyl, methylsulfonecarbamoylpropyl, methylaminomethyl, dimethylaminomethyl, methylsulfonyloxymethyl, carbamoylmethyl, oylethyl, carboxymethyl, methoxycarbonylmethyl, methanesulfonyl, 4-cyano—3 —trifluoromethylphenylcarbamoylpropyl, carboxypropyl, 4-methanesulfonylpiperaziny1, piperazinyl, methoxycarbonyl, 3—cyano romethylphenylcarbamoyl, hydroxyethylcarbamoylethyl, and hydroxyethoxycarbonylethyl, and wherein R10 and R11 are both H or, respectively, F and H, or H and F. In certain embodiments, R10 and R11 may both be H or, respectively, P and H. R3 may be methylcarbamoyl. id="p-19" id="p-19" id="p-19" id="p-19" id="p-19" id="p-19" id="p-19" id="p-19" id="p-19" id="p-19" id="p-19"
[0019] In some embodiments, R1 and R2 are independently methyl or, together with the carbon to which they are linked, a cycloalkyl group of 4 to 5 carbon atoms, and R3 is selected from the group ting of carbamoyl, alkylcarbamoyl, carbamoylalkyl, and alkylcarbamoylalkyl, and R4 is H or F or R4 is 3—fluoro.
In other embodiments, R1 and R2 are ndently methyl or, together with the carbon to which they are , a cycloalkyl group of 4 to 5 carbon atoms, R3 is selected from the group consisting of cyano, hydroxy, methylcarbamoyl, methylcarbamoyl—substituted alkyl, methylsulfonecarbamoyl-substituted alkyl, methylaminomethyl, dimethylaminomethyl, methylsulfonyloxymethyl, methoxycarbonyl, acetamido, methanesulfonamido, carbamoyl-substituted alkyl, carboxymethyl, methoxycarbonylmethyl, methanesulfonyl, 4-cyano-3— trifluoromethylphenylcarbamoyl—substituted alkyl, carboxy—substituted alkyl, 4-(l,1- dimethylethoxy)carbonyl)piperazinyl, 4-methanesulfony1—1-piperazinyl, piperazinyl, hydroxyethylcarbamoyl—substituted alkyl, hydroxyethoxycarbonyl-substituted alkyl, and 3-cyano trifluoromethylphenylcarbamoyl, and R4 is F. id="p-21" id="p-21" id="p-21" id="p-21" id="p-21" id="p-21" id="p-21" id="p-21" id="p-21" id="p-21" id="p-21"
[0021] Compounds of the invention may have the formula NC R A R4 F3C N N wherein R3 is selected from the group consisting ylcarbonyl, methoxycarbonyl, acetamido, and methanesulfonamido, and R4 is selected from the group consisting of F and H. id="p-22" id="p-22" id="p-22" id="p-22" id="p-22" id="p-22" id="p-22" id="p-22" id="p-22" id="p-22" id="p-22"
[0022] Compounds of the invention may have the formula NC CN /H\ R4 F3C N N wherein R4 is selected fiom the group consisting ofF and H.
In embodiments of the invention, wherein R1 and R2 together with the carbon to which they are linked are H3C Kong, 9 .‘Ior 3 Compounds of the invention may be those listed in Tier 1, Tier 2, Tier 3, and/or Tier 4, below. Particular compounds of the ion include [RD170] The invention also provides a pharmaceutical composition comprising a therapeutically ive amount of a compound according to any of the preceding compounds or a pharmaceutically able salt thereof, and a pharmaceutically acceptable carrier or diluent.
The invention encompasses a method for treating a hyperproliferative disorder comprising administering such a pharmaceutical composition to a subject in need of such treatment, thereby treating the hyperproliferative disorder. The hyperproliferative disorder may be hormone tory prostate cancer. The dosage may be in the range of from about 0.001 mg per kg body weight per day to about 100 mg per kg body weight per day, about 0.01 mg per kg body weight per day to about 100 mg per kg body weight per day, about 0.1 mg per kg body weight per day to about 10 mg per kg body weight per day, or about 1 mg per kg body weight per day.
The compound may be stered by intravenous injection, by injection into tissue, intraperitoneally, orally, or nasally. The composition may have a form selected from the group consisting of a solution, dispersion, suspension, powder, capsule, tablet, pill, time e capsule, time release tablet, and time release pill.
The administered compound may be selected from the group consisting of , RD162", RD 169, or RD170, or a ceutically acceptable salt thereof. The administered compound may be RD162 or a ceutically acceptable salt thereof.
The invention provides a method of synthesizing a diaryl compound of formula: NC R52 F3C N N comprising mixing Compound I F C3 N Compound I with Compound II N/yc NH Compound II in a first polar solvent to form a mixture, heating the mixture, adding a second polar solvent, the same as or different from the first polar solvent, and an aqueous acid to the mixture, ng the mixture, cooling the mixture and combining with water, and separating the diaryl compound from the mixture, wherein R51 comprises an alkyl chain of from 1 to 4 carbon atoms, R52 is selected from the group consisting of cyano, hydroxy, methylcarbamoyl, methylcarbamoyl-substituted alkyl, methylsulfonecarbamoyl-substituted alkyl, methylaminomethyl, ylaminomethyl, methylsulfonyloxymethyl, methoxycarbonyl, 3-cyano—4-trifluoromethylphenylcarbamoyl, carbamoyl- substituted alkyl, carboxyrnethyl, ycarbonylmethyl, methanesulfonyl, o trifluoromethylphenylcarbamoyl—substituted alkyl, carboxy-substituted alkyl, 4-methanesulfonyl zinyl, piperazinyl, hydroxyethylcarbamoyl-substituted alkyl, and hydroxyethoxycarbonyl- substituted alkyl, and R53 is selected from the group consisting ofF and H.
R51 may comprise an alkyl chain of from 1 to 2 carbon atoms, R52 may be selected from the group ting of carbamoyl and methylcarbamoyl, and R53 may be P. id="p-31" id="p-31" id="p-31" id="p-31" id="p-31" id="p-31" id="p-31" id="p-31" id="p-31" id="p-31" id="p-31"
[0031] The invention provides methods of synthesizing a compound of formula: [RD162] comprising mixing 4-isothiocyanatotrifluoromethylbenzonit1ile and N—methyl(l- cyanocyclobutylamino)—2-fluorobenzamide in dimethylformamide to form a first mixture, heating the first mixture to form a second mixture, adding alcohol and acid to the second mixture to form a third mixture, refluxing the third mixture to form a fourth mixture, cooling the fourth mixture, combining the fourth mixture with water and extracting an organic layer; isolating the compound from the organic layer.
Likewise, the invention provides a method of synthesizing RD162' comprising mixing N— Methyl-Z-fluoro(l,1-dimethyl-cyanomethyl)~aminobenzamide and 4-Isothiocyanato trifluoromethylbenzonitrile in DMF and heating to form a first mixture, and sing as above.
The invention also es a method of synthesizing RD162", comprising mixing N— Methyl—Z—fluoro(l-cyanocyclopentyl)aminobenzamide, hiocyanato-Z—trifluoromethyl benzonitrile, and DMF and heating under reflux to form a first mixture, and processing as above. id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34" id="p-34"
[0034] The invention r provides a method of synthesizing RD169, comprising mixing N,N—Dimethy1 1—cyanocyclobutylamino)phenyl]butanamide, 4-isothiocyanato—Z—trifluoromethyl benzonitrile, and DMF and heating under reflux to form a first mixture; and processing as above.
The invention provides a method of synthesizing RD170, comprising mixing DMSO, dichloromethane, and oxalyl chloride to form a first mixture, adding 4-(4-(7—(4—Cyano-3— (trifluoromethyl)phenyl)oxo—6—thioxo—5,7-diazaspiro[3.4]octan—5-yl)pheny1)butanamide to the first mixture to form a second e; adding triethylamine to the second mixture to form a third mixture; warming the third mixture and quenching with aqueous NH4C1 to form a fourth mixture; extracting an organic layer from the fourth mixture; and isolating the compound from the organic layer.
Further nds according to the invention have the formula R X R3 A \ R6 N N B R1 n R5 is CN or N02 or SOZRl 1, wherein R6 is CF3, alkyl, substituted alkyl, alkenyl, substituted alkenyl, allcynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated , halogen, n A is sulfur (S) or oxygen (0), wherein B is O or S or NR8, wherein R8 is selected from the group consisting of H, methyl, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, arylalkyl, kenyl, arylalkynyl, heterocyclic aromatic or non- aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted lkyl, SOZRll, NR11R12, (CO)OR11, (CO)NR11R12, (CO)R11, (CS)R11, (CS)NR11R12, 11, 1"? eS HN):S CN H3C Q06 9 > id="p-42" id="p-42" id="p-42" id="p-42" id="p-42" id="p-42" id="p-42" id="p-42" id="p-42" id="p-42" id="p-42"
[0042] wherein R11 and R12 are independently hydrogen, aryl, aralkyl, substituted aralkyl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, nated alkenyl, halogenated alkynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non—aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, or substituted cycloalkyl, or R11 and R12 can be connected to form a cycle which can be heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic, cycloalkyl, or substituted cycloalkyl.
Such compounds have substantial androgen receptor nist activity and no substantial agonist activity on hormone refractory te cancer cells.
The invention encompasses a method comprising providing at least one such nd, measuring inhibition of androgen receptor ty for the compound and ining if the inhibition is above a first predetermined level, measuring stimulation of androgen receptor activity in hormone refractory cancer cells for the compound and determining if the stimulation is below a second predetermined level, and selecting the compound if the inhibition is above the first ermined level and the stimulation is below the second predetermined level. The ermined levels may be those of bicalutamide. The step of measuring inhibition may comprise measuring inhibitory concentration (ICSO) in an AR se reporter system or a prostate specific antigen secreting . The step of measuring ation may comprise measuring fold induction by increasing concentrations in an AR response reporter system or a prostate ic antigen secreting system. The method of measuring inhibition and/or stimulation may comprise measuring an effect of the compound on tumor growth in an animal. [0044A] In a first preferred aspect, the invention provides a compound of formula [RD53] or a pharmaceutically acceptable salt thereof.
BRIEF PTION OF THE DRAWINGS The following Figures present the results of pharmacological examination of certain compounds.
Figure 1 is a graph depicting that bicalutamide displays an agonistic effect on LNCaP-AR. Agonistic activities of bicalutamide in AR-overexpressed hormone refractory prostate . LNCaP cells with overexpressed AR were treated with increasing tration of DMSO as vehicle or bicalutamide in the absence of R1881. Activities of AR response reporter were measured.
Figure 2 is a graph depicting an antagonistic assay of bicalutamide on LNCaPAR.
Agonistic activities of bicalutamide in hormone sensitive prostate cancer. LNCaP cells were treated with sing trations of DMSO as vehicle or bicalutamide in the absence of R1881. Activities of AR response reporter were ed. (followed by page 13a) Figure 3 is a graph ing the effect of compounds on LNCaP-AR.
Figure 4 is a graph depicting the effect of compounds on LNCaP-AR. id="p-50" id="p-50" id="p-50" id="p-50" id="p-50" id="p-50" id="p-50" id="p-50" id="p-50" id="p-50" id="p-50"
[0050] Figure 5 is a graph depicting the inhibition effect on LNCaP-AR.
In Figures 6-10, example 5-3b is RD7 and example 7-3b is RD37.
Figure 6. Inhibition on growth of AR-overexpressed LNCaP cells. Androgen starved LNCaP cells with overexpressed AR were treated with increasing concentrations of DMSO as vehicle or test substances in the presence of 100 pM of R1881. After 4 days of incubation, cell growth was measured by MTS assay.
Figure 7. Inhibitory effect of growth of AR-overexpressed LNCaP xenograft model. Mice with established LN-AR aft tumors were randomized and treated with indicated compounds orally once daily. Tumor size was measured by r. (A), mice were treated with 1 mg per kg of bicalutamide, example 7-3b, or vehicle for 44 days. (B), mice were d with vehicle, 0.1, 1, or 10 mg per kg of example 7-3b for 44 days.
[FOLLOWED BY PAGE 14] -13a- Figure 8. Inhibitory effect on PSA expression of AR-overexpressed LNCaP xenograft model. Mice were treated with vehicle, 0.1, 1, or 10 mg per kg of example 7-3b for 44 days orally once daily. The tumors were taken out from the mice after 44 days of treatment, tumor lysate was extracted, and PSA level in tissue lysate was determined by ELISA.
Figure 9. Inhibitory effect on growth and PSA of hormone refractory LAPC4 xenograft model. Mice with established tumors were randomized and treated with 1 mg per kg of bicalutamide, example 7-3b, or vehicle for 17 days orally once daily. (A), tumor size was ed by caliber. (B), the tumors were taken out from the mice after 17 days of treatment, tumor lysate was ted, and PSA level in tissue lysate was determined by ELISA. id="p-56" id="p-56" id="p-56" id="p-56" id="p-56" id="p-56" id="p-56" id="p-56" id="p-56" id="p-56" id="p-56"
[0056] Figure 10. Inhibitory effect on growth of hormone sensitive prostate cancer cells.
Androgen starved LNCaP cells were d with increasing concentrations of DMSO as vehicle or test substances in the presence of 1 pM of R1881. After 4 days of incubation, cell growth was measured by MTS assay.
Figure 11 is a graph of tumor size. AR overexpressing LNCaP cells were injected in the flanks of ted SCID mice, subcutaneously. When tumors reached about 100 cubic mm, they were randomized into five groups. Each group had nine s. After they reached this tumor volume, they were given orally with either vehicle, bicalutamide or RD162 at 10 or 50 mg/kg ay. The tumors were measured three—dimensionally, width, length and depth, using a caliper.
Figure 12 depicts mental results of tumor size. At day 18, the animals were imaged via an optical CCD camera, 3 hours after last dose of treatment. A ROI was drawn over the tumor for luciferase activity measurement in photon/second. The right panels is a representation of the ROIs ements.
Figure 13 is a graph depicting the pharmacokinetic curves of RD162 fiom intravenous (upper curve) and oral administration (lower curve). id="p-60" id="p-60" id="p-60" id="p-60" id="p-60" id="p-60" id="p-60" id="p-60" id="p-60" id="p-60" id="p-60"
[0060] . Figure 14 is a graph ing PSA absorbance measured for LN—AR cells after treatment with various doses of several compounds.
Figure 15 presents a table providing several characteristics of compounds. Figure 15 also presents a graph providing the pharmacokinetic characteristics of several compounds in terms of compound serum concentration as a function of time. id="p-62" id="p-62" id="p-62" id="p-62" id="p-62" id="p-62" id="p-62" id="p-62" id="p-62" id="p-62" id="p-62"
[0062] Figure 16 is a chart ing prostate weight after treatment with various compounds. , 25, or 50 mg of compound per kilogram body weight were administered per day, as indicated by the label of a bar. The nds were administered to healthy FVB mice. After treatment with compound for 14 days, the urogenital tract weight was determined by removing and ng the semi-vesicles, prostate, and bladder. Three mice were administered a given compound to obtain the data presented by a bar in the chart. A set of mice was not treated with a compound: data are presented in the bar labeled ated". Another set of mice was treated only with vehicle solution: data are presented in the bar labeled "vehicle".
Figure 17 is a graph presenting a PSA assay performed along with the experimental ol presented in Fig. 6. id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64" id="p-64"
[0064] Figure 18 is a graph presenting the effect of various dose regimens of RD162 on tumor volume.
Figure 19 is a graph presenting the rate of photon emission associated with luciferase activity at day 17 relative to the rate at day 0 after treatment with RD162 at doses of 0.1, 1, and 10 mg per kilogram body weight per day and without treatment with RD162. id="p-66" id="p-66" id="p-66" id="p-66" id="p-66" id="p-66" id="p-66" id="p-66" id="p-66" id="p-66" id="p-66"
[0066] Figure 20 presents the results of an experiment in which SCID mice were injected with the LN—AR (HR) cell line to induce tumor growth. One set of mice were treated with the compound RD162 at a dose of 10 mg per kilogram body weight per day; the other set ofmice were d only with vehicle solution. (A) The relative tumor volume as a function of time shown for each set of mice. (B) Images of each set of mice with photon emission ated with luciferase activity at day 31 shown as color contours. (C) Rate of photon emission associated with luciferase activity shown at l times for each set ofmice.
Figure 21 is a graph presenting PSA absorbance ated with LN—AR cells treated with various concentrations of RD162, RD162', RD162", and RD170 and vehicle solution.
Figure 22 is a graph presenting PSA absorbance associated with LN-CaP cells treated with various concentrations ofRD37, RD131, RD162, bicalutamide, and DMSO.
Figure 23 presents results of an experiment conducted with wild type nontransgenic mice (WT), castrated luciferase transgenic mice (Cast), and non-castrated rase transgenic mice (Intact).
Data are shown for castrated luciferase transgenic mice d with an implanted testosterone pellet yielding 12.5 mg per kilogram body weight with a 90 day release period (T/Cast), and data are shown for non-castrated luciferase transgenic mice treated with an implanted testosterone pellet yielding 12.5 mg per kilogram body weight with a 90 day release period (Intact+T). Data are shown for castrated luciferase transgenic mice treated with the implanted testosterone pellet and with bicalutamide (BIC+T/Cast) or with RD162 (RD162+T/Cast) at 10 mg per kilogram body weight per day. (A) Urogenital tract weight at 14 days. (B) Photon emission rate at 14 days. In all cases, a hormone refractory disease state was not d.
Figure 24 is a graph of luciferase activity of the LlAR cell line dosed with various compounds administered at concentrations ranging from 125 nmol to 1000 nmol.
Figure 25 is a graph of luciferase activity for the LN/AR cell line for s compounds administered at concentrations ranging from 1.25 to 10 nmol.
Figure 26 is a graph of luciferase activity for the 4AR cell line for s compounds administered at concentrations ranging from 1.25 to 10 nmol.
Figure 27 is a graph of PSA levels for the 1AR cell line for s compounds administered at concentrations ranging from 1.25 to 10 nmol.
Figure 28 is a graph of PSA levels for the LN/AR cell line for various compounds administered at concentrations ranging from 125 nmol to 1000 nmol. id="p-75" id="p-75" id="p-75" id="p-75" id="p-75" id="p-75" id="p-75" id="p-75" id="p-75" id="p-75" id="p-75"
[0075] Figure 29 is a graph of luciferase activity for various compounds administered at concentrations ranging fiom 125 nmol to 1000 nmol.
DETAILED DESCRIPTION Embodiments ofthe invention are discussed in detail below. In describing embodiments, specific terminology is employed for the sake of clarity. However, the invention is not intended to be d to the specific terminology so selected. A person skilled in the relevant art Will recognize that other equivalent parts can be employed and other methods developed without parting from the spirit and scope of the invention. All nces cited herein are incorporated by reference as if each had been individually incorporated. sis of Diarylhydantoin nds The invention provides for synthesis of diarylthiohydantoin compound having the formula —16— NC R72 F3C N N with R71 including an alkyl chain of from 1 to 4 carbon atoms. For example, R72 can be carbamoyl, e.g., —(CO)NH2, or methylcarbamoyl, e.g., -(CO)NI-ICH3. An amide group bonded at the carbon atom of the carbonyl to another structure is termed a carbamoyl tuent. For example, R73 can be a fluorine or a en atom. That is, a fluorine atom can be attached to any one of the carbons of the right—hand aryl ring which are not bonded to the R72 substituent or the nitrogen atom. Alternatively, no fluorine atom can be ed to the carbons of the right-hand aryl ring which are not bonded to the R72 substituent or the nitrogen atom. For example, a hydrogen atom can be attached to each of the s of the right—hand aryl ring which are not bonded to the R72 substituent or the nitrogen atom. id="p-78" id="p-78" id="p-78" id="p-78" id="p-78" id="p-78" id="p-78" id="p-78" id="p-78" id="p-78" id="p-78"
[0078] For example, as further presented below (see, for example, Figs. 3, 5, 11-13), the compound having the a [RD162] exhibited surprisingly potent antagonistic activities with minimal agonistic activities for overexpressed AR in hormone refractory prostate cancer.
A list of several nds according to this invention is presented in Tables 5 — 11.
The compounds are grouped into tiers, with Tier 1 to Tier 3 compounds being expected to be superior to tamide for the treatment of prostate cancer, Tier 4 compounds being comparable to bicalutamide in effectiveness, and Tier 5 and Tier 6 compounds being worse than bicalutamide for the treatment of te cancer. A more detailed description of the protocol used to rank the compounds into tiers is presented below.
Definitions As used herein, the term "alkyl" denotes branched or unbranched hydrocarbon chains, preferably having about 1 to about 8 carbons, such as, methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec- butyl, iso-butyl, tert-butyl, 2—methylpentyl , hexyl, yl, heptyl, 4,4—dimethyl pentyl, octyl, 2,2,4-tn'methylpentyl and the like. "Substituted alkyl" includes an alkyl group optionally substituted with one or more functional groups which may be attached to such chains, such as, hydroxyl, bromo, fluoro, chloro, iodo, mercapto or thio, cyano, alkylthio, heterocyclyl, aryl, heteroaryl, carboxyl, carbalkoyl, alkyl, alkenyl, nitro, amino, alkoxyl, amido, and the like to form alkyl groups such as trifluoro methyl, 3— hydroxyhexyl, Z—carboxypropyl, Z-fluoroethyl, carboxymethyl, cyanobutyl and the like.
Unless otherwise indicated, the term "cycloalkyl" as employed herein alone or as part of another group includes saturated or partially unsaturated (containing 1 or more double bonds) cyclic hydrocarbon groups containing 1 to 3 rings, ing monocyclicalkyl, bicyclicalkyl and tricyclicalkyl, ning a total of 3 to 20 carbons forming the rings, preferably 3 to 10 s, forming the ring and which may be fused to 1 or 2 aromatic rings as bed for aryl, which include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecyl and cyclododecyl, cyclohexenyl.
"Substituted cycloalkyl" includes a cycloalkyl group optionally substituted with 1 or more substituents such as halogen, alkyl, , hydroxy, aryl, aryloxy, kyl, cycloalkyl, alkylamido, alkanoylamino, oxo, acyl, arylcarbonylamino, amino, nitro, cyano, thiol and/or hio and/or any of the substituents included in the definition of "substituted alkyl." For example, @5 0% ©>and the like. id="p-82" id="p-82" id="p-82" id="p-82" id="p-82" id="p-82" id="p-82" id="p-82" id="p-82" id="p-82" id="p-82"
[0082] Unless otherwise indicated, the term yl" as used herein by itself or as part of another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 carbons, and more preferably 2 to 8 s in the normal chain, which include one or more double bonds in the normal chain, such as Vinyl, 2-propenyl, 3-butenyl, 2-butenyl, 4-pentenyl, 3-pentenyl, 2—hexenyl, 3- ~18- hexenyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 3-octeny1, 3-nonenyl, 4-decenyl, 3—undecenyl, 4—dodecenyl, 4,8,12—tetradecatrienyl, and the like. "Substituted alkenyl" includes an alkenyl group ally substituted with one or more tuents, such as the substituents included above in the ion "substituted alkyl" and "substituted cycloalkyl." Unless otherwise indicated, the term "alkynyl" as used herein by itself or as part of carbons another group refers to straight or branched chain radicals of 2 to 20 carbons, preferably 2 to 12 and more preferably 2 to 8 s in the normal chain, which include one or more triple bonds in normal chain, such as 2—propynyl, 3-butynyl, 2-butynyl, 4-pentynyl, 3-pentynyl, 2-hexynyl, 3-hexynyl, 2— heptynyl, 3—heptynyl, 4-heptynyl, 3-octynyl, 3-nonynyl, 4~decynyl, 3-undecynyl, 4-dodecynyl and the like. "Substituted alkynyl" includes an alkynyl group optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl" "substituted cycloalky ." The terms "arylalky ", "arylalkeny " and "arylalkyny " [0084] as used alone or as part of another group refer to alkyl, alkenyl and alkynyl groups as described above having an aryl substituent.
Representative examples of arylalkyl include, but are not limited to, benzyl, 2-phenylethyl, 3- phenylpropyl, phenethyl, dryl and naphthylmethyl and the like. ituted arylalkyl" includes kyl groups wherein the aryl portion is optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl" and "substituted cycloalkyl." The terms "arylalky ", lkeny " and "arylalkynyl" as used alone or as part of another group refer to alkyl, l and l groups as described above having an aryl substituent.
Representative examples of arylalkyl include, but are not limited to, benzyl, ylethyl, 3- phenylpropyl, phenethyl, benzhydryl and naphthylmethyl and the like. "Substituted arylalkyl" includes arylalkyl groups wherein the aryl portion is optionally substituted with one or more substituents, such as the substituents included above in the definition of "substituted alkyl" and "substituted cycloalkyl." id="p-86" id="p-86" id="p-86" id="p-86" id="p-86" id="p-86" id="p-86" id="p-86" id="p-86" id="p-86" id="p-86"
[0086] The term "halogen" or "halo" as used herein alone or as part of another group refers to chlorine, bromine, fluorine, and iodine.
The terms "halogenated alkyl", enated alkenyl" and "alkynyl" as used herein alone or as part of another group refers to ", yl" and yl" which are substituted by one or more atoms selected from fluorine, chlorine, bromine, fluorine, and iodine. id="p-88" id="p-88" id="p-88" id="p-88" id="p-88" id="p-88" id="p-88" id="p-88" id="p-88" id="p-88" id="p-88"
[0088] Unless otherwise indicated, the term "aryl" or "Ar" as ed herein alone or as part of another group refers to monocyclic and polycyclic aromatic groups ning 6 to 10 carbons in the ring portion (such as phenyl or naphthyl including l-naphthyl and 2-naphthyl) and may optionally include -1 9- one to three additional rings fused to a yclic ring or a heterocyclic ring (such as aryl, cycloalkyl, heteroaryl or cycloheteroalkyl rings).
"Substituted aryl" includes an aryl group optionally substituted with one or more functional , such as halo, haloalkyl, alkyl, kyl, alkoxy, haloalkoxy, alkenyl, trifluoromethyl, trifluoromethoxy, l, cycloalkyl~alkyl, cycloheteroalkyl, cycloheteroalkylallcyl, aryl, heteroaryl, arylalkyl, aryloxy, aryloxyalkyl, arylalkoxy, alkoxycarbonyl, arylcarbonyl, arylalkenyl, aminocarbonylaryl, arylthio, arylsulfinyl, arylazo, heteroarylalkyl, heteroarylalkenyl, heteroarylheteroaryl, aryloxy, hydroxy, nitro, cyano, amino, substituted amino wherein the amino includes 1 or 2 substituents (Which are alkyl, aryl or any of the other aryl compounds mentioned in the ions), thiol, alkylthio, arylthio, heteroarylthio, arylthioalkyl, alkoxyarylthio, alkylcarbonyl, arylcarbonyl, alkylaminocarbonyl, arylaminocarbonyl, alkoxycarbonyl, aminocarbonyl, alkylcarbonyloxy, arylcarbonyloxy, alkylcarbonylamino, arylcarbonylamino, arylsulfinyl, arylsulfinylalkyl, arylsulfonylamino or arylsulfonaminocarbonyl and/or any of the alkyl substituents set out herein. id="p-90" id="p-90" id="p-90" id="p-90" id="p-90" id="p-90" id="p-90" id="p-90" id="p-90" id="p-90" id="p-90"
[0090] Unless otherwise indicated,, the term "heterocyclic" or "heterocycle", as used , represents an unsubstituted or substituted stable 5- to lO—membered clic ring system which may be saturated or unsaturated, and which consists of carbon atoms and from one to four heteroatoms selected from N, O or S, and n the nitrogen and sulfur heteroatoms may optionally be oxidized, and the nitrogen heteroatom may optionally be quaternized. The heterocyclic ring may be attached at any heteroatom or carbon atom which results in the creation of a stable structure. Examples of such heterocyclic groups include, but is not limited to, piperidinyl, piperazinyl, oxopiperazinyl, oxopiperidinyl, oxopyrrolidinyl, oxoazepinyl, azepinyl, pyrrolyl, pyrrolidinyl, furanyl, thienyl, pyrazolyl, pyrazolidinyl, imidazolyl, imidazolinyl, imidazolidinyl, pyridyl, pyrazinyl, pyrimidinyl, pyridazinyl, oxazolyl, oxazolidinyl, isooxazolyl, olidinyl, morpholinyl, thiazolyl, thiazolidinyl, isothiazolyl, thiadiazolyl, tetrahydropyranyl, thiamorpholinyl, thiamorpholinyl sulfoxide, thiamorpholinyl sulfone, and oxadiazolyl. The term "heterocyclic aromatic" as used here in alone or as part of another group refers to a - or 7-membered aromatic ring Which includes 1, 2, 3 or 4 hetero atoms such as nitrogen, oxygen or sulfur and such rings fused to an aryl, cycloalkyl, aryl or heterocycloalkyl ring (e.g. hiophenyl, l), and includes possible N—oxides. "Substituted heteroaryl" es a heteroaryl group ally substituted with l to 4 substituents, such as the substituents included above in the ion of "substituted alkyl" and "substituted cycloalkyl." Examples of heteroaryl groups include the following: a S O O E IFS] §\ ,1, §\ ,1 [Li \ / ‘/ \ / ‘/ Ll N\ S t O E N / \z l/N\ I . \ \ / N < I If Y N —: )N / N}\ O NVN o 0 s N \ \ l \ J1 "1(NW < 13— } (O\ / ‘/ and the like.
Example 1 4-isothiocyanato-Z-trifluoromethylbenzonitrile, (1a) no-2~trifluoromethylbenzonitrile, (2.23 g, 12 mmol) was added portionwise over s into the tirred heterogeneous mixture of thiophosgene (1 ml, 13 mmol) in water (22 ml) at room temperature. Stirring was continued for an additional 1 h. The reaction medium was extracted with chloroform (3 x 15 ml). The combined organic phase was dried over MgSO4 and evaporated to dryness under reduced pressure to yield desired product, 4—isothiocyanatotrifluoromethylbenzonitrile, (121), as brownish solid and was used as such for the next step (2.72 g, 11.9 mmol, 99%).
Example 2 2-1). (4-aminophenyl)carbamic acid tert-butyl ester, (23) id="p-92" id="p-92" id="p-92" id="p-92" id="p-92" id="p-92" id="p-92" id="p-92" id="p-92" id="p-92" id="p-92"
[0092] An s solution of potassium ate (1.52 g, 11 mmol in 5 ml of water) was added to a solution of aminobenzene (3.24 g, 30 mmol) in THF (30 ml) and DMF (10 ml). To this mixture was added di—tert—butyl pyrocarbonate, Boczo (2.18 g, 10 mmol), dropwise over 0.5 h. The reaction mixture was stirred for an additional 4 h at room temperature. The mixture was then poured into cold water (40 ml) and extracted with chloroform (3 x 50 ml). The combined organic phase was dried over MgSO4 and concentrated to yield a brown residue which was subjected to flash chromatography (dichloromethane/acetone, 4:1) to afford (4-aminophenyl)carbamic acid tert-butyl ester, (221) as a yellow solid (1.98 g, 9.5 mmol, 95%) (yield based on B0020). 2-2). {4-[(1-cyanomethylethyl)amino]phenyl}carbamic acid tert—butyl ester, 2b id="p-93" id="p-93" id="p-93" id="p-93" id="p-93" id="p-93" id="p-93" id="p-93" id="p-93" id="p-93" id="p-93"
[0093] The mixture of 2a (0.83 g, 4 mmol), acetone cyanohydrin (4 ml) and MgSO4 (2 g) was WO 24118 2006/011417 heated to 80 °C and stirred over 2.5 h. After cooling down to room temperature, compound 2b was crystallized into water (30 ml). The solid was filtered and dried to yield {4—[(1—cyano~1— methylethy1)amino]pheny1}carbamic acid tert-butyl ester, 2b (1.08 g, 3.9 mmol, 98%). 2—3). {4-[3-(4-cyano-3~triflu0romethylphenyl)imino-5,5-dimethyl—Z-thioxo-imidazolidin—1— yl]phenyl}carbamic acid tert-butyl ester, (2c) Triethylamine (0.202 g, 2 mmol) was added to a solution of 1a (0.456 g, 2 mmol) and 2b (0.57 g, 2 mmol) in dry THF (5 ml). The reaction mixture was d at room temperature for 15 h and then concentrated to yield a dark residue which was subjected to flash chromatography (ethyl ether/acetone, 97:3) to afford {4-[3—(4—cyano—3-trifluoromethylpheny1)-4—imino-5,5-dimethy1—2—thioxo— imidazolidin—1-yl]pheny1}carbamic acid tert—butyl ester, (2c) (0.15 g, 0.3 mmol, 15%). 2—4). 4-[3-(4—aminophenyl)-4,4-dimethyl—S—oxothiox0imidazolidinyl] trifluoromethylbenzonitrile, 2d, [RD9] id="p-95" id="p-95" id="p-95" id="p-95" id="p-95" id="p-95" id="p-95" id="p-95" id="p-95" id="p-95" id="p-95"
[0095] The mixture of 2c (0.15 g, 0.3 mmol) in HCl aq, 3N. (1 ml) and methanol (4 ml) was heated to reflux for 2 h. After being cooled to room temperature, the reaction e was poured into cold water (5 ml) and extracted with dichloromethane (8 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane/acetone, 9:1) to yield 4—[3—(4-aminopheny1)~4,4- dimethyl-S-oxo—2—thioxoimidazolidin—1-y1]—2-trifluoromethy1benzonitfile, 2d, [RD9] (0.118 g, 0.29 mmol, 97%) as a yellow solid.
I 1 8 0"" F30 NAN 1H NMR (400 MHz, CDC13) 5 1.54 (s, 6H), .75 (m, 2H), 7.00-7.03 (m, 2H), 8.02 (dd, J, = 8.2 Hz, J; = 1.8 Hz, 1H), 8.16 (d, J: 1.8 Hz, 1H), 8.20 (d, J: 8.2 Hz, 1H); 13c NMR (100 MHZ, CDC13) 6 22.7, 66.2, 109.1, 114.3, 114.9, 120.4, 122.0 (q, J= 272.5 Hz), 127.0 (q, J= 4.9 Hz), 130.4, 132.5 (q, J= 33.0 Hz), 133.4, 135.6, 138.5, 149.2, 175.3, 180.4. 2-5). 4—[3-(4—azidophenyl)—4,4-dimethyl—S-oxo-Z—thioxoimidazolidin—l-yl]-2— trifluoromethylbenzonitrile, 2e, [RD10] id="p-96" id="p-96" id="p-96" id="p-96" id="p-96" id="p-96" id="p-96" id="p-96" id="p-96" id="p-96" id="p-96"
[0096] An aqueous solution of sulfuric acid (25% wt, 1 ml) was added to a solution of 2d (0.10 2006/011417 g, 0.25 mrnol) in acetone (1 ml) at —5 °C. An aqueous on of NaNOZ (0.024 g, 0.35 mmol, in 0.5 H11 of water) was added slowly the above mixture over 0.1 h. The reaction mixture was allowed to stir at —5 °C for an additional 1 h and then an aqueous solution ofNaN3 (0.02 g, 0.3 mmol in 0.3 m1 of water) was added dropwise. Upon completion of the addition, the reaction medium was warmed to room ature and stirred for an additional 3 h. The product was extracted with dichlorornethane (3 x 5 ml). The combined organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 4-[3-(4-azidophenyl)—4,4-din1ethyloxo—2-thioxoirnidazolidin-1—yl]trifluoromethy1benzonitrile, 2e, [RDlO] (0.08 g, 0.18 mmol, 72%) as a yellowish solid. .::1©L.i./@N3 .46 1H NMR (400 MHz, CDC13) 5 1.54 (s, 6H), 7.17—7.20 (m, 2H), 7.27730 (m, 2H), 7.84 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.96 (d, J: 1.8 Hz, 1H), 7.97 (d, J= 8.3 Hz, 1H); 13(3 NMR (100 MHz, CDC13) 5 23.7, 66.4, 110.1, 114.8, 120.4, 122.1 (q, J: 272.5 Hz), 127.0 (q, J: 4.7 Hz), 131.1, 131.5, 132.3, 133.3 (q, J = 33.0 Hz), 135.3, 137.1, 141.7, 174.8, 180.1. MS for F3N60S, calculated 430.4, found 430.1.
Example3 3-1). 2-(4-hydroxyphenylamino)—2—methylpropanenitrile, 3a A mixture of 4—aminophenol (1.09 g, 10 mmol), acetone cyanohydrin (10 ml) and MgSO4 (2 g) was heated to 80 °C and stirred for 4 h. After concentration of the medium under , compound 3a was crystallized from water (20 ml). The solid was filtered and dried to yield 2-(4- hydroxyphenylamino)—2~methylpropanenitrile, 3a (1.69 g, 9.6 mmol, 96%). 3—2). 4-[3-(4—hydroxyphenyl)—5—imino-4,4-dimethyl-Z-thioxoimidazolidinyl] trifluoromethylbenzonitrile, 3b id="p-98" id="p-98" id="p-98" id="p-98" id="p-98" id="p-98" id="p-98" id="p-98" id="p-98" id="p-98" id="p-98"
[0098] Triethylamine (0.101 g, 1 mmol) was added to a solution of 1a (0.456 g, 2 mmol) and 3a (0.352 g, 2 mmol) in dry THF (5 ml). The reaction mixture was stirred at 0 °C for 48 h and then concentrated to yield a dark residue Which was subjected to flash chromatography (dichloromethane/acetone, 85:15) to afford 4-[3-(4—hydroxyphenyl)-5—imino-4,4-dimethy1—2- thioxoimidazolidin—l-yl]trifluoromethy1benzonitrile, 3b (0.274 g, 0.68 mmol, 34%). 3—3). 4—[3-(4-hydroxyphenyl)-4,4-dimethyl—5—oxothi0xoimidazolidin-1—yl]-2— trifluoromethylbenzonitrile, 3c, [RD8] A mixture of 3b (0.202 g, 0.5 mmol) in HCl aq., 2N (2 ml) and methanol (5 ml) was heated to reflux for 2 h. After being cooled to room temperature, the on e was poured into cold water (10 ml) and extracted with ethyl acetate (10 ml). The organic layer was dried over MgSO4, concentrated and tographed (dichloromethane/acetone, 9:1) to yield 4-[3-(4~hydroxyphenyl)-4,4-dimethyl-5—oxo—2- thioxoimidazolidin-l-yl]trifluoromethylbenzonitrile, 3c, [RD8] (0.198 g, 0.49 mmol, 98%) as a white powder.
NOD i OOH F3C N N 0% 1H NMR (CD013, 400 MHz) 5 1.57 (s, 6H), 6.26 (s, 0H), .93 (m, 2H), 7.11-7.14 (m, 2H), 7.84 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.95-7.98 (m, 2H); 13C NMR (CDC13,100 MHz) 5 23.6, 66.5, 109.9, 114.9, 115.7, 116.8, 121.9 (q, J: 272.7 Hz), 127.2 (q, J: 4.7 Hz), 130.6, 132.3, 133.5 (q, J: 33.2 Hz), 135.3, 1372,1570, 175.3, 180.2.
Example 4 Chloroacetic acid 4-[3-(4-cyano-3—trifluoromethylphenyl)-5,5-dimethyl—4-oxo-Z-thioxoimidazolidin- 1-yl]phenyl ester, 4a, [RD13] Chloroacetyl chloride (0.045 g, 0.4 mmol) was added to a mixture of 3c (0.101g, 0.25 mmol) and triethylamine (0.041g, 0.41 mmol) in dry THF (1.5 ml). The mixture was stirred at room temperature for 4 h. Triethylamine hydrochloride was filtered off. The filtrate was concentrated and chromatographed (dichloromethane/acetone, 95:5) to yield 84% of acetic acid 4—[3-(4-cyano-3~ t1ifluoromethylpheny1)—5,5-dimethyl-4—oxo~2-thioxoimidazolidin-l-yl]pheny1 ester, 43, [RD13] (0.101 g, 0.21 mmol) as white powder.
:JCLNJENU‘T‘" 1H NMR (CDC13, 400 MHz) 5 1.58 (s, 6H), 4.32 (s, 2H), 7.33 (s, 4H), 7.83 (dd, J1 = 8.3 Hz, J, = 1.9 Hz, 1H), 7.95—7.97 (m, 2H); 130 NMR (CDC13,100 MHz) 5 23.7, 40.8, 66.5, 110.1, 114.8, 121.9 (q, J: 272.5 Hz), 122.7, 127.1 (q, J = 4.7 Hz), 130.9, 132.3, 132.9, 133.5 (q, J= 33.2 Hz), 135.3, 137.1, 150.9, 165.5, 174.8, 180.0.
Example 5 -la). 2-methyl(4-methylphenyl)aminopropanenitrile, 5a A e luidine (1.07 g, 10 mmol) and acetone cyanohydrin (10 ml) was heated to 80 °C and stirred for 4 h. The medium was concentrated and dried under vacuum to yield 2-methy1—2-(4- methylphenyl)aminopropanenitrile, 5a (1 .72g, 9.9 mmol, 99%) as brown solid.
S-lb). 2-methyl—2—(4-methylphenyl)aminopropanenitrile, 5a Sodium cyanide (0.735g, 15 mmol) was added to a mixture ofp—toluidine (1.07 g, 10 mmol) and acetone (1.16 g, 20 mmol) in 90% acetic acid (10 ml). The reaction mixture was stirred at room temperature for 12 h and then ethyl acetate (50 ml) was added. The organic layer was washed with water (4 X 30 ml), dried over magnesium e and trated under vacuum to dryness to yield 2-methyl-2—(4— methylphenyl)aminopropanenitrile, 5a , 9.5 mmol, 95%) as a brown solid. 5-2). 4-[3-(4-methylphenyl)imino~4,4-dimethyl—Z-thioxoimidazolidin—1—yl] trifluoromethylbenzonitrile, 5b ylamine (0.101 g, 1 mmol) was added to a solution of 1a (0.456 g, 2 mrnol) and 5a (0.348 g, 2 mmol) in dry THF (3 ml). The reaction mixture was stirred at 0 °C for 2 days and then concentrated to yield a dark residue which was subjected to flash chromatography (dichloromethane/acetone, 95:5) to afford 4-[3~(4-methylphenyl)—5—imino-4,4-dimethy1thioxoimidazolidin-l —yl]~2— trifluoromethylbenzonitrile, 5b (0.136 g, 0.34 mmol, 17%). -3a). 4-[3-(4-methylphenyl)—4,4-dimethyl—5—oxothioxoimidazolidin—l-yl]—2- trifluoromethylbenzonitrile, 5c A mixture of 5b (0.121 g, 0.3 mmol) in HCl aq., 2N (2 ml) and methanol (5 ml) was heated to reflux for 2 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (10 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 4—[3-(4-methylphenyl)~4,4—dimethy1—5-oxo-2— thioxoimidazolidin-l-yl]—2—t1ifluoromethylbenzonitrile, 5c (0.118 g, 0.294 mmol, 98%) as a White 3O powder. -3b). 4-[3-(4-methylphenyl)—4,4-dimethyl—S-oxo-2—thioxoimidazolidinyl]trifluoromethyl— benzonitrile, 5c , [RD7] A mixture of 1a (0.547 g, 2.4 mmol) and 5a (0.348 g, 2 mmol) in dry DMF (0.6 ml) was stirred for 36 h.
To this mixture were added ol (20 ml) and 2N HCl (5 ml). The second mixture was refluxed for 6 -25.. h. After being cooled to room temperature, the reaction mixture was poured into cold water (30 ml) and extracted with ethyl e (40 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 4—[3—(4~methy1phenyl)-4,4-dimethy1oxo thioxoimidazolidin—l~yl]-2—trifluoromethyl—benzonitrile, Sc, [RD7] (0.596 g, 1.48 mmol, 74%) as a White F30 N)J\N 1H NMR (CDC13, 400 MHz) 5 1.61 (s, 6H), 2.44 (s, 3H), 7.17-7.20 (m, 2H), 7.33-7.36 (m, 2H), 7.86 (dd, J, = 8.3 Hz, J2 = 1.8 Hz, 1H), 7.96-7.98 (m, 2H); 13C NMR(CDC13, 100 MHz) 5 21.3, 23.6, 66.4, 110.0, 114.9, 121.9 (q, J: 272.6 Hz), 127.1 (q, J= 4.7 Hz), 129.2, 130.6, 132.2, 132.3, 133.4 (q, J= 33.2 Hz), 135.2,137.2,140.1, 1751,1799.
Example 6 6-1). 2—methylphenylaminopropanenitrile, 6a A mixture of aminobenzene (0.931 reflux and g, 10 mmol) and acetone cyanohydrin (2 ml) was heated to stirred for 20 h. After being cold to room temperature, the reaction mixture was poured into ethyl acetate (40 ml) and washed with cold water (2 X 30 ml). The organic layer was dried over MgSO4, concentrated under vacuum to dryness to yield 2—methyl—2-phenylaminopropanenitrile, 6a (1.5 lg, 9.4 mmol, 94%) as slurry brown liquid. 6-2). henyl-4,4—dimethyloxo-2—thioxoimidazolidin—1-yl]—2—trifluoromethylbenzonitrile, 6b, [RDlO] A mixture of 1a (0.274 g, 1.2 mmol) and 6a (0.160 g, 1 mmol) in dry DMF (0.2 ml) was stirred for 48 h.
To this mixture were added methanol (10 ml) and 2N HCl (3 ml). The second mixture was refluxed for 6 h. After being cooled to room temperature, the reaction e was poured into cold water (20 ml) and ted with ethyl acetate (20 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 4—[3—pheny1-4,4-dimethyl-5—oxo—2-thioxoimidazolidin-1— yl]~2-trifluoromethylbenzonitrile, 6b, [RDlO] (0.276 g, 0.71 mmol, 71%) as a White powder. ,211,1,0 w -26— 1H NMR (CDC13, 400 MHz) 6 1.60 (s, 6H), 7.28-7.31 (m, 2H), 7.50-7.58 (m, 3H), 7.85 (dd, J1 = 8.3 Hz, J; = 1.8 Hz, 1H), 7.96-7.99 (m, 2H); 13C NMR(CDC13, 100 MHZ) 5 23.7, 66.4, 110.2, 114.8, 121.9 (q, J = 272.6 Hz), 127.1 (q, J= 4.7 Hz), 129.5, 129.8, 129.9, 132.2, 133.4 (q, J= 33.2 Hz), 135.1, 135.2, 137.2, 175.0, 179.9.
Example 7 7-1a). 1-(4-methylphenyl)aminocyclobutanenitrile, 721 Sodium cyanide (0.147g, 3 mmol) was added to a mixture of p-toluidine (0.214 g, 2 mmol) and utanone (0.21 g, 3 mmol) in 90% acetic acid (3 ml). The reaction mixture was stirred at room temperature for 12 h and then 20 ml of ethyl acetate was added. The organic layer was washed with water (3 X 10 m1), dried over ium sulfate and trated under vacuum to dryness to yield 1-(4- methylphenyl)aminocyclobutanenitrile, 73 (0.343 g, 1.84 mmol, 92%) as a brown solid. 7-1b). 1-(4-methylphenyl)aminocyclobutanenitrile, 7a Trimethylsilyl e (0.93 ml, 7 mmol) was added dropwise to a mixture of p—toluidine (0.535 g, 5 mmol) and cyclobutanone (0.42 g, 6 mmol). The on e was stirred at room temperature for 6 h and then concentrated under vacuum to obtain a brown liquid Which was subjected to chromatography (dichloromethane) to yield 1-(4~methy1phenyl)aminocyclobutanenitrile, 7a (0.912 g, 4.9 mmol, 98%) as a yellowish solid. 7—2). 4—(8—imino-6—thioxo(4-methylphenyl)-5,7—diazaspiro[3.4]0ctyl) trifluoromethylbenzonitrile, 7b To a solution of 1a (2.28 g, 10 mmol) in dry DMF (3 ml) was added progressively, over 20 hours, a solution of 7a (1.764 g, 9 mmol) in dry DMF (3 ml) at room temperature. The medium was stirred for additional 4 h. After DMF being evaporated, the residue was tographed (dichloromethane/acetone, 95:5) to afford 4—(8—iminothioxo-5~(4-methylphenyl)~5,7- diazaspiro[3.4]oct-7—yl)trifluoromethylbenzonitrile, 7b (1.937 g, 4.68 mmol, 52%). 7-3a). 4-(8-0xothioxo(4-methylphenyl)-5,7-diazaspiro [3.4] oct-7—yl) trifluoromethylbenzonitrile, 7c [RD37] A mixture of 7b (0.041 g, 0.1 mmol) in HCl aq., 2N (3 ml) and methanol (1 ml) was heated to reflux for 2 h. After being cooled to room temperature, the reaction mixture was poured into cold water (5 ml) and extracted with ethyl acetate (6 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 4-(8-oxothioxo~5-(4—methylphenyl)—5,7— diazaspiro[3 -7—yl)trifluoromethy1benzonitrile, 4-(8—oxo-6—thiox0(4-methy1phenyl)—5 ,7— diazaspiro[3.4]oct—7-yl)trifluoromethylbenzonitrile, 7c (0.04 g, 0.096 mmol, 96%) as a white powder. 7—3b). 4—(8-oxo-6—thiox0(4-methylphenyl)-5,7—diazaspiro[3.4]0cty1)—2— trifluoromethylbenzonitrile, 7c, [RD37] A e of 1a (0.912 g, 4 mmol) and 7a (0.558 g, 3 mmol) in dry DMF (0.5 ml) was stirred at room The second temperature for 24 h. To this mixture were added methanol (30 ml) and HCl aq. 2N (6 ml). mixture was refluxed for 6 h. After being cooled to room temperature, the reaction mixture was poured into cold water (50 ml) and extracted with ethyl acetate (60 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 4-(8-oxothioxo(4- methylphenyl)-5,7-diazaspiro[3.4]oct—7-y1)-2—t1ifluoromethylbenzonitrile, 7c (0.959 g, 2.31 mmol, 77%) as a white powder.
WI) 3 0% F30 NJLN 1H NMR , 400 MHz) 6 1.62-1.69 (m, 1H), 2.16-2.22 (m, 1H), 2.46 (s, 3H), 2.55~2.66 (m, 4H), 7.19-7.26 (m, 2H), 7.36—7.42 (m, 2H), 7.86 (dd, J1 = 8.3 Hz, J; = 1.8 Hz, 1H), 7.96 (d, J= 8.3 Hz, 1H), 7.99 (d, J: 1.8 Hz, 1H); 13C NMR (CD013, 100 MHz) 6 13.7, 21.3, 31.4, 67.4, 109.9, 114.9, 121.9 (q, J = 272.6 Hz), 127.1 (q, J= 4.7 Hz), 129.5, 130.8, 132.2, 132.4, 133.3 (q, J = 33.2 Hz), 135.2, 137.3, 1401,1750, 180.0.
Example 8 8—1). 1—(4-methylphenyl)aminocyclopentanenitrile, 8a Trimethylsilyl cyanide (0.865 ml, 7 mmol) was added dropwise to a mixture ofp-toluidine (0.535 g, 5 mmol) and cyclopentanone (0.589 g, 7 mmol). The reaction e was stirred at room temperature for 6 h and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane) to yield 1-(4-methylphenyl)aminocyclopentanenitrile, 821 (0.981 g, 4.9 mmol, 98%) as a yellowish solid. 8-2). xothioxo(4—methylphenyl)—1,3-diazaspiro[4.4]nonyl)—2~ trifluoromethylbenzonitrile, 8b, [RD35] A e of 1a (0.296 g, 1.3 mmol) and 8a (0.2 g, 1 nnnol) in dry DMF (0.2 ml) was stirred for 48 h. To this mixture were added methanol (10 ml) and HCl aq. 2N (3 ml). The second mixture was refluxed for 6 h. After being cooled to room temperature, the reaction mixture was poured into cold water (20 ml) and extracted with ethyl acetate (30 ml). The organic layer was dried over MgSO4, trated and chromatographed (dichloromethane) to yield 4-(4-Oxothioxo-l—(4-methylphenyl)-l,3— diazaspiro[4.4]non-3—yl)—2—trifluoromethylbenzonitrile, 8b, [RD35] (0.3 g, 0.7 mmol, 70%) as a white powder.
F30 NAN ctr) 1H NMR (01301,, 400 MHz) 5 1.47—1.57 (m, 2H), 1.81-1.92 (m, 2H), 2.20—2.24 (m, 2H), 2.27-2.34 (m, 2H), 2.43 (s, 3H), 7.18—7.22 (m, 2H), .36 (m, 2H), 7.86 (dd, J1 = 8.2 Hz, J): 1.8 Hz, 1H), 7.96 (d, J: 8.2 Hz, 1H), 7.98 (d, J= 1.8 Hz, 1H); 13C NMR(CDC13, 100 MHz) 5 21.3, 25.2, 36.3, 75.1, 110.0, 114.9, 121.9 (q, J= 272.5 Hz), 127.1 (q, J= 4.7 Hz), 129.5, 130.7, 123.2, 133.0, 133.4 (q, J: 33.2 Hz), 1351,1374, 140.0, 1763,1802.
Example 9 9-1). 1-(4-methylphenyl)aminocyclohexanenitrile, 9a Sodium cyanide (0.147g, 3 mmol) was added to a mixture of p-toluidine (0.214 g, 2 mmol) and cyclohexanone (0.294 g, 3 mmol) in acetic acid 90% (3 ml). The reaction mixture was d at room temperature for 12 h and then 20 ml of ethyl acetate was added. The organic layer was washed with water (3 X 10 ml), dried over magnesium sulfate and concentrated under vacuum to dryness to yield 1—(4— methylphenyl)aminocyclohexanenitrile, 9a (0.398 g, 1.86 mmol, 93%) as a brown solid. 9—2). mino—2-thi0xo(4-methylphenyl)—1,3-diazaspiro [4.5]dec—3—yl)-2~ trifluoromethylbenzonitrile, 9b Triethylamine (0.05 g, 0.5 mmol) was added to a solution of 1a (0.228 g, 1 mmol) and 921 (0.214 g, 1 mmol) in dry THF (2 ml). The reaction mixture was stirred at room temperature for 2 days and then concentrated to yield a dark residue which was subjected to flash tography (dichloromethane/acetone, 95:5) to afford 4—(4-irninothioxo-l—(4-methylphenyl)-l,3— diazaspiro[4.5]dec-3~yl)~2—trifluoromethylbenzonitrile, 9b (0.035 g, 0.08 mol, 8%). 9—3). 4-(4-Oxo-Z-thioxo—l-(4-methylphenyl)-1,3-diazaspiro [4.5] dec—3-yl) trifluoromethylbenzonitrile, 9c, [RD48] A mixture of 9b (0.035 g, 0.08 mmol) in HCl aq., 2N (1 ml) and ol (3 ml) was heated to reflux for 2 h. After being cooled to room temperature, the reaction mixture was poured into cold water (5 ml) and extracted with ethyl acetate (6 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 4—(4—Oxothioxo—1-(4-methylphenyl)-1,3- diazaspiro[4.5]decyl)—2—trifluoromethylbenzonitrile, 9c, [RD48] (0.034 g, 0.076 mmol, 95%) as a white .
F3C NAN 1H NMR (CDC13, 400 MHz) 6 1.02—1.05 (m, 1H), 1.64—1.76 (m, 4H), 2.03—2.12 (m, 5H), 2.44 (s, 3H), 7.12—7.15 (m, 2H), 7.33-7.36 (m, 2H), 7.85 (dd, J, = 8.2 Hz, J2 = 1.8 Hz, 1H), 7.96 (d, J= 8.3 Hz, 1H), 7.97 (d, J: 1.8 Hz, 1H); 13C NMR (CDC13, 100 MHz) 6 20.7, 21.3, 24.0, 32.6, 67.4, 109.9, 114.9, 122.0 (q, J= 272.5 Hz), 127.3 (q, J= 4.6 Hz), 130.0, 130.5, 132.0, 132.5, 133.3 (q, J: 33.2 Hz), 1352, 137.3, 174.1,180.1.
Example 10 —1). 1-(4-methylphenyl)aminocyclohexanenitrile, 10a Sodium cyanide (0.147g, 3 mmol) was added to a mixture of idine (0.214 g, 2 mmol) and cycloheptanone (0.337 g, 3 mmol) in acetic acid 90% (3 ml). The reaction e was stirred at room temperature for 12 h and then 20 ml of ethyl acetate was added. The organic layer was washed with water (3 X 10 ml), dried over magnesium sulfate and concentrated under vacuum to dryness to yield 1—(4— methylphenyl)aminocyclohexanenitrile, 1021 (0.438 g, 1.92 mmol, 96%) as a brown solid. —2). 4—(4-iminothioxo(4-methylphenyl)-1,3-diazaspiro[4.5]undec—3-yl) trifluoromethylbenzonitrile, 10b Triethylamine (0.05 g, 0.5 mmol) was added to a solution of 121 (0.228 g, 1 mmol) and 921 (0.228 g, 1 mmol) in dry THF (2 ml). The reaction mixture was stirred at room temperature for 2 days and then concentrated to yield a dark residue which was subjected to flash chromatography (diehloromethane/acetone, 95 :5) to afford 4-(4—irnino—2-thioxo-1~(4—methylphenyl)~1,3— diazaspiro[4.5]undecyl)-2—t1ifluoromethylbenzonitrile, 10b (0.036 g, 0.08 mol, 8%). —3). 4-(4-0x0thioxo(4-methylphenyl)-1,3—diazaspiro [4.5]undec—3-yl)—2- trifluoromethylbenzonitrile, 10c, [RD49] A mixture of 9b (0.036 g, 0.08 mmol) in HCl aq., 2N(1 ml) and methanol (3 ml) was heated to reflux for 2 h. After being cooled to room temperature, the reaction mixture was poured into cold water (5 ml) and extracted with ethyl acetate (6 ml). The organic layer was dried over MgSO4, trated and chromatographed (dichlorcmethane) to yield 10c (0.034 g, 0.075 mmol, 94%) as a white powder.
F3C NJkN 1H NMR (CDC13, 400 MHz) 8 124-134 (m, 2H), 1.37—1.43 (m, 2H), 1.53—1.60 (m, 2H), .82 (m, 2H), 2.19—2.25 (m, 4H), 2.44 (s, 3H), 7.16-7.19 (m, 2H), .35 (m, 2H), 7.83 (dd, J, = 8.2 Hz, J; = 1.8 Hz, 1H), 7.95—7.97 (m, 2H); 130 NMR(CDC13, 100 MHz) 5 21.4, 22.2, 30.9, 36.3, 71.1, 110.0, 114.9, 121.9 (q, J= 272.5 Hz), 127.2 (q, J= 4.6 Hz), 129.6, 130.5, 132.3, 133.0, 133.2 (q, J: 33.2 Hz), 135.1, 1374,1400, 175.9, 179.7.
Example 11 11-1). 1-(4-hydroxyphenyl)aminocyclobutanenitrile, 11a Trimethylsilyl cyanide (0.93 ml, 7 mmol) was added dropwise to a mixture of 4-hydroxyaniline (0.545 g, mmol) and cyclobutanone (0.42 g, 6 mmol). The reaction mixture was stirred at room temperature for 6 h and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichlorcmethane:acetone, 98:2) to yield 11a (0.903 g, 4.8 mmol, 96%) as a yellowish solid. 11—2). 4-(8-0x0thioxo(4-hydr0xyphenyl)—5,7-diazaspir0[3.4]oct—7-yl)—2- trifluoromethylbenzonitrile, 11b , [RD58] A mixture of 1a (0.57 g, 2.5 mmol) and 7a (0.376 g, 2 mmol) in dry DMF (0.5 ml) was stirred at room temperature for 40 h. To this mixture were added methanol (30 ml) and HCl aq. (5 ml). The second mixture was refluxed for 6 h. After being cooled to room temperature, the reaction e was poured into cold water (40 m1) and ted with ethyl acetate (50 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichlorcmethane:acetone, 98:2) to yield 11b (0.659 g, 1.58 mmol, 79%) as a white powder. "or; r 0°" F3C N N 1H NMR (CDC13, 400 MHz) 8 1.55—1.63 (m, 1H), 2.01-2.09 (m, 1H), .65 (m, 4H), 6.97-7.01 (m, 2H), 7.20-7.24 (m, 2H), 8.02 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 8.14 (d, J= 1.8 Hz, 1H), 8.21 (d, J= 8.3 Hz, 1H); 13C NMR (Acetone-d6, 100 MHz) 5 13.4, 31.3, 67.5, 108.9, 114.8, 116.1, 123.5 (q, J= 271.5 Hz), 127.4 (q, J: 4.9 Hz), 131.3, 131.8 (q, J: 32.7 Hz),133.3,135.5,136.2,138.5,158.1,175.1,180.7. e 12 12-1). 1-(4—biphenylamino)cyclobutanecarbonitrile, 123 Trimethylsilyl cyanide (0.2 ml, 1.5 mmol) was added dropwise to a mixture of 4—biphenylamine (0.169 g, 1 mmol) and cyclobutanone (0.098 g, 1.4 mmol). The reaction mixture was stirred at room temperature for 6 h and then concentrated under vacuum to obtain a brown liquid which was ted to chromatography (dichloromethane) to yield 12a (0.24 g, 0.97 mmol, 97%) as a white solid. 12—2). x0-6—thioxo(4-biphenyl)—5,7-diazaspiro[3.4]oct—7~yl)—2-trifluoromethylbenzonitrile, 12b [RD57] A mixture of 1a (0.137 g, 0.6 mmol) and 12a (0.124 g, 0.5 mmol) in dry DMF (0.2 ml) was stirred at room temperature for 3 days. To this mixture were added methanol (5 m1) and HCl aq. 2N (1 ml). The second mixture was refluxed for 6 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (15 ml). The c layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 12b (0.162 g, 0.34 mmol, 68%) as a White powder.
"CD 1 O F30 N N 1H NMR (CDC13, 400 MHz) 6 1.67-1.76 (m, 1H), 2.19-2.31 (m, 1H), 2.59—2.74 (m, 4H), 7.40—7.44 (m, 3H), 7.47-7.53 (m, 2H), 7.64-7.67 (m, 2H), 7.79-7.82 (m, 2H), 7.88 (dd, J; = 8.3 Hz, J; = 1.8 Hz, 1H), 7.97 (d, J: 8.2 Hz, 1H), 8.02 (d, J= 1.8 Hz, 1H); 130 NMR (CDC13, 100 MHz) 5 13.7, 31.5, 67.5, 110.0, 114.9, 122.0 (q, J= 272.6 Hz), 127.1 (q, J= 4.7 Hz), 127.3, 128.1, 128.7, 129.0, 130.2, 132.3, 133.5 (q, J = 33.2 Hz), 134.2, 135.2, 137.2, 139.6, 142.8,174.9,179.9.
Example 13 13-1). 1-(2-naphthylamino)cyclobutanecarbonitrile, 13a Trimethylsilyl cyanide (0.27 ml, 2 mmol) was added dropwise to a mixture of 2—aminonaphthalene (0.143 g, 1 mmol) and cyclobutanone (0.098 g, 1.4 mmol). The on mixture was stirred at room temperature for 12 h and then trated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane) to yield 13a (0.209 g, 0.94 mmol, 94%) as a yellow solid. 13-2). 4-(8-0x0thi0xo(4-biphenyl)-5,7—diazaspiro[3.4]0ct—7-yl)-2—trifluoromethylbenzonitrile, 12b, [RDSS] A mixture of 1a (0.137 g, 0.6 mmol) and 13a (0.111 g, 0.5 mmol) in dry DMF (0.2 ml) was d at room temperature for 3 days. T0 this mixture were added methanol (5 m1) and HCl aq. (1 ml). The second mixture was refluxed for 6 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 m1) and extracted with ethyl acetate (15 n11). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 12b (0.146 g, 0.325 mmol, 65%) as a white powder.
:DNJSL," 0’67: 1H NMR(CDC13, 400 MHz) 6 158—168 (m, 1H), 2.17—2.29 (m, 1H), 2.61—2.75 (m, 4H), 7.40 (dd, J, = 8.6 Hz, J; = 2.0 Hz, 1H), .65 (m, 2H), 7.86-8.00 (m, 5H), 8.04 (J: 1.8 Hz, 1H), 8.06 (d, J= 8.6 Hz, 1H); 13(3 NMR (CDC13, 100 MHz) 5 13.7, 31.6, 67.7, 110.0, 114.9, 122.0 (q, J= 272.6 Hz), 126.8, 127.1 (q, J= 4.8 Hz), 127.2, 127.7, 128.0, 128.3, 129.1, 130.2, 132.2, 132.5, 133.4, 133.5 (q, J: 33.1 Hz), 352,137.2,175.0,180.1.
Example 14 14-1). 2-(4-methylpyridinamino)—2-methylpr0panenitrile, 14a Trimethylsilyl cyanide (0.27 ml, 2 mmol) was added dropwise to a mixture of 2-arninomethylpyridine (0.108 g, 1 mmol) and acetone (0.58 g, 10 mmol). The reaction mixture was stirred at room temperature for 6 days and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane: e, 60:40) to yield 14a (0.133 g, 0.76 mmol, 76%) as a white solid. 14—2). 4-[4,4-dimethyl—3-(4-methylpyridiny1)oxothioxoimidazolidin—1-yl]~2- trifluoromethylbenzonitrile, 14b, [RD83] WO 24118 A mixture of 1a (0.91 g, 0.4 mmol) and 14a (0.053 g, 0.3 mmol) in dry DMF (0.2 ml) was stirred at room temperature for 6 days. To this mixture were added methanol (5 ml) and HG] aq. (lml). The second mixture was refluxed for 5 h. After being cooled to room temperature, the on mixture was poured into cold water (10 ml) and extracted with ethyl acetate (15 ml). The organic layer was dried over MgSO4, concentrated and chromatographed oromethane) to yield 14b (0.07 g, 0.174 mmol, 58%) as a white powder.
JL 1 F30 N N N 04—0 1H NMR (CDC13, 400 MHz) 8 1.70 (s, 6H), 2.44 (s, 3H), 7.19 (d, J = 4.4 Hz, 1H), 7.45 (t, J = 0.6 Hz, 1H), 7.82 (dd, J, = 8.2 Hz, J; = 1.8 Hz, 1H), 7.95 (d, J: 1.8 Hz, 1H), 7.97 (d, J: 8.2 Hz, 1H), 8.47 (d, J = 5.0 Hz, 1H); 13(3 NMR (CDC13, 100 MHz) 6 21.1, 24.1, 67.1, 110.2, 114.8, 121.9 (q, J= 272.6 Hz), 124.4, 125.1, 127.3 (q, J: 4.8 Hz), 132.4, 133.5 (q, J= 33.2 Hz), 135.3, 137.1, 149.2, 149.5, 150.0, 175.2, 179.0.
Example 15 —1). 2—(2-pyridinamino)-2—methylpropanenitrile, 15a Trimethylsilyl cyanide (0.27 ml, 2 mmol) was added dropwise to a mixture of 2—aminopyridine (0.094 g, 1 mmol) and acetone (0.58 g, 10 mmol). The reaction mixture was stirred at room temperature for 6 days and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane: acetone, 60:40) to yield 15a (0.131 g, 0.81 mmol, 81%) as a white solid. —2). 4-[4,4-dimethyl—3—(4-pyridin—2-yl)oxothiox0imidazolidin—1-yl]—2— trifluoromethylbenzonitrile, 15b, [RD82] A mixture of 1a (0.91 g, 0.4 mmol) and 15a (0.048 g, 0.3 mmol) in dry DMF (0.3 ml) was stirred at room temperature for 10 days. To this mixture were added methanol (5 m1) and of HCl aq. (1 ml). The second mixture was d for 5 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (15 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 15b (0.059 g, 0.153 mrnol, 51%) as a White powder.
A ' F30 N N N 1H NMR (CDC13, 400 MHZ) 5 1.73 (s, 6H), 7.38 (dd, J, = 7.3 Hz, J; = 5.4 Hz, 1H), 7.71 (d, J: 8.0 Hz, 1H), 7.87 (dd, J, = 8.2 Hz, J; = 1.8 Hz, 1H), 7.95 (td,J1 = 7.8 Hz, .1,; = 1.8 Hz, 1H), 7.95 (d, J: 1.3 Hz, 1H), 7.98 (d, J= 8.2 Hz, 1H), 8.62 (dd, J1 = 4.7 Hz, J; = 1.3 Hz, 1H); 130 NMR (CDCl;;, 100 MHz) 5 24.2, 67.1, 110.3, 114.8, 121.9 (q, J= 272.6 Hz), 123.7, 123.8, 127.3 (q, J: 4.8 Hz), 132.4, 133.6 (q, .1: 33.2 Hz), 135.3, 137.1,138.2, 149.5, 149.6,175.1,179.0.
Example 16 16-1). 1—(5—methyl—2H-pyrazo1ylamino)-cyclobutanecarbonitrile, 16a Trimethylsilyl cyanide (0.532 ml, 4.0 mmol) was added dropwise to the mixture of 3-amino—5- methylpyrazole (0.194 g, 2.0 mmol) and utanone (0.154 g, 2.2 mmol). The reaction mixture was d at room temperature for 40 h and then concentrated under vacuum to obtain a dark liquid which was subjected to chromatography (dichloromethane) to yield 16a (0.267 g, 1.52 mmol, 76%) as a off- white . 16—2). 4-[5-(5-methyl—2H—pyrazol—3-yl)0x0thiox0—5,7—diaza-spir0[3.4]oct—7-yl]-2— trifluoromethyl-benzonitrile, 16b, [RD84] A mixture of 121 (0.0684 g, 0.3 mmol) and 16a (0.053 g, 0.3 mmol) in dry DMF (0.2 ml) was stirred at room temperature for 4 days. To this mixture were added methanol (10 ml) and HCl aq. 2N (2 ml). The 2O second mixture was refluxed for 5 h. After being cooled to room temperature, the reaction mixture was poured into cold water (30 ml) and ted with ethyl acetate (30 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichlorcmethane:acetone, 97:3) to yield 16b (0.0826 g, 0.2 mmol, 67%) as a white powder.
:NJCL4NKEV 1H NMR (acetone d6, 400 MHz) 6 8 1. 66-1.76 (m, 1H), 07 (m, 1H), 3.35 (s, 3H), 2.56-2.63 (m, 2H), 285-293 (m 2H), 8.,04(dd J1= 8.,2Hz J2=16Hz,1H),8.18(d,J=l.6Hz,1H),8.,22(d J= 8.2 Hz, 1H), 11.99 (s, 1H); 130 NMR (acetone d6, 100 MHz) 5 10.2, 13.1, 31.1, 67.4, 102.5, 109.1, 114.8, 122.5 (q, J: 271.4 Hz), 127.8 (q, J= 4.8 Hz), 131.9 (q, J: 33.6 Hz), 133.6, 135.6, 138.4, 139.9, 145.0, 175.0, 179.6.
WO 24118 Example 17 4-[3-(4—hydroxyphenyl)-4,4—dimethyl—2,5-dithioxoimidazolidin-l-yl]-2—trifluoromethylbenzonitrile, 17a, [RD59] A mixture of 3c (0.081 g, 0.2 mmol) and Lawesson reagent (0.097 g, 0.24 mmol) in toluene (3 ml) was heated to reflux for 15 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (10 ml). The c layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:pentane, 9:1) to yield 17a (0.0185 g, 0.044 mmol, 22%) as a white powder. £112.00" 26 1H NMR (CD013, 400 MHz) 6 1.65 (s, 6H), 6.95—6.97 (m, 2H), 7.15-7.18 (m, 2H), 7.75 (d, J = 8.2 Hz, 1H), 7.86 (d, J= 1.8 Hz, 1H), 7.98 (dd, J1 = 8.2 Hz, J; = 1.8 Hz, 1H); 130 NMR , 100 MHz) 5 27.9, 77.8, 110.9, 114.7, 116.7, 121.9 (q, J= 272.6 Hz), 128.1 (q, J= 4.8 Hz), 129.1, 130.7, 133.3, 133.5 (q, J= 33.2 Hz), 135.5, 140.3, 156.8, 179.9, 207.9.
Example 18 4-[3-(4-hydroxyphenyl)-4,4-dimethyl—Z,S-dioxoimidazolidin-l-yl]~2-triflu0r0methylbenzonitrile, 18a, [RD60] Hydrogen peroxide, 30% (3 ml, 26 mmol) was added dropwise to a solution of of3c (0.121 g, 0.4 mmol) in glacial acetic acid (3 ml). The mixture was stirred at room temperature for 12 h and then 20 ml of ethyl acetate was added. The organic layer was washed with water (3 X 15 ml), dried over magnesium sulfate, concentrated and tographed (dichloromethane) to yield 18a (0.102 g, 0.261 mmol, 87%) as a White powder. £211,101 2+ 1H NMR (CDC13, 400 MHz) 8 1.52 (s, 6H), 6.70-6.73 (m, 2H), 7.01—7.04 (m, 2H), 7.92 (d, J= 8.4 Hz, 1H), 8.00 (dd, J, = 8.4 Hz, J; = 1.8 Hz, 1H), 8.15 (d, J= 1.8 Hz, 1H); 13c NMR (CDC13, 100 MHz) 5 23.7, 63.7, 108.4, 115.0, 116.7, 121.9 (q, J: 272.6 Hz), 123.5 (q, J= 4.8 Hz), 124.0, 128.5, 130.5, 133.6 (q, J= 33.2 Hz), 135.5, 136.2, 153.4, 157.2, 174.5. —36- 2006/011417 e 19 19-1). 3-fluoro—2—methyl(4-methylphenyl)aminopropionitrile, 19a Trimethylsilyl cyanide (0.146 ml, 1.1 mmol) was added dropwise to the mixture ofp-toluidine (0.107 g, 1 mmol) and fluoroacetone (0.082 g, 1.1 mmol). The reaction mixture was stirred at room temperature for 12 h and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane) to yield 19a (0.179 g, 0.93 mmol, 93%) as a yellowish solid. 19-2). 4-(4-fluoromethyl-4—methyl—5—oxo-2—thioxo(4-methylphenyl)imidazolidin-l-yl) trifluoromethylbenzonitrile, 19b, [RD68] A mixture of 1a (0.16 g, 0.7 mmol) and 19a (0.096 g, 0.5 mmol) in dry DMF (0.3 ml) was stirred at room temperature for 48 h. To this mixture were added ol (10 ml) and HC] aq. 2N (2 ml). The second mixture was refluxed for 6 h. After being cooled to room temperature, the reaction mixture was poured into cold water (30 m1) and extracted with ethyl acetate (30 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 19b (0.168 g, 0.4 mmol, 80%) as a white powder.
F3C N N Hort, 0 CHZF 1H NMR (CDC13, 400 MHz) 5 1.49 (s, 3H), 2.44 (s, 3H), 4.35 (dd, J1 = 47.2 Hz, J; = 10.0 Hz, 1H), 4.71 (dd, J, = 45.2 Hz, J; = 10 Hz, 1H), 7.22-7.26 (m, 2H), 7.35—7.39 (m, 2H), 7.82 (dd, J1 = 8.2 Hz, J; = 1.8 Hz, 1H), 7.93 (d, J: 1.8 Hz, 1H), 7.98 (d, J= 8.2 Hz, 1H); 13C NMR (CD013, 100 MHz) 5 17.0 (d, J: 4.6 Hz), 21.3, 69.3 (d, J: 18.3 Hz), 81.9 (d, J= 179.5 Hz), 109.9, 114.8, 121.8 (q, J: 272.6 Hz), 127.2 (q, J= 4.7 Hz), 129.3, 130.9, 131.6, 132.3, 133.3 (q, J: 33.2 Hz), 135.3, 137.0, 140.5, 174.1, 181.4; "E N1\/IR(CDC13, 376 1V[HZ) 5 -62.5, 110.9.
Example 20 -1). 2-methyl(4-trifluoromethylphenyl)aminopropanenitrile, 20a A mixture of 4—trifluoromethylaniline (1.61 g, 10 mmol), acetone ydrin (5 ml) and magnesium e (2 g) was heated to 80 °C and stirred for 12 h. To the medium was added ethyl acetate (50 ml) and then washed with water (3 X 30 ml). The organic layer was dried over MgSO4 and concentrated under vacuum to dryness to yield 20a (2.166 g, 9.5 mmol, 95%) as brown solid. -2). 4-(4,4—dimethyl—5-oxo—2—thioxo(4-triflu0r0methylphenyl)imidazolidin—1-yl) trifluoromethylbenzonitrile, 20b, [RD66] A mixture of 1a (0.114 g, 0.5 mmol) and 20a (0.092 g, 0.4 mmol) in dry DMF (0.3 ml) was stirred at room temperature for 48 h. To this mixture were added methanol (10 ml) and HCl aq. (3 ml). The second mixture was refluxed for 6 h. After being cooled to room temperature, the on mixture was poured into cold water (20 ml) and extracted with ethyl acetate (20 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 20b (0.117 g, 0.256 mmol, 64%) as a white powder.
F30: : 5 OCF3 \N/U\N ft 1H NMR(CDC13, 400 MHz) 8 1.61 (s, 6H), 7.45—7.49 (m, 2H), 7.80-7.83 (m, 2H), 7.85 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.97 (d, J= 1.8 Hz, 1H), 7.99 (d, J: 8.2 Hz, 1H); 13c NMR (CDC13, 100 MHz) 5 23.8, 66.6, 110.3, 114.8, 121.8 (q, J: 272.6 Hz), 123.5 (q, J= 271.1 Hz), 127.0 (q, J: 4.6 Hz), 127.1 (q, J= 4.7 Hz), 130.3, 131.9 (q, J: 32.9 Hz),, 132.2, 133.5 (q, J= 33.3 Hz), 135.3, 136.9, 138.4, 174.6, 179.9.
Example 21 21-1). 3-chlor0chloromethyl—Z—(4-methylphenyl)aminopropanenitrile, 21a Trimethylsilyl cyanide (0.27 ml, 2 mmol) was added dropwise to a e of p-toluidine (0.107 g, 1 mmol) and 1,3-dichloroacetone (0.254 g, 2 mmol). The on mixture was heat to 80 °C and stirred for 6 h. To the mixture was added 20 ml of ethyl acetate and then wash with water (2 X 20 ml). The organic layer was dried over MgSO4, concentrated and tographed (dichloromethane) to yield 21a (0.192 g, 0.79 mmol, 79%) as a brown powder. 21-2). -bisch10r0methyl—5—ox0—2—thioxo(4-methylphenyl)imidazolidin—1-yl)-2— trifluoromethylbenzonitrile, 21b, [RD67] A mixture of 1a (0.16 g, 0.7 mmol) and 21a (0.122 g, 0.5 mmol) in dry DMF (0.5 ml) was stirred at room temperature for 10 days. To this mixture were added methanol (10 ml) and of HCl aq. 2N (2 ml). The second mixture was refluxed for 6 h. After being cooled to room ature, the reaction mixture poured into cold water (20 ml) and extracted with ethyl acetate (30 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 21b (0.09 g, 0.19 mmol, 38%) as a white powder. -38— NC: :: s CH3 F30 N/U\N 0 CHZCl 1H NMR (CD013, 400 MHz) 5 2.44 (s, 3H), 3.54 (d, J= 11.8 Hz, 2H), 3.93 (d, J= 11.8 Hz, 2H), 7.37— 7.40 (m, 2H), 7.48-7.51 (m, 2H), 7.79 (dd, 11 = 8.2 Hz, J; = 1.8 Hz, 1H), 7.88 (d, J= 1.8 Hz, 1H), 7.98 (d, J: 8.2 Hz, 1H); 13C NMR (CDC13, 100 MHz) 8 21.4, 42.8, 74.3, 110.7, 114.7, 121.7 (q. J: 272.6 Hz), 127.2 (q, J= 4.7 Hz), 128.8, 131.0, 131.1, 132.4, 133.8 (61, J: 33.2 Hz), 135.5, 136.9, 140.9, 169.5, 182.5.
Example 22 22-1). 1-(4—methylphenyl)aminocyclohexanenitrile, 22a Sodium cyanide (0.245g, 5 mmol) was added to a mixture of anthranilic acid (0.411 g, 3 mmol) and acetone (1 ml, 13.6 mmol) in acetic acid 90% (3 ml). The reaction mixture was stirred at room temperature for 12 h and then 50 ml of ethyl acetate was added. The organic layer was washed with brine (3 X 30 ml). The organic layer was dried over magnesium e, concentrated and chromatographed (dichloromethane:acetone, 90:10) to yield 22a (0.551 g, 2.7 mmol, 90%) as a brown solid. 22-2). 2-[3-(4-cyanotrifluoromethylphenyl)-5,5—dimethyl—4-oxothioxoimidazolidin-1— yl]benzoic acid, 22b, [RD65] A mixture of 1a (0.114 g, 0. mmol) and 22a (0.103 g, 0.5 mmol) in (113/ DMF (0.5 ml) was stirred at room temperature for 3 days. To this mixture were added methanol (10 ml) and HCI aq. 2N, (3 ml). The second e was d for 6 h. After being cooled to room temperature, the reaction mixture was poured into cold water (20 ml) and extracted with ethyl acetate (30 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (ethyl acetatezpentane, 2:1) to yield 22b (0.143 g, 0.33 mmol, 66%) as a white powder.
F3C N N COOH oH 1H NMR (CDC13, 400 MHz) 6 1.47 (s, 3H), 1.78 (s, 3H), 7.39 (d, J= 7.7 Hz, 1H), 7.63 (t, J: 7.7 Hz, 1H) .82 (m, 2H), 7.90-7.98 (m, 2H), 8.22 (d, J= 6.8 Hz, 1H), 8.96 (bs, 1H); 13(3 NMR (CDC13, 100 MHz) 8 20.6, 26.2, 67.6, 110.1, 114.8, 121.9 (q, J= 272.6 Hz), 127.2 (q, J= 4.7 Hz), 128.9, 131.0, 130.2, 132.5, 133.2 (q,J= 33.3 Hz), 1337,1347, 135.4, 135.8, 137.3, 169.8, 175.3, 180.7. -39.. e 23 23—1). 1-(2-methylphenyl)aminocyclobutanenitrile, 23a Trimethylsilyl cyanide (0.66 ml, 5 mmol) was added dropwise to the mixture ofp-toluidine (0.321 g, 3 mmol) and cyclobutanone (0.28 g, 4 mmol). The reaction mixture was stirred at room temperature for 6 h and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography oromethane) to yield 23a (0.541 g, 2.91 mmol, 97%) as a yellowish solid. 23-2). 4-(8-oxothioxo-5—(2—methylphenyl)-5,7-diazaspiro[3.4]oct~7-yl)—2- trifluoromethylbenzonitrile, 23b, [RD71] A mixture of 121 (0.114 g, 0.5 mmol) and 2321 (0.093 g, 0.5 mmol) in dry DMF (0.3 ml) was stirred at room temperature for 3 days. To this mixture were added methanol (10 ml) and HCl aq. 2N, (3 ml). The second e was refluxed for 6 h. After being cooled to room temperature, the reaction mixture poured into cold water (20 ml) and extracted with ethyl acetate (30 ml). The organic layer was dried over MgSO4, concentrated and tographed (dichloromethane) to yield 23b (0.116 g, 0.28 mmol, 56%) as a white .
F3C N N 1H NMR (CDC13, 400 MHz) 6 1.63-1.69 (m, 1H), 2.26 (s, 3H), 2.28-2.41 (m, 2H), 2.58-2.76 (m, 3H), 7.21 (d, J= 7.6 Hz, 1H), 7.39—7.49 (m, 3H), 7.89 (dd, J, = 8.2 Hz, J; = 1.8 Hz, 1H), 7.97 (d, J= 8.2 Hz, 1H), 8.00 (d, J: 1.8 Hz, 1H); 13C NMR (CDC13, 100 MHz) 5 14.2, 18.0, 30.7, 32.2, 67.6, 109.9, 114.9, 121.9 (q, J= 272.6 Hz), 127.0 (q, J: 4.7 Hz), 127.5, 129.8, 130.2, 131.9, 132.3, 133.4, 133.5 (q, J: 34.3 Hz), 135.2, 135.8,137.1,138.0, 175.3, 178.7.
Example 24 24-1). 1-aminocyclopentanecarbonitrile, 24a Ammonia anhydrous was bubble into a mixture of cyclopentanone (0.452 g) and trimethylsilyl cyanide (0.66 ml, 5 mmol). The excess of ammonia was refluxed by a dry ice-acetone condenser. After 1 h of reflux, the ammonia was allowed to degas form the medium and then the remaining mixture was concentrated under vacuum to yield 2421 (0.522 g, 4.75 mmol, 95%) as a colorless liquid. 24-2). 4-(4-imino—2-thioxo-1,3-diazaspiro[4.4]non~3-yl)~2—trifluoromethylbenzonitrile, 24b Triethylamine (0.101 g, 0.1 mmol) was added to a solution of 121 (0.684 g, 3 mmol) and 2421 (0.33 g, 3 mmol) in dry THF (5 ml). The reaction mixture was d at room temperature for 5 h and then concentrated to yield a brown residue which was subjected to flash chromatography (dichloromethane/acetone, 93:7) to afford 24b (0.741 g, 2.19 mmol, 73%). 24—3). 4-(4-oxo-2—thioxo-1,3-diazaspiro[4.4]nonyl)~2—trifluoromethylbenzonitrile, 24c, [RD77] A mixture of 24b (0.741 g, 2.19 mmol) in I-ICl aq., 2N (4 m1) and methanol (20 ml) was heated to reflux for l h. After being cooled to room temperature, the reaction mixture was poured into cold water (20 ml) and extracted with ethyl acetate (40 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 24c (0.72 g, 2.12 mmol, 97%) as a white powder.
F30 N N’H 1H NMR , 400 MHz) 6 186-190 (m, 2H), .05 (m, 4H), 2.26-2.30 (m, 2H), 7.80 (dd, J1 = 8.2 Hz, .12 = 1.8 Hz, 1H), 7.92 (d, J= 1.8 Hz, 1H), 7.97 (d, J: 8.2 Hz, 1H) 8.20 (bs, NH); 13c NMR , 100 MHz) 6 25.3, 38.1, 71.0, 110.1, 114.8, 121.8 (q, J= 272.7 Hz), 126.8 (q, J: 4.7 Hz), 131.9, 133.6 (q,J= 34.3 Hz), 135.3, 136.7,176.1, 179.8.
Example 25 25). 4-[1—(4-nitr0phenyl)oxo~2—thioxo-1,3-diazaspiro[4.4]non-S-yl]trifluoromethylbenzonitrile, 25a, [RDSS] A mixture of 25c (0.0678 g, 0.2 inmol), 1,8—Diazabicyclo[5.4.0]undec—7-ene (0.05 g, 0.33 mmol) and 4- fluoronitrobenzene (0.056 g, 0.4 mndol) in dimethylformamide (0.5 ml) was placed under argon in a -tube and heated to 130 °C for 40 h. The reaction mixture was poured into ethyl acetate (5 ml) washed with water (2 X 10 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 25a (0.038 g, 0.084 mmol, 42%) as a white powder.
F3C NAN 1H NMR (CD013, 400 MHz) 6 1.53-1.56 (m, 2H), 1.90—1.93 (m, 2H), .18 (m, 2H), 2.37—2.40 (m, 2H), 7.54—7.57 (m, 2H), 7.85 (dd, J1 = 8.2 Hz, J2 = 1.8 Hz, 1H), 7.97 (d, J= 1.8 Hz, 1H), 7.98 (d, J= 8.2 Hz, 1H), 8.39~8.43 (m, 2H); 13C C13, 100 MHz) 6 25.2, 36.5, 75.3, 110.3, 114.8, 121.8 (q, J = 272.6 Hz), 125.2, 127.0 (q, J: 4.7 Hz), 131.4, 132.1, 133.6 (q, .1: 34.3 Hz), 135.3, 136.9, 141.7, 148.1, 175.6, 180.2. e 26 26). 4~[1-(4-cyanophenyl)—4-ox0thioxo-1,3-diazaspiro[4.4]n0n-3—yl] romethylbenzonitrile, 26a, [RD54] A mixture of 24c (0.0678 g, 0.2 mmol), azabicyclo[5.4.0]undec—7—ene (0.061 g, 0.4 mmol) and 4- fluorocyanobenzene (0.048 g, 0.4 mmol) in dimethylformamide (0.5 ml) was placed under argon in a sealed-tube and heated to 140 °C for 5 days. The reaction mixture was poured into ethyl acetate (5 m1) and washed with water (2 X 10 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 263 (0.023 g, 0.052 mmol, 26%) as a white powder. 310880C" 1H NMR (CDC13, 400 MHz) 5 1.51—1.55 (m, 2H), 1.90—1.93 (m, 2H), 2.12-2.16 (m, 2H), 2.33238 2H), 7.47—7.50 (m, 2H), 7.81—7.87 (m, 3H), 7.95—7.99 (m, 2H),- 130 NMR (CDC13, 100 MHz) 6 25.2, 36.5, 75.3, 110.3, 113.9, 114.7, 117.5, 121.8 (q, J= 272.6 Hz), 127.0 (q, J= 4.8 Hz), 131.2, 132.1, 133.6 (q, J =34.3 Hz), 133.8, 135.3, 136.9, 140.0, 175.6, 180.1.
Example 27 27—1). 1-methyl—4-(4-methylphenylamino)piperidine—4—carbonitrile, 27a Sodium cyanide (0.318 g, 6.5 mmol) was added to a mixture of p-toluidine (0.535 g, 5 mmol) and 1— methyl-4~piperidinone (0.678 g, 6 mmol) in acetic acid 90% (5 ml). The reaction mixtLu‘e was stirred at room temperature for 6 h and then 100 ml of dichloromethane was added. The organic layer was washed with a solution NaOH, 2N (2 X 50 m1), dried over magnesium sulfate, concentrated and chromatographed (DCM and then acetone) to obtained 2721 (0.722 g, 3.15 mmol, 63%). 27.2). 4—(4-iminomethyl—2—thioxo(4-methylphenyl)-’1,3,8-triazaspiro[4.5] dec—3-yl) trifluoromethylbenzonitrile, 27b Triethylamine (0.02, 0.2 mmol) was added to a on of la (0.228 g, 1 mmol) and 27a (0.114 g, 0.5 mmol) in dry TI—IF (2 ml). The reaction mixture was stirred at room temperature for 20 h and then concentrated to yield a dark residue which was subjected to flash chromatography (dichloromethane/acetone, 90: 10, and then acetone) to afford 27b (0.059 g, 0.13 mmol, 26%). 27-3). 4-(8—methyl—4-oxothioxo(4-methylphenyl)—1,3,8-triazaspir0[4.5]dec—3-yl) trifluoromethylbenzonitrile, 27c, [RD53] A mixture of 27b (0.059 g, 0.13 mmol) in HCl aq., 2N (1 ml) and methanol (3 ml) was heated to reflux for 2 h. After being cooled to room temperature, the reaction mixture was poured into cold water (5 ml) and ted with ethyl acetate (10 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone, 60:40) to yield 27c (0.055 g, 0.012 mmol, 92%) as a white powder.
F3C N N 1H NMR (Acetone—d6, 400 MHz) 5 1.93—1.99 (m, 1H), 2.00—2.04 (m, 1H), 2.18 (s, 3H), .28 (m, 2H), 2.38 (s, 3H), 2.61—2.72 (m, 4H), 7.1820 (m, 2H), 7.32—7.35 (m, 2H), 8.03 (dd, J, = 8.2 Hz, J; = 1.8 Hz, 1H), 8.16 (d, J= 1.8 Hz, 1H), 8.22 (d, J: 8.2 Hz, 1H); 13C NMR (Acetone-d6, 100 MHz) 6 20.3, 31.4, 45.1, 49.8, 65.1, 109.1, 114.8, 122.4 (q, J: 275.1 Hz), 127.7 (q, J: 4.8 Hz), 130.0, 130.5, 131.9 (q, J= 32.6 Hz), 132.6, 133.5, 135.6, 138.3, 139.4, 174.0, 180.6.
Example 28 ethyloxo-Z-thioxo-l,3,8—triazaspiro [4.5] decyl)trifluor0methylbenzonitrile, 28a, [RD52] Compound 28a was synthesized according to the procedure described in patent US 5958936.
F3C N N’H -43—' 1H NMR (Acetone-d6, 400 MHz) 5 1.93—2.00 (m, 2H), 2.09—2.16 (m, 2H), 2.25 (s, 3H), 2.42-2.49 (m, 2H), 2.75—2.80 (m, 2H), 7.97 (dd, J, = 8.2 Hz, J; = 1.8 Hz, 1H), 8.11 (d, J= 1.8 Hz, 1H), 8.20 (d, J= 8.2 Hz, 1H), 9.80 (bs, NH); 13(3 NMR ne—d6, 100 MHz) 5 32.9, 45.4, 50.1, 62.3, 109.1, 114.8, 122.4 (q, J: 271.6 Hz), 127.5 (q, J= 4.8 Hz), 131.8 (q, J: 32.7 Hz), 133.2, 135.6, 135.6, 138.0, 175.2, 180.4. e 29 4-[3-(4-hydroxybutyl)-4,4-dimethyl-5—oxothioxoimidazolidinyl]~2-trifluoromethylbenzonitrile, RU 59063 Compound RU 59063 was synthesized according to the procedure described by Teutsch et al [J. Steroid. Biochem. Molec. Biol. 1994, 48(1), 111—119]. >\NJ?\N/\/\/OH 1H NMR (CDC13, 400 MHz) 5 1.55 (s, 6H), .62 (m, 2H), 1.86—1.89 (m, 2H), 2.25 (bs, 0H), 3.65- 3.71 (m, 4H), 7.74 (dd, J, = 8.0 Hz, J; = 1.8 Hz, 1H), 7.92 (d, J= 1.8 Hz, 1H), 7.98 (d, J: 8.0 Hz, 1H); 13C NMR (CDC13, 100 MHz) 6 23.1, 24.7, 29.6, 43.9, 61.7, 65.2, 109.7, 114.9, 121.9 (q, J: 272.6 Hz), 127.1 (q, J: 4.8 Hz), 132.2, 133.7 (q, J= 34.3 Hz), 135.2, 137.2, 175.3, 178.2.
Example 30 -1). 1-methylaminocyclobutanecarbonitrile, 30a Methylamine was bubbled into a refrigerated mixture of cyclobutanone (0.21 g, 3 mmol) and trimethylsilyl cyanide (0.396 g, 4 mmol) until the volume doubled. The mixture was stirred 3 h and then concentrated to dryness to obtain 30a (0.33 g, quantitative). —2). 4-(5-methyl—8—oxo-6—thiox0-5,7-diazaspiro[3.4]oct—7-yl)trifluoromethylenzonitrile, 30b, [RD73] A mixture of 121 (0.114 g, 0.5 mmol) and 30a (0.055 g, 0.5 mmol) in dry DMF (0.2 ml) was stirred at room temperature for 0.5 h. To this mixture were added 10 ml of methanol and 2 m1 of 2N HCl. The second mixture was refluxed for 2 h. After being cooled to room temperature, the reaction mixture was poured into cold water (20 ml) and extracted with ethyl acetate (30 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 30b (0.148 g, 0.435 mmol, 87%) as a White powder.
F30 N N’CH3 1H NMR (CDC13, 400 MHz) 5 1.95-2.06 (m, 1H), 2.21-2.32 (m, 1H), 2.58—2.71 (m, 4H), 3.44 (s, 3H), 7.77 (dd, J, = 8.2 Hz, J; = 2.0 Hz, 1H), 7.89 (d, J= 2.0 Hz, 1H), 7.93 (d, J= 8.2 Hz, 1H); 130 NMR (CDC13, 100 MHz) 6 13.7, 30.3, 30.4, 66.1, 109.7, 114.9, 121.9 (q, J= 272.6 Hz), 126.9 (q, J= 4.8 Hz), 132.1,133.2(q,J= 34.3 Hz), 135.2, 137.3, 175.1,178.7. —3). 4-(5-methyl—6,8-dioxo-5,7—diazaspiro[3.4]oct—7—yl)trifluoromethylbenzonitrile, 30¢, [RD74] Hydrogen peroxide (2 ml, 30%) was added to the mixture of 30b (0.068 g, 0.2 mmol) in glacial acetic acid (3 ml). After being stirred at room ature for 10 h, the reaction mixture was poured into ethyl acetate (20 m1) and then washed with water (2 X 20 ml). The c layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone) to yield 30c (0.057 g, 0.176 mmol, 88%) as a white .
"CD 1 F30 N N’CHa ‘H NMR (CDC13, 400 MHz) 5 1.91-2.35 (m, 1H), 2.21—2.31 (m, 1H), 2.50-2.61 (m, 4H), 3.12 (s, 3H), 7.89 (d, J = 8.2 Hz, 1H), 7.97 (dd, J, = 8.2 Hz, J; = 2.0 Hz, 1H), 8.12 (d, J = 2.0 Hz, 1H),; 130 NMR (CDC13, 100 MHz) 5 13.9, 25.4, 29.3, 63.4, 108.1, 115.1, 121.6 (q, J: 272.6 Hz), 122.9 (q, J= 4.8 Hz), 127.9, 133.5 (q, J: 34.3 Hz), 135.3, 136.5, 152.7, 174.4.
Example 31 31-1). l-methylaminocyclopentanecarbonitrile, 31a Methylamine was bubbled into a refiigerated mixture of cyclopentanone (0.252 g, 3 mmol) and trimethylsilyl cyanide (0.396 g, 4 mmol) until the volume d. The mixture was stirred 3 h and then concentrated to dryness to obtain 3121 (0.372 g, quantitative). 31—2). ethyloxo-2—thioxo-1,3-diazaspiro[4.4]non-3—yl)—2—trifluoromethylbenzonitrile, 31b, [RD75] A mixture of 1a (0.114 g, 0.5 mmol) and 31a (0.062 g, 0.5 mmol) in dry DMF (0.2 ml) was stirred at room temperature for 0.5 h. To this mixture were added 10 ml of methanol and 2 m1 of 2N HCl. The -45_ second mixture was refluxed for 2 h. After being cooled to room temperature, the reaction mixture was poured into cold water (20 ml) and ted with ethyl acetate (30 ml). The organic layer was dried over MgSO4, concentrated and chromatographed oromethane) to yield 31b (0.159 g, 0.45 mmol, 90%) as a white powder.
F30 N N’CHS 1H NMR (CDCl3, 400 MHz) a 1.91-2.05 (m, 6H), 2.16—2.21 (m, 2H), 3.27 (s, 3H), 7.77 (dd, J1 = 8.2 Hz, J; = 1.8 Hz, 1H), 7.89 (d, J: 1.8 Hz, 1H), 7.91 (d, J: 8.2 Hz, 1H); 13C NMR (CDC13, 100 MHz) 5 26.4, .3, 35.4, 73.2, 109.5, 114.9, 121.9 (q, J: 272.6 Hz), 126.9 (q, J= 4.8 Hz), 132.2, 133.2 (q, J= 34.3 Hz), 135.2,137.5,176.8, 178.5. 31-3). 4-(1—methyl—2,4-dioxo-1,3-diaza—spiro[4.4]nonyl)trifluoromethylbenzonitrile, 31c, [RD76] Hydrogen de (2 ml, 30%) was added to the mixture of 31b (0.07 g, 0.2 mmol) in glacial acetic acid (3 ml). After being stirred at room temperature for 10 h, the reaction mixture was poured into ethyl acetate (20 ml) and then washed with water (2 X 20 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone) to yield 31c (0.057 g, 0.168 mmol, 84%) as a White .
"CD 11 F3C N N’CHS 0%) 1H NMR (CDC13, 400 MHz) 5 1.88-1.99 (m, 6H), 2.12—2.17 (m, 2H), 2.98 (s, 3H), 7.88 (d, J= 8.2 Hz, 1H), 7.97 (dd, J, = 8.2 Hz, J; = 1.8 Hz, 1H), 8.12 (d, J= 1.8 Hz, 1H); 13c NMR (CD013, 100 MHz) 6 .2, 26.5, 34.8, 70.1, 108.0, 115.1, 122.0 (q, J= 272.5 Hz), 122.9 (q, J= 4.9 Hz), 127.9, 133.5 (q, J: 32.9 Hz), 135.3, 136.6, 152.7, 176.1.
Example 32 4—(8-methyliminothioxop—tolyl-5,7—diaza—spiro[3.4]0ctyl)—2-'trifluoromethyl-benzonitrile, 323, [RD90] —46- A mixture of 7b (0.042 g, 0.1 mmol), DBU (0.023 g, 0.15 mmol) and iodomethane (0.073 g, 0.5 mmol) in DMF (0.3 ml) was d for 15 h at room ature. After DMF being evaporated, the medium was chromatographed (dichloromethane) to yield 32a (0.01 1 g, 0.026 mmol, 26%) as white powder.
NOD S 0% F3C N/U\N 1H NMR , 400 MHz) 5 1.58—1.65 (m, 1H), 2.04-2.13 (m, 1H), 2.45 (s, 3H), 2.70—2.77 (m, 2H), 3.06—3.10 (m, 2H), 3.58 (s, CH3-N, major isomer) [2.70 (s, CH3—N, minor isomer)], 7.20—7.34 (m, 4H), 7.75-7.91 (m, 3H); (CDC13, 100 MHz) 0‘ 12.6, 21.4, 30.2, 33.7 (35.3 for the other isomer), 66.9, 109.1, 115.2, 122.1 (q, J: 272.5 Hz), 128.5 (q, J= 4.9 Hz), 129.8, 130.4, 130.6, 132.8, 133.2 (q, J= 32.9 Hz), 133.5, 134.9, 139.8, 157.0, 180.2.
Example 33 1-[3-(4-cyanotrifluoromethyl—phenyl)-5,5-dimethyl—Z-thioxo—1—p—tolyl-imidazolidin—4-ylidene]~3— ethyl-thiourea, 33a, [RD91] A mixture of 5b (0.06 g, 0.149 mmol), ethylthioisocyanate (0.087 g, 1 mmol) and CuI (0.01 g, 0.05 mmol) in DMF (0.1 ml) was heated under microwave for 45 minutes. Then the medium was washed with brine and extracted with ethyl acetate. The organic layer was dried over MgSO4, trated and chrpmatographed (HPLC, alumina column) to yield 33a (0.054 g, 0.108 mmol, 72%) as white powder. 22113.0 SAN" H 1H NMR (CD013, 400 MHz) 8 1.15 (r, J= 7.23 Hz, 3H), 1.70 [1.75 minor isomer] (s, 6H), 2.42 (s, 3H), 3.28-3.39 (m, 2H) [3.15—3.22 (m, 2H), minor isomer], 6.50 (bs, 1H) [6.93 (bs, 1H), minor isomer], 7.14~ 7.18 (m, 2H), 7.32-7.35 (m, 2H), 7.77—7.94 (m, 3H); 13c NMR (CDC13, 100 MHz) 6 13.31 (13.83 minor), 21.3, 25.22 (24.89 minor), 40.31 (40.67 minor), 68.1, 109.9, 114.9, 122.3 (q, J= 272.5 Hz), 127.6 (q, .1: 4.9 Hz), 129.1, 129.59 (129.55 minor), 130.52 (130.57 , 132.27 (132.15 minor), 132.9 (q, J: 32.9 Hz), 134.27 (134.15 , 134.9, 135.2, 156.33 (156.06 minor), 180.28 (180.06 minor), 187.24 (186.63 minor) . e 34 1—[7-(4—cyanotrifluoromethyl—phenyl)thioxo-5—p-tolyl-5,7-diaza—spir0 [3.4]oct—8—ylidene] phenyl-thiourea, 34a, [RD92] A mixture of 7b (0.021 g, 0.05 mmol) and phenylthioisocyante (0.027 g, 0.2 mmol) in DMF (0.3 ml) was d for 2 days at 60°C. After DMF being evaporated, the medium was chromatographed (dichloromethane) to yield 3421 (0.015 g, 0.028 mmol, 57%) as white powder.
F:::©\Nj\N/©/ 340. 1H NMR (CDC13, 400 MHz) 8 1.59—1.67 (m, 1H), 2.12—2.22 (m, 1H), 2.45 (s, 3H), 2.61-2.71 (m, 2H), 2.81-2.87 (m, 2H), 7.18-7.27 (m, 6H), 7.33—7.41 (m, 5H), 7.60-7.62 (m, 1H), 8.40 (bs, 1H); 13C NMR (CDC13, 100 MHZ) 6 13.6, 21.4, 32.3, 69.6, 110.7, 114.8, 121.6, 122.0 (q, J: 272.5 Hz), 126.3, 128.0 (q, J: 4.9 Hz), 128.9, 129.4, 130.7, 132.5, 133.2 (q, J= 32.9 Hz), 134.1, 134.9, 137.7, 139.2, 140.2, 154.8, 180.3,1855 Example 35 1-(4-Cyanotrifluor0methyl-phenyl)[7-(4—cyanotrifluoromethyl—phenyl)thioxop-tolyl— ,7-diaza-spiro[3.4]oct—8—ylidene]—thiourea, 35a, [RD93] A mixture of 12! (05.02 g, 2.2 mmol) and 721 (0.186 g, 1 mmol) in DMF (1 ml) was d at room temperature. After 20 hours of stirring, the mixture was concentrated under reduced pressure to yield an orange s liquid, which was chromatographed (dichloromethane:acetone, 99: 1) to yield 3521 (0.269 g, 0.42 mmol, 42%) as a yellow powder.
X—ray ure of35a Example 36 36-1). l-(4-hydroxymethylphenylamino)—cyclobutanecarbonitrile, 36a Trimethylsilyl cyanide (0.66 ml, 5 mmol) was added dropwise to a mixture of 4-aminobenzoic acid (0.492 g, 4 mmol) and cyclobutanone (0.35 g, 5 mmol) in dichloromethane (10 ml). The reaction mixture was stirred at room temperature for 6 h and then concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane) to yield 3621 (0.677 g, 3.36 mmol, 84%) as a brown solid. 36—2). 4-[8-(4—hydroxymethylphenyl)oxothi0xoazaspiro[3.4]oct—6—yl]—2—trifluoromethyl— benzonitrile, 36b, [RD110] A mixture of 121 (0.342 g, 1.5 mmol) and 363 (0.21 g, 1 mmol) in dry DMF (0.5 ml) was stirred at room temperature for 24 h. To this e were added methanol (20 ml) and HCI aq. 2N (5 ml). The second mixture was refluxed for 6 h. After being cooled to room temperature, the reaction mixture was poured into cold water (40 ml) and extracted with ethyl e (60 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone, 90:10) to yield 36b (0.296 g, 0.69 mmol, 69%) as a white powder. 04—h 1H NMR (CDC13, 400 MHz) 5 .68 (m, 1H), 2.17-2.26 (m, 1H), 2.52—2.68 (m, 4H), 4.75 (s, 2H), 7.30 (d, J= 8.1 Hz, 2H), 7.58 (d, J= 8.1 Hz, 2H), 7.88 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.95-7.98 (m, 2H); 13c NMR (CDC13, 100 MHz) 5 13.7, 31.5, 64.4, 67.5, 109.9, 114.9, 121.9 (q, J = 272.6 Hz), 127.1 (q, J: 4.7 Hz), 128.3, 130.0, 132.2, 133.3, 133.4 (q, J: 33.2 Hz), 134.2, 137.2, 142.9, 174.9, 179.9.
Example 37 4—[5-(4—formylphenyl)ox0thioxo—5,7-diazaspiro[3.4]oct—7-yl]~2-trifluoromethyl—benzonitrile, 37a, ] To a mixture of 36b (0.303 g, 0.7 mmol) and Dess—Martin periodinane (04175;, 1 mmol) in dichlorornethane (5 ml) was added pyridine (1.01g, 1 mmol). The mixture was stirred for 2 hours at room temperature and then ethyl ether (10 ml) was added to precipitate the by-product of the reaction. After filtration and concentration under reduced re, the mixture was chromatographed (dichloromethane:acetone, 95:5) to yield 37a (0.24 g, 0.56 mmol, 80%) as White powder. $99.80*" 067: 1H NMR (01301,, 400 MHz) 6 1.62-1.73 (m, 1H), 2.24—2.30 (m, 1H), 2.50-2.58 (m, 2H), 2.69-2.75 (m, 2H), 7.53 (d, J= 8.1 Hz, 2H), 7.85 (dd, J1 = 8.3 Hz, J, = 1.8 Hz, 1H), 7.97—7.99 (m, 2H), 8.11 (d, J: 8.1 Hz, 2H), 10.12 (s, 1H); "C NMR (CDC13, 100 MHz) 5 13.7, 31.7, 67.5, 110.2, 114.8, 121.9 (q, J: 272.6 Hz), 127.0 (q, J: 4.7 Hz), 129.1, 131.0, 131.2, 132.2, 133.3 (q, J: 33.2 Hz), 135.3, 136.9, 140.5, 174.5, 179.8, 190.8.
Example 38 4-{5-[4-(1-hydroxyethyl)—phenyl]oxo-6~thioxo-5,7-diazaspiro[3.4]oct—7—yl}~2-trifluoromethyl— itrile, 38a [RD116] The mixture of 37a (0.043 g, 0.1 mmol) and dry THF (1 ml) in a flamed-dried flash was placed under argon and cooled to -78°C. Then, methylmagnesium iodide (1.1 ml, 0.1 M) was added. The mixture was stirred at ~78°C for 30 s and warmed slowly to room temperature. The medium was washed with water (3 ml) and extracted with ethyl e (10 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone, 95 :5) to yield 38a (0.037 g, 0.082 mmol, 82%) as a white .
MD )1m F3C N N 1H NMR (CDC13, 400 MHz) 5 1.57 (d, J = 6.5 Hz, 3H), 1.61-1.71 (m, 1H), 2.09 (d, J= 3.2 Hz, OH), 2.16-2.28 (m, 1H), 2.52-2.60 (m, 2H), 2.63—2.69 (m, 2H), 5.00 (dd, J, = 6.5 Hz, q, J2 = 3.1 Hz, 1H), 7.29 (d, J= 8.3 Hz, 2H), 7.60 (d, J: 8.2 Hz, 2H), 7.85 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.95-7.98 (m, 2H); "C NMR (CDC13, 100 MHz) 5 13.7, 25.3, 31.5, 67.4, 69.8, 110.0, 114.9, 121.9 (q, J= 272.6 Hz), 127.0 (q, J: 4.7 Hz), 127.1, 129.9, 132.2, 133.4 (q, J= 33.2 Hz), 134.1, 135.2, 137.1, 147.6, 174.9, 179.9.
Example 39 3—{4—[7-(4-cyanotrifluoromethylphenyl)-8—oxothioxo-5,7—diazaspiro[3.4]oct-5—yl]-phenyl}- acrylic acid ethyl ester, 39a [RD117] A mixture of 37a (0.043 g, 0.1 mmol) and (carbethoxyethylidene)triphenylphosphorane (0.039 g, 0.12 mmol) in dichloromethane (2 ml) was stirred at room temperature for 10 hours. The medium was concentrated and chromatographed (dichloromethane) to yield 39a (0.048 g, 0.096 mmol, 96%) as white powder.
F30 N N 1H NMR (CDC13, 400 MHz) 5 1.35 (t, J= 7.1 Hz, 3H), 1.66-1.70 (m, 1H), .65 (m, 1H), 2.51-2.69 (m, 2H), 2.66-2.72 (m, 2H), 4.28 (q, J: 7.1 Hz, 2H), 6.51 (d, J: 16.1 Hz, 1H), 7.35 (d, J: 8.3 Hz, 2H), 7.72 (d, J= 8.3 Hz, 2H), 7.73 (d, J: 16.1 Hz, 1H), 7.85 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.96-7.98 (m, 2H); 130 NMR (CDC13, 100 MHz) 8 13.7, 14.3, 31.6, 60.8, 67.5, 110.0, 114.9, 120.5, 121.8 (q, J= 272.6 Hz), 127.0 (q, J= 4.7 Hz), 129.5, 130.5, 132.2, 133.4 (q, J: 33.2 Hz), 135.2, 136.0, 136.5, 137.0, 142.7, 166.5, 174.7, 179.8.
Example 40 4-(3-hydroxypr0penyl)-phenyl]0xothioxo-5,7-diazaspiro[3.4]oct~7—yl}-Z- trifluoromethylbenzonitrile, 40a [RD120] To a mixture of 39a (0.05 g, 0.1 mmol) in dichloromethane (2 m1) at -78°C was added a solution of diisobutylaluminum hydride in THF (0.11 ml, 1M, 0.11 mmol). The mixture was stirred at —78°C for 3 hours. After being warmed to room temperature, the e was washed with an aqueous solution of sodium thiosulfate and extracted with ethyl acetate. The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethanezacetone, 95:5) to yield 40a (0.040 g, 0.089 mmol, 89%) as a white .
F3C N N 04—5 1H NMR (CDC13, 400 MHz) 5 1.57—1.68 (m, 1H), 2.17-2.39 (m, 1H), 2.55-2.61 (m, 2H), 2.61-2.67 (m, 2H), 4.39 (d, J= 4.7 Hz, 2H), 6.47 (dt, J, = 16.0 Hz, J2 = 5.3 Hz, 1H), 6.70 (d, J= 16.0 Hz, 1H), 7.29 (d, J: 8.3 Hz, 2H), 7.59 (d, J= 8.3 Hz, 2H), 7.85 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.96-7.98 (m, 2H); 13(3 NMR (CDC13, 100 MHz) 5 13.7, 31.5, 63.4, 67.4, 110.0, 114.8, 120.5, 121.8 (q, J: 272.6 Hz), 127.0 J= 4.7 Hz), 1279,1292, 130.1, 131.1, 132.1, 133.4 (q, J: 33.2 Hz), 135.2, 137.1, 138.4,174.8,179.9.
Example 41 41-1) 3-[4-(1-cyanocyclobutylamino)—phenyl]—propionic acid, 41a (41-1) Trimethylsilyl cyanide (0.4 g, 4 mmol) was added drOpwise to a mixture of 3—(4-aminophenyl)-propionic acid (0.33 g, 2 mmol), cyclobutanone (0.35 g, 5 mmol) and sodium sulfate (1 g) in 1,4-dioxane (5 ml).
The mixture was stirred for 15 hours. After ion to eliminate sodium sulfate, the medium was concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane:acetone, 50:50) to yield 41a (0.472 g, 1.93 mmol, 97%) as a ish solid. 41-2) 3-{4—[7—(4—cyanotriflu0romethylphenyl)ox0thioxo—5,7-diazaspiro[3.4]0ctyl]- phenyl}-propionic acid methyl ester, 41b (41-2) [RD128] A mixture of 121 (0.661 g, 2.9 mmol) and 41a (0.472 g, 1.93 mmol) in dry DMF (2 ml) was stirred at room temperature for 15 hours. To this mixture were added methanol (10 ml) and HCl aq. (5 ml, 2M).
The second mixture was refluxed for 3 h. After being cooled to room ature, the reaction mixture was poured into cold Water (10 ml) and extracted with ethyl acetate (3 X 30 ml). The organic layer dried over MgSO4, concentrated and chromatographed (dichloromethane) to yield 41b (0.582 g, 1.19 mmol, 62%) as a white powder. :0de 1H NMR (CDC13, 400 MHz) 5 1.60-1.70 (m, 1H), 2.14-2.26 (m, 1H), 2.51-2.56 (m, 2H), 2.58-2.67 (m, 2H), 2.71 (t, J= 7.8 Hz, 2H), 3.05 (t, J= 7.8 Hz, 2H), 3.69 (s, 3H), 7.23 (d, J: 8.2 Hz, 2H), 7.41 (d, J: 8.2 Hz, 2H), 7.85 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.95 (d, J: 8.3 Hz, 1H), 7.98 (d, J= 1.8 Hz, 1H); 130 NMR , 100 MHz) 5 13.7, 30.5, 31.4, 35.1, 51.8, 67.5, 109.9, 114.9, 121.9 (q, J= 272.7 Hz), 127.1 (q, J = 4.7 Hz), 129.9, 130.0, 133.2, 132.3, 133.3 (q, J = 33.2 Hz), 135.7, 137.2, 142.5, 173.1, 174.9, 179.9. 41-3) 3-{4—[7-(4—cyanotrifluoromethylphenyl)-8—ox0thioxo-5,7-diaza—spiro[3.4]octyl]- phenyl}-pr0pionic acid, 41c (41-3) [RD132] A mixture of 41b (0.487 g, 1 mmol) in methanol (10 ml) and solution of sodium hydroxide (10 m1, 2M) was stirred at room temperature for 5 hours. Methanol was evaporated. The e was adjusted to pH = 5 by HCl aq. (2M) and then extracted with ethyl e (3 x50 ml). The organic layer was dried over MgSO4 and concentrated to dryness to obtain 41c (0.472 g, 0.99 mmol, 99%). 41-4) 7-(4-cyan0—3-triflu0romethylphenyl)-8—ox0thioxo-5,7—diaza—spiro[3.4]0ct—5—yl]~ phenyl}-propionamide, 41d (41-4) ] To a suspension of 41c (0.094 g, 0.2 mmol) in THF (10 ml) at -5°C was added thionyl chloride (0.019 ml, 0.26 mmol). The medium was stirred at —5°C for one hour. Then ammonia was bubbled into the mixture.
The excess of ammonia was condensed by reflux condenser at -78°C for 30 minutes and then was allowed to evaporate. The medium was filtered. The filtrate was concentrated and chromatographed (dichloromethane:acetone, 70:30) to yield 41d (0.09 g, 0.19 mmol, 95%) as an off-white powder.
F3C N N 0% 1H N1V£R(acetone-d6, 400 MHz) a 152-160 (m, 1H), 2.01-2.09 (m, 1H), 2.49-2.58 (m, 4H), 2.61-2.67 (m, 2H), 2.98 (t, J= 7.5 Hz, 2H), 6.20 (bs, 1H), 6.78 (bs, 1H), 7.31 (d, J: 8.2 Hz, 2H), 7.44 (d, J= 8.2 Hz, 2H), 8.03 (dd, J, = 8.3 Hz, J2 = 1.8 Hz, 1H), 8.15 (d, J= 1.8 Hz, 1H), 8.22 (d, J: 8.3 Hz, 1H); 130 NMR (acetone-d6, 100 MHZ) 5 13.4, 30.7, 31.2, 36.4, 67.5, 109.0, 114.8, 122.5 (q, J: 271.5 Hz), 127.5 (q, J= 4.7 Hz), 129.5, 130.0, 131.8 (q, J= 32.5 Hz), 133.3, 133.8, 135.6, 138.4, 143.2, 171.6, 174.9, 178.0. 41—5) 3-{4—[7-(4-Cyanotriflu0romethylphenyl)oxo-6—thiox0—5,7—diaza—spiro[3.4]oct—5-yl]- phenyl}~N—methyl—propionamide, 419. (41-5) [RD134] To a suspension of 41c (0.094 g, 0.2 mmol) in THF (10 m1) at -5°C was added thionyl chloride (0.019 ml, 0.26 mmol). The medium was d at ~5°C for one hour. Then methylamine was bubbled into the mixture at -5°C for 30 minutes. The medium was filtered. The filtrate was concentrated and tographed (dichloromethane:acetone, 75:25) to yield 41e (0.092 g, 0.19 mmol, 95%) as an off- white powder.
S N/ JL H F3C N N 1H NMR (acetone-d6, 400 MHz) 5 1.51-1.60 (m, 1H), .11 (m, 1H), 2.48-2.58 (m, 4H), 2.61—2.67 (m, 2H), 2.77 (d, J= 4.6 Hz, 3H), 2.98 (t, J: 7.5 Hz, 2H), 7.03 (bs, NH), 7.33 (d, J: 8.2 Hz, 2H), 7.42 (d, J: 8.2 Hz, 2H), 8.01 (dd, J, = 8.3 Hz, J2 = 1.8 Hz, 1H), 8.13 (d, J: 1.8 Hz, 1H), 8.20 (d, J= 8.3 Hz, 1H); 13’0 NMR (acetone-d6, 100 MHz) 5 13.4, 25.3, 30.0, 31.2, 37.0, 67.6, 109.0, 114.8, 122.5 (q, J = 271.5 Hz), 127.4 (q, J= 4.7 Hz), 129.5, 130.0, 131.9 (q, J: 32.5 Hz), 133.3, 133.8, 135.6, 138.4, 143.1, 171.7,175.0,178.0. 41-6) 3-{4—[7-(4-cyanotrifluoromethylphenyl)oxothioxo-5,7—diaza—spiro[3.4]octyl]— phenyl}-N—(2-hydroxyethyl)-propionamide, 41f (41-6) [RD135] To a suspension of 41c (0.094 g, 0.2 mmol) in THF (10 ml) at -5°C was added thionyl chloride (0.019 ml, 0.26 mmol). The medium was d at —5°C for one hour. Then 2-aminoethanol (0.0183 g, 0.03 mmol) was added into the mixture at -5°C. After stirring of an additional 30 minutes, the medium was filtered.
The filtrate was concentrated and chromatographed (dichloromethanezacetone, 50:50) to yield 41f (0.093 g, 0.18 mmol, 90%) as an off-white powder.
)L H F30 N N 1H NMR ne~d6, 400 MHz) 5 151—161 (m, 1H), 2.01-2.11 (m, 1H), 2.49-2.66 (m, 6H), 2.99 (t, J= = 5.6 Hz, 2H), 3.87 (bs, 7.5 Hz, 2H), 3.27 (dd, J, = 11.2 Hz, J, = 5.6 Hz, 3H), 3.51 (dd, J, = 11.2 Hz, J, = 8.3 Hz, J, = 1.8 Hz, OH), 7.20 (bs, NH), 7.33 (d, J: 8.2 Hz, 2H), 7.43 (d, J= 8.2 Hz, 2H), 8.02 (dd, J, 100 MHz) 5 13.4, 31.0, 1H), 8.14 (d, J = 1.8 Hz, 1H), 8.22 (d, J: 8.3 Hz, 1H); 13C NMR (acetone-d6, 31.2, 37.1, 42.0, 61.2, 67.6, 109.0, 114.8, 122.5 (q, J= 271.5 Hz), 127.4 (q, J = 4.7 Hz), 129.6, 130.0, 131.9 (q,J= 32.5 Hz), 133.3, 133.8,135.6,138.4,143.0,171.9,175.0,178.1. 42-1) 4—[4—(1-Cyanocyclobutylamino)-phenyl]-butyric acid, 42a Trimethylsilyl cyanide (0.50 g, 5 mmol) was added dropwise to a mixture of 4—(4~aminophenyl)—butyric acid (0.537 g, 3 mmol), cyclobutanone (0.35 g, 5 mmol) and sodium sulfate (1 g) in 1,4-dioxane (10 ml).
The e was stirred for 15 hours. After filtration to ate sodium sulfate, the medium was concentrated under vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethane:acetone, 50:50) to yield 42a (0.665 g, 2.58 mmol, 86%) as a yellowish solid. 42—2) 4-{4—[7—(4-cyano—3-trifluoromethylphenyl)—8—oxo-6—thioxo-5,7—diazaspiro[3.4]oct—S-yll— phenyl}-butyric acid methyl ester, 42b [RD129] stirred at room A mixture of 1a (0.547 g, 2.4 mmol) and 42a (0.342 g, 1.5 mmol) in dry DMF (2 ml) was and HCl aq. (5 ml, 2M). The temperature for 15 hours. To this mixture were added ol (10 ml) second e was refluxed for 3 h. After being cooled to room temperature, the reaction mixture was dried poured into cold water (10 ml) and extracted with ethyl acetate (3 X 30 ml). The organic layer was to yield 42b (0.594 over MgSO4, concentrated and chromatographed (dichloromethane) g, 1.18 mmol, 79%) as a white powder.
F30 N/U\N 1H NMR (CDC13, 400 MHz) 6 1.60-1.70 (m, 1H), 1.98-2.07 (m, 2H), 2.14-2.26 (m, 1H), 2.40 (t, J: 7.4 8.2 Hz, Hz, 2H), 2.52-2.60 (m, 2H), 2.62-2.68 (m, 2H), 2.74 (t, J= 7.4 Hz, 2H), 3.68 (s, 3H), 7.22 (d, J: 2H), 7.38 (d, J= 8.2 Hz, 2H), 7.86 (dd, J, = 8.3 Hz, J, = 1.8 Hz, 1H), 7.95 (d, J: 8.3 Hz, 1H), 7.98 (d, J 121.9 = 1.8 Hz, 1H); 130 NMR (CD013, 100 MHz) 6 13.7, 26.1, 31.4, 33.5, 34.8, 51.7, 67.5, 109.9, 114.9, (q, J: 272.7 Hz), 127.1 (q, J= 4.7 Hz), 129.7, 130.1, 132.3, 133.0, 133.3 (q, J: 33.2 Hz), 135.2, 137.2, 143.5, 173.8, 175.0, 179.9. 42—3) 4—{4—[7-(4-cyan0trifluor0methylphenyl)oxo—6-thioxo-5,7-diaza-spiro[3.4]oct—S-yl]- phenyl}-butyrie acid, 42c [RD141] A mixture of 42b (0.501 g, 1 mmol) in methanol (10 ml) and solution of sodium hydroxide (10 m1, 2M) was stirred at room ature for 5 hours. The methanol was evaporated. The residue was adjusted to pH = 5 by HG] aq. (2M) and then, the medium was extracted with ethyl acetate (3 X50 ml). The organic layer was dried over MgSO4 and concentrated to dryness to obtain 42c (0.482 g, 0.99 mmol, 99%), the structure of which is illustrated in a 5.
F3C N N Formula 5 1H NMR (CD013, 400 MHz) 5 1.60-1.70 (m, 1H), .07 (m, 2H), 2.14—2.26 (m, 1H), 2.45 (t, J: 7.3 Hz, 2H), 2.51—2.59 (m, 2H), 2.62-2.68 (m, 2H), 2.77 (t, J= 7.3 Hz, 2H), 7.23 (d, J: 8.1 Hz, 2H), 7.40 (d, J= 8.1 Hz, 2H), 7.85 (dd, J: 8.3, 1.8 Hz, 1H), 7.95 (d, J= 8.3 Hz, 1H), 7.97 (d, J: 1.8 Hz, 1H); 13(3 NMR (CDC13, 100 MHz) 5 13.7, 25.9, 31.4, 33.4, 34.7, 67.5, 109.9, 114.9, 121.9 (q, J: 272.6 Hz), 127.1 (q, J= 4.7 Hz), 129.8, 130.1, 132.3, 133.0, 133.4 (q, J= 33.1 Hz), 135.2, 137.2, 143.3, 174.9, 178.9, 179.9. 42-4) 4—{4—[7-(4-Cyano-3—triflu0r0methylphenyl)—8—oxothioxo—5,7-diaza—spir0[3.4]0ct-5—yl]- phenyl}-butyramide, 42d ] To a suspension of42c (0.097 g, 0.2 mmol) in TI-lIF (10 ml) at -5°C was added thionyl chloride (0.019 ml, 0.26 mmol). The medium was stirred at -5°C for one hour. Then ammonia was bubbled into the mixture.
The excess of ammonia was condensed by reflux condenser at —78°C for 30 minutes and then was allowed to evaporate. The medium was filtered. The e was concentrated and chromatographed (dichloromethane:acetone, 70:30) to yield 42d (0.093 g, 0.19 mmol, 95%) as an off—white powder.
F30 NAN O 1H NMR (CDC13, 400 MHz) 5 1.57—1.70 (m, 1H), 2.00—2.08 (m, 2H), 2.16-2.25 (m, 1H), 2.31 (t, J = 7.3 Hz, 2H), 2.51—2.59 (m, 2H), 2.62268 (m, 2H), 2.77 (t, J = 7.3 Hz, 2H), 5.56 (bs, 1H), 5.65 (bs, 1H), 7.22 (d, J: 8.2 Hz, 2H), 7.39 (d, J: 8.2 Hz, 2H), 7.85 (dd, J1 = 8.3 Hz, J; = 1.8 Hz, 1H), 7.95 (d, J: 8.3 Hz, 1H), 7.97 (d, J = 1.8 Hz, 1H); 13C NMR (CDC13, 100 MHz) 5 13.7, 26.5, 31.4, 34.8, 35.0, 67.5, 109.9, 114.9, 121.9 (q, .1: 272.7 Hz), 127.1 (q, J= 4.7 Hz), 129.8, 130.1, 132.2, 133.0, 133.3 (q, J= 33.2 Hz), 135.2, 137.2, 143.5, 173.8, 174.9, 179.9. 42-5) 4—{4-[7-(4-Cyanotrifluoromethylphenyl)-8—oxothioxo-5,7-diaza-spiro[3.4]oct-S-yl]- phenyl}—N—methyl~butyramide, 42e [RD131] To a suspension of42c (0.097 g, 0.2 mmol) in THF (10 ml) at —5°C was added thionyl chloride (0.019 ml, 0.26 mmol). The medium was stirred at -5°C for one hour. Then methylamine was bubbled into the mixture at -5°C for 30 minutes. The medium was filtered. The e was concentrated and chromatographed (dichloromethanezacetone, 75:25) to yield 42e (0.095 g, 0.19 mmol, 95%) as an off- White powder.
NOD ‘ 3 wk NJLN 0 1H NMR (CD013, 400 MHz) 5 1.52-1.64 (m, 1H), 1.94—2.01 (m, 2H), 2.10—2.17 (m, 1H), 2.20 (t, J: 7.3 Hz, 2H), 2.46—2.62 (m, 4H), 2.69 (t, J: 7.3 Hz, 2H), 2.73 (d, J= 4.7 Hz, 3H), 6.09 (bs, 1H), 7.16 (d, J: 8.2 Hz, 2H), 7.33 (d, J: 8.2 Hz, 2H), 7.82 (dd, J, = 8.3 Hz, .12 = 1.8 Hz, 1H), 7.91 (d, J= 8.3 Hz, 1H), 7.94 (d, J: 1.8 Hz, 1H); 13C NMR (CD013, 100 MHz) 5 13.7, 26.2, 26.8, 31.4, 35.0, 35.7, 67.5, 109.7, 114.9, 121.9 (q, J = 272.7 Hz), 127.1 (q, J= 4.7 Hz), 129.7, 130.0, 132.3, 133.8, 133.3 (q, J: 33.2 Hz), 135.2, 137.3, 143.7, 173.3, 174.9, 179.8. 42-6) N-(4-{4—[7—(4-cyanotrifluoromethylphenyl)0x0—6-thioxo-5,7-diaza~spiro[3.4]oct yl]phenyl}-butanoyl)—methanesulf0namide, 42f [RD157] A mixture of 4~{4—[7—(4—cyano—3-trifluoromethy1phenyl)—8—oxo—6-thioxo-5,7-diaza- spiro[3.4]oct—5-y1]pheny1}butanoic acid (42c) (0.049 g, 0.1 mmol), trichlorobenzoyl chloride (0.244 g, 1 mmol), 4—dimethylaminopyridine (0.122 g, 1 rnmol) and esulfonarrfide (0.019 g, 0.2 mmol) in dichloromethane was stirred at room temperature for 20 hours. The mixture was trated and chromatographed (dichloromethane:acetone, 80:20) to yield N—(4-{4—[7-(4-cyano—3- trifluoromethylphenyl)-8—oxo—6—thioxo—5,7-diaza—spiro[3 .4]oct-5~y1]pheny1} ~butanoyl)- methanesulfonamide (42f) [RD157] (0.053 g, 0.094 mmol, 94%), the structure of which is rated in Formula 8, as a white powder.
F3C N N 0% /NH Formula 8 1H NMR (acetone-d6, 400 MHz) 5 1.51-160 (m, 1H), 1.96-2.11 (m, 3H), 2.49 (t, J= 7.3 Hz, 2H), 2.51- 2.57 (m, 2H), 2.61-2.67 (m, 2H), 2.75 (t, J: 7.5 Hz, 2H), 2.94 (bs, 1H), 3.24 (s, 3H), 7.33 (d, J= 8.3 Hz, 2H), 7.43 (d, J= 8.2 Hz, 2H), 8.02 (dd, J= 8.3, 1.6 Hz, 1H), 8.02 (d, J= 1.6 Hz, 1H), 8.21 (d, J= 8.3 Hz, 1H); 13C NMR (acetone—d6, 100 MHz) 5 13.4, 25.8, 31.2, 34.3, 35.2, 40.6, 67.6, 109.0, 114.8, 122.5 (q,J = 271.5 Hz), 127.5 (q, J: 4.9 Hz), 129.6, 130.1, 131.9 (q, J = 33.6 Hz), 133.3, 133.9, 135.6, 138.4, 143.1,171.9,175.0,180.5. 42-7) N—methyl—4-{4-[7-(4—cyano—3~triflu0romethylphenyl)—6,8-dioxo-5,7-diazaspiro[3.4]oct~5—yl]— phenyl}butyramide, 42g ] en peroxide (30%, 0.4) was added dropwise to a solution ofN—methy1-4— {4—[7—(4- Cyano-3~trifluoromethylphenyl)oxothioxo—5,7—diaza-spiro[3.4]oct—S—yl]phenyl}butanamide (42c) (0.032 g, 0.064 mmol) in l acetic acid (0.5 ml). The mixture was stirred at room ature for 5 hours and then washed with water and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, concentrated and chromatographed (dichloromcthane:acetone, 80:20) to yield N— methyl{4-[7—(4—cyano—3-t1ifluoromethylphenyl)-6,8-dioxo-5,7-diazaspiro[3.4]octyl]— phenyl}butyramide (42g) [RD158] (0.029 g, 0.06 mmol, 94%), the structure of which is illustrated in Formula 9, as a white powder.
F3C NJLN Formula 9 1H NMR (CDC13, 400 MHz) 5 1.63-1.71 (m, 1H), 1.93-2.04 (m, 2H), 2.18-2.27 (m, 3H), 2.44—2.53 (m, 2H), 2.57-2.65 (m, 2H), 2.70 (1, J: 7.3 Hz, 2H), 2.79 (d, J= 4.8 Hz, 3H), 5.79 (bs, 1H), 7.21 (d, J= 8.2 Hz, 2H), 7.34 (d, J= 8.2 Hz, 2H), 7.92 (d, J: 8.4 Hz, 1H), 8.03 (dd, J= 8.3, 1.8 Hz, 1H), 8.18 (d, J= 1.8 Hz, 1H).
Example 43 _5g_ 43-1) 4—(4-aminophenyl)-piperazine-l-carb0xylic acid tert~butyl ester, acid tert-butyl ester (0.67 g, 3.6 A mixture of 4-iodoaniline (0.654 g, 3 mmol), piperazine-l-carboxylic mmol), potassium phosphate (1.272 and copper iodide (0.03 g, 6 mmol), ethylene glycol (0.33 ml) g, heated to 80°C for 30 0.15 mmol) in 2-propanol (3 ml) Was placed under argon in a sealed—tube and and extracted hours. After being cooled to room temperature, the medium was washed with water (50 ml) with ethyl acetate (100 ml). The organic layer was dried over MgSO4, trated and tographed (dichloromethane:acetone, 70:30) to yield 43a (0.36 g, 1.3 mmol, 43%) as a yellow powder. 43-2) 4—[4-(1-cyanocyclobutylamino)phenyl]—piperazine-l-carboxylic acid tert-butyl ester, 1.5 mmol), hylsilyl cyanide (0.3 of 43a (0.415 g, 3 mmol) was added dropwise to a mixture g, cyclobutanone (0.21 g, 3 mmol) and sodium sulfate (1 g) in romethane (5 ml). The mixture was under stirred for 15 hours. After filtration to eliminate sodium sulfate, the medium was concentrated vacuum to obtain a brown liquid which was subjected to chromatography (dichloromethanezacetone, 75:25) to yield 43b (0.448 g, 1.26 mmol, 84%) as a yellow solid. 43-3) 7-(4-cyanotrifluoromethylphenyl)—8-imin0-6—thi0xo-5,7-diazaspiro[3.4]oct—5—yl]- }-piperazine—1-carb0xylic acid tert-butyl ester, 43c [RD139] and 4-{4-[7—(4—cyan0trifluoromethylphenyl)(4-cyanotrifluoromethyl— phenylthiocarbamoylimino)thioxo-5,7—diazaspiro[3.4]octyl]—p11eny1}~piperazine—1—carboxylic acid tert—butyl ester, 43d [RD140] A mixture of 121 (0.228 g, 1 mmol) and 43b (0.472 g, 0.63 mmol) in dry D1\/[F (1 ml) was stirred at room temperature for 20 hours. The e was concentrated and chromatographed (dichloromethane:acetone, 90:10) to yield 43c (0.173 g, 0.296 mmol, 47%), the structure of which is illustrated in Formula 10, as a off-White powder and 43d (0.169 g, 0.21 mmol, 33%), the structure ofwhich is illustrated in Formula 11, as a yellow powder.
NC N(3,306 .3.>ei.i.er Formula 10 1H NMR (CDClg, 400 Min) 5 1.48, (s, 9H), 1.57-1.67 (m, 1H), 2.01—2.09 (m, 1H), 2.59—2.70 (m, 4H), 3.25 (t, J= 5.1 Hz, 4H), 3.59 (t, J= 4.9 Hz, 4H), 7.02 (d, J: 8.9 Hz, 2H), 7.20 (d, J= 8.9 Hz, 2H), 7.81 (d, J= 7.4 Hz, 1H), 7.93 (s, 1H), 7.97 (d, J: 8.1 Hz, 1H).
NC ©N’Boc W080 13:3 Formula 11 1H NMR (CDC13, 400 MHz) 5 1.48, (s, 9H), 1.57-1.64 (m, 1H), 2.01—2.10 (m, 1H), 2.60-2.89 (m, 4H), 3.24 (t, J: 5.1 Hz, 4H), 3.57 (1,1: 4.9 Hz, 4H), 7.02 (d, J= 8.9 Hz, 2H), 7.20 (d, J= 8.9 Hz, 2H), 7.54- 7.98 (m, 4H), 7.97 (d, J: 8.1 Hz, 1H). 43—4) 4-[8-0xo-5—(4—piperazin—1-yl-phenyl)-6—thioxo-5,7~diazaspiro[3.4]oct-7—yl] trifluoromethylbenzonitrile, 43c ] A mixture of 43c (0.117 g, 0.2 mmol), methanol (5 ml) and HCl aq. (2 ml, 2M) was refluxed for 2 hours.
After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (3 X 30 ml). The organic layer was dried over MgSO4, concentrated and chromatographcd (dichloromethane:acetone, 50:50 and then methanolzacetone, 50:50) to yield 43c (0.089 g, 0.184 mmol, 92%) as a White . .j:r>.1,<1" 04b IH NMR (CD30D, 400 MHz) 8 1.51-1.61 (m, 1H), 2.01-2.11 (m, 1H), 2.48259 (m, 4H), .97 (m, 4H), 3.25—3.30 (m, 4H), 7.03 (d, J: 8.9 Hz, 2H), 7.16 (d, J: 8.9 Hz, 2H), 7.86 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 8.02 (d, J: 8.3 Hz, 1H), 8.07 (d, J= 1.8 Hz, 1H); 13(3 NMR (CDgOD, 100 MHz) 8 13.2, 30.9, 45.1, 48.9, 67.5, 108.9, 114.8, 115.9, 122.3 (q, J= 271.7 Hz), 126.4, 127.3 (q, J: 4.7 Hz), 130.4, 132.2 (q,J= 33.2 Hz), 133.0, 135.4, 138.1, 152.1,175.4,180.4. —60- 43-5) 4-{5-[4-(4—methanesulfonylpiperazin-l-yl)—phenyl]-8—0x0thioxo-5,7-diazaspiro[3.4]oct—7- yl}-2—trifluoromethylbenzonitrile, 43f [RD138] A mixture of 43e (0.049g, 0.1 mmol), methanesulfonyl chloride (0.012 ml, 0.15 mmol) and triethylamine (0.15 ml) in dichloromethane was stirred at room temperature for 5 hours. The medium was filtered. The filtrate was concentrated and chromatographed (dichloromethane: acetone, 95:5) to yield 43f (0.042 g, 0.074 mmol, 74%) as a White powder.
\\ / NC QN,S W040 1H NMR (CDC13, 400 MHz) 8 1.62—1.70 (m, 1H), 2.14—2.23 (m, 1H), 2.51-2.58 (m, 2H), 2.61-2.67 (m, 2H), 2.84 (s, 3H), 3.39 (s, 8H), 7.05 (d, J= 8.9 Hz, 2H), 7.20 (d, J= 8.9 Hz, 2H), 7.84 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 7.95 (d, J: 8.3 Hz, 1H), 7.97 (d, J= 1.8 Hz, 1H); 130 NMR (CDC13, 100 MHz) 5 13.7, 31.4, 34.6, 45.7, 48.4, 67.5, 109.8, 114.9, 117.0, 121.9 (q, J= 272.7 Hz), 126.8, 127.1 (q, .1: 4.7 Hz), 1307,1323, 133.4 (q,J= 33.2 Hz), 135.2, 137.3, 151.1, 175.0, 180.2.
Example 44 44-1) 3-{4-[7-(4-Cyanotrifluor0methyl-phenyl)—8-oxothioxo-5,7-diaza-spir0[3.4]octyl]- phenyl}—acrylic acid, 44a A mixture of 39a (0.025 g, 0.05 mmol) in methanol (2 m1) and solution of sodium ide (2 ml, 2M) was stirred at room temperature for 5 hours. ol was evaporated. The residue was adjusted to pH = by HCl aq. (2M) and then extracted with ethyl acetate (3 X50 ml). The organic layer was dried over mm. and concentrated to s to obtain 44a (0.02 g, 0.042 mmol, 85%). 44—2) 3-{4—[7-(4-Cyan0trifluoromethyl—phenyl)-8—oxothioxo-5,7—diaza-spiro[3.4]0ct-5—yl]- phenyl}-acrylamide, 44b [RD119] To a suspension of 44b (0.02 g, 0.042 mmol) in THF (1 m1) at -5°C was added thionyl chloride (0.007 ml, 0.1 mmol). The medium was stirred at -5°C for one hour. Then a was bubbled into the mixture. The excess of ammonia was condensed by reflux condenser at -78°C for 30 minutes and then was d to evaporate. The medium was filtered. The filtrate was concentrated and chromatographed (dichloromethane:acetone, 70:30) to yield 44b (0.014 g, 0.03 mmol, 71%) as an off-white powder.
WO 24118 F3C N N 1H NMR (DMSO-d6, 400 MHz) 5 1.49—1.52 (m, 1H), 1.88-1.93 (m, 1H), 2.37—2.46 (m, 2H), 2.57—2.62 (m, 2H), 6.66 (d, J: 15.9 Hz, 1H), 7.16 (bs, 1H), 7.43 (d, J= 8.3 Hz, 2H), 7.47 (d, J= 15.9 Hz, 1H), 7.58 (bs, 1H), 8.03 (dd, J, = 8.3 Hz, J; = 1.8 Hz, 1H), 8.23 (d, J: 1.8 Hz, 1H), 8.34 (d, J: 8.3 Hz, 1H).
Example 45 [RD145] ] Trimethylsilyl cyanide (0.4 g, 4 mmol) was added dropwise to a mixture of 4- methanesulfonylphenylamine hydrochloride (0.415 g, 2 mmol), cyclobutanone (0.28 g, 4 mmol) and sodium sulfate (1 g) in DMF (3 ml). The mixture was stirred for 15 hours at 120 0C. After filtration to ‘ remove the sodium sulfate, the filtrate was washed with brine and extracted with ethyl acetate. The organic layer was concentrated and chromatographed (dichloromethanezacetone, 90:10) to yield 1-(4- methanesulfonylphenylamino)cyclobutanecarbonitn'le (45a) (0.116 g, 0.44 mmol, 22%) as a yellowish solid. 4-methanesulfonylphenylamine g, 1.17 mmol, 59%) was also recovered.
A e of hiocyanato-2—trifluoromethylbenzonihile (1a) (0.0.141 g, 0.62 mmol) and 1-(4-methanesulfonylphenylamino)cyclobutanecarbonitrile (45a) (0.11 g, 0.42 mmol) in dry DMF (2 ml) was stirred at room temperature for 3 days. To this mixture were added methanol (10 m1) and aq. 2N HCl (5 ml). The second mixture was d for 3 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (3 X 30 ml). organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone, 97:3) to yield 4-[5-(4-methanesulfonylphenyl)—8-oxoth1'oxo-5,7—diazaspiro[3.4]oct-7~yl]—2- trifluoromethylbenzonitrile (45b) [RD145] (0.031 g, 0.065 mmol, 15%), the structure of which is illustrated in Formula 14, as a white powder.
I) ft 0 "08 F30 N N (3/75 Formula 14 1H NMR (CDC13, 400 MHz) 5 1.63-1.72 (m, 1H), 2.21-2.28 (m, 1H), 2.46-2.54 (m, 2H), 2.68.2.74 (1n, —62- 2H), 3.16 (s, 3H), 7.57 (d, J: 8.3 Hz, 2H), 7.85 (dd, J: 8.3, 1.8 Hz, 1H), 7.97 (d, J= 1.8 Hz, 1H), 7.98 (d, J= 8.3 Hz, 1H), 8.17 (d, J= 8.3 Hz, 2H); 13C NMR (CD013, 100 MHz) 5 13.6, 31.8, 44.4, 67.5, 110.2, 114.8, 122.4 (q, J= 271.5 Hz), 127.0 (q, J: 4.9 Hz), 129.4, 131.4, 132.1, 133.6 (q, J= 33.3 Hz), 135.3, 136.8, 140.3, 141.8, 174.4, 179.9.
Example 46 ] Trimethylsilyl cyanide (0.69 g, 7 mmol) was added dropwise to a mixture of 4— aminophenylacetic acid (0.755 g, 5 mmol) and cyclobutanone (0.49 g, 7 mrnol) in dioxane (20 ml). The mixture was stirred for 8 hours at 80 °C. The mixture was concentrated and chromatographed (dichloromethane:acetone, 60:40) to yield [4-(1-cyanocyclobutylamino)phenyl]acetic acid (46a) (1.138 g, 4.95 mmol, 99%) as a white solid. 46—1) RD146 A mixture of 4-isothiocyanatotr1'fluoromethylbenzonitrile (1a) (0.638 g, 2.8 mmol) and [4-(1-cyanocyclobutylamino)phenyl]acetic acid (46a) (0.46 g, 2.0 mmol) in DMF (5 ml) was stirred at room temperature for 15 hours. To this mixture were added methanol (20 ml) and aq. 2N HCl (10 ml).
The second mixture was refluxed for 1 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (3 X 50 ml). The c layer dried over MgSO4, concentrated and chromatographed (dichloromethane pure and then romethane2acetone, 95:5) to yield {4—[7—(4-cyano—3-trifluoromethylphenyl)—8—oxo-6~thioxo-5,7- diaza—spiro[3.4]oct-5—y1]pheny1}acetic acid methyl ester (46b) [RD146] (0.532 g, 1.124 mmol, 56%), the structure ofwhich is illustrated in a 15, as a white powder.
F3C N N Formula 15 1H NMR(CDC13, 400 MHz) 8 1.60-1.69 (m, 1H), .25 (m, 1H), 2.50-2.58 (m, 2H), 2.61-2.66 (m, 2H), 3.72 (bs, 5H), 7.27 (d, J= 8.3 Hz, 2H), 7.50 (d, J= 8.3 Hz, 2H), 7.84 (dd, J= 8.3, 1.8 Hz, 1H), 7.94 (d, J= 8.2 Hz, 1H), 7.97 (d, J== 1.6 Hz, 1H); 13(3 NMR (CD013, 100 MHz) 5 137,314, 44.7, 52.3, 67.4, 109.9, 114.9, 122.0 (q, J: 272.5 Hz), 127.0 (q, J= 4.9 Hz), 130.0, 131.1, 132.3, 133.0 (q, J= 33.3 Hz), 134.1, 135.2, 135.9, 137.2, 171.4, 174.9, 179.9. 46-2) RD147 A mixture of {4-[7-(4-cyano-3 -trifluoromethylphenyl)-8—oxothioxo-5,7-diaza— 3.4]oct-5—yl]phenyl}acetic acid methyl ester (46b) (0.095 g, 0.2 mmol) and a solution of sodium hydroxide (1 ml, 2M) in ol (2 ml) was stirred at room temperature for 2 hours. The methanol was evaporated. The residue was adjusted to pH 5 by aq. 2M HCl and then the mixture was extracted with ethyl acetate (3 X10 ml). The c layer was dried over MgSO4 and concentrated to dryness to obtain {4-[7-(4-cyanotrifluoromethylphenyl)—8-oxothioxo-5,7-diaza-spiro[3.4]octyl]phenyl}acetic acid (46c) [RD147] (0.087 g, 0.19 mmol, 95%), the structure of which is illustrated in Formula 16.
NOD f1 mw0 F30 N N Formula 16 1H NMR , 400 MHz) 6 .69 (m, 1H), 2.15—2.25 (m, 1H), 2.50-2.64 (m, 4H), 3.73 (s, 2H), 7.26 (d, J: 8.3 Hz, 2H), 7.51 (d, J= 8.3 Hz, 2H), 7.84 (dd, J: 8.3, 1.8 Hz, 1H), 7.95 (d, J= 8.2 Hz, 1H), 7.96 (d, J= 1.6 Hz, 1H); 13C NMR (CDC13, 100 MHz) 5 13.7, 31.4, 40.2, 40.8, 67.4, 109.9, 114.9, 122.0 (q, J: 272.5 Hz), 127.0 (q, .1: 4.9 Hz), 129.9, 131.2, 132.3, 133.3 (q, .1: 33.3 Hz), 133.9, 135.2, 136.1, 137.2, 174.1, 174.9, 179.9. 46-3) RD148 Thionyl chloride (0.238 g, 2 mmol) was added dropwise to a mixture of {4-[7-(4-cyano- 3-trifluoromethylphenyl)—8—oxothioxo-5,7-diaza-spiro[3.4]octyl]phenyl}acetic acid (460) (0.357 g, 0.777 mmol) in TI-[F (5 ml) cooled to 0 °C. The mixture was stirred for 1 hour at room temperature and then ammonia was bubbled into the mixture. The excess ammonia was condensed by a reflux condenser at ~78 0C for 30 minutes and then was d to evaporate. The medium was filtered and the filtrate was concentrated and chromatographed (dichloromethane:acetone, 70:30) to yield 2- {4—[7-(4-cyano-3— trifluoromethylphenyl)oxothioxo—5,7-diaza-spiro[3.4]octy1]phenyl}acetamide (46d) [RD148] (0.345 g, 0.75 mmol, 97%), the structure of which is illustrated in Formula 17, as an off-white powder.
NC:©\ s mNHZ0 F3C NAN Kb Formula 17 1H NMR (CD013, 400 MHz) 3 1.62—1.66 (m, 1H), 2.18.2.23 (m, 1H), 2.49—2.55 (m, 2H), 2.61-2.66 (m, 2H), 3.63 (s, 2H), 5.91 (bs, 1H), 6.10 (bs, 1H), 7.27 (d, J= 8.1 Hz, 2H), 7.50 (d, J: 8.1 Hz, 2H), 7.83 (dd, J= 8.3, 1.8 Hz, 1H), 7.95 (d, J: 8.2 Hz, 1H), 7.96 (d, J= 1.6 Hz, 1H); 130 NMR (CD013, 100 MHz) 13.7, 31.5, 42.5, 67.4, 109.9, 114.9, 121.9 (q, J: 272.4 Hz), 127.1 (q, J= 4.9 Hz), 130.2, 131.1, 132.2, 133.3 (q,J= 33.3 Hz), 134.1, 135.2, 136.8, 137.2, 172.8, 174.8, 180.0. 46-4) RD149 Thionyl chloride (0.238 g, 2 mmol) was added dropwise to a mixture of {4—[7-(4-cyano- uoromethylphenyl)—8-oxo-6—thioxo-5,7~diaza-spiro[3.4]oct—5—yl]phenyl}acetic acid (460) (0.357 g, 0.777 mmol) in THF (5 ml) cooled to 0 °C. The mixture was stirred for 1 hour at room temperature and then amine (0.5 ml) was added into the mixture. The mixture was stirred for an additional 2 hours.
The medium was filtered and the filtrate was concentrated and chromatographed (dichloromethanezacetone, 80:20) to yield N-methy1—2-{4-[7-(4-cyanotriflu0romethylphenyl)~8~0xo-6— -5,7—diaza-spiro[3.4]octyl]phenyl}acetamide (46c) [RD149] (0.348 g, 0.738 mmol, 95%), the structure of which is illustrated in a 18, as an off—white powder.
F3C NAN O Formula 18 1H NMR(CDC13, 400 MHz) 6 1.61-1.70 (m, 1H), 2.17-2.31 (m, 1H), 2.50-2.56 (m, 2H), 2.61—2.68 2H), 2.82 (d, J= 4.8 Hz, 3H), 3.62 (s, 2H), 7.27 (d, J= 8.3 Hz, 2H), 7.50 (d, J: 8.3 Hz, 2H), 7.84 (dd, J = 8.3, 1.8 Hz, 1H), 7.95 (d, J = 8.2 Hz, 1H), 7.96 (d, J= 1.6 Hz, 1H); 130 NMR (CDC13, 100 MHz) 6 13.7, 26.6, 31.5, 43.1, 67.4, 110.0, 114.9, 122.0 (q, f: 272.5 Hz), 127.1 (q, J= 4.9 Hz), 130.2, 131.0, 132.2, 133.3 (q,J= 33.3 Hz), 134.1, 135.2, 137.0, 137.1, 170.1, 174.8, 179.9.
Example 47 N-{4—[3-(4—cyan0triflu0romethylphenyl)—5,5-dimethyl~4-oxothiox0-imidazolidin—1— yl]phenyl}methanesulfonamide (47a) [RDISO] ] A mixture of 4-[3—(4~aminopheny1)-4,4—dimethyl—5-oxothioxoimidazolidiny1]—2- trifluoromethylbenzonitrile (2d) (0.02 g, 0.05 mmol), esulfonyl chloride (0.009g, 0.075 mmol) and pyridine (0.006 g, 0.075 mmol) in dichloromethane (1 ml) was d at room temperature for 15 hours. The medium was washed with water (2 ml) and extracted with ethyl e (5 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (I-IPLC, alumina column) to yield N- {4- [3~(4-cyano-3—trifluoromethy1pheny1)—5,5-dimethyloxothioxo—imidazolidin—1— yl]pheny1}methanesulfonamide (47a) [RD150] (0.009 g, 0.018 mmol, 36%), the structure of which is illustrated in Formula 2, as a white powder.
NC N D A 004»:Os \ / F3C N N Formula 2 1H NMR (DMSO-d6, 400 MHZ) 5 1.46 (s, 6H), 3.07 (s, 3H), 7.32 (s, 4H), 8.05 (dd, J= 8.2, 1.2 Hz, 1H), 8.26 (d, J: 1.2 Hz, 1H), 8.35 (d, J: 8.2 Hz, 1H), 10.08 (bs, 111); 13c NMR ds, 100 MHz) 5 23.3, 40.4, 66.7, 109.0, 115.5, 119.9, 122.6 (q, J= 272.2 Hz), 128.5 (q, J: 4.7 Hz), 130.8, 131.2, 131.5 (q,J=32.3 Hz), 134.5, 136.6, 138.6, 139.5, 175.4, 180.4.
Example 48 N-{4—[3-(4-cyan0trif1uoromethylphenyl)—5,5—dimethyloxo-2—thioxo-imidazolidin-1— yl]phenyl}acetamide, 483, [RD151] A mixture of 4-[3~(4-aminophenyl)-4,4—dimethy1—5-oxo-2—thioxoimidazolidin-1—y1]-2— trifluoromethylbenzonitrile (2d) [RD9] (0.008 g, 0.02 mmol), acetyl chloride (00045;, 0.03 mmol) and triethylamine (0.003 g, 0.03 mmol) in dichloromethane (1 ml) was stirred at 0 °C for 2 hours. The mixture was concentrated and chromatographed oromethane:acetone, 90:10) to yield N-{4—[3-(4- cyano-3—trifluoromethylphenyl)-5,5-dimethyloxo—2-thi0xo-imidazolidin—1-yl]pheny1}acetamide, 48a, [RD151] (0.007 g, 0.016 mmol, 80%), the structure of which is illustrated in Formula 3, as a white powder. £611,110")? Formula 3 1H NMR (CDC13, 400 MHz) 5 1.58 (s, 6H), 2.21 (s, 3H), 7.24 (d, J= 8.6 Hz, 2H), 7.48 (bs, 1H), 7.69 (d, J= 8.6 Hz, 2H), 7.83 (dd, J= 8.2, 1.9 Hz, 1H), 7.96 (d, J= 1.2 Hz, 1H), 7.97 (d, J: 8.2 Hz, 1H); 130 NMR (CDCI3, 100 MHz) 5 23.6, 53.4, 66.4, 110.0, 114.8, 120.7, 122.6 (q, J: 272.2 Hz), 127.1 (q, J: 4.7 Hz), 129.1, 130.2, 132.2, 133.5 (q,J= 32.3 Hz), 135.2, 137.1, 139.2, 168.1, 175.0, 180.0.
Example 49 Concentrated sulfuric acid was slowly added to a mixture of 4-aminobenzoic acid (4 29.2 mmol) in methanol cooled to 0 °C. After the addition, the mixture was d at room ature for 5 hours. The mixture was washed with a saturated solution of sodium bicarbonate and ted with ethyl acetate. The organic layer was dried over MgSO4 and concentrated under vacuum to obtain 4- aminobenzoic acid methyl ester (49a) (4.22 g, 27.9 mmol, 96%) as an off-white solid.
A mixture of4-aminobenzoic acid methyl ester (0.32 g, 2.12 mmol), acetonecyanohydrin (3ml) and sodium sulfate (1 g) was refluxed for 15 hours. After filtration to remove the sodium sulfate, the e was washed with brine and extracted with ethyl acetate. The c layer was concentrated and chromatographed (dichloromethane:acetone, 60:40) to yield 4-[(cyanodimethylmethyl)-amino]- benzoic acid methyl ester (49b) (0.398 g, 1.95 mmol, 92%) as a White solid. 49—1) RD152 A mixture of 4-isothiocyanato-2—trifluoromethylbenzonitrile (la) (0.228 g, 1 mmol) and 4-[(cyanodimethylmethyl)-an1ino]—benzoic acid methyl ester (49b) (0.14 g, 0.64 mmol) in DMF (2 ml) was heated under microwave irradiation at 60 °C for 12 hours. To this mixture were added methanol (6 ml) and aq. 2N HCl (2 ml). The second mixture was refluxed for 4 h. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (3 X 30 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane; dichloromethane:acetone, 75:25) to yield 4—[3-(4-cyano-3 -trifluoromethy1phenyl)-5,5- dimethyloxothioxo-imidazolidiny1]benzoic acid methyl ester (49c) [RD152] (0.18 g, 0.4 mmol, ~67- 63%), the structure ofwhich is illustrated in Formula 19, as a white powder. 2:20.169 Formula 19 1H NMR (CDC13, 400 MHz) 6 1.60 (s, 6H), 3.95 (s, 3H), 7.40 (d, J: 8.6 Hz, 2H), 7.84 (dd, J: 8.2, 1.9 Hz, 1H), 7.96 (d, J: 1.2 Hz, 1H), 7.97 (<1, J2 8.2 Hz, 1H), 8.21 (d, J: 8.6 Hz, 2H); 13(3 NMR (CDC13, 100 MHz) 6 23.8, 52.6, 66.6, 110.3, 114.8, 121.9 (q, J: 272.7 Hz), 127.1 (q, J: 4.7 Hz), 129.8, 131.2, 131.4, 132.2, 133.5 (q,J= 32.3 Hz), 135.3, 137.0, 139.2,165.9,174.7,179.7. 49-2) RD153 A e of 4—[3 —(4-cyanotrifluoromethy1phenyl)—5,5~dimethyloxo-2—thioxo— imidazolidin-l~y1]benzoic acid methyl ester (490) (0.02 g, 0.0435 mmol) and amine (2 ml distilled from its 40% s solution) was kept at -20 0C for 15 hours. After evaporation of the methylamine, the mixture was chromatographed (dichloromethanezacetone, 80:20) to yield 4-[3 -(4-cyano-3— tn'fluoromethylphenyl)-5,5—dimethyloxothioxo-imidazolidin—1~y1]—N—methylbenzamide (49d) HID153] (0.01 g, 0.0224, 51%), the structure of which is illustrated in Formula 20. The ester 4-[3—(4— cyanotrifluoromethylphenyl)—5,5—dimethy1-4—oxo—2—thioxo-1'm:idazolidin—1-yl]benzoic acid methyl ester (490) (0.08 g, 0.0179 mmol, 41%) was also recovered. 8 N/ )L H F3C N N Formula 20 1H NMR (Acetone-d6, 400 MHz) 5 1.60 (s, 6H), 2.90 (d, J: 4.6 Hz, 3H), 7.48 (d, J= 8.6 Hz, 2H), 7.80 (bs, 1H), 7.99 (d, J: 8.6 Hz, 2H), 8.06 (dd, J= 8.2, 1.8 Hz, 1H), 8.18 (d, J= 1.8 Hz, 1H), 8.25 (d, J= 8.2 Hz, 1H); 13C NMR (Acetone-d6, 100 MHz) 5 23.8, 54.0, 66.5, 110.3, 114.8, 121.9 (q, J= 272.7 Hz), 127.1 (‘31, J= 4.7 Hz), 128.2, 129.9, 133.5 ((1, J: 32.3 Hz), 135.7, 135.8, 138.2, 138.3, 139.2, 166.0, 174.9, 179.7.
Example 50 50-1) RD154 A mixture of 4-[8-(4—hydroxymethylphenyl)—5—oxothiox0-6—azaSpiro[3.4]octyl]-2— trifluoromethyl-benzonitrile (3613) (0.086 g, 0.2 mmol) and methanesulfonyl anhydride (0.07 g, 0.4 mmol) in romethane (1 ml) was stirred at room temperature for 15 hours. The mixture was concentrated and chromatographed (dichloromethanezacetone, 98:2) to yield Methanesulfonic acid 4-[7— (4-cyanotrifluoromethylphenyl)-8~oxothioxo-5,7-diazaspiro[3.4]oct—5—y1]phenylmethy1 ester (50a) [RD154] (0.089 g, 0.175 mmol, 88%), the structure of which is illustrated in Formula 22, as a white powder.
F3C N N 8ft] Formula 22 1H NMR (CDC13, 400 MHz) 5 1.63—1.70 (m, 1H), 2.17-2.31 (m, 1H), 2.48-2.57 (m, 2H), 2.64—2.70 (m, 2H), 3.04 (s, 3H), 5.30 (s, 2H), 7.37 (d, J= 8.3 Hz, 2H), 7.62 (d, J: 8.3 Hz, 2H), 7.84 (dd, J= 8.3, 1.8 Hz, 1H), 7.97 (d, J: 8.2 Hz, 1H), 7.98 (d, J: 1.6 Hz, 1H). 50-2) RD155 ] Methylamine (0.5 ml) was bubbled into a mixture of Methanesulfonic acid 4-[7—(4- cyano-3—trifluorornethylphenyl)oxo-6~thiox0~5,7-diazaspiro[3.4]octy1]phenylmethy1 ester (50a) (0.059 g, 0.115 mmol) in THF (3 m1) cooled to ~78 °C. After 1 hour of reaction at —78 °C. the mixture was concentrated and chromatographed (dichloromethane:acetone, 95:5; methanol) to yield 4-[5—(4- methylaminomethylphenyl)—8-oxo-6—thioxo—5,7-diazaspiro[3.4]octyl]—2~trifluoromethylbenzonit1ile (50b) [RD155] (0.042 g, 0.095 mmol, 82%), the structure of which is rated in Formula 23, as a white powder. 8 N/ )L H F3C N N a 23 1H NMR (CDC13, 400 MHz) 8 1.57-1.70 (m, 1H), 2.16-2.24 (m, 1H), 2.52 (s, 3H), 2.53-2.57 (m, 2H), 2.60-2.68 (m, 2H), 3.85 (s, 2H), 7.27 (d, J= 8.3 Hz, 2H), 7.55 (d, J= 8.3 Hz, 2H), 7.84 (dd, J= 8.3, 1.8 Hz, 1H), 7.95 (d, J: 8.2 Hz, 1H), 7.97 (d, J= 1.6 Hz, 1H); 13C NMR (CDC13, 100 MHz) 6 13.7, 31.5, 36.4, 55.6, 67.4, 110.0, 114.9, 122.0 (q, J= 272.5 Hz), 127.0 (q, J= 4.9 Hz), 129.1, 129.6, 129.8, 132.2, 133.3 (q, J= 33.3 Hz), 133.7, 135.2, 142.4, 174.8, 179.9. 50-3) RD156 A mixture of Methanesulfonic acid 4-[7-(4-cyano-3~trifluoromethy1phenyl)—8-oxo—6— thioxo—5,7—diazaspiro[3.4]oct—5-yl]pheny1n1ethyl ester (5021) (0.02 g, 0.039 mmol) and dimethylamine (0.5 ml; distilled from its 40% aqueous solution) in THF (1 ml) was d for 2 hours at ~78 °C. The mixture was concentrated and chromatographed (dichloromethane:acetone, 95:5;acetone) to yield 4—[5— (4-dimethy1aminomethylphenyl)oxothiox0-5,7-diazaspiro[3 —7-y1]—2— trifluoromethylbenzonitrile (50c) [RD156] (0.017 g, 0.037 mmol, 95%), the structure of which is illustrated in Formula 24, as a white powder.
:ZDNJS’LNg'1/ 0% Formula 24 1H NMR(CDC13, 400 MHz) 5 1.57-1.70 (m, 1H), 2.16-2.24 (m, 1H), 2.32 (s, 6H), .60 (m, 2H), 2.63-2.69 (m, 2H), 3.53 (s, 2H), 7.27 (d, J: 8.3 Hz, 2H), 7.55 (d, J= 8.3 Hz, 2H), 7.84 (dd, J= 8.3, 1.8 Hz, 1H), 7.95 (d, J: 8.2 Hz, 1H), 7.97 (d, J: 1.6 Hz, 1H); 13C NMR (CDC13, 100 MHz) 5 13.7, 31.5, 45.5, 63.7, 67.4, 110.0, 114.9, 122.0 (q, J= 272.5 Hz), 127.0 (q, J= 4.9 Hz), 129.1, 129.6, 129.8, 132.2, 133.3 (q,J= 33.3 Hz), 133.7, 135.2, 142.4, 174.8, 179.9.
Example 51 Sodium cyanide (0.245 g, 5 mmol) was added to a mixture of 4—aminobenzoic acid (0.274 g, 2 mmol) and cyclobutanone (0.21 g, 3 mmol) in 90% acetic acid (4.5 ml). The reaction mixture was stirred at room temperature for 15 hours. The mixture was washed with aqueous HCl (pH 2) and extracted with ethyl acetate. The organic layer was dried over magnesium e and concentrated to dryness under vacuum to yield 4-(1-cyanocyclobutylamino)benzoic acid (51a) (0.426 g, 1.97 mmol, 99%) as a White solid. 51—1) RD159 and RD160 A mixture of 4-isothiocyanatotrifluoromethy1benzonitrile (1a) (0.51 g, 2.22 mmol) and 4—(l—cyanocyclobutylamino)benzoic acid (51a) (0.343 g, 1.59 mmol) in DMF (2 ml) was heated under microwave irradiation at 60 °C and stirred for 16 hours. To this mixture were added methanol (10 ml) and aq. 2M HCl (5 ml). The second mixture was refluxed for 12 hours. After being cooled to room ature, the reaction mixture was poured into cold water (20 ml) and extracted with ethyl e (3 X 30 ml). The organic layer was dried over MgSO4, concentrated and chromatographed oromethane:acetone, 95:5) to yield 4-[7-(4-cyano—3 —trifluoromethylphenyl)oxothioxo—5,7— diazaspiro[3.4]octyl]-benzoic acid methyl ester (5 lb) [RD159] (0.09 g, 0.196 mmol, 12%), the structure of which is illustrated in Formula 25, as a white powder and N—(3-cyano-4— trifluoromethylphenyD[7—(4-cyanotrifluoromethylphenyl)oxothioxo~5,7-diazaspiro[3 —S — y1]benzamide (5 lb’) [RD160] (0.28 g, 0.45 mmol, 29%), the structure of which is illustrated in Formula 26, as a white powder. £20.40" 0415 Formula 25 1H NMR (CDC13, 400 MHz) 0 1.67-1.71 (m, 1H), 2.20-2.26 (m, 1H), 2.49—2.57 (m, 2H), 2.66-2.73 (m, 2H), 3.96 (s, 3H), 7.42 (d, J: 8.4 Hz, 2H), 7.85 (dd, J= 8.3, 1.7 Hz, 1H), 7.97 (d, J= 8.3 Hz, 1H), 7.98 (d, J= 1.7 Hz, 1H), 8.26 (d, J= 8.3 Hz, 2H); 13C NMR (CDC13, 100 MHz) 8 13.7, 31.6, 52.6, 67.5, 110.1, 114.8, 121.8 (q. J= 272.7 Hz), 127.0 (q, J= 4.7 Hz), 130.2, 131.4, 131.5, 132.2, 133.4 (q. J= 33.2 Hz), 135.2, 137.0, 139.2, 165.9, 174.6,179.7. 8 N ON A H F30 N N Formula 26 1H NMR (CDC13, 400 MHz) 8 1.67-1.71 (m, 1H), 2.18-2.26 (m, 1H), 2.50-2.58 (m, 2H), 2.68-2.74 (m, 2H), 7.47 (d, J= 8.5 Hz, 2H), 7.83 (d, J: 8.7 Hz, 1H), 7.84 (dd, J= 8.3, 1.9 Hz, 1H), 7.96 (d, J= 8.0 Hz, 1H), 9.97 (d, J= 1.9 Hz, 1H), 8.10-8.14 (m, 3H), 8.21 (d, J= 1.9 Hz, 1H), 8.88, (s, 1H). 51 -2) RD161 [001 19] A mixture of 4—[7—(4-cyano-3 -trifluoromethylphenyl)oxothioxo—5 ,7- diazaspiro[3.4]oct—5—yl]—benzoic acid methyl ester (51b) (0.046 g, 0.1 mmol) and methylamine (1 ml distilled from its 40% aqueous solution) was kept at -20 °C for 15 hours. After evaporation of the methylamine, the mixture was chromatographed (dichloromethane:acetone, 80:20) to yield yl—4- [7—(4-cyano-3 —trifluoromethylphenyl)-8—oxothioxo-5 ,7-diazaspiro[3 .4]oct—5-y1]benzamide (5 1 c) [RD161] (0.041 g, 0.085, 84%), the structure ofwhich is illustrated in Formula 27.
S N/ )L H F3C N N 04—h Formula 27 1H NMR (CDC13, 400 MHz) 5 1.63-1.70 (m, 1H), 2.18-2.26 (m, 1H), 2.48—2.56 (m, 2H), 2.65-2.71 (m, 2H), 3.05 (d, J= 4.8 Hz, 3H), 6.32 (bs, 1H), 7.39 (d, J= 8.3 Hz, 2H), 7.84 (dd, J= 8.3, 1.7 Hz, 1H), 7.95-7.98 (m, 4H); 13c NMR , 100 MHz) 5 13.6, 27.0, 31.6, 67.4, 110.3, 114.8, 121.8 (q, J= 272.7 Hz), 127.0 (q, J= 4.7 Hz), 128.7, 130.3, 132.1, 133.3 (q, J: 33.2 Hz), 135.2, 136.3, 137.0, 137.8, 167.2, 174.6, 179.8.
Example 52 [RD162] Thionyl chloride (2.38 g, 20 mmol) was added slowly to a solution of 2-fluoro-4— nitrobenzoic acid (2.97 g, 16 mmol) in DMF (50 ml) cooled at -5 °C. The e was stirred for an additional 1 hour at -5 0C. Methylamine (0.62 g, 20 mmol; freshly distilled from its 40% aqueous on) was added to the reaction medium. The second e was stirred for an additional 1 hour.
Ethyl acetate (300 ml) was added to the e, which was washed with brine (3 X 150 ml). The organic layer was dried over MgSO4, and concentrated to yield N-methyl-Z-fluoronitrobenzamide (52a) (2.89 g, 14.6 mmol, 91%) as a yellow solid. 1H NlVIR (Acetone d6, 400 lVH-IZ) 6 3.05 (d, J = 4.3 HZ, 3H), 6.31 (dd, J= 13.5, 2.1 Hz, 1H), 6.40 (dd, J= 8.5, 2.1 HZ, 1H), 7.64 (dd, J= 8.6, 8.6 HZ, 1H).
A mixture of yl-2—fluoronitrobenzamide (52a) (2.89 g, 14.6 mmol) and iron (5.04 g, 90 mmol) in ethyl acetate (40 ml) and acetic acid (40 ml) was d for 1 hour. The solid les were filtered off. The filtrate was washed with water and extracted with ethyl acetate. The c layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone, 95:5) to yield N—methyl—2-fluoro—4-aminobenzamide (52b) (2.3 g, 13.7 mrnol, 94%) as an off-white solid. 1H NMR (acetone-d5, 400 MHZ) 5 2.86 (d, J= 4.3 Hz, 3H), 5.50 (bs, 2H), 6.37 (dd, J, = 14.7 Hz, J; = 2.1 HZ, 1H), 6.50 (dd, J: 8.5, 2.1 Hz, 1H), 7.06 (bs, 1H), 7.68 (dd, J= 8.8 8.8 HZ, 1H); 130 NMR (acetone- d5, 100 MHZ) 5 25.8, 99.6 (d, J= 13.8 HZ), 109.2 (d, J: 12.8 HZ), 110.0 (d, J= 1.6 HZ), 132.5 (d, J: 4.8 HZ), 153.5 (d, J: 12.6 HZ), 162.2 (d, J= 242.5 HZ), 164.0 (d, J: 3.1 HZ).
Sodium cyanide (1.47 g, 30 mmol) was added to a mixture of N—methyl-Z-fluoro aminobenzamide (52b) (1.68 g, 10 mmol) and cyclobutanone (1.4 g, 20 mmol) in 90% acetic acid (20 ml). The reaction mixture was stirred at 80 °C for 24 hours. The mixture was washed with water and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate and trated to dryness under vacuum. The solid was washed with a 50:50 mixture of ethyl ether and hexane (10 ml) to remove cyclobutanone cyanohydrin to afford after filtration N-methyl(1—cyanocyclobutylamino)-2— fluorobenzamide (520) (2.19 g, 8.87 mmol, 89%). 1H NMR (CDC13, 400 MHZ) 6 .95 (m, 1H), 2.16-2.27 (m, 1H), 2.35-2.41 (m, 2H), 2.76—2.83 (m, 2H), 2.97 (d, J = 4.4 HZ, 3H), 4.68 (bs, 1H), 6.29 (dd, J: 14.3, 1.8 HZ, 1H), 6.48 (dd, J: 8.3, 1.8 HZ, 1H), 6.75 (q, J: 4.4 HZ, 1H), 7.90 (dd, J= 8.3, 8.3 HZ, 1H); 13C NMR (CD013, 100 MHZ) 5 15.7, 26.7, 33.9, 49.4, 100.2 (d, J= 29.5 HZ), 110.6, 111.0 (d, J = 11.8 HZ), 133.1 (d, J= 4.2 HZ), 148.4 (d, J= 12.0 HZ), 162.0 (d, J: 244.1 Hz), 164.4 (d, J: 3.6 Hz).
A mixture of 4—isothiocyanatot1ifluoromethylbenzonitrile (1a) (2.16 g, 9.47 mmol) and N-methyl-4—(l-cyanocyclobutylamino)~2—fluorobenzamide (520) (1.303 g, 5.27 mmol) in DMF (20 ml) was heated under microwave irradiation at 80 °C for 16 hours. To this mixture was added methanol (50 ml) and aq. 2N HCl (20 ml). The second mixture was refluxed for 3 hours. After being cooled to room temperature, the reaction e was poured into cold water (100 ml) and extracted with ethyl acetate (150 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone, 95:5) to yield N-methyl—4—[7-(4-cyano—3—trifluoromethy1phenyl)—8-oxo thioxo—5,7-diaza-spiro[3.4]oct-5—yl]—2-fluorobenzamide (52d) [RD162] (1.43 g, 3.0 mmol, 57%), the structure of which is illustrated in Formula 28, as a yellow powder.
WO 24118 F 0 S N/ A H F3C N N 0475/ Formula 28 1H NMR (CDC13, 400 MHz) 5 1.65-1.75 (m, 1H), 2.18-2.30 (m, 1H), 2.49—2.57 (m, 2H), 2.67-2.73 (m, 2H), 3.07 (d, J= 4.4 Hz, 3H), 6.75 (q, J: 4.6 Hz, 1H), 7.17 (dd, J= 11.5, 1.9 Hz, 1H), 7.26 (dd, J= 8.3, 1.9 Hz, 1H), 7.83 (dd, J= 8.2, 2.0 Hz, 1H), 7.95 (d, J: 1.8 Hz, 1H), 7.97 (d, J: 8.3 Hz, 1H) 8.30 (dd, J = 8.3, 8.3 Hz, 1H); 13C NMR , 100 MHz) 5 13.6, 27.0, 31.7, 67.4, 110.3, 114.8, 118.2, 118.5, 121.9 (q, J= 272.7 Hz), 126.6, 127.0 (q, J= 4.8 Hz), 132.1, 133.3 (q, J: 33.2 Hz), 133.8, 135.3, 136.8, 139.1 (d, J = 10.9 Hz), 160.5 (d, J= 249.1 Hz), 162.7 (d, J: 3.3 Hz), 174.3, 179.8; "E NMR , 100 MHz) 6 -111.13, -62.58.
Example 53 [RD163] A mixture of ofluorophenol (0.314 g, 2 mmol) and iron (0.56 g, 10 mmol) in ethyl acetate (4 ml) and acetic acid (2 ml) was refluxed for 3 hour. The solid les were filtered off.
The filtrate was washed with water and extracted with ethyl acetate. The organic layer was dried over MgSO4, concentrated to yield 4-amino—3-fluorophenol (53a) (0.25 g, 19.6 mmol, 98%) as a brown solid. 1H NMR(CDC13, 400 MHz) 0‘ 6.48-6.58 (m, 2H), 6.61-6.70 (m, 1H), 7.87 (bs, 3H).
Sodium cyanide (0.194 g, 4 mmol) was added to a mixture of 4-aminofluorophenol (0.29 g, 2.28 mmol) and cyclobutanone (0.175 g, 2.5 mmol) in 90% acetic acid (3 ml). The reaction mixture was stirred at room temperature for 15 hours. The medium was washed with water and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, concentrated and chromatographed (dichloromethane:acetone, 90:10) to yield 1-(2-fluoro«4-hydroxyphenylamino)- cyclobutanecarbonitrile (53b) (0.271 g, 1.31 mrnol, 58%) as an off—white solid. 1H NMR (CDC13, 400 MHz) 5 2.13—2.20 (m, 2H), 2.36-2.41 (m, 2H), .75 (m, 2H), 4.00 (bs, 1H), 6.46 (bs, 1H), 6.52 (ddd, J]: 2.2 Hz, J; = 0.65 Hz, J3 = 0.22 Hz, 1H), 6.57 (d, J= 2.3 Hz), 6.62 (dd, J; = 3.0 Hz, J; = 0.67 Hz, 1H); 13C NMR (CDC13, 100 MHZ) 5 15.7, 34.1, 50.9, 104.0 (d, J= 21.9 Hz), 111.0 (d, J= 3.4 Hz), 115.8 (d, J=3.7 Hz), 121.8, 125.3 (d, J= 12.3 Hz), 150.1 (d,J=10.4 Hz), 152.8 (d, J= 239.3 Hz).
A mixture of 4-1sothiocyanato—2-trifluoromethylbenzonitrile (la) (0.228 g, 1.0 mmol) and 1~(2—fluoro—4-hydroxyphenylamino)—cyclobutanecarbonitrile (53b) (0.145 g, 0.7 mmol) in dry DMF (2 ml) was stirred at room temperature for 24 hours. To this mixture were added methanol (10 ml) and aq. 2M HCl (2 ml). The second mixture was refluxed for 1 hour. After being cooled to room temperature, the reaction mixture was poured into cold water (10 ml) and extracted with ethyl acetate (50 ml). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane pure and then romethanezacetone, 90: 10) to yield 4-[5—(2~fluoro~4—hydroxyphenyl)oxothioxo~5,7— diazaspiro[3.4]oct-7—yl]trifluoromethy1benzonitrile (53c) [RD163] (0.17 g, 0.39 mmol, 56%), the structure of which is illustrated in Formula 29, as a off-white powder.
F30 N N Formula 29 1H N1\/[R(CDC13, 400 MHz) 5 1.66-1.75 (m, 1H), 2.18-2.28 (m, 1H), 2.42-2.50 (m, 1H), 2.54-2.67 (m, 3H), 6.76 (d, J: 2.2 Hz, 2H), 7.15 (t, J= 2.1 Hz, 1H), 7.35 (bs, 1H), 7.87 (dd, J1 = 8.2 Hz, J; = 1.8 Hz, 1H), 7.97 (d, J: 8.2 Hz, 1H), 7.98 (d, J: 1.8 Hz, 1H); 13C NMR (CD013, 100 MHz) 5 13.8, 31.0, 67.6, 104.8 (d, J= 22.3 Hz), 109.8, 112.6, 114.4 (d, J: 13.1 Hz), 114.9, 121.9 (q, J= 272.8 Hz), 127.1 (q, J= 4.8 Hz), 132.0, 132.3, 133.5 (q, J= 33.3 Hz), 135.3, 137.2, 159.3 (d, J= 11.2 Hz), 159.6 (d, J: 249.7 Hz), 175.2, 180.5; l9F NMR (CDC13, 100 MHz) 5 -117.5, 6249. e 54 [RD168] A mixture of 4-nitro-2~fluorobenzonit1ile (1.83 g, 5 mrnol) and iron (1.68 g, 6 mmol) in a mixture of acetic acid (40 ml) and ethyl acetate (40 ml) was d for 2 hours. The solid was filtered off and the filtrate was washed with water and extracted With ethyl acetate. The organic layer was dried over magnesium sulfate, concentrated and chromatographed (dichloromethane:acetone, 95:5) to yield 4- aminofluorobenzonitrile (54a) (0.653 g, 4.8 mmol, 96%).
Sodium cyanide (0.74 g, 15 mmol) was added to a mixture of 4—amino fluorobenzonitrile (1.36 g, 10 mmol) and cyclopentanone (1.26 g, 15 mrnol) in 90% acetic acid (10 ml).
The reaction mixture was d at room temperature for 3 hours and then the medium was hearted to 80 °C and stirred for an additional 5 hours. The medium was washed with water and extracted with ethyl acetate. The organic layer was dried over magnesium sulfate, concentrated and tographed (dichloromethane:acetone, 97:3) to yield yanocyclopentylamino)fluorobenzonitrile (54b) (2.07 g, 9.03 mmol, 90%) as a yellow solid. 1H NMR (CDCla, 400 MHz) 5 1.69-1.91 (m, 4H), 2.13-2.18 (m, 2H), 2.37-2.42 (m, 2H), 5.08 (bs, 1H), 6.54—6.62 (m, 2H), 7.39 (t, J= 7.3 Hz, 1H); 13C NMR(CDC13, 100 MHz) 8 23.7, 39.8, 56.8, 89.6 (d, J= 15.8 Hz), 101.2 (d, J: 23.8 Hz), 110.9, 115.2, 120.8, 134.1 (d, J: 2.4 Hz), 150.3 (d, J= 11.2 Hz), 164.5 (d, J= 254.1 Hz).
A mixture of 4-isothiocyanatotrifluoromethylbenzonitrile (1a) (0.171 g, 0.75 mmol) and 4—(1-cyanocyclopentylamino)fluorobenzonitrile (54b) (0.115 g, 0.5 mmol) in dry DMF (1 ml) was heated under microwave irradiation at 60 °C for 48 hours. To this e were added methanol (3 m1) and aq 2M HCl (2 ml). The second mixture was refluxed for 1 hour. After being cooled to room temperature, the on mixture was poured into cold water (10 ml) and extracted with ethyl acetate (15 ml). The organic layer was dried over MgSO4, concentrated and tographed (dichlorornethane:acetone, 98:2) to yield 4—[1~(4-cyano-3 -fluorophenyl)oxo—2-thioxo-1,3- diazaSpiro[4.4]nony1]trifluoromethylbenzonitrile (54c) [RD168] (0.017 g, 0.037 mol, 7%), of which the structure is illustrated in Formula 30, as an off-white powder.
F3C NJLN Formula 30 1H NMR (CDC13, 400 MHz) 6 1.53-1.63 (m, 2H), 1.89-2.00 (m, 2H), 2.09-2.16 (m, 2H), 2.35—2.42 (m, 2H), 7.27—7.37 (m, 2H), .90 (m, 3H), 7.95 (d, J= 1.8 Hz, 1H), 7.97 (d, J= 8.3 Hz, 1H); 130 NMR (CDC13, 100 MHz) 8 25.2, 36.5, 75.3, 103.2 (d, J: 15.3 Hz), 110.4, 112.8, 114.7, 119.2 (d, J= 20.7 Hz), 121.9 (q, J= 272.8 Hz), 127.0 (9, J= 4.8 Hz), 132.1, 133.7 (q, J: 33.2 Hz), 134.6, 135.3, 135.8, 136.8, 141.8 (d, J= 9.5 Hz), 163.4 (d, J= 261.5 Hz), 1753,1801. e 55 [RD136 and RD142] Additional diarylhydantoin compounds can be synthesized, including the following compounds illustrated in Formulas 35 and 36.
F3C N N Formula 35 [RD136] )k 0 F3C N N Formula 36 [RD142] Example 56 [RD162'] In the ing, air or moisture sensitive reactions were conducted under argon atmosphere using oven-dried glassware and standard syringe/septa techniques. The ons were monitored With a Si02 TLC plate under UV light (254 nm) followed by visualization with a p- anisaldehyde or ninhydrin staining solution. Column Chromatography was performed on silica gel 60. 1H NMR spectra were measured at 400 MHZ in CDC13 unless stated otherwise and data were reported as follows in ppm (5) from the internal rd (TMS, 0.0 ppm): al shift (multiplicity, integration, WO 24118 coupling constant in Hz.).
OZN F Formula 37 Periodic acid (1.69 g, 7.41 mmol) was dissolved in acetonitrile (25 mL) by vigorous stirring, and then chromium trioxide (0.16 g, 1.60 mmol) was dissolved into the solution. 2-F1uoro nitrotoluene (0.33 g, 2.13 mmol) was added to the above solution with stirring. A white precipitate formed immediately with exothermic reaction. After 1 h of stirring, the supernatant liquid of the on mixture was decanted to a flask, and the solvent was removed by evaporation. The residues were extracted with methylene chloride (2X30 mL) and water (2X30 mL). The organic layer was dried over MgSO4, and trated to give 2-F1uoro-4—nitrobenzoic acid (Formula 37) (0.32 mg, 81%) as a white solid. 1HNMR 8 8.06 (ddd, 1 H, J=9.9, 2.2 and 0.3), 8.13 (ddd, 1 H, J=8.6, 2.2 and 0.9), 8.25 (ddd, 1 H, J=8.6, 7.0 and 0.3).
OZN F a 3 8 id="p-133" id="p-133" id="p-133" id="p-133" id="p-133" id="p-133" id="p-133" id="p-133" id="p-133" id="p-133" id="p-133"
[00133] Thionyl chloride (0.15 g, 1.30 mmol) was added slowly to a on of 2-fluoro nitrobenzoic acid (Formula 37) (0.20 g, 1.10 mmol) in DMF (5 mL) cooled at —5 °C. The mixture was stirred for an additional 1 hour at —5 °C. Excess methylarnine (freshly distilled from its 40% aqueous solution) was added to the reaction medium. The second mixture was stirred for an additional 1 hour.
Ethyl acetate (50 mL) was added to the mixture, which was washed with brine (2 X 50 ml). The organic layer was dried over MgSO4, and concentrated to yield N-Methyl—2—fluoro—4-nitrobenzamide (Formula 38) (0.18 g, 85%) as a yellowish solid. 1H NMR (acetone—d6) 5 3.05 (d, 3 H, J=4.3), 6.31 (dd, 1 H, J=l3.5 and 2.1), 6.40 (dd, 1H, J=8.6 and 2.1), 7.64 (dd, 1H, J= 8.6 and 8.6). $6"H H2N F Formula 39 A mixture ofN~Methy1—2-fluoronitrobenzamide (Formula 38) (0.18 g, 0.91 mmol) and iron (0.31 g, 5.60 mmol) in ethyl acetate (5 mL) and acetic acid (5 mL) was refluxed for 1 h. The solid les were filtered off. The filtrate was washed with water and extracted with ethyl acetate. The organic layer was dried over MgSO4, concentrated and the residue was purified with SiOz column chromatography (dichloromethanezacetone, 95:5) to give N—Methylfluoro-4—arninobenzamide (Formula 39) (0.14 g, 92%) as an off-white solid. 1H NMR (acetone-d6) 5 2.86 (d, 3 H, J=4.3), 5.50 (br s, 2 H), 6.37 (dd, 1 H, J=14.7 and 2.1), 6.50 (dd, 1H, J=8.6 and 2.1), 7.06 (br s, 1H), 7.68 (dd, 1H, J=8.8 and 8.8). > Formula 41 4—Aminotrifluoromethylbenzonitrile (2.23 g, 12 mmol) was added portionwise over min into a well-stirred geneous mixture of thiophosgene (1 mL, 13 mmol) in water (22 mL) room temperature. Stirring was continued for an additional 1 h. The reaction medium was extracted with chloroform (3 x 15 ml). The combined organic phase was dried over MgSO4 and evaporated to dryness under reduced pressure to yield desired product 4-Isothiocyanatotrifluoromethy1benzonitrile (Formula 1H NMR 8 7.49 41) as brownish solid and was used as such for the next step (2.72 g, 11.9 mmol, 99%). (dd, 1 H, J=8.3 and 2.1), 7.59 (d, 1 H, J=2.1), 7.84 (d, 1 H, J=8.3).
F3C N N 191/ RD162' (Formula 42) 56—1) RD162' A mixture of yl—Z—fluoro-4—(l,1—dimethyl~cyanomethyl)-aminobenzamide (Formula 40) (30 mg, 0.13 mmol) and hiocyanato-Z—trifluoromethylbenzonitrile (Formula 41) (58 To this mg, 0.26 mmol) in DMF (1 mL) was heated under ave irradiation at 100 0C for 11 hours. mixture was added methanol (20 mL) and aq. 1 N HCl (5 mL). The second mixture was refluxed for 1.5 h. After being cooled to room temperature, the on mixture was poured into cold water (50 mL) and extracted with ethyl acetate (50 mL). The organic layer was dried over MgSO4, concentrated and the residue was purified with SiOZ column chromatography (dichloromethane:acetone, 95:5) to give RD162’ (Formula 42) (15 mg, 25%) as a colorless crystal. 1H NMR 5 1.61 (s, 6 H), 3.07 (d, 3 H, J=4.1), 6.71 (m, 1 H), 7.15 (dd, 1H, J=ll.7 and 2.0), 7.24 (dd, 1H, J=8.4 and 2.0), 7.83 (dd, 1H, J=8.2 and 2.1), 7.95 (d, 1H, J=2.1), 7.99 (d, 1H, J=8.2), 8.28 (dd, 1H, J=8.4 and 8.4).
Example 57 900$?..N / Formula 43 A mixture of N—Methylfluoroaminobenzamide (Formula 39) (62 mg, 0.37 mmol), cyclopentanone (0.07 mL, 0.74 mmol) and TMSCN (0.1 mL, 0.74 mmol) was heated to 80 °C and stirred for 13 h. To the medium was added ethyl acetate (2 X 20 mL) and then washed with water (2 X 20 mL).
The organic layer was dried over MgSO4 and trated and the residue was purified with silica gel column chromatography (dichloromethanezacetone, 95:5) to give N—Methyl 2—fluoro—4-(1— cyanocyclopentyl)aminobenzamide (Formula 43) (61 mg, 63%) as a white solid. 1H NMR 5 7.95 (dd, 1H, J= 8.8, 8.8 Hz), 6.65 (br s, 1H), 6.59 (dd, 1H, J= 8.8, 2.3 Hz), 6.50 (dd, 1H, J= 14.6, 2.3 Hz), 4.60 (br s, 1H), 2.99 (dd, 3H, J= 4.8, 1.1 Hz), 2.36-2.45 (m, 2H), 2.10-2.18 (m, 2H), 1.82-1.95 (m, 4H).
RD162" (Formula 44) 57~1) RD162" A mixture of N-Methyl 2-fluoro(1—cyanocyclopentyl)aminobenzamide (Formula (57 mg,'0.22 mmol) and 4-isothiocyanato-2—trifluoromethyl benzonitrile (0.15 g, 0.65 mmol) in DMF (3 mL) was heated under microwave irradiation (open ) at 130 °C for 12 hours. To this mixture added methanol (20 mL) and aq. l N HCl (5 mL). The second mixture was refluxed for 1.5 h. After being cooled to room temperature, the reaction mixture was poured into cold water (50 mL) and ted with ethyl acetate (50 mL). The organic layer was dried over MgSO4, concentrated and the residue was purified with silica gel column chromatography (dichloromethane:acetone, 95:5) to give 4—(3—(4-Cyano~ 3—(trifluoromethyl)phenyl)—4—oxothioxo-1 ,3-diazaspiro[4.4]nonany1)—2~fluoro-N-methylbenzamide, RD162" (Formula 44) (8 mg, 7%) as a pale yellowish solid. 1H NMR 5 8.28 (dd, 1H, J = 8.4, 8.4 Hz), 7.98 (d, 1H, J= 8.3 Hz), 7.96 (d, 1H, J= 1.8 Hz), 7.84 (dd, 1H, J= 8.3, 1.8 Hz), 7.27 (dd, 1H, J: 8.4, 1.8 Hz), 7.17 (dd, 1H, J: 11.7, 1.8 Hz), .77 (m, 1H), 3.07 (d, 3H, J= 4.3 Hz), .41 (m, 2H), 2.13—2.21 (m, 2H), 1.85—1.96 (m, 2H), 1.49-1.59 (m, 2H).
Example 58 F304 Q" n COZH Formula 45 id="p-140" id="p-140" id="p-140" id="p-140" id="p-140" id="p-140" id="p-140" id="p-140" id="p-140" id="p-140" id="p-140"
[00140] Trifluoroacetic anhydride (0.85 mL, 6.14 mmol) was added to a solution of 4-(4- henyl)butyric acid (0.5 g, 2.79 mmol) in chloroform (10 mL) at 0 °C. The mixture was warmed to room temperature and stirred for 3 hours. The mixture was partitioned with form (20 mL) and water (20 mL). The organic layer was dried over MgSO4, concentrated and the residue was purified with silica gel column chromatography (dichloromethane:acetone, 9:1) to give 4-[4—(2,2,2- Trifluoroacetylamino)phenyl]butanoic acid (Formula 45) (0.53 g, 69%). 1H NMR 8 7.81 (br s, 1H), 7.48 (d, 2H, J= 8.5 Hz), 7.22 (d, 2H, J= 8.5 Hz), 2.68 (t, 2H, J= 7.5 Hz), 2.38 (t, 2H, J= 7.5 Hz), 1.96 (p, 2H, J= 7.5 Hz). 1:304deH \ Formula 46 Thionyl chloride (71 mg, 0.60 mmol) was added slowly to a solution of 4-[4-(2,2,2- Trifluoroacetylamino)phenyl]butanoic acid (Formula 45) (0.15 g, 0.55 mmol) in DMF (5 mL) cooled at — °C. The mixture was stirred for an additional 1 hour at —5 0C. Excess dimethylamine (freshly distilled from its 40% aqueous solution) was added to the reaction medium. The second mixture was d for an additional 1 hour. Ethyl acetate (50 mL) was added to the mixture, which was washed with brine (2 X 50 ml). The organic layer was dried over MgSO4, and concentrated to yield ethyl 4-[4-(2,2,2- Trifluoroacetylamino)phenyl]butanamide (Formula 46) (0.17 g, quant.) as a yellowish solid. 1H NMR 5 9.70 (br s, 1H), 7.55 (d, 2H, J= 8.6 Hz), 7.11 (d, 2H, J= 8.6 Hz), 2.91 (s, 3H), 2.89 (s, 3H), 2.60 (t, 2H, J = 7.7 Hz), 2.27 (t, 2H, J: 7.7 Hz), 1.89 (p, 2H, J: 7.7 Hz).
Formula 47 ] 1 N NaOH solution (3 mL) was added to a on of MN-Dimethyl 4-[4-(2,2,2- Trifluoroacetylamino)phenyl]butanamide (Formula 46) (0.17 g, 0.55 mmol) in methanol (2 mL) at room temperature. The mixture was d for 14 hour. The mixture was partitioned with chloroform (25 mL) and water (25 mL). The organic layer was dried over MgSO4, and concentrated and the residue was purified with silica gel column chromatography (dichloromethanezacetone, 9:1) to give N,N—Dimethyl 4- (4—aminophenyl)butanamide (Formula 47) (74 mg, 66%) as a white solid. 1H NMR 5 6.97 (d, 2H, J = 8.3 Hz), 6.61 (d, 2H, J= 8.3 Hz), 3.56 (br s, 2H), 2.92 (s, 6 H), 2.56 (t, 2H, J= 7.7 Hz), 2.28 (t, 2H, J: 7.7 Hz), 1.91 (p, 2H, J= 7.7 Hz).
Nc—b 0 Formula 48 ~82- A mixture of N,N—Dimethy1 4-(4-aminophenyl)butanamide (Formula 47) (74 mg, 0.36 mmol), cyclobutanone (54 mg, 0.78 mmol) and TMSCN (77 mg, 0.78 mmol) was heated to 80 °C and stirred for 15 h. To the medium was added ethyl acetate (2 X 20 mL) and then washed with water (2 X 20 mL). The organic layer was dried over MgSO4 and concentrated and the residue was purified with silica gel column chromatography (dichloromethanezacetone, 9:1) to give N,N—Dimethy1 4-[4—(1- cyanocyclobutylamino)phenyl]butanamide (Formula 48) (58 mg, 57%) as a white solid. 1H NMR 6 7.07 (d, 2H, J= 8.5 Hz), 6.59 (d, 2H, J= 8.5 Hz), 3.94 (br s, 1H), 2.94 (s, 3H), 2.93 (s, 3H), 2.75—2.83 (m, 2H), 2.60 (t, 2H, J= 7.6 Hz), .42 (m, 2H), 2.30 (t, 2H, J: 7.6 Hz), 2.11—2.28 (m, 2H), 1.93 (p, 2H, J= 7.6 Hz).
JL / F30 N N N\ 45—16:] RD169 Formula 49 ] A mixture of MN-Dimethyl 4-[4-(l—cyanocyclobutylamino)phenyl]butanamide (Formula 0.32 mmol) in DMF 48) (58 mg, 0.20 mmol) and 4-isothiocyanatotrifluoromethy1 benzonitrile (74 mg, added methanol (20 mL) and aq. 1 N (3 mL) was heated under reflux for 2 hours. T0 this mixture was HCl (5 mL). The second mixture was refluxed for 1.5 h. After being cooled to room temperature, the with ethyl acetate (50 mL). The on mixture was poured into cold water (50 mL) and extracted with silica gel column organic layer was dried over MgSO4, concentrated and the residue was purified chromatography (dichloromethane:acetone, 95:5) to give 4-(4—(7—(4-Cyano-3 -(trifluoromethyl)phenyl)—8— oxo-6—thioxo—5,7-diazaspiro[3.4]octanyl)phenyl)-N,N—dimethy1butanamide, RD169 (Formula 49) (44 = 8.2 solid. 1H NIVIR 6 7.98 (s, 1H), 7.97 (d, 1H, J = 8.2 Hz), 7.86 (d, 1H, J mg, 42%) as a pale yellowish 2.96 (s, 3H), 2.78 (t, 2H, J= 7.5 Hz), Hz), 7.42 (d, 2H, J= 8.3 Hz), 7.22 (d, 2H, J: 8.3 Hz), 2.99 (s, 3H), 2.62—2.70 (m, 2H), 2.52—2.63 (m, 2H), 2.40 (t, 2H, J= 7.5 Hz), 2.15-2.30 (m, 1H), 2.04 (p, 2H, J= 7.5 Hz), 1.62-1.73 (m, 1H).
Example 59 "Ch Formula 50 ] A mixture of 4-(4—aminopheny1)butyric acid (0.20 g, 1.12 mmol), cyclobutanone (0.17 mL, 2.23 mmol) and TMSCN (0.30 mL, 2.23 mmol) was heated to 80 °C and stirred for 13 h. To the medium was added ethyl acetate (2 X 30 mL) and then washed with water (2 X 30 mL). The organic layer was dried over MgSO4 and concentrated and the residue was purified with silica gel column chromatography (dichloromethane:acetone, 9:1) to give 1-Cyanocyclobutylamino)phenyl]butanoic acid (Formula 50) (0.21 g, 74%) as a yellowish solid. 1H NMR 5 7.06 (d, 2H, J = 8.6 Hz), 6.59 (d, 2H, J = 8.6 Hz), 2.75-2.83 (m, 2H), 2.59 (t, 2H, J= 7.5 Hz), 2.37 (t, 2H, J: 7.5 Hz), 2.33-2.42 (m, 2H), 2.11- 2.28 (m, 2H), 1.92 (p, 2H, J= 7.5 Hz).
F30 N chozH Formula 51 A mixture of 4—[4-(1-Cyanocyclobutylamino)phenyl]butanoic acid la 50) (0.21 0.83 mmol) and 4—isothiocyanato-2—trifluoro benzonitrile (0.25 g, 1.08 mmol) in toluene (10 mL) was heated under reflux for 1 hours. To this mixture was added aq. 1 N HCl (5 mL). The second mixture was refluxed for 1.5 h. After being cooled to room temperature, the reaction mixture was poured into cold water (50 mL) and extracted with ethyl acetate (50 mL). The organic layer was dried over MgSO4, concentrated and the residue was purified with silica gel column chromatography (dichloromethane:acetone, 95:5) to give 4-(4-(7-(4-Cyano(trifluoromethyl)phenyl)—8—oxo-6—thioxo- ,7-diazaspiro[3.4]octan~5-yl)phenyl)butanoic acid, RD141 (Formula 51) (60 mg, 15%). 1H NMR 5 7.98 (d, 1H, J= 1.8 Hz), 7.97 (d, 1H, J: 8.3 Hz), 7.86 (dd, 1H, J= 8.3, 1.8 Hz), 7.42 (d, 2H, J= 8.5 Hz), 7.24 (d, 2H, J= 8.5 Hz), 2.79 (t, 2H, J=.7.5 Hz), 2.62-2.68 (in, 2H), 2.51-2.59 (m, 2H), 2.47 (t, 2H, J: 7.5 Hz), 2.14-2.26 (m, 1H), 2.06 (p, 2H, J= 7.5 Hz), 1.60-1.70 (m, 1H).
Example 60 F30 N N/Q/WNH2 0% 0 RD130 Formula 52 ] To a solution of 4-(4—(7-(4-Cyano(trifluoromethyl)phenyl)—8-oxothioxo-5,7— WO 24118 diazaspiro[3.4]octan-5—yl)phenyl)butanoic acid, RD141 (Formula 51) (60 mg, 0.12 mmol) in DMF (3 mL) was added l chloride (0.01 mL, 0.15 mol) at 0 °C. The mixture was stirred at 0 °C for 1 hour.
Then ammonia was bubbled into the mixture. The mixture was partitioned with ethyl acetate (25 mL) and water (25 mL). The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone, 70:30) to yield 4-(4—(7-(4-Cyano-3—(trifluoromethyl)phenyl)—8-oxothioxo- azaspiro[3 .4]octan-S-y1)phenyl)butanamide, RD130 (Formula 52) (37 mg, 61%) as a white powder. 1H NMR 5 7.97 (d, 1H, J= 1.8 Hz), 7.95 (d, 1H, J= 8.3 Hz), 7.85 (dd, 1H, J= 8.3 Hz), 7.39 (d, 2H, J: 8.3 Hz), 7.22 (d, 2H, J= 8.3 Hz), 5.59 (br s, 2H), 2.77 (t, 2H, J: 7.5 Hz), 2.62—2.68 (m, 2H), .59 (m, 2H), 2.31 (t, 2H, J: 7.5 Hz), 2.16-2.25 (m, 1H), 2.05 (p, 2H, J= 7.5 Hz), 1.57-1.70 (m, 1H).
Example 61 RD170 Formula 53 A on of DMSO (0.01 mL, 0.12 mmol) in dry dichloromethane (1 mL) was added to a stirred solution of oxalyl chloride (0.01 mL, 0.09 mmol) in dry dichloromethane (2 mL) at -78 0C. After 15 min, a dichloromethane solution of 4-(4-(7-(4-Cyano-3 ~(trifluor0methyl)phenyl)oxo~6-thioxo-5,7— diazaspiro[3.4]octanyl)pheny1)butanamide, RD130 (Formula 52) (35 mg, 0.07 mmol) was added to the reaction mixture. Stirring was ued for 20 min at -78 °C, and then triethylamine (0.03 mL, 0.22 mmol) was added. After 30 min at ~78 °C, the reaction mixture was warmed to room temperature and then reaction was quenched with saturated aq. NH4C1 on. The reaction mixture was diluted with dichloromethane, and extracted with dichloromethane. The organic layer was dried over MgSO4, concentrated and chromatographed (dichloromethane:acetone, 95:5) to yield 4-(5-(4-(3- Cyanopropyl)phenyl)oxo-6—thioxo-5,7-diazaspiro[3.4]octanyl)(trifluoromethyl)benzonit1ile, RD170 (Formula 53) (29 mg, 87%) as a Viscous oil. 1HNlVIR 8 7.98 (d, 1H, J= 1.8 Hz), 7.98 (d, 1H, J= 8.3 Hz), 7.86 (dd, 1H, J= 8.3, 1.8 Hz), 7.43 (d, 2H, J= 8.4 Hz), 7.27 (d, 2H, J= 8.4 Hz), 2.90 (t, 2H, J: 7.3 Hz), 2.63-2.73 (m, 2H), 2.52-2.62 (m, 2H), 2.42 (t, 2H, J: 7.3 Hz), 2.18-2.30 (m, 1H), 2.07 (p, 2H, J = 7.3 Hz), 1.63—1.73 (m, 1H).
One skilled in the art could modify and/or combine the syntheses described herein to make other hydantoin compounds.
Inventive compounds also include those with the following formulas. -85— R X A \ )k' R R5 N N Where R is ed from hydrogen, aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated , arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, tuted heterocyclic aromatic or omatic, lkyl, substituted lkyl, halogen, 802R", NRURIZ, NR12(CO)OR11, NH(CO)NR11R12, NR12(CO)R11, O(CO)R11, O(CO)OR11, O(CS)R11, NR12(CS)R11, NH(CS)NR11R12, NR12(CS)OR11.
R1 and R2 are independently selected from en, aryl, alkyl, substituted alkyl, l, substituted alkenyl, alkynyl, substituted alkynyl, nated alkyl, halogenated alkenyl, halogenated akynyl, arylalkyl, arylalkenyl, kynyl, heterocylic aromaric or non—aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl.
R1 and R; can be connected to form a cycle which can be heterocyclic, substituted heterocyclic, cycloakyl, substituted cycloalkyl.
R3 is selected from aryl, substituted aryl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted l, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterocyclic aromatic or non-aromatic, cycloalkyl, substituted cycloalkyl, 802R", NRURH, (CO)OR11, 11R12, (CO)R11, (CS)R11, (CS)R11, (CS)NR11R12, (CS)OR11.
R5 is ON or N02 or 802R" R6 is CF3, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated akynyl, halogen.
A is sulfur atom (S) or oxygen atom (O).
B is O or S or NR3 X is carbon or nitrogen and can be at any position in the ring.
R11 and R12 are independently selected from en, aryl, aralkyl, substituted aralkyl, alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, halogenated alkyl, halogenated alkenyl, halogenated akynyl, arylalkyl, arylalkenyl, arylalkynyl, heterocyclic aromatic or non-aromatic, substituted heterOCYClic ic or non-aromatic, akyl, substituted cycloalkyl. —86- R11 and R12 can be connected to form a cycle which can be heterocyclic aromatic or non— aromatic, tuted cyclic aromatic, cycloakyl, substituted cycloalkyl.
Pharmacological examination of the compounds ] Compounds for which synthetic routes are described above were identified through screening on hormone refractory prostate cancer cells for nistic and agonistic activities against AR utilizing screening procedures similar to those in PCT ations USO4/4222l and USOS/05529, which are hereby incorporated by reference. A number of compounds exhibited potent antagonistic ties with minimal agonistic activities for over expressed AR in hormone refractory prostate cancer.
In vitro ical assay Effect of compounds on AR by a reporter assay The compounds were subjected to tests using an artificial AR response reporter system in a hormone refractory prostate cancer cell line. In this system, the prostate cancer LNCaP cells were engineered to stably express about 5-fold higher level of AR than endogenous level. The exogenous AR has similar properties to endogenous AR in that both are stabilized by a synthetic androgen R1881. The AR-over expressed cells were also engineered to stably incorporate an AR response reporter and the reporter activity of these cells shows features of hormone refractory prostate cancer. It responds to low concentration of a synthetic androgen R1881, is inhibited only by high concentrations of bicalutamide (see Table 1), and displays agonistic activity with bicalutamide (Figure 1 and Table 2). Consistent with published data, bicalutamide inhibited AR response reporter and did not have agonistic ty in hormone sensitive prostate cancer cells (Figure 2).
We ed the antagonistic activity of the compounds for which the sis is described above in the presence of 100 pM of R1881. Engineered LNCaP cells (LNCaP-AR, also abbreviated LN-AR) were maintained in Iscove’s medium containing 10% fetal bovine serum (FBS).
Two days prior to dmg treatment, the cells were grown in Iscove’s medium containing 10% charcoal- stripped FBS S) to deprive of androgens. The cells were split and grown in Iscove’s medium ning 10% CS-FBS with 100 pM of R1881 and increasing concentrations of test compounds. After two days of incubation, reporter activities were assayed. id="p-154" id="p-154" id="p-154" id="p-154" id="p-154" id="p-154" id="p-154" id="p-154" id="p-154" id="p-154" id="p-154"
[00154] Table 1 lists the IC50 of these compounds to inhibit AR in hormone refractory prostate 2006/011417 cancer. The control substance bicalutamide has an IC50 of 889 nM. Most of the compounds fied (diarylthiohydantoins) have IC50s n 100 to 200 nM in inhibiting AR in hormone refractory prostate cancer. In contrast, antiandrogenic compounds listed as examples in US patent no. 5,705,654, such as examples 30-2, 30—3, 31-2, 31-3, and 24-3 (RD73—RD77) have no inhibitory activities on AR in this system.
Table 1 Antagonistic activities against AR in hormone refractory prostate cancer, measured by an AR response reporter and by endogenous PSA expression.
Icso (nM) Icso (nM) Bicalutamide N—[4-cyano—3 —(trifluoromethyl)phenyl]-3 —[(4- 889 >1 000 Comparative fluorophenyl)sulfonyl]hydroxy—2- methylpropanamide 29 4—[3-(4-hydroxybutyl)-4,4—dimethyl—5—oxo l-.No(* N thioxoimidazolidinyl]—2-trifluoromethylbenzonitrile 6-2 4—[3 -phenyl~4,4-dimethyloxo—2—thioxoimidazolidin- 1 49 n/a (** (6b) l ~y1] —2—trifluoromethy1benzonitrile [RD 1 O] -3b 4-[3—(4—methylphenyl)~4,4-dimethy1—5-oxo 125 132 (50) thioxoimidazolidin—l-y1]trifluoromethyl- [FUD7] benzonitrile 3-3 4-[3 —(4-hydroxyphenyl)-4,4-dimethyloxo—2- thioxoimidazolidin— 1 —y1]trifluoromethylbenzonitrile 2-4 4-[3-(4—aminopheny1)-4,4-dimethyl—5-oxo—2- thioxoimidazolidin— l —yl]t1ifluoromethylbenzonitrile 4 Chloroacetic acid 4-[3-(4—cyano (4a) [RD13] romethylphenyl)-5,5-dimethyloxo thioxoimidazolidin-l eny1 ester 8—2 4—(4-Oxothioxo—1 -(4-methy1phenyl)— l ,3 - diazaspiro[4.4]non—3-yl)trifluoromethylbenzonitrile 7—3b xothioxo-5—(4-methylpheny1)-5,7- diazaspiro[3 .4]oct—7-yl)trifluoromethy1benzonit1ile 9—3 4-(4-Oxo—2-thioxo-1 thylpheny1)—1,3 - (90) [RD48] diazaspiro[4.5]dec-3—y1)triflu0romethy1benzonitrile 4-(4-0xo-2—thioxo(4-methylphenyl)-1 ,3 — (1OC) [RD49] diazaspiro[4.5]undec—3-y1) h‘ifluoromethylbenzonitrile 4-(8-methy10X0—2—thioxo-1,3,8-triazaspiro[4.5]dec- Comparative 3-yl)trifluoromethy1benzon1'trile (288) [RD52] 2-[3 —(4—cyano—3—trifluoromethy1pheny1)-5,5-dimethy1— 4-oxothiox0imidazolidin-1—y1]benzoic acid 4-(4,4-dimethy1-5 -oxothioxo~3 -(4- (20b) [RD66] romethylphenyl)imidazolidiny1)-2— trifluoromethylbenzonitrile 4—(4,4—bischloromethy1oxo-2~thioxo(4- (21 b) [RD67] methylphenyl)imidazolidin—1-y1)—2- trifluoromethylbenzonitrile 4-(4-fluoromethy1—4-methyloxo-2—thioxo-3 ~(4- (19b) [RD68] methylpheny1)imidazolidiny1) trifluoromethylbenzonitrile -89— 4-(8-oxo-6—thioxo-5—(2-methy1pheny1)—5,7~ (23b) [RD71] diazaspiro[3.4]octy1)trifluoromethy1benzoniufle -2 4-(5-methyloxo-6—th1'oxo-5,7~diazaspiro[3 .4]oct—7- Comparative y1)-2—trifluoromethylenzonit1ile (30b) [RD73] —3 4-(5 1-6,8-dioxo-5,7-diazaspiro[3.4]octy1) Comparative romethylbenzonitrile (300) [RD74] 31 -2 4-(1 ~methy1—4-oxothioxo-1 ,3-diazaspiro[4.4]non-3 - Comparative y1)trifluoromethy1benzonitrile (31 b) [RD75] 31 —3 4—( 1 —methyI-2,4—dioxo- 1 ,3-diaza-spiro [4.4]non-3 Comparative 2-trifluoromethy1benzonitrile (31 c) [RD76] 24-3 4-(4-oxothioxo-1 ,3~diazaspiro[4.4]non—3 -y1)-2— Comparative trifluoromethylbenzonitrfle (24c) [RD77] 1 5—2 -dimethy1—3 ~(4-pyridin—2-y1)oxo thioxoimidazoh'diny1]—2-triflu0romethylbenzonitrile 14-2 4—[4,4-dimethyl-3—(4-methy1pyridin—2—y1)—5-oxo-2— thioxoimidazolidin- 1 —y1] -2—trifluoromethy1benzonitrfle 1 6—2 4—[5-(5—methy1-2H~pyrazoly1)oxothioxo-5,7- Comparative diaza-spiro[3.4]oct—7-y1]tr1'fluoromethyl- (16b) [RD84] benzonitrile 1 3—2 4-(8-oxothioxo(4-biphenyl)—5,7- >1000 n/a (12b) [RD85] diazaspiro[3.4]oct—7-y1)-2—trifluoromethy1benzonitrfle 32 4-(8—methy1irm'nothioxo~5—p—toly1—5,7—diaza- 222 421 (32a) [RDQO] Spiro[3 .4]octy1)-2—trifluoromethy1-benzonitrile 33 1 -[3 -(4—cyano—3-trifluoromethy1—pheny1)-5 ,5 hy1— 157 239 (33a) [RD91] 2—thioxop-toly1—imidazolidin-4—ylidene]-3 -ethy1- thiourea 1 - [7—(4-cyanotrifluoromethy1—phenyl)thioxo-5 (34a) [RD92] t01y1-5,7-diaza—spiro[3.4]oct-8—y1idene]—3-pheny1- thiourea 1-(4-Cyano—3 —trifluoromethy1-phenyl)—3-[7-(4~cyano— (35a) [RD93] 3-trifluoromethyl-pheny1)-6—thioxop-toly1-5,7- diaza-spiro[3 .4]oaty1idene]—thiourea 36-2 4-[8-(4-hydroxymethy1—pheny1)oxo-7—thioxoaza— (36b) Spiro[3 .4]oct—6-y1]-2—trifluoromethy1—benzonitrile [RD1 10] 37 4—[5-(4—formy1phenyl)—8-oxo~6-thioxo-5,7- (37a) diazaspiro[3 .4]oct—7-yl]triflu0romethyl-benzonitrile [RD1 14] 38 4- {5 -[4-( 1 -hydroxyethy1)—pheny1]oxo-6~thioxo—5,7- (38a) diazaspiro[3 .4]oct—7-y1} trifluoromethy1-benzonitri1e [RD1 16] 39 3 - {4-[7—(4—cyan0-3—trifluoromethy1pheny1)—8—oxo—6— (39a) thioxo—S,7-diazaspiro[3 .4]oct-S -y1]-pheny1} -acrylic [RD1 1 7] acid ethyl ester 40 4- {5-[4-(3 —hydroxypropeny1)—phenyl]oxo-6—thioxo- (40a) 5,7-diazaspiro[3 —7-y1} [RD1 20] romethylbenzonitrile 41 -2 3-{4-[7-(4-cyan0triflu0romethy1pheny1)-8~0X0 (41 b) thioxo—S,7-diazasp1'ro[3 .4]oct—S—y1]-pheny1}-propionic [RD128] acid methyl ester 41-4 3- {4-[7-(4-cyano—3 oromethy1pheny1)oxo—6— (41d) thioxo-5,7—diaza—spiro[3.4]oct—5 -y1]-pheny1}- [RD1 33] propionamide 41 -5 3 — {4-[7—(4—Cyano-3 oromethy1pheny1)oxo (41 e) thioxo-S,7-diaza-spiro[3 .4]oct—5-y1]-pheny1} -N- [RD134] methyl—propionamjde 41 -6 3 - {4—[7—(4-cyano-3 -trifluoromethy1pheny1)—8-oxo (41f) thioxo-S ,7-diaza—spiro[3 -5 —y1]-pheny1} —N—(2— [RD13a hydroxyethyl)~propionamide 42-2 4- {4—[7—(4-cyano-3 -trifluoromethy1pheny1)—8-oxo—6- (42b) thioxo—S,7-diazaspiro[3 .4]oct—S-y1]-pheny1} -butyric [RD129] acid methyl ester 4- {4—[7-(4-Cyano-3 -trifluoromethy1phenyl)oxo-6— (42d) thioxo-5,7-diaza-spiro[3 .4]oct~5—yl]—phenyl} - ] butyramide 42-5 4- {4-[7-(4-Cyanotrifluoromethy1phenyl)-8—oxo (42e) thioxo—S,7~diaza-spiro[3 .4]oct~5 ~yl]~pheny1} -N- [R0131] methyl-butyramide 4—[8-Oxo(4-piperazin-1 -yl-phenyl)—6~thioxo-5,7— diazaspiro[3.4]octyl]trifluoromethylbenzonitiile 4- (4-methanesulfonylpiperazin—1 -yl)-pheny1] oxothioxo-5,7-diazaspiro[3 .4]octyl} ~2- trifluoromethylbenzonitrile 44-2 44-2) 3 - {4-[7—(4-Cyanotrifluoromethyl—phenyl) (44b) oxo~6-thi0xo-5 ,7-diaza-spiro[3 —S —yl]—pheny1 } - [R01 19] acrylamide, (*) No: the compound did not inhibit AR response reporter; (**) n/a: the compound was not examined in this assay.
One usly unrecognized property of AR overexpression in hormone refractory prostate cancer is its ability to switch antagonists to agonists. Therefore, only those compounds with minimal or no agonistic ties are qualified to be anti—androgens for this disease. To determine agonistic activities of different compounds, we ed their stimulating activities on AR using the AR response reporter as the e in the LN—AR system in the absence of R1881. Table 2 lists the agonistic activities of different compounds. Consistent with previous results, bicalutamide ted in hormone refractory te cancer. The diarylthiohydantoin derivatives such as examples 7-3b (RD37), 33 , 34 (RD92), and 35 (RD93) have no agonistic activity. In contrast, RU59063, and other anti-androgenic compounds listed as examples in US Patent Number 5,705,654, such as examples —2, 30-3, 31-2, 31—3, and 24-3 (RD73-RD77) strongly activated AR in hormone refractory prostate cancer.
Table 2 Agonistic activities of selective test substances on AR response reporter in hormone refractory prostate cancer Fold induction by increasing concentrations of comounds DMSO Dimethyl sulfoxide 1.00 (*) 1.00- R1881 methyltrienolone 44.33 n/a(**)- Bicaluta N-[4—cyano(trifluoromethyl)phenyl]—3~[(4- 1.66 3.04 10.40 mide fluorophenyl)sulfonyl]—2—hydroxy methylpropanamide 29 4-[3-(4-hydroxybuty1)-4,4-dimethy1—5-oxo-2— 10.99 20.84 34.62 thioxoimidazolidin—1—y1]—2- trifluoromethylbenzonitrile I 7-3b 4-(8—ox0-6—thioxo(4-methy1pheny1)-5,7- 1.19 0.89 (7c) piro[3.4]oct-7—y1) [RD37] nifluoromethylbenzonitrile 1 —[3 —(4-cyano—3-trifluoromethy1—pheny1)—5 ,5 - 1.30 1.18 1.28 dimethyl-Z-thioxop~toly1—imidazolidin—4— y1idene]-3 -ethy1-thiourea 1-[7—(4-cyano-3 -trifluoromethyI—phenyl) thioxo-S-p-toly1-5,7-diaza~spiro [3 .4]oct ylidene]~3 -pheny1-thiourea 1 —(4-Cyano~3-trifluoromethy1~pheny1)[7-(4- (35a) 3—trifluoromethyl—phenyl)thioxop- [RD93] tolyl—S ,7-diaza-spiro [3 -8—y1idene]-thiourea -2 4-(5—methy1—8-oxothioxo-5,7— ..\ :b CD 00 19.41 35.22 Comp. diazaspiro[3 .4]octy1) (30b) trifluoromethylenzonitrile [RD73] —3 4-(5—methyl-6,8-dioxo-5,7~diazaspiro[3 .4]cot _\ __\ Cl)0 14.26 30.63 Comp. yl)-2—trifluoromethylbenzonitrile (300) [RD74] 31 2 4-(1 ~methy1oxothioxo-1 ,3 — 17.03 16.63 33.77 Comp. piro[4.4]nonyl) (31 b) trifluoromethylbenzonitrfle [RD76] 4-(1 —methy1-2,4-dioxo-1,3 —diaza-spiro[4.4]non- Comp. 3~yl)trifluoromethylbenzonitrile (31 c) [RD76] 24-3 4~(4-oxo-2—thioxo—l,3-diazaspiro[4.4]non-3 -yl)- 14.88 22.48 37.09 Comp. uoromethy1benzonitrile (24c) [RD77] (*) Fold induction: activities induced by a c test nce over activities in DMSO vehicle; (* *) n/a: the compound was not examined in this assay.
To examine the city of AR inhibitors, selective compounds were tested in LNCaP cells with an over sion of glucocorticoid receptor (GR), the closest member of AR in the nuclear receptor family. These cells also carry a GR response reporter and the reporter activity was induced by dexamethasone, a GR agonist and the induction was blocked by RU486, a GR inhibitor. Example 7—3b (RD37) (4—(8-oxothioxo-5—(4-methylphenyl)—5,7-diazaspiro[3 .4]oct—7-yl)-2~trifluoromethyl benzonitrile) had no effect on GR in this system.
Effect of compounds on AR by measuring secreted levels of prostate specific antigen [PSA] It is well established that PSA levels are indicators ofAR activities in prostate . To examine if the compounds affect AR function in a physiological environment, we determined secreted levels of endogenous PSA d by R1881 in the AR—overexpressed LNCaP cells (LNCaP-AR, also abbreviated LN—AR). The LNCaP-AR cells are a line of lymph node oma of prostate cells transduced with a plasmid that makes express androgen receptors. LNCaP—AR cells were maintained in Iscove’s medium containing 10% FBS. Two days prior to drug treatment, the cells were grown in ’s medium containing 10% CS—FBS to deprive of androgens. The cells were split and grown in ’s medium containing 10% CS-FBS with appropriate concentrations of R1881 and the test compounds. After four days incubation, secreted PSA levels were assayed using PSA ELISA kits (American , San Clemente, CA) The secreted PSA level ofLNCaP—AR cells was strongly induced by 25 pM ofR1881. In contrast, PSA was not induced in the parental LNCaP cells until concentration ofR1 881 reached 100 pM.
This is consistent with our previous report that the AR in hormone refractory prostate cancer is hyper- WO 24118 sensitive to androgens. A ependent inhibition on AR activity was carried out to determine the IC50s of different compounds in inhibiting PSA expression, and the s were listed in Table l. ICSOs of the selective compounds on PSA expression closely resemble those measured by the reporter assay, confirming that the diarylhydantoin derivatives are strong tors ofAR in hormone refractory prostate cancer.
We also examined agonistic activities of selective compounds on AR in hormone refiactory te cancer using secreted PSA as the surrogate marker. To do this, androgen—starved AR over expressed LNCaP cells were incubated with increasing concentrations of the compounds for which synthesis is described above in the e of R1881 and secreted PSA in the culture medium was measured 4 days later.
Table 3 lists the agonistic activities of the selective compounds. tent with the results obtained from the reporter assay, the diarylthiohydantoin derivatives such as es 7-3b (RD37), 33 (RD91), 34 (RD92), and 35 (RD93) have no agonistic activities. In contrast, RU59063, and other antiandrogenic nds listed as examples in US patent no. 5,705,654, such as examples 30-2 (RD73), 30-3 (RD74), and 31-2 (RD75) stimulated PSA expression in e refractory prostate cancer.
Table 3 Agonistic activities of selective test substances on endogenous PSA in e refractory prostate cancer Fold induction by increasing concentrations of compounds DMSO Dimethylsulfoxide 1.00 (*) 1.00- R1881 methyltrienolone 20.69 n/a(**)- Bicaluta N-[4-cyano(trifluoromethyl)phenyI][(4- mide fluorophenyl)sulfonyl]—2—hydroxy—2— methylpropanamide 255. 29 4-[3—(4-hydroxybutyl)—4,4—dimethyloxo—2- 11.50 21.50 Comp. thioxoimidazolidin—l-y1]-2— trifluoromethylbenzonitrile 7-3b 4-(8-oxo—6—thioxo(4-methy1phenyl)-5,7- 1.25 1.20 1.15 (7C) diazaspiro[3.4]oct—7-yl)—2- [RD3 7] trifluoromethylbenzonitrile 1 -[3 -(4—cyano-3 -trifluoromethy1—phenyl)-5 ,5 - dimethy1-2—thioxop~toly1—irnidazolidin—4- ylidene]-3 -ethy1—thiourea 4—cyano-3 —trifluoromethy1-phenyl)—6- thioxo-S-p-toly1-5,7—diaza—spiro[3 .4]oct ylidene]~3—pheny1—thiourea 1 -(4—Cyano-3 -trifluoromethyl-phenyl)-3~[7-(4- (35a) cyano-3 -trifluoromethy1—phenyl)-6—thioxop- [RD93] tolyl—S ,7-diaza—spiro [3 .4]oct—8—y1idene]-thiourea 4-(5~methy1-8—oxothioxo-5,7— diazaspiro[3.4]oct-7—y1)—2- trifluoromethylenzonitrile -3 4-(5—methy1—6,8-dioxo—5,7-diazaspiro[3 .4]oct Comp. yl)-2—trifluoromethylbenzonitrile (300) [RD74] 31 -2 4-(1 -methy1—4-oxo—2—thioxo—1 ,3 - Comp. diazaspiro[4.4]non—3 —y1) (31b) romethylbenzonitrile [RD75] (*) Fold ion: activities induced by a specific test substance over activities in DMSO vehicle; (* *) n/a: the compound was not examined in this assay.
Effect of nds on AR mitochondrial activity by MTS assay LNCaP-AR cells were maintained in Iscove’s medium containing 10% FBS. The compounds were examined for their effect on growth of hormone refractory te cancer cells.
Overexpressed LNCaP cells were used e these cells behave as hormone refractory prostate cancer cells in vitro and in vivo (1). We measured ondria activity by MTS assay, a surrogate for growth.
LNCaP cells with overexpressed AR (LN-AR) were maintained in Iscove’s medium containing 10% FBS. Two days prior to drug treatment, the cells were grown in Iscove’s medium containing 10% CS- FBS to deprive of androgens. The cells were then split and grown in Iscove’s medium containing 10% CS—FBS with appropriate concentrations of R1881 and increasing concentrations of the test compounds.
After four days incubation, cell growth was monitored by MTS (Promega, Madison, WI). tent with the reporter assay and PSA assay, growth of the rexpressed LNCaP was stimulated by 25 microM of R1881, but the parental cells were not stimulated until R1881 concentration reached 100 microM. Figure 2 shows the inhibitory effect of selected nds on growth of hormone refractory prostate cancer in the presence of 100 pM of R1881. The current clinical drug bicalutamide did not inhibit hormone refractory te cancer. In contrast, example 5-3b (RD7) (4-[3—(4-methylphenyl)-4,4-dimethyl—5-oxothioxoimidazolidin-1 ~yl]-2~trifluoromethyl-benzonitrile) and example 7—3b (RD37) (4—(8-oxothioxo-5~(4-methylphenyl)—5,7-diazaspiro[3.4]oct—7-yl)-2— trifluoromethylbenzonitrile) inhibited hormone refractory te cancer with high potency.
We examined if growth inhibition in the MTS assay occurs by targeting AR, e 5—3b (RD7) (4-[3—(4—methylphenyl)-4,4-dimethyloxothioxoimidazolidin-l-yl]trifluoromethy1— benzonitrile) and example 7-3b (RD37) (4-(8-oxothioxo(4-methylphenyl)—5,7-diazaspiro[3.4]oct— 7-yl)trifluoromethylbenzonitrile) were tested in DU-145 cells, a te cancer cell line that lacks AR expression. These nds had no growth tory effect on DU-145 cells. The compounds did not inhibit cells other than AR-expressed prostate cancer cells, as they had no growth effect on MCF7 and SkBr3, two commonly used breast cancer cells, or 3T3, a normal mouse fibroblast cell line.
Examples of in vitro biological activity of diarylthiohydantoin derivatives are shown in the Figures 3, 4 and 5. For example, based on relative luciferase activity, Fig. 3 indicates that at a concentration of 500 nM the compounds , in order ofmost active to least active as follows: RD152 > RD153 > RD145 > RD163 > RD161 = RD162 > bicalutamide. For e, based on relative PSA level, Fig 4 indicates that at a concentration of 500 nM the compounds ranked, in order of most active to least active as follows: RD138 > RD131 > RD37 > RD133 > RD134 > RD137 > RD138 > RD135 bicalutamide. For example, based on relative MTS units, Fig. 5 indicates that at a concentration of 500 nM the compounds ranked, in order of most active to least active as follows: RD168 > RD37 > RD141 RD162 > bicalutamide.
Inhibitory effect on hormone refractory prostate cancer xenograft tumors.
Example 7—3b (RD37) (4—(8-oxo-6—thioxo-5—(4-methylphenyl)-5,7-diazaspiro[3.4]oct—7— yl)—2—trifluoromethylbenzonitrile) was used to examine if the diarylhydantoin derivatives have in vivo effects on hormone refractory prostate cancer. First we examined this compound on xenograft tumors established from AR—overexpressed LNCaP cells. The engineered cells in Matrigel (Collaborative Biomedical) were injected subcutaneously into the flanks of the castrated male SCID mice. Tumor size established (tumor size was measured weekly in three dimensions using calipers. After aft tumors reached at least 40 mm", mice with tumors were randomized and treated With different doses of -97_ nds orally once daily. Consistent with clinical ation, current clinical drug bicalutamide did not inhibit growth of hormone refractory prostate cancer (same as vehicle) (Figure 7a). In contrast, example 7-3b (RD37) (4-(8—oxothioxo—5~(4-methy1phenyl)—5,7-diazaspiro[3.4]oct—7-yl)—2- trifluorornethylbenzonitrile) strongly inhibited growth of these tumors e 7a) and the tion is dose—dependent (Figure 7b). Furthermore, example 7-3b (RD37) inhibited PSA expression e 8), the clinical marker for hormone tory prostate cancer.
Example 7-3b (RD37) (4—(8-oxo—6-thioxo(4—methy1phenyl)-5,7-diazaspiro[3.4]oct—7— yl)trifluoromethy1benzonitrile) was also tested in another aft model of hormone refractory prostate cancer, hormone refractory LAPC4. This model was established from passaging of hormone sensitive prostate cancer in castrated mice, which mimics the clinical progression of prostate cancer (2).
Similar to the finding using AR—overexpressed LNCaP xenograft model, current clinical drug bicalutamide did not inhibit growth and PSA expression in hormone refractory LAPC4 xenograft model (same as vehicle) (Figure 9a and 9b). In contrast, example 7-3b (RD37) strongly inhibited growth and PSA expression of these tumors e 9a and 9b).
Inhibitory effect on growth of hormone sensitive prostate cancer cells.
To determine if the diarylthiahydantoin derivatives also t hormone sensitive prostate cancer cells, we tested some selective compounds on growth of LNCaP cells by measuring MTS of mitochondria ties. In contrast to have no effect on growth of hormone refractory prostate cancer, the current clinical drug bicalutamide mildly inhibited hormone ive LNCaP cells in a dose- dependent manner. Example 5-3b (RD7) (4-[3—(4-methylphenyl)~4,4-dimethy1—5-oxo—2— thioxoimidazolidinyl]trifluoromethyl-benzonitrile) and example 7—3b (RD37) (4—(8—oxothioxo-5— hylpheny1)-5,7-diazaspiro[3.4]octyl)trifluoromethylbenzonitrile) inhibited e sensitive prostate cancer with a lO-fold higher potency than bicalutamide (Figure 10).
In vivo biological assay id="p-169" id="p-169" id="p-169" id="p-169" id="p-169" id="p-169" id="p-169" id="p-169" id="p-169" id="p-169" id="p-169"
[00169] All animal ments were performed in compliance with the guidelines of the Animal Research Committee of the University of California at Los Angeles. Animals were bought from Taconic and maintained in a laminar flow tower in a defined flora colony. LNCaP-AR and LNCaP—vector cells were maintained in RPMI medium supplemented with 10% FBS. 106 cells in 100 ul of 1:1 Matrigel to RPMI medium were injected subcutaneously into the flanks of intact or castrated male SCID mice.
Tumor size was measured weekly in three dimensions (length x Width x depth) using calipers. Mice were ized to treatment groups when tumor size reached approximately 100 m3. Drugs were given orally every day at 10 mg/kg and 50 mg/kg. To obtain pharmacodynamic readout, the animals were imaged Via an optical CCD camera, 3 hours after last dose of the treatment. A R01 is drawn over the tumor for luciferase activity measurement in photon/second. The right panels were a representation ofthe ROIs measurements. Data are shown in figures 11 and 12. Over 18 days RD162 was effective to prevent tumor growth and even to cause tumor shrinkage, and was distinctly more effective than tamide.
The pharmacokinetics of bicalutamide, 4-cyano-3—trifluoromethylphenyl)—8-oxo thioxo-S,7-diaza—spiro[3.4]oct-5—y1]-toluene [RD37], N—methyl—4- {4-[7-(4-cyano—3- trifluoromethylphenyD-S-oxothioxo—5,7—diaza-spiro[3.4]oct-5—yl]phenyl}butanamide [RD131], and N- methyl[7-(4-cyanotrifluoromethylphenyl)—8—oxo—6-thioxo-5,7-diaza-spiro[3 .4]oct—5-yl] fluorobenzamide (52d) [RD162] were evaluated in vivo using 8 week—old FVB mice which were purchased from Charles River tories. Mice were divided into groups of three for each time points.
Two mice were not treated with drug and two other mice were treated with vehicle solution. Each group was d with 10 mg per kilogram ofbody weight.
The drug was dissolved in a mixture 1:5:14 of DMSO : PEG400 : H20. (Vehicle solution) and was stered into mice h the tail vein. The animals are warmed under a heat lamp for approximately 20 minutes prior to treatment to dilate their tail vein. Each mouse was placed into a mouse restrainer (Fisher Sci. Cat# 0132A) and was injected with 200 pl of drug in e solution into the d tail vein. After drug administration, the animals were euthanized Via C02 inhalation at different timepoints: 5 mn, 30 mn, 2 h, 6 h, 16 h. Animals were immediately bleed after exposure to C02 Via cardiac puncture (1 m1 BD syringe + 27G 5/8 needle). For oral dosage, the drug dissolved in a mixture 50:10:1z989 of DMSO : Carboxymethylcellulose : Tween802H20 before oral administration via a feeding syringe.
] The serum samples were analyzed to determine the drug’s concentration by the HPLC which (Waters 600 pump, Waters 600 ller and Waters 2487 detector) was equipped with an Alltima C18 column (314, 150 mmX4.6 mm). The RD37, RD131, and RD162 nds were detected at 254 nm wave length and bicalutamide was detected at 270 nm wave length.
The samples for HPLC analysis were prepared according to the following procedure: - Blood cells were separated from serum by centrifugation.
- To 400 pl of serum were added 80 ul of a 10 M solution of an internal rd and 520 pl of acetonitrile. Precipitation occurred.
— The mixture was vortexed for 3 minutes and then placed under ultrasound for 30 minutes.
- The solid particles were filtered off or were separated by centrifugation.
— The filtrate was dried under an argon flow to dryness. The sample was reconstructed to 80 pl with acetonitn'le before analyzing by HPLC to determine the drug concentration.
- Standard curve of drug was used to improve accuracy.
The concentration ofRD162 in plasma as a function oftime resulting from intravenous and from oral administration is shown in figure 13. The steady state concentration (Css) of bicalutamide, RD131, and RD162 is shown in Table 4. The concentration at steady state of RD162 is essentially as good as that of bicalutamide, and substantially better than RD131.
Css,lO mg/kg Css,25 mg/kg Css,50 mg/kg RD162 122 9.9 10.7 10.2 Table 4. Steady-state tration of bicalutamide, RD131, and RD162 in mice plasma.
Ranking of Compounds in Tiers Tables 5 — 10 present diarylhydantoin nds grouped into Tiers 1-6. Table 11 presents diarylhydantoin compounds which have not been placed into a tier. The placement of compounds into tiers was based on available data coupled with ical judgment. Data considered included in vitro assays (AR response reporter system in LNCaP cell line, PSA level measurement, MTS mitochondrial assay) and in vivo experiments (tumor size measured ly or by emission d by luciferase reporter gene, pharmacokinetic assays based on blood plasma levels). Not every compound was subjected to each assay. Not all data that was generated is shown. Judgment was applied in ranking nds relative to each other for their utility in treating prostate cancer, in particular when ranking two compounds for which the same experiments were not performed. Characteristics considered in establishing the ranking e AR antagonism activity, lack of AR agonism in e refractory cells, prevention of tumor growth, tumor shrinkage, and pharmacokinetic or, with a longer residence time in blood being advantageous.
Tier 1 Generally, Tier 1 compounds are diarylthiohydantoins with a disubstituted left hand aryl ring that are disubstituted on the right oin carbon, and have either an oxygen or N substituent on the left hydantoin carbon. It is expected that the amido substituent yzes to an oxygen in s solutions such as encountered in ical systems, in vitro and in vivo. RDIOO has good ty with an iodine instead of a CF3 substituent on the left hand aryl ring.
Tier 1 compounds (see Table 5) were judged to be much better than bicalutamide for treating prostate cancer. However, RD37 and RDl3l were found to metabolize fast, that is, have a short residence time in blood. RD162 had desirable pharmacokinetics.
Figure 17 shows that under treatment with bicalutamide, PSA levels for LNCaP cells stayed the same or increased relative to treatment with vehicle solution, s under treatment with RD162, PSA levels decreased. Figure 18 rates that under treatment with vehicle solution, tumors continued to increase in size. By contrast, under treatment with RD162 at a dose of 1 mg per kg body weight per day, the rate of tumor increase decreased, and the size of the tumor appeared to be stabilizing after about 17 days. Under treatment with RD162 at a dose of 10 mg per kg body weight per day, tumor size decreased with time. Figure 19 illustrates that under treatment with RD162 at a dose of 10 mg per kg body weight per day, photon emission ated with luciferase activity decreased. Figure 20 shows that treatment With RD162 at this dose ed in a decrease or stabilization of tumor size and a se in photon emission associated with luciferase activity.
Figure 21 shows that under treatment with RD162, RD162', RD162",_RD169, and RDl70 at doses of 100, 200, 500, and 1000 nM, PSA levels of LN—AR cells sed. Moreover, the higher the dose, the lower the PSA level. Figure 23 presents urogenital tract weight and rate of photon emission associated with luciferase activity initially and after 14 days of treatment with bicalutamide with RD162 for intact and castrated mice. The weight and rate of photon emission increased for both intact and castrated mice. Treatment of castrated mice with RD162 resulted in a decrease in weight and photon emission with respect to the untreated castrated mice, as did treatment with bicalutamide.
Thus, Tier 1 compounds are particularly advantageous for use as AR antagonists, and as therapeutic agents for hormone refractory prostate cancer. They may be useful to treat other AR related diseases or conditions such as benign prostate hyperplasia, hair loss, and acne. These and related compounds may also be useful as modulators of other nuclear ors, such as glucocorticoid receptor, estrogen receptor, and peroxisome proliferator—activated receptor, and as therapeutic agents for diseases in which nuclear ors play a role, such as breast cancer, ovarian cancer, diabetes, cardiac diseases, and metabolism related diseases. They may be useful in assays e.g. as standards, or as intermediates or prodrugs. 2006/011417 13XBIJE5 TIER 1 COMPOUNDS NC Me —102- WO 24118 TERICOMWOWflE —103— TIER 1 COIVIPOUNDS F O RD162" Tier 2 Tier 2 compounds (see Table 6) were cantly better than bicalutamide for treating prostate cancer, although there were indications that RD54 could act as an t. Figure 3 illustrates that compounds RD145, RD152, RD153, RD162, and RD163 in Tier 1 and RD161 in Tier 2 closed at concentrations ranging from 125 11M to 1000 nM acted to reduce luciferase activity in LNCaP-AR cells whereas control solutions of DMSO and of bicalutamide had little or no effect. Figure 4 illustrates, for example, that at concentrations of 1000 nM, compounds RD37 and RD131, in Tier 1, caused a greater decrease in PSA level of LNCaP—AR cells than RD133, RD134, and RD138 in Tier 2. Figure 11 presents tumor volume over time, and illustrates that under treatment with bicalutamide or vehicle solution, tumors continued to grow, whereas under treatment with RD162, in Tier 1, tumors sed in size.
Figure 12 illustrates that photon emission associated with luciferase activity remained about the same or sed under treatment With bicalutamide relative to treatment with vehicle solution, s photon emission decreased under treatment with RD162. Figure 14 illustrates that under treatment with bicalutamide, there was little or no decrease in PSA levels, s under treatment with RD131 and RD162, PSA levels decreased. Figure 15 illustrates that the ICso for RD37, RD 131, and RD162, in Tier 1, was much lower than the ICSO for bicalutamide. lly, Tier 2 compounds are urally similar to Tier 1 compounds, but with ent substituents on the right hand aryl ring. Tier 2 compounds are advantageous for use as AR antagonists, and as therapeutic agents for hormone refractory prostate cancer. They may be useful to treat other AR related diseases or conditions such as benign prostate hyperplasia, hair loss, and acne. —1o4- These and d compounds may also be useful as modulators of other nuclear receptors, such as estrogen receptor and peroxisome proliferator—activated receptor, and as therapeutic agents for diseases in which r receptors play a role, such as breast cancer, ovarian cancer, diabetes, cardiac diseases, and metabolism related diseases. They may be useful in assays e.g. as standards, or as intermediates or prodrugs.
TABLE 6 TIER 2 COMPOUNDS 3 ON, NC N N —105- TIER 2 COD/[POUNDS Tier 3 Tier 3 compounds (see Table 7) were judged to be slightly better than tamide for treating te cancer. RD133, RD134, and RD138 (in Tier 2) caused a greater decrease in PSA level of LNCaP-AR cells than RD135 and RD137, in Tier 3. All of these compounds caused a greater decrease in PSA level than bicalutamide.
Other Tier 3 compounds (not shown) were not diarylthiohydantoins, and were comparable in activity to prior art monoarylhydantoin compounds RD2, RD4, and RD5. —106- Thus, Tier 3 compounds are useful as AR antagonists, and as eutic agents for hormone refractory prostate cancer. They may be useful to treat other AR related diseases or conditions such as benign prostate hyperplasia, hair loss, and acne. These and d compounds may also be useful as modulators of other nuclear receptors, such as estrogen or and peroxisome proliferator— activated receptor, and as therapeutic agents for diseases in which nuclear receptors play a role, such as breast cancer, ovarian cancer, diabetes, cardiac diseases, and metabolism related diseases. They may be useful in assays e.g. as standards, or as intermediates or prodrugs.
TABLE 7 TIER 3 COMPOUNDS NCD S NC . S RD3 NJLNWNa RD4 D F3C F30 NJLNWVN?’ ) ‘Me 9 ‘Me 0 Me 0 Me (comparative) (comparative) "I; S RD5 F3C NJLNWNS (comparative) Tier 4 -107— Tier 4 compounds (see Table 8) were judged to be no better than bicalutamide for treating prostate cancer. Tier 4 RD 39 and RD40 and Tier 1 RD37, for example, differ only in the substituent on the lower right carbon of the hydantoin ring. The tuents on the right hand aryl ring may also affect activity.
Some Tier 4 compounds (including those shown and others that are not shown) were not diaryl compounds (lacking the right hand aryl ring), were not thiohydantoins, were not disubstituted on the carbon on the lower right hand of the hydantoin ring, and/or had substituents other than oxygen or amido on the lower left hand carbon of the hydantoin ring. This provides ce of the surprising advantages of thiohydantoins that are tituted on the lower right hand carbon of the hydantoin ring and have oxygen or amido on the lower left hand carbon of the hydantoin ring.
Thus, Tier 4 compounds may be useful as AR antagonists, and as therapeutic agents for hormone refractory prostate cancer, at least to the extent that they are comparable to bicalutamide. They may be useful to treat other AR related diseases or conditions such as benign prostate hyperplasia, hair loss, and acne. These and related compounds may also be useful as modulators of other nuclear receptors, such as estrogen receptor and peroxisome proliferator-activated receptor, and as therapeutic agents for diseases in which nuclear receptors play a role, such as breast , ovarian cancer, diabetes, cardiac es, and metabolism related es. They may be useful in assays e. g. as standards, or as intermediates or prodrugs.
TABLE 8 TIER 4 COB/[POUNDS —108- 2006/011417 Tmm4cmumflmms TIER 4 OUNDS Tier 5 Tier 5 compounds (see Table 9) were inactive or nearly inactive, and thus, were worse than bicalutamide for treating prostate cancer. The tuents on the right hand aryl ring are important to ining activity.
Some Tier 5 nds (some of which are shown and some that are not shown) were not diaryl compounds (lacking the right hand aryl ring), were not thiohydantoins, were not disubstituted on the carbon on the lower right hand of the hydantoin ring, and/or had substituents other than oxygen or amido on the lower left hand carbon of the hydantoin ring. This provides evidence of the surprising advantages of diarylthiohydantoins that are disubstituted on the lower right hand carbon of the hydantoin ring and have oxygen or amido on the lower left hand carbon of the hydantoin ring. In particular, the terminal substituent in RD155, RD 156, and 158 (CHZNRny, where Rm, = H or methyl) is not seen as contributing to activity in these compounds.
Tier 5 compounds would not be desirable for treatment of te cancer or as AR antagonists, gh these and related compounds may be useful as modulators of other nuclear receptors, such as estrogen receptor and peroxisome proliferator-activated receptor, and as eutic agents for diseases in which nuclear receptors play a role, such as breast cancer, ovarian cancer, diabetes, cardiac diseases, and metabolism related diseases. They may be useful in assays e.g. as standards, or as intermediates or prodrugs.
TABLE 9 TIER 5 COMPOUNDS —110— TIER 5 COMPOUNDS NC CN Tier 6 Tier 6 compounds (see Table 10) were ve or nearly inactive, and furthermore were strong agonists, and thus were much worse than bicalutamide for treating prostate cancer. The comparative nds ranked very poor relative to the inventive compounds. Notably, RD72 had very poor activity, with a chlorine substituent on the left hand aryl ring, whereas RD7, with a trifluoromethane, and RDlOO, with iodine, ranked in Tier 1. The results for the Tier 6 compounds provide evidence of the surprising ages of diarylthiohydantoins that are disubstituted on the lower right hand carbon of the hydantoin ring and have oxygen or amido on the lower left hand carbon of the hydantoin ring, and have certain substituents on the left hand aryl ring.
Tier 6 nds would not be desirable for treatment of prostate cancer or as AR antagonists. ~111- TABLE 10 TIER 6 COMPOUNDS NCr; F3C MUN/Me (comparative) (comparative) Untiered nds For several compounds, there was insufficient experimental data to rank them. These untiered compounds are presented in Table 11.
] Based on the data and methods of the invention, and applying judgment based review of many compounds, including some not shown here, one can make some observations about the untiered nds. ative example RDl is expected to be in Tier 3 with comparative examples RD3—RD5. RD89 is expected to hydrolyze to RD37 (Tier 1), and should therefore have comparable activity. RD104 is expected to hydrolyze to RDS 8 (Tier 1), and should therefore have comparable activity. RDlOS is expected to hydrolyze to RD8 (Tier 1), and RD 139 and RD140 are expected to yze to RD138 (Tier 2), and they should therefore have comparable activity.
TABLE 11 UNTIERED COMPOUNDS —llZ- UNTIERED NDS "CD 8 R01 F3C N/U\r\1/\/\/N3 (comparative) —113- UNTIERED COMPOUNDS ] In short, novel compounds which show evidence of being far superior to bicalutamide in treating prostate cancer were identified and produced.
Sensitivity of Anti-Cancer ty of nds to Structural Differences The inventors have determined that what might appear to be a small change in the structure of hydantoin compounds may result in a large change in that compound's performance in treating prostate cancer. For example, RD161 and RD162 differ only by a single fluorine substituent on an aryl ring, and RD162 is in Tier 1, While RD161 is in Tier 2, both being better than bicalutamide for the treatment of prostate cancer, but RD162 being superior. However, RD149, which differs from RD 161 only in having an additional carbon atom between the methylcarbamoyl group and the aryl ring, is no better than bicalutamide for the treatment of prostate cancer and is ranked in Tier 4. The effect of RD161, RD162, and RD149 on luciferase ty can be seen in Figure 24. At a given concentration of compound, the rase activity upon exposure to RD161 and RD162 is less than the luciferase activity upon exposure to RD149. -114— RD9 differs fiom RD8 only in that an amino group is substituted for a yl group.
However, Whereas RD8 is in Tier 1, much better than bicalutamide for the treatment of prostate RD9 is in Tier 4, no better than bicalutamide. The effect of RD8 and RD9 on luciferase activity in the IAR cell line can be seen in Figure 27. For a given dose, the luciferase activity upon re to RD8 is less than the luciferase activity upon exposure to RD9. The effect ofRD8 and RD9 on luciferase activity in the 4AR cell line can be seen in Figure 26. For a given dose, the luciferase activity upon exposure to RD8 is less than the luciferase activity upon exposure to RD9. The effect of RD8 and RD9 on PSA levels in the LN/AR cell line can be seen in Figure 25. For a given dose, the PSA level upon exposure to RD8 is less than the PSA level upon exposure to RD9.
] RD130 and RD131 differ fiom each other only by a methyl substituent on the end of a carbamoyl group and both compounds are ranked in Tier 1, although RD131 has been found to be ularly advantageous. RD129 is the same as RD130, with the exception of a methoxy group being substituted for an amino group. However, RD129 is ranked in Tier 3. RD128 is similar to RD129, but has one less carbon in the chain g the ester group to the aryl ring; RD128 is ranked in Tier 3. The effect ofRD130, RD131, RD128, and RD129 on PSA levels in the LN/AR cell line can be seen in Figure 28. For a given tration, the PSA level upon exposure to RD130 and RD131 is less than the PSA level upon exposure to RD128 and RD129.
] RD153 and RD155 differ from each other in that the former has a methylcarbamoyl group attached to an aryl ring and a dimethyl substituent attached to the thiohydantoin group, Whereas the latter has a amino group attached to the right hand aryl ring and a cyclobutyl substituent attached to the thiohydantoin group. Whereas RD153 is in Tier 1, much better than bicalutamide for the treatment of prostate cancer, RD155 is in Tier 5, inactive or nearly inactive in the treatment of te cancer. The effect ofRD153 and RD155 on luciferase activity in the LN/AR cell line can be seen in Figure 29. For a given concentration, the luciferase activity upon exposure to RD153 is less than the luciferase activity upon exposure to RD155.
RD58 and RD60 differ from each other in the substitution of a thio for an oxo group and a dimethyl substituent for a cyclobutyl substituent. Whereas RD58 is in Tier 1, RD60 is in Tier 4.
Pharmaceutical itions and Administration The compounds of the invention are useful as pharmaceutical compositions prepared with a therapeutically effective amount of a compound of the invention, as defined herein, and a phannaceutically acceptable carrier or diluent.
The diarylhydantoin compounds of the invention can be formulated as pharmaceutical - 1 1 5— compositions and administered to a subject in need of treatment, for example a mammal, such as a human patient, in a variety of forms adapted to the chosen route of administration, for example, orally, nasally, intraperitoneally, or parenterally, by intravenous, intramuscular, l or subcutaneous routes, or by injection into tissue.
Thus, diarylhydantoin compounds of the invention may be systemically administered, e.g., orally, in combination with a aceutically acceptable vehicle such as an inert diluent or an assimilable edible carrier, or by inhalation or ation. They may be enclosed in hard or soft shell gelatin capsules, may be compressed into tablets, or may be incorporated directly with the food of the patient's diet. For oral therapeutic administration, the diarylhydantoin compounds may be combined with one or more excipients and used in the form of ingestible tablets, buccal tablets, troches, capsules, s, suspensions, syrups, wafers, and the like. The diarylhydantoin compounds may be combined with a fine inert powdered carrier and inhaled by the subject or ated. Such compositions and preparations should contain at least 0.1% diarylhydantoin compounds. The percentage of the compositions and preparations may, of course, be varied and may conveniently be between about 2% to about 60% of the weight of a given unit dosage form. The amount of diarylhydantoin compounds in such therapeutically useful compositions is such that an effective dosage level will be obtained.
The tablets, troches, pills, capsules, and the like may also contain the following: binders such as gum tragacanth, acacia, corn starch or gelatin; excipients such as dicalcium phosphate; a disintegrating agent such as corn starch, potato starch, alginic acid and the like; a lubricant such as magnesium stearate; and a ning agent such as sucrose, se, lactose or aspartame or a flavoring agent such as peppermint, oil of Wintergreen, or cherry flavoring may be added. When the unit dosage form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier, such as a vegetable oil or a polyethylene glycol. Various other materials may be present as coatings or to ise modify the physical form of the solid unit dosage form. For instance, tablets, pills, or capsules may be coated with gelatin, wax, shellac or sugar and the like. A syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methyl and propylparabens as preservatives, a dye and flavoring such as cherry or orange flavor. Of course, any al used in ing any unit dosage form should be pharmaceutically acceptable and ntially non-toxic in the amounts employed. In addition, the hydantoin compounds may be incorporated into sustained-release preparations and devices. For example, the diarylhydantoin nds may be incorporated into time e capsules, time release tablets, and time release pills.
] The diarylhydantoin nds may also be administered intravenously or intraperitoneally by on or injection. Solutions of the diarylhydantoin compounds can be prepared ~116- in water, optionally mixed with a nontoxic surfactant.
Dispersions can also be prepared in ol, liquid polyethylene glycols, triacetin, and mixtures thereof and in oils. Under ordinary conditions of e and use, these preparations can contain a preservative to prevent the growth of microorganisms.
The pharmaceutical dosage forms suitable for injection or infiision can include sterile aqueous solutions or dispersions or sterile powders comprising the diarylhydantoin compounds which are adapted for the extemporaneous preparation of e injectable or infusible solutions or dispersions, optionally encapsulated in liposomes. In all cases, the te dosage form should be sterile, fluid and stable under the ions of manufacture and e. The liquid carrier or e can be a solvent liquid dispersion medium comprising, for example, water, ethanol, a polyol (for example, glycerol, propylene glycol, liquid polyethylene glycols, and the like), vegetable oils, nontoxic glyceryl esters, and suitable mixtures thereof. The proper fluidity can be maintained, for example, by the formation of liposomes, by the nance of the required particle size in the case of dispersions or by the use of surfactants. The prevention of the action of rganisms can be brought about by various antibacterial and ngal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars, buffers or sodium chloride. Prolonged absorption of the injectable compositions can be t about by the use in the compositions of agents delaying absorption, for example, aluminum monostearate and gelatin.
Sterile injectable solutions are prepared by incorporating the diarylhydantoin compounds in the required amount in the appropriate solvent with various of the other ingredients enumerated above, as required, followed by filter sterilization.
In the case of sterile powders for the preparation of sterile injectable ons, the preferred methods of preparation are vacuum drying and freeze drying techniques, which yield a powder of the active ingredient plus any additional desired ingredient present in the previously sterile-filtered solutions.
For topical administration, the diarylhydantoin nds may be applied in pure form. However, it will generally be desirable to administer them to the skin as compositions or formulations, in ation with a ologically acceptable r, which may be a solid or a liquid.
Useful solid carriers include finely divided solids such as talc, clay, microcrystalline cellulose, silica, alumina and the like. Other solid carriers include nontoxic polymeric rticles or microparticles. Useful liquid rs include water, ls or glycols or water/alcohol/glycol blends, in which the diarylhydantoin nds can be dissolved or dispersed at effective levels, optionally with the aid of non-toxic surfactants. Adjuvants such as fragrances and additional antimicrobial agents can be added to optimize the properties for a given use. The resultant liquid compositions can be applied from absorbent pads, used to impregnate bandages and other dressings, or sprayed onto the affected area using -1 l7- WO 24118 pump—type or aerosol Sprayers.
Thickeners such as tic polymers, fatty acids, fatty acid salts and esters, fatty alcohols, d celluloses or modified mineral materials can also be employed with liquid carriers to form spreadable pastes, gels, ointments, soaps, and the like, for application directly to the skin of the user.
Examples of useful dermatological compositions which can be used to deliver the diarylhydantoin compounds to the skin are known to the art; for example, see Jacquet et al. (U.S. Pat.
No. 4,608,392), Geria (US. Pat No. 4,992,478), Smith et al. (US. Pat. No. 4,559,157) and Wortzman (U.8. Pat. No. 4,820,508), all of Which are hereby orated by reference. id="p-212" id="p-212" id="p-212" id="p-212" id="p-212" id="p-212" id="p-212" id="p-212" id="p-212" id="p-212" id="p-212"
[00212] Useful dosages of the compounds of formula I can be determined by comparing their in vitro activity, and in vivo activity in animal models. Methods for the extrapolation of effective dosages in mice, and other animals, to humans are known to the art; for example, see US. Pat. No. 4,938,949, which is hereby incorporated by reference.
For example, the concentration of the diarylhydantoin compounds in a liquid composition, such as a lotion, can be from about 01—25% by weight, or from about 05-10% by weight.
The concentration in a semi-solid or solid composition such as a gel or a powder can be about 0.1-5% by weight, or about 05-25% by weight.
The amount of the diarylhydantoin compounds required for use in treatment will vary not only with the particular salt selected but also with the route of administration, the nature of the condition being treated and the age and condition of the t and will be ultimately at the discretion of the attendant physician or clinician. ive s and routes of administration of agents of the invention are conventional. The exact amount (effective dose) of the agent will vary from subject to subject, depending on, for example, the species, age, weight and general or clinical condition of the subject, the severity or mechanism of any disorder being treated, the ular agent or e used, the method and scheduling of administration, and the like. A therapeutically effective dose can be determined empirically, by conventional procedures known to those of skill in the art. See, e.g., The Pharmacological Basis of Therapeutics, Goodman and Gilman, eds, lan Publishing Co., New York. For example, an effective dose can be estimated initially either in cell culture assays or in suitable animal models. The animal model may also be used to determine the riate tration ranges and routes of administration. Such information can then be used to determine useful doses and routes for administration in humans. A therapeutic dose can also be selected by analogy to dosages for comparable —1 18- WO 24118 therapeutic agents.
The particular mode of administration and the dosage regimen will be selected by the attending clinician, taking into account the particulars of the case (e.g., the subject, the disease, the disease state involved, and whether the treatment is prophylactic). Treatment may involve daily or multi— daily doses of compound(s) over a period of a feW days to months, or even years.
In general, however, a suitable dose will be in the range of from about 0.001 to about 100 mg/kg, e.g., from about 0.01 to about 100 mg/kg ofbody weight per day, such as above about 0.1 mg per kilogram, or in a range of from about 1 to about 10 mg per kilogram body Weight of the recipient per day. For e, a suitable dose may be about 1 mg/kg, 10 mg/kg, or 50 mg/kg ofbody weight per day. id="p-218" id="p-218" id="p-218" id="p-218" id="p-218" id="p-218" id="p-218" id="p-218" id="p-218" id="p-218" id="p-218"
[00218] The diarylhydantoin compounds are conveniently administered in unit dosage form; for example, containing 0.05 to 10000 mg, 0.5 to 10000 mg, 5 to 1000 mg, or about 100 mg of active ient per unit dosage form.
The diarylhydantoin compounds can be stered to e peak plasma concentrations of, for example, from about 0.5 to about 75 11M, about 1 to 50 uM, about 2 to about 30 uM, or about 5 to about 25 uM. Exemplary desirable plasma concentrations include at least or no more than 0.25, 0.5, 1, 5, 10, 25, 50, 75, 100 or 200 uM. For example, plasma levels may be from about 1 to 100 micromolar or from about 10 to about 25 micromolar. This may be achieved, for example, by the intravenous injection of a 0.05 to 5% solution of the diarylhydantoin compounds, optionally in saline, or orally administered as a bolus containing about 1-100 mg of the diarylhydantoin compounds. ble blood levels may be maintained by continuous infusion to provide about 0.00005 — 5 mg per kg body weight per hour, for example at least or no more than 0.00005, 0.0005, 0.005, 0.05, 0.5, or 5 mg/kg/hr.
Alternatively, such levels can be obtained by intermittent infusions ning about 0.0002 - 20 mg per kg body weight, for example, at least or no more than , 0.002, 0.02, 0.2, 2, 20, or 50 mg of the diarylhydantoin compounds per kg ofbody weight. id="p-220" id="p-220" id="p-220" id="p-220" id="p-220" id="p-220" id="p-220" id="p-220" id="p-220" id="p-220" id="p-220"
[00220] The diarylhydantoin compounds may conveniently be presented in a single dose or as d doses administered at appropriate als, for example, as two, three, four or more sub—doses per day. The sub—dose itself may be further divided, e.g., into a number of discrete loosely spaced administrations; such as multiple inhalations from an insufflator.
A number of the above—identified compounds t little or no tic activities with respect to hormone refractory prostate cancer cells. Because these compounds are strong AR inhibitors, they can be used not only in treating prostate cancer, but also in treating other AR related diseases or conditions such as benign prostate hyperplasia, hair loss, and acne. Because AR belongs to —1 19- the family of nuclear receptors, these compounds may serve as scaffolds for drug synthesis targeting other nuclear receptors, such as estrogen receptor and peroxisome proliferator-activated receptor. Therefore, they may be further ped for other diseases such as breast cancer, n cancer, es, cardiac diseases, and metabolism related diseases, in which nuclear receptors play a role.
The embodiments illustrated and discussed in this specification are ed only to teach those skilled in the art the best way known to the ors to make and use the invention. Nothing in this specification should be considered as limiting the scope of the present invention. All examples presented are representative and non-limiting. The above-described embodiments of the invention may be ed or varied, without departing from the invention, as appreciated by those skilled in the art in light of the above teachings. It is therefore to be understood that, within the scope of the claims and their equivalents, the invention may be practiced otherwise than as specifically described.
Unless the context clearly requires ise, throughout the description and the claims, the words "comprise", ising", and the like, are to be construed in an inclusive sense as opposed to an exclusive or exhaustive sense, that is to say, in the sense of "including, but not limited to".
The reference to any prior art in the specification is not, and should not be taken as, an acknowledgement or any form of tion that the prior art forms part of the common general knowledge in New Zealand.

Claims (13)

1. A compound of formula [RD53] or a pharmaceutically acceptable salt thereof.
2. A compound according to claim 1 for use in the treatment of the human or animal body by therapy.
3. A compound according to claim 1 for use in the treatment of hormone refractory prostate cancer.
4. A compound according to claim 1 for use in the treatment of benign prostate hyperplasia.
5. A compound according to claim 1 for use in the treatment of breast .
6. A compound according to claim 1 for use in the treatment of ovarian cancer.
7. Use of a compound according to claim 1 in the manufacture of a medicament for the treatment of hormone refractory prostate cancer.
8. Use of a compound according to claim 1 in the cture of a ment for the treatment of benign prostate lasia.
9. Use of a nd according to claim 1 in the manufacture of a medicament for the treatment of breast cancer.
10. Use of a compound according to claim 1 in the manufacture of a medicament for the treatment of ovarian cancer.
11. A pharmaceutical composition comprising a therapeutically effective amount of a compound according to claim 1, and a pharmaceutically acceptable r or diluent.
12. A compound as claimed in claim 1, substantially as herein described with reference to any one of the Examples or s f.
13. Use as claimed in any one of claims 7 to 10, substantially as herein described with reference to any one of the Examples or
NZ761414A 2005-05-13 2006-03-29 Diarylhydantoin compounds NZ761414B2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US68083505P 2005-05-13 2005-05-13
US60/680,835 2005-05-13
US75035105P 2005-12-15 2005-12-15
US60/750,351 2005-12-15
US75655206P 2006-01-06 2006-01-06
US60/756,552 2006-01-06
NZ74425606 2006-03-29

Publications (2)

Publication Number Publication Date
NZ761414A true NZ761414A (en) 2021-08-27
NZ761414B2 NZ761414B2 (en) 2021-11-30

Family

ID=

Similar Documents

Publication Publication Date Title
US20210238145A1 (en) Diarylhydantoin compounds
AU2006248109B2 (en) Diarylhydantoin compounds
AU2007245022A1 (en) Diarylthiohydantoin compounds
NZ761414A (en) Diarylhydantoin compounds
AU2017225112B2 (en) Diarylhydantoin compounds
NZ761414B2 (en) Diarylhydantoin compounds
AU2013200746B2 (en) Diarylhydantoin compounds
AU2013203255B2 (en) Diarylthiohydantoin compounds
BR122020004719B1 (en) COMPOUND SYNTHESIS METHOD

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 16 YEARS UNTIL 29 MAR 2026 BY AJ PARK

Effective date: 20220201