Disclosed herein is a broad spectrum, synergistic idal composition when used for the preservation of a glued wood product comprising as active ingredients: (A) triadimefon, and (B) cyproconazole characterised in that the weight ratio of (A) : (B) is from about 20 : 1 to about 1 : 1, the composition being further characterised in that the application rate for the composition is from about 10 gai/m3 to about 6,000 gai/m3.
NZ 758030 SYNERGISTIC FUNGICIDAL COMPOSITIONS AND METHODS OF USE This application is a Divisional application out of New Zealand patent application 741644 which is a divisional of 727921, which is a divisional out of New Zealand patent application 712722, which in turn is a divisional application out of New d patent application . NZ 704395 is itself a Divisional application out of New Zealand patent application . The present application is entitled to priority from NZ 586483 with a priority date of 29 June 2010 and NZ 593471 with a priority date of 15 June 2011. The entire disclosure of each of application 741644, 727921, 704395, 712722 and 604053 is incorporated herein by reference.
FIELD OF THE INVENTION This invention relates to a synergistic fungicidal composition to its method of preparation, to its method of use and to products made therefrom. In particular, the invention relates to a wood preservative for glued wood products, and to its use in a method for the preservation of a glued wood product.
BACKGROUND OF THE ION Many plantation softwood s, generally s of the ae family, and certain ods lack natural durability and are subject to rapid degradation by a host of insects and microorganisms that play a vital role in lignocellulosic mineralization and nutrient recycling processes in nature. Thus it is common practice to protect timber and other wood products using insecticides and fungicides.
The wood degrading microflora include bacteria and a large number of fungi of which the latter are the main cause of sapstain, mould and decay. Sapstain fungi and moulds produce unsightly superficial effects whereas decay fungi (also called rot fungi) severely weaken or completely break down wood.
White rot fungi are so called e they efficiently degrade all three principal wood cell wall biopolymers cellulose, hemicellulose and lignin, eventually producing a bleaching .
Brown rot fungi are capable of utilising the cellulose and hemicellulose ents, but only modifying the lignin component slightly, resulting in a darkening effect. Dry rot fungi are essentially brown rot fungi that can transport water into wood and decompose it . A further category, the soft rot fungi, utilise cellulose and hemicellulose like brown rot fungi but their growth is restricted to inside the woody cell wall and the resulting damage becomes t more slowly than with other decay fungi.
Further information on wood decay fungi and their modes of action can be found in F. W. M. R. Schwarze "Wood decay under the microscope", 2007, Fungal Biology Reviews doi:10.1016/j.fbr.2007.09.001.
Traditional preservation s include nic preservatives such as copper chrome arsenic, sodium octaborate and alkaline copper nary ("ACQ") that are introduced into timber in an aqueous medium, or carbon-based preservatives delivered in a non- aqueous medium termed a light organic solvent vative ("LOSP"). These approaches achieve moderate levels of preservative penetration and result in generally effective protection but are expensive e they use vacuum and pressure to a r or lesser extent, and must be med in a separate step to other wood processing operations, thus incurring onal cost. Inorganic preservatives are loosing favour because of toxicity issues and the accompanying vation methods require special care to avoid problems with dimensional stability. Persistent solvent residue problems characterise LOSP systems.
In recent years carbon-based preservatives and boron compounds have been incorporated into the glues and resins used to make engineered wood products, such as plywood and laminated veneer lumber, and reconstituted wood products such as particle board, oriented strand board and the like. While this system may be integrated easily into veneer and fibre lay up operations, it does require the preservative to be stable under extreme conditions such as heat (up to 250°C), pressure and/or high pH (9-13) commonly encountered during layup and hot pressing of the wood product.
Glueline addition of biocides presents other challenges. The addition must not significantly change the working properties of the resin (viscosity, dynamic e tension, etc) that affect pumping, curtain coating onto veneers or mixing with fibres, as well as other properties including wet bond strength (tack), curing rate and the like. Most importantly, the addition must not reduce the bond strength of the final product. It is ore imperative to add the least possible amount of biocide to the adhesive that will prevent decay during the service life of the glued wood product.
Commercially significant decay fungi are dominated by the brown and white rots, some of which are susceptible to le ides such as tebuconazole and propiconazole.
Tebuconazole and propiconazole are widely used in LOSP processes. However, unworkably high addition rates are required to achieve efficacy when tebuconazole and/or propiconazole are d to the glues and resins used to make engineered and reconstituted wood products.
The effectiveness of a wood preservative in the field is d by any point of weakness against individual fungal species. Accordingly, there is a need with respect to ne ation to increase triazole addition rates by some means, or in some other way overcome the weaknesses of triazole fungicides against certain fungi that can be problematic with glued wood containing products. It is also desirable to increase the efficacy against dry rots and soft rots. At the same time, health, safety and environment considerations are among factors driving a reduction in biocide concentrations in preservative-treated wood products.
The triazoles under consideration in this disclosure are summarised in Table 1.
Triadimenol is the carbonyl reduced form of triadimefon. mefon and triadimenol have similar physical properties apart from melting point and vapour pressure, and contain one and two chiral carbons, respectively. Cyproconazole has similar physical ties to tebuconazole and propiconazole in most respects but differs in the octanol-water partition coefficient (Kow) and air-water distribution coefficient (Henry’s law constant). These azoles n two, one and two chiral carbons, respectively (Table 1). All of the listed triazoles are therefore present as various isomeric mixtures.
The formulation types available for agricultural use (Pesticide , 15th Edition, 2009) reflect in large part the ease of manufacture which is based on the different physical properties of the triazoles, their stability in different formulation types, and the crops and disease control profiles of these active ingredients. Accordingly triadimefon is formulated as powders, granule, paste or emulsifiable trate; triadimenol is formulated in a wide range including powders, granule, ons, suspensions, and concentrates.
Cyproconazole is formulated as a concentrate, solution or granule; tebuconazole as a very wide range including powders, granule, emulsions, gel, suspensions, and concentrates.
Propiconazole, which as a technical is a liquid at ambient temperature, is formulated as an emulsion or gel.
E ! o: $6? S. 82.528 8E2 romv 8:: 2:9. 6.3 .98» ,0" 3&9 was .35 299.an .5 32.9 msooms Doom- :2ng "No.0 3 o? 0 .3 929m .33 .0?a E 2895 Goes «as 6.3 .2392; 3 6.8V In .3 658 .5200 > n .35 .3 Oomow 8 .3 7 .88" Sod 8 8% 78 :9 235 85 .898 gr? mo a? O lag! Ooméo 6%. 2.83 325200 was 603 .2"; a;In .35 .3 6.33 6.3.3 5 .6352 F-N.wo_v 83. 0.3 8 8.. 8. 3 292m a 388.". .5... mambo maoou 6.3 6.8 65>.an Q? are... m a m é 6.0% 65$ In 80.508 .Oomdmp was 2b .3 > < $250.00 99¢? .32 .3 .3 8:585 0. R mo < 88.0 < 8 8% 8-8 Ed $86 8.5 BB8 9238 Souo m5. 6.3 6.08 .2393; In Em I éé 6.8V 80:30.00 .85 603 > .3 2 9me 3.: .3 .3 2 85825 x83 3 8% 8% 8 286 SE 28%... is, 293 .2. 53582 53.2 .285 8%: ..8 gga The principal mode of action of triazole fungicides is inhibition of the biosynthesis of ergosterol, the major sterol found in fungal membranes. Binding of the le ring to cytochrome P450 sterol 14a-demethylase (CYP51) leads to an accumulation of 14a- methyl diols resulting in lethal disruption of fungal membrane integrity. Cytochrome P450 sterol 14d—demethylase is widely distributed among biological kingdoms and is responsible for 14d-demethylation of sterols in the thesis of cholesterol in mammals, and in phytosterol and gibberellin biosynthesis in plants.
Selective inhibition of CYP51 is a key requirement for a triazole to be acceptable for timber preservation, lture and medicine. As an indication of relative selectivity of triazoles, the inhibitory potencies against human and yeast CYP51, sed as a ratio of leo values (human/yeast) are: triadimefon 77, triadimenol 113, onazole 228, tebuconazole 10, propiconazole 55 (E. Ft. Trosken, M. Adamska, M. Arand, J. A. Zarn, C.
Patten, W. Volkel, and W. K Lutz rison of lanosterol-14a-demethylase (CYP51) of human and Candida albicans for inhibition by different ngal ", 2006, Toxicology 228, , i.e. triadimefon, triadimenol and propiconazole are moderately selective for the fungal enzyme, cyproconazole is highly selective, and tebuconazole very non- selective.
It is known that in many species of fungi, plants and mammals, and in soil, mefon is reduced to menol in what is termed an "activation" process, i.e. for many fungal species triadimenol is the fungicidally active metabolite, and that the sensitivity of individual fungal species to triadimefon is related to the extent of activation. More particularly, the sensitivity of a fungal s to triadimefon (and triadimenol) is related to extent of conversion, the stereochemistry of the triadimefon reduction reaction, i.e. which enantiomers are formed and in what relative proportions, and the sensitivity of the fungal species in question to each of the individual triadimenol enantiomers formed (see for example, M. Gasztonyi "The diastereomeric ratio in the triadimenol produced by fungal metabolism of triadimefon, and its role in fungicidal selectivity", 1981, Pesticide Science 12, 433-438, and A. H. B. Deas, G. A. Carter, T. Clark, D. R. Clifford and C. 8. James "The enantiomeric composition of triadimenol produced during metabolism of triadimefon by fungi : Ill. Relationship with sensitivity to triadimefon" 1986, Pesticide Biochemistry and Physiology 26, 10-21). It is well known that 18,2H triadimenol is generally the most fungicidally active enantiomer.
Knowledge of the sensitivity of individual fungal species to triadimefon (and triadimenol) was most comprehensively disclosed by Deas et al. (cited above) who ed the stereospecific metabolism of triadimefon and the sensitivity to each of the four triadimenol metabolites of fifteen fungal species, predominantly plant pathogens (i.e. cellulolytic) and also including two white rot decay sms (Coriolus versicolor, now commonly known as Trametes versicolor, and Chondrostereum purpureum), and a highly cellulolytic mould active on wood (Trichoderma ). The fungi were divided broadly into three categories to explain the ivity of different fungal species to triadimefon. In one category, which included Coriolus versicolor and Chondrostereum purpureum, fungi were sensitive to both triadimefon and triadimenol, and the triadimefon sensitivity appeared to be based on a high rate of triadimefon conversion and the 18,2R enantiomer being the major contributor to the fungicidal activity among the triadimenol metabolites produced. In a r category, which included Trichoderma viride, fungi were itive to triadimefon and menol, and converted triadimefon to forms of triadimenol dominated by enantiomers that the fungi were not sensitive to. in a still further category fungi were comparatively insensitive to triadimefon but partially sensitive to triadimenol. The latter fungi displayed either a high extent of triadimefon conversion but low sensitivity to the particular triadimenol enantiomers produced, or a low extent of sion even though very sensitive to the enantiomers produced, both scenarios combining to produce the net effect of comparative insensitivity to triadimefon. Deas et al. also found no evidence of antagonism or synergy among the various triadimenol enantiomers.
The ide Manual discloses that technical grade triadimenol comprises 70% A and % B. Deas et al (cited above) se a different enantiomeric composition (1 R28 : 18,2R : 1R,2R : 1828 = 21 : 21 : 29 : 29. Notwithstanding this difference, and considering the foregoing discussion, it should be noted that technical grade triadimenol comprises about 21 —35% of the lly highly potent 1S,2Fi enantiomer.
In accordance with the foregoing discussion it has been found that triadimenol controls a much broader spectrum of agricultural fungal pathogens and consequently is more widely used than mefon. Triadimenol also controls a number of wood degrading fungi at significantly lower trations than triadimefon. However, the inhibitory concentration of either active ingredient acting alone varies up to 50-fold or more when tested against a range of sms (see, for example, EP 0254857). The minimum concentrations of active ingredients ed for effective timber preservation are determined by the organisms that are least sensitive to the preservative. Thus the minimum effective dose for preservation in service is dictated by those species most resistant to a particular active ingredient.
As noted above any single active ingredient will have less effectiveness against certain fungal species. This is counteracted by combining two (or more) active ingredients to provide more effective control of fungal growth at cost effective doses against a broad spectrum of different fungal organisms.
All references, ing any patents or patent applications cited in this specification are hereby orated by nce. The applicant makes no admission that any reference constitutes prior art — they are merely assertions by their authors and the applicant reserves the right to contest the accuracy, pertinence and domain of the cited documents.
None of the documents or references tutes an admission that they form part of the common general knowledge in NZ or in any other country.
Applicants disclose that, surprisingly, triadimenol displays an antagonistic interaction with cyproconazole with respect to idal activity, whereas triadimefon displays a istic interaction with cyproconazole. This is entirely unexpected and surprising when it is considered that in most if not all cases where triadimefon is fungicidal against a particular fungal species, it is ly triadimenol, the lite of triadimefon, that is recognised as being the fungicidally active factor, not triadimefon . The fact that triadimenol is the active factor is recognised in the art. It is therefore totally unanticipated that triadimefon will have a synergistic interaction with cyproconazole when triadimenol, the active metabolite of triadimefon, itself displays an antagonistic interaction with cyproconazole. cyproconazole.
A benefit of the synergistic nature of the active ingredients is that it will allow the user to apply a lower application rate of the active ingredients by volume based on the weight of the glue. Therefore, in one aspect the invention resides in a broad spectrum, synergistic fungicidal composition for glueline preservation as a glued wood product comprising as active ients: (A) triadimefon, and (B) cyproconazole characterised in that the weight ratio of (A):(B) is from 20:1 to 6:1, the composition being further terised in that it is formulated to be applied wherein the ation rate for (A) is from 225 gai/m3 to 3,900 gai/m3 and the application rate for (B) is from 10 gai/m3 to 643 gai/m3, ed the total application rate does not exceed 4,500 , and wherein the application rate of the active ingredients varies by volume within the range of from 1.9% to 11.5% based on the weight of the glue; preferably 1.9% to 7.7% based on the weight of the glue, the ition being further characterised in that it is not a fortified glue mixture and is formulated as a glue additive.
The broad spectrum, istic fungicidal composition is particularly efficacious when used as a glueline preservative. The synergy observed n triadimefon and cyproconazole is even more unexpected in this application because other triazoles are recognised as being ineffective in a glueline environment unless they are delivered at unworkable and uneconomically high levels or at levels that detrimentally compromise the integrity of the glue.
The surprising synergy n the active ients (A) triadimefon and (B) cyproconazole allows the ive rates of fungicide required to be lowered producing a number of improved benefits. The synergistic composition applied to the glueline of engineered wood products, for example, is surprisingly much more effective than commercially acceptable LOSP treatments. Furthermore the synergistic composition produces effective control of a broader range of fungal s at reduced cost than existing preservative treatments. A reduction in application rates minimises bation of glue working properties and bond strength and lowers environmental and occupational health and safety concerns associated with treatment.
In one broad aspect this invention provides synergistic fungicidal compositions suitable for use as a glueline preservative comprising (A) triadimefon and (B) cyproconazole as active ingredients.
In a further broad aspect this ion provides methods of formulating synergistic fungicidal compositions for use in a glueline environment.
In a further broad aspect this invention provides a method for the preservation of glued wood products, which comprises applying fungicidally effective amounts of the broad spectrum, synergistic cdal composition to the glue component of glued wood products.
In a yet further broad aspect the broad spectrum, synergistic idal composition may be applied as an optional additional surface ent for a glued wood product either simultaneously or sequentially.
DETAILED DESCRIPTION This invention relates generally to combinations of fungicidal active ingredients and more particularly to broad spectrum, synergistic compositions of fungicidal active ingredients intended to provide more effective and broader control of decay microorganisms in wood products, and in particular, in glued wood products.
Unless d otherwise, all technical and scientific terms used herein have the same meaning as commonly tood by one of ry skill in the art to which this invention belongs.
The term "fungicidal" encompasses all effects on fungi including but not limited to the destruction or killing of fungi, a defined logarithmic reduction, a partial or complete suppression or tion of growth, inhibition of germination, and the like. The term "fungicidally effective amount" indicates the quantity or ation rate of a fungicidal composition or of a fungicidal active ient which is capable of producing any one or more such effects.
The term "glue" is used as a general term for any product used in the manufacture of wood products resulting in permanent or semi-permanent adhesion, bonding, chemical bonding, linkage, attachment, etc, of wood or wood derived components such as sawn timber, veneers, flakes, fibres, and the like, "Glue" includes terms such as adhesive, resin, tackifier, glue mix, glue mixture, glue component, and the like, and these terms may be used hangeably in this sure. The introduction of a wood preservative to the 11 11 glue component of a glued wood product is commonly referred to as a "glueline" treatment, and this term may be used whether the glue is present in a defined zone such as a veneer ace, or the glue is more widely distributed throughout the product as it is in a reconstituted wood product such as oriented strand board. Furthermore, a glueline preservative may also be uced into the ne by spraying or misting the preservative directly on to veneers, chips, flakes, etc prior to or during the layup operation.
The preservative remains subject to ial chemical and/or thermal decomposition effects in the presence of the glue component during subsequent manufacturing processes.
The term gistic" refers to a particular phenomenon that occurs when the ed fungicidal effect of a mixture of active ingredients is unexpectedly greater than might be expected from the sum of the observed fungicidal effects of the active ingredients administered separately. Synergy may be calculated in s ways, generally based on fungicide concentrations that produce a d end point in measured fungal growth, or in measured or otherwise evaluated effects resulting from the fungal growth. Examples of such measurements or evaluated effects include colony er, percentage germination, weight loss of a piece of infected wood, softening or weakening of a piece of infected wood, and estimations of fungal infection based on coverage and density of fungal growth.
Any of these and other parameters can be enumerated using an instrument and/or evaluated manually or visually and assigned to linear or non-linear rating scales.
Methods that may be used to calculate synergy include those described by Y. Levy, M.
Benderly, Y. Cohen, U. Gisi, and D. Bassand ("The Joint Action of Fungicides in Mixtures: Comparison of Two Methods for Synergy Calculation", 1986, Bulletin OEPP, 16, 651—657), by F. C. Kull, P. C. Eisman. H. D. Sylwestrowicz, and R. L. Mayer ("Mixtures of Quaternary Ammonium Compounds and Long-chain Fatty Acids as Antifungal Agents", 1961, Applied Microbiology, 9, 1), and by R. S. Colby ulating Synergistic and Antagonistic Responses of Herbicide Combinations", 1967, Weeds 15, 20-22).
In contrast an "antagonistic" effect refers to the situation whereby two or more components produce a combined effect which is less than the sum of their individual parts. 12 12 According to the invention, istic combination of triadimefon and cyproconazole may be found when the relative amounts of triadimefon and cyproconacole expressed as a ratio triadimefon:cyproconazole are present within the range from about 20:1 to about 6:1 parts by weight. The composition is further characterised in that it is formulated to be applied when the application rate for triadimefon is from 225 gai/m3 to 3,900 gai/m3 and the application rate for cyproconazole is from 10 gai/m3 to 643 gai/m3 provided that the total application rate does not exceed 4,500 gai/m3, the composition being further characterised in that it is not a fortified mixture and is formulated as a glue ve. More preferably triadimefon and cyproconazole are present in a ratio from about 15:1 to about 6:1 parts by weight.
The composition may comprise 0.1% to 60% triadimefon and 0.1% to about 8.6% cyproconazole on a weight/weight basis or a /volume basis. The percentages of active ingredients in the composition will depend mainly on the formulation type, the nature and quantities of the glue system relative to the wood component, veneer thicknesses, wood strand ions, etc, blending or mixing equipment and processes, as well as the ty and quantities of other glueline additives such as waxes etc, that may be used for the particular glued wood products to which the composition is to be applied. An ant consideration is the ease with which the composition can be dispensed accurately into the glue e.
This invention es methods of formulating istic fungicidal compositions adapted specifically for use in a glueline environment.
The fungicidal composition is characterised in being readily dispersed into the glue component or the glueline environment during manufacture of glued wood products, or dispersed within the flakes, strands, fibres, etc, of reconstituted wood products.
The dispersibility of the ition is in turn determined by the formulation type and the nature of the solvent base for the composition, as well as the presence of surfactants and other dispersal aids, as is known in the art.
Formulation types and methods of manufacture developed for crop protection purposes are lly used for preservatives for , wood and other biodegradable products. These are described, for example, in "Chemistry and Technology of Agrochemical Formulations", 1998, D. A. Knowles (editor), Kluwer Academic Publishers, "Pesticide Formulation and Adjuvant Technology", 1966, C. L.
Foy (editor), CRC Press, and "Formulation Technology: Emulsions, Suspensions, Solid Forms", 2001, H. Mollet and A. Grubenmann, Wiley-VCH.
Advantageously, the formulation is a liquid thus minimising re of users to the hazards of powders and dusts. When needed for use with dry glue components, the formulation is a dry mixture, preferably a dust free formulation. Suitable formulation types for the fungicidal composition include, but are not limited to, a powder, a granule, a concentrate, a gel, a solution, an emulsion, a dispersion, a suspension, or a controlled release form including a microcapsule. Preferred formulation types are a suspension concentrate, an emulsion, a granule and a powder.
In addition to triadimefon and cyproconazole, the fungicidal composition may contain 0.1% to 99% of customary formulation additives. Customary formulation additives and their functions are described in the previously mentioned publications. Such additives may e water, suitable surfactants, dispersants, emulsifiers, penetrants, Spreaders, g agents, soaps, carriers, oils, ts, diluents, inert components, conditioning agents, colloids, suspending agents, ners, thixotropic , polymers, emollients, acids, bases, salts, organic and inorganic solid matrices of various kinds, vatives, anti- foam agents, anti-freeze agents, anti-caking agents, lubricants, stickers, binders, complexing agents, chelating agents, crystallization inhibitors, dyes, activators, and the like.
Certain ves are known to increase the efficacy of fungicidal active ingredients for wood vation, for e compounds that assist in the movement of active ingredients into the wood component at any stage during and after the manufacturing process. Such compounds include but are not limited to surfactants, chelating agents and various t modifiers including aprotic solvents. le aprotic ts comprise cyclic ethers including 1,4-dioxane, tetrahydrofuran, tetrahydropyran and the like, short chain aliphatic ethers, unsaturated ethers such as mesityl oxide, alkyl aryl ethers such as acetophenone, diaryl ethers, glycol ethers, and alkylene glycol ethers, ketones such as methylethyl ketone, methylpropyl ketone, cyclopentanone, cyclohexanone and the like, lactones such as propiolactone, butyrolactone, valerolactone and the like, dialkyl carbonates, amides such as dimethylformamide, lformamide, dimethylacetamide, dimethylbutyramide and the like, s and derivates thereof including 1-methyl pyrrolidone, 1-ethylpyrrolidone and the like, short chain trialkylamines, quinoline, 15 dine, N-methylpiperidine, and the like. Also suitable as ation aids are alcohols and glycols, alkanolamines, quaternary ammonium compounds, imines and amine oxides.
Further biocidal active ients may be combined with the fungicidal active ingredients of the composition including other fungicides, mouldicides, anti-sapstain compounds, icides, bactericides, algaecides, and the like. Preferably the additional biocidal ingredient is one or more insecticides. itions are formulated using known methods by dissolving, dispersing, finely dividing, slurrying, blending, fying, homogenizing, stirring, high-shear mixing, comminuting, milling, stabilising, etc, the active ingredients, and by admixing with appropriate quantities of the one or more previously mentioned customary formulation additives to form the composition of the invention. In addition triadimefon and/or cyproconazole may be microencapsulated prior to mixing with other formulation additives.
Further s of suitable methods of manufacture of the composition are provided in the Where applicable to the compositions formulated using the known methods referred to above and as provided in methods of the examples, the mean particle size as determined for example using a laser diffraction particle size analyser after on into water, is from about 0.1 microns to about 50 s. Preferably the mean particle size is from about 0.1 microns to about 20 microns. Still more preferably the mean particle size is from about 0.2 microns to about 5 microns.
The invention provides a method of vation of glued wood products, which comprises applying to the glue ent of such products, fungicidally effective amounts of a synergistic fungicidal composition comprising triadimefon and cyproconazole as active ingredients.
Advantageously the composition of the invention is incorporated into the glues and resins used to make glued wood products including various engineered wood products, 16 16 reconstituted wood products and ations thereof. The ng materials for such products encompass solid wood, timber or lumber, veneers of various thicknesses, wood flakes, chips, s, particles, fibres, flour, dusts or nanoflbrils, including chemically and/or thermally modified derivatives thereof. Engineered wood ts comprise glued solid timber or glued wood veneers and include products such as glued laminated timber (for example, Glulam and Mabashira), laminated veneer lumber (LVL) and plywood.
Reconstituted wood products comprise glued wood flakes, chips, strands, particles, fibres, flour, dusts or nanoflbrils, and include products such as strand board, oriented strand board, parallel strand lumber, flake board, le board, medium y oard (MDF), high density fibreboard, ard, combination products such as Triboard which ses a strand board core with surface MDF layers, and wood plastic composites. included in the scope of the invention are further combination products such as plywood in which one or both surface layers comprise a layer of MDF, another reconstituted wood product, a decorative veneer or a piece of solid wood. These surface layers may be introduced during normal lay up operations prior to hot pressing or may be added in gluing operations subsequent to manufacture of the base product. Also encompassed within the invention are other glued lignocellulosic products including glued products based on bamboo, rattan, bagasse, straw, hemp, jute , flax shives and the like.
Glue types suitable for the invention consist of various organic polymers including amino resins, phenolic resins, isocyanate , epoxy resins, PVA adhesives, polyurethane glues, protein and protein-derived adhesives, starches, lignocellulosic extractives and other thermosetting erials of renewable origin. The glue mixtures may be used in a liquid or non-liquid (dry) state. Excluded from the invention are adhesives when used to adhere wood products to other materials such as metal, cs, etc.
Useful amino resins include urea and/or melamine derivatives including hydroxymethyl or alkoxymethyl derivatives of urea, ne, benzoguanamine, and glycoluril, chiefly urea- formaldehyde (UF) , melamine-formaldehyde (MF) resins, melamine-urea formaldehyde (MUF) resins. These are produced by reaction of widely varying ratios of amine (urea, melamine, benzoguanamine, glycoluril), formaldehyde and l under differing reaction conditions to produce a very broad range of resins suitable for gluing wood products. Useful phenolic resins comprise novolac-type and resole-type phenol- 17 17 formaldehyde resins, resorcinol-formaldehyde resins and pheno|-resorcinol-formaldehyde resins. Suitable isocyanate resins are based on (partially) polymerised diisocyanates, mainly polymeric diphenylmethane diisocyanate . PVA adhesives n polyvinyl acetate and polyvinyl alcohol in s mixtures, and other cross-Iinkable copolymers thereof. Polyurethane adhesives, both one part and two part, may be used alone or in combination with coupling agents. Protein based adhesives, including a wide range of adhesives manufactured from modified proteins and crosslinked proteins, including modified and/or inked soy proteins, are particularly suitable for use with the invention. These products are gaining acceptance as formaldehyde-free ves le for glued wood products. Also included are mixed adhesives such as soy protein- modified amino and phenolic .
The glue mixture to which the composition of the invention is applied may also contain catalysts, plasticizers, wetting agents, inorganic and organic s and extenders (generally lignocellulosic residues), as well as other additives with various functions.
Most often the abovementioned glue types are hot-cured but some, e.g. PVA ves, polyurethanes and epoxy resins, cure at ambient atures. Pressure is usually combined with hot cure and cold cure processes.
With some exceptions, notably isocyanate resins and epoxy resins, water is the solvent acting as carrier for the adhesive and the fungicidal active ingredients of the composition.
Non-aqueous adhesive solvents that are compatible with the glue system may also be used with the ition, including certain alcohols, ketones and glycol ethers, as long as the amounts used do not ely affect working and curing properties of the glue.
Advantageously the fungicidal composition may be incorporated directly into the glue mixture prior to "lay up", the process y wood raw materials are arranged and ed with the glue mixture prior to the curing process. In this case the glue mixture containing the composition may be applied by pumping, blending, extruding, soaking, dipping, spinning, atomising, spraying, pouring, rolling, foaming, or curtain coating. 18 18 A minimum retention of an active ingredient may be specified with reference to a particular d class" for the finished product, i.e. a category relating to the lity of the product in a defined phical area, the location of the t in a building or structure, its exposure to moisture, proximity to the ground, etc. The minimum retention and other defined parameters are determined based on results of standard durability test methods set by organisations such as Australasian Wood Preservation Committee (AWPC), American Wood Preservers Association, Japanese rial Standards, EN Standards etc.
Use rates for the composition of the invention vary within the range from about 5 gai/m3 to about 5,000 gai/m3 for triadimefon and within the range from about 5 gai/m3 to 700 gai/m3 for cyproconazole, depending on the nature of the glued wood product, and the hazard class for the product. Preferably the use rates vary within the range from 225 gai/m3 to 3,900 gai/m3 for triadimefon and within the range from 10 gai/m3 to 643 gai/m3 for cyproconazole, provided that the total application rate does not exceed 4,500 gai/m3, and wherein the application rate of the active ingredients varies by volume within the range of from 1.9% to 11.5% based on the weight of the glue; preferably 1.9% to 7.7% based on the weight of the glue. Still more ably the use rates vary within the range from 225 gai/m3 to 3,800 gai/m3 for triadimefon and within the range from gai/m3 to 570 gai/m3 for cyproconazole.
Optionally the composition may be used as a surface treatment in addition to a glueline treatment for glued wood products in order to provide an extra line of defence against fungal attack. In this instance the composition may be applied to the surface by ng, dipping, painting, pouring, rolling, and the like.
EXAMPLES It will be appreciated that the compositions are ed as non-limiting examples only and that other synergistic fungicidal compositions comprising triadimefon and onazole as active ients will also fall within the ambit of the instant invention.
EXAMPLE 1.
Slowly blend 210.5 grams of triadimefon (95% tech) and 21.3 grams of cyproconazole (94% tech) into 100 mL water containing 40 grams of commercially available rheology modifiers and dispersants. Add more water until a smooth slurry is formed then mill the mixture to e an e particle size less than 5 s. Add 1.5 grams of a commercially available thickening agent. Stir until full viscosity is reached, add 2 grams of isothiazolinone biocide then make up to 1,000 mL with water. The resulting suspension concentrate containing 200 grams/litre triadimefon and 20 grams/litre onazole can be diluted with water or added directly to glue mixtures for use in glued wood products.
EXAMPLE 2.
Hammer mill 421 grams of triadimefon (95% tech) and 42.6 grams of cyproconazole (94% tech), then mix in a ribbon blender with 30 grams commercially available anionic dispersants and 506.4 grams of powdered silica until homogeneous. The resulting dispersible powder containing 40.0% (w/w) triadimefon and 4.0% (w/w) cyproconazole can be blended into powdered resins or dispersed into liquid glue mixtures for use in glued wood products.
EXAMPLE 3.
Hammer mill 421 grams of triadimefon (95% tech) and 42.6 grams of cyproconazole (94% tech), then mix in a ribbon blender with 100 grams commercially available anionic dispersants and 420.0 grams of China clay until homogeneous. Add 10% to 15% water and knead in a Z mixer until a moist powder is formed that just holds together. Extrude through a cone extruder and dry in a fluid bed drier to about 1 to 2% moisture content.
The resulting sible extruded granule containing 40.0% (w/w) triadimefon and 4.0% (w/w) cyproconazole can be dispersed into liquid glue mixtures for use in glued wood products.
In the following examples, the synergistic fungicidal effects of compositions comprising triadimefon and cyproconazole as active ingredients are trated in various biological assays. Synergy was determined by the "Wadley method" for similarjoint action as disclosed by Y. Levy, M. Benderly, Y. Cohen, U. Gisi, and D. Bassand ("The joint action of ides in mixtures: comparison of two methods for synergy calculation", 1986, Bulletin OEPP 16, 651—657), according to the formulae: 21 21 1. ) = (a + b)/(a/EDA + b/EDB), in which, EDA is the concentration in ppm of (A), acting alone, which ed an end point, EDB is the concentration in ppm of (B), acting alone, which produced an end point, a and b are the proportions of (A) and (B) in the mixture, and ) is the expected equally ive concentration in ppm of (A) and (B), acting together, in the proportions a and b, and 2. SF = ED(exp)/ED(obs), in which, SF is the synergy factor, and ) is the observed equally effective concentration in ppm of (A) and (B), acting together, in the proportions a and b.
If SF > 1, there is synergistic interaction between the fungicides, if SF < 1, there is antagonistic interaction, and if SF = 1, there is additive action (i.e. similar joint action).
The end points used were E090 or E050, the concentration ing 90% or 50% inhibition of growth or weight loss resulting from fungal growth. EC values were calculated by regression analysis of dose response data using the GraphPad Prism software package (GraphPad Software, Inc, 5755 Oberlin Drive #110, San Diego, CA 92121, USA). ECgo values are expressed in ppm and E050 values are expressed in gal/m3.
EXAMPLE 4 Decay fungi were grown on malt extract agar plates for 5 days at 25°C in the presence of triadimefon alone or triadimenol alone (A), cyproconazole alone (B), and the pairs of mixtures shown in Table 2. 22 22 Table 2. Combined action of mefon and cyproconazole or triadimenol and cyproconazole on decay fungi. synergy, the largest E090 value (the weakest point) among the triadimefon-cyproconazole mixtures was 0.63 ppm (Trametes o/or). This was less than half of the E090 values for all of the triadimenol-cyproconazole mixtures for Antrodia. It must be noted that even though onazole alone was more effective than the other treatments, timber preservation with a single active ingredient is always vulnerable to attack by certain fungal species less susceptible to the single active ingredient, and does not provide for the desired broad um efficacy.
EXAMPLE 5 Further ECso values were determined as in Example 4. Triadimenol acting alone was more potent than triadimefon acting against three of the four fungi, the exception being the dry rot organism a Iacrymans (Table 3). The triadimefon cyproconazole mixture was synergistic for all fungi, and the triadimenol cyproconazole mixture was antagonistic for all apart from Gloeophyl/um abietinum, where it was approximately additive. As a result of the synergy the largest ECgo value (the weakest point) for the mefon cyproconazole mixture was 8.3 ppm (Serpula lacrymans), much lower than the corresponding value for triadimenol cyproconazole, and illustrates conclusively that triadimefon cyproconazole is the better broad spectrum fungicide. 24 24 Table 3. Combined action of triadimefon and cyproconazole or triadimenol and cyproconazole on decay fungi.
Fungicide EC90(obs) ECgo(exp) SF Fungicide ECgo(obs) EC90(exp) SF 'ycnoporus coccineus (White rot), 4 days growth mefon 0.34 Triadimenol 0.10 : 1 0.25 0.33 20 : 1 0.48 0.10 Cyproconazole 0.17 Cyproconazole 0.17 ces palustris (Brown rot), 4 days growth mefon 4.48 Triadimenol 1 .26 2 1 2.75 20 : 1 2.90 1.21 Cyproconazole 0.68 Cyproconazole 0.68 'oria placenta (Brown rot), 5 days growth Triadimefon 0.82 Triadimenol 0.84 : 1 0.69 0.83 20 I 1 1.83 0.85 Cyproconazole 0.92 Cyproconazole 0.92 Triadimefon 26.4 Triadimenol 42.8 : 1 8.32 15.2 20:1 102 19.20 0.19 Cyproconazole 1.60 Cyproconazole 1.60 25 COMPARATIVE EXAMPLE 6.
ECgo values for triadimefon and cyproconazole acting alone and together in a 1:1 e, ined as in Examples 4 and 5, further demonstrate the range of the synergistic interaction between these two ides (Table 4).
Table 4. Combined action of triadimefon and cyproconazole on decay fungi.
Fungicide ECso(0bS) ECgo(exp) SF Pycnoporus coccineus (White rot). 6 days growth Trladimefon 0.70 1 : 1 0.20 0.23 1.15 Cyproconazole 0.14 Pon‘a placenta (Brown rot), 6 days growth Triadimefon 1 .08 1 : 1 0.43 0.54 1.26 Cyproconazole 0.36 . tmdia xenlhe (Brown rot), 8 days growth Triadlmefon 1 : 1 Cyproconazole Triadimelon Cyprooonazole Selpula lacrymans (Dry rot), 8 days growth Triadimefon 26.3 1 : 1 2.04 2.52 1.23 Cyproconazole 1.32 26 26 Efficacy as a glueline fungicide was tested in plywood manufactured with phenol formaldehyde (PF), a typical resin used in engineered wood ts. The wood type was Pinus radiata sapwood, which, like many ods, is rapidly degraded by decay organisms, if not ted. Five 3.2 mm rotary-peeled veneers were laid up with fungicide-containing PF resin at a typical commercial glue spread rate (250 g/m2), cold d for 10 minutes then hot pressed for 12 minutes at 135°C and 50 MPa. Test specimens (25 mm x 25 mm x 16 mm) were cut, then leached for 14 days according to EN 84 before conducting a three month "rot jar test" as specified by the Australasian Wood Preservation Committee (Laboratory Decay Test for Hazard Classes H3, H4 and H5, AWPC, 2007). Untreated controls contained no fungicide.
Triadimefon alone displayed a typical dose response when challenged with Tyromyces palustris and Fomitopsis lifacinogilva but a flat dose response with Serpula lacrymans (a weak point). Cyproconazole alone was more effective than triadimefon and displayed partial inhibition of Serpula lacrymans (Table 5).
Table 5. Rot jar test results for triadimefon and cyproconazole as glueline fungicides d was manufactured following the procedure in Example 7 using triadimefon and triadimenol as the glueline fungicides and tested by the rot jar method after leaching. The data in Table 6 demonstrates that triadimenol was more efficacious than triadimefon when acting alone in the ne, consistent with the results obtained on agar plates in Example 2.
Table 6. Rot jar test results for triadimefon and triadimenol as glueline fungicides EXAMPLE 9 In order to examine the interaction between triadimefon and onazole in the glueline a synergy trial was performed using plywood manufactured with fungicidesupplemented PF resin and the rot jar method described above (Table 7). Six glueline rates (expressed as gal/m3) of triadimefon alone, onazole alone, triadimefon + cyproconazole (10:1) and triadimefon + cyproconazole (6:1) were used to establish EC50 values by regression analysis. Synergy was determined by the Wadley method as described above using the EC50 values. Synergy was observed in all but one instance.
Table 7. Combined action of triadimefon and cyproconazole as glueline fungicides on decay fungi evaluated by the rot jar method EXAMPLE 10 A similar ment to that in Example 9 demonstrates synergy in the glueline between triadimefon and cyproconazole at ratios ranging from 20:1 to 6:1 (Table 8).
Table 8. Combined action of triadimefon and cyproconazole as glueline fungicides on Coniophora puteana ted by the rot jar method.
Plywood 29 mm thick was manufactured from seven 4.3 mm rotary peeled Pinus radiata sapwood veneers using PF resin supplemented with various rates of triadimefon plus cyproconazole at a 10:1 ratio. Plywood was also ctured using non-supplemented PF resin (untreated), and using PF resin supplemented with the formulation auxiliaries minus active ingredients (solvent control). During manufature, the PF resin was treated with four different rates of a fungicide blend consisting of 450 g/L triadimefon and 45 g/L cyproconazole as a suspension concentrate. The formulation was added at the different rates of 1, 2, 4 and 6 L/m3 of ex-press d.
The ed plywood was then sprayed with the same mixtures to cover the top and bottom faces of the plywood. Test specimens (25 mm x 25 mm x 29 mm) were cut, leached and tested by the rot jar method as described in Example 7. As a result of the unexpected synergy between triadimefon and cyproconazole the mixture provided excellent dose responses when tested against a wide range of fungi (Table 9), including the dry rot Serpula lacrymans, which was not controlled by triadimefon and was only partially controlled by cyproconazole.
Table 9. Rot jar test results for triadimefon + cyproconazole (10:1) as a glueline fungicide EXAMPLE 12 In the preceding examples the fungicides were challenged against individual decay fungi in an otherwise sterile environment (autoclaved agar, gamma irradiated rot jar blocks, etc). Next, wood products glueline-treated with the synergistic fungicidal mixture were challenged with an uncontrolled mixture of decay organisms in an rated test simulating a real world situation where the wood product is saturated with water and maintained in a warm and moist environment. Sheets of plywood were ctured as described in Example 11. The sheets were glued together in a cold press with a cold cure phenol-resorcinol-formaldehyde resin supplemented with the :1 triadimefon:cyproconazole mixtures and solvent control at the same rates as in the original hot cured gluelines. The final 58 mm thick panels were then sprayed top and bottom with the corresponding products (see Table 10). For comparison untreated 58 mm panels were treated with a light c solvent vative (LOSP) containing tebuconazole and propiconazole as specified by AS/NZS1604.3 (plywood).
The LOSP treatment ponds to Hazard Class 3 (H3, i.e. d to the weather with periodic wetting, in above ground situations). This "Reference Preservative" was applied at the full H3 rate, ½ H3 rate and ¼ H3 rate as ated by AWPC, 2007.
Specimens were subjected to a bin test for Hazard Class 1.2 (H1.2, protected from the weather, above ground, but with a risk of moisture t ive to decay) ped by Scion Research, Rotorua, New Zealand. Samples were cut to the dimensions shown in Fig. 1 where the exposed gluelines are the top and bottom faces and the ends. End pieces 100 mm long were cut off and stapled back in place at the joins to enable periodic internal inspection.
The specimens were exposed to a wide range of fungal spores from the air, processing equipment and soak water. As an additional challenge feeder blocks sing 30 mm x 30 mm x 7 mm pieces of untreated solid Pinus radiata sapwood pre-inoculated with Antrodia xantha and Serpula lacrymans were positioned with one fungal species at each end. Ten replicates of each treatment were arranged randomly in stacks with ening fillets of untreated Pinus radiata sapwood and placed in 180 Litre plastic bins. The bins contained enough water to maintain 100% humidity and were sealed and maintained at approximately 25 °C. Table 9 shows the averaged data for decay assessments after approximately 18 months. Minimal surface and cross sectional decay was only apparent at the two low rates of the triadimefon + cyproconazole glueline treatment, with the plywood completely intact at the two higher rates. The LOSP comparative data indicates a very high level of performance of the glueline treatment. Although H3 treatments are officially verified by a more challenging test method, the data clearly te protection equal to or better than that provided by a H3 Reference Preservative can be provided by low to intermediate rates of the glueline treatment.
Moreover, this high level performance was ed in the presence of the dry rot fungus Serpula facrymans which was not controlled by either triadimefon or cyproconazole alone.
Table 10. Results of an H1.2 bin trial for triadimefon + onazole (10:1) as a glueline fungicide.
The ne composition and method of treatment of the invention enabled by the unexpected y n triadimefon and cyproconazole is superior to the LOSP treatment, and to other post manufacturing methods of preservation, in that the process for introducing the preservative into the wood product can be incorporated directly into any existing manufacturing process for engineered and reconstituted wood products that uses glue. Other preservation methods require at least one additional s step (the treatment step, often also a re-drying or flashing off step), LOSP methods produce solvent residue problems, and aqueous systems can produce distortion of the wood, etc. Finally use of the synergistic composition produces a very high level of ance to decay under challenging test conditions.
ADVANTAGES The present invention has one or more of the following advantages: Comparatively inexpensive d toxicity Easier to use Safer to use Maintains integrity of resin component Maintains final product bond strength Increased cy against dry rots Increased efficacy against soft rots Broad spectrum control against fungal pathogens Improved glueline preservative EQUIVALENTS CLAUSE The Invention may also broadly be said to consist in the parts, ts and features referred or indicated in the specification, dually or collectively, and any or all combinations of any of two or more parts, elements, members or features and where specific integers are mentioned herein which have known equivalents such equivalents are deemed to be orated herein as if individually set forth.
MODIFICATIONS AND VARIATIONS The invention has been described with particular reference to certain embodiments f. It will be understood that various cations can be made to the abovementioned embodiment without ing from the ambit of the invention. The skilled reader will also understand the concept of what is meant by purposive construction.
The examples and the particular proportions set forth are intended to be illustrative only and are thus non-limiting.
Throughout the description and claims of the specification the word "comprise" or variations thereof are not intended to exclude other ves, components, integers or steps.
KIT OF PARTS It will also be understood that where a product, method or process as herein described or claimed and that is sold incomplete, as individual components, or as a "kit of Parts", that such tation will fall within the ambit of the invention.