NZ755150B2 - Combustion chamber structure, particularly for a rocket engine - Google Patents

Combustion chamber structure, particularly for a rocket engine Download PDF

Info

Publication number
NZ755150B2
NZ755150B2 NZ755150A NZ75515019A NZ755150B2 NZ 755150 B2 NZ755150 B2 NZ 755150B2 NZ 755150 A NZ755150 A NZ 755150A NZ 75515019 A NZ75515019 A NZ 75515019A NZ 755150 B2 NZ755150 B2 NZ 755150B2
Authority
NZ
New Zealand
Prior art keywords
coolant
hot gas
combustion chamber
gas wall
channels
Prior art date
Application number
NZ755150A
Other versions
NZ755150A (en
Inventor
Torben Birck
Olivier Bonn
Marc Geyer
Andreas Goetz
Original Assignee
Arianegroup Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP18183912.7A external-priority patent/EP3597897B1/en
Application filed by Arianegroup Gmbh filed Critical Arianegroup Gmbh
Publication of NZ755150A publication Critical patent/NZ755150A/en
Publication of NZ755150B2 publication Critical patent/NZ755150B2/en

Links

Abstract

combustion chamber structure (10), particularly for a rocket engine, comprises a hot gas wall (12) that surrounds a combustion chamber (40) and has a plurality of first coolant channels (50) and a plurality of second coolant channels (52). The plurality of first (50) and second (52) coolant channels extend from a first longitudinal end (16) of the hot gas wall (12) to a second longitudinal end (18) of the hot gas wall (12) opposite to the first longitudinal end (16). The combustion chamber structure (10) further comprises a first manifold (20) forming a first coolant chamber (30) and a second manifold (22) forming a second coolant chamber (32) being fluidly separated from the first coolant chamber (30). A first cooling circuit includes the first manifold and the plurality of first coolant channels, and a second cooling circuit includes the second manifold and the plurality of second coolant channels. The first (20) and second (22) manifolds are provided at the first longitudinal end (16) of the hot gas wall (12) and extend in a circumferential direction of the hot gas wall (12). The first coolant chamber (30) is fluidly connected to each of the plurality of first coolant channels (50) for distributing a first coolant to the plurality of first coolant channels and the second coolant chamber (32) is fluidly connected to each of the plurality of second coolant channels (52) for distributing a second coolant to the plurality of second coolant channels. The first cooling circuit and the second cooling circuit are fluidly isolated from each other. ls extend from a first longitudinal end (16) of the hot gas wall (12) to a second longitudinal end (18) of the hot gas wall (12) opposite to the first longitudinal end (16). The combustion chamber structure (10) further comprises a first manifold (20) forming a first coolant chamber (30) and a second manifold (22) forming a second coolant chamber (32) being fluidly separated from the first coolant chamber (30). A first cooling circuit includes the first manifold and the plurality of first coolant channels, and a second cooling circuit includes the second manifold and the plurality of second coolant channels. The first (20) and second (22) manifolds are provided at the first longitudinal end (16) of the hot gas wall (12) and extend in a circumferential direction of the hot gas wall (12). The first coolant chamber (30) is fluidly connected to each of the plurality of first coolant channels (50) for distributing a first coolant to the plurality of first coolant channels and the second coolant chamber (32) is fluidly connected to each of the plurality of second coolant channels (52) for distributing a second coolant to the plurality of second coolant channels. The first cooling circuit and the second cooling circuit are fluidly isolated from each other.

Description

Combustion r structure, particularly for a rocket engine The disclosure relates to a combustion chamber structure, particularly for a rocket engine, and comprises a hot gas wall that surrounds a combustion chamber that has t channels ing from a first longitudinal end of the hot gas wall to a second longitudinal end of the hot gas wall opposite to the first udinal end.
In principle, the combustion chamber structure can be ed not only in the special area of rocket s, but for other areas as well, such as aircraft construction.
In a combustion chamber structure of a rocket engine, the continuously occurring combustion process results in very high temperatures, typically over 3000 °C, and very high pressures, typically of greater than 150 bar. Therefore, a combustion chamber structure must be designed so as to withstand these high temperatures and pressures.
In order to satisfy the requirement for temperature resistance, a combustion chamber structure is usually cooled thereby dissipating the heat generated by the combustion process from the combustion r structure. Known cooling methods for cooling a combustion chamber structure are, for example, the radiation cooling, the ablative cooling and the film cooling. Further known is the regenerative cooling, where one of the applied propellants is guided by coolant channels formed on an outer surface of the hot gas surface or within the hot gas wall by t ls formed therein. After ng from the coolant channels, the propellant is fed to the combustion chamber. Manifolds, which distribute the propellant to the coolant channels and collect it again from the coolant channels, are provided. These known methods can be used alone or in combination.
These known cooling methods may require the use of highly expensive materials, for e in the case of radiation cooling, or may lead to loss of power, for example in the case of ablative or film cooling. Further, the regenerative cooling using one of the applied propellants for cooling the tion chamber structure is often not adapted to sufficiently cool the combustion r structure, in particular in the case of combustion chamber structures for engines in thrust classes smaller than 8 kN. Hence, r cooling measures are needed.
The need for sufficiently dissipating the heat generated by the combustion process can be complied with by providing a second type of heat sink, for example by providing two of the above described known cooling methods in ied areas of the tion chamber structure, respectively. Thereby, the two types of heat sinks can only be ated in an axial direction of the combustion chamber structure so that only the specified areas of the tion chamber ure can be cooled by means of one of the heat sinks. Further, the axial alternating provision of the two types of heat sinks results in several cooling gaps, which, for example, lead to the risk of local overheating of the hot gas wall. As a further consequence of the ating provision of the heat sinks of different types, advantageous teristics of a specific cooling method can only be applied to the tive specified area or areas of the combustion r structure.
A combustion chamber structure is to be provided which satisfies the requirements for temperature resistance while being inexpensive to manufacture and without leading to any serious loss of power of the combustion chamber structure.
Alternatively or additionally, a combustion chamber ure is to be provided which at least provides the public with a useful choice.
The present invention provides a combustion chamber ure comprising: - a hot gas wall that surrounds a combustion chamber and has a plurality of first coolant channels and a plurality of second coolant channels, the plurality of first and second coolant channels extending from a first longitudinal end of the hot gas wall to a second longitudinal end of the hot gas wall opposite to the first longitudinal end, - a first manifold forming a first coolant chamber and a second manifold forming a second coolant chamber being fluidly separated from the first coolant chamber, the first and second manifolds being ed at the first longitudinal end of the hot gas wall and extending in a circumferential ion of the hot gas wall, - a first cooling circuit comprising the first manifold and the plurality of first coolant channels, and - a second cooling circuit comprising the second manifold and the plurality of second t channels, wherein: - the first coolant chamber is fluidly connected to each of the plurality of first coolant channels for distributing a first coolant to the plurality of first coolant channels and the second coolant chamber is fluidly connected to each of the plurality of second coolant channels for distributing a second t to the plurality of second coolant channels, and - the first g circuit and the second cooling circuit are fluidly isolated from each other.
A combustion chamber structure disclosed herein comprises a hot gas wall that surrounds a combustion chamber and has a plurality of first coolant channels and a plurality of second coolant channels, wherein the ity of first and second coolant channels extend from a first longitudinal end of the hot gas wall to a second longitudinal end of the hot gas wall opposite to the first longitudinal end.
The disclosed combustion chamber structure further comprises a first manifold forming a first coolant chamber and a second manifold forming a second coolant chamber being fluidly separated from the first coolant chamber, wherein the first and second manifolds are provided at the first longitudinal end of the hot gas wall and extend in a ferential direction of the hot gas wall. In the disclosed combustion chamber structure, the first coolant chamber is y connected to each of the plurality of first coolant channels and the second coolant r is fluidly connected to each of the ity of second coolant channels.
The disclosed combustion chamber structure comprises two separate cooling circuits for dissipating the heat of the combustion process from the combustion chamber structure. The first g circuit comprises the first manifold and the first coolant channels for the first coolant which are fluidly connected to each other, and the second cooling circuit comprises the second manifold and the second coolant channels for the second coolant which are fluidly connected to each other. The first cooling circuit and the second cooling circuit are fluidly ed from each other. Thus, in the sed combustion chamber structure, the generated heat of the tion process can be spread over the first and second coolants of the two separate cooling circuits thereby using the total mass flow of the two y isolated coolants for ating the heat. Thus, since the total mass flow of the two coolants is used, a ient cooling of the combustion chamber can be provided also in the case of combustion chamber structures for engines in small thrust classes, for example in thrust classes smaller than 8 kN.
Since the first and second coolant channels extend over the whole axial length of the hot gas wall, i.e. from the first longitudinal end to the second longitudinal end, the tion chamber structure can be sufficiently cooled over its whole axial length, without having any cooling gaps in an axial direction of the combustion chamber structure. Further, no additional cooling methods such as radiation g, film cooling and/or ablative cooling are needed, which might lead to high manufacturing costs and/or loss of power.
The first and second lds may be embodied as a one-piece part with the hot gas wall. The first and second manifolds may be also embodied as te parts, which are attached to the hot gas wall by appropriate means, for example by welding them onto the hot gas wall.
The hot gas wall comprises an inner surface that faces the combustion chamber, i.e. contacts the hot gas, and an outer surface that is in contact with the outer environment of the combustion r structure. Inside the hot gas wall, the plurality of first and second coolant channels are formed. The plurality of first and second coolant channels are fluidly isolated from each other. The hot gas wall with the first and second t channels may be manufactured as a ece part, for example by means of 3D-printing, or may be formed by an inner jacket (“liner”) and an outer jacket (jacket”) disposed on the outer surface of the inner jacket. In the configuration with the inner jacket and the outer , the first and second coolant channels may be formed on the outer surface of the inner jacket and sealed off by the outer jacket covering the inner jacket. The first and second coolant channels on the outer surface of the inner jacket may be for example formed by milling the inner jacket material.
In one development, the first manifold is ured to distribute a first t to the first coolant channels and the second manifold is configured to distribute a second coolant to the second coolant channels, wherein the first coolant is different from the second coolant. The first coolant and the second coolant may, for example, be the two propellants, i.e. the fuel and the oxidizer, and the total mass flow of both the fuel and the oxidizer can be used for absorbing the heat over the whole axial length of the combustion chamber structure.
In another development, the first and second lds surround the combustion chamber in the circumferential direction. Thus, the first and second manifolds are provided around the entire circumference of the hot gas wall. The first and second manifolds completely surround the combustion chamber so as to distribute the first coolant and the second coolant to the first coolant channels and the second coolant channels, tively, which are provided around the entire circumference of the hot gas wall so as to cool the hot gas wall around its entire circumference.
In a further development, the first and second manifolds have a first inlet and a second inlet, tively, and an inner diameter of the first coolant chamber of the first manifold is decreasing with an increasing distance from the first inlet, and/or an inner er of the second coolant r of the second manifold is decreasing with an increasing distance from the second inlet. By sing the inner diameter of the respective coolant chamber with an increasing ce from the respective inlet, a constant fluid speed at every position of the manifold can be ensured, resulting in an optimized injection ry. Further, since less material for forming the manifold is needed compared to the case if the respective ld has a coolant chamber with a constant inner diameter, the respective manifold, and thus also the combustion chamber structure, weighs less.
In another further development, the first manifold is formed outwardly to the second manifold in a radial direction of the combustion chamber structure. Thus, the first manifold protrudes further from the hot gas wall than the second manifold and is thus located r away from the combustion chamber than the second manifold. In this way, the first manifold and the second manifold are ed in a space-saving and compact manner.
In one embodiment, the first and second coolant channels are fluidly connected to the combustion chamber at the second longitudinal end of the hot gas wall. In this way, the first and second coolants can be conveyed as propellants into the combustion chamber. For example, a fuel and an oxidizer are used as first and second coolants, tively, before being conveyed into the combustion chamber. In this manner, the combustion chamber structure can be exclusively cooled in a regenerative manner.
In a configuration, the first coolant channels open into an additional first coolant chamber at the second udinal end of the hot gas wall, and the second coolant ls open into an additional second coolant chamber at the second longitudinal end of the hot gas wall. In the configuration, the first coolant and the second coolant are collected in the respective additional coolant chamber before being conveyed into the combustion chamber.
In a further development of the combustion chamber structure, at the second longitudinal end of the hot gas wall, first exit gs for the first t are equidistantly provided in the ferential direction, and second exit openings for the second coolant are equidistantly provided in the circumferential direction.
The first exit openings are fluidly connected to the first coolant channels, and the second exit openings are fluidly connected to the second coolant channels. In this way, both coolants can be led out the coolant channels symmetrically around the circumference. The first coolant and the second coolants may enter the additional first and second coolant chambers via the first and second exit openings. In an ment, the first and second coolants are led, preferably via the additional coolant rs, into an injection head connected to the hot gas wall at its second longitudinal end. Since the first and second coolants are led out into the injection head symmetrically, the geometry in the injection head ream of the domes can be simplified. For e, no additional lds are needed for injecting the first and second coolants into the injection head, thereby reducing weight and complexity of the combustion chamber structure.
In a further development, the first coolant channels and the second coolant channels are so configured and arranged that, at every position of the hot gas wall, an optimum relation between the heat supplied to the hot gas wall by a combustion process in the combustion chamber and the heat dissipated from the hot gas wall by the first and second coolants is achieved, thereby enhancing the performance and power of the tion chamber structure and decreasing the risk of local overheating.
Thus, the configuration and/or the arrangement of the first and second coolant channels can be d to the conditions that are present at the hot gas wall.
This may be done by making use of the characteristics inherent to the first and second coolants. For example, the heat capacity, the heat conductivity of the first coolant and the heat resistance of the first and coolant can be different from the heat conductivity of the second t and the heat resistance of the second coolant. Hence, for example, the first and second coolant channels can be configured and arranged so that at locations of the hot gas wall with a higher temperature the coolant among the first and second coolants with the higher heat capacity and the higher heat conductivity is guided, provided that it is ant to these high temperatures.
Hence, in this further pment, the arrangement and the uration of the first and second coolant channels at a location of the hot gas wall are preferably not the same as they are at another location of the hot gas wall. Specifically, the arrangement and the configuration of the first and second coolant channels can be ed at will at every location of the hot gas wall. More specifically, the configuration and the arrangement of the first and second coolant ls can be changed steadily when ing from the first longitudinal end to the second udinal end, without the provision of any undesired gaps and/or edges, so that an optimum relation between the heat ed to the hot gas wall by a combustion process in the combustion chamber and the heat dissipated from the hot gas wall by the first and second coolants can be achieved at every position of the hot gas wall, i.e. both in an axial direction and in a circumferential ion of the hot gas wall.
The configuration and the arrangement can be adapted for each of the first coolant channels and the second coolant channels alone so that an optimum relation between the heat supplied to the hot gas wall by a combustion process in the combustion chamber and the heat dissipated from the hot gas wall by the first and second coolants is achieved, and the configuration and the arrangement can be adapted so that an interaction of the first and second coolant channels results in an optimum relation between the heat supplied to the hot gas wall by a combustion process in the combustion chamber and the heat dissipated from the hot gas wall by the first and second coolants.
In one development, at least one of a ce between the first coolant channels in the circumferential ion of the hot gas wall, a distance between the second coolant channels in the circumferential direction of the hot gas wall, an orientation of the first coolant channels and/or the second coolant channels with respect to an axial direction of the combustion chamber structure, an orientation of the first coolant channels with respect to the second coolant channels, a width dimension of the first coolant channels and/or the second coolant channels, and a ce of the first coolant channels and/or the second coolant channels in a radial ion from the combustion chamber varies at different positions of the hot gas wall. The above characteristics of the first and second coolant channels are ably so varied that an optimum relation between the heat supplied to the hot gas wall by a combustion process in the combustion chamber and the heat dissipated from the hot gas wall by the first and second coolants is achieved.
By varying the distance between one of the first or second coolant channels in the circumferential direction of the hot gas wall the amount of heat absorbed by the first or second t at a specific area of the hot gas wall can be varied. A similar effect can be achieved by g a width dimension of the first coolant channels and/or the second coolant channels, which in on also changes the flow velocity of the coolant flowing through the tive coolant channel. By varying an orientation of the first coolant channels and/or the second coolant channels with respect to an axial direction of the combustion chamber structure, it is possible to redistribute heat input inequalities across the hot gas wall to a plurality of coolant channels. Furthermore, for example, by varying a distance of the first coolant channels and/or the second coolant channels in a radial direction from the combustion chamber at different positions of the hot gas wall, it is possible to vary the heat flow from the hot gas wall to the respective coolant.
Varying an orientation of the first coolant channels with respect to the second coolant channels may for example encompass varying the distance between the first and second coolant channels, and may encompass that first and second coolant ls that extend in a substantially parallel direction at a first position of the hot gas wall overlap each other at a second on of the hot gas wall. In this way, for example, it is possible to “switch” to the coolant of an nt coolant channel when the cooling capacity of the coolant of a coolant channel is depleted, by guiding away the coolant from the combustion chamber so that the guided away cooling channel is d behind the adjacent cooling channel, i.e. radially outwardly from the combustion chamber.
In a further development of the combustion chamber ure, in at least an area of the hot gas wall, a first coolant channel of the plurality of first coolant channels is provided nt and with a distance to a second t channel of the plurality of second coolant channels in a circumferential direction of the hot gas wall. Thus, it is possible to distribute the heat of a confined area of the heated hot gas wall to both the first coolant and the second coolant and to make thereby use of the characteristics of both the first coolant and the second coolant.
The adjacent first and second coolant channels may run in a direction substantially parallel to an axial direction of the combustion chamber ure when extending from the first longitudinal end to the second udinal end, i.e. in a substantially straight line when extending from the first longitudinal end to the second udinal end, while following the shape of the hot gas wall in a radial direction of the combustion chamber structure.
In an embodiment of the further development, adjacent first and second coolant channels, in at least an area of the hot gas wall, form an angle with t to a longitudinal axis of the combustion chamber structure when extending from the first udinal end to the second longitudinal end. In this embodiment, the adjacent first and second coolant channels, at least in an area or some areas, do not run in a straight line from the first longitudinal end to the second longitudinal end, but, in on to the axial extension, they are wound around the longitudinal axis of the combustion chamber structure so as to form an angle with respect to an axial direction of the combustion chamber ure. In this way, heat inequalities across the hot gas wand, i.e. in a circumferential direction of the hot gas wall, can be redistributed to the coolants of a plurality of coolant channels, in particular to both a first t and a second coolant.
In the further pment, the adjacent first and second channels may have a constant distance to each other when extending from the first longitudinal end to the second longitudinal end. In the further development, the distance of the first cooling l to the adjacent second cooling channel may also vary when extending from the first longitudinal end to the second longitudinal end. In this manner, the amount of heat absorbed by the first and second coolants at a confined area of the hot gas wall can be .
The plurality of first and second coolant ls, in at least an area of the hot gas wall, are alternately provided in a circumferential direction of the hot gas wall.
Thus, a first coolant channel is neighboured by two second t channels, and vice versa, a second coolant channel is neighboured by two first coolant channels.
In an alternative configuration, it is possible to arrange the coolant channels in a circumferential direction area by area. Thus, an area comprising one or more first cooling channels is followed by an area comprising one or more second coolant channels, which is again followed by an area comprising one or more first cooling channels. For example, two first coolant channels are followed by one second coolant channel, and the one second coolant channel is again followed by two coolant channels. Or, as a further example ative, two first coolant channels are followed by two second coolant channels, and the two second coolant channels are again ed by two coolant channels. The first coolant may be the fuel and the second coolant may be the oxidant.
In another configuration of the combustion chamber structure, at least one of the plurality of first coolant channels and/or at least one of the plurality of second t channels has a varying distance from the combustion chamber in a radial direction when extending in an axial direction from the first longitudinal end to the second longitudinal end. Thus, the first coolant and/or the second coolant is guided away from an inner surface of the hot gas wall or is guided towards an inner surface of the hot gas wall. By varying the distance from the tion r in a radial direction, the amount of heat conveyed from the heated hot gas wall to the coolant in the cooling channel can be varied and can be adapted to the local conditions of the hot gas wall.
In r development, in at least an area of the hot gas wall, the distance of a first or a second coolant channel from the combustion chamber in a radial direction is different from the distance of another first or second coolant l adjacent to the first or second coolant channel, and the first or second coolant channel is formed to overlap the adjacent first or second coolant channel so that the overlapping coolant channels are provided at the same ferential position and one of the overlapping t channels is provided radially outwardly from the other of the overlapping coolant channels. Thus, with this configuration it is possible to “switch” to the coolant of an adjacent coolant channel when the cooling capacity of the coolant of a coolant channel is depleted, by guiding away the coolant from the combustion chamber so that the guided away cooling channel is located behind the adjacent cooling channel, i.e. radially outwardly from the combustion chamber. The guided away coolant channel may be a first or second coolant channel, and the overlapped coolant l may be a first or a second coolant channel.
In one development, the combustion chamber structure is configured to be ively cooled by the first t and the second coolant. Thus, no other cooling methods, such as for example film cooling, ablative cooling or radiation g is provided. The combustion chamber structure is exclusively cooled in a regenerative manner. Thus, the combustion chamber structure according to the one development is advantageous in terms of manufacturing costs and loss of power.
In the description in this specification reference may be made to t matter which is not within the scope of the appended claims. That subject matter should be readily identifiable by a person skilled in the art and may assist in putting into practice the invention as defined in the presently appended .
Additional advantages, details, and features of the solution described herein will be nt from the following description of an exemplary embodiment and from the figures, in which Fig. 1 shows a perspective view of an exemplary embodiment of a combustion chamber ure, wherein a portion of the hot gas wall is illustrated in a longitudinal section along the circumference of the hot gas wall; and Fig. 2 shows a sectional view of a lower region of the combustion chamber structure of Fig. 1.
The combustion chamber structure 10 shown in Fig. 1 has a hot gas wall 12 which nds a combustion r 14. The hot gas wall 12 has a first longitudinal end 16, which is a lower longitudinal end with respect to Fig. 1, and a second longitudinal end 18 located at an te end of the hot gas wall 12, which is an upper longitudinal end with respect to Fig. 1. Further, the hot gas wall 12 has an inner surface 60, being provided to contact the hot gas in the combustion chamber 14, and an outer e 61, being provided to contact the outer environment of the combustion chamber structure (see also Figure 2). At the first, with respect to Fig. 1 lower longitudinal end 16 of the hot gas wall, a first manifold 20 and a second ld 22 are provided. The first manifold 20 and the second manifold 22 are ed along a whole peripheral edge portion of the hot gas wall 12. The first manifold 20 and the second manifold 22 thus completely surround the combustion chamber 14.
The hot gas wall 12 may be ed as a one piece-part, or may be formed by several individual parts connected to each other, for example by an outer jacket applied to an inner jacket.
The combustion chamber structure 10 shown in Fig. 1 has a with respect to Fig. 1 upper, first portion 24 that comprises the actual combustion chamber and, adjacent thereto, a with t to Fig. 1 lower, second portion 26 that comprises a nozzle expansion of an expansion nozzle. A smaller-diameter intermediate portion 28 comprising a nozzle throat is formed between the first portion 24 with the actual combustion chamber and the second n 26 with the nozzle expansion. In the present disclosure, the entire space nded by the hot gas wall 12 is designated as the combustion chamber 14.
In the embodiment shown in Fig. 1, the first manifold 20, the second manifold 22 and the hot gas wall 12 are formed in a one-piece part. r, in other embodiments, the first manifold, the second manifold and the hot gas wall can be embodied as separate parts. In particular, the first manifold and the second manifold may be attached to the hot gas wall, for example by welding them onto the hot gas wall. Also, a half-shell of the respective manifold by may rmed at the hot gas wall, and the other half-shell is subsequently ed to the preformed half-shell, for example by welding or screwing.
The first manifold 20 forms a first coolant chamber 30 nding the combustion chamber 14 and the second manifold 22 forms a second coolant chamber 32 surrounding the combustion chamber 14. The first coolant chamber 30 is provided for receiving a first coolant and the second coolant chamber 32 is provided for receiving a second coolant. For that purpose, the first manifold 20 comprises a first inlet port 34 and the second manifold 22 comprises a second inlet port 36. In the exemplary ment, an inner diameter of the first coolant chamber 30 of the first manifold 20 is decreasing with an increasing distance from the first inlet port 34, and an inner diameter of the second coolant chamber 32 of the second manifold 22 is decreasing with an increasing ce from the second inlet port As can be also seen in Fig. 1, the first manifold 20 is located further away from the combustion chamber 14 than the second manifold 22. Thus, the first manifold 20 is located ly outwardly with respect to the second manifold 22. Further, the first manifold 22 comprises attachment means 38 for ing the tion chamber structure 10 to an adjacent component. In particular, the attachment means 38 may be provided for attaching the combustion r structure 10 to an expansion nozzle or to a part of an expansion nozzle. In the illustrated exemplary embodiment, the attachment means 38 is provided at an outer peripheral edge 40 of the first manifold 20 and is embodied as a plurality of attachment structures 42 provided in a circumferential direction which each comprise an attachment hole 44. The attachment holes 44 are for receiving a screw by means of which the combustion chamber structure 10 can be attached to the adjacent ent. The adjacent component may be an extension part of the nozzle expansion of the expansion nozzle. In this case, the second portion 26 may be a part of a nozzle expansion of the ion nozzle.
The first manifold 20 further comprises a sensor port 46 for connecting a sensor to the first manifold 20, i.e. to the combustion chamber structure. Examples of sensors that may be attached are sensors for dynamic pressure measurement, static pressure measurement and ive temperature measurement. The second manifold 22 may also se one or more sensor ports for connecting one or more sensors, which are not illustrated in Fig. 1.
The hot gas wall 12 further comprises a plurality of coolant ls 50, 52. The plurality of coolant channels 50, 52 are formed inside the hot gas wall 12 as cavities that extend from the first udinal end 16 to the second longitudinal end 18. The plurality of coolant channels 50, 52 are part of two cooling circuits that are fluidly separated from each other. In particular, a first cooling circuit comprises the first manifold 20 and a plurality of first coolant channels 50, and the second cooling circuit comprises the second manifold 22 and a plurality of second coolant channels 52. The first manifold 20 is fluidly connected to each of the first coolant ls 50 for distributing the first coolant to each of the first coolant ls 50 and the second manifold 22 is fluidly connected to each of the second coolant channels 52 for distributing the second coolant to each of the second coolant channels 52. Thus, the first coolant channels 50 and the second coolant channels 52 are also fluidly isolated from each other.
The configuration of the first and second manifolds 20, 22 and their connection to the first and second coolant channels 50, 52, respectively, will be explained in more detail by reference to Fig. 2. Fig. 2 is a longitudinal section h the first and second lds 20, 22 and a region of the hot gas wall 12 adjoining the first and second manifolds 20, 22, in a radial direction of the tion chamber structure 10. As is rated in Fig. 2, in the exemplary embodiment, the hot gas wall 12 comprises at the first, lower longitudinal end 16 a circumferential torus-like bulge 54 in the interior of which the first coolant chamber 30 of the first manifold and the second coolant chamber 32 of the second manifold 22 are formed. r, in the longitudinal section of Fig. 2, a passage 56 is illustrated by means of which the first ld 20 is fluidly connected to one of the first coolant channels 50. The passage 56 is formed in a bottom part of the torus-like bulge 54.
A corresponding passage is formed in the bottom part of the torus-like bulge 54 for fluidly ting the second coolant chamber 32 with a second coolant channel 52 adjacent to the illustrated first coolant channel 50. The corresponding e cannot be seen in the longitudinal n of Fig. 2, since it is circumferentially offset with t to the illustrated passage 56. In this manner, each of the first coolant ls 50 and each of the second coolant ls 52 are fluidly connected to the first manifold 20 and the second ld 22, respectively, by means of corresponding passages 56 being formed in the toruslike bulge 54 spaced from one another in the circumferential direction.
With reference to Fig. 1 again, the course of the coolant ls 50, 52 from the first longitudinal end 16 to the second longitudinal end 18 of the hot gas wall 12 and the arrangement of the coolant ls 50, 52 with respect to each other are not uniform across the entire hot gas wall 12. In particular, the first coolant channels 50 and the second coolant channels 52 are so ured and arranged that, at every position of the hot gas wall 12, an optimum relation between the heat supplied to the hot gas wall 12 by a combustion process in the combustion chamber 14 and the heat dissipated from the hot gas wall 12 by the first and second coolants 50, 52 is achieved.
In the exemplary ment of Fig. 1, the first and second coolant channels 50, 52 are alternately formed in the hot gas wall 12 of the lower, second portion 26 of the combustion chamber structure 10. Thus, a first coolant channel 50 is neighboured by two second coolant channels 52, and a second coolant channel 52 is neighboured by two first coolant channels 50. In the hot gas wall 12 of the second, lower portion 26, adjacent first and second coolant channels 50, 52 are arranged with a distance to each other in the circumferential direction of the hot gas wall 12. The first and second coolant channels 50, 52 are equidistantly provided around a longitudinal axis L of the combustion chamber structure 10.
However, when viewed along a direction from the first longitudinal end 16 of the hot gas wall 12 to the intermediate n 28 of the hot gas wall 12 forming the nozzle throat, the distance between adjacent first and second coolant channels 50, 52 decreases. More specifically, the distance between adjacent first and second coolant channels 50, 52 continuously decreases.
Furthermore, in the hot gas wall 12 of the second, lower portion 26, the first and second coolant channels 50, 52 extend in a direction substantially el to an axial direction of the combustion chamber structure 10 when extending from the first longitudinal end 16 to the second udinal end 18, i.e. in a substantially straight line when extending from the first longitudinal end 16 to the second longitudinal end 18 while following the shape of the hot gas wall 12 in a radial direction of the combustion chamber structure 10. Thus, the course of the first and second coolant channels 50, 52 is ntially el to the longitudinal axis L when projected onto a longitudinal plane (i.e. a plane containing the longitudinal axis L).
By contrast, in the hot gas wall 12 of the first, upper portion 24 of the combustion r structure 10, the first and second coolant channels 50, 52 form an angle (which is greater than 0°) with t to the udinal axis L of the combustion chamber structure 10 when extending from the intermediate portion 28 to the second udinal end 18. Thus, the first and second coolant ls 50, 52 do not run in a ht line el to the longitudinal axis L (when projected onto the longitudinal plane), but, in addition to the extension in an axial direction, they are wound around the longitudinal axis L of the combustion chamber structure 10 so as to form an angle with respect to the udinal axis L of the combustion chamber structure 10. In this way, heat inequalities across the hot gas wand 12, i.e. in a circumferential direction of the hot gas wall 12, can be redistributed to the coolants of a ity of t channels 50, 52, in particular to both a first coolant and a second coolant.
Further, in the exemplary embodiment of Fig. 1, the first and second coolant channels 50, 52 are not wound around the longitudinal axis L to the same extent, but the second coolant channels 52 are wound around the longitudinal axis L to a greater extent. In the region of the hot gas wall 12 forming the first, upper portion 24, the second coolant channels 52 thereby overlap the first coolant channels 50.
In the overlapping region, an overlapping second coolant channel 52 is provided at the same circumferential position as the overlapped first coolant channel 50. In a radial direction, the overlapping second coolant channel 52 is located further outwardly than the overlapped first coolant channel 50. Hence, the overlapping second coolant channel 52 is located further away from the combustion chamber 14 or from the inner surface 60 of the hot gas wall 12. Thus, for being able to overlap the adjacent first coolant channels 50, the second coolant channels 52, when extending in a direction to the second longitudinal end 18, are formed or provided in the hot gas wall 12 so as to continuously increase their distance to the combustion chamber 14 or to the inner surface 60 of the hot gas wall 12. The first coolant channels 50, when extending in a direction to the second longitudinal end 18, are formed or provided in the hot gas wall 12 so as to have a constant distance to the combustion chamber 14 or to the inner surface 60 of the hot gas wall 12 or so as to continuously decrease their distance to the combustion chamber 14 or to the inner surface 60 of the hot gas wall 12.
By means of the overlapping, it is le to “switch” to the first coolant of an adjacent first coolant channel 50 when the cooling capacity of the second coolant of the second coolant l 52 is depleted, by guiding away the second coolant channel 52 from the combustion chamber 14 so that the guided away second coolant channel 52 is located behind the adjacent first coolant channel 50, i.e. radially outwardly from the combustion chamber 14.
In the region of the hot gas wall 12 forming the first, upper portion 24 and having a substantially constant outer diameter, the first coolant ls 50 are equidistantly arranged, and the second coolant channels 52 are equidistantly arranged. In contrast, the distance n adjacent first and second coolant channels 50, 52 decreases in a direction towards the second longitudinal end 16 as far as adjacent first and second t channels 50, 52 overlap each other, as described above.
As can be further seen in Fig. 1, the regular course of some of the first and/or second coolant channels 50, 52 is interrupted at some ermined ons, where the some of the first and/or second t channels 50, 52 form convex portions 62. The convex portions 62 are formed to run around components that are positioned at these predetermined locations of the combustion chamber structure 10. The components may be, for example, sensor components or igniter components. In this way, it is possible to place the specific components at positions of the combustion chamber structure that are l for the specific components without leading to a cooling interruption at these predetermined locations.
At the , upper longitudinal end 18, the hot gas wall 12 forms an additional first coolant chamber 64 that s in the circumferential direction of the hot gas wall 12. The additional first coolant chamber 64 is embodied by an annular groove 66 formed in the hot gas wall 12. The annular groove 66 is immediately adjacent to the interior space surrounded by the hot gas wall 12. The first coolant channels 50 open into the additional first coolant chamber 64 at the second, upper longitudinal end 18 via first exit gs 68 provided in the annular groove 66.
The further walls confining the additional first coolant chamber 64, which are not illustrated in Fig. 1, can be provided by an injection head that can be attached to the combustion chamber structure 10 at its second, upper longitudinal end. The first coolant can be uced into the combustion r 14 by means of the injection head. In ular, the first coolant is conveyed from the first coolant channels 50 via the first exit openings 68 into the additional first coolant chamber 64 and further into the injection head, for example by means of radial bores. From the injection head, the first coolant is further conveyed into the combustion chamber 14. Thus, in the exemplary ment, the additional first coolant chamber 64 functions both as a collection chamber and as a distribution r.
It therefore has a smaller volume than the first and second coolant chambers 30, 32, which function as distribution chambers.
For attaching the injection head to the combustion chamber structure 10, the combustion chamber structure 10 comprises at the second, upper longitudinal end 18 an attachment flange 70 or a plurality of attachment flanges 70 with attachment holes 72 provided therein.
The second coolant channels 32 exit from the hot gas wall 12 at a lateral peripheral face 74 of the hot gas wall 12 via second exit openings 76. The second coolant ls 52 open at the lateral peripheral face 74 into an additional second coolant chamber. The onal second coolant chamber is not illustrated in Figure 1. It may be formed by a wall that is formed by the later peripheral face 74 and a manifold ring. The ld ring may be part of the combustion chamber structure, the injection head or may be also formed by a cavity formed by attaching the injection head to the combustion chamber structure. From the additional second coolant chamber, the second coolant may be directly injected into the injection head, for e via radial bores, or it may be collected and guided to the outside of the combustion chamber ure, before it is returned into the injection head, for example by means of pipes or tubes.
If the first and second coolants are directly guided into the injection head via radial bores, the respective radial bores for the first and second coolants may be offset in an axial direction (i.e. they are provided at different s in an axial direction), or they are alternately provided in a circumferential direction of the injection head and/or the combustion chamber at the same height in an axial ion. If the respective radial bores are provided at different heights, also the first and second coolant chambers may be provided at different heights in an axial direction.
Both the exit gs 68 of the first coolant into the additional first coolant chamber 64 and the exit openings 76 of the second coolant into the additional second coolant chamber are equally spaced in a ferential direction of the combustion r structure 10. In this way, since both coolants can be led out the coolant channels 50, 52 symmetrically around the circumference into the first and second coolant chambers and from there into the ion head, for example by means of radial bores ed at ent heights in an axial direction of the combustion chamber structure and provided regularly in a circumferential direction thereof, the geometry can be simplified. For example, since the first and second coolants 50, 52 are led out symmetrically into the injection head, the need for a greater volume (e.g. by means of the so-called “dome”) can be sed with, resulting in a reduced weight and complexity.
In the disclosed combustion chamber structure, the full mass flow of both the first coolant and the second coolant can be made use of for cooling the combustion chamber structure 14, which results in an enhanced cooling performance. The first coolant and the second coolant may be two propellants, such as the fuel and the oxidizer, and the full mass flow of the first and second coolants may be conveyed to the combustion chamber. Thus, the combustion chamber structure can be sufficiently cooled, also in the case of tion chamber structures for engines in small thrust classes, without the provision of any further heat sinks which would lead to loss of power, such as in the case of film cooling which leads to a reduced combustion efficiency.
The first and second coolant channels 50, 52 may be configured such that the mass flow of the coolants is constant over the whole axial length of the combustion chamber structure, also resulting in a better cooling performance.
In the disclosed combustion chamber structure 10, the first and second coolant ls 50, 52 may be arranged and configured such that, at every position of the hot gas wall 12, i.e. both in an axial direction and in a circumferential direction, an optimum relation between the heat supplied to the hot gas wall 12 by a combustion s in the combustion chamber 14 and the heat ated from the hot gas wall 12 by the first and second ts is achieved. In order to achieve this, for example, the course and/or the geometry of the first and/or second coolant ls 50, 52 may be continuously changed in any desired manner, and/or the hot gas wall ess may be continuously changed. The disclosed tion chamber 10 eliminates the need to provide any further cooling methods, i.e. it may be exclusively cooled in a regenerative manner.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. It will be apparent to a person skilled in the relevant art that various changes in form and detail can be made therein t departing from the spirit and scope of the invention. Thus, the present invention should not be limited by any of the above described exemplary embodiments.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word ise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or ion or any form of suggestion that that prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

Claims (19)

Claims
1. A combustion chamber structure comprising: - a hot gas wall that surrounds a combustion chamber and has a plurality of 5 first coolant channels and a plurality of second t channels, the plurality of first and second coolant channels extending from a first udinal end of the hot gas wall to a second longitudinal end of the hot gas wall opposite to the first longitudinal end, - a first ld forming a first coolant chamber and a second manifold 10 forming a second coolant chamber being fluidly separated from the first coolant chamber, the first and second lds being provided at the first longitudinal end of the hot gas wall and ing in a circumferential direction of the hot gas wall, - a first cooling circuit comprising the first manifold and the plurality of first 15 coolant channels, and - a second cooling circuit comprising the second ld and the plurality of second coolant channels, wherein: - the first coolant chamber is fluidly connected to each of the ity of first 20 coolant channels for distributing a first coolant to the plurality of first coolant channels and the second coolant chamber is fluidly connected to each of the plurality of second coolant channels for distributing a second coolant to the plurality of second coolant channels, and - the first cooling circuit and the second cooling t are fluidly isolated 25 from each other.
2. The combustion chamber structure of claim 1, wherein the first manifold is ured to distribute a first coolant to the first coolant channels and the second manifold is configured to distribute a second coolant to the second coolant 30 channels, the first coolant being different from the second coolant.
3. The combustion r structure of any of claim 1 or claim 2, wherein the first and second manifolds surround the combustion r in the circumferential direction.
4. The combustion chamber of any one of the ing claims, wherein the first and second manifolds have a first inlet and a second inlet, respectively, and an inner diameter of the first coolant chamber of the first manifold is decreasing with an increasing distance from the first inlet, and/or an inner diameter of the second t chamber of the second ld is decreasing with an increasing distance from the second inlet.
5 5. The combustion chamber structure of any one of the preceding , wherein the first manifold is formed outwardly to the second manifold in a radial direction of the combustion chamber structure.
6. The combustion chamber structure of any one of the preceding claims, 10 wherein the first and second coolant channels are fluidly connected to the combustion chamber at the second longitudinal end of the hot gas wall.
7. The tion chamber structure of any one of the ing , wherein the first coolant channels open into an onal first coolant chamber at 15 the second longitudinal end of the hot gas wall, and the second coolant channels open into an additional second coolant chamber at the second longitudinal end of the hot gas wall.
8. The combustion chamber structure of any one of the preceding claims, 20 wherein, at the second longitudinal end of the hot gas wall, first exit openings for the first coolant are stantly provided in the circumferential ion, and second exit openings for the second coolant are equidistantly provided in the circumferential direction. 25
9. The tion chamber structure of any one of the preceding claims, wherein a hot gas wall thickness and/or at least one of a course and a geometry of the first and/or second coolant channels changes along an axial and/or a circumferential direction of the hot gas wall, in such a manner that the first coolant channels and the second coolant channels are so configured and arranged 30 that, at every position of the hot gas wall, an optimum relation between the heat ed to the hot gas wall by a combustion process in the combustion chamber and the heat dissipated from the hot gas wall by the first and second coolants is achieved. 35
10. The combustion chamber structure of any one of the preceding claims, wherein at least one of a distance between the first coolant channels in the circumferential direction of the hot gas wall, a distance between the second coolant channels in the circumferential ion of the hot gas wall, an orientation of the first coolant channels and/or the second coolant channels with respect to an axial direction of the combustion r structure, an orientation of the first coolant channels with respect to the second coolant channels, a width dimension of the first coolant channels and/or the second coolant channels, and a distance of 5 the first coolant channels and/or the second coolant channels in a radial direction from the combustion chamber varies at different positions of the hot gas wall.
11. The combustion chamber of any one of the preceding claims, wherein, in at least an area of the hot gas wall, a first coolant channel of the plurality of first 10 coolant channels is ed adjacent and with a distance to a second coolant l of the plurality of second coolant channels in a circumferential direction of the hot gas wall.
12. The tion chamber of claim 11, wherein, in at least an area of the hot 15 gas wall, adjacent first and second coolant channels form an angle with respect to a longitudinal axis of the combustion chamber structure when extending from the first longitudinal end to the second longitudinal end.
13. The combustion chamber of claim 11 or claim 12, wherein the distance to 20 the second coolant channel varies when ing in an axial ion from the first longitudinal end to the second longitudinal end.
14. The combustion chamber of any one of the preceding , wherein, in at least an area of the hot gas wall, the ity of first and second coolant ls 25 are alternately provided in a circumferential direction of the hot gas wall.
15. The combustion chamber of any one of the preceding claims, wherein at least one of the plurality of first coolant channels and/or at least one of the ity of second t channels has a varying distance from the combustion 30 chamber in a radial direction thereof when extending from the first longitudinal end to the second udinal end.
16. The combustion chamber of any one of the preceding claims, wherein, in at least an area of the hot gas wall, the distance of a first or a second coolant 35 channel from the combustion chamber in a radial direction is different from the distance of another first or second coolant channel adjacent to the first or second coolant l, and the first or second coolant channel is formed to overlap the adjacent first or second coolant channel so that overlapping coolant channels are ed at the same circumferential on and one of the overlapping coolant ls is provided radially outwardly from the other of the overlapping coolant channels. 5
17. The combustion chamber structure of any one of the preceding claims, wherein the combustion chamber structure is configured to be exclusively cooled by the first coolant and the second coolant.
18. The combustion chamber structure of any one of the preceding claims, 10 wherein the combustion chamber structure is a combustion chamber structure for a rocket engine.
19. A combustion chamber structure being substantially as before described with reference to the accompanying drawings. FIG 2 i \‘; II\\\\-\v/A
NZ755150A 2018-07-17 2019-07-04 Combustion chamber structure, particularly for a rocket engine NZ755150B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18183912.7 2018-07-17
EP18183912.7A EP3597897B1 (en) 2018-07-17 2018-07-17 Combustion chamber structure, particularly for a rocket engine

Publications (2)

Publication Number Publication Date
NZ755150A NZ755150A (en) 2021-09-24
NZ755150B2 true NZ755150B2 (en) 2022-01-06

Family

ID=

Similar Documents

Publication Publication Date Title
US11525420B2 (en) Combustion chamber structure, particularly for a rocket engine
CA2625330C (en) Combustor liner with improved heat shield retention
JP5475901B2 (en) Combustor liner and gas turbine engine assembly
CA2432256C (en) A combustion chamber sealing ring, and a combustion chamber including such a ring
CA2598506C (en) Cooled transition duct for a gas turbine engine
JP4878287B2 (en) Heat exchanger
US20020178734A1 (en) Low cost combustor burner collar
JPH0229938B2 (en)
JPH0373723B2 (en)
GB2356924A (en) Cooling wall structure for combustor
US6862888B2 (en) Pilot nozzle for a gas turbine combustor and supply path converter
US7328582B2 (en) Annular combustion chamber for a turbomachine
KR101939508B1 (en) Seal member
US20040188070A1 (en) Heat exchanger
US20040159107A1 (en) Combustion liner cap assembly attachment and sealing system
NZ755150B2 (en) Combustion chamber structure, particularly for a rocket engine
CN108119260B (en) Liquid engine and carrier
US6846156B2 (en) Gas turbine
US20100300067A1 (en) Component configured for being subjected to high thermal load during operation
CN114413662A (en) Heat exchanger
US10760531B2 (en) Resin transfer molded rocket motor nozzle
CN114144633A (en) Tube bundle heat exchanger
JP3324169B2 (en) Constrictor type arc heater
JP3324177B2 (en) Constrictor type arc heater
WO2023127718A1 (en) Combustor for gas turbines