NZ752502A - A Method For Controlling Glycosylation Of Recombinant Glycoprotein - Google Patents
A Method For Controlling Glycosylation Of Recombinant Glycoprotein Download PDFInfo
- Publication number
- NZ752502A NZ752502A NZ752502A NZ75250215A NZ752502A NZ 752502 A NZ752502 A NZ 752502A NZ 752502 A NZ752502 A NZ 752502A NZ 75250215 A NZ75250215 A NZ 75250215A NZ 752502 A NZ752502 A NZ 752502A
- Authority
- NZ
- New Zealand
- Prior art keywords
- insulin
- recombinant glycoprotein
- glycoprotein
- glycosylation
- culture medium
- Prior art date
Links
- 102000003886 Glycoproteins Human genes 0.000 title claims abstract description 57
- 108090000288 Glycoproteins Proteins 0.000 title claims abstract description 57
- 238000000034 method Methods 0.000 title claims abstract description 34
- 230000013595 glycosylation Effects 0.000 title claims abstract description 32
- 238000006206 glycosylation reaction Methods 0.000 title claims abstract description 31
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims abstract description 84
- 102000004877 Insulin Human genes 0.000 claims abstract description 42
- 108090001061 Insulin Proteins 0.000 claims abstract description 42
- 229940125396 insulin Drugs 0.000 claims abstract description 42
- 239000001963 growth medium Substances 0.000 claims abstract description 32
- 238000012258 culturing Methods 0.000 claims abstract description 27
- 102000037865 fusion proteins Human genes 0.000 claims description 12
- 108020001507 fusion proteins Proteins 0.000 claims description 12
- 230000004988 N-glycosylation Effects 0.000 claims description 7
- 230000004989 O-glycosylation Effects 0.000 claims description 5
- 230000010412 perfusion Effects 0.000 claims description 3
- 102000006395 Globulins Human genes 0.000 claims 1
- 108010044091 Globulins Proteins 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 19
- 108091033319 polynucleotide Proteins 0.000 abstract description 13
- 102000040430 polynucleotide Human genes 0.000 abstract description 13
- 239000002157 polynucleotide Substances 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 5
- 230000028993 immune response Effects 0.000 abstract description 3
- 229940079593 drug Drugs 0.000 abstract description 2
- 239000003814 drug Substances 0.000 abstract description 2
- 238000005516 engineering process Methods 0.000 abstract description 2
- 230000028327 secretion Effects 0.000 abstract description 2
- 210000004027 cell Anatomy 0.000 description 39
- 108090000623 proteins and genes Proteins 0.000 description 27
- 102000004169 proteins and genes Human genes 0.000 description 18
- 108010008165 Etanercept Proteins 0.000 description 16
- 150000001413 amino acids Chemical class 0.000 description 15
- 244000005700 microbiome Species 0.000 description 15
- 108060003951 Immunoglobulin Proteins 0.000 description 14
- 102000018358 immunoglobulin Human genes 0.000 description 14
- 235000018102 proteins Nutrition 0.000 description 14
- 108060008683 Tumor Necrosis Factor Receptor Proteins 0.000 description 13
- 102000003298 tumor necrosis factor receptor Human genes 0.000 description 13
- 101710187830 Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 12
- 102100033733 Tumor necrosis factor receptor superfamily member 1B Human genes 0.000 description 12
- 150000001720 carbohydrates Chemical class 0.000 description 10
- 239000013598 vector Substances 0.000 description 10
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 8
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 7
- 102100040247 Tumor necrosis factor Human genes 0.000 description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 6
- 108090000765 processed proteins & peptides Proteins 0.000 description 6
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 5
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 5
- 229940024606 amino acid Drugs 0.000 description 5
- 235000001014 amino acid Nutrition 0.000 description 5
- 230000003698 anagen phase Effects 0.000 description 5
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 5
- 229960000403 etanercept Drugs 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 239000004471 Glycine Substances 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 238000003306 harvesting Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 150000002772 monosaccharides Chemical class 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 108020004414 DNA Proteins 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 229930182816 L-glutamine Natural products 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 239000013604 expression vector Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 229910000162 sodium phosphate Inorganic materials 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 102000002068 Glycopeptides Human genes 0.000 description 2
- 108010015899 Glycopeptides Proteins 0.000 description 2
- 101000801232 Homo sapiens Tumor necrosis factor receptor superfamily member 1B Proteins 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- 102000000447 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Human genes 0.000 description 2
- 108010055817 Peptide-N4-(N-acetyl-beta-glucosaminyl) Asparagine Amidase Proteins 0.000 description 2
- AUNGANRZJHBGPY-SCRDCRAPSA-N Riboflavin Chemical compound OC[C@@H](O)[C@@H](O)[C@@H](O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-SCRDCRAPSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 108010022394 Threonine synthase Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- SQVRNKJHWKZAKO-UHFFFAOYSA-N beta-N-Acetyl-D-neuraminic acid Natural products CC(=O)NC1C(O)CC(O)(C(O)=O)OC1C(O)C(O)CO SQVRNKJHWKZAKO-UHFFFAOYSA-N 0.000 description 2
- 238000004113 cell culture Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 210000000349 chromosome Anatomy 0.000 description 2
- RMRCNWBMXRMIRW-BYFNXCQMSA-M cyanocobalamin Chemical compound N#C[Co+]N([C@]1([H])[C@H](CC(N)=O)[C@]\2(CCC(=O)NC[C@H](C)OP(O)(=O)OC3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)C)C/2=C(C)\C([C@H](C/2(C)C)CCC(N)=O)=N\C\2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O RMRCNWBMXRMIRW-BYFNXCQMSA-M 0.000 description 2
- 102000004419 dihydrofolate reductase Human genes 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- OVBPIULPVIDEAO-LBPRGKRZSA-N folic acid Chemical compound C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-LBPRGKRZSA-N 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 239000008103 glucose Substances 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N hypoxanthine Chemical compound O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- SQVRNKJHWKZAKO-OQPLDHBCSA-N sialic acid Chemical compound CC(=O)N[C@@H]1[C@@H](O)C[C@@](O)(C(O)=O)OC1[C@H](O)[C@H](O)CO SQVRNKJHWKZAKO-OQPLDHBCSA-N 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 235000002639 sodium chloride Nutrition 0.000 description 2
- 239000001488 sodium phosphate Substances 0.000 description 2
- 235000011008 sodium phosphates Nutrition 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 2
- DQJCDTNMLBYVAY-ZXXIYAEKSA-N (2S,5R,10R,13R)-16-{[(2R,3S,4R,5R)-3-{[(2S,3R,4R,5S,6R)-3-acetamido-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5-(ethylamino)-6-hydroxy-2-(hydroxymethyl)oxan-4-yl]oxy}-5-(4-aminobutyl)-10-carbamoyl-2,13-dimethyl-4,7,12,15-tetraoxo-3,6,11,14-tetraazaheptadecan-1-oic acid Chemical compound NCCCC[C@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)CC[C@H](C(N)=O)NC(=O)[C@@H](C)NC(=O)C(C)O[C@@H]1[C@@H](NCC)C(O)O[C@H](CO)[C@H]1O[C@H]1[C@H](NC(C)=O)[C@@H](O)[C@H](O)[C@@H](CO)O1 DQJCDTNMLBYVAY-ZXXIYAEKSA-N 0.000 description 1
- RBMGJIZCEWRQES-DKWTVANSSA-N (2s)-2,4-diamino-4-oxobutanoic acid;hydrate Chemical compound O.OC(=O)[C@@H](N)CC(N)=O RBMGJIZCEWRQES-DKWTVANSSA-N 0.000 description 1
- NDVRKEKNSBMTAX-MVNLRXSJSA-N (2s,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;phosphoric acid Chemical compound OP(O)(O)=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O NDVRKEKNSBMTAX-MVNLRXSJSA-N 0.000 description 1
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 239000001763 2-hydroxyethyl(trimethyl)azanium Substances 0.000 description 1
- -1 30% e Chemical compound 0.000 description 1
- 102000007469 Actins Human genes 0.000 description 1
- 108010085238 Actins Proteins 0.000 description 1
- 206010067484 Adverse reaction Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 1
- KWTQSFXGGICVPE-WCCKRBBISA-N Arginine hydrochloride Chemical compound Cl.OC(=O)[C@@H](N)CCCN=C(N)N KWTQSFXGGICVPE-WCCKRBBISA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 235000019743 Choline chloride Nutrition 0.000 description 1
- 208000011231 Crohn disease Diseases 0.000 description 1
- AUNGANRZJHBGPY-UHFFFAOYSA-N D-Lyxoflavin Natural products OCC(O)C(O)C(O)CN1C=2C=C(C)C(C)=CC=2N=C2C1=NC(=O)NC2=O AUNGANRZJHBGPY-UHFFFAOYSA-N 0.000 description 1
- 235000000638 D-biotin Nutrition 0.000 description 1
- 239000011665 D-biotin Substances 0.000 description 1
- SHZGCJCMOBCMKK-UHFFFAOYSA-N D-mannomethylose Natural products CC1OC(O)C(O)C(O)C1O SHZGCJCMOBCMKK-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- QXNVGIXVLWOKEQ-UHFFFAOYSA-N Disodium Chemical class [Na][Na] QXNVGIXVLWOKEQ-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- PNNNRSAQSRJVSB-SLPGGIOYSA-N Fucose Natural products C[C@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O PNNNRSAQSRJVSB-SLPGGIOYSA-N 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000801254 Homo sapiens Tumor necrosis factor receptor superfamily member 16 Proteins 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- UGQMRVRMYYASKQ-UHFFFAOYSA-N Hypoxanthine nucleoside Natural products OC1C(O)C(CO)OC1N1C(NC=NC2=O)=C2N=C1 UGQMRVRMYYASKQ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- SHZGCJCMOBCMKK-DHVFOXMCSA-N L-fucopyranose Chemical compound C[C@@H]1OC(O)[C@@H](O)[C@H](O)[C@@H]1O SHZGCJCMOBCMKK-DHVFOXMCSA-N 0.000 description 1
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- BVHLGVCQOALMSV-JEDNCBNOSA-N L-lysine hydrochloride Chemical compound Cl.NCCCC[C@H](N)C(O)=O BVHLGVCQOALMSV-JEDNCBNOSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 108090000856 Lyases Proteins 0.000 description 1
- 102000004317 Lyases Human genes 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- OVRNDRQMDRJTHS-CBQIKETKSA-N N-Acetyl-D-Galactosamine Chemical compound CC(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@H](O)[C@@H]1O OVRNDRQMDRJTHS-CBQIKETKSA-N 0.000 description 1
- OVBPIULPVIDEAO-UHFFFAOYSA-N N-Pteroyl-L-glutaminsaeure Natural products C=1N=C2NC(N)=NC(=O)C2=NC=1CNC1=CC=C(C(=O)NC(CCC(O)=O)C(O)=O)C=C1 OVBPIULPVIDEAO-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-UHFFFAOYSA-N N-acelyl-D-glucosamine Natural products CC(=O)NC1C(O)OC(CO)C(O)C1O OVRNDRQMDRJTHS-UHFFFAOYSA-N 0.000 description 1
- MBLBDJOUHNCFQT-UHFFFAOYSA-N N-acetyl-D-galactosamine Natural products CC(=O)NC(C=O)C(O)C(O)C(O)CO MBLBDJOUHNCFQT-UHFFFAOYSA-N 0.000 description 1
- OVRNDRQMDRJTHS-FMDGEEDCSA-N N-acetyl-beta-D-glucosamine Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O OVRNDRQMDRJTHS-FMDGEEDCSA-N 0.000 description 1
- MBLBDJOUHNCFQT-LXGUWJNJSA-N N-acetylglucosamine Natural products CC(=O)N[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO MBLBDJOUHNCFQT-LXGUWJNJSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 102000005348 Neuraminidase Human genes 0.000 description 1
- 108010006232 Neuraminidase Proteins 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- UIIMBOGNXHQVGW-DEQYMQKBSA-M Sodium bicarbonate-14C Chemical compound [Na+].O[14C]([O-])=O UIIMBOGNXHQVGW-DEQYMQKBSA-M 0.000 description 1
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 206010047115 Vasculitis Diseases 0.000 description 1
- DFPAKSUCGFBDDF-ZQBYOMGUSA-N [14c]-nicotinamide Chemical compound N[14C](=O)C1=CC=CN=C1 DFPAKSUCGFBDDF-ZQBYOMGUSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229940033655 asparagine monohydrate Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- XXWCODXIQWIHQN-UHFFFAOYSA-N butane-1,4-diamine;hydron;dichloride Chemical compound Cl.Cl.NCCCCN XXWCODXIQWIHQN-UHFFFAOYSA-N 0.000 description 1
- FAPWYRCQGJNNSJ-UBKPKTQASA-L calcium D-pantothenic acid Chemical compound [Ca+2].OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O.OCC(C)(C)[C@@H](O)C(=O)NCCC([O-])=O FAPWYRCQGJNNSJ-UBKPKTQASA-L 0.000 description 1
- 229940050560 calcium chloride anhydrous Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229960003178 choline chloride Drugs 0.000 description 1
- SGMZJAMFUVOLNK-UHFFFAOYSA-M choline chloride Chemical compound [Cl-].C[N+](C)(C)CCO SGMZJAMFUVOLNK-UHFFFAOYSA-M 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229960002104 cyanocobalamin Drugs 0.000 description 1
- 235000000639 cyanocobalamin Nutrition 0.000 description 1
- 239000011666 cyanocobalamin Substances 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 229960000633 dextran sulfate Drugs 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229940073621 enbrel Drugs 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 229960000304 folic acid Drugs 0.000 description 1
- 235000019152 folic acid Nutrition 0.000 description 1
- 239000011724 folic acid Substances 0.000 description 1
- 229930182830 galactose Natural products 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- CDAISMWEOUEBRE-GPIVLXJGSA-N inositol Chemical compound O[C@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](O)[C@@H]1O CDAISMWEOUEBRE-GPIVLXJGSA-N 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- SURQXAFEQWPFPV-UHFFFAOYSA-L iron(2+) sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Fe+2].[O-]S([O-])(=O)=O SURQXAFEQWPFPV-UHFFFAOYSA-L 0.000 description 1
- SZQUEWJRBJDHSM-UHFFFAOYSA-N iron(3+);trinitrate;nonahydrate Chemical compound O.O.O.O.O.O.O.O.O.[Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O SZQUEWJRBJDHSM-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004895 liquid chromatography mass spectrometry Methods 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229940073589 magnesium chloride anhydrous Drugs 0.000 description 1
- 229940091250 magnesium supplement Drugs 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229950006780 n-acetylglucosamine Drugs 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 230000004526 pharmaceutical effect Effects 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- FCHXJFJNDJXENQ-UHFFFAOYSA-N pyridoxal hydrochloride Chemical compound Cl.CC1=NC=C(CO)C(C=O)=C1O FCHXJFJNDJXENQ-UHFFFAOYSA-N 0.000 description 1
- 230000037425 regulation of transcription Effects 0.000 description 1
- 230000009712 regulation of translation Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 229960002477 riboflavin Drugs 0.000 description 1
- 235000019192 riboflavin Nutrition 0.000 description 1
- 239000002151 riboflavin Substances 0.000 description 1
- CDAISMWEOUEBRE-UHFFFAOYSA-N scyllo-inosotol Natural products OC1C(O)C(O)C(O)C(O)C1O CDAISMWEOUEBRE-UHFFFAOYSA-N 0.000 description 1
- 238000011218 seed culture Methods 0.000 description 1
- 125000005629 sialic acid group Chemical group 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229960002668 sodium chloride Drugs 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- DPJRMOMPQZCRJU-UHFFFAOYSA-M thiamine hydrochloride Chemical compound Cl.[Cl-].CC1=C(CCO)SC=[N+]1CC1=CN=C(C)N=C1N DPJRMOMPQZCRJU-UHFFFAOYSA-M 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- RZLVQBNCHSJZPX-UHFFFAOYSA-L zinc sulfate heptahydrate Chemical compound O.O.O.O.O.O.O.[Zn+2].[O-]S([O-])(=O)=O RZLVQBNCHSJZPX-UHFFFAOYSA-L 0.000 description 1
Landscapes
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Peptides Or Proteins (AREA)
Abstract
The controlling the glycoprotein structures is very important in the field of development of recombinant glycoprotein products for medicines and development of mass production technology. The present invention relates to a method for controlling a glycosylation pattern of a recombinant glycoprotein, comprising culturing a cell comprising polynucleotide encoding a recombinant glycoprotein in a culture medium comprising insulin. The method for controlling the glycosylation of the recombinant glycoprotein according to the present invention can control an activity, folding, secretion, stability, a half-life in plasma, and an immune response of the recombinant glycoprotein.
Description
iption of Invention] [Title of Invention] A METHOD FOR CONTROLLING GLYCOSYLATION OF RECOMBINANT GLYCOPROTEIN [Technical Field] The present invention relates to a method for controlling glycosylation of a recombinant glycoprotein.
[Background Art] As a TNFR-Fc fusion protein in which a ligand binding part of a human p75 TNF-α receptor (TNFR, TNF-α receptor) is linked to an Fc fragment of human IgG1, Etanercept was released by Amgen under the trade name of Enbrel in 2002. Etanercept competitively inhibits in vivo binding between TNF-α receptors on the surface of a cell, thereby ting a related immune response. Accordingly, as a TNF-α tor, Etanercept is used for rheumatoid arthritis, psoriasis, ankylosing spondylitis, etc., and clinical studies for its application to vasculitis, Alzheimer’s disease, and Crohn’s disease are in progress.
Meanwhile, a gene recombinant pharmaceutical product is a pharmaceutical t containing a peptide, a protein, etc., produced by using a genetic manipulation technique as an active ingredient. Use of biotechnology is advantageous in that it is possible to obtain a large number of highly pure recombinant proteins which are ult to obtain in a natural state, but an expression structure itself may be unstable since a gene of a target protein is inserted into a host cell from outside. Besides, proteins are produced by expressing the gene in a microorganism or a cell of an animal or plant, but not in the human body, the recombinant ns may be different from native proteins in terms of structural, physicochemical, immunochemical, and biological properties or features (Kwon, et al., FDC Legislation Research V, vol.1, 2, 13-21, 2010).
In particular, in the case of a glycoprotein, ylation and a structure or form of a glycoform (sugar chain) may differ according to a culture condition. In other words, in the process of glycoprotein production, ence in glycoform structures or the amounts of saccharides constituting the orm structure lead to various types of glycoforms, y g heterogeneity according to differences in production conditions. In the case of glycoproteins with different glycoform structures, they are different from native forms in terms of in vivo movement or tissue distribution, or are antagonistic to the native forms, causing an adverse reaction. When administered continuously for a long period of time, they act as antigens and may cause an immunological problem.
As described above, as the orms may become an important factor that may affect a pharmaceutical effect and in vivo movement, lling the glycoprotein structures is very important in the field of pment of recombinant rotein products for medicines and pment of mass production technology.
In this regard, Korean Patent Publication No. 2011-0139292, as a prior art, discloses control of protein glycosylation and compositions and methods related thereto, and Korean Patent Publication No. 2012-0134116 discloses a method for increasing N-glycosylation site occupancy on therapeutic glycoproteins.
[Disclosure of Invention] [Technical Problem] With the above background, the present inventors have made extensive efforts to find a method for lling glycosylation of a recombinant glycoprotein, and as a result, have confirmed that the glycosylation of the recombinant glycoprotein can be controlled when a culture medium ning insulin is used, thereby completing the present invention.
[Technical Solution] A main object of the t invention is to provide a method for controlling a glycosylation pattern of a recombinant glycoprotein, comprising culturing a microorganism comprising a polynucleotide encoding the recombinant glycoprotein in a culture medium comprising insulin.
Another object of the present invention is to provide a method for controlling a glycosylation pattern of a recombinant rotein, sing (a) culturing a microorganism comprising a polynucleotide ng a recombinant glycoprotein in a culture medium to grow the microorganism; and (b) adding insulin in the culture medium and culturing the same to e a glycoprotein.
[Advantageous Effect] The method for lling the glycosylation of the recombinant glycoprotein according to the present invention can control an activity, folding, secretion, stability, a halflife in plasma, and an immune response of the recombinant glycoprotein.
[Description of Drawings] shows a ge map of pCUCBin-mSig-TNFcept. shows the number of viable cells (unit: 105 cells/mL) and viability (%) according to cell culture time (unit: day) in an ary embodiment of the present invention.
[Best Mode] As an aspect to achieve the above s, the t invention provides a method for controlling a glycosylation pattern of a recombinant glycoprotein, comprising culturing a microorganism comprising a polynucleotide encoding the recombinant glycoprotein in a culture medium sing insulin.
The glycoprotein refers to a protein in which a saccharide binds to a ic amino acid of a polypeptide, and the saccharide may refer to a glycoform, e.g., one in which at least one or two monosaccharides are linked. As an example, the glycoform, as an oligosaccharide in which various monosaccharides are linked to a glycoprotein, may include a monosaccharide such as fucose, N-acetylglucosamine, N-acetylgalactosamine, galactose, mannose, sialic acid, glucose, s, mannosephosphate, etc.; a branched form thereof; etc.
As an example, the recombinant glycoprotein may be an immunoglobulin fusion protein. The immunoglobulin fusion protein may include the Fc region which is a part of the immunoglobulin, including the heavy chain constant domain 2 (CH2), the heavy chain constant domain 3 (CH3), and the hinge region, excluding the variable domains of the heavy and light chains, the heavy chain constant domain 1 (CH1), and the light chain constant domain (CL1) of the immunoglobulin (Ig).
As another example, the recombinant glycoprotein may be a TNFR-Fc fusion protein.
The tumor is factor receptor (TNFR) refers to a receptor protein which binds to a TNF-α. The TNFR protein may be a TNFRI (p55) or TNFRII (p75) protein, preferably TNFRII n, but is not limited thereto. Additionally, the TNFRII may be atively used with a tumor necrosis factor receptor superfamily member 1B (TNFRSF1B). The TNFRII protein is divided into 4 domains and transmembrane regions, e.g., a TNFRII protein consisting of 235 amino acids including 4 domains and embrane, but is not limited thereto. Information ing the TNFRI and TNFRII proteins can be obtained from known databases such as National Institutes of Health GenBank. For example, the TNFRI and TNFRII proteins may be the proteins of which the accession number is NP_001056 or P20333, but are not limited thereto.
For having an activity of binding to TNF-α, which is known to cause various diseases when overexpressed in vivo, the TNFR protein can be used for treatment of diseases mediated by TNF-α. In order to be used for said purpose, the TNFR protein can be produced and used in a form of a fusion protein with a half-life increased by fusion of the Fc region of an immunoglobulin and the TNFR protein.
The tumor necrosis factor receptor (TNFR)-Fc fusion protein refers to a fusion protein in which all or a portion of the TNFR protein is linked to the Fc region of the immunoglobulin by an enzymatic reaction or a product in which the two polypeptides are expressed in one polypeptide through genetic lation. The TNFR-Fc fusion protein may have TNFR protein and the Fc region of the immunoglobulin directly linked via a e linker, but is not limited thereto. A non-limiting example of the c fusion protein may be Etanercept (US patent 7,915,225; 5,605,690; Re. ).
The TNFR-Fc fusion protein may be produced by fusion of all or a portion of a TNFR protein with the Fc region of an immunoglobulin, e.g., 232 amino acids of the Fc region of an immunoglobulin including the hinge region and the 1st to 235th amino acid sites of the TNFRII, but is not limited thereto. Additionally, the TNFR-Fc fusion protein may be codon-optimized according to a host cell to be sed and may be, for example, a TNFRFc fusion protein codon-optimized specifically to a CHO cell, but is not limited thereto.
The TNFR-Fc fusion n is not only an amino acid sequence, but also an amino acid sequence which is 70% or more, preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, most preferably 98% similar to the amino acid sequence, and includes all proteins which have the activity of ntially binding to TNF-α. It is obvious that as long as the sequence having such similarity is an amino acid sequence identical to TNFR-Fc fusion protein or an amino acid sequence having a corresponding biological activity, a protein mutant having amino acid sequences of which a part is d, ed, substituted, or added falls within the scope of the present invention.
The Fc refers to a part of the immunoglobulin, including the heavy chain constant domain 2 (CH2), the heavy chain constant domain 3 (CH3), and the hinge region, excluding the variable domains of the heavy and light chains, the heavy chain constant domain 1 (CH1), and the light chain constant domain (CL1) of the immunoglobulin (Ig). onally, the Fc region of the present invention includes not only a native form of an amino acid sequence but also an amino acid sequence derivative thereof. The amino acid sequence derivative means that one or more amino acid residues of a native form of an amino acid sequence have different sequences due to on, insertion, conservative or non-conservative substitution, or a ation thereof. onally, the immunoglobulin Fc region may be an Fc region derived from IgG, IgM, IgE, IgA, IgD, or a combination or hybrid thereof. Additionally, the immunoglobulin Fc region is preferably derived from an IgG known to improve half-life of a g protein, and more preferably derived from an IgG1, but is not limited to its ss and can be obtained from any subclass of IgG (IgG1, IgG2, IgG3, and IgG4).
The Fc region can genetically e or obtain a gene encoding the Fc region by using a recombinant vector or cutting a purified polyclonal antigen or monoclonal antigen with an appropriate lyase such as papain, pepsin, etc., respectively.
The TNFR-Fc fusion protein can be obtained by introducing an expression vector including a polynucleotide encoding the fusion protein into a host cell and expressing the same. In an exemplary embodiment of the present invention, a pCUCBin-mSig-TNFcept vector was used as the expression vector including a polynucleotide encoding the c fusion protein and was transduced into a CHO cell to express a TNFR-Fc fusion protein.
In the present invention, the microorganism can be used to have the same meaning as the host cell or transformant. A non-limiting example may be an animal cell line, plant, or yeast host cell. In an ary embodiment of the present invention, Chinese Hamster Ovary cell (CHO cell) was used as the microorganism, but is not limited o as long as the microorganism can be transformed by a polynucleotide encoding the recombinant glycoprotein.
The polynucleotide, as long as it can be expressed inside the microorganism, can be inserted into a chromosome and located n or located outside the chromosome. The cleotide includes RNA and DNA which encode the target protein. A method for including the polynucleotide is not limited as long as the method is used in the art. As an example, the polynucleotide can be included inside a microorganism in a form of an expression cassette, a gene construct including all essential elements required for selfexpression.
As another example, a method for modifying by an expression vector ing a sequence of the polynucleotide encoding the target protein operably connected to a suitable regulation sequence so that the target protein can be sed in an riate host cell can be used. The regulation sequence includes a er initiating transcription, a random operator ce for regulation of the transcription, a sequence encoding a le mRNA ribosome-binding domain, and a sequence for regulation of transcription and translation.
The vector, after being transformed into a suitable host cell, may be replicated or function irrespective of the host genome, or may be integrated into the host genome itself. The vector used in the present invention may not be ically limited as long as the vector is replicable in the host cell, and any vector known in the art may be used.
The glycosylation n of the recombinant glycoprotein means an expression pattern of a glycoform, which appears through glycosylation of the glycoprotein. Examples of the glycosylation n include presence of glycosylation which ts a saccharide to a protein, type of a saccharide, type of glycosylation, content of saccharide, composition of monosaccharide (saccharides), including molar ratio, location of glycoform, structure of orm including sequence, location of glycosylation, glycosylation occupancy, number of glycoforms, and relative contents according to ure. Difference in biological activity or in vivo stability may appear according to the glycosylation pattern of the recombinant glycoprotein.
In the present invention, the insulin may control N-linked glycosylation of the recombinant glycoprotein. In the present invention, the N-linked glycosylation may be used to have the same meaning as N-glycosylation. As an e, the insulin may reduce the content of N-glycan of the recombinant rotein. In the present invention, the N-glycan may be used to have the same meaning as N-glycoform, and may refer to a case in which a saccharide is connected to asparagine of protein.
In the present invention, the insulin may control O-linked glycosylation of the recombinant glycoprotein. In the present invention, the N-linked glycosylation may be used to have the same g as O-glycosylation. As another example, the insulin may reduce the content of an of the recombinant glycoprotein. In the present invention, the O- glycan may be used to have the same meaning as O-glycoform, and may refer to a case in which a saccharide is connected to serine or threonine of protein.
In the present invention, the insulin may control the ed glycosylation and O- linked glycosylation of the recombinant glycoprotein.
In an exemplary embodiment of the present ion, the insulin addition ed to influence the glycosylation pattern of the glycoprotein (Table 2). Specifically, it was confirmed that the N-glycan and/or O-glycan content is controlled to be reduced by on of the insulin. In particular, among culturing processes of a cell capable of producing glycoprotein, addition of insulin during the production phase was confirmed to play an important role in control of the glycosylation n.
The insulin concentration may be 0.0001 mg/L to 1 g/L relative to the total volume of the culture medium. In an exemplary embodiment of the present invention, it was confirmed that as the insulin concentration ses, the N-glycan and/or O-glycan content could be controlled to be d (Table 2).
The culture medium is not limited as long as it is used for culturing a microorganism or host cell including a polynucleotide encoding a glycoprotein in the art. For example, the culture medium may include an amino acid such as L-glutamine, thymidine, alanine, arginine monohydrochloride, asparagine monohydrate, aspartic acid, cysteine, glycine, histidine, isoleucine, e, lysine monohydrochloride, methionine, phenylalanine, e, serine, threonine, tryptophan, tyrosine, (disodium salt, ate), and valine. As another example, the culture medium may include glucose, sodium bicarbonate, sodium chloride, calcium chloride anhydrous, cupric sulfate pentahydrate, ferric nitrate nonahydrate, ferrous sulfate heptahydrate, potassium chloride, magnesium e anhydrous, magnesium chloride anhydrous, sodium phosphate asic or c, monohydrate), zinc sulfate heptahydrate, hypoxanthine, putrescine dihydrochloride, sodium pyruvate, , D-calcium pantothenate, choline chloride, cyanocobalamin, folic acid, i-inositol, nicotinamide, pyridoxal monohydrochloride, xine monohydrochloride, riboflavin, thiamine monohydrochloride, glucose anhydrous, potassium chloride, sodium phosphate (NaH2PO4·H2O), sodium hydrogen carbonate (NaHCO3), HEPES (free acid), dextran sulfate, sodium chloride, ascorbic acid, D-biotin, Hypep 1510, or a combination of two or more. For initial seed culture, MTX may be further included for an increase in expression level.
The culturing may be a perfusion culturing method. The culturing may be a culturing method of perfusing e fluid around a microorganism. Through the perfusion ing method, the insulin concentration can be easily controlled according to a target glycosylation n.
As another aspect, the present invention provides a method for controlling a glycosylation pattern of a recombinant glycoprotein, comprising (a) culturing a microorganism comprising a polynucleotide ng a recombinant glycoprotein in a e medium to grow the microorganism; and (b) adding insulin in the culture medium and culturing the same to produce a glycoprotein.
As an example, the recombinant glycoprotein may be an immunoglobulin fusion protein. As another example, the recombinant rotein may be TNFR-Fc fusion protein, which is described above.
Step (a), which is a growth phase, may further include seed culturing.
The culture medium of step (a) may not include insulin.
Step (b) may be a step of adding insulin at different trations according to a target glycosylation pattern. In an exemplary embodiment of the present invention, it ed in the growth phase that the N-glycan and/or O-glycan contents vary according to on of insulin. Specifically, it was confirmed that the n addition can l N- glycan and/or O-glycan contents to be reduced. In particular, among culturing processes of a cell e of producing glycoprotein, addition of insulin during a production phase was confirmed to play an important role in control of a glycosylation pattern.
The insulin concentration may be 0.0001 mg/L to 1 g/L relative to the total volume of the culture . It was confirmed that as the insulin concentration increases, the N- glycan and/or O-glycan content could be controlled to be reduced (Table 2).
The insulin may control N-linked glycosylation and O-linked glycosylation of a recombinant rotein. As an example, the insulin may reduce the N-glycan content of the recombinant glycoprotein. As another example, the insulin may reduce the O-glycan content of the recombinant glycoprotein.
As another , the present invention provides a culture medium composition for controlling the inant glycoprotein glycosylation pattern. The insulin may be included in a concentration of 0.0001 mg/L to 1 g/L relative to the total volume of the culture medium.
For example, the culture medium may be used only during the production phase among microorganism culturing processes.
[Mode for ion] Hereinbelow, the present invention will be described in detail with accompanying exemplary embodiments. However, the exemplary embodiments disclosed herein are only for rative purposes and should not be construed as ng the scope of the present invention.
Example 1: Preparing cell line for glycoprotein production 1-1. Preparing vector s commonly used in molecular biology such as treatment of restriction enzyme, purification of plasmid DNA, conjugation of DNA sections, and transformation of E. coli were conducted by applying minimum modifications to the methods introduced in lar Cloning (2nd edition) of Sambrook, et al.
A human p75 TNF receptor (TNFR) gene was cloned using a cDNA library which uses mRNA isolated from a HUVEC cell line as a template, and the cloned gene was fused with the Fc region of a human IgG1 to obtain a TNFR-IgG1. A pCUCBin-mSig-TNFcept vector was prepared using a pTOP-BA-RL-pA vector (Korean Patent Publication No. 10- 2012-0059222; comprising "CMVe", "CB", and "beta-actin intron") as a template and the TNFR-IgG1. 1-2. Culturing mother cell CHO/dhfr- (CHO DXB11) was used as a mother cell. CHO/dhfr- is a cell isolated from CHO cell and is deficient in dihydrofolate reductase (DHFR). 1-3. Transformant and selecting cell line for production A transformant cell was prepared using fr- (CHO DXB11) and the n-mSig-TNFcept vector including p75 TNF receptor (TNFR) gene, and the gene was amplified using MTX concentration. The cells identified as the transformant cells and monoclines were chosen as the cell line for production. The cell lines were then inserted into a glass jar and stored in liquid nitrogen. e 2: Culturing cell line for glycoprotein production and harvesting protein Different e media were used according to culturing phase. Insulin was added to 5.8 g/L of media X011SB (Merck Millipore, Cat. No. 102443) to prepare the basic culture medium. The culture medium (Media EC-SI) in which 10 g/L of glucose anhydrous (Sigma) and 0.584 g/L of glutamine, glycine, and serine ) were added to the basic culture medium was used for the seed cultivation phase. The culture medium (EC-GM) in which 5 g/l of glucose anhydrous and 0.584 g/L of L-glutamine, glycine, and serine were added to the basic culture medium for the growth phase. The culture medium (EC-PM) in which 15 g/L of glucose anhydrous and 0.584 g/L of L-glutamine, glycine, and serine were added to the basic culture medium was used for the production phase.
The glass jar containing the cell strain prepared in Example 1 was y defrosted in a water tank, and the cells n were moved to a falcon tube containing 10 mL of the culture medium. The resulting cells were centrifuged, and the first supernatant was removed. The cells were then resuspended with 10 mL of Media EC-SI and were inoculated into an Erlenmeyer flask to a final volume of 50 mL. Using a 5 L CelliGen310 cell culture bioreactor, the cells were cultured to obtain 2 L based on working volume. When the viable cell number reached 2 × 106 cells/mL through five times of seed culturing, the e medium started to change to EC-GM through the ion culturing. As the viable cell number increased, the exchange rate of the culture medium increased to differentiate the cells ively. When the viable cell number reached 1.5 × 107 cells/mL (Fig. 2), the culture medium changed to EC-PM, proceeding from the growth phase to the production phase.
The harvest was ted a total of four times, and the harvested protein was purified. The resulting value was the average value of the four ts.
Example 3: Analyzing glycan content 3-1. Analyzing O-glycan content The specimen ed in Example 2 was diluted with 25 mM of sodium phosphate buffer at pH 6.3 to be 100 μL at a concentration of 1.0 mg/mL. 4 μL of N-glycosidase F (1 U/μL, Roche), 2 μL of neuraminidase (1 U/100 μL), and 2 μL of trypsin (1 mg/mL, Promega) were added to each specimen and reacted at 37°C for 18 hours. LC-MS analysis was then conducted. 80 μL of the specimen was inoculated, and then tryptic peptide was analyzed using C18 RP (4.6 mm × 250 mm, 5 μm, 300 Å; Vydac, Cat. No. 218TP54). Mobile phase A used 0.1% TFA in water, and mobile phase B used 0.1% TFA in 80% cold CAN. The analysis was conducted in a gradient condition for 150 minutes. Using a UV detector, a peptide was detected at 215 nm, and the subject ted through LC was connected to a mass spectrometer (LTQ XL, Thermo) for MS analysis to calculate a relative area (%) of O- glycopeptide. 3-2. Analyzing N-glycan t The specimen purified in Example 2 and a reference standard (Etanercept, Pfizer) were diluted with the specimen t (25 mM sodium ate (pH 6.3 buffer)) to be 3.0 mg/mL. 100 μL of each specimen and 6 μL of N-glycosidase F solution were mixed and reacted at 37°C for 20 hours. 400 μL of ethanol was added to the solution after the reaction and was mixed in a vortex. The resulting solution was centrifuged, and the supernatant was then transferred to an Eppendorf tube and dried completely using a speed-vac concentrator.
After adding 10 μL of a 2-AA labeling agent to the dried specimen and mixing them, the mixture was reacted at 45°C and cooled at room temperature.
A GlycoClean S dge was put on a disposable culture tube, and then distilled water, 30% e, and acetonitrile were perfused sequentially. The cooled specimen was loaded onto the center of the cartridge membrane and perfused with itrile. In order to elute N-glycan, distilled water was added to the cartridge for collection in the Eppendorf tube.
The resulting glycan solution was lized and stored until it was analyzed.
The analysis was conducted with HPLC column (AsahiPak NH2P-50 4E, 4.6 × 250 mm) in a gradient condition for 130 minutes using 0.5 mM um e (pH 6.7) and 250 mM ammonium acetate (pH 5.6) as mobile phases A and B, respectively. A fluorometric detector was used for detection, and the sum of the area of the peaks per number of sialic acids present at the terminal of N-glycan was calculated. In a case where there was no sialic acid, it was marked as neutral. In cases of one (monosialyl) and two (disialyl), they were marked as -1 and -2, respectively.
Experimental e 1. Culturing cell strain using culture medium not comprising insulin added during production phase The same culture medium as that of the production phase in Example 2, excluding insulin, was used to culture the cell strain. N-Glycan contents (%) and relative surface area ratios (%) of O-glycopeptide per temperature were analyzed and are shown in Table 1 below.
[Table 1] Culture temperature Harvest N-Glycan-2 charge Relative surface area ratio of O- (production phase) (Nth) (%, avg) glycopeptide (%, avg) °C H1 12.5 56.13 32°C H1 16.1 54.38 Experimental Example 2. Comparison of changes in glycosylation patterns according to insulin addition during the production phase The ylation patterns were ed in accordance with the insulin addition and are shown in Table 2 below.
[Table 2] Culture Insulin tration Harvest N-Glycan-2 Relative surface area ratio temperature in culture medium (Nth) charge (%, avg) of O-glycopeptide (%, avg) °C 0 mg/L H1 12.5 56.13 0.003 mg/L H1 10.4 54.68 0.009 mg/L H1 10.9 52.68 0.03 mg/L H1 9.7 49.5 As a result, it was shown that among culturing processes of a cell e of producing glycoprotein, the insulin addition during the production phase affected the glycosylation pattern. In particular, the N-glycan and/or O-glycan content was shown to change in accordance with the n addition. Specifically, it was confirmed that the N- glycan and/or O-glycan content could be controlled to be reduced by the insulin addition.
While the present invention has been bed with reference to the particular illustrative embodiments, it will be understood by those skilled in the art to which the present invention pertains that the present invention may be embodied in other specific forms without departing from the technical spirit or essential characteristics of the present invention.
Therefore, the embodiments described above are considered to be illustrative in all respects and not restrictive. Furthermore, the scope of the present invention is defined by the appended claims rather than the detailed description, and it should be understood that all modifications or variations derived from the meanings and scope of the present invention and lents thereof are included in the scope of the appended claims.
[Industrial Applicability] As it is capable of ng the N-glycan and/or O-glycan content according to the insulin addition ularly during the growth phase, the method of controlling glycosylation pattern of the recombinant rotein according to the present invention can be very useful in production of a pharmaceutical recombinant glycoprotein in which mity of g of saccharide molecules plays an important role.
Claims (6)
1. A method for reducing a content of N-glycans and/or O-glycans of a recombinant glycoprotein, comprising (a) culturing a transformant comprising a cleotide encoding the recombinant glycoprotein in a culture medium, and (b) adding insulin to the culture medium and culturing the same to produce a glycoprotein, wherein said insulin is in amount sufficient to reduce any N-glycans and/or O-glycans on said recombinant glycoprotein, wherein step (b) is a step of adding insulin at different concentrations according to a target glycosylation n, and wherein a concentration of the insulin is 0.0001 mg/L to 0.03 mg/L ve to the culture medium.
2. The method of claim 1, wherein the recombinant glycoprotein is an globulin fusion protein.
3. The method of claim 1, wherein the recombinant glycoprotein is a c fusion protein.
4. The method of claim 1, wherein a concentration of the insulin is 0.003 mg/L to 0.03 mg/L relative to the culture medium.
5. The method of claim 1, wherein the insulin controls N-linked glycosylation and O-linked glycosylation.
6. The method of claim 1, wherein the culturing is a perfusion culturing method. ngs] [
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020140195976A KR102007930B1 (en) | 2014-12-31 | 2014-12-31 | A method for controlling glycosylation of recombinant glycoprotein |
KR10-2014-0195976 | 2014-12-31 | ||
NZ733430A NZ733430A (en) | 2014-12-31 | 2015-12-30 | A method for controlling glycosylation of recombinant glycoprotein |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ752502A true NZ752502A (en) | 2021-03-26 |
NZ752502B2 NZ752502B2 (en) | 2021-06-29 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100496356B1 (en) | Process for Controlling Sialylation of Proteins Produced by Mammalian Cell Culture | |
ES2252876T3 (en) | PROCESS TO PREPARE POLYPEPTIDES WITH ADEQUATE GLYCOLIZATION. | |
US12098196B2 (en) | Production of biosimilar ustekinumab in CHO cells | |
NO342802B1 (en) | Preparation of recombinantIL-18 binding protein | |
US11414476B2 (en) | Method for producing fusion protein having IgG Fc domain | |
US20070099266A1 (en) | Process for the production of tumor necrosis factor-binding proteins | |
US10131891B2 (en) | Method of using insulin for controlling glycosylation of recombinant glycoprotein | |
NZ752502A (en) | A Method For Controlling Glycosylation Of Recombinant Glycoprotein | |
NZ752502B2 (en) | A Method For Controlling Glycosylation Of Recombinant Glycoprotein | |
NZ733430A (en) | A method for controlling glycosylation of recombinant glycoprotein | |
CN103833856B (en) | Fusion protein for inhibiting formation of TACI-BAFF complex and preparation method and application thereof | |
MXPA97009452A (en) | Process to control the sialilation of proteins produced by cultivation of mamife cells |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PSEA | Patent sealed | ||
RENW | Renewal (renewal fees accepted) |
Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 30 DEC 2022 BY MARKPRO GLOBAL COMPANY Effective date: 20211119 |
|
RENW | Renewal (renewal fees accepted) |
Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 30 DEC 2023 BY MARKPRO GLOBAL COMPANY Effective date: 20221118 |
|
RENW | Renewal (renewal fees accepted) |
Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 30 DEC 2024 BY MARKPRO GLOBAL COMPANY Effective date: 20231121 |