NZ750504B2 - Antimicrobial Compositions and Related Methods of Use - Google Patents

Antimicrobial Compositions and Related Methods of Use Download PDF

Info

Publication number
NZ750504B2
NZ750504B2 NZ750504A NZ75050414A NZ750504B2 NZ 750504 B2 NZ750504 B2 NZ 750504B2 NZ 750504 A NZ750504 A NZ 750504A NZ 75050414 A NZ75050414 A NZ 75050414A NZ 750504 B2 NZ750504 B2 NZ 750504B2
Authority
NZ
New Zealand
Prior art keywords
acid
composition
compositions
component
meth
Prior art date
Application number
NZ750504A
Other versions
NZ750504A (en
Inventor
Niranjan Ramanlal Gandhi
Skebba Victoria Palmer
Gary A Strobel
Original Assignee
Jeneil Biosurfactant Company Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/815,839 external-priority patent/US9706773B2/en
Application filed by Jeneil Biosurfactant Company Llc filed Critical Jeneil Biosurfactant Company Llc
Publication of NZ750504A publication Critical patent/NZ750504A/en
Publication of NZ750504B2 publication Critical patent/NZ750504B2/en

Links

Abstract

Articles and antimicrobial compositions comprising propanoic acid and components selected from a C4-C6 acid salt, a C2-C5 acid ester, and a C2-C8 aldehyde, wherein the propanoic acid is present at a ratio of at least 7:2 with respect to each of the other components of the composition, and combinations thereof, and related methods of use to effect antimicrobial activity. Such as agricultural, industrial, building, pharmaceutical, personal care and/or animal care products and applications. ns thereof, and related methods of use to effect antimicrobial activity. Such as agricultural, industrial, building, pharmaceutical, personal care and/or animal care products and applications.

Description

Antimicrobial itions and Related Methods of Use This application claims priority benefit from US. application serial no. 13/815,839 filed March 15, 2013, which is incorporated herein by reference in its ty.
Background of the ion.
Much progress has been made toward fication and development of biocides for controlling various molds, plant diseases and the like. r, most commercial biocides or pesticides in use are compounds which are classified as carcinogens or are toxic to wildlife and other non-target species. For example, methyl bromide is widely used as a soil filmigant and in the post-harvest treatment of microbial infections. Human toxicity and deleterious environmental effects will ultimately result in discontinued use of methyl bromide and various other synthetic es/pesticides. As a result, recent efforts have been directed to the identification and development of natural or biomimetic compositions demonstrating comparable antimicrobial or pesticidal effect.
One such ch s to endophytes and associated volatile by- products. Endophytes are defined in the art as microorganisms residing in the interstitial spaces of living plant tissue, but are generally not considered to be parasitic. In particular, endophytes found in conjunction with rain forest plants have generated considerable st for reasons relating to the antibiotic character of their volatile by-products. Several members of the Muscodor genus (i.e., M. albus, M. roseus and M. vitigenus) have been shown to produce volatile by-products exhibiting otic or insecticidal character. However, the respective by-product of each species includes various naphthalene and/or azulene derivatives. Such compounds, together with other duct components, can be toxic or otherwise unhealthy, and the corresponding mixtures are considered ptable for various end use applications. ingly, there remains an ng search in the art to identify natural compositions and to develop biomimetic compositions absent from such compounds, that are safe for human use and demonstrate effective crobial properties.
Summam ofthe Invention.
In light of the foregoing, it is an object of the present invention to provide flavorings that have antimicrobial compositions and/or methods for their use, thereby overcoming various deficiencies and shortcomings of the prior art, including those outlined above. It will be understood by those skilled in the art that one or more aspects of this invention can meet certain objectives, while one or more other aspects can meet n other objectives. Each objective may not apply equally, in all its respects, to every aspect of this invention. As such, the following objects can be viewed in the alternative with respect to any one aspect of this invention.
It can be an object of the present invention to provide a Muscodor species and a volatile by-product thereof, absent naphthalene and azulene (non-GRAS compounds) related compounds, in ction with a methodology for the tion, inhibition and/or eradication of microbial ion.
It can be r object of the present ion to provide a system comprising such a s or strain thereof and an associated volatile by-product in conjunction with a non-indigenous medium or substrate for use against microbial ion.
It can be another object of the present invention to provide such a system and/or related methodology for use, without limitation, in the context of human and animal food, produce, plants, plant parts, seeds, agricultural crops and other organic materials, packaging, ng materials, fibers, cloth, ng articles, and pharmaceutical and/or medical applications.
It can be another object of the present ion to e, in the alternative or in conjunction therewith, a range of biomimetic man-made compositions demonstrating antimicrobial ty comparable to such Muscodor species.
It can be an object of the present invention to e one or more such compositions of components edible or otherwise safe for human use and consumption.
It can be another object of the present invention to e a system, composite or article comprising such a non-natural, biomimetic composition in conjunction with a medium or substrate for the prevention, inhibition and/or eradication of microbial infection. It can be another object of the present invention to provide such a system, composite and/or article for use, in a context of the sort described above or illustrated elsewhere herein.
It can also be an object of the present invention to provide a method for antimicrobial and/or pesticidal treatment comprising such a composition, without limitation as to , carrier or substrate.
Other objects, features, benefits and advantages of the present invention will be apparent from this summary and the following descriptions of certain embodiments, and will be readily apparent to those skilled in the art having knowledge of various antimicrobial compositions and related treatments. Such s, features, benefits and advantages will be apparent from the above as taken into conjunction with the accompanying examples, data, figures and all reasonable inferences to be drawn therefrom, alone or with consideration of the references incorporated herein.
In part, the present invention can be directed to a system comprising at least one of a strain ofM. crispans, a volatile by-product thereof or vapor of such a volatile by-product and a non-indigenous medium or substrate. Such media or substrates can be as described herein or as would otherwise be understood by those skilled in the art. Regardless, such a strain can be ed in the form of a biologically pure culture, optionally in conjunction with a carrier ent suitable for media/substrate contact or end-use application, such a culture sufficiently viable for production of a volatile by-product. In accordance with this invention, a duct or a modification of a by-product of M. crispans, or vapor corresponding thereto, is as compositionally described elsewhere Accordingly, the present invention can also be directed to using such a system and/or the volatile fungal by-products thereof to provide antimicrobial . Such a method can comprise providing a non-indigenous ate or medium capable of supporting microbial activity or growth; and contacting such a substrate or a medium with a culture of a strain ofM. crispans, a le by-product thereof and/or vapor from such a by-product. In n embodiments, such contact can comprise such a strain on, about or approximate to such a medium or substrate. In certain other embodiments, a volatile duct or modifications of a by-product ofM. crispans, or a corresponding vapor, can infuse or ise contact such a medium or substrate.
Without limitation as to any such system or method, such a substrate can be selected from a food or produce item, a packaging component for a food or other perishable item, a fiber, clothing or clothing item, a building or construction ent, a plant, plant surface, soil, garbage or refiase. Such contact can be bioactive with respect to microbial presence and/or prophylactic.
In part, the present invention can be directed to a non-naturally occurring antimicrobial composition, r the components thereof are naturally-derived, ally-synthesized or a combination thereof. Such a composition can comprise compounds selected from alcohol, aldehyde, ketone, acid and/or acid ester ents of a biomimetic Muscodor sp. by-product ition, such a composition as can be absent fused aromatic compounds, substituted fused ic compounds and hydro derivatives of such compounds. In certain non-limiting embodiments, such a composition can comprise an acid component selected from acetic acid, isobutyric acid, oic acid and combinations thereof.
In certain embodiments, the present invention can be directed to a naturally-derived antimicrobial composition comprising a C2 - about C5 acid component; a C2 -about C5 ester ent; and at least two C2 - about C5 components isolatable from a volatile by-product of an isolated e odor crispans, such a composition as can have a pathogen actiVity profile ent from a pathogen activity profile of an isolated, cultured Muscodor sp., a volatile by-product thereof and/or a synthetic mixture of such a volatile by-product. Such an acid component can be selected from isobutyric acid, propanoic acid and combinations thereof. Independently, such an ester component can be selected from a C4 ester acetate, a C5 ester e and combinations f.
In certain other embodiments, such a composition can comprise propanoic acid, and a ent selected from a C2 - about C5 acid ester, an aldehyde and combinations thereof. In certain such embodiments, an acid ester component can be selected from acetic acid esters, isobutyric acid esters and combinations thereof One such ment can consist essentially of propanoic acid and yl isobutyrate. Another such ment can consist essentially of propanoic acid, isoamyl acetate and an de such as benzaldehyde.
Without limitation, in certain other embodiments, such a composition can comprise about 8 - about 10 components ise isolatable from a volatile by-product of M. crispans. In certain such embodiments, each component of such a composition can be isolatable from such a volatile by-product. As such a composition can be naturally-derived, each such component can be a fermentation product, and fermentation can be selected from bacterial, yeast and/or fungal fermentations. Regardless, each such component of such a composition can be lly recognized as safe for human consumption under Chapter 21 of the United States Code of Federal Regulations and ponding sections and/or provisions thereof.
Regardless, in certain non-limiting embodiments, such an isolatable component can be isobutyric acid. In certain such embodiments, propanoic acid can be at least in part substituted for isobutyric acid. In such or other non-limiting embodiments, such an isolatable component can be 2-butanone. In certain such embodiments, acetic acid, propanoic acid or a combination thereof can at least in part be substituted for 2-butanone. In such or yet other non-limiting embodiments, such an isolatable component can be ethanol. In certain such embodiments, acetic acid can be at least in part substituted for ethanol.
Regardless of the identity or amount of any such acid component, ester component and/or isolatable component, such a naturally-derived composition can comprise a surfactant ent. In certain such embodiments, a biosurfactant can be incorporated therewith. t limitation, a biosurfactant can be a rhamnolipid ent ed from a monorhamnolipid, a dirhamnolipid and combinations thereof.
Alternatively, the t invention can be directed to a synthetic, non- naturally derived antimicrobial composition. Such a composition can comprise a C2 - about C5 acid ent; a C2 - about C5 ester component; and at least two C2 - about C5 components isolatable from a volatile by-product of an isolated culture ofMuscodor crispans, such a composition as can have a pathogen activity profile different from a pathogen activity profile of an isolated, cultured Muscodor Sp. or a volatile by-product thereof. Such acid, ester and/or isolatable components can be as described above or rated elsewhere herein. Regardless, such an antimicrobial composition can comprise a surfactant component. In certain such non-limiting embodiments, such a surfactant can be a rhamnolipid component selected from a monorhamnolipid, a dirhamnolipid and combinations thereof.
In part, the present invention can be ed to a biomimetic, antimicrobial composition sing a liquid mixture of nds ed from C2 to about C5 alcohols, aldehydes, s, acids and acid esters and combinations and sub- combinations thereof, such a composition not isolated from Muscodor sp. As discussed elsewhere herein, such a liquid mixture can be volatile at room and/or ambient temperatures.
With respect to such a composition and the compounds thereof, the term "abou " can mean, as would be understood by those d in the art, carbon and/or methylene homologs with corresponding molecular weight and/or structural isomerism limited only by mixture with one or more other components, compounds and at least partial room/ambient temperature volatility of the resulting composition. With respect to certain non-limiting embodiments, such a composition can comprise alcohol, aldehyde, ketone, acid and acid ester compounds ed from components of a biomimetic M. crispans by-product composition, of the sort described below. Such a ition can comprise compounds chemically synthesized, compounds isolated from bacterial fermentation and combinations of such compounds. In certain such embodiments, such a composition can comprise an acid component selected from acetic acid, isobutyric acid, propanoic acid and ations thereof.
In part, the present ion can also be directed to a non-naturally- occurring, whether naturally-derived and/or chemically-synthesized, antimicrobial composition comprising compounds selected from C2 to about C5 alcohols, aldehydes, ketones, acids and acid esters and combinations and mbinations of such compounds, such selected compounds generally recognized as safe ("GRAS") for human consumption, such designation as provided in Chapter 21 of the United States Code of Federal Regulations and corresponding sections and/or ions thereof. In certain non-limiting ments, such compounds can be selected from alcohol, ketone, acid and/or acid ester components of a etic M. crispans by-product composition. In certain embodiments, a microbe activity/mortality profile thereof differs from that of either M. crispans or M. albus, a volatile by-product thereof and/or corresponding synthetic by-product compositions thereof Regardless, in n such embodiments, such a composition can comprise an acid component selected from acetic acid, isobutyric acid, oic acid and combinations thereof.
In part, the present invention can comprise a composition comprising a composition of this invention; and a surfactant ent, such a surfactant component alone or as can be incorporated into a carrier ent. In certain embodiments, such a surfactant can be a biosurfactant, such a biosurfactant as can be a rhamnolipid component selected from a monorhamnolipid, a nolipid and combinations thereof.
In part, the present invention can also be directed to a system or composite comprising an inventive composition and a substrate or medium component. Such a composition can be as described above or illustrated elsewhere herein. Without limitation, a substrate can be selected from a food or produce item, a packaging component (e.g., a film or wrapper) for a food or other perishable item, a fiber, cloth or clothing item, a ng or uction component, a human , a plant, plant surface, soil, and garbage or refuse. In certain embodiments, such a composition, whether liquid or gaseous, can be incorporated or otherwise in contact with such a medium, substrate or ate surface.
In part, the present invention can be directed to an article of cture, such an article as can comprise a solid carrier component and a volatile antimicrobial composition ed in, adsorbed on, d to or otherwise incorporated therewith. Such an antimicrobial composition can comprise propanoic acid; and a component selected from a C2 - about C5 acid ester, an aldehyde and combinations thereof. In certain embodiments, such an acid ester can be selected from acetic acid esters, isobutyric acid esters and combinations thereof; and/or an aldehyde component can be selected from a C2 - about Cg aldehyde component. In certain such embodiments, an acid ester can be isobutyl isobutyrate; or such an aldehyde component can be benzaldehyde. Regardless, such an antimicrobial composition can be incorporated with a carrier component comprising a clay. In certain such WO 45828 2014/030657 embodiments, such a carrier component can comprise a bentonite clay. Regardless, such a composition can comprise one or more optional components or nts, including but not limited to a rhamnolipid component.
Alternatively, such an article of manufacture can be considered with an incorporated antimicrobial composition as can comprise oic acid and a C2 - about C5 acid ester comprising at least one of an alkylcarbonyl group, RC(O)-, wherein R comprises an isopropyl, (CH3)2CH-, moiety, and an alkoxy group, -OR', wherein R' ses an isopropyl, -CH(CH3)2, moiety. In certain embodiments, such an acid ester can be selected from isoamyl acetate, isobutyl isobutyrate and a combination thereof. In certain such embodiments, such an antimicrobial composition can consist of propanoic acid and isobutyl yrate. In certain other such embodiments, such a composition can consist of propanoic acid, isoamyl e and benzaldehyde. Regardless, such a solid carrier component can se a clay.
Accordingly, such an article can comprise a solid carrier component comprising a bentonite clay, and an antimicrobial composition incorporated therewith.
Without limitation, such an antimicrobial composition can be selected from a composition consisting essentially of propanoic acid and isobutyl isobutyrate; and a composition ting essentially of propanoic acid, isoamyl acetate and benzaldehyde.
In part, the present invention can also be directed to an article of manufacture comprising granules of a solid carrier component and an antimicrobial composition incorporated therewith. Such a composition can comprise a C2 - about C5 acid component; at least one C2 - about C 5 component isolatable from a volatile by-product of an ed culture ofMuscodor crispans grown on potato dextrose agar; and a ent selected from at least one C2 - about C5 acid ester, an aldehyde and combinations thereof. As s to such an article, such composition-incorporated solid carrier component granules can be provided in a vapor-permeable enclosure.
In certain embodiments, such solid carrier and crobial compositions can be as discussed above or illustrated elsewhere . In certain such embodiments, such an antimicrobial composition can be about 0.01 wt. % to about 10.0 wt. % of such an article.
In certain such embodiments, such a composition can be about 0.20 wt. % to about .0 wt. %. In yet other embodiments, such a composition can be about 1.0 wt. % to about 3 wt. % of such an article. Without limitation as to solid carrier component or antimicrobial composition incorporated therewith, such an enclosure can comprise a woven mesh and/or non-woven material as can be configured as a flexible bag or pouch. Regardless, such an article of cture can be provided in a container with a able food item. [003 1] Accordingly, this invention can also be directed toward a method of microbial or insect treatment, tion, inhibition, ation and/or to otherwise affect microbial or insect activity. Such a method can comprise providing a composition of this invention, including but not limited to one or more compositions of the sort illustrated herein; and contacting a microbe or insect or an article/substrate capable of supporting microbial or insect activity with such a composition in an amount at least partially sufficient to affect microbial or insect activity. Such a microbe (e.g., a fungus, bacterium or virus) or insect can be in a medium, on or about a surface of a substrate of the sort discussed above.
Accordingly, such contact can be direct and/or upon volatilization of such a ition. less, such treatment can be active with respect to microbial or insect presence and/or prophylactic. As illustrated elsewhere herein, treatment can be considered in the context of microbial or insect death and/or inhibited growth or activity.
In part, the present invention can also be directed to a method of affecting microbial activity. With respect to such a method, the present invention can se providing an article of the sort described above or illustrated elsewhere ; and contacting the vapor of an antimicrobial composition of such an article with a microbe and/or a food item e of supporting microbial activity, such a composition as can be in an amount sufficient to affect microbial activity. In certain ments, such a food item can comprise arvest e. Together with an article of this invention, such produce as can be optionally introduced to a container at a point along a produce supply chain. Without limitation, produce introduction can be at a point of t, a point of processing, a point of wholesale distribution, a point of retail sale, and ations f. Regardless of produce or point of introduction, such an antimicrobial ition can be as described above or illustrated elsewhere herein.
As discussed below and illustrated by several non-limiting examples, this invention can comprise one or more acid salts. Accordingly, in part, the present invention can be directed to one or more compositions comprising a propanoic acid component; and a component selected from a C4 -about C6 acid salt component, a C2 - about C5 acid ester component, a C2 - about Cg aldehyde component and combinations thereof. In certain embodiments, such an acid salt component can be selected from salts of isobutyric acid, salts of citric acid and combinations thereof. In certain such embodiments, such an acid salt component can be selected from salts of isobutyric acid and combinations thereof. Without WO 45828 limitation, such a salt can be selected from potassium and um salts of butyric acid.
Regardless of the presence of an acid salt component, such an ester component can be selected from esters of a C4 acid and combinations thereof. Likewise, regardless of the presence of an acid salt and/or ester component, such an aldehyde component can be benzaldehyde. In certain other embodiments, regardless of the presence of an acid salt component, ester component and/or aldehyde component, such a composition can comprise a C2 -about C6 acid component in addition to propanoic acid. In certain such ments, such an additional acid component can be selected from acetic acid, isobutyric acid, citric acid, and combinations thereof.
Without limitation, such a composition can comprise propanoic acid and at least one C4 acid salt. In certain embodiments, such an acid salt can be selected from potassium and um salts of isobutyric acid. In n such embodiments, such a composition can se an acid component in addition to oic acid. Such an additional acid component as can be selected from acetic acid, isobutyric acid, citric acid and combinations f. In certain other embodiments, such a composition can comprise propanoic acid and at least one C2 - about C5 acid ester component. Certain such embodiments can comprise at least one C4 acid ester. Regardless, such a composition can comprise an acid component in addition to propanoic acid, such an additional acid component as can be selected from acetic acid, isobutyric acid, citric acid and combinations thereof In part, the present invention can also be directed to compositions comprising propanoic acid and at least one C4 - about C6 acid salt component. In certain ments, such an acid salt component can be selected from salts of isobutyric acid, salts of citric acid and combinations thereof. In n such ments, such an acid salt can be a salt of isobutyric acid. Without limitation, such an acid salt component can be ed from potassium and ammonium salts of isobutyric acid, and combinations thereof.
Regardless of the identity of such an acid salt component, such a composition can comprise an acid component in addition to propanoic acid, such an additional acid component as can be selected from C2 - about C6 acids and combinations thereof In n embodiments, such an additional acid component can be selected from acetic acid, isobutyric acid, citric acid and combinations thereof. Without limitation, such a composition can be selected from a composition consisting essentially of oic acid and a salt of isobutyric acid; and a composition consisting essentially of propanoic acid, a salt of isobutyric acid, and at least one of acetic acid and citric acid.
As discussed above and illustrated below, such compositions can be incorporated into an article of manufacture. ingly, in part, the present invention can be directed to an article of manufacture comprising one or more compositions, of the sort discussed above, comprising propanoic acid. In certain embodiments, such an article can be selected from a human food product, an animal food t, an animal care product, a packaging product and a solid carrier ent. Without limitation, a solid carrier component can comprise a clay. In n other embodiments, such a human food product can be selected from processed foods. Various such articles are illustrated below, including but not limited to cheese and related dairy products.
In ance with certain embodiments of this invention, compositions comprising certain food and flavor compounds (FFCs) are especially inhibitory and/or lethal to n pathogenic fiangi, bacteria and other microbes of agricultural, medicinal, or commercial or industrial n. Such compositions can be distinguished over any previous mixture containing biologically derived nds: for instance, the present compositions do not contain any naphthalene or azulene (non-GRAS compounds) derived substances.
Conversely, such compositions can comprise a mixture of organic compounds, each of which otherwise considered (i.e., GRAS) a food or flavoring substance.
The present invention demonstrates the nature of such compositions, their preparation and application to various items (e.g., without limitation, food, fibers, implements and construction es) to preserve their integrity and prevent destruction by various fungi (molds and other microorganisms). Such compositions can also be applied to ng structures, plant parts and even ng items for their preservation. Further, as demonstrated below, such a composition can negatively affect Mycobacterium tuberculosis-- the microorganism that causes ulosis--including at least 3 strains that are otherwise drug resistant.
Brief Description of the Drawings.
Figure 1. Photographs illustrating the g effect of the FFCs t clinical cultures of drug resistant Mycobacterium tuberculosis after exposure for 2 days.
Figure 2. A series of photographs illustrating the prevention of fiJngal growth (mold) on cheese by several s employing the FFCs.
Figure 3. The protective effect of the FFCs on yams in storage in the presence of 0.2 ml of an FFC composition for 2 days. The yams were then photographed after 10 days. (The test is on the left and the control is on the right.) Figure 4. The protective effect of the FFCs from the decay of garbage for days held at 300 C.
Figure 5. Demonstrating effect against tomato rot/wilt, on the left is the control plate of C michiganense, and on the right is the plate treated with 20 iters an FFC composition of this invention.
Figure 6. Demonstrating effect of an FFC composition of this ion incorporated into a skin cream product.
Figures 7A-B and 8 illustrate structures of l non-limiting, representative monorhamnolipid and dirhamnolipid compounds, in accordance with certain non-limiting embodiments of this ion.
Figure 9 provides two embodiments of a rhamnolipid component, designated R1 and R2 for the respective mono- and dirhamnolipid structures, which can be used alone or in combination of one with the other, as described in l of the ing examples, in ance with certain non-limiting embodiments of this invention.
Figure 10 provides ate nomenclature and structures of FFCs useful in conjunction with various antimicrobial compositions, in accordance with certain non-limiting embodiments of this invention.
Figures llA-B provide digital images of (A) arvest produce preserved over 7 days in the presence of bentonite granules impregnated with an antimicrobial composition of this invention; and, by comparison, (B) a control system showing spoilage after 7 days in the presence of granules without an incorporated antimicrobial composition.
Detailed Description of n Embodiments.
As illustrated by several non-limiting embodiments, this invention relates to the use of a new species ofMuscodor and/or its volatile by-products and the pment of non-natural, laboratory-prepared, biomimetic compositions comprising common food and flavor compounds that, when incorporated into various media, applied to surfaces, or introduced to an atmosphere, space or volume, bring about a decontamination of the desired surface medium or volume of otherwise tly, harmful, and/or enic microorganisms including plant fungi and the causal agent of ulosis. The invention has extremely important implications and applications to modern agriculture, human medicine, food sciences, and industry. The compositions of this invention are not obvious as having antimicrobial properties given the fact that no one individual ingredient, in and of itself, is biologically active. A synergistic combination of ent ingredients manifests the filll potential antimicrobial activity.
With respect to the use of such a Muscodor species, a volatile by-product thereof or a non-naturally-occurring biomimetic composition comprising FFCs, contact can be direct or by exposure to a vapor associated with such a species, by-product of biomimetic composition. As illustrated below, in the context of certain ments, while vapor exposure can inhibit growth, direct microbial contact may be required for bacterial or fiangal death. [005 l] Regardless ofmode of contact, the compositions of this ion can be laboratory-made, comprising chemically-synthesized ents, naturally-derived components or a combination of such synthetic and natural components. less, such compositions can be biomimetic with respect to the effect of a Muscodor by-product on a particular bacterial or fungal species. Alternatively, such a composition, by relative concentration or selection of any one or more FFC component thereof, can trate varied or enhanced antimicrobial activity, as compared to a Muscodor fungal duct.
In certain such embodiments, such a composition can be on, or as can be d to, a substrate or medium comprising a proteinaceous or cellulosic component which can, is capable of or does support microbe growth. Without limitation, certain embodiments can comprise plants, plant components (e. g., roots, stems, leaves or foliage, produce and the like) and any originating shoots or seeds. In particular, without limitation, such compositions can be on any plant produce, whether termed a fruit, vegetable, tuber, flower, seed or nut, whether before or post-harvest. Certain such plants and/or produce therefrom are recognized in the art, alone or collectively, as agricultural crops. Accordingly, in certain embodiments, a composition of this invention can be on or applied to such a crop at any time during development, pre-harvest and/or post-harvest. Likewise, a composition of this invention can be applied to or orated into a beverage, food (e.g., human, pet and/or animal) product or article of manufacture which can, is capable of or does support e growth.
In certain other embodiments of this invention, such a composition can be on, or as can be applied to, a ate or surface supporting or supportive of microbe (e.g., yeast and/or fiangi bacteria and/or virus) growth. Accordingly, such a ate or e can se any material which can, is e of or does support microbe growth. Such ates include but are not limited to wood, ceramics, porcelain, stone, plaster, drywall, cement, s, leather, plastics and the like.
In certain other embodiments, various compositions of this invention can be on, in contact with, or as applied or administered to a substrate or surface comprising ian or human tissue, ing but not limited to nails, hair, teeth or mouth, skin and other cellular material, in the context of a pharmaceutical or personal care or hygiene formulation for the treatment or prevention of microbial growth or infection. Representative compositions are described, below, in terms at least in part applicable to one or more other ments.
An endophytic fungus was recovered from inside the tissues of a wild pineapple plant (Ananas ananassoides) growing in the Bolivian Amazon. Ultimately, it was shown to produce a mixture of volatile compounds having antimicrobial activities. Using molecular techniques, the fungus was found to s sequence similarities to members of the or genus. These fungi are known to produce volatile c compounds that can act as anti-microbials which are effective against both human and plant pathogens. Members of the or s have been identified utilizing methods such as Phylogenetic Character mapping employing 18S rDNA plus ITS-5.88 rDNA sequence analyses. The sequences found in the present fungus and other Muscodor spp. were BLAST ed in GenBank, and compared to other fiJngi (Bruns et al., 1991; Reynolds and Taylor 1993; Mitchell et al., 1995; Guarro et al., 1999; Taylor et al., 1999). Ultimately it was determined that these es are related to Xylarz'a (Worapong et al., 2001a&b). All isolated taxa that belong to Muscodor have similar characteristics, such as growing relatively slowly, possessing a felt-like mycelium, producing ically active volatile compounds, and causing no harm to the plants in which they originally resided. y, they each share closely similar rDNA sequences (Ezra et al., 2004). [005 6] Although the present fungus shared all of the same common features mentioned above, there were a number of different aspects to the taxon which distinguished it from all other Muscodor spp. and isolates. As illustrated more fillly in the following examples, these unique characteristics support establishment of the present filngus as a new species. The name proposed for this novel endophytic fiJngus is Muscodor ns.
As analyzed by GC/MS, the isolated fiJngus ed alcohols, esters and small molecular weight acids, in the gas phase, when grown on potato dextrose agar (PDA).
As shown in Table 1, below, such compounds include propanoic acid, 2-methyl; 1-butanol, 3-methyl, acetate; 1-butanol, and l. Neither alene nor azulene derivatives (non- GRAS compounds) were produced by this organism when grown on PDA, distinguishing it from all other Muscodor spp. studied thus far. The odor produced by the fungus becomes noticeable after about 1 week and seems to increase with time up to and including at least three weeks. As rated below, the volatiles of this fungus possess inhibitory and lethal bioactivity against a number of plant and human ens using the rd bioassay technique (Strobel et al., 2001).
Table 1.
Retention Compound Time Min. —44.03 —88.05 —72.06 —102.07 —46.04 —116.08 —144.12 —74.07 6:52 2-Butenal, 2-meth l-, E - 84.06 —130.10 —114.14 —158.13 —88.09 ——13:37 Pro.anoic acid, 2-meth l- —88.05 14:41 Formamide,N— 1-meth lool‘O 1- —101.08 —_16:44 Acetic acid, 2-ohen leth lester —164.08 :44 C clohexane,1,2-dimeth l-3,5-bis 1-meth lethen 1- —192.19 As discussed above, the present invention includes use ofM. crispans and/or a volatile by-product thereof in conjunction with a non-indigenous medium, substrate and/or volume for antimicrobial effect. Such use and/or ations can be as described herein or as would otherwise be understood by those skilled in the art, including but not limited to use and application of the sort described in US. Patent No. 6,911,338, the entirety of which is incorporated by reference. [005 9] Alternatively, a wide range of natural and synthetic biomimetic itions can be used with comparable or enhanced effect or, as evidenced by one or more ments, to provide results heretofor not available through use of either the fungus or its volatile by-product. As a departure from the prior art and the by-product of M. crispans, such antimicrobial compositions can se food and flavor compounds lly ized as safe for human use and consumption. Representative thereof, l non-limiting biomimetic compositions are provided in Tables 2-7, below. Various other compositions can comprise combinations of compounds selected from any one or more of Tables 2-7. (See, e. g., examples 52-56.) Alternatively, any such composition can comprise a component compound in addition to or as replacement for any compound listed, to enhance volatility or modify any other end-use or performance property. In certain such compositions, such a replacement or additional compound can have a GRAS designation and/or be so designated at levels utilized--such compositions as can be considered essentially free of any component or al that would not be lly recognized as safe (GRAS) under the applicable United States Code of Federal Regulations. Such compositions can, alternatively, include a component found in a volatile by-product ofM. crispans and/or not in a volatile by-product of another Muscodor sp.
Each such compound can be provided Within an effective concentration or percentage range and is either commercially available or can be prepared by those skilled in the art. With regard to the latter, fermentation techniques can be used to naturally prepare and isolate such compounds. Alternatively, such compounds can be chemically synthesized.
With respect to several non-limiting embodiments of this invention, each compound of Tables 2-7 can be obtained as a fermentation t, such products and corresponding itions as are ble under the Flavorzon trademark from Jeneil Biotech, Inc. of Saukville, Wisconsin.
Table 2. A etic composition of this invention comprising: Com n ound Acetaldeh de Eth lAcetate none Pro oanoic acid, 2-meth l-, meth l ester Ethanol Acetic acid, 2-meth lool‘O lester Pro.anoic acid, 2-meth l-, 2-meth lo.ro lester l-Pro.anol, 2-meth l- nol, 3-meth l-, acetate Pro.anoic acid, 2-meth l-, 2-meth lbut lester l-Butanol, 3-meth 1- Pro oanoic acid Acetic acid, 2-ohen leth lester Table 3. A biomimetic composition of this invention comprising: Acetaldeh de Eth l Acetate Pro oanoic acid, 2-meth l-, meth l ester Com n ound Ethanol Acetic acid, 2-meth lool‘O lester Pro.anoic acid, 2-meth l-, 2-meth lo.ro lester l-Pro.anol, 2-meth l- l-Butanol, 3-meth l-, acetate Pro.anoic acid, 2-meth l-, 2-meth lbut lester l-Butanol, 3-meth 1- Pro oanoic acid, 2-meth l- Acetic acid, 2-ohen leth lester Propanoic Acid Table 4. A biomimetic composition of this invention comprising: Com n ound Acetaldeh de Eth l Acetate 2-Butanone Pro oanoic acid, 2-meth l-, meth l ester Acetic Acid Acetic acid, 2-meth lool‘O lester Pro.anoic acid, 2-meth l-, 2-meth lo.ro lester anol, 2-meth l- l-Butanol, 3-meth l-, acetate Pro.anoic acid, 2-meth l-, 2-meth lbut lester l-Butanol, 3-meth 1- Pro oanoic acid, 2-meth l- Acetic acid, 2-ohen leth lester Table 5. A biomimetic composition of this invention comprising: Comound Acetaldeh de Eth lAcetate Acetic Acid Pro oanoic acid, 2-meth l-, meth l ester Ethanol Acetic acid, 2-meth lool‘O lester oic acid, 2-meth l-, 2-meth lo.ro lester l-Pro.anol, 2-meth l- l-Butanol, 3-meth l-, acetate oic acid, 2-meth l-, 2-meth lbut lester l-Butanol, 3-meth 1- Pro oanoic acid, 2-meth l- Acetic acid, 2-ohen leth lester Table 6. A biomimetic composition of this ion comprising: Comound Acetaldeh de Eth lAcetate Pro oanoic Acid Pro oanoic acid, 2-meth l-, meth l ester Ethanol Acetic acid, 2-meth lool‘O lester Pro.anoic acid, 2-meth l-, 2-meth lo.ro lester 1-Pro.anol, 2-meth l- 1-Butanol, 3-meth l-, acetate Pro.anoic acid, 2-meth l-, 2-meth lbut lester 1-Butanol, 3-meth 1- Pro oanoic acid, 2-meth l- Acetic acid, 2-ohen leth lester Table 7. A biomimetic composition of this invention comprising various combinations of compounds selected from or comprising the following compounds: % Com n ound about 0.1 — about 10 Acetaldeh de about 0.5 — about 25 Eth l Acetate about 0.1 — about 15 none about 4 — about 99 Pro oanoic acid, 2-meth l-, meth l ester about 1.5 — about 40 Ethanol about 0.1 — about 10 Acetic acid, 2-meth lo.ro l ester about 0.1 — about 15 Pro.anoic acid, 2-meth l-, 2-meth lo.ro l ester about 0.1 — about 10 1-Proanol, 2-meth 1- about 0.5 — about 25 1-Butanol, 3-meth l-, acetate about 0.5 — about 25 Pro oanoic acid, 2-meth l-, 2-meth lbut l ester about 2 — about 50 1-Butanol, 3-meth 1- about 10 to about 99 Pro anoic acid, 2-meth 1- about 0.1 — about 10 Acetic acid, 2-ohen leth l ester With respect to any FFC composition of this invention, it is plated that any compound component thereof--including any compound component described nced or inferred herein, such as but not limited to any component in Tables 1-7 and 10 and structural isomers and/or carbon and methylene homologs thereof--can be present in an amount or a range separate and apart from any other itional ent. Accordingly, without limitation, each such compound component can be present in an amount of or a range of about 0.1 wt. %, (or less) about 0.2 wt. %, about 0.3 wt. %, or about 0.4 wt. %, . . . or/to about 1.0 wt. %, about 1.1 wt. %, about 1.2 wt. %, about 1.3 wt. %, or about 1.4 wt. % . . . or/to about 2.0 wt. %, about 2.1 wt. %, about 2.2 wt. %, about 2.3 wt. %, or about 2.4 wt. % . . . or/to about 3.0 wt. %, about 3.1 wt. %, about 3.2 wt. %, about 3.3 wt. %,or about 3.4 wt. % . . .or/to about 4.0 wt. %, about 4.1 wt. %, about 4.2 wt. %, about 4.3 wt. %, or about 4.4 wt. % . . . or/to 5.0 wt. %, about 5.1 wt. %, about 5.2 wt. %, about 5.3 wt. %, or about 5.4 wt. % . . . or/to about 6.0 wt. %, about 6.1 wt. %, about 6.2 wt. %, about 6.3 wt. %, or about 6.4 wt. % . . . or/to about 7.0 wt. %, about 7.1 wt. %, about 7.2 wt. %, about 7.3 wt. %, or about 7.4 wt. % . . . or/to about 8.0 wt. %, about 8.1 wt. %, about 8.2 wt. %, about 8.3 wt. %, or about 8.4 wt. % . . . or/to about 9.0 wt. %, about 9.1 wt. %, about 9.2 wt. %, about 9.3 wt. %, or about 9.4 wt. % . . . or/to about 10.0 wt. %; and or/to about 10.1 wt. % . . . or/to about 20.0 wt. %, in accordance with such incremental variation; or/to about .1 wt. % . . . or/to about 30.0 wt. %, in accordance with such incremental variation; or/to about 30.1 wt. % . . . or/to about 40.0 wt. %, in accordance with such ental variation; or/to about 40.1 wt. % . . . or/to about 50.0 wt. %, in accordance with such incremental variation; or/to about 50.1 wt. % . . . or/to about 60.0 wt. %, in accordance with such incremental variation; or/to about 60.1 wt. % . . . or/to about 70.0 wt. %, in accordance with such incremental variation; or/to about 70.1 wt. % . . . or/to about 80.0 wt. %, in accordance with such incremental variation; or/to about 80.1 wt. % . . . or/to about 90.0 wt. %, in accordance with such incremental ion; or/to about 90.1 wt. % . . . or/to about 99.9 wt. % (or more), in ance with such incremental variation. Likewise, without tion, any composition of this invention--regardless of identity or amount of any particular compound component or combination--can be present in amount (wt. %) or a wt. % range incrementally variable, as described above, from 0.1 wt. % to 99.9 wt. % of any composition or medium (e.g., within any range from about 0.1 wt. % to about 1.0 wt. %, about 2.0 wt. %, about 4.0 wt. % or to about 10.0 wt. %) therein incorporated or article or substrate thereon applied.
Unless otherwise indicated, all numbers expressing amounts, concentrations or quantities of components or ingredients, properties such as molecular weight, reaction conditions, and so forth used in the cation and claims are to be understood as being modified in all instances by the term "abou ." Accordingly, unless ted to the contrary, the numerical parameters set forth in this cation and attached claims are approximations that may vary depending upon the d properties sought to be obtained by the present invention. At the very least, and not as an attempt to limit application of the doctrine of equivalents to the scope of claims, each numerical parameter should at least be construed in light of the number of reported significant digits and by ng ordinary rounding techniques.
Notwithstanding that the cal ranges and the parameters setting forth the broad scope of this invention are approximations, the numerical values set forth and the WO 45828 examples are reported as precisely as possible. Any numerical value, however, may inherently contain a certain error resulting from the standard deviation found in a respective g ement.
The compositions and methods of this invention can suitably comprise, consist of or consist essentially of any compound component or amount/concentration thereof disclosed, referenced or inferred herein--including but not limited to any compound component in Tables 1-7 and 10, together with any structural isomers thereof, carbon and/or methylene homologs of any such l component, aldehyde component, ketone component, acid component and/or ester component, whether the acid-derived and/or alcohol-derived moiety thereof Regardless of amount/concentration, each such compound component or moiety/substituent thereof is compositionally distinguishable, characteristically sted and can be used in conjunction with the present compositions and methods separate and apart from another such component amount/concentration or another compound component (or moiety/substituent) or amount/concentration. Accordingly, it should be tood that the inventive compositions and/or methods, as illustratively disclosed herein, can be claimed, ced or utilized with change in amount or tration in the absence of any one component compound (or moiety and/or substituent thereof), such compound (or moiety/substituent f) or amount/concentration f which may or may not be specifically disclosed, referenced or inferred herein, the change or absence of which may or may not be specifically disclosed, referenced or inferred herein.
In preferred embodiments, a biologically effective composition of such FFCs (prepared as a liquid mixture) is readily volatilized at room temperature and es throughout an enclosed space to effectively inhibit and/or kill unwanted contaminating fiangi (molds) on surfaces that are desired to be free of such harmful microbes. The mixture maybe applied as a spray (e.g., can with ients under pressure) or simply placed in a container and allowed to evaporate in the closed container or sealed bag.
Regardless, the PFC compositions of this invention can be incorporated into a variety of end-use compositions, limited only by application. Such itions include but are not limited to those directed to human/animal food or nutrient, personal hygiene, healthcare, agricultural, rial, residential, medical and consumer applications.
In certain non-limiting ments, an FFC composition and/or component(s) thereof can be present at about 0.1 wt.% or less to about 99.9 wt.% or more of a particular end-use composition. Such level of incorporation is limited only by desired antimicrobial effect and/or formulation considerations. 2014/030657 The t FFC compositions, under effective dose , are effective in killing many plant pathogens, fungi that can cause food spoilage, microbes that can cause major human es and microbes that can foul work surfaces, homes and other buildings.
A non-exclusive list of such applications is below: 1. For treatment of cheeses in storage or in preparation to control unsightly mold contamination of surfaces and eventual spoilage of the cheese blocks. 2. For treatment of various plant parts in storage including roots, tubers, stems, seeds and other organs that may be eventually used for food preparation of for planting and re-vegetation or agricultural purposes. 3. For use in decontaminating buildings that may either have moldy surfaces or be ed to a point that a mold problem may develop. 4. For use in the preservation of garbage whilst it is in shipment over long sea hauls from one port to another for eventual fermentation into energy related products.
. For the decontamination of soils that may harbor microbes that are potential plant ens. 6. For the treatment of patients with tuberculosis and other mycobacterium ions. 7. For treatment to control nasal ions and to clear nasal passage ways. 8. For combining with specifically designed polymers that can be used to wrap and thus preserve materials including foods, fibers and other items for longer term safe storage.
More generally, the compositions of this invention can be used to inhibit the growth of or kill an organism selected from the group consisting of a fungus, a bacterium, a microorganism and a range of other microbes or pests. Using s well known to those of skill in the art, such a composition is contacted with the organism in an amount at least partially effective to kill or inhibit the growth of the organism. Alternatively, it can be used to treat human or animal waste, e.g., as a ent of a waste water or solid management or treatment. Such itions also are useful to decontaminate human and animal waste, e.g., decrease or remove bacterial and fiangal contamination. Yet further, such a composition can be used to treat or prevent mold on building materials and in buildings by contacting the building, the building materials, or the spaces between the building materials with an effective amount thereof or vapors therefrom. For the purpose of illustration only, an effective amount of such a composition can be used alone or in combination with other fumigants or active agents in a room or alternatively, during whole building filmigations.
When used in agricultural applications, the invention provides a method for treating or ting fruit, seeds, plants or the soil surrounding the plants from an infestation by an organism such as a fungus or a bacterium, by contacting the microorganism with an effective amount of one or more compositions of the sort bed herein.
As discussed above, the present invention es a method of preventing, treating, inhibiting and killing a bacterial, fungal, viral and/or other microbial infection. Such a method can comprise administering to an article, animal/mammal or plant substrate, having such an ion or growth or capable of supporting such an infection or growth, an effective amount of an inventive composition--alone or as can be orated into a composition or formulation. Accordingly, the present invention provides one or more compositions for pharmaceutical, personal (e.g., without limitation, cosmetic), industrial and/or agricultural use. ial treatment can be achieved by contacting a bacterium, fiJngus, virus and/or other microbe with an effective amount of an inventive ition. Contacting may take place in vitro or in viva. "Contacting" means that such a composition of this invention and such a microbe are brought together in a manner sufficient to prevent, inhibit and/or eliminate microbial infection and/or growth. Amounts of such a composition effective for such treatment may be determined empirically, and making such determinations is within the skill in the art. Inhibition includes both reduction and elimination of ial growth/activity.
Compositions of this invention may be administered to or contacted with a human, animal or plant, or article substrate surface by any suitable route, including but not limited to orally or nasally (e.g., for pharmaceutical or personal care applications), and topically, as by powders, granules, s, sprays, ents, s or .
Accordingly, compositions of the invention can comprise the respective component compounds in admixture with one or more acceptable carriers and, ally, with one or more other compounds or other materials. Such a carrier should be "acceptable" in the sense of being compatible with the other components/ingredients of the formulation and not deleterious to the desired effect or application.
Regardless of the route of delivery, treatment or administration selected, the inventive itions can be formulated to provide acceptable concentrations or dosage forms by conventional methods known to those of skill in the art. The amount or concentration of any such composition or component thereof, with or t a carrier, will vary depending upon the target microbe/substrate/article being treated, the particular mode of administration/delivery and all of the other factors described above. The amount combined with a carrier material will generally be that amount of such a ition providing the lowest or a minimal concentration effective to produce a desired antimicrobial effect.
The relative amounts or concentrations of an FFC composition and another optional component in the compositions of the present invention can vary widely within effective ranges, as demonstrated in the examples that follow. The concentrations and/or doses ed are preferably selected to achieve an enhanced or increased activity over individual prior art components alone and/or to maximize the activity of the ition at the lowest effective component concentration(s). Accordingly, the weight ratios and/or percent concentrations yielding such ed activity depend not only on the specific FCC ition utilized, but on the specific end-use application of the composition including, but not limited to, climate, soil composition, nature of the substrate, article and/or microbial host to be treated and/or potential exposure to a ular microbe.
Methods of preparing formulations or compositions include the step of bringing a ition of this invention, or one or more component compounds, into association with a carrier and, optionally, one or more accessory ients. In general, the formulations are prepared by bringing such a composition/component into association with a carrier (e.g., a liquid or finely divided solid carriers) and, if d, shaping the product.
Formulations relating to the invention, whether a composition of this invention or any article of manufacture incorporating such a composition, may be in the form of capsules, cachets, pills, s, powders, granules, paste or as a solution or a suspension in an aqueous or eous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as washes (e. g., mists, spray or mouth) and the like, each containing a predetermined amount of an inventive composition or components thereof.
In other solid such formulations (e. g., capsules, s, pills, dragees, powders, granules and the like), a composition of this invention can be mixed with one or more other active ients and/or acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as es, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethyl-cellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as gar, m carbonate, potato or tapioca starch, alginic acid, certain tes, and sodium carbonate; (5) solution retarding agents, such as paraffm; (6) absorption accelerators, such as quaternary ammonium compounds; (7) wetting agents, such as, for example, cetyl alcohol and glycerol earate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such as talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring . In the case of capsules, tablets and pills, the itions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight hylene glycols and the like.
A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be ed using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium ymethyl cellulose), surface-active or dispersing agent. Molded s may be made by molding in a suitable machine a mixture of the powdered active ient(s) moistened with an inert liquid diluent.
The tablets, and other solid forms of such compositions or articles incorporating such compositions, such as dragees, capsules, pills and granules, may ally be scored or prepared with coatings and , such as enteric coatings and other coatings well known in the formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient(s) therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. These compositions may also optionally n opacifying agents and may be of a composition that they e the active ingredient(s) only, or entially, in a certain portion of the intestinal tract, optionally, in a delayed manner. Examples of embedding compositions which can be used include polymeric substances and waxes. The active ingredient(s) can also be in ncapsulated form.
Liquid forms for use or administration of this invention include pharmaceutically- or otherwise-acceptable emulsions, mixtures, microemulsions, solutions (including those in distilled or ed water), suspensions, mists, syrups and elixirs. In addition to an inventive composition or compound component(s) thereof, a liquid form may contain inert or other diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, propylene glycol, tylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
Besides inert diluents, such compositions and/or related articles can also include adjuvants such as but not limited to wetting , emulsifying and suspending agents (e. g., sticker and spreader agents for agricultural application), coloring, ing and one or more other preservative agents. Suspensions can comprise suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar and tragacanth, and mixtures thereof.
Formulations of compositions of this invention and/or articles or products incorporating such inventive compositions for substrate or topical (e.g., in the context of a al care or hygiene product) stration/delivery of this invention, include powders, sprays, ointments, , creams, lotions, gels, solutions, patches and nts. Such nts, pastes, creams and gels may contain, in addition to an inventive composition of this invention, excipients, such as animal and vegetable fats, oils, waxes, paraff1ns, starch, tragacanth and other gums, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof se, s and sprays can contain excipients such as lactose, talc, silicic acid, aluminum ide, calcium silicates and polyamide powder, or es of these substances. Sprays can additionally contain customary propellants such as le unsubstituted hydrocarbons, such as butane and propane, or be delivered under positive air pressure.
Examples of suitable aqueous and nonaqueous carriers which may be employed in the compositions of the invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.
Depot forms of es or products incorporating a composition of this invention can be made by forming microencapsule matrices of an active ingredient(s) in radable polymers such as polylactide-polyglycolide. Depending on the ratio of the active ient(s) to polymer, and the nature of the particular polymer employed, the rate of release of the active ingredient(s) can be controlled. Examples of other biodegradable polymers include rthoesters) and nhydrides). Depot injectable formulations are also prepared by entrapping the active ient(s) in liposomes or microemulsions which are compatible with body tissue.
Further, the compositions of the present invention and/or articles or products incorporating such a composition can comprise additional chemical and/or biological, multi-site and/or single site antimycotic or antifilngal, antibacterial and antimicrobial agents, of a similar and/or different modes of action, as will be well known to those skilled in the art. Such agents can include, but are not limited to, potassium bicarbonate, , copper or sulfur-based compounds and/or botanical oils (e. g., neem oil).
Further, such agents can include, but are not limited to azoles; polyenes, such as ericin B and nystatin; purine or pyrimidine nucleotide inhibitors, such as flucytosine; ins, such as nikkomycins; other chitin inhibitors, elongation factor tors, such as sordarin and analogs thereof; inhibitors of mitochondrial respiration, inhibitors of sterol biosynthesis and/or any other fungicidal or biocidal composition known to those skilled in the art suitable for ng or preventing yeast or fungal, bacterial, viral and/or other microbial infections of plants, other ates, animals and/or humans, or as can be found on or in any article of manufacture.
In certain embodiments, articles or products orating the compositions of the present invention can also include one or more preservative components known in the art, including but not limited to, sorbic or benzoic acid; the , ium, calcium and ammonium salts of benzoic, sorbic, ymethyl glycinic, and propionic acid; and methyl, ethyl, propyl and butyl paraben and combinations thereof The compositions of this invention may contain a compound comprising an acidic or basic fianctional group and are, thus, capable of forming pharmaceutically- or otherwise-acceptable salts with pharmaceutically- or otherwise-acceptable acids and bases.
The term "pharmaceutically-acceptable salts" refers to the relatively non-toxic, inorganic and c acid and base addition salts of such compounds. Regardless, such salts can be prepared by reacting such a compound with a suitable acid or base. Suitable bases include the hydroxide, carbonate or bicarbonate of such an acceptable metal cation, a, or such an acceptable organic primary, secondary or tertiary amine. Representative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. Representative organic amines useful for the formation of base addition salts e ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like. Representative acid addition salts include the hydrobromide, hydrochloride, sulfate, phosphate, nitrate, acetate, te, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, filmarate, succinate, tartrate, napthalate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like.
The compositions of the present invention can be used as aqueous dispersions or ons and are available in the form of a concentrate containing a high proportion of an FFC (with or without a surfactant) composition, as can be diluted (e.g., water or another fluid component) before use. Emulsifiable concentrates or emulsions may be prepared by dissolving a composition of the present invention, together with any other desired active ingredient, in a t optionally containing a wetting or emulsifying agent and then adding the mixture to water which may also contain a g or fying agent.
Suitable organic solvents e alcohols and glycol ethers. These concentrates should preferably be able to withstand e for prolonged s and after such storage be capable of dilution with water in order to form aqueous preparations which remain homogeneous for a sufficient time to enable them to be applied by conventional spray equipment.
Depending on the type of end-use application, articles or products incorporating itions of the present invention may also se any other required components ing, but not limited to, solid or liquid carriers to facilitate application, surfactants including biosurfactants, protective colloids, adhesives, thickeners, ropic , penetrating agents, stabilizers, sequestrants, texturing agents, flavoring agents (e.g., for post-harvest or processed food/beverage applications), sugars, colorants, etc., as will be well known to those skilled in the art.
For example, such compositions and/or related articles or products can be used for agricultural purposes and formulated with such a r or diluent. The compositions can be applied, formulated or unformulated, directly to the foliage of a plant, to seeds or to other medium in which plants are growing or are to be planted, or they can be sprayed on, dusted on or applied as a cream or paste formulation, or they can be applied as a vapor or as slow release granules. Application can be to, or proximate to, any part of the plant including the e, stems, branches or roots, or to soil surrounding the roots, fruit or vegetable (pre- or post-harvest) or to the seed before it is planted, or to the soil lly, to irrigation water or to hydroponic culture systems. The inventive itions can also be injected into plants or sprayed onto vegetation (including fruits and vegetables) using low volume or pressure or electrodynamic spraying techniques, or any other treatment method known in the art or industry.
In certain embodiments, whether or not agricultural or related to food sing, compositions and/or articles or products impregnated with and/or incorporating compositions of this invention may be in the form of dustable powders or granules comprising a solid diluent or carrier, for example, fillers (also such as animal or cat litter), kaolin, bentonite, kieselguhr, te, calcium carbonate, talc, powdered magnesia, filller's earth, gypsum, diatomaceous earth, china clay and other impregnatable materials. Such granules can be preformed granules suitable for application without further treatment. These granules can be made either by nating pellets of filler with an ive composition or another active ingredient or by pelleting a mixture of the active ient and powdered filler. For instance, compositions for dressing seed may e an agent (for example, a mineral oil) for assisting the adhesion of the composition to the seed; alternatively the active ingredient can be formulated for seed dressing purposes using an organic solvent. The compositions may also be in the form of wettable powders or water dispersible granules comprising g or sing agents to facilitate the dispersion in s. The powders and granules may also contain fillers and suspending agents. Alternatively, the compositions may be used in a micro-encapsulated form. They may also be formulated in biodegradable polymeric formulations to obtain a slow, lled e of the active substance.
Regardless, such solid formulations comprising such an inventive composition can be provided in a range of products or articles in varying forms, shapes or moldings, including but not limited to cylinders, rods, blocks, capsules, tablets, pills, pellets (e.g., also pet , strips, spikes and the like. Alternatively, granulated or powdered material can be pressed into tablets or used to fill a range of capsules or shells. As discussed above, any such composition of this invention, whether formulated or unformulated, can be used alone, applied to a ate or incorporated in a product or article of manufacture for a wide range of end-use applications, including but not limited to pharmaceutical, personal, industrial and agricultural compositions and related methods of use.
Generally, a useful solid carrier component can comprise any al that is at least somewhat porous and/or can hold an aforementioned antimicrobial composition without undue ng. Together with materials of the sort described above and ere herein, examples of such carrier components include silica gels, zeolites, calcium silicate, clays, activated charcoal, alumina, allophane, vermiculite, s absorbant and/or slow release polymers, and ations thereof, as would be understood in the art by those made aware of this invention. In certain embodiments, such a carrier component can comprise one or more clay materials--examples of which are useful in the context of this invention include, but are not limited to, attapulgite, montmorillonite, bentonite, hectorite, te and kaolin clays and mixtures thereof Without tion, bentonite clays, such as those comprising colloidal hydrated aluminum silicate containing varying quantities of iron, alkali and/or ne earth metals, have been found especially useful. Bentonite clay materials and related processed products are commercially available from a number of sources, including an Colloid y of Arlington Heights, Illinois, under the trade name Bentonite AE H, together with other sources identified herein or as would be known to those skilled in the art.
Depending upon a particular article or end-use application, a volatile antimicrobial composition can be used neat or in combination with one or more solvents or diluent components, such as but not limited to water, aqueous alcohol and other solvents compatible with such an antimicrobial composition and/or an FFC component thereof. As a further consideration, the e or lity of such an antimicrobial composition can be varied or adjusted by the presence of any one such solvent or diluent component.
Production of various articles of this ion generally involves admixture of an antimicrobial composition of this invention and a suitable solid carrier component. Admixture can be performed using any technique known in the art. As but one consideration, mixing technique and duration should be sufficient to disperse an antimicrobial composition over or throughout a solid r component. The order of admixture can vary.
For instance, a solid carrier component can be provided or prepared, first, followed by addition of an antimicrobial composition. Alternatively, such an crobial composition and all ents used to produce a carrier component can be admixed together. With regard to the latter, the components can be admixed neat or with a solvent (e.g., water and/or an alcohol), dispersant or one or more other adjuvants. With t to one formulation technique, the components used to produce a solid carrier and the antimicrobial composition can be admixed, with the latter, optionally, as an aqueous solution. In yet another embodiment, a powder form of a le carrier component can be admixed with an antimicrobial ition and a le binder component to provide an agglomeration of les or granules of suitable dimension. Regardless of carrier ty, formulation technique or granule size, an antimicrobial composition can be present at about 1.0 - about 3.0 wt.% of such an article and associated carrier component.
An article of this invention can be arranged and presented in conjunction with a package or enclosure for release or volatilization of an antimicrobial composition. A tote, lid, insert, d tray or cup, carton, vial and other such enclosures known in the art can be used, providing sufficient e retention and antimicrobial e/vaporization rom. Examples of useful gas/vapor permeable enclosures include those configured in the shape of a flexible bag, pack or pouch of a mesh or non woven fabric composed of a gas permeable material.
The articles described herein are useful in affecting microbial activity, including inhibition of microbial growth, on and/or near a food item, thereby extending the shelf life of the food item. Toward that end, such an article - whether alone, t an enclosure or optionally presented in conjunction with a flexible bag or pouch - can be positioned with respect to or dropped in a container for shipping, storage or display of a desired food item (e.g., without limitation, fruits, vegetables and other agricultural e), such ner selected or designed depending on a particular food item. Article placement within such a container can be at any one or more points along a corresponding food supply and distribution chain.
Examples of the Invention.
The ing non-limiting examples and data illustrate various aspects and features relating to the itions and/or methods of the present invention, including the ation and use of crobial compositions sing various component compounds, as are described herein. In comparison with the prior art, the present compositions and methods provide results and data which are surprising, unexpected and contrary thereto. While the utility of this invention is illustrated through the use of several compositions and component compounds which can be used therewith, it will be understood by those skilled in the art that comparable results are obtainable with various other compositions and component compounds, as are commensurate with the scope of this invention.
Examp_le la Fungal Isolation. Several small stems as ananassoz'des were taken from a plant growing in the Bolivian Amazon in March of 2007. They were collected in a savanna region adjoining the rainforest at 12°40'07" S and 68°41'58" W and were immediately transported for analysis. Several small (2-5 inch) pieces from the stems were cut and placed into 70% ethanol for 30 seconds under a laminar flow hood. A pair of sterile tweezers was used to hold the stems separately in the flame to remove excess l. Then small pieces of inner tissue (beneath the bark) were excised and placed onto potato dextrose agar (PDA) with an actively growing M. albus isolate 620 on one side of the plate having a center well removed from it. Effectively, this technique can be used to select for other isolates odor (Worapong et al., 2001a&b). During an incubation period of two weeks, the Petri plates were examined periodically for any fungal growth. Once hyphae were observed, the hyphal tips were aseptically cut out of the agar and placed on fresh PDA. The isolate was found in this manner. Several Petri plates (PDA) were used to determine if the fungus produced volatile antibiotics. This procedure included removing a l-inch section of the agar from the middle of the plate, plating a plug of the isolate on one side and allowing it to grow for several days, and then plating test organisms on the other side of the gap.
Example lb Fungal Taxonomy. Fungus in nature is associated with A. ananassoz'cles and is a deuteromycete belonging to mycelia ia. Fungal colonies whitish on all media tested when left out of direct sunlight. Fungal colonies pinkish on all media tested when put into direct sunlight. Spores or other fruiting bodies were not ed under any ions.
Hyphae (0.6-2.7 um) commonly growing by ing, sometimes forming perfect coils (ca. 40 um) and having cauliflower like bodies (3.5-14 um) associated with them. Hyphae, newly developing, grow in an undulating pattern when observed under all conditions with all of the media . Mycelz'um on PDA covers the plate in 3-4 weeks and produces a fruity odor.
Holotype: Endophytic on A. ananassoz’des. Collections were made in the Bolivian Amazon in the Heath River area. The holotype comes from only one A. annisoz'cles stem, collected in the Heath River country. A living culture is deposited as Muscodor crispans in the living Montana State University gical tion as acquisition number 2347 (2/29/2008). Both 18S rDNA and ITS sequences ofM. crispans (B-23) have been submitted to GenBank with the assigned serial number-EU195297.
Telomorph: The telomorph of this fungus may be found in Xylarz'aceae, based on the similarity of the 18S rDNA gene sequence data between M. crispans and the family Xylarz'aceae in the GenBank database (Bruns et al., 1991; ds and Taylor 1993; Mitchell et al., 1995; Guarro et al., 1999; Taylor et al., 1999). The molecular data from the 18S rDNA gene sequences ofM. crispans show a 100% homology with M. albus isolate 620.
Etymology: The genus name, Muscodor, is taken from the Latin word which means musty. This is consistent with the quality of the odor ed by the first three isolates of the genus. The species name is crispans, from the Latin meaning "curly, wavy." The hyphae grow in regular undulating patterns.
Example 2a Scanning Electron Microscopy. Scanning electron microscopy was performed on the isolate of example 1 after procedures described by Castillo et al. .
Agar pieces and host plant pieces supporting filngal growth were placed in filter paper packets then placed in 2% gluteraldehyde in 0.1 M sodium late buffer (pH 7.2 - 7.4) with Triton X 100, a wetting agent, aspirated for 5 minutes and left overnight. The next day the pieces were washed six >< 15-minute changes in water buffer 1:1, followed by a 15-minute change in 10% l, a 15-minute change in 30% ethanol, a 15-minute change in 50% ethanol, five >< 15-minute changes in 70% ethanol, and were then left overnight or longer in 70% ethanol. They were then rinsed six times for 15 minutes in 95% and then three 15- minute s in 100% ethanol, followed by three ute changes in acetone. The microbial al was critically point dried, gold sputtercoated, and images were recorded with an XL30 ESEM FEG in the high vacuum mode using the Everhart-Thomley detector.
Hyphae were measured using Image J software available on-line.
Example 2b Fungal Biology. The fungus produced a white mycelium on a water based medium. No ng structures or spores of any kind have been found under any lab conditions. Hyphae tend to intertwine to form coils. Other species ofMuscodor also have this tendency (Worapong et al., 2001a). Newly developing hyphae tend to grow in an ting fashion rather than the typical straight pattern and ly intertwine to make rope like structures. This pattern of growth may prove useful as a diagnostic tool in identifying this organism in in-vz'vo inoculation studies. The fungus also produces cauliflower-like structures that seem to be connected to the hyphae by small s. These bodies do not germinate under any conditions and thus appear not to be spores. This observation seems to be unique for Muscodor spp. and has not been noted as being present in any other fungal s in general.
Example 3a Fungal Growth and Storage. It was determined that the isolate did not produce spores or any other fruiting bodies when several pieces of carnation leaves were placed on top of an actively growing isolate to encourage spore production, and no such structures were observed after a week of incubation at 230 C. The fungus was also plated on several different media including Cellulose Agar (CA), Malt Agar (MA), and Corn Meal Agar (CMA) to determine if spore production would be displayed. With the exception of a slower growth rate on some of the media, no other characteristics of the fungus appeared to be different, and no fruiting bodies or spores were observed.
Several methods were used to store the isolated fiangus as a pure culture, one of which was the filter paper technique. The fiangus was also allowed to grow on PDA, and then it was cut into small squares which were placed into vials containing 15% glycerol and stored at —700 C. The fungus was also stored at 40 C by a similar , using distilled water rather than glycerol. However, the most effective method of e was on infested sterile barley seed at —700 C.
Example 3b Other, more classical features of the isolated M. ns were also examined and compared to M. albus. Muscodor crispans produced a slow growing, dense, white colored mycelium on all media tested, unless it was placed in direct sunlight, which caused the mycelium to develop a light pink color. This contrasts to M. albus that es a h um on all comparable media and conditions tested (Worapong et al., .
The young hyphae also grew in an undulating fashion, rather than the characteristic straight cable-like fashion as commonly observed withM albus (Strobel et al., 2001). No spores formed on any medium ing ones containing the host plant material or carnation .
Hyphae varied in diameter (0.8-3.6 um) and were often intertwined to make more complex structures and even hyphal coils (Figs. 1-3). These hyphae were generally bigger than those ofM albus (Worapong et al., 2001a).
Example 4 Qualitative Analysis of Volatiles. The method used to analyze the gases in the air space above a 10-day old culture of the mycelium growing in Petri plates was comparable to that used on the original isolate of the M albus strain cz-620 (Strobel et al., 2001). First, a baked "Solid Phase Micro Extraction" syringe (Supelco) consisting of 50/30 divinylbenzene/carburen on polydimethylsiloxane on a stable flex fiber was placed h a small hole drilled in the side of the Petri plate sporting the fungal growth. The fiber was exposed to the vapor phase of the fiangus for 45 min. The syringe was then inserted into the ess injection port of a Hewlett Packard 6890 gas chromatograph containing a 30 m X 0.25 mm ID. ZB Wax capillary column with a film thickness of 0.50 mm. The column was temperature programmed as follows: 30° C for 2 min followed to 220° C at 5° C/min. The carrier gas was ultra high purity Helium (local distributor), and the initial column head pressure was 50 kPa. Prior to trapping the volatiles, the fiber was conditioned at 240° C for minutes under a flow of helium gas. A 30 second injection time was used to introduce the sample fiber into the GC. The gas chromatograph was interfaced to a Hewlett Packard 5973 mass selective detector (mass spectrometer) operating at unit resolution. Data ition and data processing were performed on the t Packard ChemStation software system.
Initial identification of compounds in the volatile mixture produced by the fungus was made through library comparison using the NIST database.
Example 5a Fungal DNA Isolation and Acquiring ITS-5.8S rDNA Sequence ation. A 10 day old culture of the present fiangus, growing on PDA, was used as a source ofDNA after incubation at 25° C using the Rapid Homogenization: Plant leafDNA Amplification Kit gen; Washington, USA). Some of the techniques used were comparable to those used to genetically characterize other M. albus es from Australia (Ezra et al., 2004). Squares of the cultured mycelia (0.5 cm2) were cut from one week old cultures. The agar was scraped from the bottom of the pieces, in order to exclude as much agar as possible. The pieces were placed into 1.5 ml Eppendorf vials and ted for about s at -80° C. The DNA was then extracted according to the instructions of the kit manufacturer. Extracted DNA was diluted (1 :9) in double-distilled, sterile water and 1 ul samples were used for PCR amplification. The ITSl, 5.8S ITS2 rDNA sequence was ed by the polymerase chain reaction using the primers ITSl (TCCGTAGGTGAACCTGCGGG) and ITS4 (TCCTCCGCTTATTGATATGC). The PCR procedure was carried out in a 14 ul reaction mix containing 1 ul DNA extracted from the fungal culture (1 :9 dilution), 0.5 ul primer ITSl and 0.5 ul primer ITS4, 7 ul RedMixTM plus PCR mix with 1.5 mM MgClz hoice, Inc., Maryland, USA) and 5 ul ddeO PCR grade (Fisher Scientific, Wembley, Western lia, Australia). The PCR amplification was performed in a ra personal cycler (Goettingen, Germany): 96° C for 5 minutes followed by 35 cycles of 95° C for 45 seconds, 50° C for 45 s and 72° C for 45 seconds, followed by a 72° C cycle for 5 minutes. The PCR products were examined using gel electrophoresis, on a 1.3% agarose gel for 30 minutes at 100V with TAE buffer (GelXLUltra V-2 from Labnet International, Inc., ridge, NJ, USA) or Wealtec GES cell system, from (Wealtec Inc., Georgia, USA). Gels were soaked in a 0.5 ug ml-l ethidium bromide solution for 5 minutes and then washed in distilled water for 5 minutes. Gel imaging was performed under UV light in a Bio-Imaging System (model 202D; DNR-Imaging Systems, Kiryat Anavim, Israel). A ~500 bp PCR product was purified using the UltraClean PCR Clean Up DNA ation Kit (MO BIO Laboratories, Inc., California, USA). Purified products were sent for direct PCR cing. Sequencing was performed on both strands of the PCR product using ITS1 and ITS4 primers. Sequencing was performed using DYEnamic ET terminators on a CETM1000 analysis system (Danyel Biotech Ltd., Rehovot, Israel). Sequences were submitted to the GenBank on the NCBI web site. Sequences ed in this study were compared to the GenBank database using the BLAST software on the NCBI web site.
Example 5b Molecular Biology ofMuscodor crispans. The partial sequences of 18S rDNA, ITS 1, 5.8S, and ITS2 have been demonstrated to be highly conserved regions of DNA and therefore very useful in the classification of organisms (Mitchell et al., 1995). These molecularly distinguishing partial sequences ofM ns were obtained and compared with the data in k. After searching the 18S rDNA sequences, 525bp ofM crispans were subjected to an advanced BLAST search. The results showed 100% ty with 525 bp ofM. albus (AF324337). Comparative is of the partial ITS 1&2 and .8S rDNA sequences ofM. crispans hit ITS 1 and 2 ofM albus (AF324336), M. roseus 664), X. enteroleuca CBS 651.89 (AF163033), X. arbuscula CBS 452.63 (AF163029), and Hypoxylonfragz’form (HFR246218) at 95, 95, 90, 90, and 91% homologies, respectively.
Example 5c While this invention is, in part, described in conjunction with isolated novel fiangi, it will be understood that ts and mutants of such fiangi - as would be understood in the art - are also contemplated in the context of the present ion. The terms "variant" and t" can be defined as provided in US. Patent No. 6,911,338, the entirety of which is incorporated herein by reference. Accordingly, this invention can be directed to variant or mutant strains ofM crispans and corresponding compositions thereof Example 6a Bioassay tests for M. crispans against plant pathogens. The vapor of the volatile by-product ofM. crispans was tested for microbial inhibitory activity using a vely simple test, as previously described in the literature (Strobel, et al., 2001). A strip of agar (2 cm wide) in a standard PDA Petri dish was d and M. ns was inoculated and allowed to grow on one side of the plate for about a week. The test fungus or bacterium was then inoculated on the other side of the Petri dish, using small plugs of agar for the fungi. The bacteria and yeasts were streaked onto the agar (1.5 cm long). The plate was then wrapped with one piece of Parafilm and incubated at 23°C for 48 hr. The effect of M. crispans on the growth of the test organisms and determined first by verifying the presence or e of growth where the inoculations had taken place. If growth was observed, measurements of the diameter in two ons of the fungal hyphae were taken.
The biological ty of the vapor on bacteria and yeasts were assessed by estimating the degree to which their growth was ed as percentage of growth on a control plate el et al., 2001). If no growth was observed, the test organism was aseptically removed from the test plate and inoculated onto a fresh PDA plate at some time point after exposure to the vapor in order to ascertain viability of the test organism.
Utilizing the preceding methodology, when M. crispans was grown for 7-10 days at 23 0C on PDA, the volatile by-product of the fiJngus proved to be lethal to several fungi and bacteria. Gram-negative and Gram-positive bacteria, as well as yeasts and each of the major classes of fungi, were utilized as test sms. Most of the test organisms were 100% inhibited and died after a 2 day exposure to the by-product ofM crispans. (See Table 8.) Some of the test organisms did not succumb to the volatiles ofM crispans after a two day exposure, but their growth was significantly inhibited by the volatile by-product, and they were killed after a four day exposure. Such organisms include llium roquefortz'z', Bz'polarz's s0r0kz'nz'ana, Stagonospora sp., and 'um oxysporum, among others.
Table 8. Effects of the M. crispans volatile by-product on many fungal pathogens of plants and some assorted bacteria. The inhibition values were calculated as % of growth inhibition as compared to an untreated control test organism. The tests were repeated at least 3 times with able results. Inhibition of the test organisms was recorded 48 hours after exposure to the fungus and vapor of the volatile fungal by-product.
Inhibition (%) after 48 Alive after Alive after hours 48 hours 96 hours Test organism exposure exposure exposure Alternarz'a hell'anthz' 100 N N Aspergillusfumigatus 100 Y N Bacillus subtilis* 100 N N Inhibition (%) after 48 Alive after Alive after hours 48 hours 96 hours Test organism exposure exposure exposure Bipolaris s0r0kiniana 100 \ Botrytis cinerea 100 Candida albicans * 100 Cephalosporium gramineam 100 cystis ulmi 100 Cochiolobolas um 100 Colletotrichum lagenariam 100 Curvularia lanata 100 Drechslera teres 100 Drechslera tritici-repentis 100 Dreschlera portulacae 100 Escherichia coli* 100 Fasarium avenaceum 100 Fasarium culmorum 100 Fasarium oxysporam 100 Fasarium solani 50 Ganoderma Sp. 100 Geotrichum am 100 Mycosphaerellafijiensis 100 Penicillium roguefortii 100 hthora cinnamomi 100 Phytophthora palmivora 100 Pythium altimum 100 Rhizoctonia solani 100 ZZZZ<Z<<<<//////<ZZ<ZZZ ////////’-<////////////// Inhibition (%) after 48 Alive after Alive after hours 48 hours 96 hours Test organism exposure exposure exposure Saccharomyces cerevisiae* 90-95 Sclerotz'm'a sclerotiorum 100 N N Stagonospora Sp. 100 Y N Tapesz'a yallundae 100 N N Trichoderma e 10 Y Y Verticz'llz'um dahlz'ae 100 Y N Xanthomonas axonl'podz's p.V. citri* 100 N N *Denotes that these organisms were streaked onto the test plate, and an indication of growth was made if colony pment eventually occurred. After appropriate exposure to the volatile by-product ofM. crispans, the streaked area was compared to the growth on the control plate and estimated for the % tion. Eventually each organism was restreaked on to a PDA plate to test for viability.
Example 6b With reference to Table 8, the effect of the vapor of the volatile by-product ofM. crispans on Botrytis is quite noticeable--especially on B. cinerea, the cause of gray mold of various plants. The inhibitory and killing s are also applicable to Botrytz's alliz' which causes gray mold neck rot of onion. Without limitation, such results suggest the present ion can be used effectively to modify the produce surface or storage atmosphere arvest to prevent mold and related issues. Likewise, such results support use of an FFC composition of this invention to treat onion (e.g., Vidalia onions), shallot and garlic e to prevent or control filngal growth. e 6c Vapor from the volatiles ofM. crispans are also effective against many of the fimgi causing decay and filngal growth on grain (e.g., corn, wheat, barley, rice, etc.), and this invention can be used in conjunction with various fruits and vegetables such as potatoes, beets, s sweet potatoes--such grains, fruits or vegetables, whether before or after harvest, in e or shipment. Accordingly, the compositions and methods of this invention can be applied to some of the major fungi-related issues in the agriculture and food sing fields, and can be used to target organisms such as but not limited to Alternarz'a, Cladosporiam, Aspergillas, Penicilliam, Diplodia, Fasariam and Gibberella. (See, e.g., Table 8.) Example 6d Vapor from the by-product ofM. crispans was effective against the Mycosphaerellafijiensis fungus. (See, Table 8.) Accordingly, the ion can be used as treatment for the fiangus-associated Black Sigatoka disease of s and plantains.
Example 6e Citrus canker e threatens the very nce of the United States citrus industry. As shown in Table 8, vapor from the by-product ofM. crispans effectively kills the canker-causing pathogen Xanthomonas axonipodis p.v. citri. Such results suggest that FFC compositions and related methods of the present invention can be used effectively to treat seeds, seedlings, orchards, ent or apparatus (including, e.g., worker equipment and ng) and/or harvested fruit to prevent, t or control canker disease.
Example 7 As a follow up to the tests and results of Example 6, bioassay tests with the vapor of the volatile by-product ofM. crispans were run against various other plant and human pathogenic fungi and bacteria. (See, Table 9, below). The fungus was grown on X-plates with FDA in one quadrant and incubated for 3-5 days at room temperature prior to inoculation with one or more test organisms. Control plates were made at the same time of inoculation and grown on the same medium that was optimal for the dual test organism.
The test organisms, Staphylococcus aareas 6538, Salmonella cholerasais 10708, Escherichia coli 11229, S. aareas ATCC 43300 (MRSA), and Vibrio cholerae ATCC 14035, were grown on Trypticase Soy Agar (TSA) in the three remaining quadrants of the X plate. Three plates of each organism, with appropriate controls, were exposed to the vapor of the duct of the fiangus for approximately two, four and six days at room ature. In order to check for the viability of the test microbe, the fiangus was then physically removed, and the control and test plates were placed in an incubator at 35::1°C for a minimum of three to four days, with the exception of the Mycobacteriam spp. which were incubated for approximately one additional month. This was done in order to ascertain if the vapor of the by-product had ted or killed the test sm, and viability of the organism was assessed. This same protocol was followed for the Yersinia pestis and Bacillus anthracis, except that the exposure times were changed to 3 and 5 days, and Y. pestis was incubated at 28::1°C and in 5% C02 after exposure to the fungus. The Mycobacteriam marinam ATCC 927 was grown on 7H11 agar (Difco Co) in the remaining three quadrants, using the previously stated protocol, and incubated at 33::1°C. All three replicates in the tests with each organism d identically.
For all Mycobacterium tuberculosis strains, also grown on 7H11, a n of agar was removed from the plate and the B-23 fiangus (on PDA) was inserted. The plates were then ated from a broth culture. Control , where no fungus was present, were also inoculated. At each appointed time interval, a section of agar was removed from the plates and transferred to a separate and empty plate and placed in an incubator at 35::1°C in order to determine the Viability of the microbe. The plates were placed in a plastic bag with moistened paper towels to prevent desiccation.
Pseudomonas aeruginosa 15442 and Burkholderz'a thailandensz's 70038 were both grown on TSA agar. They were left at room temperature for the optimal growth time for the organism and then moved to an incubator at C and observed. It is to be noted that all tests using human pathogens were conducted under strict and federally approved biosafety conditions. All tests on human pathogens were repeated at least twice.
Table 9. Effects of the volatile by-product ofM. crispans on various Gram + and Gram — bacterial species. The exposure times were varied according to the particular organism of interest, and the Viability of the test organism was determined after that period (listed as growth or no ).
Growth/ N0 Growth (in Type of the presence Organism Cell Wall Exposure Time of M. crispans) Comments S. aureus 6538 Gram + 2, 4 and 6 days No growth S. cholerasuz's 10708 Gram - 2, 4 and 6 days No growth P. aeruginosa 15442 Gram - 2 days Growth No visible difference between exposed and control plates.
M. marinum ATCC 927 Acid-fast 2, 4 and 6 days No growth B. thaz’landensz’s 70038 Gram - 2 days Growth No visible difference n exposed and control plates.
S. aureus ATCC 43300 Gram + 2, 4 and 6 days Growth No actual colonies (MRSA) formed, just a ly filmy growth.
E. coli 11229 Gram - 2, 4 and 6 days Growth No visible difference between d and control plates.
V. cholerae ATCC 14035 Gram - 2, 4 and 6 days Growth Growth at 4 and 6 day exposures appears to be slightly inhibited in comparison to l plates.
Y. pestis 91-3365 Gram - 3 and 5 days No growth Growth/ No Growth (in Type of the presence Organism Cell Wall Exposure Time of M. crispans) ts B. anthracis A2084 Gram + 3 and 5 days Growth Only a few colonies left after exposure and when incubated, more grew.
M. tuberculosis 3081 (resistant Acid-fast 2, 4, 7 and 14 days No growth to isoniazid) M. ulosis Acid-fast 2, 4, 7 and 14 days No growth 50001106 (resistant to streptomycin) M. tuberculosis Acid-fast 2, 4, 7 and 14 days No growth 59501228 (resistant to streptomycin/ethambutol) M tuberculosis Acid-fast 2, 4, 7 and 14 days No growth 59501867 (susceptible) As shown in Table 9, all four acid-fast bacteria (Mycobacterium tuberculosis strains) were killed after 2, 4, 7, and 14 day exposure to ly growing M. ns (6-10 day old culture). Other bacteria which were killed after at least 2 days of exposure to M. ns were: lococcus aureus 6538, Mycobacterium marinum, Yersinia pestis, and Salmonella choleraesuis. Relatively somewhat or completely unaffected by exposure to M. crispans were the following: Pseudomonas aeruginosa, Burkholcleria thailandensis, Staphylococcus aureus (MRSA), ichia coli, Vibrio cholera, and Bacillus anthracis. However, the growth of S. aureus (MRSA) was only a slimy film rather than any distinct colonies and thus it was affected by the VOCs ofM. crispans. In addition, the B. anthracis plate had only a few colonies left on the exposure plate, but more es grew after l ofM. crispans and subsequent incubation. Therefore, it is suspected that M. crispans vapor of the by-product is only effective against the tive cells of B. anthracis, but not against the spores. One month after the last observation time (14 days), no growth was observed on any of the plates exposed to the fungus, and growth was observed on all of the control plates.
The experiments of the following examples illustrate various embodiments of the inventive compositions and the utility thereof. One entative composition, without limitation as to component amount, concentration or ratio, is provided in Table 10.
In certain embodiments, an amount of isobutryic acid can be replaced with propanoic acid at or about the same level. In n such or other ments, ethanol can be replaced with acetic acid and/or 2-butan0ne can be replaced with either acetic acid or propanoic acid. Also, various esters can be replaced with isomers or homologs (e.g., without limitation, a 3-methylbutyl ester, of propanoic acid, for a 2-methylbutyl ester thereof) of the esters listed.
The results ed in the following examples were ed with a composition of the compounds listed in Table 10. Consistent therewith, various other compositions can be used with comparable effect.
Table 10. A composition of food and flavor compounds useful in the control of harmful microorganisms.
Com n ound" in a Series of FFCs Acetaldeh de Eth l Acetate none Pro oanoic acid, 2-meth l-, meth l ester Ethanol Acetic acid, 2-meth lool‘O lester Pro.anoic acid, 2-meth l-, 2-meth lo.ro lester l-Pro.anol, 2-meth l- l-Butanol, 3-meth l-, acetate Pro.anoic acid, 2-meth l-, 2-meth lbut lester l-Butanol, 3-meth 1- Pro oanoic acid, 2-meth l- Acetic acid, 2-ohen leth lester *Each of these compounds occurs as a liquid at room temperature and can be used one with another to e a liquid ition that readily volatilizes at room temperatures or temperatures and pressures that otherwise permit volatilization.
An FFC Composition Used for Plant Disease Control.
Example 8a The relative ability of the FFCs to inhibit and kill test organisms was measured. Test solutions were prepared by g compounds in vials. The test mixture (20 microliters) was placed in a presterilized microcup (4x6 mm) located in the center of a Petri plate containing PDA. When not in use, the e was stored at 0° C. The test organisms (as mentioned in Table 9), freshly growing and excised on 3 mm3 agar blocks (at least 3 agar blocks per test fungus), were placed 2-3 cm from the microcup and the plate wrapped with two layers of parafilm. Measurements were made on mycelial growth from the edge of the agar blocks after a given time period. However, in the case of Geotrz'chum candidum they were streaked and checked for new visible growth and ity by restreaking from the original area of the agar plate that had been ated. Appropriate controls were also set up in which no test solution was placed into the microcup. Tests on 20 ul of the PFC mixture were done at least twice with comparable results. 2014/030657 Example 8b Viability of the test microbes was made by aseptically removing the small agar block and placing it on a PDA plate and observing growth after 1-3 days, or by re-streaking the Geotrz'chum candidum on a fresh PDA plate. In this manner the viability of the microbes could be assessed. The results shown in Table 1 la indicate that the organisms listed below are all inhibited by the particular FFC composition and in most cases killed by the exposure to them. These include Aspergillus niger, Penicillium sp. on , Cercospora beticola, Verticillum dahalz'ae, Pythz'um ultimum, Phytophthora palmz'vora, Mycophaeraellafijiensis, tonia solam', Aspergillusfumigatus, Geotrz'chum candidum, Trichoderma viridz', Ganoderma sp., Curvularz'a sp., and Botrytz's alli. Thus, when properly applied, an FFC composition has an ability to control these pathogenic microbes. Such results indicate many other pathogenic microbes can be either inhibited or killed by this mixture.
Table 1 la. A brief list of s plant pathogenic microbes and their sensitivities to a entative FFC composition of this invention, with an exposure to 20 microliters of the mixture for 2 days at 23° C on potato dextrose agar (FDA) in a parafilm sealed Petri plate.
The agar plugs with the test microbe were eventually tested for viability after removal and placement on a regular Petri plate of FDA.
Effect on Growth Alive or Dead after 48 hr Dead llium So on cheese \0/5% inhibition Alive Dead Verticillum dahalzae // Dead // Dead Dead / Dead //0\/// Dead Dead Alive Alive Dead Alive Botr tis allz' lo rowth Dead Example 8c With reference to the data of Table 1 la, the activity e of the PFC composition utilized indicates, in several instances, different and/or enhanced antimicrobial , as compared to M. ns and vapors of the volatile by-product thereof.
Example 8d With nce to the preceding example and using comparable techniques and procedures, the same pathogens were treated with propanoic acid vapors. Comparative results are shown in Table 1 1b, below, with the data of Table 11a reproduced in columns A and B, and observed effects of propanoic acid, alone, ed in column C (% inhibition).
At 20 ul, the amount of propanoic acid is comparable to a level of propanoic acid in certain embodiments of this ion. Propanoic acid is representative of various lone compounds of the prior art known to have certain crobial effect. However, as demonstrated by comparative data of Table 11b, the present itions e new and synergistic results over and beyond that ed independently from a lone prior art component outside the context of this invention. As shown therein, while the prior art is at best merely inhibitory, the inventive compositions ate (i.e., kill) many pathogens tested. Similar results are obtainable by comparison with other such lone prior art compounds/compositions.
Table 1 1b. Comparative results showing improved antimicrobial activity over propanoic acid.
Test Organism Effect on Growth Alive or Propanoic (A) Dead after Acid alone at 20p] 48 hr After 24 hr ASIer illus nz' er 0% Alive Penicillium So. on cheese 5% inhibition CerCOSIora beticola /\O/ 75% Alive Verticz'llum 'ae o rowth P thium ultimum o rowth 80% Alive Ph tmhthora Ialml'vora o rowth 100% ND"< M COIhaeraella z'z'ensz's o rowth Rhizoctom'a solanz' o rowth 80% Alive ASIerillus umz'atus o rowth 0% Alive Geotrz'chum candidum 0 inhibition 0% Alive Trichoderma viridz' 0% inhibition Ganoderma s I Curvularz'a SI // Botr tis allz' 0% Alive * 100% inhibition, but viability not determined (ND).
Use of PFC Compositions for Treating Tuberculosis and Other Human Pathogens Example 9a Four clinical drug resistant strains ofM. ulosis isolates (5901867, 50001106, 59501228 and 3081) were exposed to an FFC ition. For each isolate, uL of the culture was placed in the middle of a 7H1 l agar plate and then evenly spread 2014/030657 across the whole surface of the plate with a sterile plastic loop. Lids from 0.65 ml microcentrifuge tubes (micro caps) were cut off and autoclaved at 121° C for 15 minutes inside an autoclavable tube with a cap lid. Sterile forceps were used to remove a micro cap which was placed in the center of the inoculated plate. The control plates (one for each isolate) did not receive a micro cap. Three plates for each isolate were made and 5, 10, or uL of the FFCs were placed in each of the three micro caps of the respective plates. The plates were then placed into a zip-lock sealed c bag with a damp paper towel and incubated at 36° C :: 1° C for approximately 28 days. After approximately 48 hours of exposure, the micro cap was removed and disposed of and the plates were returned to the incubator. The paper towels were frequently checked and re-moistened to prevent dehydration of the media. All of the control plates had growth. All of the plates that were exposed to 5 and 10 uL of volatiles had growth. Only one isolate (50001106) d to uL of volatiles had growth. It is to be noted that each isolate ofM. tuberculosis is a clinical drug ant strain of this organism. All experiments were carried out in US Government Approved Biosafety Laboratory Conditions.
The control plates and the plates exposed to 5 and 10 uL of volatiles were plated on 4/14/08. The plates exposed to 20 uL of volatiles were plated on 4/22/08. All plates were checked multiple times. The final check was performed on 5/19/08 and those organisms that did not e are indicated on Table 12 as "--.' Table 12. Inhibitory Effects of the FFCs in the growth of drug resistant M. tuberculosis Isolate of M. tuberculosis 5 L 10 L 20 L 5901867 50001106 59501228 3081 The actual s of an FFC composition of this invention on another strain of TB are shown in Figure 1: The killing effect of the FFCs on a strain (110107) ofM. tuberculosis. The plate on the left is a l plate that had not been treated with microliters of the FFCs for 48 hours, while the plate on the right was treated for 48 hours.
Both plates were then incubated for 28 days at 36° C. It is obvious from these experiments that the FFCs were able to kill 34 of the drug resistant isolates ofM. tuberculosis. The prospect now exists for animal and eventually human trials using such FFC compositions in the ent of tuberculosis.
Example 9b Consistent with the data of the preceding example, r aspects of this invention can be demonstrated. Viable cultures and suitable media are prepared using materials and techniques well-known to those skilled in the art. For instance, exposure to an FFC composition of this ion (e.g., by direct contact of a liquid composition or by vapors therefrom) can result in growth inhibition or death of the following coliform ia (gram stain and morphology): Escherichia coli (gram negative, rod), Salmonella enteritidis (gram negative, rod), Pseudomonas aeraginosa (gram negative, rod), Staphylococcus aareas (gram positive, cocci) and Listeria monocytogenes (gram positive, rod).
Likewise, such results can also be obtained and demonstrated with various other gram-negative and/or gram-positive bacteria such as but not limited to Bacillus cereas (gram positive, rod) and Clostridiam botalinam (gram positive, rod).
Example 10 The IC50 was calculated for some of the test organisms that were tested against an artificial composition to mimic the volatile by-product ofM. crispans. (See, Table 1.) With reference to Table 12, all of the test organisms were inhibited 100% with the utilization of 15 uL of the artificial mixture, and several of them were killed with as little as uL. Verticilliam e, is cinerea, and Aspergillasfamigatas were not killed by even the largest volume of the mixture (30 uL), but all three were 100% inhibited with 10 or uL of the test mixture. The most sensitive organism was Pythiam altimam, which was killed with 10 uL and 100% inhibited with 2.5 uL thus it is the case that the IC50 values do not necessarily reflect the killing ability of the volatiles since both P. altimam and is cinerea possess lly the same ICsos but one is killed and the other was not (Table 13).
Table 13. The 1C50s of the cial mixture of the components of the volatile duct of M. ns on various plant pathogens. Amounts of the mixture, ranging from 1 uL to uL, were added to a sterile plastic well in the center of the test plate, and the pathogenic organisms were placed around the edge of the plate. Viability was assessed after 48 hours and compared to a control plate with no mixture added but with the sterile well in place. Any organisms which showed no growth after that period were determined to be 100% ted, while those which showed no growth after the 48 hours and no growth after isolation onto PDA ately following the 48 hour assessment were considered dead. The IC50 calculation was determined by dividing the amount of the artificial mixture required to cause 50% inhibition (in uL) by the total air space in the Petri dish (50 mL).
Minimum volume to cause Volume to cause Test Organism 100% inhibition (11L) death (11L) IC 50 (pL mL'l) Pythium ultimum 2.0 10.0 0.030 :: 0.004 Phytophthora cinnamomi 5.0 30.0 0.056 :: 0.009 Sclerotinia sclerotiorum n/a >30 0.15 :: 0.016 Botrytis cinerea 10.0 >30 0.035 :: 0.004 Rhizoctonia solani 20.0 15.0 0.039 220.006 Aspergillusfumigatus 2.0 20 0.031 :: 0.003 Verticillium dahliae 5.0 >30 0.062 :: 0.004 Phytophthora ora 1.0 5.0 <0.02 Use of an FFC Composition for the Treatment of Garbage to Control Microbial Decay.
Example 11 An ial mixture of items, which would normally be considered as garbage, was assembled into two ammo cartridge boxes. These items consisted of waste cereal items, flower parts, meat wastes, newspaper fiber, and miscellaneous other wastes.
Into one box was placed a small beaker containing 0.2 ml of the aforementioned FFC composition. Into the other box was placed a beaker with no FFCs. Both boxes were incubated for 10 days at 800 F. At the end of that time the boxes were opened and examined.
It was obvious that no decay had occurred in the box with the FFCs. On the other hand, the control box had completely turned to a massive amount of decay. The use of the FFC composition for garbage treatment is an opportunity to save intact garbage form decay whilst in transit to facilities around the world that ferment the e into energy related products such as methane. Figure 4 illustrates that the FFC ition protected the garbage from microbial decay under the conditions of this experiment.
Use of an FFC Composition for the Treatment of Cheese to Control Fungal Decay Example 12 A vial containing 10 ml of the aforementioned FFC composition was incorporated in or with and/or used to soak a piece of clear plastic Saran® wrap 10 x 10 inches. The plastic wrap was soaked in the FFC ition for 6 days, drip dried and then used as a r over the cheese piece thoroughly ated with a cheese strain of llum sp. In another experiment, the cheese piece was inoculated with the fungus then wrapped with regular Saran® wrap and then injected with 10 microliters of the FFCs. The appropriate controls are indicated on the illustration above with Penicillium sp. alone, treated wrapper alone, the FFCs alone and control (no treatment). The experimental cheese pieces were incubated for 1 week at room temperature and then portions of each cheese item was eat-tested by lab personnel. It is to be noted that there was no adverse effects of storage in this manner with a prostitution of the taste of the cheese when compared to a newly cut fresh piece of cheese that had been stored in the refrigerator. The totally fungal infested cheese piece was not eaten. It is obvious from Figure 2 that use of an FFC composition under the wrapper or with the treated wrapper caused virtually complete protection of the cheese piece from decay and colonization of the cheese by Penicillum sp. This was true with the treated wrapper and with the injection of 10 microliters of FFCs under the plain Saran wrapped cheese alone.
Use of an FFC Com n for the Treatment of Food and Plant Parts e. . lant roduce to Control Fungal Decay Example 13a Several yams were ed for these experiments. It was thought that the surface inating microbes causing eventual decay would be plentifill enough for the inoculum. Thus, two yam pieces were placed in a c box with the lid sealed in the presence of a small beaker ning 0.2 ml of the FFCs. The control box contained a beaker with no FFCs. The sealed boxes were then held at room temperature for 10 days and then examined. It was obvious that no surface and deeper contamination of the treated yam pieces developed, while the control yams developed le areas of surface blemishes and insipient decay as illustrated in Figure 3: The untreated yam is on the left and the one on the right has been treated with the FFCs. Note the large area of fiangal decay on the top end of the yam on the left.
Examp_le l3b As a related end-use application, an FFC composition and/or component thereof can be applied to harvested fruit or vegetable produce to sate for removal of any natural, waxy or protective coating thereon. For instance, harvested squash and similar produce, with cut stems, can be treated with an FFC composition (e.g., with spray application) to control/inhibit microbial growth, e marketability and extend shelf life.
Example 14 A synthetic FFC ition of this invention, in accordance with compositions of the sort described in Tables 2-7 and 10, ed favorably with the use of live M. albus for control of seedling diseases of sugar beet (Beta vulgaris L.) caused by Pythium ultimum, Rhizoctonia solanz' AG 2-2 and Aphanomyces cochlioides, and root-knot nematode, Meloz'dogyne incognita, on tomato (Lycopersicon esculentum). The synthetic composition provided control of damping- off equal to a starch-based formulation of the live fungus for all three sugar beet pathogens, and significantly reduced the number of root-knot galls on tomato roots. Rate studies with the PFC composition utilized showed that concentrations of 2 [Ll/C1113 and 0.75 [11/ cm3 of a soil r/medium component provided good control of Rhizoctonia and Pythium damping-off, tively, of sugar beet. A concentration of 5 [11/ cm3 sand provided 100% ity in 24 h for M. ita. By ison, using in vitro s, this same rate of the ional provided fewer root-knot galls than an M. albus infested ground barley formulation applied at 5 g/l of sand.
Example 15 Corynebacterium michiganese causes serious tomato loss through tissue wilt and rot. An tic culture of this bacterium was streaked on nutimet broth agar and a small cap was placed in the middle of the plate. Into the cap was placed 20 microliters of an artificial, lab-prepared FFC composition of this invention. A control plate contained no FFC composition. The plates were incubated for 24 hr., then examined. There was no growth of the bacterium on the FFC-treated plate. (See, Fig. 5.) As such, an FFC compositon of this invention can be used, without limitation, to treat tomato seeds, plants or produce.
Alternatively, an FFC composition can be mixed with water as a pre-bed soil drench.
Example 16 With reference to the preceding and consistent with several of the foregoing examples, a range of PFC compostions of this invention can be used either prophylactically or in the treatment of active disease states, such disease including, t limitation, diseases affecting sugar beet, tomato, onion, grain, banana and plantain, and citrus crops among others.
More generally, the present compostions and methods can be directed to the treatment and enhanced Viability of seeds, plants, produce and/or related food products-- whether lactically or in the presence of fungal or bacterial microbes, regardless of lifecycle stage (e. g., zoospore, etc.), development, growth or extent of infection.
WO 45828 Accordingly, as would be understood by those in the art, such compositions can se and/or be applied, irrespective of form (e. g. powder, granules, liquid, mist, suspension, vapor, pastes, gels, coatings, etc.), on the surface of or in contact with a seed, seedling or plant (e. g., roots, stems, leaves, etc.) or produce therefrom (e.g., either pre- or arvest).
Example 17 FFC compositions and/or components thereof, either alone or as can be orated into various other compositions, can be employed in a variety of end-use applications in the poultry, produce and related food-processing industries. Several such non- limiting applications are provided in the following examples.
Example 17a An FFC ition of this invention, in accordance with compositions of the sort described in Tables 2-7 and 10, is used to treat a range of egg products, including but not limited to whole egg, and liquid whole egg, ed whole egg, and liquid fortified whole egg, salt whole egg, and liquid salt whole egg, sugar whole egg, and liquid sugar whole egg, and blends of such products--whether or not liquid--with sugar, syrup solids, syrups, dextrose and ns and/or gums and thickening agents, together with scrambled egg mixes and liquid scrambled egg mixes, reduced terol egg products and liquid products and blends thereof, and related products containing less than about 10% egg solids, shell eggs and egg components including but not limited to decholesterolized egg yolk. Such terms will be understood by those skilled in the art and have rd meanings in accordance with accepted industry and regulatory usage.
Examp_le 17b Likewise, various FFC compositions of this invention, including but not limited to those utilizing propanoic acid in at least partial substitution for isobutryic acid, can be used in the preparation and/or packaging of extended shelf life (ESL) liquid egg products, including but not limited to whole egg, led mixes, egg yolk and egg white liquid products.
Example 17c Likewise, various FFC itions of this invention can be used in the processing of cracked, empty egg shells. As would be understood in the art, using available techniques and processing equipment, an FFC composition and/or a component thereof— alone or as incorporated as part of another ition—can be applied (e.g., sprayed on) to empty shells before r processing, for instance into a nutraceutical product. Likewise, 2014/030657 one or more compositions of this invention can be applied to or incorporated with or otherwise used to treat poultry carcass, meat or a related meat t, using apparatus and techniques known in the art. By extension, one skilled in the art would tand that the present ion can also be ed with other types of animal carcass, meat, processed meat products and all other forms of animal flesh (e.g., mammals, birds, fishes, snails, clams, crustaceans, seafood and other edible species), as also illustrated in one or more of the following examples.
Example 17d As an extension of the preceding example, such an FFC composition can be incorporated into such a processed nutraceutical product (e. g., herbal and spice capsules or tablets) to inhibit bacterial/fungal growth.
Example 17e While the preceding examples illustrate various downstream processing applications, the present invention can be utilized more widely in the context of egg and poultry tion. Without tion, FFC compositions or related components of this invention can be introduced to any poultry or egg production facility and/or applied to any equipment or machinery associated therewith. For instance, air or surface treatment of a coop or growing/laying facility can control, reduce and/or inhibit airborne and surface-deposited contaminants and uent microbial growth thereon.
Example 18 An FFC composition or one or more ents thereof can be incorporated into a variety of other processed food products, including food products having a water activity otherwise supportive of microbial growth. For instance, such a composition or component can be incorporated into humus, peanut butter and other such s, dips and mixtures. Relating to the peanut growing and processing industries, compositions and related components of this ion can be applied to peanuts before and after the shells are cracked, after an initial peanut wash, to a related processed product (e.g., peanut butter) and/or on packaging equipment and packing materials.
Example 19 Likewise, an FFC composition/component of this invention (e. g., one or more of or compositions of Tables 2-7 and 10, above, or variations of the sort described therein) can be used as or incorporated into a variety of skin care or treatment ts, regardless of formulation (e. g., , ointment, cream, etc.).
Example 19a For instance, acne is commonly caused by one or more bacterial species invading skin follicles. Demonstrating further use of this invention, an aqueous formulation of a propanoic acid-substituted FFC composition of this invention was ed and used to treat an adolescent male subject presenting age-related acne. One application every three days for three weeks significantly reduced, by visual observation, the number and intensity of acne lesions.
Example 19b Demonstrating another use of this invention in the context of a consumer and/or health care product, an FFC composition of this invention was incorporated (at approximately 2% by weight) in a representative over the counter skin cream preparation.
With reference to Figure 6, a PDA plate was prepared and incubated for one day with a control cream (without FFC component or composition), top left; a control cream contaminated with bacterial cells, top right; "treated" cream with FFC composition, bottom left; and treated cream with bacterial contamination, bottom right. As shown, bacterial growth in such a skin cream t was ted by incorporating a modest tration of an FFC composition of this invention.
Example 20 Likewise, this invention can be utilized in ction with a range of oral hygiene, care and treatment products. t tion, the following examples demonstrate such use of a propanoic acid-substituted FFC composition of the sort described above. Alternatively, various other FFC compositions can be used, in accordance with compositions of Tables 2-7 and 10, above, or variations thereof as bed elsewhere herein.
Example 20a For instance, illustrating one such oral care/hygiene product, a mouthwash/rinse product was formulated utilizing about 1% of such an FFC composition.
Such a product was prepared by incorporation of such an FFC composition into a commercially-available, off-the-shelf mouthwash/rinse t. FFC compositions of this invention, regardless of concentration or dose level, can also be orated into a tooth paste/gel or related gum, mouth, oral or dental care product.
WO 45828 Example 20b Lichen planus (LP) is an autoimmune e of the skin that can occur inside the mouth or on other mucous membranes. As membranes become unstable, bacteria or fungi can take up residence in these areas and cause pain, reddening, infection, bleeding and swelling of the tissues. In order to reduce the cause of extraneous involvement of bacteria in this e, a mouth wash product was prepared containing a 1% aqueous solution of such an FFC composition. The mouth of the patient was rinsed twice to three times daily for at least 3-4 minutes and then spit out. Photos were taken before the treatments were applied and after three weeks of treatment. After 3 weeks, the results showed an almost total reduction of gum reddening, accompanied by a nearly totally reduction of mouth and gum pain as well as a return to near normal color of the gums and other mucous membrane color. The patient reported a otal cessation of pain/bleeding and the most relief from LP, as compared to prior experience.
Example 20c A 1% solution of the aforementioned FFC composition in an e-shelf mouth rinse was used to reduce dental plaque and treat other problems arising from ia associated with oral problems. Daily use, with 3-4 mouth rinses/day, for two months resulted in little or no dental plaque build-up. Gums that were initially recorded as red, swollen, and easily caused to bleed (from notes ly taken by the dentist) now appeared as normal in color and did not bleed upon probing with the "explorer" instrument.
Example 20d To confirm effectiveness of such an FFC ition, mouth spittle resulting from the previous example was placed on one side of a nutrient agar plate, spittle from a non-FFC commercial mouth rinse was placed on the other side of the same plate, and nse spittle was placed on another plate. The spittles were then incubated for two days.
By comparison: the non-rinse spittle had a high bacterial load; the non-FFC rinse spittle had, as expected, a reduced bacterial load; but the FFC-rinse spittle had no detectable bacteria. e 20e In another example, an oral surgeon tested an FFC composition (e.g., as 1% of a commercial rinse/wash product) prior to oral surgery. The patient placed non-treated e on an agar plate (nutrient agar), rinsed with the FFC-rinse solution and placed that spittle on another agar plate. After two—three days of incubation there were no bacterial colonies on the FCC-rinse treated plate, indicating use before and after oral y to treat or inhibit tooth or other oral infections.
Example 21 is in milk cows is caused by a complex of bacteria associated with the udder. In accordance with various non-limiting embodiments of this invention an FFC composition or a rhamnolipid modified FFC composition of the sort described below can be applied to the udder at the time of milking to reduce the prospect of bacterial infections and contamination of milk product.
Example 22 Various FFC compositions of this invention can be used to reduce ial loads on industrial/medically important biofilms. With regard to the latter, items ranging from dental prostheses to artificial , can be treated with an FFC composition of this invention before surgical implantation.
Example 23 FFC compositions of this invention can be used to control fungal and bacterial decay of clothing items especially those exposed to moist environments (i.e,. leathers, shoes, boots, straps, ties, belts). For instance, application of 0.2 ml of a 1% PFC composition of the sort described above was placed in boots that had become totally wet.
The boots were ed to in the resulting vapors for a few hours, then exposed to dry air. The results showed no decay, and the boots dried without a residual moldy smell.
Example 24 Compositions of the present invention can comprise various FFC components and can be formulated as would be tood by those skilled in art made aware of this invention. Without limitation, regardless of end-use ation or treatment, one or more of the present FFC components and/or related itions can be incorporated into various cterial or antimycotic itions. Without limitation, such a composition can comprise a rhamnolipid surfactant component--either alone or in conjunction with an antibacterial and/or antimycotic component of the sort known in the art.
With respect to the latter, such compostions can comprise a omycin and/or a pseudomycin component.
More specifically, as would be understood by those skilled in the art, a rhamnolipid component can comprise one or more compounds of the sort described in US. 2014/030657 Patent Nos. 5,455,232 and 090, each of which is orated herein by reference in its entirety. Such a lipid compound, whether presently known in the art or hereafter isolated and/or characterized, can be of a structure disclosed therein or varied, as would also be understood by those skilled in the art. For example, without limitation, whether synthetically-derived or naturally occurring (e.g., from a Pseudomonas species or a strain thereof) in an acid form and/or as a corresponding acid salt, such a compound can be alkyl- and/or acyl-substituted (e.g., methyl and/or acetyl, respectively, and higher homologs thereof) at one or more of the saccharide hydroxy positions. Likewise, whether in mono- and/or dirhamno form, any such compound can be varied by hydrophobic moiety. As a non-limiting example, with reference to Figs. 7A and 7B, m and n can independently range from about 4 to about 20, regardless of whether such moieties are saturated, monounsaturated or polyunsaturated, whether the hydrophobic moiety is protonated, present as the conjugate base with any counter ion or ise derivatized. Consistent with broader s of this invention, a rhamnolipid useful in such compositions is structurally limited only by ing surface active fianction and/or antimicrobial effect in conjunction with an FFC composition of this invention. ingly, structural variations of the sort described in International Publication WO 99/43334 are also considered in the t of this invention, such publication incorporated herein by reference in its entirety. See, also the non-limiting rhamnolipid components/structures of Figs. 8-9.
Without regard to crobial or rhamnolipid identity, a carrier component of the inventive compositions can comprise a fluid selected from, but not limited to, water, an alcohol, an oil, a gas and combinations thereof. For instance, while such compositions are unlimited with respect to amount or concentration (e.g., wt. %) of antimicrobial or rhamnolipid quantities, a carrier comprising water and/or an alcohol can be used to facilitate d ation, shipping, storage and/or application ties, as well as effective tration and resulting activity.
Such rhamnolipid surfactant components, antimycotic components and/or related itions include but are not limited to those described in ding application serial no. 11/351,572, in particular examples 9-15 thereof, such application filed on February , 2006 and incorporated herein by reference in its entirety. Such rhamnolipid surfactant components, antimycotic components and/or related compositions can incorporate or be used in conjunction with one or more FFC components and/or FFC compostions of the present invention. Such antibacterial and/or antimycotic components are known to those skilled in the art and commercially available. s rhamnolipid ents and related surfactant compositions are available from Jeneil Biosurfactant Co., LLC, under the Zonix trademark.
Example 25 For instance, rating such rhamnolipid-related variations, a range of compositions can be prepared with one or more rhamnolipid components and one or more FFC compositions of this invention (and/or one or more FFC components thereof), for use as or in conjunction with a post-harvest wash or treatment of a wide range of fruits and vegetables. Without limitation, in such a composition, a rhamnolipid component, (e.g., as described in the aforementioned '572 application) can be present in an amount g from about 0.1 wt.% to about 99.9 wt.%, and an FFC composition/component (e.g., compositions of Tables 2-7 and 10, above) can be present in an amount ranging from about 99.9 wt.% to about 0.1 wt.%. With reference to applicable EPA regulations, there is no tolerance limit for the aforementioned Zonix rhamnolipid surfactants. Likewise, there is no tolerance limit for the PFC compositions/components of this invention. Accordingly, food treated with such rhamnolipid/FFC compositions can be consumed without further washing.
Example 25a In ance with the foregoing, a rhamnolipid/FFC ition can be used to wash citrus fruits. One such wash/bath ition was prepared using an 8.5% rhamnolipid on (in water) and a 5% PFC solution (e. g., the composition of Table 10 in water). One gallon of a 95:5 (v/v) mixture was diluted to 425 gallons. Using ural protocols known in the industry or otherwise required under applicable state or federal tions, the composition was used effectively to clean and penetrate citrus peel--killing both surface and interior bacteria and fungi. While effective results were demonstrated with citrus fruit, this and related rhamnolipid/FFC compositions can be used comparably in conjunction with post-harvest wash or treatment of any fruit or vegetable (e.g., without limitation, blueberries, tomatoes, grapes, onions, sugar beets, sweet potatoes, apples, pears, pineapples and various other tropical produce such as but not limited to noni and acai fruit, etc.). Fruits/vegetables washed or d with FFC compositions of this example would be recognized as safe and hygienic for human consumption.
Examp_le 25b Whether or not having an incorporated lipid component, various FFC compositions of this invention can be used to treat various fruits and vegetables (e.g., without limitation, pears, peaches, apples, tomatoes, apricots, mangos and the like) before or upon packaging or canning to reduce bacterial/fungal loads.
Example 26 Sourcing of PFC Component Compounds. Component compounds for use in itions of this invention can be obtained commercially or prepared using synthetic techniques of the sort well-known or otherwise described in the literature. (See, e.g., US.
Pat. No. 338, the entirety of which is incorporated herein by reference.) Alternatively, as can be preferred in conjunction with certain embodiments--including but not limited to animal and human food and beverage items, personal care and cosmetic products and related sing and manufacturing techniques, GRAS component compounds and related FFC compositions of this invention can be derived naturally through fermentation techniques, and are ble under the Flavorzon trademark from Jeneil Biosurfactant Co., LLC of lle, Wisconsin. Accordingly, various compositions of this invention, depending on end-use or application, can comprise compounds derived from bacterial tation, compounds chemically synthesized and various mixtures of compounds of fermentative and synthetic origin.
With reference to the preceding, the following examples rate non- limiting use or incorporation of one or more compositions of this invention, such use or incorporation as would be understood by those skilled in the art made aware of this invention, and described in the context of l prior patents, each of which is orated herein by reference for purpose of demonstrating that one skilled in the art would understand such use or incorporation of this invention.
Example 27 Illustrating other embodiments, s compositions of this invention can be formulated for use as an additive for a fruit drink, such as described in the incorporated US. Patent No. 349. For instance, compositions of this invention may be added to a juice in ation with or as a substitute for a flavonoid compound and/or an antioxidant, or may be pre-applied to fruits and vegetables before processing, to increase product shelf life. As would be understood by those d in the art, such compositions of the '349 Patent can be modified to include one or more compositions of the present invention in an amount of which for any end-use application can be determined, in a straight-forward manner without undue experimentation.
WO 45828 Example 28 Compositions of the present invention can also be formulated for use in preserving tea and tea/fruit mixture ges, such as described in the incorporated US.
Patent No. 5,866,182. For instance, compositions of the present invention may be used in combination with or as a replacement for K-sorbate and/ Na-benzoate, ascorbic acid, and dimethyl onate. As will be understood by those skilled in the art, such beverages of the '182 Patent (e.g., example 1 thereof) may be modified to include one or more compositions of the present ion, an amount of which for any particular ation may be determined in a straight-forward manner without undue experimentation.
Example 29 Compositions of the present invention can also be formulated for use in preserving and/or enhancing the antimicrobial effect of antiperspirants and deodorants, such as described in the incorporated US. Patent No. 5,176,903. For instance, compositions of the present invention can be used in combination with or as a replacement for parabens, imidazolidinyl urea, quatemium-15, benzyl alcohol, phenoxyethanol, and various other suitable preservatives (e. g., as bed in examples 1-3 thereof) and added to such antiperspirant/deodorant to t against degradation, extend shelf life and/or enhance effectiveness, one or more such compositions in an amount of which can be determined in a straight-forward manner without undue experimentation by one having ordinary skill in the art.
Example 30 Compositions of the present invention can also be formulated for use in antiperspirants, such as described in the incorporated US. Patent No. 4,548,808. For ce, one or more compositions of the present invention can be added to the ntially anhydrous non-alcoholic antiperspirant products described in the '808 Patent (e.g., examples 1-6 f) in effective amounts readily determined without undue experimentation by one having ordinary skill in the art--to extend life and enhance antimicrobial .
Example 31 Compositions of the present invention can also be formulated for use in animal/pet food, for example dog food, such as described in the incorporated US. Patent No. 3,119,691. One having ordinary skill in the art would recognize that one or more of the present itions can be added to low hydration dog food, high moisture dog food, and rehydratable dog food to (e.g., to the product formulations described therein) prolong the shelf-life of products disclosed in the '691 Patent, such composition(s) in an amount readily ined without undue experimentation.
Example 32 itions of the present invention can also be formulated for use in cat litter, such as described in the incorporated US. Patent Nos. 5,060,598 and 4,721,059.
Various absorbent materials, including, for example, clay, alfalfa, wood chips, and saw dust, and increased absorbent materials including clay-like filler ('059 Patent) and peat ('598 ) are used to absorb urine and control odor. One or more compositions of the t ion may be used in conjunction with these materials (e.g., sprayed on or otherwise incorporated into) to reduce or eliminate microbial activity and control odor after use of the litters, such composition(s) in an amount readily ined without undue experimentation.
Example 33 Compositions of the present invention can also be formulated for use in spray disinfectant applications, such as described in the orated US. Patent No. 6,250,511. The '511 Patent describes including a treatment solution in the spray bottle comprising between about 25% and 75% of at least one glycol compound, between 0.2% and 60% of an antimicrobial component, between about 5% and 45% of a surfactant, and ally effective amounts of fragrances, dyes and other additives (at col. 3 thereof). For instance, one or more compositions of the present invention can be used in conjunction with a disinfectant of the '511 Patent as a replacement for the antimicrobial component, or as an ve thereto, such composition(s) in an amount readily determined by one skilled in the art without undue experimentation.
Example 34 Compositions of the present invention can also be formulated for cleaning and/or disinfecting food and beverage processing equipment, such as described in the incorporated US. Patent No. RE 40,050. While the '050 Reissue teaches a halogen dioxide composition, such a formulation could be modified by one skilled in the art to substitute one or more itions of the present invention, such composition(s) in an amount readily determined without undue experimentation and contacted with or applied to such processing equipment using apparatus and techniques of the sort bed in the '050 Reissue (e.g., as bed in cols. 3-4 thereof).
Example 35 Compositions of the present invention can also be formulated for use in preserving wood, such as described in the incorporated US. Patent No. 4,988,576 (and for lignocellulosic-based composites described in incorporated US. Pat. No. 7,449,130). The '5 76 Patent teaches impregnating wood with a solution of a preservative composition comprising a graft copolymer of lignosulfonate, hydroxyl benzyl alcohol and a metal salt or a mixture of metal salts, or alternately of at least one metal salt of a graft copolymer of lignosulfonate, the copolymer being a reaction product of lignosulfonate and c monomers. For instance, one or more compositions of the present invention may be used alone or in ation with such preservatives taught by the '576 Patent (or the '130 Patent), as described, respectively, in examples 1-4 and 1-2 f, to impregnate and preserve wood, such composition(s) in an amount readily determined by one having ry skill in the art t undue experimentation.
Example 36 Compositions of the present invention can also be formulated for use with sanitizing and/or disinfecting wipes, such as described in the incorporated US. Patent No. 4,575,891, which teaches a pad partially saturated with a disinfectant (e. g., col. 2 thereof). The '891 Patent describes suitable ectants as alcoholic solutions, and other antiseptic solutions. For instance, one or more compositions of the present invention may be used alone or in combination with such disinfectants and incorporated into such a wipe material, such composition(s) in an amount y ined and incorporated by one skilled in the art without undue experimentation.
Example 37 Compositions of the present invention can also be formulated for use with a hand sanitizing lotion, such as described in the incorporated US. Patent No. 6,187,327. For instance, one or more compositions of the present ion can be formulated to be added to and work in conjunction with the lotion of the '327 Patent or to replace any of the active ingredients of the lotion to e antimicrobial effect. The '327 Patent also discloses various other known hand sanitizers (e.g. an amphoteric-cationic surfactant, a cationic surfactant, a wetting agent, and a nonionic regressing agent). Regardless, a composition of the present ion can be incorporated as a replacement for or use in conjunction with any of the active ingredients in any such hand sanitizer, such composition(s) in an amount readily ined without undue experimentation.
Example 38 itions of the present invention can also be ated for use in treating edible or crop seeds, such as bed in the incorporated US. Patent No. 4,581,238, which teaches contacting with seeds with steam having a sorbate dispersed therein (e.g., in cols. 2-5 thereof). For ce, using ques and apparatus disclosed therein, one or more compositions of the present invention can be volatilized or otherwise d to such seeds, such composition(s) in an amount readily determined by one having ordinary skill in the art without undue experimentation.
Example 39 Compositions of the present invention can also be formulated for use in preventing or inhibiting the growth of spoilage organisms, such as described in the incorporated US. Patent No. 4,356,204, which teaches contacting food with an effective growth inhibiting amount of a ketohexanoic acid (e. g., in cols. 2-3 thereof). One or more compositions of the present invention can be used alone or with such a xanoic acid to further inhibit and/or kill spoilage organisms. Likewise, incorporated US. Patent No. 976 suggests the use of amino acids to increase the resistance of custard foods to spoilage organisms and Staphylococcus species. Again, one or more compositions of the present invention may be used alone or in combination with or as a substitute for such amino acids. Likewise, incorporated US. Patent No. 2,866,819 suggests the use of sorbic acid as a preservative in foods. Again, one or more compositions of the present invention may be used alone or in combination or as a substitute for sorbic acid. Likewise, incorporated US. Patent No. 368 discloses the use of EDTA with sorbic acid to increase the shelf life of vegetables. Again, one or more compositions of the t invention may be used alone or in combination with EDTA and/or sorbic acid. In each instance, such composition(s) of the present invention can be used in an amount readily ined by one skilled in the art without undue experimentation.
Example 40 Compositions of the present invention can also be formulated for use in treating fruit, seeds, grains, and legumes, such as described in the incorporated US. Patent No. 5,273,769, which teaches placing any of the items to be treated in a container then introducing carbon e and ammonia. For instance, using apparatus and techniques described therein (e.g., examples 1-4), one or more compositions of the present invention may be utilized effectively as would be understood in the art without undue experimentation.
Example 41 Compositions of the present invention may also be ated for use in treating dental and medical articles/devices and implants, the latter as more specifically described in the incorporated US. Patent No. 6,812,217, which teaches an antimicrobial polymer film applied to the exterior surface of an table medical device. For instance, using techniques of the sort described therein, one ore more compositions of the present invention may also be deposited on or otherwise orated with such a device or article (whether medical or dental) or r film thereon (e.g., as described in cols. 5-6) to provide antimicrobial effect, such composition(s) in an amount y ined by one of ordinary skill in the art t undue experimentation.
Example 42 Compositions of the present ion may also be formulated for use in treatment of textiles, such as in the incorporated US. Patent No. 5,968,207, which teaches ation of triclosan ester to textile fibers or fabric by diffusion or impregnation. For ce, one or more compositions of the present invention may be ated for use alone or in combination with such compound to improve anti-microbial properties of a textile or fibers thereof, whether a man-made, natural, or a blend (e. g., as described in cols. 2-3 of the '207 Patent), such composition(s) in an amount readily determined by one of ordinary skill in the art without undue experimentation.
Example 43 Compositions of the present invention can be formulated for treatment of surfaces of a food processing facility, related equipment and foodstuffs, such as described in the incorporated US. Patent No. 7,575,744. For instance, using techniques and apparatus of the sort described therein, one or more compositions of the t invention may be formulated and disposed on equipment and foodstuff surfaces in a wide range of food processing facilities to reduce or eliminate microbial activity, such facilities/equipment ing but not limited to snack, poultry, citrus, peanut and related food sing facilities/equipment (see, e. g., col. 20). Such composition(s) can be employed in an amount readily determined by one skilled in the art without undue experimentation.
Example 44 Compositions of the present invention can also be formulated for use in the treatment of microbial-related diseases (i.e., mastitis, hoof & mouth, etc.) in farm animals and livestock, and to inhibit microbial growth on crops, plants, grains, and other foodstuffs, such WO 45828 as described in the incorporated US. Patent No. 7,192,575, which teaches application of and a composition comprising clove bud oil, eucalyptus oil, lavender oil, tea tree and orange oil.
For instance, one or more itions of the present invention can be formulated for use alone or in combination with that of the '575 Patent (e.g., examples 1-2 thereof), such composition(s) in an amount readily determined by one of ordinary skill in the art without undue experimentation.
Example 45 Compositions of the present invention can also be formulated for use in preserving foodstuffs such as ngs, sauces, marinades, condiments, spreads, s, margarine, dairy based foods, and the like from microbial spoilage, such as described in the incorporated US. Patent No. 6,156,362, which teaches a combination of antimicrobial components. One or more compositions of the present invention can be formulated for use alone or in combination with one or more of the components of the '362 Patent (e.g., examples 1-4 thereof), such ition(s) or in an amount y determined by one of ordinary skill in the art without undue mentation.
Example 46 Compositions of the present invention can be ated for incorporation with a wide range of water-based and organic-based paints, stains and related surface coatings, such as described in the orated US. Patent No. 7,659,326 and the authorities recited therein (e.g., thmer-Paint; pp. 1046-1049, Vol. 17; 1996, by Arthur A. Leman, the disclosure of which is also incorporated herein by reference in its entirety). For instance, one or more compositions of the present invention may be formulated for use or alone in combination with r antimicrobial component described in the detailed description and examples 1 and 3 of the '326 Patent, such composition(s) in an amount readily determined by one skilled in the art t undue experimentation.
Example 47 Compositions of the present invention can also be formulated for use or incorporation into after-shave products, such as those described in the incorporated US.
Patent No. 6,231,845. For instance, one or more compositions of the present invention can be used in conjunction with components of the sort described in examples 1-6 of the '845 Patent, to provide crobial effect to such after-shave products of the prior art. Such compositions can be present in an amount readily determined by one skilled in the art without undue experimentation.
Example 48 Compositions of the present ion can also be formulated for use or incorporation into a product for treatment of a carcass, meat or meat product (6.g. , of mammals, birds, fishes, clams, crustaceans and/or other forms of d, and other edible species), such as described in the incorporated US. patent number 429. For instance, one or more compositions of the present invention may be formulated for use alone or in combination with another antimicrobial component, for incorporation into a product of the sort described in the '429 . Such ition(s) can be present in an amount readily determined by one skilled in the art t undue experimentation, and the corresponding product(s) can be applied or otherwise utilized with techniques and tus described in the '429 patent or as would ise be understood by those skilled in the art made aware of this invention. (See, e.g., the meat processing, spraying, immersing and treating, and composition and component sections of the detailed description of the '429 Patent.) Example 49 Compositions of the present invention can also be formulated for use or incorporation into a material (e.g., a material for a coating or other incorporation) for a food product, such products including but not limited to snack foods, cereal foods and other food components, such snack and cereal foods and als of the sort described in the incorporated US. patent number 7,163,708. t limitation as to how such materials can be applied, one or more compositions of the present invention can be used alone or in conjunction with one or more of the antimicrobial or preservative components of such materials, as described in the ed ption of food products and coating materials, of the '708 patent. Accordingly, as would be understood by one skilled in the art, such a composition can be present in an amount readily determined without undue experimentation.
Example 50 Compositions of the present invention can be formulated for incorporation with a variety of edible spread compositions, including but not limited to peanut butter compositions, such as those described in the incorporated US. patent number 7,498,050. For instance, as would be understood by one skilled in the art, one or more compositions of the present invention can be used in conjunction with such edible spread products to provide or otherwise enhance crobial effect, as described in examples 1-2 of the '050 Patent, such composition(s) as can be present in an amount readily determined without undue experimentation.
Example 51 Compositions of the present invention can be formulated for incorporation with a wide range of pest control compositions, such as those described in the incorporated US. Patent No. 450 (e. g., in sections 2-3 of the detailed description thereof). For instance, one or more compositions of the present invention may be ated for use alone or in combination with another antipesticidal ent, such as that described in the '450 patent. Likewise, one or more compositions of this invention can be formulated as described therein, with a suitable carrier component, for use against various imbibing insects, ing but not limited to various types of mosquitoes, and insect pests of agricultural crops. The t compositions can be used as described therein for direct contact, inhibition and/or elimination of mosquitoes, ing the larvae, pupa and/or adult forms thereof. Alternatively, the present compositions can be used and/or formulated for repellent action. Regardless, such composition(s) can be present in an amount readily determined by one skilled in the art without undue experimentation and can optionally include a surfactant component. Such a tant can be a biosurfactant. Without limitation, such a factant can be selected from monorhamnolipids, dirhamnolipids and combinations thereof.
With reference to paragraphs [0046] - [0047], [0051] - [0052] and [0105] and alternate compositions of the sort described in and available through use of the FFCs of Tables 2-7 and 10, the following es demonstrate the use of several such FFC compositions and related articles, in accordance with this invention.
Example 52 Several assays were undertaken using entative antimicrobial compositions against various test organisms. Plugs of inoculum (3x3 mm) were streaked at a minimal level, then exposed, respectively, to vapors from compositions B - L placed in a microcup center well. Radial growth from each plug was measured (mm) after 38 hours at room temperature.
Table 14.
Test Pythium Rhizoc Vert Asp Phyto Fus Botr Scl Bacillus E. coli column -_-------_- __------I-I-I_ E-__I_----I_—_ ----___I_I_In_ E-__I_--I_I_I___ 2014/030657 Antimicrobial compositions tested: A = control (no treatment) B = a composition of Table 10, above; 10 microliters C = propanoic acid:isoamyl acetate, 7:2 (v/v); 9 microliters D = propanoic acid:isobutyl isobutyrate, 7:2 (v/v); 9 microliters E = propanoic acid:isopentyl isobutyrate, 7:2 (v/v); 9 microliters F = propanoic acid:allyl acetate, 7:2 (v/v); 9 microliters G = propanoic acid:methyl isobutyrate, 7:2 (v/v); 9 iters H = propanoic acid:phenylethyl acetate, 7:2 (v/v); 9 microliters I = propanoic acid:benzaldehyde, 7:2 (v/v); 9 microliters J = propanoic acid:isoamyl acetate:benzaldehyde, 7:2:2 (v/v/v); ll microliters K = oic acid:all esters above in equal mix, 7:2 (v/v); 9 microliters L = propanoic acid:all esters above in equal mix:benzaldehyde, 7:2:2 (v/v/v); ll microliters.
Test Organisms: Pythium ultimum (Pythium); tonia solani (Rhizoc); Verticallum dahliae (Vert); Aspergillusfumigatus (Asp); Phytophthora cinnamomi ); Fusarium solani (Fus); Botrytis cinerea (Botr); Sclerotinia sclerotiorum (Scl); Bacillus subtilus (Bacillus); and Escherichia coli (E. coli).
As demonstrated above, specific compositions of this invention can be designed for differential crobial effect. For instance, while composition B was somewhat less than ageous t the Botrytis and Sclerotinia species, composition D inhibited growth tely, under the assay conditions employed. Regardless, an antimicrobial composition of this invention--whether used neat, in vapor form or incorporated with a carrier component--can show beneficial results with a propanoic acid component present at a ratio of at least about 7:about l with respect to any other ition component.
(See Figure 10 for structures and nomenclature of FFCs employed in compositions B-L.) With respect to itions B-L, it will be understood by those skilled in the art that while certain acid esters are specifically referenced, s other C2 - about C5 acid esters and combinations thereof can be used with comparable effect. e 53 In accordance with and illustrating use of various articles of this invention, es of ite clay (e.g., from Al Harvey of , Wyoming) were impregnated with a representative composition of Table 10, above, (~0.80 ml/g of bentonite) and placed in an open-top enclosure. Granules of this article and part of a bunch of raspberries (i.e., a postharvest perishable food item) were placed in a sealed container. After seven days, little mold or other microbial growth was evident. (See, Figure llA.) By comparison, using a control system of bentonite granules without incorporated antimicrobial composition, raspberries from the same bunch were stored in a sealed container over the same time period: excessive spoilage was observed. (See, Figure llB.) Example 54 Various other compositions of this invention, including without limitation compositions B - L of Example 52, can be orated with a solid carrier component. For instance, commercially-available bentonite clay granules can be impregnated with such a composition, for use in conjunction with a vapor-permeable enclosure, such as a sealed or re- sealable flexible bag or pouch. Whether a suitably-dimensioned mesh or of a porous non- woven Tyvek® or onally-similar material, such a bag/pouch can provide an article with all components (i.e., an antimicrobial composition, a carrier and an enclosure) meeting FDA specifications ng to food processing and contact.
Example 55 With reference to paragraphs [0055] and [0119] and e ll, above, ite clay granules can be impregnated with a composition of Table 10, then packaged into a vapor permeable pouch, or similar such enclosure, and positioned proximate to a deposit or collection of human waste or refiase. Without tion, such an article can be placed in or adjacent to a container of human waste - optionally, as a preliminary measure en route to a final treatment and/or al. e 55a With reference to paragraphs [0057] - [0062] and [0119], an antimicrobial composition useful in conjunction with the end-use application of example 55 is represented, below.
Acetaldeh de Eth lAcetate Pro oanoic acid, 2-meth l-, meth l ester Acetic acid, 2-meth lool‘O lester Pro.anoic acid, 2-meth l-, 2-meth lo.ro lester l-Pro.anol, 2-meth l- l-Butanol, 3-meth l-, acetate Pro.anoic acid, 2-meth l-, 2-meth lbut lester Acetic acid, 2-ohen leth lester Example 55b Again, with reference to paragraphs [0057] - [0062] and [0119], another antimicrobial composition useful in conjunction with the end-use application of example 55 is represented, below. e 55c Further, with reference to aphs [0057] - [0062] and [0119], another antimicrobial composition useful in conjunction with the end-use application of example 55 is represented, below.
Example 56 With further reference to paragraphs [0077] and [0087] - [0091], Tables 2- 7 and 10 and Examples 32-33, various FFC compositions of this invention can be used to e cat litter and related animal care products. For ce, bentonite clay granules or other solid carrier ents are contacted or impregnated with an antimicrobial composition (e. g., 0.20 wt. % to about 10.0 wt. % or, in certain embodiments, about 1.0 wt. % to about 3.0 wt. %) of the sort represented below. wt.% Com n ound about 0.1 — about 10 Acetaldeh de about 0.5 — about 10 Eth lAcetate about 0.1 — about 10 2-Butanone about 4 — about 20 Pro oanoic acid, 2-meth l-, meth l ester about 1.5 — about 15 l Acetic acid, 2-meth loro o l ester about 20 — about 40 Pro oanoic acid, 2-meth l-, 2-meth loro o l ester about 0.1 — about 10 1-Proanol, 2-meth 1- about 20 — about 40 1-Butanol, 3-meth l-, acetate about 1.0 — about 30 Pro oanoic acid, 2-meth l-, 2-meth lbut l ester about 2 — about 10 1-Butanol, 3-meth 1- about 40 — about 80 Pro oanoic acid, 2-meth 1- about 0.1 — about 10 Acetic acid, 2-ohen leth l ester Alternatively, compositions of the sort described in Examples 52 (compositions B-L) and Examples 55a-55c can also be used in the preparation of such a litter article. Regardless, the relative amount of any such component can be adjusted for any particular formulation, desired antimicrobial effect and/or to accommodate the presence of any one or more ves of the sort described herein including but not limited to perfuming/fragrance agents. e 57 With reference to paragraphs [0026] and [0087] and Example 52, above, compositions of this invention can be prepared using propanoic acid in conjunction with one or more acid salts, including but not limited to salts of any one or more C2 - about C6 acids.
Such acid salts, ing those of food grade quality, can be ed, as described below, and are available from sources nown to those skilled in the art, including but not limited to Sigma-Aldrich (St. Louis, MO).
Examp_le 57a In accordance with certain embodiments of this invention and with reference to paragraph , the following compositions can be considered without limitation as to component amount or concentration, such itions including: A. propanoic acid:a C4 acid salt: B. propanoic acid:a C5 acid salt; C. propanoic acid:a C6 acid salt; D. propanoic acid:a combination of C4 acid salts; E. propanoic acid:a combination of C5 acid salts; F. propanoic acid:a combination of C6 acid salts; and G. propanoic acid:a combination of C4-C6 acid salts.
Such C4-C6 acid salts and combinations thereof can be, without limitation, selected from salts of n-C4 - n-C6 monocarboxylic acids and structural isomers thereof and suitable corresponding C4-C6 polycarboxylic and hydroxypolycarboxylic acids including but not limited to salts of 2-methylpropanoic acid, 2-methylbutanoic acid, 3-methylbutanoic acid, 2,3-dimethylpropanoic acid, 2,2-dimethylpropanoic acid, tartaric acid, citric acid and other C4-C6 mono- and (hydroxy)polycarboxylic acids, as would be understood by those skilled in the art made aware of this invention, such salts as can be, t limitation, selected from alkali (e.g., sodium, ium, etc.), ne-earth (e. g., calcium, magnesium, etc.) and quaternary amine (e.g., ammonium, etc.) salts of such acids. Such compositions can be prepared by mixing the components neat or with a suitable solvent or diluent such as but not d to water and/or an aqueous alcohol and, optionally, in the presence of a surface active component such as a rhamnolipid.
Example 57b With reference to any composition of Example 57a, s other compositions of this invention can include one or more esters of one or more C2 - about C5 acids and structural isomers thereof, in addition to or as a substitute for any such acid salt component.
Examp_le 57c With reference to any composition of es 57a-b, various other itions of this ion can e one or more C2 - about Cg aldehyde components in addition to or as a substitute for any such acid salt and/or acid ester component.
Examp_le 57d With reference to the compositions of Examples 57a-c, various other itions of this invention can include another C2 - about C6 acid component. Without limitation, such an additional acid component can be selected from acetic acid, isobutyric acid, citric acid and combinations thereof, in addition to or as a partial substitute for propanoic acid.
Example 57e Notwithstanding the compositions of Examples 57 and 57a-d, compositions of propanoic acid and at least one C4 - about C6 acid salt, compositions of propanoic acid and at least one additional C2 - about C6 acid component and compositions of propanoic acid and at least one C4 - about C6 acid salt ing the absence of an acid ester, aldehyde and/or ketone can be ed. Regardless, as discussed above, any composition of this invention can be absent naphthalene and azulene tive compounds and other fused aromatic compounds and hydro derivatives thereof.
Example 58 With reference to any one or more preceding itions of Examples 57 and 57a-e, such composition(s) can be incorporated into an article of manufacture, including but not limited to those of the sort discussed herein or otherwise used as described above.
Generally, without limitation and as described above, one or more such compositions can be incorporated into a food ingredient or nutraceutical (e. g., Example l7d), a range of food products (e.g., at paragraphs [0032], [0052] and [0066]) including processed foods such as peanut , humus, and various dips and spreads (e. g., Example 18), cheeses (e.g., at paragraph [0067]) and other dairy and related products, solid carrier components (e.g., Examples 53-5 6), and such carrier ents in conjunction with vapor permeable enclosures (e. g., Examples 53-55) and as a substitute for sorbic acid, benzoic acid and sorbate and benzoate salts (e. g., Examples 28 and 39).
Example 59 With reference to Examples 57 and 57a-e, comparative testing of a representative composition of oic acid and a salt of isobutyric acid (e.g., potassium) demonstrated this invention as ing antimicrobial effect when incorporated into a food item. More specifically, 0.1 gram of potassium isobutyrate was added to 20 microliters of propanoic acid. (Similarly, several reference compositions were also prepared, as indicated in Table 15, below.) The test and reference compositions were hand-mixed into 10 grams of fresh refrigerated humus (Costco) and placed in a sealed ner. The treated and control containers were held at 25° C then examined and sampled at 10 and 18 days. Sampling of each container was accomplished with a sterile transfer needle, with approximately 1 mg. streaked onto a potato dextrose agar (PDA) Petri plate, incubated for 30 hours, then examined. Results are summarized in Table 15, below.
Table 15.
Appearance Taste Appearance Taste Treatment (10 days) (10 days) (1 8 days) (1 8 days) Control Odiferous t; Not taste tested Advanced fungal y g humus iliglielleggmwh ilthfientire 2:11:11le2101‘: taste considerable surface of the food tested growth on PDA product Product appeared Excellent taste, The product Taste remains normal, as per as per original appeared normal, comparable to original humus; no humus as per original that of original discernable humus; no refrigerated microbial growth microbial growth humus product on PDA plate on product surface; no discernable microbial growth on PDA plate Product appears Acidic taste Fungal colonies Unacceptable about the same as and tangy developed on tangy ike original humus; flavor product e taste light microbial growth pattern on PDA plate Product appeared ike taste No apparent fungal Stronger normal as per or other bacterial acid-like taste original humus; growth on product considerable e ial growth on PDA plate Odiferous; great Putrid taste Some microbial Putrid taste deal of microbial growth on surface growth on PDA of t plate A: 0.1 g K isobutyrate in 20 ul propanoic acid, in 10 g humus B: 20 ul propanoic acid, in 10 g humus C: 0.2 g NazHPO4 in 100 ul propanoic acid, in 10 g humus D: 0.1 g K isobutyrate, in 10 g humus Example 60a Purpose: ine if a composition of this ion will inhibit mold in an enzyme modified cheese (EMC) cheddar product (EMC CH) which is susceptible to mold growth due to its high pH and low titratable acidity (TA). Procedure: Prepare a composition, obtain an EMC cheddar product, and prepare a Blue Cheese Slurry as a source of mold spores to deliver l-lO CFU/100 gram sample. Test efficacy of the composition. 2014/030657 Preparation of antimicrobial composition: 1. Prepare a 4 M (Molar) solution of Potassium lsobutyrate (K-IB) by adding 394.92 g Isobutyric Acid and 498.76 g of 45% KOH (Potassium Hydroxide) to a l-L volumetric flask. 9.4;?!“ Add deioinized water to bring volume up to 1 L.
Temper to room temperature and readjust volume.
Measure pH=8. 1 1 Weigh all ingredients in the percentages in the table below, including: 4 M Potassium lsobutyrate, propionic acid, acetic acid, and citric acid to prepare the final composition.
The composition of this example (designated FF#2) is sed of potassium isobutyrate, nic acid, acetic acid and citric acid.
It has a pH 0f5.39.
In_redient % K—IBA 4 M 16.75 Pro ionic Acid Acetic Acid Citric Acid Enz me Modified Cheese cheddar roduct (EMC CH)[Production Lot# 140210]: EMC Target S o ecifications CH % re % Fat TA Titratable acidit Mold Count (cfu/g) <10 < 10 GC/LC assa Isobut ric Acid 2.112 Pro ionic Acid 0.024 Acetic Acid 2.307 Pre aration of Blue Cheese Slurr BM Blue Mold 1. Previous plating d 3.4 billion CFU/g ofPenicillium roguefortz' in the blue cheese. 2. Add 1 g Blue Cheese into 9 m1 Sodium Citrate (2.0%) buffer (1/10 dilution). 3. Make one dilution (1/10) and 3 serial dilutions of 0.1 ml into 9.9 ml Sodium Citrate buffer. 4. Plate 0.2 ml on each sample and control "C" and "D".
. BM calculation to equate 6.8 CFU/sample.
Experiment: 1. Place 100 g of EMC CH as Negative Control "Aa" in white cups and "Ab" in sterile cups. 2. Place 99 g ofEMC CH as Negative Control "B" with 1 ml FF#2 (1 .0%) in white cup. 3. Place 100 g of EMC CH with 0.2 ml BM on the top surface as Positive Control "C" in white cup. 4. Place 100 g ofEMC CH with 0.2 ml BM mixed within as Positive Control "D" in white cup.
. Test white cups "E" will have 1 ml FF#2 (1.0 %) in 99 g EMC CH with 0.2 ml BM inoculated on the top surface. 6. Test white cups "F" will have 1 ml FF#2 (1.0%) in 99 g EMC CH with 0.2 ml BM ated within product. 7. Number and label white test cups. 8. Incubate at 250 C for 12 weeks (84 days). 9. Sample one test cup for initial pH, TA and mold count.
. Test mold counts using PDA (Potato Dextrose Agar w/ 1%Tartaric Acid) on weeks 2, 4, 8, and 12. 11. Sample final pH and TA at 12 weeks. 12. Record Results. 13. Obtain a GC/MS assay of Sample A and B to compare FF#2 chemical effects in EMC CH EMC CH EMC CH EMC CH EMC CH EMC CH 1% FF2 1% FF2 + Control 1% FF#2 BM top BM mix Sam 'le Test "A" "B" "E" “F” ——---14 Aa/Ab-2 B2 C2 D2 E2 8 Aa/Ab-3 B3 C3 D3 E3 2014/030657 Week 8, Day F4 56 Aa/Ab-4 B4 C4 D4 E4 ---84 Aa/Ab-S B5 C5 D5 E5 RESULTS: Visible Mold Mold Count Test Cu H TA (Yes/No) cfu/g -———_ --——_ --——_ -———_ -———_ -———_ -———_ --——_ -———_ -———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ -_———_ WO 45828 2014/030657 Example 60b Purpose: Determine if FF#Z will inhibit mold in a Lipolyzed cream product (LC) which is tible to mold growth due to its high pH and low TA. Procedure: Prepare FF#Z, obtain Lipolyzed cream product without potassium sorbate, and prepare a Blue Cheese Slurry as a source of mold spores to deliver l-lO CFU/100 gram sample. Test efficacy of FF#Z.
Preparation of FF#2: l. Prepare a 4 M (Molar) solution of Potassium Isobutyrate (K-IB) by adding 394.92 g Isobutyric Acid and 498.76 g of 45% KOH (Potassium Hydroxide) to a l-L volumetric flask. 9.4;?!“ Add deioinized water to bring volume up to l L.
Temper to room temperature and readjust volume.
Measure pH=8. l l Weigh all ingredients in the percentages in the table below, including: 4 M Potassium Isobutyrate, nic acid, acetic acid, and citric acid to e the final FF#Z.
FF#Z is comprised of potassium isobutyrate, propionic acid, acetic acid and citric acid.
It has a pH of5.39.
In ; redient % K—IBA 4 M 16.75 Li n 01 zed Cream roduct (LC)[Pr0ducti0n L0t# 140205]: 54.61 54-59 34-39 ___—_— GC/LC assa Isobut ric Acid Pro ionic Acid m Acetic Acid 0.20 Pre n of Blue Cheese Slurr BM Blue Mold 1. us plating yielded 3.4 billion CFU/g ofPenicillium roguefortz' in the blue cheese. 2. Add 1 g Blue Cheese into 9 m1 Sodium Citrate (2.0%) buffer (1/10 dilution). 3. Make one dilution (1/ 10) and 3 serial dilutions of 0.1 m1 into 9.9 m1 Sodium Citrate buffer. 4. Plate 0.2 m1 on each sample and control "C" and "D".
. BM calculation to equate 6.8 CFU/sample.
Experiment: 1. Place 100 g of LC as Negative Control "Aa" in white cups and "Ab" in sterile cups. 2. Place 99 g of LC as Negative Control "B" with 1 m1 FF#2 (1.0%) in white cup. 3. Place 100 g of LC with 0.2 m1 BM on the top surface as Positive Control "C" in white cup. 4. Place 100 g of LC with 0.2 m1 BM mixed within as Positive Control "D" in white cup.
. Test white cups "E" will have 1 m1 FF#2 (1.0 %) in 99 g LC with 0.2 m1 BM inoculated on the top e. 6. Test white cups "P" will have 1 m1 FF#2 (1 .0%) in 99 g LC with 0.2 m1 BM inoculated within product. 7. Number and label white test cups. 8. Incubate at 250 C for 12 weeks (84 days). 9. Sample one test cup for initial pH, TA and mold count.
. Test mold counts using PDA (Potato Dextrose Agar w/ 1%Tartaric Acid) on weeks 2, 4, 8, and 12. 11. Sample final pH and TA at 12 weeks. 12. Record Results. 13. Obtain a GC/MS assay of Sample A and B to compare FF#2 al effects in product.
WO 45828 LC LC LC LC LC LC 1% FF2 1% FF2 + Control 1% FF#2 BM top BM mix BM top BM mix Sam 'le Test "A" "B" "C" "D" "E" “F” Week 12, Day F5 84 Aa/Ab-S B5 C5 D5 E5 RESULTS: Visible Mold Mold Count Test Cu H TA (Yes/No) cfu/g -———_ -———_ --——_ -———_ -———_ ——-_m_ -———_ --——_ --——_ -———_ -———_ -_———_ -_———_ -_———_ -_———_ -_———_ ——--m_ -_———_ -_-——_ -_-——_ -_———_ -_———_ ——--m_ -_———_ -_———_ -_———_ -_———_ -_———_ ——-m_ E1-da 7 no NA E2-da 14 E3-da 28 E4-da 56 E5-da 84 F 1 -initial F1-da 7 F2-da 14 F3-da 28 F4-da 56 FS-da 84 As shown by the results of Examples 60a-b, a representative composition of this invention can be used to effectively inhibit mold growth in otherwise susceptible dairy food products.
Example 61 The composition of Examples 60a-b (FF#2) was tested against representative strains of fungi and bacteria. The composition was placed in a micro cup in the center of a potato se agar plate with small plugs of inoculum spaced around the center well micro cup at 2 cm. The cup contained the amounts of the composition as indicated in Table 16. The plates were incubated for 24 hours at ambient temperature and measured. Measurements were made on a l plate and the amount of tion expressed for the composition is presented as the amount of growth versus control plate growth (without composition). The percent inhibition results were ated after a minimum oftwo measurements for each test organism were completed.
Table 16.
Test Organism 6 u] in Micro cup % inhibition % inhibition % inhibition Ph talhthora cinnamomi 73 z‘llum dahliae 40 “— Sclerotiorum tiorum 19 “— Penicillum s. 15 Aserz'llus umz‘arus 80 “— Fusarz’um solani 45 P thium ultimum Bar It's cinerea Ecolz' Bacillus subtilus As a r test against the same fungi and bacteria, the composition was placed directly as a droplet at the center of a potato dextrose agar plate with small plugs of inoculum spaced around the center at 2 cm increments. The plates were incubated for 24 hours at ambient temperature and measured. The amount of composition applied is indicated in Table 17. Measurements were made on a control plate and test plates. The amount of inhibition expressed for the ition is presented as the amount of growth versus the l plate growth.
Table 17.
Test Organism 6 u] on agar 12.5 u] on agar % tion % inhibition Rhizoctom'a solam' 100 100 Ph tmhthora cinnamomi 52 78 Verticillum dahliae Sclerotiorum sclerotiorum 64 Penicillum SI. 33 ASIerilluS umiatus Fusarium solam' 32 P thium ultimum Bar It's cinerea . 50 Ecolz' Bacillus subtilus N.D. = not determined The bacteria controls grew well and the “trace” statement indicates some growth occurred relative to the control.
The s of this e show that the composition is active in the gas phase, as all organisms, at one or all concentrations were affected during the course of at least 24 hours. At 25 ul, the effect was maximized since most organisms were 100% inhibited (Table 16). When the composition was placed directly in the middle of the plate on the surface, the ce of the composition was somewhat diminished, as there was undoubtedly diffusion into the agar bed. Nevertheless, antimicrobial activity was observed (Table 17). The higher concentration (12.5 ul) affected both test ia and fiangi more than the lower dosage (6 ul) on the agar bed, except for Verticillum.

Claims (24)

We Claim:
1. A composition comprising propanoic acid, a C4-C6 acid salt, a C2-C5 acid ester and a C2-C8 aldehyde, wherein the propanoic acid is present at a ratio of at least 7:2 with respect to each of the C4-C6 acid salt, the C2-C5 acid ester, and the C2-C8 aldehyde.
2. The composition of claim 1 wherein said salt is selected from potassium and ammonium salts of isobutyric acid and a combination thereof.
3. The composition of claim 1 wherein said ester is selected from esters of isobutyric acid and combinations thereof.
4. The composition of claim 1 wherein said aldehyde is benzaldehyde.
5. The ition of claim 4 wherein said ester is selected from esters of isobutyric acid and combinations thereof.
6. The composition of claim 5 wherein said salt is selected from potassium and um salts of isobutyric acid and a combination f.
7. The composition of claim 1 wherein said acid salt is ed from salts of isobutyric acid, salts of citric acid and ations thereof.
8. The composition of claim 7 wherein said acid salt is selected from salts of isobutyric acid and combinations thereof.
9. The composition of claim 1 wherein said ester is selected from esters of a C4 acid and combinations thereof.
10. The composition of claim 1 comprising a C2-C6 acid in addition to said propanoic acid.
11. The composition of claim 10 wherein said acid is selected from acetic acid, isobutyric acid, citric acid and combinations thereof.
12. The composition of claim 1 comprising at least one C4 acid salt.
13. The composition of claim 1 comprising at least one C4 acid ester.
14. An article of manufacture comprising: a human food product, an animal food product, a packaging product, or a solid carrier ent; and the composition of claim 1 applied thereto.
15. The article of manufacture of claim 14 wherein said solid carrier comprises a clay.
16. The article of manufacture of claim 14 wherein said human food product is ed from processed foods.
17. The article of manufacture of claim 16 selected from dairy products.
18. The composition of claim 1, consisting of propanoic acid, a C4-C6 acid salt, a C2- C5 acid ester and a C2-C8 aldehyde.
19. The composition of claim 18 wherein said acid salt is selected from salts of isobutyric acid and combinations thereof.
20. The composition of claim 19 wherein said salt is selected from potassium and ammonium salts of isobutyric acid.
21. The composition of claim 18 wherein said ester is selected from esters of a C4 acid and combinations thereof.
22. The ition of claim 18 wherein said aldehyde is benzaldehyde.
23. The composition of claim 1, d to an agricultural crop.
24. The composition of claim 23 wherein said agricultural crop comprises postharvest produce.
NZ750504A 2013-03-15 2014-03-17 Antimicrobial Compositions and Related Methods of Use NZ750504B2 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US21475209P 2009-04-27 2009-04-27
US25731909P 2009-11-02 2009-11-02
US31561110P 2010-03-19 2010-03-19
US13/815,839 2013-03-15
US13/815,839 US9706773B2 (en) 2009-04-27 2013-03-15 Antimicrobial compositions and related methods of use
NZ711679A NZ711679A (en) 2009-04-27 2014-03-17 Antimicrobial compositions and related methods of use

Publications (2)

Publication Number Publication Date
NZ750504A NZ750504A (en) 2021-01-29
NZ750504B2 true NZ750504B2 (en) 2021-04-30

Family

ID=

Similar Documents

Publication Publication Date Title
US11896006B2 (en) Antimicrobial compositions and related methods of use
AU2018200620B2 (en) Antimicrobial compositions and related methods of use
US20230172199A1 (en) Antimicrobial Compositions and Related Methods of Use
US20240180155A1 (en) Antimicrobial Compositions and Related Methods of Use
NZ750504B2 (en) Antimicrobial Compositions and Related Methods of Use
EA044965B1 (en) ANTIMICROBIAL COMPOSITIONS AND METHODS OF THEIR APPLICATION