NZ743612A - Method for selectively synthesizing cationic lipids - Google Patents

Method for selectively synthesizing cationic lipids

Info

Publication number
NZ743612A
NZ743612A NZ743612A NZ74361216A NZ743612A NZ 743612 A NZ743612 A NZ 743612A NZ 743612 A NZ743612 A NZ 743612A NZ 74361216 A NZ74361216 A NZ 74361216A NZ 743612 A NZ743612 A NZ 743612A
Authority
NZ
New Zealand
Prior art keywords
cationic lipid
fatty acid
formula
preparing
carbon atoms
Prior art date
Application number
NZ743612A
Inventor
Sungwon Choi
Hye Yeong Nam
Minhyo Seo
Original Assignee
Samyang Biopharmaceuticals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication of NZ743612A publication Critical patent/NZ743612A/en
Application filed by Samyang Biopharmaceuticals Corporation filed Critical Samyang Biopharmaceuticals Corporation
Priority to NZ758732A priority Critical patent/NZ758732A/en

Links

Abstract

Disclosed are methods for preparing a cationic lipid represented by Formula 1, wherein in Formula 1, a and b are independently 1 to 6, and n and m are independently 0 to 12, with the proviso that 1 ≤ n + m ≤ 12; and wherein one of the following (a) to (c) applies: (a) one of R1 and R4 is a saturated or unsaturated fatty acid group having 12 to 26 carbon atoms, and the other of R1 and R4 is hydrogen, and R2 and R3 are each independently hydrogen; or (b) R1 and R4 are each independently a saturated or unsaturated fatty acid group having 12 to 26 carbon atoms, and R2 and R3 are each independently hydrogen, or (c) R1, R2, R3 and R4 are each independently a saturated or unsaturated fatty acid group having 12 to 26 carbon atoms. The disclosed methods are capable of selectively synthesizing cationic lipids of Formula 1 by controlling the introduction rate of a fatty acid group with respect to an oligoalkyleneamine by the change of reaction conditions. ed or unsaturated fatty acid group having 12 to 26 carbon atoms, and the other of R1 and R4 is hydrogen, and R2 and R3 are each independently hydrogen; or (b) R1 and R4 are each independently a saturated or unsaturated fatty acid group having 12 to 26 carbon atoms, and R2 and R3 are each independently hydrogen, or (c) R1, R2, R3 and R4 are each independently a saturated or unsaturated fatty acid group having 12 to 26 carbon atoms. The disclosed methods are capable of selectively synthesizing cationic lipids of Formula 1 by controlling the introduction rate of a fatty acid group with respect to an oligoalkyleneamine by the change of reaction conditions.

Description

VERIFICATION 0F ATION PCT International ation No.
I, Junghee LEE (name of translator) Of 115 Teheran—ro, Gangnam—gu, Seoul 06134, Republic of Korea ss of translator) hereby declare as follows: 1. I am well acquainted with both the English and Korean languages, and 2. I am the translator of the documents attached hereto and certify that the following is a true and correct translation of PCT Application No. PCT/ICRZOIG/OISSZS filed on December 29, 2016, to the best ofmy knowledge and belief.
Dated this l¢7+ day of 7am.2018 S—%‘ignature 0ftranslator 【DESCRIPTION】 【TITLE OF THE INVENTION】 METHOD FOR SELECTIVELY SYNTHESIZING CATIONIC LIPIDS 【Technical Field】 The present disclosure relates to a synthesis method that allows control of the introduction rate and introduction position of a fatty acid group which is introduced into an oligoalkyleneamine during synthesis of cationic lipids.
【Background Art】 Until now, the synthesis of cationic lipids in which saturated or unsaturated fatty acid groups are uced into an amine group of the oligoalkyleneamine has been reported to introduce lipids into primary amines at both ends of the oligoalkyleneamine (see US Patent No. 9,220,779, US Patent No. 5,744,355, etc.). However, under the synthesis ions of the prior art, since the fatty acid groups react nonspecifically with primary and secondary amine groups of the oligoalkyleneamine, it is ible to react lipids selectively with only amine groups at one or both ends of the oligoalkyleneamine by such conventional synthesis methods.
Therefore, a mixture having ent lipid introduction rates is synthesized, and a mixture having ent cationic lipid compositions can be synthesized for each on. It is very difficult to separate and purify the thus synthesized mixture of cationic lipids into lipids having the same introduction rates, respectively, and there is a problem that many processes are required. Therefore, there is a need for a method that can e an oligoalkyleneaminebased cationic lipid in an environmentally-friendly and ical manner, and can selectively introduce lipids into an amine group.
【DETAILED DESCRIPTION OF THE INVENTION】 【Technical Problem】 Under these circumstances, the present inventors have conducted intensive studies on selective synthesis methods capable of introducing fatty acid groups into oligoalkyleneamines at desired positions and introduction rates during the synthesis of cationic lipids as described above. As a result, the inventors have unexpectedly found that, when changing conditions of oligoalkyleneamine and fatty acid tive to be reacted, it is possible to obtain a cationic lipid having the desired introduction rate and position of fatty acid groups in a simple, economical and environmentally friendly manner, y completing the present invention.
In view of the above, one object of the present invention is to provide a synthesis method of a cationic lipid ented by Formula 1 that can selectively introduce a fatty acid group into a y or secondary amine group of oligoalkylene amine and can control the introduction rate of the fatty acid to be introduced.
Another object of the present invention is to provide a method capable of efficiently purifying cationic .
[Formula 1] in the above formula, the definition of the substituents is as defined below.
【ADVANTAGEOUS EFFECTS】 The method for synthesizing a cationic lipid according to the present invention can control the introduction rate of the fatty acid group to the oligoalkyleneamine by merely adjusting the synthesis conditions unlike a conventional . Therefore, unlike the conventional method in which a mixture of ic lipids having ent lipid introduction rates are synthesized at the time of synthesis, since it is possible to synthesize a cationic lipid which consistently has high purity and uniform introduction rate, purification process with high difficulty is unnecessary. In addition, the synthesis and cation steps are simple, and economical efficiency in mass production is high. Thus, it is very useful for forming an intracellular delivery complex capable of enhancing stability in body fluids together with anionic drugs such as nucleic acid or anionic active ingredients, or for preparing cationic lipids capable of forming liposomes, micelles, emulsions, and nanoparticle drug delivery system.
【BRIEF DESCRIPTION OF GS】 shows the s of measurement (GPC) of the change in the molecular weight according to the change in the number of fatty acid groups. shows the results of proton nuclear magnetic resonance spectroscopy (1H NMR) analysis of 1,6-dioleoyl triethylenetetramide. shows the results of proton nuclear magnetic resonance spectroscopy (1H NMR) is of tetraoleoyl triethylenetetramide.
【DETAILED DESCRIPTION OF THE EMBODIMENTS】 In one aspect for achieving the above object, the present invention relates to a method capable of synthesizing a cationic lipid represented by Formula 1 with high purity by controlling the uction rate of a fatty acid group.
[Formula 1] Specifically, the present invention is characterized by reacting an oligoalkyleneamine ented by a 2 with a fatty acid alkyl ester represented by a 3.
[Formula 2] [Formula 3] in the above ae 1 to 3, n and m are independently 0 to 12, with the proviso that 1 ≤ n + m ≤ 12, a and b are independently 1 to 6, R1, R2, R3 and R4 are independently hydrogen or saturated or unsaturated fatty acid group having 12 to 26 carbon atoms, with the proviso that at least one of R1 and R4 is saturated or unsaturated fatty acid group having 12 to 26 carbon atoms, R is saturated or unsaturated hydrocarbon having 11 to 25 carbon atoms, and R5 is an alkyl group having from 1 to 14 carbon atoms.
In order to keep the density of the fatty acid group high and to ze the cytotoxicity induced by cations, it is preferable that n and m have the numerical value and range as described above.
In addition, with respect to the R and R1 to R4, if the number of carbon atoms in the saturated or unsaturated hydrocarbon is less than 11, the hydrophobic interaction between the hydrocarbon chains can decrease, and thus a ation stable with the anionic drug cannot be formed. On the other hand, if the number of carbon atoms is larger than 25, the hydrophobic interaction between the hydrocarbons will increase, and thus a formulation excessively stable with the c drug will form, whereby the in vivo dissociation of the drug will decrease, leading to a decrease in the efficacy of the drug. In addition, the ure of the hydrocarbon chains will increase due to an increase in cis double bonds, and thus the resulting ation will have low density and thus low stability.
In a preferred embodiment, in the ive synthesis method according to the present invention, a cationic lipid of Formula 1 wherein one of R1 and R4 is hydrogen and R2 and R3 are each hydrogen can be prepared by ing the molar ratio (oligoalkyleneamine/fatty acid alkyl ester) of the oligoalkyleneamine of Formula 2 to fatty acid alkyl ester of Formula 3 to more than 1 to 20 or less, preferably 3 or more to 8 or less.
In another preferred embodiment, in the selective synthesis method according to the present invention, a cationic lipid of Formula 1 n R1 and R4 are fatty acid groups having 12 to 26 carbon atoms and R2 and R3 are hydrogen can be prepared by adjusting the molar ratio of the fatty acid alkyl ester of Formula 3 to the oligoalkyleneamine of Formula 2 to 1 or more to 5 or less, preferably 1.5 or more to 4 or less.
In r preferred embodiment, in the selective synthesis method according to the present invention, a cationic lipid of Formula 1 wherein R1, R2, R3 and R4 are a fatty acid group having 12 to 26 carbon atoms can be prepared by adjusting the molar ratio of the fatty acid alkyl ester of Formula 3 to the lkyleneamine of Formula 2 to more than 5 to 20 or less, preferably 6 or more to 10 or less.
In the above-described synthesis method according to the present invention, the reaction is carried out without using an organic solvent during the reaction of the oligoalkyleneamine with the fatty acid alkyl ester.
In yet another , the present invention provides a method for preparing a cationic lipid of Formula 1 wherein R1 and R4 are a fatty acid group having 12 to 26 carbon atoms and one of R2 and R3 is hydrogen, the method comprising a step of reacting the cationic lipid of Formula 1 n R1 and R4 are a fatty acid group having 12 to 26 carbon atoms and R2 and R3 are en with a fatty acid alkyl of Formula 3 to prepare a cationic lipid of Formula 1 wherein R1 and R4 are a fatty acid group having 12 to 26 carbon atoms and one of R2 and R3 is en.
Preferably, n and m are independently 0 to 9, with the proviso that 1 ≤ n+m ≤ 10.
Preferably, a and b may be 2 to 4.
Preferably, R1, R2, R3, and R4 may be independently unsaturated fatty acid group having 14 to 22 carbon atoms. ably, one or more of R1, R2, R3 and R4 may be selected from the group consisting of lauroyl, myristoyl, palmitoyl, stearoyl, arachidoyl, behenoyl, lignoceroyl, cerotoyl, myristoleoyl, palmitoleoyl, sapienoyl, oleoyl, linoleoyl, arachidonoyl, eicosapentaenoyl, erucoyl, docosahexaenoyl, and cerotoyl.
In the process for preparing a cationic lipid of a 1 wherein R1 and R4 are fatty acid groups having 12 to 26 carbon atoms and one of R2 or R3 is hydrogen, it is desirable that the molar ratio of the fatty acid alkyl ester to the cationic lipid of Formula 1 wherein R1 and R4 are fatty acids having 12 to 26 carbon atoms and R2 and R3 are hydrogen is 0.5 or more to 20 or less, preferably 0.7 or more to 10 or less, more preferably 1 or more to 5 or less.
In the present invention, the oligoalkyleneamine of Formula 2 is specifically oligoethyleneamine. More specifically, it may be at least one selected from the group consisting of diethylenetriamine, triethylenetetramine, tetraethylenepentamine, thylenehexamine, hexaethyleneheptamine, thyleneoctamine, octaethylenenonamine, nonaethylenedecamine, decaethyleneundecamine, undecaethylenedodecamine, dodecaethylenetridecamine and tridecaethylenetetradecamine, but is not d thereto. Preferably, it is at least one selected from the group consisting of triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine and hexaethyleneheptamine.
As bed above, when the oligoalkyleneamine of Formula 2 and the fatty acid alkyl ester of Formula 3 are reacted at the above equivalent ratio, a high-purity ic lipid can be synthesized by adjusting the hydrocarbon introduction rate in the produced cationic lipid.
According to the method of the present invention, the cationic lipid can be easily synthesized at a high yield by using a fatty acid derivative such as inexpensive oligoalkyleneamine and fatty acid alkyl ester, which is environmentally friendly and economical. In addition, it is advantageous in that the lipid synthesized through the above on has a low lity in a nonpolar organic t and thus is easily precipitated, so that the purification process of the synthesized product is very simple.
Therefore, in another preferred embodiment, the present invention may further include a step of adding a nonpolar organic solvent to the cationic lipid of Formula 1 produced by the above synthesis method, precipitating and separating unreacted materials to purify the cationic lipid. Preferably, the nonpolar organic solvent may be an alkane or ether having 4 to 12 carbon atoms, more preferably , heptane or l ether, but is not limited thereto.
In another preferred embodiment, the present invention may further include a step of dissolving the cationic lipid of Formula 1 produced by the above synthesis method by adding a nonpolar organic solvent, adding an acid thereto to separate the cationic lipid as an acid addition salt into the aqueous layer from the organic solvent, neutralizing the separated lipid, and extracting it with a nonpolar c solvent, followed by separation and cation.
Further, the preferred nonpolar organic solvent may be chloroform or dichloromethane, but is not limited o.
As described above, since the cationic lipid of a 1 produced by the synthesis method according to the present invention itself exhibits low solubility, easily precipitates and exhibits a m introduction rate, the purification method of the present invention using this point has the advantage in that it is economical, environmentally friendly and simple as compared with the tional purification method of cationic lipids.
Since the ic lipid synthesized and/or purified according to the present invention retains a positively charged state in cells because the amine group of the oligoalkyleneamine exists in a vely charged form at a en ion concentration (pH) of a l region which is a normal in vivo environment. Therefore, the cationic lipid not only makes it possible to form a complex with an anionic drug containing a negatively charged nucleic acid at neutral pH, such as in vivo, and to increase contact with negatively charged target cell membranes. Thus, the cationic lipids of the present invention can be used to produce various forms of anionic drug delivery formulations, such as mes, micelles, emulsions, and nanoparticles for nucleic acid delivery ations.
Hereinafter, the present invention will be described in more detail with reference to the following examples. However, these examples are provided herein for illustrative purposes only and should not be used to limit the scope of the present invention in any manner.
Example 1: Synthesis of leoyl triethylenetetramide .00 g (33.34 mmol) of triethylenetetramine and 2.00 g (6.69 mmol) of methyl oleate were placed in a round bottom flask and then allowed to react with stirring with a magnetic bar at 65°C under en for 5 days.
After completion of the on, the reaction product was ved in 150 mL of diethyl ether, and then sodium chloride (NaCl) was added to 30 mL of 1 M sodium hydroxide (NaOH) solution in a separating funnel, and the reaction mixture was washed three times to remove unreacted triethylenetetramine. The upper organic solvent layer in the separating funnel was heated and distilled under reduced pressure with a distillation condenser.
The finally obtained product was ed by HP1100 series gel tography using Shodex KF-801 and KF-802 columns in 0.5% v/v trimethylamine-tetrahydrofuran mobile phase at a flow rate of 1 mL/min. The results of the analysis are shown in In addition, the degree of introduction of an oleoyl group in deuterated chloroform was analyzed with a Bruker AVANCE DPX 400 1H nuclear magnetic resonance spectrometer. The molecular weight of the cationic lipid synthesized under the ions of MeOH: 5 mM ammonium formate-0/25% formic acid (70:30) was analyzed using t Technologies 646 Triple quad mass spectrometer. Through the above is, it was confirmed that the oleoyl group was introduced to one end of the triethylenetetramine. The yield was 73.8%, and 1.1 equivalents of oleoyl groups were introduced into triethylenetetramine. Based on GPC, the purity was confirmed to be 96.7%.
Example 2: Synthesis of 1,6-dioleoyl triethylenetetramide 0.50 g (3.34 mmol) of triethylenetetramine and 2.00 g (6.69 mmol) of methyl oleate were placed in a round bottom flask and then allowed to react with stirring with a magnetic bar at 65°C under nitrogen for 5 days.
After completion of the on, the process of adding 15 mL of hexane to the reaction product to precipitate 1,6-dioleoyltriethylenetetramide and extracting unreacted methyl oleate was repeated three times. The precipitated lipid was precipitated and separated from hexane by centrifugation, recovered and vacuum dried.
The lar weight of the purified cationic lipid and the degree of introduction of oleoyl groups were confirmed by gel chromatography, proton nuclear magnetic resonance spectroscopy and mass spectrometry in the same manner as in Example 1. The results of the gel chromatography and proton nuclear magnetic nce spectroscopy are shown in FIGS. 1 and 2, respectively. The yield was 79.9%, and 2.06 equivalents of oleoyl groups were introduced into the triethylenetetramine. Based on GPC, the purity was med to be 95.7%.
Example 3: Synthesis of Trioleoyl triethylenetetramide 1,3,6-trioleoyl triethylenetetramide was synthesized by further reacting 1,6-dioleoyl triethylenetetramide synthesized in Example 2 with methyl oleate. Specifically, 400 mg (578.3 μmol) of 1,6-dioleoyl triethylenetetramide and 173.2 mg (578.3 μmol) of methyl oleate were dissolved in 100 mL of dimethylformamide and then allowed to react with refluxing and stirring at 90°C under nitrogen for 5 days.
After completion of the reaction, the reaction product was vacuum dried to remove dimethylformamide, and then 50 mL of hexane was added to precipitate unreacted 1,6- dioleoyl triethylenetetramide and then centrifuged. Subsequently, the separated supernatant was vacuum dried, to which 10 mL of 1M hydrogen de (HCl) was added, and the synthesized trioleoyl triethylenetetraamide was converted in the form of a mono-HCl salt (1,3,6-trioleoyl triethylenetetramide·1HCl). After that, 50 mL of form was added thereto and unreacted methyl oleoyl was extracted and d in a separating funnel. The acidic aqueous on in which the cationic lipid was dissolved was neutralized with sodium hydroxide, and the lipid was extracted with chloroform and vacuum dried.
The molecular weight of the purified and finally obtained product and the degree of introduction of oleoyl groups were confirmed by using gel chromatography, proton nuclear magnetic resonance spectroscopy and mass ometry in the same manner as in Example 1.
The results of the gel chromatography are shown in It was confirmed that the yield was 47.5% and 2.94 equivalents of oleoyl groups were bonded to the triethylenetetramine.
Based on GPC, the purity was confirmed to be 94.3%.
Example 4: Synthesis of Tetraoleoyl triethylenetetramide 0.50 g (3.34 mmol) of triethylenetetramine and 8.00 g (26.76 mmol) of methyloleate were placed in a round bottom flask and then allowed to react with stirring with a magnetic bar at 65°C under nitrogen for 5 days.
After completion of the reaction, the process of adding 15 mL of hexane to the reaction product to precipitate tetraoleoyl triethylenetetramide and extracting ted methyloleate was repeated three times. The itated tetraoleoyl triethylenetetramide lipid was precipitated and ted from hexane by centrifugation, recovered and vacuum dried.
The molecular weight of the purified cationic lipid and the degree of introduction of oleoyl groups were confirmed by gel chromatography, proton nuclear magnetic resonance spectroscopy and mass spectrometry in the same manner as in Example 1. The results of the gel chromatography and proton nuclear magnetic resonance spectroscopy are shown in FIGS. 1 and 3, respectively. The yield was 89.1% and 4.05 lents of oleoyl groups were introduced into the triethylenetetramine. Based on GPC, the purity was confirmed to be 99.4%. 【

Claims (1)

1.】 【Claim 1】 5 A method for preparing a cationic lipid represented by Formula 1, comprising reacting an oligoalkyleneamine represented by Formula 2, with a fatty acid alkyl ester represented by Formula 3 to prepare the cationic lipid of Formula 1: [Formula 1] 10 [Formula 2] [Formula 3] in the formulae 1 to 3, 15 n and m are independently 0 to 12, with the proviso that 1 ≤ n + m ≤ 12, a and b are independently 1 to 6, R1, R2, R3 and R4 are each independently hydrogen, or saturated or unsaturated fatty acid group having 12 to 26 carbon atoms, with the proviso that at least one of R1 and R4 is saturated or rated fatty acid group having 12 to 26 carbon atoms, 20 R is ted or unsaturated hydrocarbon having 11 to 25 carbon atoms, and R5 is an alkyl group having from 1 to 14 carbon atoms. 【Claim 2】 The method for preparing a cationic lipid according to claim 1, wherein the molar ratio of the oligoalkyleneamine to the fatty acid alkyl ester is adjusted to more than 1 to 20 or less to obtain the cationic lipid of Formula 1 where one of R1 and R4 is hydrogen and R2 and R3 are hydrogen. 【Claim 3】 The method for preparing a cationic lipid according to claim 1, wherein the molar 5 ratio of the fatty acid alkyl ester to the oligoalkyleneamine is adjusted to 1 or more to 5 or less to obtain the ic lipid of Formula 1 where R1 and R4 are independently saturated or unsaturated fatty acid groups having 12 to 26 carbon atoms and R2 and R3 are hydrogen. 【Claim 4】 The method for preparing a cationic lipid according to claim 1, wherein the molar 10 ratio of the fatty acid alkyl ester to the oligoalkyleneamine is adjusted to more than 5 to 20 or less to obtain the cationic lipid of Formula 1 where R1, R2, R3 and R4 are independently saturated or unsaturated fatty acid group having 12 to 26 carbon atoms. 【Claim 5】 A method for preparing a cationic lipid of Formula 1 of claim 1 where R1 and R4 are 15 ted or rated fatty acid group having 12 to 26 carbon atoms, and one of R2 and R3 is hydrogen, wherein the method comprises reacting the cationic lipid of Formula 1 defined in claim 1 where R1 and R4 are saturated or unsaturated fatty acid group having 12 to 26 carbon atoms and R2 and R3 are hydrogen, with a fatty acid alkyl ester of Formula 3 d in claim 1 to prepare the cationic 20 lipid of Formula 1 where R1 and R4 are saturated or unsaturated fatty acid group having 12 to 26 carbon atoms and one of R2 and R3 is hydrogen. 【Claim 6】 The method for preparing a cationic lipid according to claim 5, wherein the molar ratio of the fatty acid alkyl ester to the cationic lipid of Formula 1 is 0.5 or more to 20 or less. 25 【Claim 7】 The method for preparing a cationic lipid according to any one of claims 1 to 6, wherein n and m are ndently 0 to 9, with the proviso that 1 ≤ n + m ≤ 10. 【Claim 8】 The method for preparing a cationic lipid according to any one of claims 1 to 6, wherein n and m are independently 2 to 4. 【Claim 9】 The method for preparing a cationic lipid according to any one of claims 1 to 6, wherein one or more of R1, R2, R3, and R4 are independently unsaturated fatty acid group 5 having 14 to 22 carbon atoms. 【Claim 10】 The method for ing a cationic lipid according to any one of claims 1 to 6, wherein one or more of R1, R2, R3, and R4 are independently selected from the group consisting of lauroyl, myristoyl, palmitoyl, stearoyl, arachidoyl, behenoyl, eroyl, 10 cerotoyl, myristoleoyl, palmitoleoyl, sapienoyl, oleoyl, linoleoyl, arachidonoyl, eicosapentaenoyl, erucoyl, docosahexaenoyl, and cerotoyl. 【Claim 11】 The method for preparing a cationic lipid according to any one of claims 1 to 6, wherein the oligoalkyleneamine of Formula 2 is oligoethyleneamine. 15 【Claim 12】 The method for preparing a cationic lipid according to claim 11, wherein the oligoalkyleneamine is selected from the group consisting of diethylenetriamine, triethylenetetramine, tetraethylenepentamine, pentaethylenehexamine, hexaethyleneheptamine, heptaethyleneoctamine, hylenenonamine, nonaethylenedecamine, 20 decaethyleneundecamine, undecaethylenedodecamine, ethylenetridecamine and tridecaethylenetetradecamine. 【Claim 13】 The method for preparing a cationic lipid according to any one of claims 1 to 4, wherein the oligoalkyleneamine of Formula 2 and the fatty acid alkyl ester of a 3 are 25 reacted in the absence of an organic t. 【Claim 14】 The method for preparing a cationic lipid according to any one of claims 1 to 6, further comprising adding a nonpolar organic solvent after the reaction, itating and separating the cationic lipid from the unreacted materials to purify the cationic lipid. 【Claim 15】 The method for preparing a cationic lipid according to claim 14, wherein the nonpolar organic solvent is an alkane or ether having 4 to 12 carbon atoms. 【Claim 16】 5 The method for preparing a cationic lipid according to claim 5, r comprising dissolving the cationic lipid in a nonpolar organic t, adding an acid to separate the cationic lipid as an acid addition salt in the s layer from the organic solvent, neutralizing the separated cationic lipid, and extracting and purifying the neutralized cationic lipid with a nonpolar organic solvent. 【
NZ743612A 2015-12-30 2016-12-29 Method for selectively synthesizing cationic lipids NZ743612A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ758732A NZ758732A (en) 2015-12-30 2016-12-29 Method for selectively synthesizing cationic lipids

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2015-0189843 2015-12-30

Publications (1)

Publication Number Publication Date
NZ743612A true NZ743612A (en)

Family

ID=

Similar Documents

Publication Publication Date Title
CN107522664B (en) Amino acid derivatives functionalized at the N-terminus capable of forming drug-encapsulated microspheres
US20180258233A9 (en) Block co-poly(metal organic nanostructures) (bcpmons) and uses thereof
US10781165B2 (en) pH-responsive amphoteric surfactant n-lauryl-(α-alkyl)-β-aminopropionic acid and preparation method and uses thereof
JP2009511629A5 (en)
AU2022264775A1 (en) Lipid nanomaterials and uses thereof
AU2016382380B2 (en) Method for selectively synthesizing cationic lipids
CN100415355C (en) Polyoxyethylene chain three cation quaternary ammonium salt type surfactant and its sysnthesis method
NZ743612A (en) Method for selectively synthesizing cationic lipids
CN107001238B (en) The manufacturing method of cation lipid
US11680137B2 (en) Method for purifying trityl group-containing monodispersed polyethylene glycol
CN114989090A (en) Preparation method of amino functionalized ionic liquid
WO2008022062A1 (en) Process for preparing quaternary alkylammonium halides
JP5230956B2 (en) Method for solubilizing hydrophobic macromolecules using quaternary ammonium salts
CN114276272A (en) Method for producing fullerene water-soluble derivative and recovering triethanolamine oxide
CN109988072B (en) Synthetic method of 2' -oxydiethylamine and product thereof
US20180312537A1 (en) Method of modifying a peptide
Averin et al. Synthesis of nitrogen-and oxygen-containing macrocycles by palladium-catalyzed amination of 3, 24-bis (6-chloropyridin-2-yloxy) cholane
US8741250B2 (en) Hydroxylation of icosahedral boron compounds
CN105061216B (en) A kind of preparation method of bixalomer intermediate
JPH02169593A (en) Phosphoric acid ester
CN112778221A (en) Preparation method of dendritic cationic polyion liquid
CN107759671A (en) The method that Vancomycin chiral function monomer is synthesized in aqueous phase
Li et al. Hexaquacobalt (II) bis (5-hydroxy-7-methoxy-4-oxo-2-phenyl-4H-chromene-6-sulfonate) tetrahydrate
Sattelberger MAIN GROUP COMPOUNDS AND LIGANDS
Wawro Synthesis and properties of macrocyclic amphiphiles constructed from monodisperse oligo (ethylene glycol)