NZ739942B2 - Chimeric cytokine receptor - Google Patents

Chimeric cytokine receptor

Info

Publication number
NZ739942B2
NZ739942B2 NZ739942A NZ73994216A NZ739942B2 NZ 739942 B2 NZ739942 B2 NZ 739942B2 NZ 739942 A NZ739942 A NZ 739942A NZ 73994216 A NZ73994216 A NZ 73994216A NZ 739942 B2 NZ739942 B2 NZ 739942B2
Authority
NZ
New Zealand
Prior art keywords
nucleic acid
cell
receptor
cells
acid sequence
Prior art date
Application number
NZ739942A
Other versions
NZ739942A (en
Inventor
Shaun Cordoba
Shimobi Onuoha
Martin Pule
Matteo Righi
James Sillibourne
Simon Thomas
Original Assignee
Autolus Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB1514875.2A external-priority patent/GB201514875D0/en
Application filed by Autolus Limited filed Critical Autolus Limited
Publication of NZ739942A publication Critical patent/NZ739942A/en
Publication of NZ739942B2 publication Critical patent/NZ739942B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001102Receptors, cell surface antigens or cell surface determinants
    • A61K39/001116Receptors for cytokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00113Growth factors
    • A61K39/001135Vascular endothelial growth factor [VEGF]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/00118Cancer antigens from embryonic or fetal origin
    • A61K39/001182Carcinoembryonic antigen [CEA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • A61K39/001193Prostate associated antigens e.g. Prostate stem cell antigen [PSCA]; Prostate carcinoma tumor antigen [PCTA]; PAP or PSGR
    • A61K39/001194Prostate specific antigen [PSA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70517CD8
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/715Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons
    • C07K14/7155Receptors; Cell surface antigens; Cell surface determinants for cytokines; for lymphokines; for interferons for interleukins [IL]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • C07K16/3069Reproductive system, e.g. ovaria, uterus, testes, prostate
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/569Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/60Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
    • C07K2317/62Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
    • C07K2317/622Single chain antibody (scFv)
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/01Fusion polypeptide containing a localisation/targetting motif
    • C07K2319/03Fusion polypeptide containing a localisation/targetting motif containing a transmembrane segment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/33Fusion polypeptide fusions for targeting to specific cell types, e.g. tissue specific targeting, targeting of a bacterial subspecies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction
    • C07K2319/74Fusion polypeptide containing domain for protein-protein interaction containing a fusion for binding to a cell surface receptor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes

Abstract

The present invention provides a chimeric transmembrane protein which comprises two polypeptides: a first polypeptide which comprises a heavy chain constant domain (CH) and a first chain of a type I cytokine receptor endodomain; and a second polypeptide which comprises a light chain constant domain (CL) a second chain of the type I cytokine-receptor endodomain. The CH and CL domains spontaneously heterodimerise giving constitutively active type I cytokine signalling. (CL) a second chain of the type I cytokine-receptor endodomain. The CH and CL domains spontaneously heterodimerise giving constitutively active type I cytokine signalling.

Description

P108038PCT CHIMERIC CYTOKINE RECEPTOR FIELD OF THE INVENTION The present invention relates to a chimeric cytokine receptor (CCR), and a cell which expresses such a chimeric cytokine receptor and optionally a chimeric antigen receptor at the cell surface.
OUND TO THE INVENTION Chimeric antigen receptors (CARs) A number of immunotherapeutic agents have been described for use in cancer treatment, including therapeutic monoclonal antibodies , bi-specific T-cell engagers and chimeric antigen ors (CARs).
Chimeric antigen receptors are proteins which graft the specificity of a monoclonal dy (mAb) to the effector function of a T-cell. Their usual form is that of a type I transmembrane domain protein with an antigen recognizing amino terminus, a spacer, a transmembrane domain all connected to a compound endodomain which transmits T-cell survival and activation signals.
The most common form of these molecules are fusions of single-chain variable fragments (scFv) derived from monoclonal antibodies which ize a target antigen, fused via a spacer and a trans-membrane domain to a signaling endodomain. Such molecules result in activation of the T-cell in response to recognition by the scFv of its target. When T cells express such a CAR, they recognize and kill target cells that express the target antigen. Several CARs have been developed against tumour associated ns, and adoptive transfer approaches using such CAR-expressing T cells are currently in clinical trial for the treatment of various cancers.
CAR-based approaches to treat Prostate Cancer Prostate cancer is the second most common cancer in men worldwide, and the sixth g cause of cancer-related death. Globally, there are approximately 1,100,000 new cases and 300,000 ities every year, sing 4 percent of all cancer P108038PCT . It is estimated that 1 in every 6 men will be diagnosed with the disease during his lifetime.
Initial treatment for prostate cancer may consist of surgery, radiation, or hormone therapy, or any combination of each. Hormone therapy consists of lowering the levels of terone, the male hormone that fuels out-of-control cell growth. Chemotherapy is typically reserved for advanced-stage cancers.
When prostate cancers grow e the lowering of terone levels by hormone therapy, ent options are limited. Typically, the cancer e sipuleucel-T (Provenge®) a dendritic cell-based therapeutic cancer vaccine designed to induce an immune response targeted against the prostatic acid phosphatase ((PAP) antigen), a radiopharmaceutical agent (such as -223 chloride), secondary hormone therapies (such as abiraterone or enzalutamide), and/or chemotherapies (docetaxel and cabazitaxel) are added to the hormonal therapy in sequence. While each of these treatments can delay growth of the cancer for several months and palliate symptoms produced by the disease, the disease tely becomes resistant to them.
Preclinically, two antigens associated with prostate cancer have been targeted with CAR T-cell based therapies: prostate-specific membrane antigen (PSMA) and prostate stem cell n (PSCA).
Mice treated with PSCA CAR-engineered T cells showed delayed tumour growth (Hillerdal et al (2014) BMC Cancer 14:30; and Abate-Daga et al (2014) 25:1003-1012). gh the cells showed high in vitro cytotoxicity, in vivo, tumour growth was delayed but tumour-bearing mice were not cured.
This may be because, in vivo, CAR T-cells struggle to overcome the hostile microenvironment of a carcinoma. In particular CAR T-cells may fail to engraft and expand within a prostate cancer tumour bed.
CAR T-cell persistence and ty can be enhanced by administration of cytokines, or by the CAR T-cells producing cytokines constitutively. However, these approaches have limitations: systemic stration of cytokines can be toxic; constitutive production of cytokines may lead to uncontrolled proliferation and transformation (Nagarkatti et al (1994) PNAS 8-7642; Hassuneh et al (1997) Blood 89:610- 620).
There is therefore a need for alternative CAR T-cell approaches, which facilitate engraftment and expansion of T cells to counteract the effects of the hostile tumour microenvironment.
On-target off-tumour toxicity It is relatively rare for the presence of a single antigen effectively to describe a cancer, which can lead to a lack of specificity.
Most s cannot be differentiated from normal tissues on the basis of a single antigen. Hence, considerable "on-target mour" toxicity occurs whereby normal tissues are damaged by the y. For instance, whilst targeting CD20 to treat B-cell lymphomas with Rituximab, the entire normal B-cell compartment is depleted, whilst targeting CD52 to treat chronic lymphocytic leukaemia, the entire lymphoid tment is depleted, whilst targeting CD33 to treat acute myeloid leukaemia, the entire myeloid compartment is damaged etc.
The predicted problem of rgetoff-tumour" toxicity has been borne out by clinical trials. For example, an approach targeting ERBB2 caused death to a patient with colon cancer metastatic to the lungs and liver. ERBB2 is over-expressed in colon cancer in some ts, but it is also expressed on several normal s, ing heart and normal vasculature.
There is therefore a need for improved approaches to cancer therapy in which such "ontarget off-tumour" toxicity is d or eliminated.
DESCRIPTION OF THE FIGURES Figure 1: Schematic diagram summarising the structure of various cytokine receptors, the cell types which produce the cytokines and the cell types which express the cytokine receptors.
Figure 2: Schematic diagram showing proposed chimeric cytokine receptor (a) Cytokine IL2 and IL7 cytokine receptors signal through a common gamma chain and a cytokine specific alpha/beta chain.
P108038PCT (b) One entation of a chimeric cytokine receptor is to replace the ectodomain of the cytokine beta and gamma chain with different scFvs (or any other suitable binder) which recognize different epitopes of PSA. (c) An alternative approach is to e the ectodomains of alpha/beta and gamma with the VH / VL of a PSA specific antibody, where both VH and VL are involved in binding so that binding brings them together.
Figure 3: Aggregation-based cytokine signalling enhancer Schematic diagram showing a chimeric cytokine receptor and CAR combination system. The cell comprises two chimeric ne receptors which bind different es on the same soluble . In the absence of e ligand (e.g. PSA) but the presence of the embrane antigen (e.g. PSMA) signalling occurs thought the CAR. In the presence of the e ligand, aggregation of the two chimeric cytokine receptors occurs, leading to cytokine-based signal enhancement.
Figure 4: Theoretical construct map for the chimeric ne receptor/CAR combination system illustrated in Figure 3.
Figure 5: Schematic diagram illustrating an example of a structure for the chimeric transmembrane n of the present ion. The chimeric transmembrane protein comprises a dimerization domain and a cytokine receptor endodomain. The embodiment shown has a "Fab" type architecture, as the dimerization domain comprises antibody-type heavy and light chain constant regions. Constant dimerization between these domains brings together the IL2 receptor common γ chain with either the IL-2 receptor β chain or the IL-7 receptor α chain, leading to constitutive cytokine signalling.
Figure 6: IL-2 signalling by the chimeric transmembrane protein.
Two chimeric transmembrane ns having the general structure shown in Figure 5 were tested for their ability to induce IL-2 signalling. One chimeric transmembrane protein comprised an IL2 receptor endodomain and the other comprised an IL-7 receptor endodomain. IL-2 signalling was tested using the murine cell line CTLL2 which is dependent on IL-2 signalling for growth. As a positive control, CTLL2 cells were cultured with 100 u/mL murine IL2. Cells expressing the chimeric transmembrane protein comprising the IL2 receptor endodomain (Fab_IL2endo) supported CTLL2 cell survival and growth, whereas cells expressing the chimeric transmembrane protein comprising the IL-7 receptor (Fab_IL7endo) did not.
P108038PCT Figure 7: Schematic diagram illustrating panel of PSA chimeric cytokine receptors A panel of chimeric cytokine receptors (CCRs) targeting PSA was developed using scFvs derived from two antibodies which bind to different PSA epitopes: 5D5A5 and 5D3D11.
Top-left panel: A CCR with an IL-2R endodomain having A5 on the chain with IL2R β chain and D11 on the chain with common γ chain; Top-right panel: A CCR with an IL7R endodomain having A5 on the chain with IL7R α chain and D11 on the chain with common γ chain; Bottom-left panel: A CCR with an IL-2R endodomain having D11 on the chain with IL2R β chain and A5 on the chain with common γ chain; and Bottom-right hand panel: A CCR with an IL-7R endodomain having D11 on the chain with IL7R α chain and A5 on the chain with common γ chain.
A negative control was also created for each CCR, in which the IL2Rγ chain was ed by a rigid .
Figure 8: IL2 signalling from cells expressing a PSA chimeric cytokine receptor in the presence of PSA – CTLL2 proliferation CTLL2 cells were transduced with constructs expressing some of the PSA chimeric ne receptors illustrated in Figure 7. Cells were cultured in the presence of absence of IL2 (positive control) and the presence of absence of 5ng/mL or 5μg/mL PSA. CTLL2 proliferation was ed after 3 and 7 days.
The anti-PSA chimeric cytokine receptor with an IL2R main supported CTLL2 cell proliferation in the absence of IL2 and the presence of PSA, but not the receptor having an IL7R endodomain or any of the CCRs comprising a rigid linker in the place of the common γ chain.
Figure 9: IL2 signalling from cells sing a PSA chimeric ne receptor in the presence of PSA – CTLL2 STAT5 phosphorylation CTLL2 cells were either left untransduced (WT); or transduced with a vector expressing a CCR against PSA (D11-CD8STK-IL2Rg_A5-Hinge-IL2Rb) or an equivalent construct having a rigid linker in the place of the common γ chain (D11-CD8STK-RL_A5-Hinge- IL2Rb). Cells were ted with either 500μM Pervanadate or 500ng/mL PSA for 1 or 4 hours. orylation of Y694 of STAT5 was then investigated using phosphoflow.
SUMMARY OF ASPECTS OF THE INVENTION P108038PCT The present inventors have developed "chimeric cytokine receptors" (CCR) which graft the binding specificity of a non-cytokine binding molecule on to the endodomain of a cytokine receptor. The co-expression of such a CCR with a ic antigen receptor (CAR) helps a CAR T-cell to engraft and expand in the hostile tumour microenvironment. The ement for the ligand for the CCR as well as the ligand for the CAR to be present add another layer of selectivity and helps prevent on-target offtumour toxicity.
For example, they have developed a cell which co-expresses a CAR with a chimeric cytokine receptor which detects PSA and transmits an IL2/15 or an IL7 signal to the CAR . In this way, the CAR T-cell is stimulated to proliferate selectively only in a prostate cancer microenvironment, and in the absence of PSA (i.e. after the patient is in remission), the cytokine stimulation is lost.
In a first aspect, the present invention provides a chimeric cytokine receptor (CCR) comprising: an exodomain which binds to a ligand ed from a tumour secreted , a chemokine and a cell-surface antigen; and a cytokine receptor endodomain.
In a first embodiment of the first aspect of the invention, the chimeric cytokine receptor comprises two ptides: (i) a first polypeptide which comprises: (a) a first antigen-binding domain which binds a first epitope of the ligand (b) a first chain of the cytokine receptor endodomain; and (ii) a second polypeptide which comprises: (a) a second n-binding domain which binds a second epitope of the ligand (b) a second chain of the cytokine-receptor endodomain. Figure 2b illustrates such an arrangement.
Each of the first and second n-binding domains may be, for example, single- chain le fragments (scFvs) or single domain binders.
In a second ment of the first aspect of the invention, the ic cytokine receptor which comprises two polypeptides: (i) a first polypeptide which comprises: (a) a heavy chain variable domain (VH) (b) a first chain of the cytokine receptor endodomain; and (ii) a second polypeptide which comprises: (a) a light chain le domain (VL) (b) a second chain of the cytokine-receptor endodomain.
Figure 2c illustrates such an arrangement.
The first and second chains for the cytokine or endodomains may be ent and may be selected from type I cytokine receptor endodomain α-, β-, and γ-chains.
Alternatively the first and second chains for the cytokine receptor endodomains may be the same and may be selected from type I cytokine receptor endodomain α-, β-, and s.
For example, the cytokine receptor endodomain may comprise: (i) IL-2 receptor β-chain endodomain (ii) IL-7 receptor α-chain endodomain; (iii) IL-15 receptor α-chain endodomain; or (iv) common γ-chain receptor endodomain.
The cytokine receptor endodomain may comprise (i), (ii) or (iii); and (iv).
The ligand may be a tumour secreted factor, for example a tumour secreted factor selected from: prostate-specific antigen (PSA), carcinoembryonic antigen (CEA), vascular endothelial growth factor (VEGF) and CA125.
The ligand may be a chemokine, for example a chemokine selected from chemokine selected from: CXCL12, CCL2, CCL4, CCL5 and CCL22.
The ligand may be a urface molecule, such as a transmembrane protein. The ligand may be, for example, CD22.
P108038PCT In a second aspect, the present invention provides a cell which ses a chimeric cytokine receptor according to the first aspect of the invention.
The cell may comprise a first chimeric cytokine receptor and a second chimeric cytokine receptor which bind different epitopes on the same .
The cell may comprise a first chimeric cytokine receptor which comprises a type I ne receptor endodomain α- or β-chain, and a second chimeric ne receptor which comprises a type I cytokine receptor main γ-chain, such that when the first chimeric cytokine or and the second cytokine receptor bind the ligand, ed ling through the α-/β-chain and γ-chain occurs.
The cell may also comprise a chimeric antigen receptor, for example a chimeric antigen receptor which binds a tumour-associated cell surface antigen.
The chimeric antigen receptor may bind a cell surface antigen associated with prostate cancer, such as prostate stem-cell antigen (PSCA) or te-specific membrane antigen (PSMA).
Where the CCR recognises a cell-surface antigen, the CCR and CAR may recognise cell-surface antigens which are co-expressed on the same target (e.g. tumour) cell. For example, for B-cell malignancies, the CAR may recognize a cell-surface n such as CD19 and the CCR may recognize a molecule which is co-expressed on the target cell surface, such CD22, thereby enhancing engraftment.
In a third aspect, the present invention provides a nucleic acid ce encoding a chimeric cytokine receptor (CCR) according to the first aspect of the invention.
In a fourth aspect the present invention provides a nucleic acid construct which comprises a first nucleic acid sequence ng a first CCR and a second nucleic acid sequence encoding a second CCR, the nucleic acid construct having the structure: AgB1-spacer1-TM1-endo1-coexpr-AbB2-spacer2-TM2-endo2 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CCR; P108038PCT spacer 1 is a nucleic acid sequence encoding the spacer of the first CCR; TM1 is a a nucleic acid sequence encoding the transmembrane domain of the first CCR; endo 1 is a nucleic acid sequence encoding the endodomain of the first CCR; coexpr is a nucleic acid sequence enabling co-expression of both CCRs AgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CCR; spacer 2 is a nucleic acid sequence ng the spacer of the second CCR; TM2 is a a nucleic acid sequence encoding the transmembrane domain of the second CCR; endo 2 is a nucleic acid sequence encoding the main of the second The nucleic acid construct may also encode a chimeric antigen receptor (CAR). In this ment, the nucleic acid construct may have the structure: (i) CCRAgB1-CCRspacer1-CCRTM1-CCRendo1-coexpr1-CCRAgB2- CCRspacer2-CCRTM2-CCRendo2-coexpr2-CARAgB-CARspacer-CARTMCARendo (ii) CCRAgB1-CCRspacer1-CCRTM1-CCRendo1-coexpr1-CARAgBCARspacer-CARTM-CARendo-coexpr2-CCRAgB2-CCRspacer2-CCRTM2- CCRendo2; or (iii) CARAgB-CARspacer-CARTM-CARendo-coexpr1-CCRAgB1- CCRspacer1-CCRTM1-CCRendo1-coexpr2-CCRAgB2-CCRspacer2-CCRTM2- CCRendo2; in which CCRAgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CCR; CCRspacer1 is a nucleic acid sequence encoding the spacer of the first CCR; CCRTM1 is a nucleic acid ce encoding the transmembrane domain of the first CCR; o1 is a nucleic acid ce encoding the endodomain of the first P108038PCT CCRAgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CCR; CCRspacer2 is a nucleic acid sequence encoding the spacer of the second CCRTM2 is a nucleic acid sequence encoding the transmembrane domain of the second CCR; CCRendo2 is a nucleic acid sequence encoding the main of the second Coexpr1 and coexpr2 are nucleic acid sequences enabling co-expression of the two flanking sequences; CARAgB is a c acid sequence encoding the antigen-binding domain of the CAR; CARspacer is a nucleic acid sequence encoding the spacer of the CAR; CARTM is a nucleic acid sequence encoding the transmembrane domain of the CAR; and CARendo is a nucleic acid sequence ng the endodomain of the CAR.
Any or all of the sequences coexpr, coexpr1, 2 may encode a sequence comprising a self-cleaving peptide.
Alternative codons may be used in regions of sequence ng the same or similar amino acid sequences, in order to avoid homologous recombination.
In a fifth , the present invention provides a vector comprising a nucleic acid construct according to the fourth aspect of the invention.
The vector may be, for example, a retroviral vector or a lentiviral vector or a transposon.
In a sixth aspect, the present invention es a kit which comprises: i) a vector sing a nucleic acid sequence encoding a first CCR ing to the first aspect of the invention; and ii) a vector comprising a nucleic acid sequence encoding a second CCR according to the second aspect of the invention.
The kit may also comprise a vector comprising a nucleic acid sequence encoding a chimeric antigen receptor.
P108038PCT The kit may comprise: i) a vector comprising a nucleic acid sequence encoding a CCR according to the first aspect of the invention; and ii) a vector comprising a nucleic acid sequence encoding a chimeric antigen or.
In a seventh aspect, the present invention provides a method for making a cell according to the second aspect of the invention, which comprises the step of introducing: a nucleic acid sequence according to the third aspect of the invention; a nucleic acid construct according to the fourth aspect of the invention; a vector according to the fifth aspect of the invention; or a kit of vectors according to the sixth aspect of the invention, into a cell.
The cell may be from a sample isolated from a subject.
In an eighth , there is provided a pharmaceutical ition comprising a plurality of cells according to the second aspect of the invention.
In a ninth , there is provided a method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to the eighth aspect of the invention to a subject.
The method may comprise the following steps: (i) isolation of a cell-containing sample from a subject; (ii) uction or transfection of the cells with: a c acid sequence according to the third aspect of the invention; a nucleic acid construct according to the fourth aspect of the invention; a vector according to the fifth aspect of the invention; or a kit of vectors according to the sixth aspect of the invention; and (iii) administering the cells from (ii) to a the subject.
The sample may be a T-cell containing sample.
The disease may be a cancer.
There is also provided a pharmaceutical composition according to the eighth aspect of the invention for use in treating and/or ting a disease.
P108038PCT There is also provided the use of a cell according to the second aspect of the invention in the manufacture of a medicament for treating and/or preventing a disease.
Further aspects of the invention are summarised in the following numbered paragraphs: 1. A chimeric transmembrane protein comprising: a dimerization domain; and a cytokine receptor endodomain. 2. A chimeric transmembrane protein according to paragraph 1, wherein the dimerization domain comprises the zation portion of a heavy chain constant domain (CH) and a light chain constant domain (CL). 3. A chimeric transmembrane protein ing to any ing paragraph, which comprises two polypeptides: (i) a first ptide which ses: (a) a first dimerisation domain; and (b) a first chain of the cytokine receptor endodomain; and (ii) a second polypeptide which comprises: (a) a second dimerization domain, which dimerises with the first dimerization domain; and (b) a second chain of the cytokine-receptor endodomain. 4. A chimeric transmembrane protein according to paragraph 3, wherein the first and second dimerization domains either dimerise neously, or in the presence of a chemical inducer of dimerization (CID).
. A chimeric transmembrane protein according to paragraph 2, 3 or 4 which ses two polypeptides: (i) a first polypeptide which comprises: (a) a heavy chain constant domain (CH) (b) a first chain of the cytokine or endodomain; and (ii) a second polypeptide which ses: (a) a light chain constant domain (CL) (b) a second chain of the cytokine-receptor endodomain.
P108038PCT 6. A chimeric transmembrane protein according to paragraph 5 wherein the first and second chains for the cytokine receptor endodomains are different and are selected from type I cytokine receptor endodomain α-, β-, and γ-chains. 7. A chimeric transmembrane protein according to aph 5 wherein the first and second chains for the cytokine receptor endodomains are the same and are selected from type I cytokine receptor endodomain α-, β-, and γ-chains. 8. A chimeric transmembrane protein according to any ing paragraph, wherein the ne or endodomain comprises: (i) IL-2 receptor β-chain endodomain (ii) IL-7 receptor α-chain endodomain; or (iii) IL-15 receptor α-chain endodomain; and/or (iv) common γ-chain receptor endodomain. 9. A chimeric transmembrane protein ing to paragraph 5, wherein the first polypeptide comprises a heavy chain variable domain (VH) and a heavy chain constant domain (CH); and the second polypeptide comprises a light chain variable domain (VL) and a light chain nt domain (CL).
. A chimeric transmembrane protein according to paragraph 9 which comprises a Fab exodomain. 11. A cell which comprises a chimeric transmembrane protein according to any preceding paragraph. 12. A cell according to aph 11, which also comprises a chimeric antigen receptor. 13. A cell according to paragraph 12, wherein the chimeric antigen receptor binds a -associated cell surface antigen. 14. A c acid sequence ng a chimeric transmembrane protein ing to any of paragraphs 1 to 10.
. A nucleic acid construct which comprises a first nucleic acid sequence encoding a first polypeptide as defined in paragraph 3 and a second nucleic acid P108038PCT sequence encoding a second polypeptide as defined in paragraph 3, the nucleic acid construct having the structure: Dim1 -TM1-endo1-coexpr-Dim2 -TM2-endo2 in which Dim1 is a nucleic acid sequence encoding the first dimerisation domain; TM1 is a a nucleic acid sequence encoding the transmembrane domain of the first polypeptide; endo 1 is a nucleic acid sequence encoding the endodomain of the first polypeptide; coexpr is a nucleic acid sequence ng co-expression of both CCRs Dim2 is a c acid sequence encoding the second dimerization domain; TM2 is a a nucleic acid sequence encoding the transmembrane domain of the second polypeptide; endo 2 is a nucleic acid sequence encoding the endodomain of the second ptide. 16. A nucleic acid construct according to paragraph 15 which also s a chimeric antigen receptor (CAR). 17. A nucleic acid construct according to paragraph 15 or 16, n coexpr encodes a sequence comprising a leaving peptide. 18. A nucleic acid uct according to any of paragraphs 15 to 17, wherein alternative codons are used in regions of sequence encoding the same or similar amino acid sequences, in order to avoid gous recombination. 19. A vector comprising a nucleic acid construct according to any of paragraphs 15 to 18.
. A retroviral vector or a lentiviral vector or a transposon according to paragraph 19. 21. A kit which comprises: i) a vector sing a nucleic acid sequence encoding a first polypeptide as defined in paragraph 3; and P108038PCT ii) a vector comprising a nucleic acid sequence encoding a second polypeptide as defined in paragraph 3. 22. A kit according to paragraph 21 which also comprises a vector sing a nucleic acid sequence encoding a chimeric antigen receptor. 23. A kit which comprises: i) a vector comprising a nucleic acid sequence encoding a chimeric embrane proetin as defined in any of paragraphs 1 to 10; and ii) a vector comprising a nucleic acid sequence encoding a chimeric antigen receptor. 24. A method for making a cell according to any of paragraphs 11 to 13, which comprises the step of introducing: a nucleic acid sequence according to paragraph 14; a nucleic acid construct according to any of paragraphs 15 to 18; a vector according to paragraph 19 or 20; or a kit of vectors according to any paragraphs 21 to 23, into a cell.
. A method ing to aph 24, n the cell is from a sample isolated from a subject. 26. A pharmaceutical composition comprising a plurality of cells according to any of aphs 11 to 13. 27. A method for treating and/or preventing a disease, which comprises the step of administering a pharmaceutical composition according to paragraph 26 to a subject. 28. A method according to claim 27, which comprises the ing steps: (i) isolation of a cell-containing sample from a t; (ii) transduction or transfection of the cells with: a nucleic acid sequence according to paragraph 14; a nucleic acid construct according to any of paragraphs 15 to 18; a vector according to paragraph 19 or 20; or a kit of vectors according to any paragraphs 21 to 23,; and (iii) administering the cells from (ii) to a the subject.
P108038PCT 29. A method according to paragraph 28, wherein the sample is a T-cell containing sample.
. A method according to paragraph 28 or 29, n the disease is a cancer. 31. A pharmaceutical composition according to paragraph 26 for use in treating and/or preventing a disease. 32. The use of a cell according to any of paragraphs 11 to 13 in the manufacture of a medicament for treating and/or preventing a disease.
DETAILED DESCRIPTION CHIMERIC CYTOKINE RECEPTOR (CCR) A chimeric cytokine receptor (CCR) is a le which comprises a cytokine receptor endodomain and a heterologous ligand-binding exodomain. The heterologous exodomain binds a ligand other than the cytokine for which the cytokine receptor from which the endodomain was derived is selective. In this way, it is possible to alter the ligand specificity of a cytokine receptor by grafting on a logous binding specificity.
A chimeric cytokine receptor comprises: (i) a ligand g ain; (ii) an optional spacer; (iii) a transmembrane domain; and (iv) a cytokine-receptor endodomain.
CYTOKINE RECEPTORS AND SIGNALLING Many cell ons are regulated by members of the cytokine receptor superfamily.
Signalling by these receptors depends upon their association with Janus s (JAKs), which couple ligand binding to ne orylation of signalling proteins recruited to the receptor complex. Among these are the signal transducers and activators of transcription (STATs), a family of transcription factors that contribute to the diversity of cytokine responses.
P108038PCT When the chimeric cytokine receptor of the invention binds its ligand, one or more of the following intracellular signaling pathways may be initiated: (i) the JAK-STAT pathway (ii) the MAP kinase pathway; and (iii) the Phosphoinositide 3-kinase (PI3K) pathway.
The JAK-STAT system consists of three main components: (1) a receptor (2) Janus kinase (JAK) and (3) Signal Transducer and Activator of Transcription .
JAKs, which have tyrosine kinase activity, bind to cell surface cytokine receptors. The binding of the ligand to the receptor triggers activation of JAKs. With increased kinase ty, they phosphorylate tyrosine residues on the or and create sites for interaction with proteins that contain phosphotyrosine-binding SH2 domains. STATs possessing SH2 s capable of binding these phosphotyrosine residues are recruited to the receptors, and are themselves tyrosine-phosphorylated by JAKs. These otyrosines then act as binding sites for SH2 domains of other STATs, mediating their dimerization. Different STATs form hetero- or homodimers. Activated STAT dimers accumulate in the cell nucleus and activate ription of their target genes.
CYTOKINE RECEPTOR ENDODOMAIN The chimeric cytokine receptor of the present invention comprises an endodomain which causes "cytokine-type" cell signalling (either alone or when in the presence of r chimeric cytokine receptor) when the exodomain binds its ligand.
The endodomain may be a cytokine receptor endodomain.
The endodomain may be derived from a type I cytokine receptor. Type I cytokine receptors share a common amino acid motif (WSXWS) in the extracellular portion nt to the cell membrane.
The endodomain may be derived from a type II cytokine receptor.Type II cytokine ors include those that bind type I and type II interferons, and those that bind members of the interleukin-10 family leukin-10, interleukin-20 and interleukin-22).
Type I cytokine receptors include: P108038PCT (i) Interleukin receptors, such as the receptors for IL-2, IL-3, IL-4, IL-5, IL-6, IL- 7, IL-9, IL-11, IL-12, IL13, IL-15, IL-21, IL-23 and IL-27; (ii) Colony stimulating factor receptors, such as the receptors for erythropoietin, GM-CSF, and G-CSF; and (iii) Hormone receptor/neuropeptide receptor, such as hormone receptor and prolactin receptor s of the type I cytokine receptor family comprise different chains, some of which are involved in /cytokine interaction and others that are involved in signal uction. For example the IL-2 receptor comprises an α-chain, a β-chain and a γchain.
The IL-2 receptor common gamma chain (also known as CD132) is shared between the IL-2 or, IL-4 receptor, IL-7 receptor, IL-9 receptor, IL-13 receptor and IL-15 receptor.
IL-2 binds to the IL-2 receptor, which has three forms, generated by ent combinations of three ent proteins, often ed to as "chains": α, β and γ; these subunits are also parts of receptors for other cytokines. The β and γ chains of the IL- 2R are members of the type I ne receptor family.
The three receptor chains are expressed separately and differently on various cell types and can assemble in different combinations and orders to generate low, intermediate, and high affinity IL-2 receptors.
The α chain binds IL-2 with low affinity, the combination of β and γ together form a complex that binds IL-2 with intermediate affinity, primarily on memory T cells and NK cells; and all three receptor chains form a complex that binds IL-2 with high affinity (Kd ~ 10−11 M) on activated T cells and regulatory T cells.
The three IL-2 receptor chains span the cell membrane and extend into the cell, thereby ring biochemical signals to the cell interior. The alpha chain does not participate in signalling, but the beta chain is complexed with the tyrosine phosphatase JAK1.
Similarly the gamma chain complexes with another tyrosine kinase called JAK3. These enzymes are activated by IL-2 binding to the al domains of the IL-2R.
P108038PCT IL-2 signalling es the differentiation of T cells into effector T cells and into memory T cells when the initial T cells are also stimulated by an antigen. Through their role in the development of T cell immunologic memory, which depends upon the expansion of the number and function of n-selected T cell clones, they also have a key role in long-term cell-mediated immunity.
The chimeric cytokine receptor of the present invention may comprise the IL-2 receptor β-chain and/or the IL-2 or (i.e. common) γ-chain The amino acid sequences for the endodomains of the IL-2 β-chain and common γchain are shown as SEQ ID No. 1 and 2 SEQ ID No. 1: Endodomain derived from human common gamma chain: ERTMPRIPTLKNLEDLVTEYHGNFSAWSGVSKGLAESLQPDYSERLCLVSEIPPKGG ALGEGPGASPCNQHSPYWAPPCYTLKPET SEQ ID No. 2: Endodomain d from human IL-2Rβ: NCRNTGPWLKKVLKCNTPDPSKFFSQLSSEHGGDVQKWLSSPFPSSSFSPGGLAP EISPLEVLERDKVTQLLLQQDKVPEPASLSSNHSLTSCFTNQGYFFFHLPDALEIEAC QVYFTYDPYSEEDPDEGVAGAPTGSSPQPLQPLSGEDDAYCTFPSRDDLLLFSPSL LGGPSPPSTAPGGSGAGEERMPPSLQERVPRDWDPQPLGPPTPGVPDLVDFQPP PELVLREAGEEVPDAGPREGVSFPWSRPPGQGEFRALNARLPLNTDAYLSLQELQ GQDPTHLV The term "derived from" means that the endodomain of the chimeric cytokine receptor of the invention has the same sequence as the ype sequence of the endogenous molecule, or a variant thereof which retains the ability to form a complex with JAK-1 or JAK-3 and activate one of the signalling pathways mentioned above.
A "variant" sequence having at least 80, 85, 90, 95, 98 or 99% ce identity to the wild-type sequence (e.g. SEQ ID Nos. 1 or 2), providing that the variant sequence retains the function of the wild-type sequence i.e. the ability to form a complex with JAK-1 or JAK-3 and activate, for example, the JAK-STAT signalling pathway.
[Link] http://blast.ncbi.nlm.nih.gov/ P108038PCT The percentage identity between two polypeptide sequences may be readily determined by programs such as BLAST which is freely available at http://blast.ncbi.nlm.nih.gov.
IL-7 The interleukin-7 receptor is made up of two chains: the eukin-7 receptor-α chain ) and common-γ chain receptor (CD132). The common-γ chain receptors is shared with various cytokines, including interleukin-2, -4, -9, and -15. Interleukin-7 receptor is expressed on various cell types, including naive and memory T cells.
The interleukin-7 receptor plays a critical role in the development of cytes, especially in V(D)J recombination. IL-7R also controls the ibility of a region of the genome that ns the T-cell receptor gamma gene, by STAT5 and histone acetylation. Knockout studies in mice suggest that blocking apoptosis is an essential function of this protein during differentiation and activation of T lymphocytes.
The chimeric cytokine receptor of the present invention may comprise the IL-7 receptor α-chain and/or the IL-7 receptor (i.e. common) n, or a variant f.
The amino acid sequence for the endodomain of the IL-7 n is shown as SEQ ID No. 3.
SEQ ID No. 3 - Endodomain derived from human IL-7Rα: KKRIKPIVWPSLPDHKKTLEHLCKKPRKNLNVSFNPESFLDCQIHRVDDIQARDEVEG FLQDTFPQQLEESEKQRLGGDVQSPNCPSEDVVITPESFGRDSSLTCLAGNVSACD APILSSSRSLDCRESGKNGPHVYQDLLLSLGTTNSTLPPPFSLQSGILTLNPVAQGQ PILTSLGSNQEEAYVTMSSFYQNQ IL-15 Interleukin 15 (IL-15) is a cytokine with structural similarity to IL-2. Like IL-2, IL-15 binds to and s through a complex composed of IL-2/IL-15 or beta chain (CD122) and the common gamma chain (gamma-C, CD132). IL-15 is secreted by mononuclear phagocytes (and some other cells) following viral infection. IL-15 induces cell proliferation of natural killer cells.
P108038PCT Interleukin-15 receptor consists of an interleukin 15 receptor alpha t and shares common beta and gamma ts with the IL-2 receptor.
SPACER The chimeric cytokine receptor of the present invention may comprise a spacer to connect the antigen-binding domain with the transmembrane domain and spatially te the antigen-binding domain from the endodomain. A flexible spacer allows to the antigen-binding domain to orient in different directions to enable antigen g.
Where the cell of the present ion comprises two or more chimeric cytokine receptors, the spacers may be the same or ent. Where the cell of the present invention comprises a chimeric cytokine receptor (CCR) and a chimeric antigen receptor (CAR), the spacer of the CCR and the CAR may be different, for example, having a different length. The spacer of the CAR may be longer than the spacer of the or each CCR.
The spacer sequence may, for example, comprise an IgG1 Fc region, an IgG1 hinge or a CD8 stalk. The linker may alternatively comprise an alternative linker sequence which has similar length and/or domain spacing properties as an IgG1 Fc region, an IgG1 hinge or a CD8 stalk.
A human IgG1 spacer may be altered to remove Fc binding motifs.
Examples of amino acid sequences for these spacers are given below: SEQ ID No. 4 (hinge-CH2CH3 of human IgG1) AEPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPE VKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKA LPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESN GQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQK SLSLSPGKKD SEQ ID No. 5 (human CD8 stalk): TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDI SEQ ID No. 6 (human IgG1 hinge): P108038PCT AEPKSPDKTHTCPPCPKDPK TRANSMEMBRANE DOMAIN The transmembrane domain is the sequence of a CCR that spans the membrane. It may comprise a hydrophobic alpha helix. The transmembrane domain may be derived from CD28, which gives good or stability.
Alternatively the transmembrane domain may be derived from a cytokine receptor, for example the same cytokine from which the endodomain is derived.
The transmembrane domain may, for example be derived from IL-2R, IL-7R or IL-15R.
SEQ ID No. 7 - Transmembrane derived from human common gamma chain: VVISVGSMGLIISLLCVYFWL SEQ ID No. 8 - Transmembrane derived from human IL-2Rβ: IPWLGHLLVGLSGAFGFIILVYLLI SEQ ID No. 9 - Transmembrane derived from human IL-7Rα: PILLTISILSFFSVALLVILACVLW SEQ ID No. 10 - embrane derived from human IL-15Rα: AISTSTVLLCGLSAVSLLACYL LIGAND-BINDING EXODOMAIN The ligand binding domain ses an antigen binding domain. The antigen g domain binds the target ligand for the CCR, i.e. the tumour secreted factor or chemokine or cell surface antigen.
Numerous antigen-binding domains are known in the art, including those based on the antigen binding site of an antibody, dy mimetics, and T-cell receptors. For example, the n-binding domain may comprise: a single-chain le fragment (scFv) derived from a monoclonal antibody; the binding domain from a natural receptor for the target antigen; a peptide with sufficient affinity for the target ligand; a single P108038PCT domain binder such as a camelid; an artificial binder single as a Darpin; or a singlechain derived from a T-cell receptor.
The term "ligand" is used synonymously with "antigen" to mean an entity which is specifically ised and bound by the n-binding domain of the CCR.
Where the ligand is a tumour secreted factor, the antigen g domain may comprise an immunoglobulin-based antigen binding site, such as an scFv or a single domain binder.
Where the ligand is a chemokine, the antigen binding domain may comprise the chemokine-binding portion of a natural receptor for the chemokine.
LIGAND The CCR of the present invention binds ligand.
The ligand may be a soluble ligand such as a tumour secreted factor or a chemokine. atively, the ligand may be a membrane bound ligand, such as a cell surface antigen.
The term "soluble ligand" is used to indicate a ligand or antigen which is not part of or attached to a cell but which moves freely in the ellular space, for e in a bodily fluid of the tissue of interest. The soluble ligand may exist in a cell-free state in the serum, plasma or other bodily fluid of an individual.
The soluble ligand may be associated with the presence or pathology of a particular disease, such as cancer.
The soluble ligand may be part of the cancer secretome, i.e. the collection of factors secreted by a tumour, be it from cancer stem cells, non-stem cells or the surrounding stroma. The soluble ligand may be secreted or shed by tumour cells (see next section).
The e ligand may be characteristic of a disease or of diseased tissue. It may be found exclusively, or at a higher level in a subject having the disease vs a healthy subject; or in diseased tissue vs healthy tissue. The soluble ligand may be expressed P108038PCT at at least a 2-fold, , 10-fold, ld, 1000-fold, 10,000-fold or 0 fold higher level a subject having the disease vs a healthy subject; or in diseased tissue vs healthy tissue.
The terms "cell-surface antigen" and "cell-surface ligand" is used synonymously with "membrane-bound antigen" and ane-bound ligand" to mean a ligand which is attached to or expressed on the surface of the cell. The cell-surface ligand may, for example, be a transmembrane protein.
The cell on which the cell-surface ligand is found may be a target cell, such as a cancer cell.
The cell-surface ligand may be ated with the presence or pathology of a particular disease, such as cancer. Alternatively the cell-surface ligand may be characteristic of the cell type of the target cell (e.g. B-cell) without being necessarily associated with the diseased state.
Where the cell-surface ligand is characteristic of a disease or of diseased tissue it may be found ively, or at a higher level on the nt cells a subject having the disease vs a healthy subject; or in diseased tissue vs healthy . The cell-surface ligand may be expressed at at least a 2-fold, 5-fold, 10-fold, 100-fold, 1000-fold, 10,000- fold or 100,000 fold higher level on a cell of a subject having the disease vs a healthy subject; or in diseased tissue vs healthy tissue.
TUMOUR SECRETED FACTOR The ligand recognised by the CCR may be a soluble ligand secreted by or shedded from a tumour.
This "tumour secreted factor" may, for example, be prostate-specificantigen (PSA), carcinoembryonic antigen (CEA), vascular endothelial growth factor (VEGF) or Cancer Antigen -125 (CA-125).
The tumour secreted factor may be a soluble ligand which is not a cytokine. The CCR of the present invention ore grafts the binding specificity for a non-cytokine ligand on to the endodomain of a ne receptor.
P108038PCT PROSTATE-SPECIFIC ANTIGEN (PSA) The soluble ligand may be prostate-specific antigen (PSA).
Prostate-specific antigen (PSA), also known as gamma-seminoprotein or kallikrein-3 (KLK3), is a glycoprotein enzyme encoded in humans by the KLK3 gene. PSA is a member of the kallikrein-related peptidase family and is ed by the epithelial cells of the prostate gland.
PSA is present in small ties in the serum of men with healthy prostates, but is elevated in individuals with prostate cancer and other te disorders.
PSA is a sidue glycoprotein and is activated by KLK2. Its physiological role is the liquefaction of the coagulum components of the semen leading to liberation of spermatozoa. In cancer, PSA may participate in the processes of neoplastic growth and metastasis.
PSA is a chymotrypsin-like serine protease with a typical His-Asp-Ser triad and a catalytic domain similar to those of other kallikrein-related peptidases. The crystal structure of PSA has been obtained i) in complex with the monoclonal antibody (mAb) 8G8F5 and ii) in a ch x with two mAbs 5D5A5 and 5D3D11 (Stura et al (J. Mol. Biol. (2011) 414:530-544).
Various monoclonal antibodies are known, including clones 2G2-B2, 2D8-E8, IgG1/K bed in Bavat et al Avicenna J. Med. Biotechnol. 2015, 7:2-7; and Leinonen (2004) 289:157-67.
The CCR of the present invention may, for example, comprise the 6 CDRs or the VH and/or VL domain(s) from a PSA-binding mAb such as 8G8F5, 5D5A5 or 5D3D11.
Where the CCR comprises two antigen binding specificities, g different epitopes on PSA, one may be bsed on, for example 5D3D11 and one may be based on, for example, 5D5A5.
The amino acid ces for 5D3D11 and 5D5A5 VH and VL are given below. The complementarity determining regions (CDRs) are highlighted in bold.
P108038PCT 5D3D11 VH (SEQ ID No. 11) QVQLQQSGPELVKPGASVKISCKVSGYAISSSWMNWVKQRPGQGLEWIGRIYPGD GDTKYNGKFKDKATLTVDKSSSTAYMQLSSLTSVDSAVYFCARDGYRYYFDYWGQ GTSVTVSS 5D3D11 VL (SEQ ID No. 12) DIVMTQTAPSVFVTPGESVSISCRSSKSLLHSNGNTYLYWFLQRPGQSPQLLIYRMS NLASGVPDRFSGSGSGTDFTLRISRVEAEDVGVYYCMQHLEYPVTFGAGTKVEIK 5D5A5 VH (SEQ ID No. 13) QVQLQQSGAELAKPGASVKMSCKTSGYSFSSYWMHWVKQRPGQGLEWIGYINPS TGYTENNQKFKDKVTLTADKSSNTAYMQLNSLTSEDSAVYYCARSGRLYFDVWGA GTTVTVSS 5D5A5 VL (SEQ ID No. 14) DIVLTQSPPSLAVSLGQRATISCRASESIDLYGFTFMHWYQQKPGQPPKILIYRASNL ESGIPARFSGSGSRTDFTLTINPVEADDVATYYCQQTHEDPYTFGGGTKLEIK ScFv based on 5D5A5 (SEQ ID No. 15) QVQLQQSGAELAKPGASVKMSCKTSGYSFSSYWMHWVKQRPGQGLEWIGYINPS TGYTENNQKFKDKVTLTADKSSNTAYMQLNSLTSEDSAVYYCARSGRLYFDVWGA GTTVTVSSGGGGSGGGGSGGGGSGGGGSDIVLTQSPPSLAVSLGQRATISCRASE SIDLYGFTFMHWYQQKPGQPPKILIYRASNLESGIPARFSGSGSRTDFTLTINPVEAD DVATYYCQQTHEDPYTFGGGTKLEIK ScFv based on 5D3D11 (SEQ ID No. 16) QVQLQQSGPELVKPGASVKISCKVSGYAISSSWMNWVKQRPGQGLEWIGRIYPGD GDTKYNGKFKDKATLTVDKSSSTAYMQLSSLTSVDSAVYFCARDGYRYYFDYWGQ GTSVTVSSGGGGSGGGGSGGGGSGGGGSDIVMTQTAPSVFVTPGESVSISCRSS KSLLHSNGNTYLYWFLQRPGQSPQLLIYRMSNLASGVPDRFSGSGSGTDFTLRISR VEAEDVGVYYCMQHLEYPVTFGAGTKVEIK Where a cell comprises two CCRs, the n-binding domain of the first CCR may comprise the 6 CDRs from 5D5A5 and the n-binding domain of the second CCR may comprise the 6 CDRs from 5D3D11.
P108038PCT The antigen-binding domain of the first CCR may comprise the VH and/or VL domain(s) from 5D5A5 or a variant thereof; and the antigen-binding domain of the second CCR may comprise the VH and/or VL domain(s) from 5D3D11 or a variant f. Variant VH and VL domains may have at least 80, 90, 95 or 99% identity to the sequences given above, provided that they retain PSA-binding activity.
A cell expressing a CCR which binds PSA may be useful in the treatment of prostate cancer.
CARCINOEMBRYONIC N (CEA) The soluble ligand may be CEA.
Carcinoembryonic antigen (CEA) describes a set of highly related glycoproteins involved in cell adhesion. CEA is ly produced in gastrointestinal tissue during fetal development, but the production stops before birth. Therefore CEA is usually present only at very low levels in the blood of healthy adults. However, the serum levels are raised in some types of cancer, which means that it can be used as a tumor marker in clinical tests.
CEA are glycosyl phosphatidyl inositol (GPI) cell surface anchored glycoproteins whose specialized sialofucosylated orms serve as functional colon carcinoma L- selectin and E-selectin ligands, which may be al to the metastatic ination of colon carcinoma cells. Immunologically they are characterized as members of the CD66 cluster of entiation.
CEA and related genes make up the CEA family belonging to the immunoglobulin superfamily. In , the carcinoembryonic antigen family consists of 29 genes, 18 of which are normally expressed. The following is a list of human genes which encode carcinoembryonic antigen-related cell adhesion proteins: CEACAM1, CEACAM3, CEACAM4, 5, CEACAM6, CEACAM7, CEACAM8, CEACAM16, CEACAM18, CEACAM19, CEACAM20, CEACAM21 s antibodies which target CEA are described in A cell expressing a CCR against CEA may be useful in the treatment of, for example, colorectal cancer.
P108038PCT VASCULAR ELIAL GROWTH FACTOR (VEGF) The soluble ligand may be VEGF.
Vascular endothelial growth factor (VEGF) is a signal protein produced by cells that stimulates vasculogenesis and angiogenesis. It is part of the system that restores the oxygen supply to tissues when blood circulation is inadequate. Serum concentration of VEGF is high in bronchial asthma and diabetes mellitus. VEGF's normal function is to create new blood vessels during embryonic development, new blood vessels after , muscle following exercise, and new vessels teral circulation) to bypass blocked vessels.
When VEGF is overexpressed, it can bute to disease. Solid cancers cannot grow beyond a limited size without an adequate blood ; cancers that can express VEGF are able to grow and metastasize.
VEGF is a sub-family of the platelet-derived growth factor family of cystine-knot growth factors. They are important signaling proteins involved in both vasculogenesis (the de novo formation of the embryonic circulatory system) and angiogenesis (the growth of blood vessels from pre-existing vasculature).
The VEGF family comprises in mammals five members: , placenta growth factor (PGF), VEGF-B, VEGF-C and VEGF-D. s antibodies to VEGF are known, such as bevacizumab (Avastin) and Ranibizumab (Lucentis).
CANCER ANTIGEN 125 (CA-125) CA-125 is associated with ovarian cancer and is the most frequently used ker for ovarian cancer detection. While CA-125 is best known as a marker for ovarian cancer, it may also be elevated in other cancers, including endometrial cancer, fallopian tube cancer, lung cancer, breast cancer and gastrointestinal cancer.
The sequence of human CA-125 (also known as mucin-16) is available from NCBI, ion No. 078966.
P108038PCT A number of CA125-binding monoclonal antibodies are known, including OC125 and M11 (Nustad et al 1996, Tumour Biol. 17:196-329). In this study the specificity of 26 monoclonal antibodies against the CA 125 antigen was investigated. It was found that the CA 125 antigen carries only two major antigenic domains, which classifies the antibodies as OC125-like (group A) or M11-like (group B).
The chimeric cytokine receptor of the present ion may comprise an nbinding domain from such an antibody. A cell comprising such a CCR may be useful in the treatment of, for example, ovarian cancer.
The tumour secreted factor (or, if in a membrane-bound form, the transmembrane n) may be selected from the following non-exhaustive list: ALK gene rearrangements and overexpression giving mutated forms of ALK proteins fetoprotein (AFP) Betamicroglobulin (B2M) Beta-human chorionic gonadotropin (Beta-hCG) BRAF V600 mutations giving mutated B-REF protein C-kit/CD117 /CA27.29 CA19-9 Calcitonin Chromogranin A (CgA) Cytokeratin fragment 21-1 EGFR gene mutation analysis en receptor (ER)/progesterone receptor (PR) Fibrin/fibrinogen HER2/neu gene amplification or protein overexpression Immunoglobulins KRAS gene mutation analysis Lactate dehydrogenase Neuron-specific enolase (NSE) Nuclear matrix protein 22 Programmed death ligand 1 (PD-L1) Thyroglobulin P108038PCT Urokinase plasminogen activator (uPA) and plasminogen activator inhibitor (PAI-1) CHEMOKINE Chemokines are chemotactic cytokines. Cell ion is guided by chemokine gradients embedded and immobilized in extracellular . The positively charged chemokines like CXCL12 bind to vely charged ECM molecules. These gradients provide tracks for cancer cell and immune cell homing. The action on T cells seems to be inhibitory for the homing of cytotoxic T cells, while regulatory T cells appear to be attracted.
Chemokines are imately 8-10 kilodaltons in mass and have four cysteine residues in conserved locations which are key to g their 3-dimensional shape.
Some chemokines are considered pro-inflammatory and can be induced during an immune response to recruit cells of the immune system to a site of infection, while others are considered tatic and are ed in controlling the migration of cells during normal processes of tissue maintenance or development.
Chemokines have been classified into four main subfamilies : CXC, CC, CX3C and XC.
All of these proteins exert their biological effects by interacting with G protein-linked transmembrane receptors called chemokine ors that are selectively found on the surfaces of their target cells.
The major role of chemokines is to act as a chemoattractant to guide the migration of cells. Cells that are attracted by chemokines follow a signal of increasing chemokine concentration towards the source of the chemokine. Some chemokines control cells of the immune system during processes of immune surveillance, such as directing lymphocytes to the lymph nodes so they can screen for invasion of pathogens by interacting with antigen-presenting cells residing in these tissues. Other chemokines are inflammatory and are released from a wide variety of cells in se to bacterial infection, viruses and other agents. Their release is often stimulated by lammatory cytokines such as interleukin 1. matory chemokines function mainly as chemoattractants for leukocytes, recruiting monocytes, neutrophils and other effector cells from the blood to sites of infection or tissue damage. Certain inflammatory chemokines activate cells to initiate an immune response or promote wound healing.
P108038PCT They are released by many different cell types and serve to guide cells of both innate immune system and adaptive immune system.
CC chemokines The CC chemokine (or β-chemokine)proteins have two adjacent cysteines (amino , near their amino terminus. There have been at least 27 distinct s of this subgroup reported for mammals, called CC chemokine ligands (CCL)-1 to -28; CCL10 is the same as CCL9. Chemokines of this ily usually contain four cysteines (C4- CC chemokines), but a small number of CC chemokines possess six cysteines (C6-CC chemokines). C6-CC chemokines include CCL1, CCL15, CCL21, CCL23 and CCL28.
CC chemokines induce the migration of monocytes and other cell types such as NK cells and dendritic cells.
Examples of CC chemokine e monocyte chemoattractant n-1 (MCP-1 or CCL2) which induces monocytes to leave the bloodstream and enter the surrounding tissue to become tissue macrophages.
CCL5 (or RANTES) attracts cells such as T cells, eosinophils and basophils that express the receptor CCR5.
CXC chemokines The two N-terminal cysteines of CXC chemokines (or α-chemokines) are separated by one amino acid, represented in this name with an "X". There have been 17 different CXC chemokines described in mammals, that are subdivided into two categories, those with a specific amino acid sequence (or motif) of glutamic acid-leucine-arginine (or ELR for short) immediately before the first cysteine of the CXC motif (ELR-positive), and those without an ELR motif (ELR-negative). sitive CXC chemokines specifically induce the ion of neutrophils, and interact with chemokine receptors CXCR1 and CXCR2.
C ines The third group of chemokines is known as the C chemokines (or γ chemokines), and is unlike all other chemokines in that it has only two cysteines; one inal cysteine and one cysteine downstream. Two chemokines have been described for this subgroup and are called XCL1 (lymphotactin-α) and XCL2 (lymphotactin-β).
CX3C chemokine P108038PCT CX3C ines have three amino acids between the two cysteines. The only CX3C chemokine discovered to date is called fractalkine (or CX3CL1). It is both secreted and tethered to the surface of the cell that expresses it, thereby serving as both a chemoattractant and as an adhesion le.
Chemokine receptors are G protein-coupled receptors containing 7 transmembrane domains that are found on the surface of ytes. Approximately 19 different ine receptors have been characterized to date, which are divided into four es depending on the type of chemokine they bind; CXCR that bind CXC chemokines, CCR that bind CC chemokines, CX3CR1 that binds the sole CX3C chemokine (CX3CL1), and XCR1 that binds the two XC ines (XCL1 and XCL2).
They share many structural features; they are similar in size (with about 350 amino acids), have a short, acidic N-terminal end, seven helical transmembrane domains with three intracellular and three extracellular hydrophilic loops, and an intracellular C- terminus containing serine and threonine residues important for receptor regulation.
The first two extracellular loops of chemokine receptors each has a ved cysteine residue that allow formation of a disulfide bridge between these loops. G proteins are coupled to the C-terminal end of the chemokine receptor to allow intracellular signaling after receptor activation, while the N-terminal domain of the chemokine receptor determines ligand binding specificity.
CXCL12 CXCL12 is strongly chemotactic for cytes. CXCL12 plays an important role in angiogenesis by recruiting endothelial progenitor cells (EPCs) from the bone marrow through a CXCR4 ent ism. It is this function of CXCL12 that makes it a very important factor in carcinogenesis and the cularisation linked to tumour progression. CXCL12 also has a role in tumour metastasis where cancer cells that s the receptor CXCR4 are attracted to metastasis target tissues that release the ligand, CXCL12.
The receptor for CXCL12 is CXCR4. The CCR of the present invention may comprise the CXCL12-binding domain from CXCR4 linked to an endodomain derived from a cytokine receptor, such as the IL-2 receptor.
CXCR4 coupled expression of IL2 would support engraftment of therapeutic T cell for cancer therapies. In multiple myeloma, a cell expressing such a CCR may mobilize P108038PCT cells and change the bone marrow environment. Such cells also have uses in the treatment of solid cancers by modifying the solid tumour microenvironment.
The amino acid sequence for CXCR4 is shown below as SEQ ID No. 17 SEQ ID No. 17 1 msiplpllqi ytsdnyteem smke pcfreenanf nkiflptiys iifltgivgn 61 glvilvmgyq kklrsmtdky rlhlsvadll fwav davanwyfgn flckavhviy 121 tvnlyssvli lafisldryl aivhatnsqr prkllaekvv yvgvwipall ltipdfifan 181 vseaddryic drfypndlwv vvfqfqhimv glilpgivil scyciiiskl shskghqkrk 241 alkttvilil affacwlpyy igisidsfil leiikqgcef entvhkwisi tealaffhcc 301 aflg akfktsaqha gssl kilskgkrgg hssvsteses ssfhss CXCR7 also binds CXCL12.
The chemokine (C-C motif) ligand 2 (CCL2) is also referred to as monocyte chemotactic protein 1 (MCP1) and small ble cytokine A2. CCL2 recruits monocytes, memory T cells, and tic cells to the sites of inflammation produced by either tissue injury or infection.
CCR2 and CCR4 are two cell surface receptors that bind CCL2.
CCR2 has the amino acid sequence shown as SEQ ID No. 18 SEQ ID No. 18 1 mlstsrsrfi rntnesgeev ttffdydyga pchkfdvkqi gaqllpplys lvfifgfvgn 61 mlvvlilinc tdiy llnlaisdll flitlplwah saanewvfgn amcklftgly 121 higyfggiff iilltidryl aivhavfalk gvvt svitwlvavf asvpgiiftk 181 cqkedsvyvc gpyfprgwnn fhtimrnilg lvlpllimvi cysgilktll rcrnekkrhr 241 avrviftimi tpyn ivillntfqe ffglsncest sqldqatqvt etlgmthcci 301 npiiyafvge kfrslfhial gcriaplqkp vcggpgvrpg knvkvttqgl ldgrgkgksi 361 grapeaslqd kega CCR4 has the amino acid sequence shown as SEQ ID No. 19.
P108038PCT SEQ ID No. 19 1 mnptdiadtt ldesiysnyy lyesipkpct kegikafgel flpplyslvf vfgllgnsvv 61 vlvlfkykrl rsmtdvylln lfvf yyaa dqwvfglglc kmiswmylvg 121 fysgiffvml msidrylaiv havfslrart tsla twsvavfasl pgflfstcyt 181 ernhtycktk twkv lssleinilg lviplgimlf cysmiirtlq hcknekknka 241 vkmifavvvl flgfwtpyni vlfletlvel evlqdctfer yldyaiqate tlafvhccln 301 piiyfflgek frkyilqlfk tcrglfvlcq ycgllqiysa dtpsssytqs tmdhdlhdal The CCR of the present invention may comprise the CCL2 binding site of CCR2 or CCR4 in its ligand binding .
CELL-SURFACE ANTIGEN The ligand may be a cell-surface antigen, such as a transmembrane protein.
The cell surface antigen may be CD22.
CD22, or cluster of differentiation-22, is a molecule belonging to the SIGLEC family of lectins. It is found on the surface of mature B cells and to a lesser extent on some immature B cells. lly speaking, CD22 is a regulatory molecule that prevents the overactivation of the immune system and the pment of autoimmune diseases.
CD22 is a sugar binding transmembrane protein, which specifically binds sialic acid with an immunoglobulin (Ig) domain located at its N-terminus. The presence of Ig domains makes CD22 a member of the immunoglobulin superfamily. CD22 functions as an inhibitory receptor for B cell receptor (BCR) signalling. sed expression of CD22 is seen in non-Hodgkin and other lymphomas. Various monoclonal antibodies targeting CD22 are known, including zumab, inotuzumab ozogamicin, m971 and m972.
CHIMERIC ANTIGEN RECEPTORS (CAR) The cell of the present invention may also comprise one or more chimeric antigen receptor(s). The CAR(s) may be specific for a tumour-associated antigen.
P108038PCT Classical CARs are chimeric type I trans-membrane proteins which connect an ellular antigen-recognizing domain (binder) to an intracellular signalling domain (endodomain). The binder is typically a single-chain variable nt (scFv) derived from a monoclonal antibody (mAb), but it can be based on other s which comprise an antibody-like or ligand-based antigen g site. A trans-membrane domain anchors the protein in the cell membrane and connects the spacer to the endodomain.
Early CAR designs had endodomains d from the ellular parts of either the γ chain of the FcεR1 or CD3ζ. Consequently, these first generation receptors transmitted immunological signal 1, which was sufficient to trigger T-cell killing of cognate target cells but failed to fully activate the T-cell to proliferate and survive. To overcome this limitation, compound endodomains have been constructed: fusion of the intracellular part of a T-cell co-stimulatory le to that of CD3ζ results in second generation receptors which can it an activating and co-stimulatory signal simultaneously after antigen ition. The co-stimulatory domain most commonly used is that of CD28. This supplies the most potent co-stimulatory signal - namely immunological signal 2, which triggers T-cell proliferation. Some receptors have also been described which include TNF receptor family endodomains, such as the closely related OX40 and 41BB which transmit survival signals. Even more potent third generation CARs have now been described which have endodomains capable of transmitting activation, proliferation and survival signals.
CAR-encoding nucleic acids may be transferred to T cells using, for example, retroviral s. In this way, a large number of antigen-specific T cells can be generated for adoptive cell er. When the CAR binds the target-antigen, this results in the transmission of an activating signal to the T-cell it is expressed on. Thus the CAR directs the specificity and cytotoxicity of the T cell towards cells expressing the targeted antigen.
The cell of the present invention may comprise one or more CAR(s).
The CAR(s) may comprise an antigen-binding domain, a spacer domain, a transmembrane domain and an main. The endodomain may comprise or associate with a domain which transmit T-cell activation signals.
CAR N BINDING DOMAIN P108038PCT The antigen-binding domain is the portion of a CAR which recognizes antigen.
Numerous antigen-binding domains are known in the art, including those based on the antigen g site of an antibody, antibody mimetics, and T-cell receptors. For example, the antigen-binding domain may comprise: a -chain variable fragment (scFv) derived from a monoclonal antibody; a l ligand of the target antigen; a peptide with sufficient affinity for the target; a single domain binder such as a camelid; an artificial binder single as a Darpin; or a single-chain derived from a T-cell receptor.
The term "ligand" is used synonymously with "antigen" to mean an entity which is specifically ised and bound by the antigen-binding domain of a CAR.
CELL SURFACE ANTIGEN The CAR may recognise a cell-surface n, i.e. an entity, such as a transmembrane protein which is expressed on the surface of a target cell, such as a tumour cell.
The CAR may specifically bind a tumour-associated cell-surface antigen.
Various tumour associated antigens (TAA) are known, some of which are shown in Table 1. The antigen-binding domain used in the present invention may be a domain which is capable of binding a TAA as ted therein.
Table 1 Cancer type TAA Diffuse Large B-cell Lymphoma CD19, CD20, CD22 Breast cancer ErbB2, MUC1 AML CD13, CD33 Neuroblastoma GD2, NCAM, ALK, GD2 B-CLL CD19, CD52, CD160 Colorectal cancer Folate binding protein, CA-125 Chronic cytic Leukaemia CD5, CD19 Glioma EGFR, Vimentin Multiple myeloma BCMA, CD138 Renal Cell Carcinoma ic anhydrase IX, G250 P108038PCT te cancer PSMA Bowel cancer A33 Where the CAR recognises a B-cell lymphoma or leukemia antigen (such as CD19, CD20, CD52, CD160 or CD5), the CCR may recognise another B-cell antigen, such as CD22.
PROSTATE-CANCER ASSOCIATED NS The CAR may specifically bind a cell-surface antigen associated with prostate cancer, such as prostate stem cell antigen (PSCA) or prostate-specific membrane antigen (PSMA).
PSCA is a glycosylphosphatidylinositol-anchored cell membrane glycoprotein. It is is up-regulated in a large proportion of prostate cancers and is also detected in cancers of the bladder and pancreas.
Various anti-PSCA antibodies are known, such as 7F5 (Morgenroth et al (Prostate (2007) 67:1121-1131); 1G8 rdal et al (2014) BMC Cancer 14:30); and 117 (Abate-Daga et al (2014) 25:1003-1012).
The CCR-expressing cell of the invention may also express an SCA CAR which may comprise an antigen binding domain based on one of these antibodies.
PSMA is is a zinc metalloenzyme that resides in membranes. PSMA is strongly expressed in the human prostate, being a hundredfold r than the expression in most other tissues. In cancer, it is upregulated in expression and has been called the second-most-upregulated gene in prostate cancer, with increase of 8- to 12-fold over the noncancerous prostate. In addition to the expression in the human prostate and prostate , PSMA is also found to be highly sed in tumor culature but not normal vasculature of all types of solid tumors, such as kidney, breast, colon, etc.
Various anti-PSMA antibodies are known, such as 7E11, J591, J415, and Hybritech PEQ226.5 and PM2J004.5 each of which binds a distinct epitope of PSMA (Chang et al (1999) Cancer Res 15:3192-8).
P108038PCT The CCR-expressing cell of the invention may also express an anti-PSMA CAR which may comprise an n binding domain based on one of these antibodies.
For example, the CCR may comprise an scFv based on J591, having the sequence shown as SEQ ID No. 20.
SEQ ID No. 20 (J591 scFv) EVQLQQSGPELKKPGTSVRISCKTSGYTFTEYTIHWVKQSHGKSLEWIGNINPNNG GTTYNQKFEDKATLTVDKSSSTAYMELRSLTSEDSAVYYCAAGWNFDYWGQGTTL TVSSGGGGSGGGGSGGGGSDIVMTQSHKFMSTSVGDRVSIICKASQDVGTAVDW YQQKPGQSPKLLIYWASTRHTGVPDRFTGSGSGTDFTLTITNVQSEDLADYFCQQY FGAGTMLDLKR CAR TRANSMEMBRANE DOMAIN The transmembrane domain is the sequence of a CAR that spans the membrane. It may comprise a hydrophobic alpha helix. The CAR transmembrane domain may be derived from CD28, which gives good or stability.
CAR SIGNAL PEPTIDE The CAR and CCR described herein may comprise a signal peptide so that when it/they is expressed in a cell, such as a T-cell, the nascent protein is directed to the endoplasmic reticulum and subsequently to the cell e, where it is sed.
The core of the signal peptide may contain a long stretch of hydrophobic amino acids that has a tendency to form a single alpha-helix. The signal peptide may begin with a short positively charged h of amino acids, which helps to enforce proper topology of the polypeptide during ocation. At the end of the signal peptide there is typically a stretch of amino acids that is recognized and cleaved by signal peptidase. Signal peptidase may cleave either during or after completion of translocation to generate a free signal peptide and a mature protein. The free signal peptides are then digested by specific proteases.
The signal peptide may be at the amino terminus of the molecule.
P108038PCT The signal peptide may comprise the sequence shown as SEQ ID No. 21, 22 or 23 or a variant thereof having 5, 4, 3, 2 or 1 amino acid mutations (insertions, substitutions or additions) provided that the signal peptide still functions to cause cell surface expression of the CAR.
SEQ ID No. 21: MGTSLLCWMALCLLGADHADG The signal peptide of SEQ ID No. 21 is t and highly efficient and is derived from TCR beta chain. It is predicted to give about 95% cleavage after the terminal glycine, giving ent removal by signal peptidase.
SEQ ID No. 22: MSLPVTALLLPLALLLHAARP The signal peptide of SEQ ID No. 22 is derived from IgG1.
SEQ ID No. 23: MAVPTQVLGLLLLWLTDARC The signal peptide of SEQ ID No. 23 is derived from CD8a.
CAR MAIN The endodomain is the portion of a classical CAR which is located on the intracellular side of the membrane.
The endodomain is the signal-transmission portion of a classical CAR. After antigen recognition by the antigen binding domain, individual CAR molecules cluster, native CD45 and CD148 are excluded from the synapse and a signal is transmitted to the cell.
The CAR endodomain may be or comprise an ellular ling domain. In an alternative embodiment, the endodomain of the t CAR may be e of interacting with an intracellular signalling molecule which is present in the cytoplasm, leading to signalling.
The ellular signalling domain or separate intracellular signalling molecule may be or comprise a T cell signalling domain.
P108038PCT The most commonly used signalling domain component is that of CD3-zeta main, which contains 3 ITAMs. This transmits an activation signal to the T cell after antigen is bound. CD3-zeta may not provide a fully competent activation signal and additional co-stimulatory signalling may be needed. For example, chimeric CD28 and OX40 can be used with CD3-Zeta to transmit a proliferative / survival signal, or all three can be used together.
The CAR may comprise the CD3-Zeta endodomain alone, the CD3-Zeta main with that of either CD28 or OX40 or the CD28 endodomain and OX40 and CD3-Zeta endodomain.
The CAR endodomain may comprise one or more of the following: an ICOS endodomain, a CD27 endodomain, a BTLA main, a CD30 main, a GITR endodomain and an HVEM endodomain.
The endomain may comprise the sequence shown as SEQ ID No. 24 to 32 or a variant thereof having at least 80% sequence identity.
SEQ ID No. 24 - CD3 Z endodomain RVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNP ELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQAL SEQ ID No. 25 - CD28 and CD3 Zeta endodomains SKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRVKFSRSADAPAYQQ GQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAE AYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQALPPR SEQ ID No. 26 - CD28, OX40 and CD3 Zeta mains SKRSRLLHSDYMNMTPRRPGPTRKHYQPYAPPRDFAAYRSRDQRLPPDAHKPPG GGSFRTPIQEEQADAHSTLAKIRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDV LDKRRGRDPEMGGKPRRKNPQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDG LYQGLSTATKDTYDALHMQALPPR SEQ ID No. 27 - ICOS endodomain CWLTKKKYSSSVHDPNGEYMFMRAVNTAKKSRLTDVTL P108038PCT SEQ ID No. 28 - CD27 endodomain QRRKYRSNKGESPVEPAEPCHYSCPREEEGSTIPIQEDYRKPEPACSP SEQ ID No. 29 - BTLA endodomain RRHQGKQNELSDTAGREINLVDAHLKSEQTEASTRQNSQVLLSETGIYDNDPDLCF RMQEGSEVYSNPCLEENKPGIVYASLNHSVIGPNSRLARNVKEAPTEYASICVRS SEQ ID No. 30 - CD30 endodomain KRIRQKLHLCYPVQTSQPKLELVDSRPRRSSTQLRSGASVTEPVAEERGL MSQPLMETCHSVGAAYLESLPLQDASPAGGPSSPRDLPEPRVSTEHTNNKIEKIYIM VGTVKAELPEGRGLAGPAEPELEEELEADHTPHYPEQETEPPLGSCSDVML SVEEEGKEDPLPTAASGK SEQ ID No. 31 - GITR endodomain QLGLHIWQLRSQCMWPRETQLLLEVPPSTEDARSCQFPEEERGERSAEEKGRLGD SEQ ID No. 32 - HVEM endodomain CVKRRKPRGDVVKVIVSVQRKRQEAEGEATVIEALQAPPDVTTVAVEETIPSFTGRS PNH A variant sequence may have at least 80%, 85%, 90%, 95%, 98% or 99% sequence identity to SEQ ID No. 24 to 32, provided that the sequence provides an effective intracellular signalling domain.
NUCLEIC ACID The present invention also provides a nucleic acid encoding a CCR of the invention.
The nucleic acid may have the structure: acer-TM-endo in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the CCR; spacer 1 is a nucleic acid sequence encoding the spacer of the CCR; TM1 is a a nucleic acid sequence encoding the transmembrane domain of the CCR; P108038PCT endo 1 is a nucleic acid sequence encoding the endodomain of the CCR.
NUCLEIC ACID CONSTRUCT The t invention further provides a nucleic acid construct which comprises a first nucleic acid sequence encoding a first CCR as defined in connection with the first aspect of the invention; and a second nucleic acid sequence encoding a second CCR as defined in connection with the first aspect of the invention.
The nucleic acid construct may have the following structure: AgB1-spacer1-TM1-endo1-coexpr-AgB2-spacer2-TM2-endo2 in which AgB1 is a nucleic acid sequence encoding the antigen-binding domain of the first CCR; spacer 1 is a nucleic acid sequence encoding the spacer of the first CCR; TM1 is a a nucleic acid sequence encoding the transmembrane domain of the first endo 1 is a nucleic acid sequence encoding the main of the first CCR; coexpr is a nucleic acid sequence enabling co-expression of both CCRs AgB2 is a nucleic acid sequence ng the antigen-binding domain of the second spacer 2 is a nucleic acid sequence encoding the spacer of the second CCR; TM2 is a a nucleic acid sequence encoding the transmembrane domain of the second CCR; endo 2 is a nucleic acid sequence ng the main of the second CCR.
When the nucleic acid construct is sed in a cell, such as a T-cell, it encodes a polypeptide which is cleaved at the cleavage site such that the first and second CCRs are ressed at the cell e.
The first and second CCRs may bind distinct epitopes on the same antigen.
The first and second CCRs may have complementary endodomains e.g. one derived from the α or β chain of a cytokine receptor and one derived from the γ chain of the same cytokine receptor.
P108038PCT The present invention also provides a nucleic acid construct encoding a CCR of the invention and a CAR. Such a construct may have the structure: CCRAgB-CCRspacer-CCRTM-CCRendo-coexpr-CARAgB-CARspacer-CARTM- o -CARspacer-CARTM-CARendo-coexpr-CCRAgB-CCRspacer-CCRTM- CCRendo in which CCRAgB is a nucleic acid sequence encoding the antigen-binding domain of the CCR; CCRspacer is a nucleic acid sequence ng the spacer of the CCR; CCRTM is a a nucleic acid sequence encoding the embrane domain of the CCR; CCRendo is a nucleic acid ce encoding the endodomain of the CCR; coexpr is a nucleic acid sequence enabling co-expression of both the CCR and the CARAgB is a nucleic acid sequence encoding the antigen-binding domain of the CAR; CARspacer is a nucleic acid sequence encoding the spacer of the CAR; CARTM is a nucleic acid sequence encoding the transmembrane domain of the CAR; o is a nucleic acid sequence encoding the endodomain of the CAR.
The present invention also provides a c acid construct encoding a first and a second CCR of the invention and a CAR. The first and second CCRs may bind separate epitopes on the same antigen. Such a construct may have the structure: (i) CCRAgB1-CCRspacer1-CCRTM1-CCRendo1-coexpr1-CCRAgB2-CCRspacer2- CCRTM2-CCRendo2-coexpr2-CARAgB-CARspacer-CARTM-CARendo; (ii) CCRAgB1-CCRspacer1-CCRTM1-CCRendo1-coexpr1-CARAgB-CARspacer- CARTM-CARendo-coexpr2-CCRAgB2-CCRspacer2-CCRTM2-CCRendo2; or (iii) CARAgB-CARspacer-CARTM-CARendo-coexpr1-CCRAgB1-CCRspacer1- CCRTM1-CCRendo1-coexpr2-CCRAgB2-CCRspacer2-CCRTM2-CCRendo2; P108038PCT in which CCRAgB1 is a nucleic acid sequence ng the antigen-binding domain of the first CCRspacer1 is a nucleic acid sequence encoding the spacer of the first CCR; CCRTM1 is a nucleic acid sequence encoding the transmembrane domain of the first CCRendo1 is a nucleic acid sequence encoding the endodomain of the first CCR; CCRAgB2 is a nucleic acid sequence encoding the antigen-binding domain of the second CCR; CCRspacer2 is a nucleic acid sequence encoding the spacer of the second CCR; CCRTM2 is a nucleic acid sequence ng the transmembrane domain of the second CCR; CCRendo2 is a nucleic acid sequence encoding the endodomain of the second CCR; 1 and coexpr2 are nucleic acid sequences ng co-expression of the two flanking sequences; CARAgB is a nucleic acid sequence encoding the antigen-binding domain of the CAR; CARspacer is a nucleic acid sequence encoding the spacer of the CAR; CARTM is a nucleic acid sequence encoding the transmembrane domain of the CAR; CARendo is a nucleic acid sequence encoding the endodomain of the CAR.
As used , the terms "polynucleotide", "nucleotide", and "nucleic acid" are intended to be synonymous with each other.
It will be understood by a skilled person that numerous different cleotides and nucleic acids can encode the same ptide as a result of the degeneracy of the genetic code. In addition, it is to be understood that d persons may, using routine techniques, make nucleotide substitutions that do not affect the ptide sequence encoded by the polynucleotides described here to reflect the codon usage of any particular host organism in which the polypeptides are to be expressed.
Nucleic acids according to the ion may comprise DNA or RNA. They may be single-stranded or double-stranded. They may also be cleotides which include within them synthetic or modified nucleotides. A number of different types of modification to oligonucleotides are known in the art. These include methylphosphonate and phosphorothioate backbones, addition of acridine or polylysine chains at the 3' and/or 5' ends of the molecule. For the purposes of the use P108038PCT as described herein, it is to be tood that the polynucleotides may be modified by any method available in the art. Such modifications may be carried out in order to enhance the in vivo activity or life span of polynucleotides of interest.
The terms "variant", "homologue" or "derivative" in relation to a nucleotide sequence include any substitution of, variation of, modification of, replacement of, deletion of or addition of one (or more) nucleic acid from or to the sequence.
In the structure above, "coexpr" is a nucleic acid sequence enabling co-expression of both first and second CARs. It may be a sequence ng a cleavage site, such that the nucleic acid construct produces comprises two or more CCRs, or a CCR and a CAR, joined by a cleavage site(s). The cleavage site may be self-cleaving, such that when the polypeptide is produced, it is ately cleaved into individual peptides without the need for any al cleavage activity.
The cleavage site may be any sequence which enables the first and second CCRs, or CCR and CAR, to become separated.
The term "cleavage" is used herein for ience, but the ge site may cause the peptides to separate into individual entities by a mechanism other than classical cleavage. For example, for the nd-Mouth disease virus (FMDV) 2A self-cleaving e (see below), various models have been proposed for to account for the "cleavage" activity: proteolysis by a host-cell proteinase, autoproteolysis or a translational effect (Donnelly et al (2001) J. Gen. Virol. 82:1027-1041). The exact mechanism of such "cleavage" is not important for the purposes of the present invention, as long as the cleavage site, when positioned between nucleic acid sequences which encode proteins, causes the proteins to be expressed as te entities.
The cleavage site may be a furin cleavage site.
Furin is an enzyme which belongs to the subtilisin-like proprotein convertase family.
The members of this family are tein convertases that process latent precursor proteins into their ically active products. Furin is a calcium-dependent serine endoprotease that can efficiently cleave precursor proteins at their paired basic amino acid processing sites. Examples of furin substrates include athyroid hormone, transforming growth factor beta 1 precursor, proalbumin, pro-beta-secretase, P108038PCT membrane type-1 matrix metalloproteinase, beta subunit of rve growth factor and von Willebrand factor. Furin cleaves proteins just downstream of a basic amino acid target sequence (canonically, Arg-X-(Arg/Lys)-Arg') and is enriched in the Golgi apparatus.
The cleavage site may be a Tobacco Etch Virus (TEV) ge site.
TEV se is a highly sequence-specific cysteine protease which is chymotrypsinlike proteases. It is very specific for its target cleavage site and is therefore frequently used for the controlled cleavage of fusion proteins both in vitro and in vivo. The consensus TEV cleavage site is ENLYFQ\S (where ‘\’ denotes the cleaved peptide bond). Mammalian cells, such as human cells, do not s TEV protease. Thus in embodiments in which the present nucleic acid construct comprises a TEV cleavage site and is expressed in a mammalian cell – exogenous TEV protease must also expressed in the mammalian cell.
The cleavage site may encode a self-cleaving peptide.
A cleaving peptide’ refers to a peptide which functions such that when the polypeptide comprising the proteins and the self-cleaving peptide is produced, it is immediately "cleaved" or separated into distinct and discrete first and second polypeptides without the need for any external cleavage activity.
The self-cleaving peptide may be a 2A self-cleaving peptide from an aphtho- or a cardiovirus. The primary 2A/2B ge of the aptho- and cardioviruses is mediated by 2A "cleaving" at its own C-terminus. In apthoviruses, such as foot-and-mouth disease s (FMDV) and equine rhinitis A virus, the 2A region is a short section of about 18 amino acids, which, together with the N-terminal residue of protein 2B (a conserved proline e) represents an autonomous t capable of mediating "cleavage" at its own C-terminus (Donelly et al (2001) as above). "2A-like" sequences have been found in picornaviruses other than aptho- or cardioviruses, ‘picornavirus-like’ insect viruses, type C rotaviruses and ed sequences within Trypanosoma spp and a bacterial sequence lly et al (2001) as above). The cleavage site may comprise one of these 2A-like sequences, such as: YHADYYKQRLIHDVEMNPGP (SEQ ID No. 33) HYAGYFADLLIHDIETNPGP (SEQ ID No. 34) QCTNYALLKLAGDVESNPGP (SEQ ID No. 35) ATNFSLLKQAGDVEENPGP (SEQ ID No. 36) AARQMLLLLSGDVETNPGP (SEQ ID No. 37) RAEGRGSLLTCGDVEENPGP (SEQ ID No. 38) TRAEIEDELIRAGIESNPGP (SEQ ID No. 39) TRAEIEDELIRADIESNPGP (SEQ ID No. 40) AKFQIDKILISGDVELNPGP (SEQ ID No. 41) SSIIRTKMLVSGDVEENPGP (SEQ ID No. 42) CDAQRQKLLLSGDIEQNPGP (SEQ ID No. 43) YPIDFGGFLVKADSEFNPGP (SEQ ID No. 44) The cleavage site may comprise the 2A-like ce shown as SEQ ID No. 38 (RAEGRGSLLTCGDVEENPGP).
The present invention also es a kit comprising one or more nucleic acid sequence(s) encoding first and second CCRs according to the first aspect of the present invention, or one or more CCR(s) according to the invention and one or more CAR(s).
SEQ ID NOS 45 and 46 give the complete amino acid sequences of a fusion between and anti-PSMA CAR and an anti-PSA CCR. Subheadings are given to label each portion of the sequence but in practice the various elements are connected giving one continuous ce.
The nucleic acid construct of the invention may encode a fusion protein as shown in SEQ ID No. 45 or 46.
SEQ ID NO. 45 - rative construct with IL-2R beta chain Signal sequence derived from human CD8a: MSLPVTALLLPLALLLHAA scFv aPSMA (J591 H/L) EVQLQQSGPELKKPGTSVRISCKTSGYTFTEYTIHWVKQSHGKSLEWIGNINPNNG GTTYNQKFEDKATLTVDKSSSTAYMELRSLTSEDSAVYYCAAGWNFDYWGQGTTL TVSSGGGGSGGGGSGGGGSDIVMTQSHKFMSTSVGDRVSIICKASQDVGTAVDW P108038PCT YQQKPGQSPKLLIYWASTRHTGVPDRFTGSGSGTDFTLTITNVQSEDLADYFCQQY NSYPLTFGAGTMLDLKR Linker Human IgG1Fc spacer (HCH2CH3pvaa): EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEV KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL PAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGK Transmembrane derived from human CD28: FWVLVVVGGVLACYSLLVTVAFIIFWV main derived from TCRz: RRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKN PQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQA 2A peptide from Thosea asigna virus capsid protein: RAEGRGSLLTCGDVEENPGP Signal sequence derived from mouse kappa VIII: METDTLILWVLLLLVPGSTG scFv aPSA (5D5A5 H/L): QVQLQQSGAELAKPGASVKMSCKTSGYSFSSYWMHWVKQRPGQGLEWIGYINPS TGYTENNQKFKDKVTLTADKSSNTAYMQLNSLTSEDSAVYYCARSGRLYFDVWGA GTTVTVSSGGGGSGGGGSGGGGSGGGGSDIVLTQSPPSLAVSLGQRATISCRASE SIDLYGFTFMHWYQQKPGQPPKILIYRASNLESGIPARFSGSGSRTDFTLTINPVEAD DVATYYCQQTHEDPYTFGGGTKLEIK Linker: Human CD8aSTK spacer: RPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDI Transmembrane derived from human common gamma chain: VVISVGSMGLIISLLCVYFWL Endodomain derived from human common gamma chain: ERTMPRIPTLKNLEDLVTEYHGNFSAWSGVSKGLAESLQPDYSERLCLVSEIPPKGG ALGEGPGASPCNQHSPYWAPPCYTLKPET 2A peptide from equine is A virus polyprotein: QCTNYALLKLAGDVESNPGP Signal sequence derived from mouse kappa VIII: METDTLILWVLLLLVPGSTG scFv aPSA (5D3D11 H/L): QVQLQQSGPELVKPGASVKISCKVSGYAISSSWMNWVKQRPGQGLEWIGRIYPGD GKFKDKATLTVDKSSSTAYMQLSSLTSVDSAVYFCARDGYRYYFDYWGQ GTSVTVSSGGGGSGGGGSGGGGSGGGGSDIVMTQTAPSVFVTPGESVSISCRSS KSLLHSNGNTYLYWFLQRPGQSPQLLIYRMSNLASGVPDRFSGSGSGTDFTLRISR VEAEDVGVYYCMQHLEYPVTFGAGTKVEIK Linker: SDPA Human CD28STK spacer: KIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKP Transmembrane derived from human : IPWLGHLLVGLSGAFGFIILVYLLI Endodomain derived from human IL-2Rβ: NCRNTGPWLKKVLKCNTPDPSKFFSQLSSEHGGDVQKWLSSPFPSSSFSPGGLAP EISPLEVLERDKVTQLLLQQDKVPEPASLSSNHSLTSCFTNQGYFFFHLPDALEIEAC QVYFTYDPYSEEDPDEGVAGAPTGSSPQPLQPLSGEDDAYCTFPSRDDLLLFSPSL LGGPSPPSTAPGGSGAGEERMPPSLQERVPRDWDPQPLGPPTPGVPDLVDFQPP PELVLREAGEEVPDAGPREGVSFPWSRPPGQGEFRALNARLPLNTDAYLSLQELQ GQDPTHLV SEQ ID No. 46 – Illustrative construct with IL-7R alpha chain Signal sequence derived from human CD8a: MSLPVTALLLPLALLLHAA scFv aPSMA (J591 H/L) EVQLQQSGPELKKPGTSVRISCKTSGYTFTEYTIHWVKQSHGKSLEWIGNINPNNG GTTYNQKFEDKATLTVDKSSSTAYMELRSLTSEDSAVYYCAAGWNFDYWGQGTTL TVSSGGGGSGGGGSGGGGSDIVMTQSHKFMSTSVGDRVSIICKASQDVGTAVDW YQQKPGQSPKLLIYWASTRHTGVPDRFTGSGSGTDFTLTITNVQSEDLADYFCQQY NSYPLTFGAGTMLDLKR Linker Human IgG1Fc spacer H3pvaa): EPKSPDKTHTCPPCPAPPVAGPSVFLFPPKPKDTLMIARTPEVTCVVVDVSHEDPEV KFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKAL P108038PCT PAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNG QPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKS LSLSPGK embrane derived from human CD28: VGGVLACYSLLVTVAFIIFWV Endodomain derived from TCRz: RRVKFSRSADAPAYQQGQNQLYNELNLGRREEYDVLDKRRGRDPEMGGKPRRKN PQEGLYNELQKDKMAEAYSEIGMKGERRRGKGHDGLYQGLSTATKDTYDALHMQA 2A peptide from Thosea asigna virus capsid n: RAEGRGSLLTCGDVEENPGP Signal sequence derived from mouse kappa VIII: METDTLILWVLLLLVPGSTG scFv aPSA (5D5A5 H/L): SGAELAKPGASVKMSCKTSGYSFSSYWMHWVKQRPGQGLEWIGYINPS TGYTENNQKFKDKVTLTADKSSNTAYMQLNSLTSEDSAVYYCARSGRLYFDVWGA GTTVTVSSGGGGSGGGGSGGGGSGGGGSDIVLTQSPPSLAVSLGQRATISCRASE SIDLYGFTFMHWYQQKPGQPPKILIYRASNLESGIPARFSGSGSRTDFTLTINPVEAD DVATYYCQQTHEDPYTFGGGTKLEIK Linker: Human CD8aSTK spacer: TTTPAPRPPTPAPTIASQPLSLRPEACRPAAGGAVHTRGLDFACDI Transmembrane derived from human common gamma chain: VVISVGSMGLIISLLCVYFWL Endodomain derived from human common gamma chain: ERTMPRIPTLKNLEDLVTEYHGNFSAWSGVSKGLAESLQPDYSERLCLVSEIPPKGG ALGEGPGASPCNQHSPYWAPPCYTLKPET 2A peptide from equine rhinitis A virus polyprotein: QCTNYALLKLAGDVESNPGP Signal sequence derived from mouse kappa VIII: METDTLILWVLLLLVPGSTG scFv aPSA (5D3D11 H/L): QVQLQQSGPELVKPGASVKISCKVSGYAISSSWMNWVKQRPGQGLEWIGRIYPGD GDTKYNGKFKDKATLTVDKSSSTAYMQLSSLTSVDSAVYFCARDGYRYYFDYWGQ GTSVTVSSGGGGSGGGGSGGGGSGGGGSDIVMTQTAPSVFVTPGESVSISCRSS P108038PCT KSLLHSNGNTYLYWFLQRPGQSPQLLIYRMSNLASGVPDRFSGSGSGTDFTLRISR VEAEDVGVYYCMQHLEYPVTFGAGTKVEIK Linker: Human K spacer: KIEVMYPPPYLDNEKSNGTIIHVKGKHLCPSPLFPGPSKP Transmembrane derived from human IL-7Rα: PILLTISILSFFSVALLVILACVLW Endodomain derived from human IL-7Rα: KKRIKPIVWPSLPDHKKTLEHLCKKPRKNLNVSFNPESFLDCQIHRVDDIQARDEVEG FLQDTFPQQLEESEKQRLGGDVQSPNCPSEDVVITPESFGRDSSLTCLAGNVSACD APILSSSRSLDCRESGKNGPHVYQDLLLSLGTTNSTLPPPFSLQSGILTLNPVAQGQ PILTSLGSNQEEAYVTMSSFYQNQ VECTOR The present invention also provides a vector, or kit of vectors, which ses one or more nucleic acid sequence(s) encoding a one or more CCR(s) according to the first aspect of the invention and optionally one or more CAR(s). Such a vector may be used to uce the nucleic acid sequence(s) into a host cell so that it expresses a CCR according to the first aspect of the invention.
The vector may, for example, be a plasmid or a viral vector, such as a retroviral vector or a lentiviral vector, or a transposon based vector or synthetic mRNA.
The vector may be capable of ecting or transducing a T cell or a NK cell.
The present invention provides a cell which comprises one or more CCR(s) of the invention and optionally one of more CAR(s).
The cell may comprise a c acid or a vector of the present invention.
The cell may be a cytolytic immune cell such as a T cell or an NK cell.
P108038PCT T cells or T lymphocytes are a type of lymphocyte that play a central role in cellmediated immunity. They can be distinguished from other lymphocytes, such as B cells and natural killer cells (NK cells), by the presence of a T-cell or (TCR) on the cell surface. There are various types of T cell, as summarised below.
Helper T helper cells (TH cells) assist other white blood cells in immunologic processes, including maturation of B cells into plasma cells and memory B cells, and activation of cytotoxic T cells and macrophages. TH cells s CD4 on their surface. TH cells become activated when they are ted with peptide antigens by MHC class II molecules on the surface of antigen ting cells (APCs). These cells can entiate into one of l subtypes, including TH1, TH2, TH3, TH17, Th9, or TFH, which secrete different cytokines to facilitate different types of immune responses.
Cytolytic T cells (TC cells, or CTLs) destroy virally infected cells and tumor cells, and are also implicated in transplant rejection. CTLs express the CD8 at their surface.
These cells recognize their targets by binding to antigen associated with MHC class I, which is present on the surface of all nucleated cells. Through IL-10, adenosine and other molecules secreted by regulatory T cells, the CD8+ cells can be inactivated to an c state, which prevent autoimmune diseases such as experimental autoimmune encephalomyelitis.
Memory T cells are a subset of antigen-specific T cells that persist long-term after an infection has resolved. They quickly expand to large numbers of effector T cells upon osure to their cognate n, thus providing the immune system with "memory" against past infections. Memory T cells comprise three subtypes: central memory T cells (TCM cells) and two types of or memory T cells (TEM cells and TEMRA cells). Memory cells may be either CD4+ or CD8+. Memory T cells typically express the cell surface protein CD45RO.
Regulatory T cells (Treg , ly known as suppressor T cells, are crucial for the maintenance of immunological tolerance. Their major role is to shut down T cellmediated immunity toward the end of an immune reaction and to suppress autoreactive T cells that escaped the process of negative selection in the thymus.
Two major classes of CD4+ Treg cells have been described — naturally occurring Treg cells and adaptive Treg cells.
P108038PCT Naturally occurring Treg cells (also known as CD4+CD25+FoxP3+ Treg cells) arise in the thymus and have been linked to interactions between developing T cells with both myeloid (CD11c+) and plasmacytoid (CD123+) dendritic cells that have been ted with TSLP. Naturally occurring Treg cells can be distinguished from other T cells by the presence of an intracellular molecule called FoxP3. Mutations of the FOXP3 gene can t regulatory T cell development, causing the fatal autoimmune disease IPEX.
Adaptive Treg cells (also known as Tr1 cells or Th3 cells) may originate during a normal immune response.
The cell may be a Natural Killer cell (or NK cell). NK cells form part of the innate immune . NK cells provide rapid ses to innate signals from virally infected cells in an MHC independent manner NK cells (belonging to the group of innate lymphoid cells) are defined as large granular lymphocytes (LGL) and constitute the third kind of cells differentiated from the common lymphoid progenitor generating B and T lymphocytes. NK cells are known to differentiate and mature in the bone marrow, lymph node, spleen, s and thymus where they then enter into the circulation.
The CCR-expressing cells of the invention may be any of the cell types mentioned above.
T or NK cells ing to the first aspect of the invention may either be created ex vivo either from a patient’s own peripheral blood (1st , or in the setting of a haematopoietic stem cell transplant from donor peripheral blood (2nd party), or peripheral blood from an unconnected donor (3rd party).
Alternatively, T or NK cells according to the first aspect of the invention may be derived from ex vivo differentiation of inducible itor cells or embryonic progenitor cells to T or NK cells. Alternatively, an immortalized T-cell line which retains its lytic function and could act as a therapeutic may be used.
In all these embodiments, CCR-expressing cells are generated by introducing DNA or RNA coding for the or each CCR(s) by one of many means including transduction with a viral , transfection with DNA or RNA.
P108038PCT The cell of the invention may be an ex vivo T or NK cell from a subject. The T or NK cell may be from a eral blood mononuclear cell (PBMC) sample. T or NK cells may be ted and/or expanded prior to being transduced with nucleic acid encoding the molecules providing the CCR according to the first aspect of the ion, for example by treatment with an anti-CD3 monoclonal antibody.
The T or NK cell of the invention may be made by: (i) isolation of a T or NK cell-containing sample from a subject or other sources listed above; and (ii) transduction or transfection of the T or NK cells with one or more a nucleic acid sequence(s) encoding a CCR.
The T or NK cells may then by purified, for example, selected on the basis of expression of the antigen-binding domain of the antigen-binding polypeptide.
PHARMACEUTICAL COMPOSITION The present invention also relates to a pharmaceutical composition containing a plurality of cells according to the invention.
The pharmaceutical composition may additionally comprise a ceutically acceptable carrier, diluent or excipient. The pharmaceutical ition may optionally comprise one or more further pharmaceutically active polypeptides and/or compounds. Such a formulation may, for example, be in a form suitable for intravenous infusion.
METHOD OF TREATMENT The present ion provides a method for treating and/or preventing a disease which comprises the step of administering the cells of the present invention (for example in a pharmaceutical composition as described above) to a subject.
A method for treating a e relates to the eutic use of the cells of the t invention. Herein the cells may be administered to a t having an existing disease or condition in order to lessen, reduce or improve at least one symptom associated with the disease and/or to slow down, reduce or block the progression of the disease.
P108038PCT The method for preventing a disease relates to the prophylactic use of the cells of the present invention. Herein such cells may be administered to a subject who has not yet contracted the disease and/or who is not showing any symptoms of the disease to prevent or impair the cause of the disease or to reduce or prevent development of at least one symptom associated with the disease. The subject may have a predisposition for, or be thought to be at risk of developing, the disease.
The method may involve the steps of: (i) isolating a T or NK cell-containing sample; (ii) transducing or transfecting such cells with a nucleic acid sequence or vector provided by the present invention; (iii) stering the cells from (ii) to a subject.
The T or NK cell-containing sample may be ed from a subject or from other sources, for example as bed above. The T or NK cells may be ed from a subject’s own peripheral blood (1st , or in the setting of a haematopoietic stem cell transplant from donor peripheral blood (2nd party), or eral blood from an unconnected donor (3rd party).
The present invention provides a CCR-expressing cell of the t invention for use in treating and/or preventing a disease.
The invention also relates to the use of a CCR-expressing cell of the present invention in the manufacture of a medicament for the treatment and/or prevention of a e.
The disease to be treated and/or prevented by the methods of the present invention may be a ous disease, such as bladder cancer, breast cancer, colon cancer, endometrial cancer, kidney cancer (renal cell), leukaemia, lung cancer, melanoma, non-Hodgkin lymphoma, pancreatic cancer, prostate cancer and thyroid .
Where the ligand recognised by the CCR is PSA, the cancer may be prostate cancer.
The cells of the present invention may be capable of killing target cells, such as cancer cells. The target cell may be terised by the presence of a tumour secreted ligand or chemokine ligand in the vicinity of the target cell. The target cell may be P108038PCT characterised by the presence of a e ligand together with the sion of a tumour-associated antigen (TAA) at the target cell surface.
The cells and pharmaceutical compositions of present ion may be for use in the ent and/or prevention of the diseases described above.
The cells and ceutical compositions of present invention may be for use in any of the methods described above.
CHIMERIC TRANSMEMBRANE PROTEIN The present invention also provides a chimeric transmembrane n comprising a dimerization domain; and a cytokine receptor endodomain.
Dimerisation may occur spontaneously, in which case the chimeric transmembrane protein will be constitutively . Alternatively, dimerization may occur only in the presence of a al inducer of dimerization (CID) in which case the transmembrane protein only causes cytokine-type signalling in the presence of the CID.
Suitable dimerization domains and CIDs are described in WO2015/150771, the contents of which are hereby incorporated by reference.
For example, one dimerization domain may comprise the rapamycin binding domain of FK-binding protein 12 (FKBP12), the other may comprise the FKBP12-Rapamycin Binding (FRB) domain of mTOR; and the CID may be rapamycin or a derivative thereof.
One zation domain may comprise the FK506 (Tacrolimus) binding domain of FK- binding protein 12 (FKBP12) and the other dimerization domain may comprise the cyclosporin binding domain of cylcophilin A; and the CID may be an FK506/cyclosporin fusion or a derivative thereof.
One dimerization domain may comprise an oestrogen-binding domain (EBD) and the other dimerization domain may comprise a streptavidin g domain; and the CID may be an estrone/biotin fusion n or a derivative thereof.
One dimerization domain may comprise a glucocorticoid-binding domain (GBD) and the other dimerization domain may comprise a dihydrofolate reductase (DHFR) binding P108038PCT ; and the CID may be a dexamethasone/methotrexate fusion protein or a derivative thereof.
One dimerization domain may se an O6-alkylguanine-DNA alkyltransferase (AGT) binding domain and the other dimerization domain may comprise a dihydrofolate reductase (DHFR) binding domain; and the CID may be an O6-benzylguanine derivative/methotrexate fusion protein or a derivative thereof.
One dimerization domain may comprise a retinoic acid receptor domain and the other dimerization domain may comprise an ecodysone receptor domain; and the CID may be RSL1 or a derivative thereof.
Where the dimerization domain spontaneously heterodimerizes, it may be based on the dimerization domain of an antibody. In particular it may comprise the dimerization portion of a heavy chain constant domain (CH) and a light chain constant domain (CL).
The "dimerization portion" of a constant domain is the part of the sequence which forms the inter-chain disulphide bond.
The chimeric ne receptor may comprise the Fab portion of an antibody as exodomain, for example as illustrated schematically in Figure 5..
The ic transmembrane n may comprise two polypeptides: (i) a first polypeptide which ses: (a) a first dimerisation domain; and (b) a first chain of the cytokine receptor endodomain; and (ii) a second polypeptide which comprises: (a) a second dimerization domain, which dimerises with the first dimerization domain; (b) a second chain of the cytokine-receptor endodomain.
The sections above ng the cytokine receptor endodomain of the chimeric cytokine receptor also apply to the ic transmembrane protein of the present invention.
The sections above relating to c acids, vectors, kits, cells, pharmaceutical compositions and s also apply to the chimeric transmembrane protein of the present invention.
P108038PCT The invention will now be further described by way of Examples, which are meant to serve to assist one of ordinary skill in the art in carrying out the invention and are not intended in any way to limit the scope of the invention.
EXAMPLES Example 1 – In vitro testing T-cells are transduced with either a PSMA-specific CAR or transduced with a uct which co-expresses a PSMA-specific CAR with a PSA-specific CCR. T-cells are co- cultured with PSMA expressing target cells which secrete or do not secrete PSA. This co-culture is conducted in the ce or absence of exogenous IL2. This ture is conducted at different effector to target ratios. This co-culture is repeated serially with T-cells challenged with repeated target cells. Proliferation of T-cells and killing of target cells is determined. In this way, the contribution to proliferation and al of T-cells the CCR makes can be measured. Further, the ability contribution to repeated rechallenge the ability of serial Example 2 - In vivo testing NSG mice are engrafted with a human prostate cancer cell line which expresses PSMA and secretes PSA and which expresses firefly rase. T-cells are transduced with either a PSMA-specific CAR or transduced with a construct which co-expresses the PSMA-specific CAR with a PSA-specific CCR. T-cells are administered to the mice.
The tumour burden can be serially measured using bioluminescent imaging and the response to CAR s evaluated. Mice within each cohort can be sacrificed at different time-points and tumour burden directly measured by copic measurements and by histochemistry. Further, engraftment / expansion of T- cells at the tumour bed or within lymphoid s such as lymph nodes, spleen and bone-marrow measured by flow cytometry of said tissues.
Example 3 – Creation of and testing a tutively active cytokine-signalling molecule A constitutively active cytokine-signalling chimeric transmembrane protein was produced by linking cytokine receptor endodomains to a "Fab" type exodomain (Figure ). This ure uses the natural dimerization components of antibodies, namely the dimerization domain from the heavy and light chain constant regions. The ic transmembrane protein has two chains; a first polypeptide which comprises the antibody light κ chain and the IL2 receptor common γ chain as endodomain; and a second polypeptide which comprises the antibody heavy chain CH1 and an endodomain which comprises either: the IL2 receptor β chain (giving a constitutively active IL2-signalling molecule); or the IL7 receptor g a constitutively active IL7- ling le). The constitutively active ne-signalling chimeric transmembrane proteins tested in this study included the scFv heavy and light chain variable s. These domains are not needed for dimerization to occur. The signal is independent of antigen binding and the structure could equally be "headless" (as shown in Figure 5) or comprise another entity such as a n tag.
Nucleic acid sequences encoding these two polypeptides were cloned in frame separated by a 2A-peptide encoding sequence.
CTLL-2 (ATCC® TIB-214™) are murine cytotoxic T lymphocyte cells which are dependent upon IL-2 for growth. In the absence of IL-2 the cells undergo apoptosis.
CTLL-2 cells were transduced with a vector expressing the chimeric protein comprising an IL2-receptor endodomain L2endo) or a vector expressing the chimeric protein comprising an IL7 receptor endodomain (Fab_IL7endo) or left untransduced (WT). As a positive control, cells of all three types were co-cultured with 100 U/ml murine IL2.
Cell proliferation was ed after 3 and 7 days of e and the results are shown in Figure 6.
Untransduced CTLL2 cells, together with CTLL2 cells transduced with either construct (Fab_IL2endo or Fab_IL7endo) proliferated in the presence of 100U/mL murine IL2 (Figure 6, left-hand panel). However, in the absence of exogenously added IL2, only cells transduced with the construct having an IL2R endodomain (Fab_IL2endo) survived and proliferated. This shows that the chimeric transmembrane receptor provides the CTLL2 cells with the necessary IL2 signal.
Example 4 – Generation and g of a chimeric ne receptor against PSA A panel of chimeric cytokine receptors targeting PSA was developed using scFvs derived from two antibodies which bind to different PSA epitopes: 5D5A5 and 5D3D11.
The crystal structure of PSA has been obtained in a ch complex with these two (Stura et al (2011) as above).
Schematic diagrams illustrating some of the panel of CCRs is illustrated in Figure 7.
The panel included the following constructs: P108038PCT A5-CD8stk-IL2Rg_D11-Hinge-IL2Rb: A CCR with an IL -2R endodomain having A5 on the chain with common γ chain and D11 on the chain with the IL2R β chain; D11-CD8stk- IL2Rg_A5-Hinge-IL2Rb: A CCR with an IL-2R endodomain having D11 on the chain with common γ chain and A5 on the chain with IL2R β chain; D11-CD8stk- RL _A5-Hinge -IL2Rb: A negative control uct which is equivalent D11-CD8stk- IL2Rg_A5-Hinge-IL2Rb, but in which the IL2Rγ chain is replaced by a rigid linker; D11-CD8stk- IL2Rg_A5-Hinge-IL7Ra: A CCR with an IL-7R endodomain having D11 on the chain with common γ chain and A5 on the chain with IL7R α chain; and D11-CD8stk- RL _A5-Hinge –IL7Ra: A negative control construct which is equivalent D11-CD8stk- IL2Rg_A5-Hinge-IL7Ra, but in which the IL2Rγ chain is replaced by a rigid linker; CTLL2 cells were transduced with vectors sing these constructs. Cells were cultured in the presence or absence of IL2 (the presence of IL2 acting as a positive control) and the presence or absence of 5ng/mL or 5μg/mL PSA. CTLL2 cell proliferation was assessed after 3 and 7 days and the results are shown in Figure 8.
CTLL2 cells expressing a CCR with an IL7 endodomain did not support CTLL2 cell al and proliferation (Figure 8, last two ). The presence of murine IL-2 in these cells supported CTLL2 cell growth and proliferation at day 3, but by day 7 the majority of cells had undergone apoptosis.
The anti-PSA chimeric cytokine receptors with an IL2R endodomain supported CTLL2 cell eration in the absence of IL2 and the presence of PSA at both 5ng/ml and 5μg/ml (Figure 8, first panel), with 5μg/ml givinggreater survival and proliferation, particularly at day 7.
Both the SA chimeric cytokine receptors with an IL2R endodomain, i.e. A5- CD8stk-IL2Rg_D11-Hinge-IL2Rb and D11-CD8stk- IL2Rg_A5-Hinge-IL2Rb, ting that the relative positioning of the two PSA-binding domains: 5D5A5 and 5D3D11, is not important for function.
Substitution of the common γ chain with a rigid linker abolished the capacity of the CCR to t CTLL2 cell survival and proliferation (Figure 8, third panel).
P108038PCT As another read-out for IL2 signalling, the phosphorylation of Y694 of STAT5 was investigated using phosphoflow.
CTLL2 cells were either untransduced (WT); transduced with a PSA CCR constructs having an IL2R endodomain (D11-CD8STK-IL2Rg_A5-Hinge-IL2Rb); or transduced with an equivalent negative control construct in which the IL2Rγ chain is replaced with a rigid linker (D11-CD8STK-RL_A5-Hinge-IL2Rb). The cells were incubated overnight in the absence of exogenously added IL-2. The following day, the cells were incubated with either Pervanadate at 500μM (a ve control which inhibits phosphatase and will lead to STAT5 phoshorylation) or 500ng/mL PSA for 1 or 4 hours. After incubation the cells were fixed, permeabilised and analysed by flow cytometry.
The results are shown in Figure 9. In the cells expressing the PSA CCR, the presence of PSA lead to increasing STAT5 phosphorylation with time (Figure 9, central panel).
No such increase in orylation was seen with untransduced CTLL2 cells, or with CTLL2 cells transduced with an equivalent construct in which the IL2Rγ chain is replaced with a rigid linker (Figure 9, right hand panel).
These results are consistent with the CTLL2 survival/proliferation data shown in Figure 8 and demonstrate that a chimeric cytokine receptor against a soluble ligand (here, PSA) can be used to trigger cytokine signalling in a T-cell.
All publications mentioned in the above specification are herein incorporated by reference. Various modifications and ions of the described methods and system of the invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been bed in connection with specific red ments, it should be understood that the ion as claimed should not be unduly limited to such specific embodiments.
Indeed, various cations of the bed modes for carrying out the invention which are obvious to those d in molecular biology or related fields are intended to be within the scope of the following claims.

Claims (21)

1. A chimeric transmembrane protein which comprises two polypeptides: (i) a first polypeptide which comprises: (a) a heavy chain constant domain (CH) (b) a first chain of a type 1 cytokine receptor main; and (ii) a second polypeptide which comprises: (a) a light chain constant domain (CL) (b) a second chain of the type 1 cytokine-receptor endodomain.
2. A chimeric embrane protein according to claim 1, wherein the cytokine receptor endodomain comprises: (i) IL-2 or β-chain endodomain (ii) IL-7 receptor α-chain main; (iii) IL-15 receptor α-chain endodomain; or (iv) common γ-chain receptor endodomain.
3. A chimeric transmembrane protein according to claim 1, n the first polypeptide comprises a heavy chain variable domain (VH) and a heavy chain constant domain (CH); and the second polypeptide comprises a light chain variable domain (VL) and a light chain constant domain (CL).
4. A chimeric transmembrane protein ing to claim 3 which comprises a Fab exodomain.
5. An ex vivo cytolytic immune cell which comprises a chimeric transmembrane protein according to any one of claims 1 to 4.
6. A cytolytic immune cell according to claim 5 which also comprises a chimeric antigen receptor.
7. A cytolytic immune cell according to claim 6 wherein the ic antigen or binds a -associated cell surface antigen.
8. A nucleic acid sequence encoding a chimeric transmembrane protein according to any one of claims 1 to 4.
9. A nucleic acid construct which comprises a first nucleic acid sequence encoding a first polypeptide as defined in claim 1 and a second nucleic acid ce encoding a second polypeptide as defined in claim 1, the nucleic acid construct having the structure: CH-TM1-endo1-coexpr-CL-TM2-endo2 in which CH is a nucleic acid sequence encoding the heavy chain constant domain of the first polypeptide; TM1 is a nucleic acid sequence encoding the transmembrane domain of the first polypeptide; endo 1 is a nucleic acid sequence encoding the endodomain of the first polypeptide; coexpr is a nucleic acid sequence enabling co-expression of both first and second ptides CL is a nucleic acid sequence encoding the light chain constant domain of the second polypeptide; TM2 is a nucleic acid sequence encoding the transmembrane domain of the second polypeptide; endo 2 is a nucleic acid sequence encoding the endodomain of the second polypeptide.
10. A nucleic acid construct according to claim 9, which also encodes a chimeric antigen receptor (CAR).
11. A nucleic acid construct according to claim 9 or claim 10 wherein coexpr encodes a sequence comprising a leaving peptide
12. A nucleic acid according to any one of claims 9 to 11 wherein alternative codons are used in regions of sequence encoding the same or similar amino acid sequences in order to avoid homologous recombination.
13. A vector comprising a nucleic acid construct according to any one of claims 9 to 12.
14. A vector according to claim 13 which is a retroviral , a lentiviral vector or a transposon.
15. A kit which comprises: i) a vector sing a c acid sequence encoding a first polypeptide as defined in claim 1; and ii) a vector comprising a c acid sequence encoding a second polypeptide as defined in claim 1.
16. A kit ing to claim 15 which also comprises a vector comprising a nucleic acid sequence encoding a chimeric antigen receptor.
17. A kit which comprises: i) a vector comprising a nucleic acid sequence encoding a ic transmembrane protein as defined in any one of claims 1 to 4; and ii) a vector comprising a nucleic acid sequence encoding a chimeric antigen receptor.
18. A method for making a cell according to any one of claims 5 to 7, which comprises the step of ucing: a nucleic acid sequence according to claim 8; a nucleic acid construct according to any one of claims 9 to 12; a vector according to claim 13 or 14; or a kit of vectors ing to any one of claims 15 to 17, into a cell isolated from a subject.
19. A pharmaceutical composition comprising a plurality of cytolytic immune cells ing to any one of claims 5 to 7.
20. A pharmaceutical composition according to claim 19 for use in treating and/or preventing a disease.
21. The use of a cytolytic immune cell according to any one of claims 5 to 7 in the manufacture of a medicament for treating and/or preventing a disease. u W38 ”33% smegmaéc mmfiowfi mmggmgfl mmmgmmmmmu $8CE Em “$5 £me .h “mum £me Em Eu. :2 38 Em E m ”:3“ $3 ammo mmmmo Egg Em £8 $8 Em E. K“mgagoa K7“ $8 mag Emma wmmo ”mu: £me ammmfiam mwfigogmom WEQE ”mega am méa mom Em mmmfigfifl Em £me ammo “E. $3 ._. mama $me £me mmfigmmom "mung Emma P #me m u: g7“ Em £30 “mmmmu mmmfiomg E. M7“ Em $0335 mmg mmmwmaxm flag wag E was $393 in 538% 33 Em .w. gm SUBSTITUTE SHEET (RULE 26) WO 29512 FEG. 2 SUBSTITUTE SHEET (RULE 26) Enhancer LgafidA+ UgandA BinderA 9mmm §"§ f f ‘Cmmm lL-HQamha I 3 3 § § ganwnachan Chain . Sanamng E3EC3.i3 SUBSTITUTE SHEET (RULE 26) 1 PSMA , @591) a AnflPSA(EDSA5) Ligand/55+ Target cell membrane Ssiubie E:and minced agegation of ihe phosphatase CAR ffffffffffffff Signaiiang Signafiiing FEG. 3 (Cantimed) SUBSTITUTE SHEET (RULE 26) WWEWW WWWEW WEE WW0 WWWWWuWW WWW Eumgw WEEEE <3OW EWWW WOW WWWWWEWW WWWWW $5.;me «mm 8 EEEQQ WWWEWWW umNWWmWWEWmW WW5: WWWWW WWWEWWWWWE W WE. .WWWWWQWWWWW mEEmm Wag EmWE EEW EWWW mag Em WWEWWW EESWEEEWE EEEEWWWEW EWWEEEWWW EOE WW mWWWWWWmmWWW wcoWWmEWoW EWWEWQ E233 Emu EEWME WWWWW EWWWW.oWW. WW0 mE EWWWWWWWEW mEoWWoWWWm WWWWW WWWEWW EWW WO WWW WEWWWWWWW . WWWEWW SUBSTITUTE SHEET (RULE 26) Ab ngin i: chain Ab Heavy chain (Ci-ii) Hinge spacer Hinge spacer ii_2 recepier ELZrecepierifi cernrnenycnain chain or ii] receptor (1 chain dimerizaiien signei PEG. 5 SUBSTITUTE SHEET (RULE 26) . m>< ...................................... gram 99chng . . 800$ magma? $on Q F?» mm»owcmfimmmw 33:33 3M; $953 Q mflww NEG “3.5 .MVE {as an? Lap... $3334 was”: JEEEDQE ................................................................................................................... $40 ngogmw WQOQQOV Wgeogm Q 93393 9mg SUBSTITUTE SHEET (RULE 26) WO 29512 FEG. 7 SUBSTITUTE SHEET (RULE 26) NJWQZ mgmggtaoaw 02 nan gm; >.Av. msmwfi>.fi$. QmNmeQg+m.$w. «wngtmgmw>>.fiw mmwgfimmgwwm> “H w («Am oEimEmQ gun03 SUBSTITUTE SHEET (RULE 26)
NZ739942A 2015-08-20 2016-08-19 Chimeric cytokine receptor NZ739942B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
GBGB1514875.2A GB201514875D0 (en) 2015-08-20 2015-08-20 Receptor
GB1514875.2 2015-08-20
PCT/GB2016/052564 WO2017029512A1 (en) 2015-08-20 2016-08-19 Chimeric cytokine receptor

Publications (2)

Publication Number Publication Date
NZ739942A NZ739942A (en) 2022-03-25
NZ739942B2 true NZ739942B2 (en) 2022-06-28

Family

ID=

Similar Documents

Publication Publication Date Title
US11479613B2 (en) Methods for treating cancer or modulating T cells or NK cells in a subject by administering cells comprising chimeric transmembrane proteins
US20220275052A1 (en) Receptor
US20220289820A1 (en) Chimeric cytokine receptor
US20200239545A1 (en) Receptor
US20240075066A1 (en) Cell
NZ739942B2 (en) Chimeric cytokine receptor
WO2023073352A1 (en) Chimeric cytokine receptor
KR20240093884A (en) Chimeric cytokine receptor