NZ733584B2 - Ink-jet printing on fiber cement products - Google Patents

Ink-jet printing on fiber cement products Download PDF

Info

Publication number
NZ733584B2
NZ733584B2 NZ733584A NZ73358416A NZ733584B2 NZ 733584 B2 NZ733584 B2 NZ 733584B2 NZ 733584 A NZ733584 A NZ 733584A NZ 73358416 A NZ73358416 A NZ 73358416A NZ 733584 B2 NZ733584 B2 NZ 733584B2
Authority
NZ
New Zealand
Prior art keywords
fiber cement
ink
coating composition
cement products
pigment
Prior art date
Application number
NZ733584A
Other versions
NZ733584A (en
Inventor
Chowdhury Raphael Hoque
Nicolas Luders
Gerhard Schmidt
Original Assignee
Eternit Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP15159046.0A external-priority patent/EP3067218A1/en
Application filed by Eternit Gmbh filed Critical Eternit Gmbh
Publication of NZ733584A publication Critical patent/NZ733584A/en
Publication of NZ733584B2 publication Critical patent/NZ733584B2/en

Links

Abstract

The present invention relates to processes for producing fiber cement products as well as to the fiber cement products obtainable therewith. More specifically, the present invention relates to fiber cement products that are suitable for being subjected to ink-jet printing, which fiber cement products at least comprise on their outer surface one or more cured layers of a first coating composition, which at least comprises a binder and an alkali resistant pigment and which is characterized by an effective pigment volume concentration of between 60% and 80%. The invention further provides processes for producing such fiber cement products. Moreover, the present invention provides processes for producing ink-jet printed fiber cement products for protecting the the product from weathering and humidity, preventing ink bleeding, and to help protect the product during transport and installation to provide a quality ink-jet printed fiber cement products obtainable therewith. The present invention further relates to various uses of these fiber cement products, in particular as building materials. s at least comprise on their outer surface one or more cured layers of a first coating composition, which at least comprises a binder and an alkali resistant pigment and which is characterized by an effective pigment volume concentration of between 60% and 80%. The invention further provides processes for producing such fiber cement products. Moreover, the present invention provides processes for producing ink-jet printed fiber cement products for protecting the the product from weathering and humidity, preventing ink bleeding, and to help protect the product during transport and installation to provide a quality ink-jet printed fiber cement products obtainable therewith. The present invention further relates to various uses of these fiber cement products, in particular as building materials.

Description

INK-JET PRINTING ON FIBER CEMENT PRODUCTS Field of the invention The present invention relates to processes for producing fiber cement products as well as to the fiber cement products obtainable therewith. More specifically, the present invention relates to fiber cement products that are suitable for being subjected to ink-jet ng as well as to processes for producing such fiber cement products. Moreover, the present invention provides processes for producing ink—jet d fiber cement products and ink-jet d fiber cement products able therewith. The present invention further relates to various uses of these fiber cement products, in particular as building materials.
Background of the invention Fiber cement ts are well known and widely used as building als. In order to protect these als from potential transport and installation damages as well as defects due to weathering and humidity, one or more coating layers are often applied on the outer surface during production. In addition, colored coatings were developed to provide fiber cement products with an esthetically d look at the outer surface.
However, it would further be desirable to produce fiber cement products provided with a decorative design pattern, an advertising n and/or an identification print on the outer surface.
Ink—jet printing with traditional solvent-based or water-based pigmented inks is a known method for directly patterning and fabricating patterns without the need for masks. While this s has been widely used for producing decorative and advertising patterns directly onto on s such as ceramics and glass, this was up to now not possible with fiber cement products because of the inherent heterogenic composition and surface ess of fiber cement. Indeed, ink—jet printing performed directly onto the surface of a fiber cement object with traditional solvent-based or water- based pigmented inks resulted up to now in ink bleeding and thereby substantially reduced the print quality by causing jagged edges and even undesirable ink stains.
Summary of the ion An object of the present ion is to provide improved fiber cement products, as well as processes for the production thereof, which ts are suitable for being subjected to ink—jet printing with traditional solvent-based or water-based pigmented inks, i.e. without ing in the above described undesirable consequences of ink spreading throughout the fiber cement structure.
In this regard, the present inventors have developed novel and improved fiber cement products that can be ink-jet printed with high efficiency and performance.
In particular, it was found that by providing fiber cement products with at least one coating layer, comprising a binder and a t, which layer is characterized by a pigment volume concentration (PVC) of higher than about 40%, ink-jet printing can be performed without encountering any of the above-stated issues. The inventors have found that this is due to the fact that the coating layer as described in the present invention has an improved (i.e. increased) porosity for t ink compositions in comparison with the outer surface of known coated and uncoated fiber cement products. By being able to absorb and capture the ink composition relatively quickly after ink-jetting, the coating layer of the products of the invention ts this ink composition from spreading out over the surface of the fiber cement product. The ors have found that this effect is ularly observed when making use of prime pigments (as d herein), such as for example TiO2, wherein these prime pigments are present in an effective pigment volume concentration (as defined herein) of at least about 40%.
In a first aspect, the present invention provides an ink-jet printed fiber cement product, which ink-jet printed fiber cement product at least comprises on at least part of its outer surface: one or more cured layers of a first coating ition, at least comprising a binder and an alkali ant pigment, wherein said first coating composition is characterized by an effective pigment volume concentration between 60 and 80%, wherein the effective pigment volume concentration can be calculated via the following mathematical formula: “effective pigment volume concentration” (expressed in %) = “effective PVC” ssed in %) = (volume of prime pigments)/(volume of prime pigments + volume of solid binder(s)) * 100 (expressed in %); and a dried ink print applied on top of said one or more cured layers of a first coating composition In a second aspect, the t invention provides a process for producing a fiber cement product, said process comprising: providing a fiber cement product; ng to at least part of the outer e of said fiber cement one or more layers of a first coating composition at least sing a binder and an alkali-resistant pigment, wherein said first coating composition is characterized by an effective pigment volume concentration between 60 and 80%, n the effective pigment volume concentration can be calculated via the following mathematical formula: “effective pigment volume concentration” (expressed in %) = “effective PVC” ssed in %) = (volume of prime pigments)/(volume of prime pigments + volume of solid (s)) * 100 (expressed in %); curing said one or more layers of said first coating composition so as to obtain a fiber cement product suitable for being ted to inkjetprinting ; applying an ink print on top of said one or more cured layers of said first coating composition by means of an inkjet-printer; and drying said ink print, so as to obtain an ink-jet printed fiber cement t.
Also disclosed herein are fiber cement products suitable for being subjected to inkjet-printing, which fiber cement products at least comprise on at least part of their outer surface one or more cured layers of a first coating composition, which composition at least comprises a binder and a pigment and is characterized by a pigment volume concentration (PVC) of at least about 40%, ularly between about 40% and about 80%, such as between about 40% and about 70%, more particularly between about 40% and about 60%. In further particular embodiments, the first coating composition of the fiber cement products suitable for being subjected to inkjetprinting is characterized by a pigment volume tration of at least about 50%, more particularly between about 50% and about 80%, such as between about 50% and about 70%, most particularly between about 50% and about 60%. In yet further particular embodiments, the first coating composition of the fiber cement ts suitable for being subjected to inkjetprinting is characterized by a pigment volume concentration of n about 40% and about 50%, more particularly between about 45% and about 50%, such about 46%.
In particular embodiments, the binder in the first coating composition provided on the outer surface of the fiber cement products according to the present invention is an acrylic polymer.
In further particular embodiments, the acrylic polymer is chosen from the group consisting of styrene acrylic, siloxane acrylic, epoxy acrylic, polyester c, polyuria acrylic and urethane acrylic. r disclosed herein are processes for producing fiber cement products suitable for being subjected to ink-jet printing, said processes at least comprising the steps of: - ing a fiber cement product, - applying to at least part of the outer e of the fiber cement product one or more layers of a first coating ition, which composition at least comprises a binder and a pigment and is characterized by a pigment volume concentration (PVC) of higher than about 40%, and - curing the one or more layers of the first coating composition so as to obtain a fiber cement product suitable for being subjected to inkjet-printing.
In particular embodiments of these processes for producing fiber cement ts suitable for being subjected to ink-jet printing, the first coating composition is terized by a pigment volume concentration of at least about 50%, more particularly between about 50% and about 80%, such as between about 50% and about 70%, most particularly between about 50% and about 60%.
In further particular embodiments of these processes for producing fiber cement products suitable for being subjected to ink-jet printing, the binder in the first coating composition is an acrylic polymer. In further particular ments, the acrylic polymer is chosen from the group consisting of styrene acrylic, siloxane acrylic, epoxy c, polyester acrylic, polyuria acrylic and urethane acrylic.
Further disclosed herein are processes for ing ink-jet printed fiber cement products, the processes at least comprising the steps of: - providing a fiber cement product suitable for being subjected to inkjet-printing, as described herein, which fiber cement products at least comprise on at least part of their outer surface one or more cured layers of a first g composition, which composition at least comprises a binder and a t and is characterized by a pigment volume concentration (PVC) of higher than about 40%, - applying an ink print on top of the one or more cured layers of the first coating composition by means of an -printer, and - drying the ink print, so as to obtain an t printed fiber cement product.
In ular embodiments of the processes of the invention for producing ink-jet printed fiber cement products, the ink print is formed by using an ink comprising at least one inorganic pigment.
In further particular embodiments, the processes of the invention for producing ink-jet printed fiber cement products, further comprise the steps of: - applying one or more layers of a radiation-curable second coating composition on top of the one or more cured layers of the first coating composition and/or on top of the dried ink print, - radiation curing the one or more layers of the radiation-curable second coating composition.
Still further disclosed herein are ink-jet printed fiber cement products obtainable by the processes as described above, which ink-jet printed fiber cement products at least comprise on at least part of their outer surface: - one or more cured layers of a first coating composition, at least comprising a binder and a pigment, wherein the first coating composition is characterized by a pigment volume concentration of higher than about 40%, and - a dried ink print applied on top of the one or more cured layers of a first coating composition.
In ular embodiments, the ink print on the ink-jet printed fiber cement products of the invention is formed by using a pigmented ink, which is t-based or which is water-based.
In particular embodiments, the ink print on the ink-jet printed fiber cement products of the invention is formed by using an ink comprising at least one inorganic pigment.
In particular embodiments, the ink is not a ed ink.
In further ular ments, the ink-jet d fiber cement products of the invention further comprise one or more radiation-cured layers of a second coating ition applied on top of the one or more cured layers of the first g composition and/or on top of the dried ink print.
Still further disclosed herein are uses of the fiber cement products suitable for being subjected to ink-jet printing or uses of the ink-jet printed fiber cement ts as building materials. In particular embodiments, the fiber cement products produced by the processes of the present invention can be used to provide an outer surface to walls, both internal as well as external, a building or construction, e.g. as façade plate, siding, etc.
The independent and dependent claims set out particular and preferred features of the invention. Features from the dependent claims may be combined with features of the 4b followed by page 5 independent or other dependent claims, and/or with features set out in the description above and/or after as appropriate.
The above and other characteristics, features and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying gs, which rate, by way of example, the principles of the ion. This description is given for the sake of example only, without limiting the scope of the invention. The nce figures quoted below refer to the attached drawings.
Brief description of the drawings Figure 1 shows a schematic drawing of the composition of a coating composition comprising at least a binder and at least a t with gradually increasing pigment volume concentrations.
Figure 2 shows a schematic drawing of a side view of a fiber cement t suitable for being subjected to ink-jet printing according to an embodiment of the invention.
Figure 3 shows a schematic drawing of a side view of an ink—jet printed fiber cement product according to an embodiment of the invention.
Figure 4 shows a schematic drawing of a top view of an ink—jet d fiber cement product according to an embodiment of the invention.
The same reference signs refer to the same, similar or analogous elements in the ent figures. 1 Fiber cement product 2 Cured first coating composition 3 Binder Voids 6 Ink pigment 7 Ink print 8 Radiation-cured second coating ition Description of rative embodiments The present invention will be described with respect to particular embodiments.
It is to be noted that the term ”comprising”, used in the claims, should not be interpreted as being restricted to the means listed thereafter; it does not exclude other elements or steps. It is thus to be interpreted as specifying the presence of the stated features, steps or components as referred to, but does not preclude the presence or addition of one or more other features, steps or components, or groups thereof. Thus, the scope of the expression ”a device comprising means A and B” should not 6 2016/054814 be limited to devices consisting only of components A and B. It means that with respect to the present invention, the only relevant components of the device are A and B.
Throughout this specification, nce to ”one embodiment” or ”an embodiment” are made. Such references te that a particular feature, described in relation to the embodiment is included in at least one embodiment of the present invention. Thus, appearances of the phrases ”in one embodiment” or “in an embodiment” in s places throughout this specification are not necessarily all referring to the same embodiment, though they could. rmore, the particular features or teristics may be combined in any suitable manner in one or more embodiments, as would be apparent to one of ordinary skill in the art.
The following terms are provided solely to aid in the understanding of the invention.
As used herein, the singular forms ”a”, ”an”, and ”the” e both singular and plural referents unless the context clearly dictates otherwise.
The terms ”comprising”, “comprises” and ”comprised of" as used herein are synonymous with ”including”, des” or ”containing”, ”contains”, and are inclusive or open-ended and do not exclude additional, non-recited s, elements or method steps.
The recitation of numerical ranges by endpoints es all numbers and fractions subsumed within the respective ranges, as well as the recited nts.
The term ” as used herein when referring to a measurable value such as a parameter, an amount, a temporal duration, and the like, is meant to encompass variations of +/-10% or less, preferably +/-5% or less, more preferably +/-1% or less, and still more ably +/-0.1% or less of and from the specified value, insofar such variations are appropriate to perform in the disclosed invention. It is to be understood that the value to which the modifier ”about” refers is itself also specifically, and preferably, disclosed.
The terms ”(fiber) cementitious slurry” or “(fiber) cement slurry” as referred to herein generally refer to slurries at least comprising water, fibers and cement. The fiber cement slurry as used in the context of the present invention may also further comprise other components, such as but not limited to, limestone, chalk, quick lime, slaked or hydrated lime, ground sand, silica sand flour, quartz flour, amorphous silica, condensed silica fume, microsilica, metakaolin, wollastonite, mica, perlite, vermiculite, aluminum hydroxide, pigments, anti-foaming agents, flocculants, and other additives.
”Fiber(s)” present in the fiber cement slurry as described herein may be for example process fibers and/or reinforcing fibers which both may be organic fibers (typically ose fibers) or tic fibers (polyvinylalcohol, polyacrilonitrile, opylene, polyamide, polyester, polycarbonate, etc.).
”Cement” present in the fiber cement slurry as described herein may be for example but is not limited to Portland cement, cement with high alumina content, Portland cement of iron, trass- cement, slag cement, r, calcium silicates formed by autoclave treatment and combinations of particular binders. In more particular embodiments, cement in the ts of the invention is Portland cement.
The term ”water—permeable” as used herein when referring to a water-permeable (region of a) transport belt generally means that the material of which the water-permeable (region of the) belt is made allows water to flow through its structure to a certain extent.
The ”water—permeability” as used herein when referring to the water-permeability of a (region of a) ort belt generally refers to the extent or degree to which the material of which the water- permeable (region of the) belt is made, allows water to flow through its ure. Suitable materials for water—permeable transport belts are known to the person skilled in the art, such as but not limited to felts.
The terms ”predetermined” and ”predefined” as used herein when referring to one or more parameters or properties generally mean that the desired value(s) of these parameters or properties have been determined or defined beforehand, i.e. prior to the start of the process for producing the products that are characterized by one or more of these ters or properties.
A ”(fiber cement) sheet” as used herein, also referred to as a panel or a plate, is to be understood as a flat, usually rectangular element, a fiber cement panel or fiber cement sheet being provided out of fiber cement material. The panel or sheet has two main faces or surfaces, being the surfaces with the largest surface area. The sheet can be used to provide an outer surface to walls, both internal as well as al a ng or construction, e.g. as facade plate, siding, etc.
The term ”pigment volume concentration (abbreviated as PVC)” as used herein generally refers to the amount of t(s) versus the total amount of solids (i.e. pigment(s), binder(s), other solids) in a coating composition and can be calculated via the ing mathematical formula: 8 2016/054814 ”Pigment volume concentration” (expressed in %) = ”PVC” (expressed in %) = Volume of pigment/ (Volume of solids) * 100 (expressed in %) = Volume of t/ (Volume of pigment + Volume of solid binder) * 100 (expressed in %) = Volume of pigment/ e of pigment + Volume of non-volatile binder) * 100 (expressed in %) The term ”Effective pigment volume concentration (abbreviated as effective PVC)” as used herein lly refers to the amount of prime pigments (as defined herein) versus the total amount of prime pigments and binder(s) in a coating composition and can be calculated via the following mathematical formula: ”Effective pigment volume concentration” (expressed in %) = tive PVC” (expressed in %) = (Volume of prime pigments)/ (Volume of prime pigments solid binder(s)) * + volume of 100 (expressed in %) The term ”pigment” as used herein refers to a dry ble substance, usually pulverized, which when suspended in a liquid vehicle s a paint, ink, etc. Pigments typically consist of tiny solid particles that are used to enhance the appearance by providing color and/or to improve the physical (functional) properties of the paint or ink. Pigments used to provide color generally range from 0.2 to 0.4 microns in diameter. Functional pigments are typically 2-4 microns in diameter, but they may be as large as 50 microns.
The term ”prime pigment” as used herein refers to any pigment (as defined herein), which is capable of providing whiteness and/or color to a substance while also contributing significantly to the hiding power of said nce. Prime pigments can be subdivided in white pigments and color pigments.
The term ”white pigment” as referred to herein means a prime pigment, capable of ring light and providing whiteness and hiding in flat or glossy paint or ink. White inorganic pigments include but are not limited to antimony pigments including Antimony White: Sb203; lead pigments (toxic) ing White Lead (PbC03)2-Pb(OH)2; titanium pigments including Titanium White: titanium(|V) oxide TiOz and; zinc pigments including Zinc White: Zinc Oxide (ZnO).
The term ”color pigment” as referred to herein means a prime pigment, capable of selectively absorbing light and providing color to a paint or ink. There are two main types of color pigments: organic pigments, which include the er colors but are not highly durable in exterior use and inorganic pigments, which are not as bright as organic colors but are the most durable exterior pigments.
The term ”inorganic pigment” as used herein refers to naturally ing mineral coloring compounds typically consisting of metallic salts. Inorganic pigments are usually oxides or sulphides of one or more metals. Inorganic pigments include for instance but are not limited to: -blue inorganic pigments: oaluminum pigments, including ultramarine: a complex naturally occurring pigment of sulfur- containing sodio-silicate (Nag_10AI6$i602452_4); ocobalt pigments, including Cobalt Blue and Cerulean Blue:cobalt(ll) stannate; ocopper pigments, including Egyptian Blue: a synthetic pigment of calcium copper silicate (CaCuSi4010) and Han Blue BaCuSi4010; and oiron pigments, including Prussian Blue: a synthetic pigment of ferric hexacyanoferrate (Fe7(CN)18); -green inorganic pigments ocadmium pigments, including EBM.|nfra.Shared.Etex wiki Cadmium i ments Viridian: a dark green pigment of hydrated um(|||) oxide (Cr203) and Cadmium Green: a light green pigment consisting of a e of m Yellow (CrS) and Viridian (Cr203); ochromium pigments, including Chrome Green; r pigments, including Paris Green: copper(|l) acetoarsenite (Cu(C2H302)2-3Cu(AsOZ)2) and Scheele‘s Green (also called s Green): copper arsenite CUHASOg; -yellow inorganic pigments oarsenic pigments including Orpiment l monoclinic arsenic sulfide (A5253); ocadmium pigments including Cadmium Yellow:cadmium sulfide (CdS); ochromium pigments including Chrome Yellow: natural pigment of |ead(||) chromate (PbCrO4); ocobalt pigments including in (also called Cobalt ): Potassium cobaltinitrite lNozle; oiron pigments including Yellow Ochre: a naturally occurring clay of hydrated iron oxide (Fe203.H20); olead pigments including Naples ; otitanium pigments including Titanium Yellow; otin pigments including Mosaic gold: stannic sulfide (SnSz); -orange inorganic pigments um ts including Cadmium Orange: an intermediate between m red and cadmium yellow: cadmium elenide; ochromium pigments including Chrome Orange: a lly occurring pigment mixture composed of lead(||) chromate and lead(l|) oxide. (PbCrO4 + PbO) -red nic pigments ocadmium pigments ing Cadmium Red: cadmium selenide (CdSe); wo 2016/146423 10 oiron oxide ts including Sanguine, Caput Mortuum, Oxide Red, Red Ochre: anhydrous Fe203, Burnt Sienna: a pigment produced by heating Raw , Venetian Red; olead ts ) including Red Lead: lead tetroxide, Pb304, omercury pigments (toxic) including Vermilion: Synthetic and natural pigment: Occurs naturally in mineral cinnabar; Mercuric sulfide (HgS); -brown inorganic pigments oclay earth pigments (naturally formed iron oxides) including Raw Umber: A natural clay pigment ting of iron oxide, manganese oxide and aluminum oxide: Fe203 + MnOz + nHZO + Si + NO; Raw Sienna: a lly occurring yellow-brown pigment from limonite clay; -b|ack inorganic pigments n pigments including Carbon Black, Ivory Black, Vine Black, Lamp Black; olron Pigments including Fe304; oTitanium pigments: Titanium Black; -grey inorganic ts oPayne's grey: a mixture of Ultramarine and black or of Ultramarine and Sienna; The term ”organic pigment” as used herein refers to synthetic organic coloring compounds, which are carbon based molecules manufactured from petroleum compounds, acids, and other chemicals, usually under intense heat or pressure.
Organic pigments include for instance but are not limited to: w organic pigments: Yellow Lakes, which are transparent pigments used as a yellow to cover other inks but not hide them, zine Yellow Lake (also called FD&C Yellow No. 5 and used as a dyestuff in foods), Hansa Yellows, and Diarylide Yellows, which are the most common yellow pigments used in printing inks.
Fluorescent Yellow is also used in some specialty applications. Organic Yellows are commonly used to replace Chrome s; -orange organic pigments: The most common orange pigment is Diarylide Orange, a transparent yet not very fast-to-light pigment. Other assorted orange materials tend to be used where orange pigments are necessary, and include DNA Orange, Pyrazolone Orange, Fast Orange F26, Benzimidazolone Orange HL, and Ethyl Lake Red C; -red organic pigments: Reds include Para Reds, ine Red, [“Permanent Red "R"], Carmine F.B., Naphthol Reds and Rubines, ent Red FRC, Bordeaux FRR, Rubine Reds, Lithol Reds, BON Red, Lithol Rubine 4B, BON Maroon, Rhodamine 66, Lake Red C, BON Arylamide Red, Quinacrinone Magentas, Copper wo 2016/146423 11 Ferrocyanide Pink, Benzimidazolone Carmines and Reds, Azo Magenta G, Anthraquinone Scarlet, and Madder Lakes; -b|ue c pigments: 'Blues'. Blues include Phthalocyanine Blues (the most commonly used group of organic blue pigments), PMTA Victoria Blue, Victoria Blue CFA, Ultramarine Blue, lndanthrene Blue, Alkali Blues, and Peacock Blue; -violet organic pigments: Violets overlap slightly with some of the bluer reds (such as Benzimidazolone Bordeaux HF 3R (see Benzimidazolone Carmines and Reds), and also include such pigments as PMTA Rhodamine, PMTA Violet (also known as Methyl Violet), Dioxazine Violet (RL) Carbazole Violet, Crystal Violet, Dioxazine Violet B, and Thioindigoid Red; -green organic pigments: A common series of greens are the Phthalocyanine Greens as well as the PMTA Greens; -brown organic pigments: Brown pigments include Diazo Brown and Benzimidazolone Brown HFR; The terms der pigment” or r pigment” as used herein refers to any pigment (as d ) having a low refractive index or opacity and therefore not ing color or hiding power to a substance. Extender or filler pigments appear transparent in a paint or ink. Extender pigments have significant positive effects on various properties of the paint for example, as described further below, mica can improve the water ance of a film due to its "platy" particle shape and tendency to orient itself in overlapping layers horizontal to the surface. Extender pigments or filler pigments for ce include but are not limited to Barium te, Calcium Carbonate, Magnesium Silicate Mica, Kaolin (China Clay), ine, Talc, Silica / Quartz, Alumina Hydrate, Kalunite, Pumice, Bentonite, Vermiculite, and Glass Beads.
The term ”UV-curable” or ”UV-cured” refers to a composition that can polymerize upon application of UV irradiation. Typically, this at least implies the presence of photo-polymerizable monomers or oligomers, together with photoinitiators and/or photosensitizers.
The term ”solvent-based ink” as used herein refers to an ink comprising pigments in a colloidal suspension in a solvent other than water. The main t in solvent-based inks is typically one or more volatile organic compounds, such as but not limited to l, ethyl acetate, ne glycol, glycol esters, hexane, isopropanol, nol, methyl ethyl ketone, mineral spirits, naphthas, normal propyl acetate, normal propyl alcohol, toluene and xylene. wo 2016/146423 12 The term ”water-based ink” as used herein refers to an ink comprising ts in a dal suspension in water. All though the main solvent in water-based inks is water, there can also be other co-solvents present. These co-solvents typically are volatile organic compounds, such as but not limited to ethanol, ethyl acetate, ethylene glycol, glycol esters, hexane, panol, nmethanol, methyl ethyl ketone, mineral spirits, naphthas, normal propyl acetate, normal propyl alcohol, toluene and xylene.
The terms ”UV-cured ink” or ”UV-curable ink” as interchangeably used herein refer to an ink composition that can polymerize upon application of UV irradiation. A ”UV-cured ink” or "UV-curable ink” as used herein refers to an ink composition which does not comprise a solvent but rather comprises one or more pigments embedded in a matrix of photo-polymerizable monomers and/or oligomers, and photoinitiators and/or photosensitizers.
The invention will now be further explained in detail with nce to various embodiments. It will be tood that each embodiment is ed by way of example and is in no way limiting to the scope of the invention. In this respect, it will be clear to those skilled in the art that various cations and variations can be made to the present invention without departing from the scope or spirit of the invention. For instance, es illustrated or described as part of one embodiment, can be used in another embodiment to yield a still further embodiment. Thus, it is intended that the present invention covers such modifications and variations as encompassed within the scope of the appended claims and equivalents f.
The present invention provides fiber cement products having ed properties with regard to the capability of being subjected to ink—jet printing processes. In particular, up to now, the m has always existed that printing, and in particular ink-jet printing with solvent-based or water-based inks, was very difficult, if not impossible, to achieve on fiber cement surfaces per se. This is unlike other materials, such as ceramics or glass, which are easily provided with informative or decorative patterns by ink-jet printing. The main reason for this difference is that fiber cement compositions have the inherent structural properties of a high degree of heterogeneity and surface ess, inevitably causing issues of ink bleeding, a phenomenon that is terized by jagged print edges and even undesirable ink stains around or adjacent to the printed patterns or prints.
In order to solve these problems, the present inventors have developed novel and improved fiber cement products that can be ink-jet printed with ional solvent-based or water-based pigmented inks with high efficiency and performance. wo 2016/146423 13 In particular, it was found that by coating fiber cement products with a coating composition, wherein the amount of pigments versus the total amount of solids (e.g. pigments and solid binder ents) in the coating composition (i.e. the so-called ”pigment volume concentration” (PVC) of the coating composition) is higher than about 40%, ink-jet printing can be performed without encountering any of the above—stated issues.
The inventors believe that this observed beneficial effect is due to the fact that the porosity of a coating layer having a PVC of at least about 40% is higher than the porosity of outer surfaces of known coated fiber cement products. This sed porosity results in the fact that the coating layer applied to the fiber cement products is able to absorb and capture the ink ition relatively quickly after ink-jetting, thereby preventing this ink composition from being able to spread out over the surface of the coated fiber cement product. ingly, the fiber cement products according to the present invention are characterized by sing a pigmented coating layer with a PVC of at least about 40%, thereby achieving the effect of obtaining both a uniform surface and a homogenous and high porosity. This effect has the advantage that, when these products are ted to ink—jet printing with a solvent-based or with a water-based ink, a homogeneous and equal print quality all over the surface of the fiber cement product is obtained.
Thus, in a first aspect, the present ion provides fiber cement products suitable for being ted to inkjet—printing, which fiber cement products at least se on at least part of their outer surface one or more cured layers of a first g composition, which composition at least comprises a binder and a pigment and is characterized by a pigment volume concentration (PVC; as defined herein) of higher than about 40%.
In the context of the present invention, fiber cement products are to be tood as cementitious products comprising cement and synthetic (and optionally natural) fibers. The fiber cement products are made out of fiber cement slurry, which is formed in a so-called ”green” fiber cement product, and then cured.
Dependent to some extent on the curing process used the fiber cement slurry lly comprises water, process or rcing fibers which are synthetic organic fibers (and optionally also natural organic fibers, such as cellulose), cement (e.g. Portland cement), limestone, chalk, quick lime, slaked or ed lime, ground sand, silica sand flour, quartz flour, amorphous silica, condensed silica fume, microsilica, kaolin, metakaolin, wollastonite, mica, perlite, vermiculite, aluminum hydroxide (ATH), pigments, anti-foaming agents, flocculants, and/or other additives. Optionally color additives (e.g. pigments) are added, to obtain a fiber cement t which is so-called colored in the mass. wo 2016/146423 14 In particular embodiments, the fiber cement products of the invention have a thickness of n about 4 mm and about 200 mm, in particular between about 6 mm and about 200 mm, more in particular between about 8 mm and about 200 mm, most in particular between about 10 mm and about 200 mm.
The fiber cement products as referred to herein include roof or wall covering products made out of fiber cement, such as fiber cement s, fiber cement boards, flat fiber cement sheets, corrugated fiber cement sheets and the like. According to particular embodiments, the fiber cement products according to the invention can be roofing or facade elements, flat sheets or corrugated sheets.
According to further particular embodiments, the fiber cement ts of the present invention are fiber cement sheets.
The fiber cement products of the present invention comprise from about 0.1 to about 5 weight%, such as particularly from about 0.5 to about 4 weight% of fibers, such as more particularly between about 1 to 3 weight% of fibers with respect to the total weight of the fiber cement product.
According to particular ments, the fiber cement products according to the invention are characterized in that it comprises fibers chosen from the group consisting of cellulose fibers or other inorganic or organic reinforcing fibers in a weight % of about 0.1 to about 5. In particular embodiments, organic fibers are selected from the group consisting of polypropylene, polyvinylalcohol polyacrylonitrile fibers, polyethyelene, cellulose fibres (such as wood or annual kraft pulps), polyamide fibers, polyester fibers, aramide fibers and carbon fibers. In r particular ments, inorganic fibers are selected from the group consisting of glass fibers, rockwool fibers, slag wool fibers, wollastonite fibers, ceramic fibers and the like. In further particular embodiments, the fiber cement products of the present invention may se fibrils s, such as for example but not d to, polyolefinic fibrils fibrids % in a weight % of about 0.1 to 3, such as ”synthetic wood pulp”.
According to certain particular embodiments, the fiber cement products of the present invention comprise 20 to 95 weight % cement as hydraulic binder.
Cement in the products of the invention is selected from the group consisting of Portland , cement with high alumina t, Portland cement of iron, trass-cement, slag cement, plaster, calcium silicates formed by autoclave treatment and combinations of particular s. In more ular embodiments, cement in the products of the invention is Portland cement. wo 2016/146423 15 According to particular embodiments, the fiber cement products according to the invention optionally comprise further components. These further components in the fiber cement products of the present invention may be selected from the group consisting of water, sand, silica sand flour, condensed silica fume, ilica, fly-ashes, amorphous silica, ground quartz, the ground rock, clays, pigments, kaolin, metakaolin, blast furnace slag, carbonates, puzzolanas, aluminium hydroxide, wollastonite, mica, perlite, calcium carbonate, and other additives (e.g. colouring additives) etc. It will be understood that each of these components is present in suitable amounts, which depend on the type of the specific fiber cement product and can be determined by the person skilled in the art.
In particular embodiments, the total quantity of such r components is preferably lower than 70 weight % ed to the total initial dry weight of the composition.
Further additives that may be present in the fiber cement products of the present invention may be selected from the group consisting of dispersants, plasticizers, antifoam agents and flocculants. The total quantity of additives is preferably between about 0.1 and about 1 weight % compared to the total l dry weight of the composition.
The first coating composition ed on the surface of the fiber cement products of the invention at least comprises a binder and a t.
Binders and pigments for coating compositions are known in the art and are not critical to the invention as long as the coatings are terized by a pigment volume tration (PVC; as defined herein) of higher than about 40%. In particular embodiments, the first g layer provided on the surface of the fiber cement products of the invention is not curable by radiation or by chemical crosslinking.
Suitable binder compositions for use as a first coating layer in the products of the t invention are for example binders obtained by aqueous free radical or ionic emulsion polymerization. For ce, suitable binders for use as a first coating layer in the products of the present ion are acrylic and/or methacrylic (co-) polymers. Such c and/or rylic olymers are usually prepared by aqueous radically ted emulsion polymerization of esters of acrylic acid and/or methacrylic acid with C1-C12 alkanols as well as a minor amount of acrylic and/or methacrylic acid as monomers. In this regard, preference is given in particular to esters of acrylic and methacrylic acid with C1-C8 alkanols.
Thus, in particular embodiments, the binding polymer may be provided as a pure acrylic, a styrene acrylic, a fluoropolymer acrylic, a urethane acrylic, a vinyl acrylic and/or an acrylated ethylene vinyl acetate copolymer or combinations thereof. The polymer may be derived from at least one acrylic wo 2016/146423 16 monomer, such as an acrylic acid, c acid ester, methacrylic acid, and methacrylic acid ester.
Typically, the binding polymer is derived from one or more monomers, examples of which include polyvinylidine fluoride, styrene, methyl styrene, vinyl chloride, acrylonitrile, methacrylonitrile, ureido methacrylate, vinyl acetate, vinyl esters of branched tertiary monocarboxylic acids, itaconic acid, crotonic acid, maleic acid, fumaric acid, ethylene, and C4—C8 conjugated dienes.
In certain particular embodiments, the g polymer of the first coating composition of the products of the invention is selected for degree of hydrophobicity and/or particle size. Polymeric particles for compositions described herein are typically in the nanometer size range, while polymeric particles in other tional paint formulations range in size from 50 to 250 ters.
The binder of polymeric particles is typically provided at a weight percent (wt%) of less than 60%, preferably at a range at or about 20-55% for a water-based first g provided herein.
The first coating composition provided on the surface of the fiber cement products of the invention further comprises one or more pigments so as to obtain a t volume concentration (PVC, as defined herein) of at least 40%. Pigments provide color, hiding, and/or are t as ers.
Pigments include those in the form of titanium oxide, iron oxides, m carbonate, spinell pigments, titanates, clay, aluminum oxide, silicon dioxide, magnesium oxide, magnesium silicate, barium metaborate monohydrate, sodium oxide, potassium oxide, talc, barytes, zinc oxide, zinc e and mixtures thereof or organic alkaliresistant pigments such as phtalocyanines and azo compounds.
In particular embodiments, the first coating composition ing to the invention comprises one or more prime pigments (as defined herein) such that an effective pigment volume concentration (effective PVC, as defined herein) of at least 40% is achieved. As defined herein, the volume percentage of pigments other than prime pigments, such as but not limited to the volume of extender pigments or filler pigments (as defined herein), is not ed in the calculation of the effective pigment volume concentration. The effective PVC of the first coating composition is therefore calculated only by taking into consideration the volume of prime ts versus the total volume of prime pigment(s) and solid binder(s) in the ition. The inventors have found that when prime pigments are present in the first coating composition in an effective pigment volume concentration of at least 40%, extremely good ng results are achieved.|n particular embodiments, the one or more prime pigments included in the first coating composition ed on the surface of the fiber cement products of the invention are one or more white colored pigments, wo 2016/146423 17 such as but not d to antimony pigments, barium pigments, lead pigments, titanium pigments, and zinc pigments. In further particular embodiments, the one or more prime pigments included in the first coating layer ed on the surface of the fiber cement products of the invention are one or more white colored pigments, such as but not limited to stibous oxide (Antimony White, Sb203), basic plumbous carbonate (PWl, Cremnitz White, (PbC03)2-Pb(OH)2), c oxide (PW6, Titanium White, TiOz), and zinc oxide (PW4, Zinc White, ZnO).
In r particular embodiments, the prime pigments suitable for use in the first coating ition in the processes and products of the present invention so as to obtain an effective PVC of at least 40% are one or more white prime pigments. In yet further ular embodiments, the prime pigments suitable for use in the first coating composition in the processes and products of the present invention at least comprise titanium dioxide (TiOZ).
In particular embodiments of the present invention, the pigments suitable for use in the first coating composition in the processes and products of the present invention are essentially alkali-resistant, i.e. resistant to a pH of about 8 or higher, such as resistant to a pH of about 9 or higher, such as resistant to a pH of about 10 or , such as resistant to a pH of about 11 or higher, more particularly resistant to a pH of higher than about 12 or higher than about 13.
The coating composition used for ing the first coating layer on the surface of the fiber cement products of the invention r comprises, besides the polymeric binders and pigments, also usual auxiliaries, e.g. s, cing agents, anti-blistering agents, rheology modifiers, surfactants, g agents, viscosity modifiers, dispersants, defoamers, preservatives and hydrophobisizers, biocides, fibers, colorants, waxes, perfumes and co-solvents and other usual constituents. Examples of suitable fillers are aluminosilicates, silicates, alkaline-earth metal carbonates, preferably calcium carbonate in the form of calcite or lime, dolomite, and also aluminum silicates or magnesium silicates, e.g. talc.
Accordingly, the coating composition used for providing the first coating layer on the surface of the fiber cement products of the invention further may comprise one or more film-forming aids or coalescing agents. Suitable firm-forming aids or coalescing agents e glycol ethers (e.g., ts from Eastman Chemical Company, Kingsport, Tenn., including DB, EB, PM, EP) and ester alcohols (e.g., ts from Eastman Chemical Company, Kingsport, Tenn., ing Texanol), as examples. wo 2016/146423 18 In addition to the above, the coating composition used for providing the first coating layer on the surface of the fiber cement products of the invention further may comprise one or more additives included for properties, such as regulating flow and leveling, sheen, foaming, yellowing, ance to stains, cleaner, burnish, block, mildew, dirt, or corrosion, and for retaining color and gloss.
The emulsion rization of the coating composition es the use of surfactants as stabilizers.
Non-ionic surfactants are preferred. Alcohol ethoxylates are particularly preferred. Conventional coatings with a hydroxyl number (measured according to ISO 4629) of at least 1 are preferred.
Hydroxyl numbers of at least 1,5 are particularly preferred.
Examples of suitable surface-active dispersing or wetting agents include those available under the trade designations, such as STRODEX"VI KK-95H, STRODEX“VI PLFlOO, XTM PKOVOC, XT'VI LFK LFK70, STRODEXTM SEK50D, and DEXTROL® OC50 (trademarks of Dexter Chemical LLC, Wilmington, Del.); HYDROPALA TM 100, HYDROPALATTM 140, HYDROPALAT1M 44, HYDROPALATTM 5040 and ALATTM 3204 marks of Cognis Corp., Monheim, Germany); LIPOLINTM A, DISPERSTM 660C, DISPERSTM 715W (trademarks of Evonik a GmbH, Germany); BYK® 156, BYK® 2001 and ERRA"VI 207 marks of Byk-Cera, Germany); DISPEXTM A40, DISPEXTM N40, DISPEXTM R50, DISPEXTM G40, DISPEXTM GA40, EFKA® 1500, EFKA® 1501, EFKA® 1502, EFKA® 1503, EPKATM 3034, EFKA® 3522, EFKA® 3580, EFKATM 3772, EFKA® 4500, EFKA® 4510, EFKA® 4520, EFKA® 4530, EFKA® 4540, EFKA® 4550, EFKA® 4560, EFKA® 4570, EFKA® 6220, EFKA® 6225, EFKA® 6230 and EFKA® 6525 (trademarks of Ciba Specialty Chemicals, Basil, Switzerland); SURFYNOLTM CT-111, SURFYNOLTM CT- 121, SURFYNOLTM CT-131, SURFYNOLTM CT-211, SURFYNOL‘” CT 231, SURFYNOLTM CT-136, SURFYNOLTM , SURFYNOLTM CT-171, SURFYNOLTM CT—234, CARBOWETTM DC-01, SYRFYNOLTM 104, OLTM PSA-336, SURFYNOL‘”I 420, OLTM 440, ENVIROGEMTM AD-Ol and ENVIROGEMTM AE01 (trademarks of Air Products and Chemicals, Inc, Lehigh Valley, Pa.); TAMOLTM 1124, TAMOLTM 165A, TAMOTM 850, TAMOLTM 681, TAMOLTM 731 and TAMOLTM SG—1 (trademarks of Rohm & Haas Company, Philadelphia, Pa.); IGEPALTM CO-210, IGEPALTM CO-430, TM CO-630, IGEPALTM CO-730, and |GEPALTM CO-890 (trademarks of Rhodia |nc., Cranbury, N.J.); T—DETW‘ and T-MULZTM (trademarks of Harcros Chemicals Inc., Kansas City, Kans.). es of suitable defoamers include but are not limited to BYKT'V' 018, BYK® 019, BYK® 020, BYK® 022, BYK® 025, BYK® 032, BYK® 033, BYK® 034, BYK® 038, BYK® 040, BYK® 060, BYK® 070 and BYK® 077 (trademarks of Byk-Cera, Germany); SURFYNOLTM DF—695, SURFYNOLTM DF-75, SURFYNOLTM DF— 62, SURFYNOLTM DF-40 and SURPYNOLTM DF-110D (trademarks of Air Products and Chemicals, Inc., Lehigh Valley, Pa.); DEE FO® 3010A, DEE FO® 2020E/50, DEE FO® 215, DEE FO® 806-102 and wo 2016/146423 19 AGITANTM 3lBP, AGITANTM 731 (trademarks of Munzing Chemie GmbH, Germany); EFKA® 2526, EFKA® 2527 and EFKA® 2550 (trademarks of Ciba Specialty Chemicals, Basil, Switzerland); TEGO® Foamex 8050, TEGO® Foamex 1488, TEGO® Foamex 7447, TEGO® Foamex 800, TEGO® Foamex 1495 and TEGO® Foamex 810 (trademarks of Evonik Degussa GmbH, Germany); FOAMASTER® 714, FOAMASTER® A410, TER® 111, FOAMASTER® 333, FOAMASTER® 306, FOAMASTER® SA-3, FOAMASTER® AP, DEHYDRAN® 1620, DEHYDRAN® 1923 and DEHYDRAN® 671 (trademarks of Cognis Corp., Monheim, Germany).
A thickener and rheology modifier is included for ing spreading, handling, and application of the coating composition, when desired. Preferably, the thickener is a non-cellulosic ner clue to preferred non moisture swelling characteristics. Associative thickeners such as, for example, hydrophobically modified alkali swellable acrylic copolymers and hobically modified urethane copolymers generally impart more Newtonian rheology to emulsion paints compared to conventional thickeners such as, for example, osic thickeners. Cellulosic thickeners perform by swelling in water and are undesirable in several preferred embodiments as further described herein. entative examples of suitable associative thickeners used herein include AcrysolTM RM SW and AcrysolTM RM-2020 NPR (trademarks of Rohm & Haas y, Philadelphia, Pa.).
Coating compositions used for providing the first coating layer on the surface of the fiber cement products of the invention further may also comprise other additives, such as plasticizer, anti-foam agent, pH adjuster (amine or ammonia), g color, and biocide. Such g additives are typically present in the formulation in an amount from about 0 to about 18% by weight or up to 18 by weight and from about 1 to about 15% by weight based on the total weight of the formulation.
In addition, coating itions used for providing the first g layer on the surface of the fiber cement products of the invention may include one or more functional extenders to increase ge, reduce cost, achieve durability, alter appearance, control rheology, and/or influence other desirable properties. Examples of functional extenders include, for example, barium sulphate, aluminum silicate, magnesium silicate, barium sulphate, calcium carbonate, clay, gypsum, silica, and talc.
In several ments, it will be ble to e a biocide or mildewicide, or fungicide to the coating compositions used for providing the first coating layer on the surface of the fiber cement products of the ion. Preferred examples include but are not limited to barium sulphate, ROZONETM 2000, BUSANTM 1292, BUSAN 11M1, BUSAN 11M2, and BUSAN 1440 (trademarks of Rohm & Haas Company, elphia, Pa., or its subsidiaries or affiliates); POLYPHASE® 663 and wo 46423 20 POLYPHASE® 678 (trademark of Troy Chemical Corporation, Newark, NJ); and KATHONT'" LX (trademark of Rohm & Haas y, Philadelphia, Pa., or its subsidiaries or affiliates.) Coating compositions used for providing the first coating layer on the surface of the fiber cement products of the invention are typically ated to include at least about 50% by volume of dry solids. In particular embodiments, the balance of the coating compositions used for providing the first coating layer on the surface of the fiber cement products of the invention is water. Water is present with the binding polymer when provided in a dispersion and in other components of the coating itions. Water is generally also added separately.
In ular embodiments, the first coating composition of the fiber cement products suitable for being ted to inkjet-printing is characterized by a pigment volume concentration (PVC, as defined ) of at least about 40%, particularly between about 40% and about 80%, such as n about 40% and about 70%, more particularly between about 40% and 60%. In further particular embodiments, the first coating composition of the fiber cement products suitable for being subjected to inkjet-printing is characterized by a pigment volume concentration of at least about 50%, more ularly between about 50% and about 80%, such as between about 50% and about 70%, most ularly between about 50% and about 60%. In yet further particular embodiments, the first coating composition of the fiber cement products suitable for being subjected to inkjet- printing is characterized by a pigment volume concentration of between about 40% and about 50%, more particularly between about 45% and about 50%, such about 46%. In further particular embodiments, the cured first coating layer of the fiber cement products suitable for being ted to inkjet-printing is characterized by a pigment volume concentration (PVC) of at least about 40%, such as at least about 45%, in particular at least about 50%, such as at least about 55%, more particularly at least about 60%, such as at least about 65%, most particularly at least about 70%, such as at least about 75%, or at least about 80%.
In yet further particular embodiments, the first coating composition of the fiber cement products suitable for being subjected to inkjet-printing is characterized by an effective pigment volume tration (effective PVC, as defined herein) of at least about 40%, particularly between about 40% and about 80%, such as between about 40% and about 70%, more particularly between about 40% and 60%. In further particular embodiments, the first coating ition of the fiber cement products suitable for being subjected to inkjet-printing is characterized by an effective pigment volume concentration of at least about 50%, more particularly between about 50% and about 80%, such as between about 50% and about 70%, most particularly n about 50% and about 60%. In yet further ular embodiments, the first coating composition of the fiber cement products wo 2016/146423 21 le for being subjected to inkjet-printing is characterized by an effective pigment volume concentration of between about 40% and about 50%, more particularly between about 45% and about 50%, such about 46%. In further particular embodiments, the cured first coating layer of the fiber cement products le for being subjected to inkjet-printing is characterized by an effective pigment volume concentration (PVC) of at least about 40%, such as at least about 45%, in particular at least about 50%, such as at least about 55%, more particularly at least about 60%, such as at least about 65%, most particularly at least about 70%, such as at least about 75%, or at least about 80%.
In particular embodiments, the minimum film forming temperature during the drying of the one or more layers of the first coating composition of the fiber cement products suitable for being subjected to -printing is below about 60°C.
In further particular embodiments, the first coating composition used for providing the one or more first coating layers on the surface of the fiber cement products of the invention ses as liquid component essentially water and, if desired, an organic liquid miscible with water, for example an alcohol. The first coating composition is applied as a wet coating weight in the range from about 30 to about 500 g/m2, in particular from about 40 to about 300 g/m2, more in particular from about 50 to about 500 g/m2, in a known manner, for example by ng, trowelling, knife application, brushing, rolling, curtain coating or pouring onto the cement bonded board, or by a combination of one or more applications. In particular embodiments, the first coating composition is preferably applied by spraying.
Thus the coating compositions described herein can be applied to a surface of a fiber cement product using a brush, blade, roller, sprayer (e.g., sisted or airless, electrostatic), vacuum coater, curtain coater, flood coater or any suitable device that promotes an even distribution of the coating composition over the surface, even if the e is damaged, worn, or cracked. The coating itions may be applied to provide a smooth surface, colored surface or textured e. A portion or an entire surface of the fiber cement product may be coated at one time. In on or as an alternative, all or a portion of the surface may be coated more than one time to achieve the desired thickness, gloss, and/or surface effect. The amount of coverage obtained by a quantity of the composition will vary depending on the desire and/or condition of the surface to be d and the ess of the coating applied.
In a second aspect, the present ion es processes for producing a fiber cement product suitable for being subjected to ink—jet printing. wo 2016/146423 22 A first step in these methods of the invention is providing a fiber cement product, which can be performed according to any method known in the art for ing fiber cement products, essentially consisting of at least water, cement and fibers.
In this step, a fiber cement slurry can first be prepared by one or more sources of at least cement, water and fibers. In certain specific embodiments, these one or more sources of at least cement, water and fibers are operatively connected to a continuous mixing device ucted so as to form a itious fiber cement slurry. In particular embodiments, when using cellulose fibers or the equivalent of waste paper fibers, a m of about 3%, such as about 4%, of the total slurry mass of these cellulose fibers is used. In further particular embodiments, when exclusively cellulose fibers are used, between about 4% to about 12%, such as more particularly, between about 7% and about %, of the total slurry mass of these cellulose fibers is used. If cellulose fibers are replaced by short mineral fibers such as rock wool, it is most ageous to replace them in a proportion of 1.5 to 3 times the weight, in order to maintain approximately the same content per volume. In long and cut fibers, such as glass fiber s or synthetic high-module fibers, such as polypropylene, polyvinyl acetate, polycarbonate or acrylonitrile fibers the proportion can be lower than the proportion of the replaced ose fibers. The fineness of the fibers (measured in Shopper-Riegler degrees) is in principle not critical to the processes of the invention. Yet in particular embodiments, it has been found that a range between about 15 DEG SR and about 45 DEG SR can be particularly advantageous for the processes of the invention.
Once a fiber cement slurry is ed, the manufacture of the reinforced cement products can be executed according to any known procedure. The process most widely used for cturing fiber cement products is the Hatschek process, which is performed using a modified sieve cylinder paper making machine. Other manufacturing processes include the Magnani s, injection, extrusion, flow-on and others. In ular embodiments, the fiber cement products of the present invention are provided by using the ek process. The ”green” or uncured fiber cement product is optionally post-compressed usually at pressures in the range from about 22 to about 30 MPa to obtain the desired density.
The processes according to the present ion may further comprise the step of cutting the fiber cement products to a predetermined length to form a fiber cement product. Cutting the fiber cement products to a predetermined length can be done by any technique known in the art, such as but not limited to water jet cutting, air jet cutting or the like. The fiber cement products can be cut to any desirable length, such as but not limited to a length of between about 1 m and about 15 m, such as wo 2016/146423 23 between about 1 m and about 10 m, more particularly between about 1 m and about 5 m, most particularly between about 1 m and about 3 m.
It will be understood by the skilled person that the processes of the present invention may further comprise additional steps of processing the ed fiber cement products.
For instance, in certain particular embodiments, during the processes of the present invention, the fiber cement slurry and/or the fiber cement products may undergo various intermediate treatments, such as but not limited to treatment with one or more hobic agents, treatment with one or more flocculants, additional or intermediate pressing steps, etc.
As soon as the fiber cement products are formed, these are trimmed at the lateral edges. The border strips can optionally be recycled through immediate mixing with the ed water and directing the mixture to the mixing system again.
In particular embodiments, the ed fiber cement products are cured. Indeed, after production, fiber cement products can be allowed to cure over a time in the environment in which they are formed, or alternatively can be subjected to a thermal cure (e.g. by autoclaving or the like).
In further particular ments, the ”green” fiber cement product is cured, lly by curing to the air (air cured fiber cement products) or under pressure in presence of steam and increased temperature lave cured). For autoclave cured products, typically sand is added to the original fiber cement slurry. The autoclave curing in principle results in the ce of 11.3 A (angstrom) Tobermorite in the fiber cement product.
In yet r particular embodiments, the ”green” fiber cement product may be first pre-cured to the air, after which the pre-cured product is further air-cured until it has its final strength, or autoclave-cured using pressure and steam, to give the product its final properties.
In particular embodiments of the present invention, the processes may further comprise the step of lly drying the obtained fiber cement products. After curing, the fiber cement product being a panel, sheet or plate, may still comprise a significant weight of water, present as humidity. This may be up to 10 even 15 %w, expressed per weight of the dry t. The weight of dry t is d as the weight of the product when the product is subjected to drying at 105°C in a ventilated furnace, until a constant weight is obtained.
In certain embodiments, the fiber cement product is dried. Such drying is done preferably by air drying and is terminated when the weight percentage of humidity of the fiber cement product is less wo 2016/146423 24 than or equal to 8 weight %, even less than or equal to 6 weight %, expressed per weight of dry product, and most ably between 4 weight % and 6 weight %, inclusive.
The next step in the methods of the invention for producing fiber cement products le for being subject to ink-jet printing comprises applying to at least part of the outer surface of the fiber cement product, one or more layers of a first g composition, which composition at least ses a binder and a t and is characterized by a t volume concentration of higher than about 40%. Further characteristics of the first coating composition are as defined and described above for the products according to the invention.
A further step in the methods of the invention for producing fiber cement products suitable for being t to ink-jet printing comprises curing the one or more layers of the first coating composition so as to obtain a fiber cement product suitable for being subjected to inkjet-printing. In principle, any suitable curing step known in the art can be d for film-forming, drying and hardening the one or more layers of the first coating composition. In particular embodiments, the first coating composition is dried at room temperature or preferably at elevated temperature, for example from 40 to 150 °C. The dry thickness of the first conventional coating is generally from about 20 Pm to about 100 Pm, preferably from about 50 Pm to about 70 Pm.
In a third aspect, the present invention provides processes for producing an ink-jet printed fiber cement product.
A first step in these processes comprises providing a fiber cement t according to the invention, which is le for being subjected to ink—jet printing as described herein, which product comprises on at least part of its outer surface one or more cured layers of a first coating composition at least comprising a binder and a pigment, wherein the first coating composition is characterized by a pigment volume concentration of higher than about 40%.
Before the ink print is applied, the first coating composition is dried at room ature or preferably at elevated temperature, for example from about 40°C to about 150°C. The dry thickness of the first coating composition is generally from about 20 um to about 100 um, preferably from about 50 um to 70 pm.
A next step in the processes for ing an ink—jet printed fiber cement product ing to the invention comprises applying an ink print on top of the one or more cured layers of the first coating composition by means of an inkjet-printer. wo 2016/146423 25 The step of applying an ink print on the one or more cured layers of a first coating composition of the fiber cement ts according to the invention can be done by any known ink—jet based process using an ink, at least comprising: a liquid vehicle and one or more pigments.
Thus, in particular embodiments of the invention, the ink is not a UV-cured ink or a UV-curable ink (as defined herein), since these inks do not comprise a liquid vehicle.
The ink is characterized by several features. It has a viscosity which enables it to be printed by ink-jet printing, typically a viscosity (at room temperature) of below about 50 cps, or a viscosity at jetting temperature (the temperature present at the ink printhead during printing) of below about 20 cps, most preferably below about 15 cps, most preferably between about 10 and about 13 cps. The term ”jetting temperature” refers to the temperature of the ink at the print head and is typically about °C to about 60°C, preferably about 35°C to about 45°C. The viscosity of the inks can for instance be measured by a Brookfield DV—II+ viscometer, with small sample adapter, while using spindle S18, at 80 rpm.
In ular embodiments, the ink compositions suitable for use in the processes and products of the t invention essentially comprise sub-micron particles of a heat ant inorganic pigment.
Preferably, the average size of the inorganic pigments is less than about 1.2um, preferably less than about 0.9um, more able less than about 0.7um, most preferably, the average size of the inorganic pigment les is below about 550 nanometers (0.55%). The term ”inorganic pigment” refers to a t, which is at least partially inorganic. By a preferred embodiment the inorganic pigments are metal oxides, which are a priori present in a form le for giving the desired properties. Various metal oxides may be used such as chromium oxide, copper oxide, mix oxides CuCr203 oxide (for black color), Red iron oxide (Pigment Red 101), Nickel antimony titanium yellow rutile nt yellow 53), Cobalt Aluminate blue spinel (Pigment blue 28), etc.
In particular ments, wherein the color of the pigment in the ink compositions is white and thus the pigment is a white pigment (such as for example titanium dioxide (Ti02)), the average size of the pigment les is between about 0.17pm to about 0.25pm.
In particular ments of the present invention, the ink compositions suitable for use in the processes and products of the present invention are essentially alkali-resistant, i.e. resistant to a pH of about 8 or higher, such as resistant to a pH of about 9 or higher, such as ant to a pH of about or higher, such as resistant to a pH of about 11 or higher, more particularly resistant to a pH of higher than about 12 or higher than about 13. wo 2016/146423 26 In particular embodiments of the present invention, the pigments in the ink compositions suitable for use in the processes and products of the present invention are essentially alkali-resistant, i.e. resistant to a pH of about 8 or higher, such as resistant to a pH of about 9 or higher, such as resistant to a pH of about 10 or higher, such as resistant to a pH of about 11 or higher, more particularly resistant to a pH of higher than about 12 or higher than about 13.
The liquid e present in the inks suitable for use in the present invention is liquid at room temperature of about 15°C to about 28° C. According to certain embodiments, ”solvent-based ink” is composed of at least one organic solvent (or a combination of l organic ts).
Alternatively, according to other ments, -based ink” is composed of a water-based solution.
According to certain embodiments, the liquid vehicle is an organic solvent such as PM lene glycol mono methyl ether), DPM (dipropylene glycol mono methyl ether), TPM (tripropylene glycol mono methyl ether), PnB (propylene glycol mono n-butyl ether), DPnB (dipropylene glycol mono butyl ether), TPNB (tripropylene glycol mono n—butyl , PnP (propylene glycol mono propyl ether), DPnP (dipropylene glycol mono propyl ether), TPNB-H (propylene glycol butyl ether), PMA (propylene glycol mono methyl ether acetate), Dowanol DB (Diethylene glycol mono butyl ether) or other ethylene or propylene glycol ethers (Dow Chemical y, USA). The vehicle may also be a e of two or more different organic solvents. In further particular embodiments, the liquid vehicle or solvent present in the inks suitable for use in the present invention is a solvent—based ink, such as an oil-based ition.
In particular embodiments, the solvent-based ink suitable for use in the products and processes of the present invention comprises at least one inorganic or at least one white pigment, and at least one solvent together with a dispersion agent.
In particular ments, the ink further comprises at least one dispersant or/and wetting agent, such as Bykumen (solution of a lower molecular weight rated acidic polycarboxylic acid ter and White spirit/lsobutanol=2/1), Disperbyk-166 (solution of a high molecular weight block copolymer with pigment affinic groups and ypropylacetate/Butylacetate=1/4), Disperbyk—164 (solution of a high molecular weight block copolymer with pigment affinic groups and Butylacetate), Disperbyk-130 (solution of polyamine amides of unsaturated polycarboxylic acids and Alkylbenzene/Butylglycol=5/1), Disperbyk—182 (solution of a high molecular weight block copolymer with pigment affinic groups and Methoxypropylacetate/Methoxy- proppoxypropano|/Butylacetate=4/4/4), Disperbyk—163 (solution of high molecular weight block wo 2016/146423 27 copolymer with pigment affinic groups, in xylene/butyl/acetate/methoxypropylacetate 3/1/1); Disperbyk-161 (solution of a high molecular weight block mer with pigment affinic groups and Methoxypropylacetate/Butylacetate=6/1), Disperbyk-101 ion of a salt of long chain polyamine amides, polar acidic esters and Mineral spirit/Butylglycol 8/1), byk-160 (solution of a high lar weight block copolymer with pigment affinic groups and /Butylacetate=6/1), BYK—P— 104 (solution of a lower molecular weight unsaturated polycarboxylic acid polymer and Xylene/Diisobutylketone=9/1), BYK—P-104 S (solution of a lower molecular weight unsaturated polycarboxylic acid polymer with a polysiloxane copolymer and Xylene/Diisobutylketone=9/1), Disperbyk-180 (Alkylolammonium salt of a block copolymer with acidic groups), Disperbyk—110 (solution of a mer with acidic groups and Methoxypropyl acetate/Alkylbenzene=1/1), BYK-348 (polyether modified poly-dimethyl-siloxane), BYK-346 (solution of a polyether modified poly- yl-siloxane in Dipropyleneglycol monomethylether), 1 (solution of an rylic copolymer and dipropyleneglycol-monomethylether) (Chemie-BYK, Germany), BYK-306 (solution of a polyether ed poly-dimethyl-siloxane and xylene/monophenylglyco|+7/2), BYK-358N (solution of polyacrylate copolymer and alkyl benzenes), BYK-333 (polyether modified poly-dimethyl-siloxane), Tego Dispers 650 (special modified polyether with pigment affinic ), Tego Dispers 652 (concentrate of a fatty acid derivative), Tego Dispers 710 (solution of a basic ne copolymer).
(TegoChemie Service, Germany), Solsperse 43000 (50% polymeric dispersant in water), Solsperse 40000 (84% polymeric sant in water with diethanolamine) (Avecia, UK). Some of these dispersants is suitable for both solvent based and water based inkjet formulations and others for solvent based or water based inks or both.
The ink, in accordance with the invention may comprise additional components, lly selected from g agents, dispersing agents, defoamers, ants, rheology control agents, organic polymers as binders and fixation agents which provide ”green strength” (such as polyacrylates or polyvynilpyrrolidone, PVP) anticorrosive agents, coalescent agents, pH control agents and biocides.
The next step in the processes of the invention for producing an ink-jet printed fiber cement product comprises drying the ink print, so as to obtain an ink-jet printed fiber cement t. While there are different ways of drying or curing inks, an air-dryable oil-based ink comprising inorganic pigments is preferred for use in the present invention.
In further particular embodiments, the processes for producing ink—jet printed fiber cement products of the present invention comprise applying one or more layers of a radiation-curable second coating composition on top of said one or more cured layers of a first coating composition and/or on top of wo 2016/146423 28 2016/054814 said dried ink print. The radiation—curable second coating composition of the process according to the present invention comprises at least one polymer having nically unsaturated double bonds, which is radiation curable. Possible polymers for the radiation-curable coating compositions are in ple any polymer which has ethylenically unsaturated double bonds and which can undergo radical—initiated polymerization on exposure to UV radiation or on beam radiation.
The monomers having unsaturated double bonds such as acryl amide rs, meth acrylic acid monomers, (meth) acrylic acid monomers, N - vinyl pyrrolidone and crotonic acid as long as they are used in thejet inks, are preferred to be the polymerizable monomer.
Care should be taken here that the content of ethylenically unsaturated double bonds in the r is sufficient to ensure effective crosslinking. The content of ethylenically unsaturated double bonds in the is generally in the range from about 0,01 to about 1,0 mol/100g of polymer, more preferably from about 0,05 to about 0,8 moi/100 g of polymer and most preferably from about 0,1 to about 0,6 moi/100 g of polymer. Suitable polymers are for example but not limited to polyurethane derivatives which contain ethylenically unsaturated double bonds, such as polyurethane acrylates.
Besides the polymer, the radiation-curable coating composition may also contain a different compound having a molecular weight of less than about 800 g/mol and capable of polymerization by ic or free-radical pathways. These compounds have generally at least one ethylenically unsaturated double bond and/or one epoxy group and a molecular weight being less than about 800 g/mol. Such compounds generally serve to adjust to the desired working consistency of the radiation-curable preparations. This is particularly important if the preparation contains no other diluents, such as water and/or inert organic solvents, or contains these only to a subordinate . Such compounds are therefore also termed reactive diluents. The proportion of reactive ts, based on the total amount of polymer and the reactive diluent in the radiation-curable preparation, is preferably in the range of about 0% to about 90% by weight, and most ably in the range from about 5% to about 50% by . red reactive diluents are the esterification products of di— or polyhydric alcohols with acrylic and/or methacrylic acid. Such nds are generally termed polyacrylates or polyether acrylates.
Hexanediol diacrylate, tripropylene glycol diacrylate and trimethylolpropane triacrylate are particularly preferred.
The radiation-curable coating compositions may also comprise polymers which have cationically polymerizable groups, in particular epoxy . These include copolymers of ethylenically unsaturated monomers, the copolymers ning, as comonomers, ethylenically unsaturated yl ethers and/or glycidyl esters of ethylenically unsaturated carboxylic acids. They also include the glycidyl ethers of up-containing polymers, such as OH-group-containing polyethers, wo 2016/146423 29 ters, polyurethanes and novolacs. They include moreover the glycidyl esters of polymers containing carboxylic acid groups. If it is desired to have a cationically polymerizable component, the compositions may comprise, instead of or together with the cationically polymerizable polymers, a low—molecular-weight, cationically polymerizable compound, for example a di- or polyglycidyl ether of a low—molecular—weight di— or polyol or the di- or polyester of a low—molecular-weight di- or polycarboxylic acid.
The radiation-curable itions comprise usual auxiliaries, such as ners, flow control agents, defoamers, UV stabilizers, emulsifiers, surface tension reducers and/or protective colloids.
Suitable auxiliaries are well known to the person skilled in the coatings technology. Silicones, ularly polyether modified polydimethylsiloxane copolymers, may be used as surface additives to provide good substrate wetting and good anti—crater performance by reduction of surface tension of the coatings. Suitable stabilizers encompass l UV absorbers, such as oxanilides, triazines, benzotriazoles nable as TinuvinTM grades from Ciba Geigy) and benzophenones. These may be used in combination with usual adical scavengers, for example sterically hindered amines, e.g. 2,2,6,6—tetramethylpiperidine and 2,6—di—tert-butylpiperidine (HALS compounds). Stabilizers are usually used in amounts of from about 0,1% to about 5,0% by weight and preferably from about 0,3% to about 2,5% by weight, based on the polymerizable components t in the preparation.
The processes of producing an ink—jet d fiber cement product of the t invention further se the step of radiation curing the one or more layers of the applied radiation-curable second coating ition. Such radiation curing of the coating compositions may include curing by heat curing, dual—curing, UV curing, EB curing and other curing technologies within a thermoplastic or thermosetting system.
If curing is performed by UV radiation, the preparations to be used comprise at least one photoinitiator.
A distinction is to be made here between photoinitiators for free-radical curing mechanisms (polymerization of ethylenically rated double bonds) and photoinitiators for cationic curing mechanisms (cationic polymerization of ethylenically unsaturated double bonds or polymerization of compounds containing epoxy groups). Photoinitiators are not needed for electron beam e compositions.
Suitable photoinitiators for adical photopolymerization, i.e. polymerization of ethylenically unsaturated wo 2016/146423 30 double bonds, are benzophenone and benzophenone derivatives, such as ylbenzophenone and 4-chlorobenzophenone, Michler’s ketone, ne, henone derivatives, such as 1- benzoylcyclohexan-l-ol, 2-hydroxy-2,2- ylacetophenone and 2,2-dimethoxy phenylacetophenone, benzoin and benzoin , such as methyl benzoin ether, ethyl benzoin ether and butyl benzoin ether, benzil ketals, such as benzil dimethyl ketal, 2-methyl-1—[4—(methylthio) phenyl]morpholinopropan-l-one, quinone and its tives, such as .beta.- methylanthraquinone and tertbutylanthraquinone, acylphosphine oxides, such as 2,4,6- trimethylbenzoyldiphenylphosphine oxide, ethyl-2,4,6—trimethylbenzoylphenylphosphinate and bisacylphosphine oxides.
Suitable photoinitiators for cationic photopolymerization, i.e. the polymerization of vinyl compounds or compounds containing epoxy groups, are aryl diazonium salts, such as 4-methoxybenzenediazonium hexafluorophosphate, benzenediazonium luoroborate and toluenediazonium tetrafluoroarsenate, aryliodonium salts, such as diphenyliodonium hexafluoroarsenate, arylsulfonium salts, such as triphenylsulfonium hexafluorophosphate, benzene- and toluenesulfonium hexafluorophosphate and bis [4- diphenylsulfoniophenyl] sulfide afluorophosphate, disulfones, such as diphenyl disulfone and phenyI—4-tolyl disulfone, diazodisulfones, imidotriflates, benzoin tosylates, isoquinolinium salts, such as N-ethoxyisoquinolinium hexafluorophosphate, phenylpyridinium salts, such as N-ethoxy phenylpyridinium hexafluorophosphate, picolinium salts, such as N—ethoxy-Z-picolinium hexafluorophosphate, ferrocenium salts, titanocenes and titanocenium salts.
The abovementioned photoinitiators are used, in amounts from about 0,05% to about 20% by weight, preferably from about 0,1% to about 10% by weight and in particular from about 0,1% to about 5% by weight, based on the polymerizable components of the radiation-curable ition.
The radiation-curable coating itions are applied in a known manner, e.g. by spraying, trowelling, knife application, ng, rolling or pouring onto the the fiber cement product. It is also conceivable that the preparation may be applied to the fiber cement product by hot-melt processes or by powder-coating processes. The radiation-curable composition is preferably applied by roller- coating. The ion-curable composition is usually applied to obtain a dry thickness in the range from about 10 to about 100 um, preferably from about 50 to about 80 pm. The application may take place either at room temperature or at elevated temperature, but preferably not above 100 °C. wo 2016/146423 31 The radiation-curable coating composition may be cured by exposure to a UV radiation of wavelength generally from about 200 nm to about 600 nm. Suitable examples of UV sources are high and medium pressure mercury, iron, gallium or lead vapor lamps. Medium pressure mercury vapor lamps are particularly preferred, e.g. the CK or CKl s from the company IST (Institut fiJr Strahlungstechnologie). The radiation dose usually sufficient for crosslinking is in the range from about 80 to about 3000 mJ/cm2. Any solvent present, in particular water, is dried out before the curing in a te drying step preceding , for example by heating to temperatures in the range from about 40°C to about 80 °C, or by exposure to IR radiation.
In case of electron beam curing, irradiation is performed with high-energy electrons (usually from 100 to 350 keV), by ng a high voltage to tungsten filaments inside a vacuum chamber), and the actual curing step takes place in an inert, —free atmosphere.
The radiation-curable second coating compositions as used in the products and processes of the present invention described herein are applied to at least part of the outer surface of a fiber cement product using a brush, blade, roller, r (e.g., air-assisted or airless, electrostatic), vacuum coater, curtain coater, flood coater or any suitable device that promotes an even distribution of the paint formulation over the e, even if the surface is damaged, worn, or cracked. The ition may be applied to provide a smooth surface, colored surface or textured surface. A portion or an entire surface of the substrate may be coated at one time. In addition or as an alternative, all or a portion of the e may be coated more than one time to achieve the desired thickness, gloss, and/or surface effect. The amount of coverage obtained by a quantity of the paint composition will vary depending on the desire and/or ion of the surface to be covered and the ess of the coating applied.
In a fourth aspect, the present invention provides ink-jet printed fiber cement products obtainable by the processes as described above, which t d fiber cement product at least comprise on at least part of their outer surface: - one or more cured layers of a first coating composition, at least comprising a binder and a pigment, wherein said first coating composition is characterized by a pigment volume concentration of higher than about 40%, and - a dried ink print applied on top of said one or more cured layers of a first coating composition.
In particular embodiments, by using the methods as described above, these fiber cement products may further comprise one or more ion-cured layers of a second coating ition applied on wo 46423 32 top of said one or more cured layers of a first coating composition and/or on top of said dried ink print.
In a fifth aspect, the present invention provides uses of a fiber cement products according to the present invention or uses of ink-jet d fiber cement products according to the present invention as a building material. These fiber cement ng materials may be porous materials comprising one or more different materials such as a gypsum composite, cement composite, geopolymer composite or other ites having an inorganic binder. The surface of the material may be sanded, machined, extruded, molded or otherwise formed into any desired shape by various processes known in the art. The fiber cement building materials may be fully cured, partially cured or in the uncured ”green” state. Fiber cement building materials may r include gypsum board, fiber cement board, fiber cement board reinforced by a mesh or continuous fibers, gypsum board reinforced by short fibers, a mesh or continuous fibers, inorganic bonded wood and fiber composite materials, geopolymer bonded wood and fiber boards, concrete g tile al, and fiber- plastic composite material.
In particular ments, the fiber cement products of the invention are fiber cement sheets produced by the processes of the present invention and can be used to provide an outer surface to walls, both internal as well as external a building or construction, e.g. as facade plate, siding, etc.
EXAMPLES It will be appreciated that the following examples, given for purposes of illustration, are not to be construed as limiting the scope of this invention. Although only a few exemplary embodiments of this invention have been described in detail above, those d in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially ing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention that is defined in the following claims and all equivalents thereto. Further, it is ized that many embodiments may be conceived that do not achieve all of the advantages of some ments, yet the absence of a particular advantage shall not be construed to necessarily mean that such an embodiment is outside the scope of the t invention.
Example 1: Production of fiber cement sheets according to the processes of the invention wo 2016/146423 33 Fiber cement sheets were produced according to a conventional Hatschek process and cured thereafter.
The sheets were subsequently coated with a first coating, namely a based acrylic coating containing a white titandioxide pigment, having a composition as listed in Table 1 below. The pigment volume concentration of this coating composition was about 62%.
The coating was cured by drying. ”/0 ‘ t Binder [FlleriExtend-er -— -¢—— 19:33.88 After drying, the coated surface of the sheets was subjected to inkjet printing with oil-based inks comprising calcinated inorganic pigments glass-Itaca; yellow M 5118); orange-brown (CIK-MA 5115) and blue (CIK-AZ 1114)). The ink prints were allowed to air-dry.
Finally, the printed surface of the sheets was coated with an UV e coating and UV cured.
The observed ink print pattern on all printed sheets was very clear and of high printing quality, i.e. no ink bleeding, no jagged edges and no ink stains were detected. y, the printed fiber cement sheets were subjected to a number of tests in order to characterize their physical and chemical properties.
First, the coated sheets were subjected to an adhesion test (DIN ISO 2409), whereby adhesive tape is d onto the coated surface. Thereafter the tape is quickly (and in one go) pulled off. It was observed, as presented in Table 2, that 0% of the coating could be pulled off by the tape.
Also, a cross—cut test was done (DIN ISO 2409), y a right-angle lattice pattern is cut into the coating, penetrating through to the substrate (i.e. surface of the fiber cement sheet). It was observed that the edges of the cut lattice pattern were completely smooth and none of the squares of the lattice were detached (classification GT 0; see Table 2)).
Furthermore, the sheets were tested under artificial weathering conditions (using a Xenon lamp) in accordance with DIN 53 387). After the test, the print design was evaluated visually and the gloss of wo 2016/146423 34 the sheets was measured and both parameters were compared with non—exposed samples. It could be concluded that there were no color s and no visual gloss changes (Table 2).
Water penetration was also measured. No visual watermarks were ed (Table 2).
Chemical resistance of the coated fiber cement sheets against a number of different chemicals was measured in accordance with DIN EN 2812—4:2007-5. The sheets were resistant against near all chemicals tested.
Finally, the wet rub resistance test was performed in accordance with DIN EN ISO 11998, which resulted in a loss of thickness of the sheets of about 6.5 pm (classification 2: scrubable).
Based on the above s, it can generally be ded that the fiber cement products of the present ion are particularly well suited for being subjected to inkjet printing, unlike the prior art fiber cement products up to now. This is due to the fact that the inventors have found that applying a coating composition having a pigment volume concentration of higher than 40% increases both the mity and the porosity of the outer surface of such products significantly so as to allow quick absorbance and capturing of the ink drops applied during inkjet printing. Undesired ink stains, ink bleeding and jagged edges of the ink n are hereby prevented and instead an l printing quality is obtained.
Table 2 Tested ty Norm test Specified critical Results values Adhesion: DIN EN ISO 2409 Tape test: <15 % Tape test: 0% damage - Tape test damage; Crosscut test: GT 0 — Crosscut test Crosscut test: <GT3 cial weathering (Xenon) DIN 53 387 Print design was No color fading even evaluated visually after 4000h 9 OK and the gloss was No visual gloss measured (both changes either. parameters were Measured Angles: 60°/85° Values before: 26,3/30,4 compared to a non Values after: 24,1/ 28,5 exposed sample) 9 OK Coverage of the TC Water penetration No watermarks 9 OK Chemical resistance DIN EN 2812- Resistant against 4:2007-5 nearly all tested chemicals Wet rub ance DIN EN ISO 11998 Loss of thickness 6,5p.m Class 2: "Scrubable"

Claims (9)

Claims
1. An ink-jet printed fiber cement product, which t printed fiber cement product at least comprises on at least part of its outer surface: one or more cured layers of a first coating ition, at least comprising a binder and an alkali resistant pigment, wherein said first coating composition is characterized by an effective t volume concentration between 60 and 80%, wherein the effective t volume concentration can be calculated via the following mathematical formula: “effective pigment volume concentration” (expressed in %) = “effective PVC” ssed in %) = (volume of prime pigments)/(volume of prime pigments + volume of solid binder(s)) * 100 (expressed in %); and a dried ink print applied on top of said one or more cured layers of a first coating composition.
2. The fiber cement product according to claim 1, wherein said pigment sed in said first coating composition is a white pigment.
3. The fiber cement product ing to either of claims 1 or 2, wherein said binder is an acrylic polymer.
4. The fiber cement product according to claim 3, wherein said acrylic polymer is chosen from the group ting of styrene acrylic, siloxane acrylic, epoxy acrylic, polyester acrylic, polyuria acrylic and urethane acrylic.
5. The fiber cement product according to any one of claims 1 to 4, wherein said ink print is formed by using an ink comprising at least one inorganic pigment.
6. The fiber cement product according to any one of claims 1 to 5, further comprising one or more radiation-cured layers of a second coating composition applied on top of said one or more cured layers of a first coating composition and/or on top of said dried ink print.
7. A process for producing a fiber cement product, said process comprising: providing a fiber cement product; applying to at least part of the outer surface of said fiber cement one or more layers of a first coating composition at least comprising a binder and an -resistant pigment, wherein said first coating composition is characterized by an effective pigment volume concentration between 60 and 80%, wherein the effective t volume concentration can be calculated via the following mathematical formula: “effective t volume concentration” (expressed in %) = “effective PVC” (expressed in %) = (volume of prime pigments)/(volume of prime pigments + volume of solid binder(s)) * 100 (expressed in %); curing said one or more layers of said first coating composition so as to obtain a fiber cement t suitable for being subjected to inkjet-printing; applying an ink print on top of said one or more cured layers of said first coating composition by means of an inkjet-printer; and drying said ink print, so as to obtain an ink-jet printed fiber cement product.
8. The process according to claim 7, wherein said ink print is formed by using an ink comprising at least one inorganic pigment.
9. The process according to either of claims 7 or 8, further comprising: applying one or more layers of a ion-curable second coating composition on top of said one or more cured layers of a first coating composition and/or on top of said dried ink print; and radiation curing said one or more layers of a ion-curable second coating composition.
NZ733584A 2015-03-13 2016-03-07 Ink-jet printing on fiber cement products NZ733584B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP15159046.0 2015-03-13
EP15159046.0A EP3067218A1 (en) 2015-03-13 2015-03-13 Ink-jet printing on fiber cement products
PCT/EP2016/054814 WO2016146423A1 (en) 2015-03-13 2016-03-07 Ink-jet printing on fiber cement products

Publications (2)

Publication Number Publication Date
NZ733584A NZ733584A (en) 2021-01-29
NZ733584B2 true NZ733584B2 (en) 2021-04-30

Family

ID=

Similar Documents

Publication Publication Date Title
CA2978662C (en) Ink-jet printing on fiber cement products
EP3313804B1 (en) Coloured fiber cement products and methods for the production therof
AU2018382935B2 (en) Colored fiber cement products and methods for the production thereof
CA3056339C (en) Pale-colored fiber cement products and methods for the production thereof
NZ733584B2 (en) Ink-jet printing on fiber cement products
WO2021089428A1 (en) Composite building materials with a textured surface
EP3932887A1 (en) Improved fiber cement sidings, their use and methods for the production thereof
NZ757137B2 (en) Pale-colored fiber cement products and methods for the production thereof