NZ731893B2 - Process of conducting high throughput testing high performance liquid chromatography - Google Patents
Process of conducting high throughput testing high performance liquid chromatography Download PDFInfo
- Publication number
- NZ731893B2 NZ731893B2 NZ731893A NZ73189315A NZ731893B2 NZ 731893 B2 NZ731893 B2 NZ 731893B2 NZ 731893 A NZ731893 A NZ 731893A NZ 73189315 A NZ73189315 A NZ 73189315A NZ 731893 B2 NZ731893 B2 NZ 731893B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- patient
- tablet
- api
- cftr
- compound
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 110
- 238000004128 high performance liquid chromatography Methods 0.000 title claims abstract description 28
- 230000008569 process Effects 0.000 title claims description 36
- 238000012360 testing method Methods 0.000 title abstract description 14
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 50
- 102000012605 Cystic Fibrosis Transmembrane Conductance Regulator Human genes 0.000 claims description 72
- 108010079245 Cystic Fibrosis Transmembrane Conductance Regulator Proteins 0.000 claims description 72
- 201000003883 Cystic fibrosis Diseases 0.000 claims description 57
- 239000008186 active pharmaceutical agent Substances 0.000 claims description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 25
- 201000010099 disease Diseases 0.000 claims description 20
- 239000007962 solid dispersion Substances 0.000 claims description 18
- 229920003023 plastic Polymers 0.000 claims description 13
- 239000004033 plastic Substances 0.000 claims description 13
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 238000005259 measurement Methods 0.000 claims description 10
- 238000004458 analytical method Methods 0.000 claims description 7
- 229920001903 high density polyethylene Polymers 0.000 claims description 5
- 239000004700 high-density polyethylene Substances 0.000 claims description 5
- 230000001404 mediated effect Effects 0.000 claims description 5
- 238000011068 loading method Methods 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 3
- 238000002360 preparation method Methods 0.000 abstract description 7
- 239000003085 diluting agent Substances 0.000 abstract description 5
- 239000003826 tablet Substances 0.000 description 79
- 230000035772 mutation Effects 0.000 description 75
- 241000124008 Mammalia Species 0.000 description 36
- 229940125904 compound 1 Drugs 0.000 description 34
- 229940125782 compound 2 Drugs 0.000 description 27
- 239000000203 mixture Substances 0.000 description 24
- 102200128219 rs75527207 Human genes 0.000 description 22
- 101000907783 Homo sapiens Cystic fibrosis transmembrane conductance regulator Proteins 0.000 description 19
- 102000056427 human CFTR Human genes 0.000 description 19
- 230000032258 transport Effects 0.000 description 19
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 17
- 230000000694 effects Effects 0.000 description 17
- 102200092601 rs34536353 Human genes 0.000 description 17
- 239000000523 sample Substances 0.000 description 16
- 239000008187 granular material Substances 0.000 description 13
- 239000000243 solution Substances 0.000 description 13
- 150000001875 compounds Chemical class 0.000 description 12
- 238000012023 real time release testing Methods 0.000 description 12
- 102200128203 rs121908755 Human genes 0.000 description 12
- 102200128204 rs121909005 Human genes 0.000 description 12
- 102200128220 rs121909013 Human genes 0.000 description 12
- 102200132013 rs121909041 Human genes 0.000 description 12
- 102200132025 rs150212784 Human genes 0.000 description 12
- 102200132105 rs193922525 Human genes 0.000 description 12
- 102200132035 rs200321110 Human genes 0.000 description 12
- 102200132017 rs267606723 Human genes 0.000 description 12
- 102220020559 rs397508453 Human genes 0.000 description 12
- 102200132015 rs74503330 Human genes 0.000 description 12
- 102200084783 rs749452002 Human genes 0.000 description 12
- 102200030785 rs749758687 Human genes 0.000 description 12
- 102200128182 rs74551128 Human genes 0.000 description 10
- 238000012369 In process control Methods 0.000 description 9
- 238000010965 in-process control Methods 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000001069 Raman spectroscopy Methods 0.000 description 8
- 102200128582 rs113993958 Human genes 0.000 description 8
- 102200132106 rs11971167 Human genes 0.000 description 8
- 102200128186 rs121908752 Human genes 0.000 description 8
- 102200128167 rs121908753 Human genes 0.000 description 8
- 102220020608 rs186045772 Human genes 0.000 description 8
- 102200132034 rs202179988 Human genes 0.000 description 8
- 102200092599 rs33971270 Human genes 0.000 description 8
- 102200132016 rs34911792 Human genes 0.000 description 8
- 102200128612 rs368505753 Human genes 0.000 description 8
- 102220020411 rs397508256 Human genes 0.000 description 8
- 102200128244 rs397508288 Human genes 0.000 description 8
- 102220020548 rs397508442 Human genes 0.000 description 8
- 102220020628 rs397508537 Human genes 0.000 description 8
- 102200086162 rs61754278 Human genes 0.000 description 8
- 102200132008 rs75541969 Human genes 0.000 description 8
- 239000003814 drug Substances 0.000 description 7
- 208000015700 familial long QT syndrome Diseases 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000007787 solid Substances 0.000 description 7
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 6
- 208000003556 Dry Eye Syndromes Diseases 0.000 description 6
- 238000007906 compression Methods 0.000 description 6
- 230000006835 compression Effects 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 101100232929 Caenorhabditis elegans pat-4 gene Proteins 0.000 description 5
- 206010010356 Congenital anomaly Diseases 0.000 description 5
- LKPVPUFUDFBNBZ-UHFFFAOYSA-N [3-oxo-2-phenyl-3-(pyridin-4-ylmethylamino)propyl] acetate Chemical compound C=1C=CC=CC=1C(COC(=O)C)C(=O)NCC1=CC=NC=C1 LKPVPUFUDFBNBZ-UHFFFAOYSA-N 0.000 description 5
- 208000035475 disorder Diseases 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000000546 pharmaceutical excipient Substances 0.000 description 5
- 201000009266 primary ciliary dyskinesia Diseases 0.000 description 5
- 238000005070 sampling Methods 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 208000025678 Ciliary Motility disease Diseases 0.000 description 4
- 208000019693 Lung disease Diseases 0.000 description 4
- 206010033645 Pancreatitis Diseases 0.000 description 4
- 102100026383 Vasopressin-neurophysin 2-copeptin Human genes 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 230000007812 deficiency Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 230000018109 developmental process Effects 0.000 description 4
- 201000010064 diabetes insipidus Diseases 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 102200128591 rs78655421 Human genes 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 238000005550 wet granulation Methods 0.000 description 4
- 108700028369 Alleles Proteins 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 230000003190 augmentative effect Effects 0.000 description 3
- 230000002146 bilateral effect Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- 238000005469 granulation Methods 0.000 description 3
- 230000003179 granulation Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 210000003097 mucus Anatomy 0.000 description 3
- 238000011057 process analytical technology Methods 0.000 description 3
- 230000000241 respiratory effect Effects 0.000 description 3
- 102200132108 rs80034486 Human genes 0.000 description 3
- 102200128229 rs80055610 Human genes 0.000 description 3
- 238000012216 screening Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 208000011580 syndromic disease Diseases 0.000 description 3
- 210000001177 vas deferen Anatomy 0.000 description 3
- 206010006474 Bronchopulmonary aspergillosis allergic Diseases 0.000 description 2
- 101100518972 Caenorhabditis elegans pat-6 gene Proteins 0.000 description 2
- 206010010904 Convulsion Diseases 0.000 description 2
- 208000024940 Dent disease Diseases 0.000 description 2
- 206010013774 Dry eye Diseases 0.000 description 2
- 206010014561 Emphysema Diseases 0.000 description 2
- 206010067265 Heterotaxia Diseases 0.000 description 2
- 208000015439 Lysosomal storage disease Diseases 0.000 description 2
- 208000031733 Situs inversus totalis Diseases 0.000 description 2
- 208000021386 Sjogren Syndrome Diseases 0.000 description 2
- 208000006778 allergic bronchopulmonary aspergillosis Diseases 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000000988 bone and bone Anatomy 0.000 description 2
- 238000011088 calibration curve Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005056 compaction Methods 0.000 description 2
- 239000000306 component Substances 0.000 description 2
- 238000010924 continuous production Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 206010015037 epilepsy Diseases 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 239000007888 film coating Substances 0.000 description 2
- 238000009501 film coating Methods 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 210000004907 gland Anatomy 0.000 description 2
- 230000001744 histochemical effect Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000037427 ion transport Effects 0.000 description 2
- 150000002632 lipids Chemical class 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 230000000420 mucociliary effect Effects 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 102200093459 rs397517963 Human genes 0.000 description 2
- 102200128617 rs75961395 Human genes 0.000 description 2
- 102200128169 rs77932196 Human genes 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- 208000008797 situs inversus Diseases 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 229940124597 therapeutic agent Drugs 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 102100034452 Alternative prion protein Human genes 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 102100032187 Androgen receptor Human genes 0.000 description 1
- 208000009575 Angelman syndrome Diseases 0.000 description 1
- 206010002961 Aplasia Diseases 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 208000012904 Bartter disease Diseases 0.000 description 1
- 201000009144 Bartter disease type 3 Diseases 0.000 description 1
- 208000010062 Bartter syndrome Diseases 0.000 description 1
- 208000037245 Bartter syndrome type 3 Diseases 0.000 description 1
- 208000006386 Bone Resorption Diseases 0.000 description 1
- 206010006448 Bronchiolitis Diseases 0.000 description 1
- 206010006458 Bronchitis chronic Diseases 0.000 description 1
- 206010059027 Brugada syndrome Diseases 0.000 description 1
- 101100189378 Caenorhabditis elegans pat-3 gene Proteins 0.000 description 1
- 208000015374 Central core disease Diseases 0.000 description 1
- 208000031976 Channelopathies Diseases 0.000 description 1
- 108091006146 Channels Proteins 0.000 description 1
- 208000010693 Charcot-Marie-Tooth Disease Diseases 0.000 description 1
- 208000009043 Chemical Burns Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 206010062264 Congenital hyperthyroidism Diseases 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 206010010774 Constipation Diseases 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- 101000785279 Dictyostelium discoideum Calcium-transporting ATPase PAT1 Proteins 0.000 description 1
- 101001129314 Dictyostelium discoideum Probable plasma membrane ATPase Proteins 0.000 description 1
- 201000010046 Dilated cardiomyopathy Diseases 0.000 description 1
- 206010013883 Dwarfism Diseases 0.000 description 1
- 208000024720 Fabry Disease Diseases 0.000 description 1
- 201000011240 Frontotemporal dementia Diseases 0.000 description 1
- 208000003078 Generalized Epilepsy Diseases 0.000 description 1
- 208000019683 Gorham-Stout disease Diseases 0.000 description 1
- 206010019860 Hereditary angioedema Diseases 0.000 description 1
- 208000033981 Hereditary haemochromatosis Diseases 0.000 description 1
- 101000779309 Homo sapiens Amyloid protein-binding protein 2 Proteins 0.000 description 1
- 101000775732 Homo sapiens Androgen receptor Proteins 0.000 description 1
- 101000713296 Homo sapiens Proton-coupled amino acid transporter 1 Proteins 0.000 description 1
- 101000713293 Homo sapiens Proton-coupled amino acid transporter 2 Proteins 0.000 description 1
- 101000713298 Homo sapiens Proton-coupled amino acid transporter 4 Proteins 0.000 description 1
- 201000000101 Hyperekplexia Diseases 0.000 description 1
- 206010058271 Hyperexplexia Diseases 0.000 description 1
- 208000007599 Hyperkalemic periodic paralysis Diseases 0.000 description 1
- 208000000563 Hyperlipoproteinemia Type II Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020844 Hyperthermia malignant Diseases 0.000 description 1
- 206010051125 Hypofibrinogenaemia Diseases 0.000 description 1
- 208000000038 Hypoparathyroidism Diseases 0.000 description 1
- 208000003892 Kartagener syndrome Diseases 0.000 description 1
- 102100024640 Low-density lipoprotein receptor Human genes 0.000 description 1
- 208000007466 Male Infertility Diseases 0.000 description 1
- 208000018717 Malignant hyperthermia of anesthesia Diseases 0.000 description 1
- 208000029725 Metabolic bone disease Diseases 0.000 description 1
- 208000008955 Mucolipidoses Diseases 0.000 description 1
- 206010072928 Mucolipidosis type II Diseases 0.000 description 1
- 208000002678 Mucopolysaccharidoses Diseases 0.000 description 1
- 101001094044 Mus musculus Solute carrier family 26 member 6 Proteins 0.000 description 1
- 206010061533 Myotonia Diseases 0.000 description 1
- 208000010316 Myotonia congenita Diseases 0.000 description 1
- 206010068871 Myotonic dystrophy Diseases 0.000 description 1
- -1 N-(5-hydroxy-2,4-di-tert-butyl-phenyl)oxo-1H- quinolinecarboxamide Chemical compound 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- OXHOHEZRNMTKCW-UHFFFAOYSA-N OC(C1=CC(C2=NC(CNC(C3(CC3)C3=CC=CC(O4)=C3OC4(F)F)=O)=CC=C2)=CC=C1)=O Chemical compound OC(C1=CC(C2=NC(CNC(C3(CC3)C3=CC=CC(O4)=C3OC4(F)F)=O)=CC=C2)=CC=C1)=O OXHOHEZRNMTKCW-UHFFFAOYSA-N 0.000 description 1
- 206010031243 Osteogenesis imperfecta Diseases 0.000 description 1
- 206010049088 Osteopenia Diseases 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 208000035467 Pancreatic insufficiency Diseases 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 208000000609 Pick Disease of the Brain Diseases 0.000 description 1
- 208000025237 Polyendocrinopathy Diseases 0.000 description 1
- 108091000054 Prion Proteins 0.000 description 1
- 208000024777 Prion disease Diseases 0.000 description 1
- 201000005660 Protein C Deficiency Diseases 0.000 description 1
- 102100036920 Proton-coupled amino acid transporter 1 Human genes 0.000 description 1
- 102100036919 Proton-coupled amino acid transporter 2 Human genes 0.000 description 1
- 102100036914 Proton-coupled amino acid transporter 4 Human genes 0.000 description 1
- 238000001237 Raman spectrum Methods 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 201000009594 Systemic Scleroderma Diseases 0.000 description 1
- 206010042953 Systemic sclerosis Diseases 0.000 description 1
- 208000001871 Tachycardia Diseases 0.000 description 1
- 206010053615 Thermal burn Diseases 0.000 description 1
- 208000035954 Thomsen and Becker disease Diseases 0.000 description 1
- 201000008188 Timothy syndrome Diseases 0.000 description 1
- 206010045261 Type IIa hyperlipidaemia Diseases 0.000 description 1
- 208000006269 X-Linked Bulbo-Spinal Atrophy Diseases 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- KRPUGSACBHJZSR-UHFFFAOYSA-N [3-oxo-2-phenyl-3-(pyridin-2-ylmethylamino)propyl] acetate Chemical compound C=1C=CC=CC=1C(COC(=O)C)C(=O)NCC1=CC=CC=N1 KRPUGSACBHJZSR-UHFFFAOYSA-N 0.000 description 1
- 208000004622 abetalipoproteinemia Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000007815 allergy Effects 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 208000006673 asthma Diseases 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000010256 bone deposition Effects 0.000 description 1
- 230000008468 bone growth Effects 0.000 description 1
- 230000010478 bone regeneration Effects 0.000 description 1
- 230000024279 bone resorption Effects 0.000 description 1
- 206010006451 bronchitis Diseases 0.000 description 1
- 230000000768 catecholaminergic effect Effects 0.000 description 1
- 201000007303 central core myopathy Diseases 0.000 description 1
- 208000007451 chronic bronchitis Diseases 0.000 description 1
- 210000004081 cilia Anatomy 0.000 description 1
- 230000001886 ciliary effect Effects 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000000399 corneal endothelial cell Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 239000002178 crystalline material Substances 0.000 description 1
- 231100000895 deafness Toxicity 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 201000001981 dermatomyositis Diseases 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000008383 extra-granule composition Substances 0.000 description 1
- 201000001386 familial hypercholesterolemia Diseases 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000007941 film coated tablet Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000013022 formulation composition Substances 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 201000008186 generalized epilepsy with febrile seizures plus Diseases 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 208000013746 hereditary thrombophilia due to congenital protein C deficiency Diseases 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000000910 hyperinsulinemic effect Effects 0.000 description 1
- 201000001993 idiopathic generalized epilepsy Diseases 0.000 description 1
- 210000000987 immune system Anatomy 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 206010025135 lupus erythematosus Diseases 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 201000007004 malignant hyperthermia Diseases 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 201000001441 melanoma Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 208000020460 mucolipidosis II alpha/beta Diseases 0.000 description 1
- 206010028093 mucopolysaccharidosis Diseases 0.000 description 1
- 230000004770 neurodegeneration Effects 0.000 description 1
- 208000015122 neurodegenerative disease Diseases 0.000 description 1
- 230000008518 non respiratory effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 208000002865 osteopetrosis Diseases 0.000 description 1
- AICOOMRHRUFYCM-ZRRPKQBOSA-N oxazine, 1 Chemical compound C([C@@H]1[C@H](C(C[C@]2(C)[C@@H]([C@H](C)N(C)C)[C@H](O)C[C@]21C)=O)CC1=CC2)C[C@H]1[C@@]1(C)[C@H]2N=C(C(C)C)OC1 AICOOMRHRUFYCM-ZRRPKQBOSA-N 0.000 description 1
- 101150101567 pat-2 gene Proteins 0.000 description 1
- 230000002572 peristaltic effect Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229940124531 pharmaceutical excipient Drugs 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical class N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- 108010040003 polyglutamine Proteins 0.000 description 1
- 229920000155 polyglutamine Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 208000000415 potassium-aggravated myotonia Diseases 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 230000020978 protein processing Effects 0.000 description 1
- 208000007153 proteostasis deficiencies Diseases 0.000 description 1
- 230000001603 reducing effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 201000009890 sinusitis Diseases 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- 238000009475 tablet pressing Methods 0.000 description 1
- 230000006794 tachycardia Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 230000036575 thermal burns Effects 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P11/00—Drugs for disorders of the respiratory system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
- G01N1/40—Concentrating samples
- G01N1/4055—Concentrating samples by solubility techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N13/00—Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
- G01N2013/006—Dissolution of tablets or the like
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
- G01N2030/8809—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
- G01N2030/884—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample organic compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00178—Special arrangements of analysers
- G01N2035/00188—Special arrangements of analysers the analyte being in the solid state
- G01N2035/00198—Dissolution analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
- G01N2035/00495—Centrifuges
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
- G01N2035/00465—Separating and mixing arrangements
- G01N2035/00524—Mixing by agitating sample carrier
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/04—Preparation or injection of sample to be analysed
- G01N30/06—Preparation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N30/00—Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
- G01N30/02—Column chromatography
- G01N30/88—Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/15—Medicinal preparations ; Physical properties thereof, e.g. dissolubility
Abstract
The present invention utilizes a high throughput testing (HTT) method of high performance liquid chromatography (HPLC) to validate samples of pharmaceutical compositions. In one embodiment, improved sample preparation techniques comprise adding the entire vial of a sample to a wide mouth disposable bottle, adding diluent, shaking overnight, and centrifuging.
Description
Process of Conducting High Throughput Testing High Performance Liquid Chromatography TECHNICAL FIELD OF INVENTION The invention relates to a process of conducting high throughput testing (HTT) high performance liquid chromatography (HPLC) useful for testing large amounts of samples quickly and accurately. In one embodiment, HTT HPLC is useful for developing process analytical techniques (PAT) for continuous manufacturing of pharmaceutical compositions. In another embodiment, the pharmaceutical compositions are for the treatment of CFTR mediated diseases such as cystic fibrosis and comprise one or more active pharmaceutical ingredient (API).
BACKGROUND A common challenge for drugs approved by the FDA is the occasional lack of drug availability for patients in need thereof. Accordingly, a significant unmet need exists for the disclosed processes of preparing drugs in a continuous and controlled manner as opposed to the more traditional batch preparations. To achieve continuous manufacturing, PAT must be developed that accurately monitor properties of the pharmaceutical compositions without interrupting the continuity of the processes. PAT, however, are spectroscopic in nature and must be correlated to references to be of any use. This correlation to references requires running many samples in a timely fashion using HTT HPLC techniques disclosed herein. It is also envisioned that HTT HPLC can be used to test the concentration of API in the final composition as either a back-up to PAT or when PAT is not available.
SUMMARY In one embodiment, the present invention features a process of conducting high throughput HPLC comprising a) dropping containers, such as a vials, of pre-weighed samples into plastic bottles, such as HDPE bottles; b) adding solution to each set of container and bottle via a bottle top dispenser; c) shaking each set of plastic bottle, container, and solution until sample is dissolved; d) centrifuging each set of plastic bottle, container, and solution; e) loading an aliquot of supernatant from the centrifuge step onto an HPLC column; and f) running the column with a mobile phase.
In another embodiment, the process is used to supply correlating values to PAT measurements for continuous manufacturing. In another embodiment, the process is used to measure the concentration of API in the final pharmaceutical composition.
In another embodiment, the pharmaceutical composition is a tablet. In another embodiment, the tablet is for the treatment of a CFTR mediated disease such as cystic fibrosis (CF).
In another embodiment, the tablet comprises two API. In another embodiment, one API is a CF corrector. In another embodiment, one API is a CF potentiator. In another embodiment, one API is a CF corrector and the other API is a CF potentiator.
In another embodiment, one API is 3-(6-(1-(2,2-difluorobenzo[d][1,3]dioxolyl) cyclopropanecarboxamido)methylpyridinyl)benzoic acid (Compound 1), which has the structure below: Compound 1.
In another embodiment, one API is N-(5-hydroxy-2,4-di-tert-butyl-phenyl)oxo-1H- quinolinecarboxamide (Compound 2), which has the structure below: Compound 2.
In another embodiment, one API is Compound 1 and the other API is Compound 2. In another embodiment, Compound 1 is in Form I, and Compound 2 is the form of a solid dispersion of substantially amorphous Compound 2. [0009a] In the description in this specification reference may be made to subject matter which is not within the scope of the appended claims. That subject matter should be readily identifiable by a person skilled in the art and may assist in putting into practice the invention as defined in the appended claims.
BRIEF DESCRIPTION OF DRAWINGS Figure 1 is a flow chart for the continuous manufacture of a tablet of Compound 1 Form I and a solid dispersion of substantially amorphous Compound 2.
Figure 2 is a schematic drawing of a process analytical technique (PAT) enabled continuous manufacturing process where in step 1) feeder/blender one, PAT1 NIR measures material attributes during screening of raw materials; step 2) twin screw granulator, PAT2 NIR measures composition and BU; step 3) fluidized bed dryer, PAT 3a NIR measures granule uniformity, LOD, solid state form and physical attributes of granules, PAT 3b laser diffraction measures particle size distribution; step 4) milling, PAT4 NIR measures composition and BU; step 5) feeder/blender two, PAT 5a Raman measures assay and CU, PAT 5b weight, hardness, thickness; step 6) compression, PAT6 Raman measures coat thickness; and step 7) coating.
Figure 3 is a schematic drawing showing a PAT inline Sentronics NIR located after blender one, granule mill, and extra granule blender. Each probe has 7 spots that cycle sequentially to maximize sampling and NIR with multiplexer-NIR ensuring robust and exhaustive sampling by controlled powder flow across the probe optics.
Figure 4 is a depiction of NIR in flowing powder.
Figure 5 is a Kaiser Raman spectrum of Compound 1 Form I and Compound 1 Form II (Compound 1 Form II is a different polymorph disclosed in US 201131588 incorporated herein in its entirety by reference) taken after tablet pressing. The Kaiser Raman spectrometer is mounted on the Kraemer UTS tablet tester.
Figure 6 is a graph showing good correlation between predicted and reference off-line NIR samplings of Compound 2 granules.
Figure 7 is a series of NIR spectra measuring water content in samples of Compound 1 granules.
Figure 8 is a series of NIR spectra measuring a range of compositions comprising different ratios of Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 on the left, and pretreated spectra on the right depicting Range A for identifying Compound 1 Form I and Range B for identifying amorphous Compound 2.
Figure 9 depicts a calibration curve for predicted Compound 1 Form I content versus reference (actual) Compound 1 Form I content using partial least squares (PLS) techniques.
Figure 10 depicts actual results of unknown samples comprising different contents of Compound 1 Form I (Y Reference) versus predicted content using the calibration curve calculated from Figure 19 (Y Predicted).
Figure 11 depicts the transmission percent of a laser diffraction measurement in response to changes in line rate (flow velocity) for a composition comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 showing the expected reduction in transmission percent as line rate increase.
Figure 12 depicts laser diffraction measurements of particles comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 at different line rates showing that the average particle size (Dv(50) is not affected by line rate.
Figure 13 depicts laser diffraction measurements of particles comprising Compound 1 Form I and a solid dispersions comprising substantially amorphous Compound 2 under different processing parameters showing that the particle size measurements are sensitive to such changes.
Figure 14 depicts the predictive capabilities of process analytical technology models using Raman spectroscopy, both non-continuously and continuously, for monitoring Compound 1 solid form identity in a tablet.
Figure 15 depicts the predictive capabilities of process analytical technology models using Raman spectroscopy, both non-continuously and continuously, for monitoring Compound 2 solid form identity in a tablet.
RIPTION DETAILED DESC DEFINITIONS [0024a] The term "comprising" as used in this specification and claims means "consisting at least in part of". When interpreting statements in this specification and claims which include the term "comprising", other features besides the features prefaced by this term in each statement can also be present. Related terms such as "comprise" and "comprises" are to be interpreted in a similar manner.
As used herein, "HTT" stands for high throughput testing and "HPLC" stands for high performance liquid chromatography. The two together as in HTT HPLC refers to a high performance liquid chromatography method that can be used to test a high volume amount of samples quickly and accurately.
As used herein, the term "active pharmaceutical ingredient" or "API" refers to a biologically active compound.
As used herein, the term "PAT" stands for process analytical technology.
As used herein, the term "CU" stands for content uniformity.
As used herein, "CFTR" stands for cystic fibrosis transmembrane conductance regulator.
As used herein, a " ?F508 mutation" or "F508-del mutation" is a specific mutation within the CFTR protein. The mutation is a deletion of the three nucleotides that comprise the codon for amino acid phenylalanine at position 508, resulting in CFTR protein that lacks this phenylalanine residue.
As used herein, a patient who is "homozygous" for a particular mutation, e.g. ?F508, has the same mutation on each allele.
As used herein, a patient who is "heterozygous" for a particular mutation, e.g. ?F508, has this mutation on one allele, and a different mutation on the other allele.
As used herein, the term "CFTR corrector" refers to a compound that increases the amount of functional CFTR protein to the cell surface, resulting in enhanced ion transport.
As used herein, the term "CFTR potentiator" refers to a compound that increases the channel activity of CFTR protein located at the cell surface, resulting in enhanced ion transport.
The terms "solid form", "solid forms" and related terms, when used herein refer to Compound 1 or Compound 2, in a particular solid form e.g. crystals, amorphous states, and the like.
As used herein, the term "substantially amorphous" refers to a solid material having little or no long range order in the position of its molecules. For example, substantially amorphous materials have less than about 15% crystallinity (e.g., less than about 10% crystallinity or less than about 5% crystallinity). It is also noted that the term 'substantially amorphous' includes the descriptor, 'amorphous', which refers to materials having no (0%) crystallinity.
As used herein, the term "substantially crystalline" (as in the phrase substantially crystalline Compound 1 Form I refers to a solid material having predominantly long range order in the position of its molecules. For example, substantially crystalline materials have more than about 85% crystallinity (e.g., more than about 90% crystallinity or more than about 95% crystallinity). It is also noted that the term 'substantially crystalline' includes the descriptor, 'crystalline', which refers to materials having 100% crystallinity.
The term "crystalline" and related terms used herein, when used to describe a substance, component, product, or form, means that the substance, component or product is substantially crystalline as determined by X-ray diffraction. (See, e.g., Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins, Baltimore, Md. (2003); The United States Pharmacopeia, 23 ed., 1843-1844 (1995)).
The term "tablet" as used herein refers to a physically discrete unit of agent appropriate for the patient to be treated. In general, a compacted mixture has a density greater than that of the mixture prior to compaction. A dosage tablet of the invention can have almost any shape including concave and/or convex faces, rounded or angled corners, and a rounded to rectilinear shape. In some embodiments, the compressed tablets of the invention comprise a rounded tablet having flat faces. The tablets of the invention can be prepared by any compaction and compression method known by persons of ordinary skill in the art of forming compressed solid pharmaceutical dosage forms. In particular embodiments, the formulations provided herein may be prepared using conventional methods known to those skilled in the field of pharmaceutical formulation, as described, e.g., in pertinent textbooks. See, e.g., Remington: The Science and Practice of Pharmacy, 21st Ed., Lippincott Williams & Wilkins, Baltimore, Md. (2003); Ansel et al., Pharmaceutical Dosage Forms And Drug Delivery Systems, 7th Edition, Lippincott Williams & Wilkins, (1999); The Handbook of Pharmaceutical Excipients, 4 edition, Rowe et al., Eds., American Pharmaceuticals Association (2003); Gibson, Pharmaceutical Preformulation And Formulation, CRC Press (2001), these references hereby incorporated herein by reference in their entirety.
As used herein, an "excipient" includes functional and non-functional ingredients in a pharmaceutical composition.
An "effective amount" or "therapeutically effective amount" of a compound of the invention may vary according to factors such as the disease state, age, and weight of the subject, and the ability of the compound of the invention to elicit a desired response in the subject.
Dosage regimens may be adjusted to provide the optimum therapeutic response. An effective amount is also one in which any toxic or detrimental effects (e.g., side effects) of the compound of the invention are outweighed by the therapeutically beneficial effects.
As used herein, and unless otherwise specified, the terms "therapeutically effective amount" and "effective amount" of a compound mean an amount sufficient to provide a therapeutic benefit in the treatment or management of a disease or disorder, or to delay or minimize one or more symptoms associated with the disease or disorder. A "therapeutically effective amount" and "effective amount" of a compound mean an amount of therapeutic agent, alone or in combination with one or more other agent(s), which provides a therapeutic benefit in the treatment or management of the disease or disorder. The terms "therapeutically effective amount" and "effective amount" can encompass an amount that improves overall therapy, reduces or avoids symptoms or causes of disease or disorder, or enhances the therapeutic efficacy of another therapeutic agent.
"Substantially pure" as used in the phrase "substantially pure Compound 1 Form I" means greater than about 90% purity. In another embodiment, substantially pure refers to greater than about 95% purity. In another embodiment, substantially pure refers to greater than about 98% purity. In another embodiment, substantially pure refers to greater than about 99% purity.
With respect to Compound 1 Form I, or a solid dispersion comprising substantially amorphous Compound 2, the terms "about" and "approximately", when used in connection with doses, amounts, or weight percent of ingredients of a composition or a dosage form, mean a dose, amount, or weight percent that is recognized by one of ordinary skill in the art to provide a pharmacological effect equivalent to that obtained from the specified dose, amount, or weight percent. Specifically the term "about" or "approximately" means an acceptable error for a particular value as determined by one of ordinary skill in the art, which depends in part on how the value is measured or determined. In certain embodiments, the term "about" or "approximately" means within 1, 2, 3, or 4 standard deviations. In certain embodiments, the term "about" or "approximately" means within 30%, 25%, 20%, 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, 1%, 0.5%, 0.1%, or 0.05% of a given value or range.
Compound 1 Form I is prepared by methods disclosed in US Patent No. 8,507,534 incorporated herein by reference in its entirety. A solid dispersion of substantially amorphous Compound 2 is prepared by methods disclosed in International Published Patent Application No.
WO2010/019239 incorporated herein by reference in its entirety. A tablet comprising Compound 1 and Compound 2 may be prepared continuously according to the flow chart of Figure 1.
THERAPEUTIC USES OF THE COMPOSITION Disclosed is a method of treating, lessening the severity of, or symptomatically treating a disease in a patient, the method comprising administering an effective amount of the pharmaceutical composition or tablet prepared in a continuous manner using PAT to the patient, preferably a mammal, wherein the disease is selected from cystic fibrosis, asthma, smoke induced COPD, chronic bronchitis, rhinosinusitis, constipation, pancreatitis, pancreatic insufficiency, male infertility caused by congenital bilateral absence of the vas deferens (CBAVD), mild pulmonary disease, idiopathic pancreatitis, allergic bronchopulmonary aspergillosis (ABPA), liver disease, hereditary emphysema, hereditary hemochromatosis, coagulation-fibrinolysis deficiencies, such as protein C deficiency, Type 1 hereditary angioedema, lipid processing deficiencies, such as familial hypercholesterolemia, Type 1 chylomicronemia, abetalipoproteinemia, lysosomal storage diseases, such as I-cell disease/pseudo-Hurler, mucopolysaccharidoses, Sandhof/Tay-Sachs, Crigler-Najjar type II, polyendocrinopathy/hyperinsulemia, Diabetes mellitus, Laron dwarfism, myleoperoxidase deficiency, primary hypoparathyroidism, melanoma, glycanosis CDG type 1, congenital hyperthyroidism, osteogenesis imperfecta, hereditary hypofibrinogenemia, ACT deficiency, Diabetes insipidus (DI), neurophyseal DI, neprogenic DI, Charcot-Marie Tooth syndrome, Perlizaeus-Merzbacher disease, neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, progressive supranuclear plasy, Pick’s disease, several polyglutamine neurological disorders such as Huntington’s, spinocerebullar ataxia type I, spinal and bulbar muscular atrophy, dentatorubal pallidoluysian, and myotonic dystrophy, as well as spongiform encephalopathies, such as hereditary Creutzfeldt-Jakob disease (due to prion protein processing defect), Fabry disease, Straussler-Scheinker syndrome, COPD, dry-eye disease, or Sjogren’s disease, osteoporosis, osteopenia, bone healing and bone growth (including bone repair, bone regeneration, reducing bone resorption and increasing bone deposition), Gorham's Syndrome, chloride channelopathies such as myotonia congenita (Thomson and Becker forms), Bartter's syndrome type III, Dent's disease, hyperekplexia, epilepsy, lysosomal storage disease, Angelman syndrome, and Primary Ciliary Dyskinesia (PCD), a term for inherited disorders of the structure and/or function of cilia, including PCD with situs inversus (also known as Kartagener syndrome), PCD without situs inversus and ciliary aplasia.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating a disease in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the disease is selected from generalized epilepsy with ferbrile seizures plus (GEFS+), general epilepsy with ferbile and aferbrile seizures, myotonia, paramyotonia congenital, potassium-aggravated myotonia, hyperkalemic periodic paralysis, LQTS, LQTS/Brugada syndrome, autosomal-dominant LQTS with deafness, autosomal-recessive LQTS, LQTS with dysmorphic features, congenital and acquired LQTS, Timothy syndrome, persistent hyperinsulinemic hypolglycemia of infancy, dilated cardiomyopathy, autosomal- dominant LQTS, Dent disease, Osteopetrosis, Bartter syndrome type III, central core disease, malignant hyperthermia, and catecholaminergic polymorphic tachycardia.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation N1303K, ?I507, or R560T.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation G551D. In another embodiment, the patient is homozygous in G551D. In another embodiment, the patient is heterozygous in G551D wherein the other CFTR genetic mutation is any one of ?F508, G542X, N1303K, W1282X, R117H, R553X, 1717-1G->A, 621+1G->T, 2789+5G->A, 3849+10kbC->T, R1162X, G85E, 3120+1G->A, ?I507, 1898+1G->A, 3659delC, R347P, R560T, R334W, A455E, 2184delA, or 711+1G->T.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation ?F508. In another embodiment, the patient is homozygous in ?F508. In another embodiment, the patient is heterozygous in ?F508 wherein the other CFTR genetic mutation is any one of G551D, G542X, N1303K, W1282X, R117H, R553X, 1717-1G- >A, 621+1G->T, 2789+5G->A, 3849+10kbC->T, R1162X, G85E, 3120+1G->A, ?I507, 1898+1G->A, 3659delC, R347P, R560T, R334W, A455E, 2184delA, or 711+1G->T.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G->A, 621+1G->T, 3120+1G->A, 1898+1G->A, 711+1G->T, 2622+1G->A, 405+1G->A, 406-1G->A, 4005+1G->A, 1812-1G- >A, 1525-1G->A, 712-1G->T, 1248+1G->A, 1341+1G->A, 3121-1G->A, 4374+1G->T, 3850- 1G->A, 2789+5G->A, 3849+10kbC->T, 3272-26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA- >G, 711+3A->G, 1898+3A->G, 1717-8G->A, 1342-2A->C, 405+3A->C, 1716G/A, 1811+1G- >C, 1898+5G->T, 3850-3T->G, IVS14b+5G->A, 1898+1G->T, 4005+2T->C and 621+3A->G.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R. Disclosed is a method of treating CFTR comprising administering Compound 1 to a patient possessing a human CFTR mutation selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R. In some embodiments of this aspect, the method produces a greater than -fold increase in chloride transport relative to baseline chloride transport.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H. In one embodiment of this aspect, the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G->A, 621+1G->T, 3120+1G->A, 1898+1G->A, 711+1G->T, 2622+1G->A, 405+1G- >A, 406-1G->A, 4005+1G->A, 1812-1G->A, 1525-1G->A, 712-1G->T, 1248+1G->A, 1341+1G->A, 3121-1G->A, 4374+1G->T, 3850-1G->A, 2789+5G->A, 3849+10kbC->T, 3272- 26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA->G, 711+3A->G, 1898+3A->G, 1717-8G->A, 1342-2A->C, 405+3A->C, 1716G/A, 1811+1G->C, 1898+5G->T, 3850-3T->G, IVS14b+5G- >A, 1898+1G->T, 4005+2T->C and 621+3A->G. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G->A, 1811+1.6kbA->G, 2789+5G->A, 3272- 26A->G and 3849+10kbC->T. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G->A and 3272-26A->G.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G->A, 621+1G->T, 3120+1G->A, 1898+1G->A, 711+1G->T, 2622+1G->A, 405+1G->A, 406-1G->A, 4005+1G->A, 1812-1G- >A, 1525-1G->A, 712-1G->T, 1248+1G->A, 1341+1G->A, 3121-1G->A, 4374+1G->T, 3850- 1G->A, 2789+5G->A, 3849+10kbC->T, 3272-26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA- >G, 711+3A->G, 1898+3A->G, 1717-8G->A, 1342-2A->C, 405+3A->C, 1716G/A, 1811+1G- >C, 1898+5G->T, 3850-3T->G, IVS14b+5G->A, 1898+1G->T, 4005+2T->C and 621+3A->G, and a human CFTR mutation selected from ?F508, R117H, and G551D.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R, and a human CFTR mutation selected from ?F508, R117H, and G551D.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N, and a human CFTR mutation selected from ?F508, R117H, and G551D. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R, and a human CFTR mutation selected from ?F508, R117H, and G551D. In some embodiments of this aspect, the method produces a greater than 10-fold increase in chloride transport relative to baseline chloride transport.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H, and a human CFTR mutation selected from ?F508, R117H, and G551D. In one embodiment of this aspect, the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G->A, 621+1G->T, 3120+1G->A, 1898+1G->A, 711+1G->T, 2622+1G->A, 405+1G- >A, 406-1G->A, 4005+1G->A, 1812-1G->A, 1525-1G->A, 712-1G->T, 1248+1G->A, 1341+1G->A, 3121-1G->A, 4374+1G->T, 3850-1G->A, 2789+5G->A, 3849+10kbC->T, 3272- 26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA->G, 711+3A->G, 1898+3A->G, 1717-8G->A, 1342-2A->C, 405+3A->C, 1716G/A, 1811+1G->C, 1898+5G->T, 3850-3T->G, IVS14b+5G- >A, 1898+1G->T, 4005+2T->C and 621+3A->G, and a human CFTR mutation selected from ?F508, R117H, and G551D. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G->A, 1811+1.6kbA->G, 2789+5G->A, 3272-26A->G and 3849+10kbC->T, and a human CFTR mutation selected from ?F508, R117H, and G551D.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G- >A and 3272-26A->G, and a human CFTR mutation selected from ?F508, R117H.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G->A, 621+1G->T, 3120+1G->A, 1898+1G->A, 711+1G->T, 2622+1G->A, 405+1G->A, 406-1G->A, 4005+1G->A, 1812-1G- >A, 1525-1G->A, 712-1G->T, 1248+1G->A, 1341+1G->A, 3121-1G->A, 4374+1G->T, 3850- 1G->A, 2789+5G->A, 3849+10kbC->T, 3272-26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA- >G, 711+3A->G, 1898+3A->G, 1717-8G->A, 1342-2A->C, 405+3A->C, 1716G/A, 1811+1G- >C, 1898+5G->T, 3850-3T->G, IVS14b+5G->A, 1898+1G->T, 4005+2T->C and 621+3A->G, and a human CFTR mutation selected from ?F508, R117H, and G551D.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R. In some embodiments of this aspect, the method produces a greater than -fold increase in chloride transport relative to baseline chloride transport.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H. In one embodiment of this aspect, the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G->A, 621+1G->T, 3120+1G->A, 1898+1G->A, 711+1G->T, 2622+1G->A, 405+1G- >A, 406-1G->A, 4005+1G->A, 1812-1G->A, 1525-1G->A, 712-1G->T, 1248+1G->A, 1341+1G->A, 3121-1G->A, 4374+1G->T, 3850-1G->A, 2789+5G->A, 3849+10kbC->T, 3272- 26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA->G, 711+3A->G, 1898+3A->G, 1717-8G->A, 1342-2A->C, 405+3A->C, 1716G/A, 1811+1G->C, 1898+5G->T, 3850-3T->G, IVS14b+5G- >A, 1898+1G->T, 4005+2T->C and 621+3A->G. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G->A, 1811+1.6kbA->G, 2789+5G->A, 3272- 26A->G and 3849+10kbC->T. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G->A and 3272-26A->G.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V, G1069R, R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N, D1152H, 1717-1G->A, 621+1G->T, 3120+1G->A, 1898+1G->A, 711+1G->T, 2622+1G->A, 405+1G->A, 406-1G->A, 4005+1G->A, 1812-1G- >A, 1525-1G->A, 712-1G->T, 1248+1G->A, 1341+1G->A, 3121-1G->A, 4374+1G->T, 3850- 1G->A, 2789+5G->A, 3849+10kbC->T, 3272-26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA- >G, 711+3A->G, 1898+3A->G, 1717-8G->A, 1342-2A->C, 405+3A->C, 1716G/A, 1811+1G- >C, 1898+5G->T, 3850-3T->G, IVS14b+5G->A, 1898+1G->T, 4005+2T->C and 621+3A->G, and a human CFTR mutation selected from ?F508, R117H, and G551D, and one or more human CFTR mutations selected from ?F508, R117H, and G551D.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R, S1251N, E193K, F1052V and G1069R, and one or more human CFTR mutations selected from ?F508, R117H, and G551D. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from G178R, G551S, G970R, G1244E, S1255P, G1349D, S549N, S549R and S1251N, and one or more human CFTR mutations selected from ?F508, R117H, and G551D. Disclosed is a method of treating, lessening the symptomatically treating cystic fibrosis in a patient comprising administering an severity of, or effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from E193K, F1052V and G1069R, and one or more human CFTR mutations selected from ?F508, R117H, and G551D. In some embodiments of this aspect, the method produces a greater than -fold increase in chloride transport relative to baseline chloride transport.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from R117C, D110H, R347H, R352Q, E56K, P67L, L206W, A455E, D579G, S1235R, S945L, R1070W, F1074L, D110E, D1270N and D1152H, and one or more human CFTR mutations selected from ?F508, R117H, and G551D.
In one embodiment of this aspect, the method produces an increase in chloride transport which is greater or equal to 10% above the baseline chloride transport.
Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G->A, 621+1G->T, 3120+1G->A, 1898+1G->A, 711+1G->T, 2622+1G->A, 405+1G- >A, 406-1G->A, 4005+1G->A, 1812-1G->A, 1525-1G->A, 712-1G->T, 1248+1G->A, 1341+1G->A, 3121-1G->A, 4374+1G->T, 3850-1G->A, 2789+5G->A, 3849+10kbC->T, 3272- 26A->G, 711+5G->A, 3120G->A, 1811+1.6kbA->G, 711+3A->G, 1898+3A->G, 1717-8G->A, 1342-2A->C, 405+3A->C, 1716G/A, 1811+1G->C, 1898+5G->T, 3850-3T->G, IVS14b+5G- >A, 1898+1G->T, 4005+2T->C and 621+3A->G, and one or more human CFTR mutations selected from ?F508, R117H, and G551D. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 1717-1G->A, 1811+1.6kbA->G, 2789+5G->A, 3272- 26A->G and 3849+10kbC->T, and one or more human CFTR mutations selected from ?F508, R117H, and G551D. Disclosed is a method of treating, lessening the severity of, or symptomatically treating cystic fibrosis in a patient comprising administering an effective amount of the pharmaceutical composition or tablet of the invention to the patient, preferably a mammal, wherein the patient possesses the CFTR genetic mutation is selected from 2789+5G->A and 3272- 26A->G, and one or more human CFTR mutations selected from ?F508, R117H, and G551D.
In certain embodiments, the pharmaceutically acceptable composition or tablet of the present invention comprising Compound 1 Form I and a solid dispersion of substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit residual CFTR activity in the apical membrane of respiratory and non-respiratory epithelia. The presence of residual CFTR activity at the epithelial surface can be readily detected using methods known in the art, e.g., standard electrophysiological, biochemical, or histochemical techniques. Such methods identify CFTR activity using in vivo or ex vivo electrophysiological techniques, measurement of sweat or salivary Cl concentrations, or ex vivo biochemical or histochemical techniques to monitor cell surface density. Using such methods, residual CFTR activity can be readily detected in patients heterozygous or homozygous for a variety of different mutations, including patients homozygous or heterozygous for the most common mutation, ?F508, as well as other mutations such as the G551D mutation, or the R117H mutation. In certain embodiments, the pharmaceutically acceptable compositions or tablets comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit little to no residual CFTR activity. In certain embodiments, the pharmaceutically acceptable compositions or tablets comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2 are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients who exhibit little to no residual CFTR activity in the apical membrane of respiratory epithelia.
In another embodiment, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who have residual CFTR activity induced or augmented using pharmacological methods. In another embodiment, the compounds and compositions of the present invention are useful for treating or lessening the severity of cystic fibrosis in patients who have residual CFTR activity induced or augmented using or gene therapy. Such methods increase the amount of CFTR present at the cell surface, thereby inducing a hitherto absent CFTR activity in a patient or augmenting the existing level of residual CFTR activity in a patient.
In one embodiment, pharmaceutical compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating or lessening the severity of cystic fibrosis in patients within certain genotypes exhibiting residual CFTR activity, e.g., Class I mutations (not synthesized), class II mutation (misfolding), class III mutations (impaired regulation or gating), class IV mutations (altered conductance), or class V mutations (reduced synthesis).
In one embodiment, pharmaceutical compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating cystic fibrosis in patients within certain clinical phenotypes, e.g., a moderate to mild clinical phenotype that typically correlates with the amount of residual CFTR activity in the apical membrane of epithelia. Such phenotypes include patients exhibiting pancreatic sufficiency.
In one embodiment, pharmaceutical compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating patients diagnosed with pancreatic sufficiency, idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease wherein the patient exhibits residual CFTR activity.
In one embodiment, pharmaceutical compositions and tablets of the present invention comprising Compound 1 Form I and a solid dispersion comprising substantially amorphous Compound 2, as described herein, are useful for treating, lessening the severity of, or symptomatically treating patients diagnosed with pancreatic sufficiency, idiopathic pancreatitis and congenital bilateral absence of the vas deferens, or mild lung disease wherein the patient has wild type CFTR.
In addition to cystic fibrosis, modulation of CFTR activity may be beneficial for other diseases not directly caused by mutations in CFTR, such as secretory diseases and other protein folding diseases mediated by CFTR. These include, but are not limited to, chronic obstructive pulmonary disease (COPD), dry eye disease, and Sjögren’s Syndrome. COPD is characterized by airflow limitation that is progressive and not fully reversible. The airflow limitation is due to mucus hypersecretion, emphysema, and bronchiolitis. Activators of mutant or wild-type CFTR offer a potential treatment of mucus hypersecretion and impaired mucociliary clearance that is common in COPD. Specifically, increasing anion secretion across CFTR may facilitate fluid transport into the airway surface liquid to hydrate the mucus and optimized periciliary fluid viscosity. This would lead to enhanced mucociliary clearance and a reduction in the symptoms associated with COPD. Dry eye disease is characterized by a decrease in tear aqueous production and abnormal tear film lipid, protein and mucin profiles. There are many causes of dry eye, some of which include age, Lasik eye surgery, arthritis, medications, chemical/thermal burns, allergies, and diseases, such as cystic fibrosis and Sjögrens's syndrome. Increasing anion secretion via CFTR would enhance fluid transport from the corneal endothelial cells and secretory glands surrounding the eye to increase corneal hydration. This would help to alleviate the symptoms associated with dry eye disease. Sjögrens's syndrome is an autoimmune disease in which the immune system attacks moisture-producing glands throughout the body, including the eye, mouth, skin, respiratory tissue, liver, vagina, and gut. Symptoms, include, dry eye, mouth, and vagina, as well as lung disease. The disease is also associated with rheumatoid arthritis, systemic lupus, systemic sclerosis, and polymypositis/dermatomyositis. Defective protein trafficking is believed to cause the disease, for which treatment options are limited. Augmenters or inducers of CFTR activity may hydrate the various organs afflicted by the disease and help to elevate the associated symptoms.
Anywhere in the present application where a name of a compound may not correctly describe the structure of the compound, the structure supersedes the name and governs.
EXAMPLES Tablet Formation from a Fully Continuous Wet Granulation Process Equipment/Process Equipment Fully Continuous Development and Launch Rig (DLR) or similar type of equipment.
Screening Compound 1 Form I, the solid dispersion comprising substantially amorphous Compound 2, and excipients may be dispensed in separate intermediate bin containers (IBCs).
These materials may be screened using a "bin-to-bin" screening operation. Appropriate screen sizes are mesh 20, mesh 40, or mesh 60.
Blending The IBCs containing the screened Compound 1 Form I, the solid dispersion comprising substantially amorphous Compound 2, and excipients may be docked to the a feeder system, which can feed the materials in a controlled manner, e.g. using volumetric or gravimetric loss in weight feeders, into a continuous blender. The feed rates of the individual components is defined by the formulation composition and the overall line rate. The line rate may be 8 kg/hr to kg/hr. The continuous blender can have different blade configurations to allow appropriate blending and the rotational speed of these blades may be between 80 RPM and 300 RPM.
Wet Granulation A granulation solution may be prepared by dissolving 48 g sodium lauryl sulfate and 159 g polyvinylpyrrolidone in 1,626 g water in a stainless steel container, using an overhead stirrer with a stirring speed of 700 RPM. The granulation solution may be placed in a container from which the solution may be pumped into the twin screw granulator using a peristaltic pump with a mass flow meter and control, using a flow rate that is appropriate for the process. The blend may be granulated using a twin screw granulator such as the granulator that is part of the DLR. The blend may be added to the twin screw granulator using a Loss in Weight feeder, such as the K-Tron feeder on the DLR, with a feed rate of 8 kg/hr to 24 kg/hr. The twin screw granulator may be operated with a barrel temperature of 25 degrees Celsius and a screw speed of 200 to 950 RPM. The granulation process may be performed for three minutes for small batch sizes or several hours for large batch sizes.
Drying The wet granules may be fed directly into a fluid bed dryer, such as the segmented fluid bed dryer on the DLR. The drying end-point may be chosen at a product temperature during discharge ranging from 40 to 55 degrees Celsius at which point the water content of the granules may be 2.1 %w/w ("Loss on Drying, LOD") or less. The drying time may be 12 minutes, or shorter or longer, to reach the desired drying endpoint.
Milling The dried granules may be milled to reduce the size of the granules. A cone mill such as the integrated Quadro U10 CoMil may be used for this.
Blending The granules may be blended with extra-granular excipients such as fillers and lubricant using loss in weight feeders and a continuous blender. The blending speed may be 80 – 300 RPM.
Compression The compression blend may be compressed into tablets using a single station or rotary tablet press, such as the Courtoy Modul P press, which is part of the DLR system, using appropriately sized tooling. The weight of the tablets for a dose of 200 mg of Compound 1 Form I and 125 mg of substantially amorphous Compound 2 may be about 500 or 600 mg.
Film Coating Tablets may be film coated using the innovative Omega film coater, which is part of the DLR system. This coater enables fast film coating of sub-batches of 1 to 4 kg to allow continuous manufacturing.
Printing Film coated tablets may be printed with a monogram on one or both tablet faces with, for example, an Ackley ramp printer.
The continuous process described above in one embodiment is enhanced by PAT techniques as described in Table 1. There are 6 PAT positions each of which includes a manual sampling port. In process samples can be obtained for investigational reasons, as needed, and also for PAT model maintenance, transfer, and validation. The PAT systems may be used for real time release testing (RTRT) and may also be employed for in process controls (IPC) and feedback/feed-forward control.
Table 1 Proposed Location Technology Processing Step Role Purpose Build an NIR PAT 1 NIR Dispensing/Charging raw material IPC library Blend PAT 2 NIR Initial blend IPC uniformity Granule IPC NIR Wet Granulation uniformity PAT 3 Moisture RTRT/IPC Laser Particle size Wet Granulation RTRT Diffraction distribution Blend RTRT PAT 4 NIR Final blend uniformity Moisture RTRT API form RTRT Raman Compression Identification RTRT PAT 5 Weight RTRT/IPC Tablet Tester Compression Thickness IPC Hardness RTRT/IPC Coating PAT 6 Raman Coating IPC thickness Meeting specifications may be done by RTRT as described in Table 2.
Table 2.
Final Product PAT Position In-Process Material Measurement Attribute PAT 5a (Raman) Uncoated Tablet Confirms spectrum Identity matches the reference standard spectra PAT 4 (NIR) Final Blend API Concentration Assay PAT 5b (Tablet Uncoated Tablet Tablet Weight Tester) PAT 4 (NIR) Final Blend Variance in API concentration PAT 5b (Tablet Uncoated Tablet Variance in tablet Tester) weight May include: May include: PAT 3b (Laser Milled granules Dissolution Granule Particle Size Diffraction) PAT 4 (NIR) Final Blend API Concentration PAT 5b (Tablet Uncoated Tablet Tablet Weight, Tester) Hardness Moisture PAT 4 Final Blend Water Content PAT 5a (Raman) Uncoated Tablet Form I & Absence of Form II There is a high probability of detecting non-conforming material. For example, if model classification criterion is set at a minimum of 95% confidence and 800 tablets are tested during batch manufacture, 40 hour run with a sampling rate of 1 tablet every 3 minutes equals 800 tablets. Then, probability of passing a non-conforming batch is extremely low: <(0.05) , -1041 where n = # of samples, therefore the probability is < 1.5 x 10 . Probability of not detecting non-conforming tablets resulting from a short term event ( = 3 minutes) is as follows: 1 tablet (3 min event) ? <0.05 (probability of detection > 0.95); 2 tablets (6 minute event) ? <0.0025 (probability of detection > 0.9975).
PAT measurements can serve as surrogates for conventional end-testing directly via combining measurements to express attributes conventionally (i.e. as assay, CU, dissolution, etc.). Validation can be performed using ICH Q2 as guidance. Sequential off-line to on-line method development allows for the assessment of CQAs in a material sparing manner.
Ultimately, RTRT will lead to ensuring product quality at a higher confidence level than conventional testing.
HTT HPLC In one embodiment, the continuous process of manufacturing of the present invention utilizes high throughput testing (HTT) HPLC methods to validate samples. High throughput testing HPLC methods achieve 24 hour sample turnaround time for at least 300 samples by improving sample preparation techniques, emphasizing generic analysis methods, using well defined sample workflows, and automating data processing.
Sample preparation takes the majority of an FTE’s time and is the source of most errors. It is often overlooked during method development. In one embodiment, improved sample preparation techniques comprise using wide mouth disposable bottles. In another embodiment, improved sample preparation techniques comprise adding the entire vial of a sample to a disposable bottle, adding diluent, shaking overnight, and centrifuging.
Generic HPLC methods can be developed and validated for multiple projects.
Common HPLC columns and commercial mobile phases can be used. Additional analysis improvements include leveraged standard stability and utilizing injection overlap.
In another embodiment, HTT HPLC is used in the development of the process analytical techniques as a way of correlating the spectroscopic data collected from the process analytical techniques with an absolute number.
In one embodiment, the present invention features a process of conducting high throughput HPLC comprising a) dropping containers, such as a vials, of pre-weighed samples into plastic bottles, such as HDPE bottles; b) adding solution to each set of container and bottle via a bottle top dispenser; c) shaking the sets of plastic bottles, vials, and solutions until samples are dissolved; d) centrifuging the sets of plastic bottles, vials, and solutions; e) loading an aliquot of supernatant from the centrifuge step onto an HPLC column; and f) running the column with a mobile phase.
The advantage of HTT HPLC is that it can measure a high volume of samples in a timely, accurate, and cost effective manner. The sample preparation uses plastic bottles as the main vessel which can be placed in large number on a shaker and then transferred directly to a centrifuge. This avoids the more time consuming step of filtering the solution of sample.
Additionally, the size of the plastic bottle allows the sample to be added directly by simply dropping the container, such as a vial, of sample into the plastic bottle. Commercially available solution dispensers can then be used to add a fixed amount of solution, thus avoiding another time consuming step of pipetting the solution in.
Table 3 summarizes the benefits of high throughput testing HPLC compared to traditional HPLC testing methods.
Table 3.
Traditional Method HTT Method Samples added to volumetric flasks Samples added to disposable HDPE bottles Off shelf solvents mixed into sample bottle (no Premixed diluent diluent prep necessary) Calibrated bottle top dispensers dispense Diluent added and the QS’d to line solvents For BU: quantitative transfer For BU: sample bottles rinsed in bottle Sonication and shaking of samples Shaking only Secondary dilution and QS No dilution (injection volume driven) Samples filtered Samples centrifuged HPLC is generic (uses fixed column, fixed HPLC is project specific (variable MP and mobile phase A and B, and commercially column combinations) manufactured mobile phases) OTHER EMBODIMENTS All publications and patents referred to in this disclosure are incorporated herein by reference to the same extent as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Should the meaning of the terms in any of the patents or publications incorporated by reference conflict with the meaning of the terms used in this disclosure, the meaning of the terms in this disclosure are intended to be controlling. Furthermore, the foregoing discussion discloses and describes merely exemplary embodiments of the invention. One skilled in the art will readily recognize from such discussion and from the accompanying drawings and claims, that various changes, modifications and variations can be made therein without departing from the spirit and scope of the invention as defined in the following claims.
In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents, or such sources of information, is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.
Claims (17)
1. A process of conducting high throughput high performance liquid chromatography (HPLC) comprising: a) dropping containers of pre-weighed samples into plastic bottles; b) adding solution to each set of container and bottle via a bottle top dispenser; c) shaking each set of plastic bottle, container, and solution until sample is dissolved; d) centrifuging each set of plastic bottle, container, and solution; e) loading an aliquot of supernatant from the centrifuge step onto an HPLC column; and f) running the column with a mobile phase.
2. The process of claim 1, wherein the containers of step a) are vials.
3. The process of claim 1, wherein the plastic bottles of step a) are high density polyethylene (HDPE) bottles.
4. The process of claim 1, further comprising correlating the results from the process of claim 1 to process analytical technique (PAT) measurements for continuous manufacturing.
5. The process of claim 4, wherein continuous manufacturing is for a pharmaceutical composition.
6. The process of claim 5, wherein the pharmaceutical composition is a tablet.
7. The process of claim 6, wherein the tablet is for the treatment of a cystic fibrosis transmembrane conductance regulator (CFTR) mediated disease.
8. The process of claim 7, wherein the CFTR mediated disease is cystic fibrosis (CF).
9. The process of claim 6, wherein the tablet comprises two active pharmaceutical ingredients (APIs).
10. The process of claim 9, wherein one API is a CF corrector.
11. The process of claim 9, wherein one API is a CF potentiator.
12. The process of claim 9, wherein one API is a CF corrector and the other API is a CF potentiator.
13. The process of claim 9, wherein one API is
14. The process of claim 9, wherein one API is
15. The process of claim 9, wherein one API is and the other API is
16. The process of claim 15, wherein is in Form I, and is substantially amorphous in the form of a solid dispersion.
17. A process of any one of claims 1 to 16 substantially as herein described with reference to any example thereof and with or without reference to the accompanying drawings.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462081181P | 2014-11-18 | 2014-11-18 | |
PCT/US2015/061264 WO2016081556A1 (en) | 2014-11-18 | 2015-11-18 | Process of conducting high throughput testing high performance liquid chromatography |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ731893A NZ731893A (en) | 2023-09-29 |
NZ731893B2 true NZ731893B2 (en) | 2024-01-04 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2968130C (en) | Process of conducting high throughput testing high performance liquid chromatography | |
EP3068392B9 (en) | Process of preparing pharmaceutical compositions for the treatment of cftr mediated diseases | |
US20230364073A1 (en) | Pharmaceutical compositions for the treatment of cftr mediated diseases | |
NZ731893B2 (en) | Process of conducting high throughput testing high performance liquid chromatography |