NZ731056B - Multimodal polyethylene - Google Patents

Multimodal polyethylene

Info

Publication number
NZ731056B
NZ731056B NZ731056A NZ73105615A NZ731056B NZ 731056 B NZ731056 B NZ 731056B NZ 731056 A NZ731056 A NZ 731056A NZ 73105615 A NZ73105615 A NZ 73105615A NZ 731056 B NZ731056 B NZ 731056B
Authority
NZ
New Zealand
Prior art keywords
copolymer
cable
multimodal polyethylene
mins
component
Prior art date
Application number
NZ731056A
Other versions
NZ731056A (en
Inventor
Ahmed Ibrahim Ali
Andrey Buryak
Ashish Kumar
Original Assignee
Abu Dhabi Polymers Company Limited (Borouge) Llc
Borealis Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP14200665.9A external-priority patent/EP3040376B2/en
Application filed by Abu Dhabi Polymers Company Limited (Borouge) Llc, Borealis Ag filed Critical Abu Dhabi Polymers Company Limited (Borouge) Llc
Publication of NZ731056A publication Critical patent/NZ731056A/en
Publication of NZ731056B publication Critical patent/NZ731056B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/001Multistage polymerisation processes characterised by a change in reactor conditions without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/16Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/04Broad molecular weight distribution, i.e. Mw/Mn > 6
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/05Bimodal or multimodal molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/07High density, i.e. > 0.95 g/cm3
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/12Melt flow index or melt flow ratio
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/02Carriers therefor
    • C08F4/025Metal oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/647Catalysts containing a specific non-metal or metal-free compound
    • C08F4/649Catalysts containing a specific non-metal or metal-free compound organic
    • C08F4/6491Catalysts containing a specific non-metal or metal-free compound organic hydrocarbon
    • C08F4/6492Catalysts containing a specific non-metal or metal-free compound organic hydrocarbon containing aliphatic unsaturation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/654Pretreating with metals or metal-containing compounds with magnesium or compounds thereof
    • C08F4/6546Pretreating with metals or metal-containing compounds with magnesium or compounds thereof organo-magnesium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/65Pretreating the metal or compound covered by group C08F4/64 before the final contacting with the metal or compound covered by group C08F4/44
    • C08F4/652Pretreating with metals or metal-containing compounds
    • C08F4/655Pretreating with metals or metal-containing compounds with aluminium or compounds thereof
    • C08F4/6555Pretreating with metals or metal-containing compounds with aluminium or compounds thereof and magnesium or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/20Applications use in electrical or conductive gadgets
    • C08L2203/202Applications use in electrical or conductive gadgets use in electrical wires or wirecoating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • C08L23/0807Copolymers of ethene with unsaturated hydrocarbons only containing more than three carbon atoms
    • C08L23/0815Copolymers of ethene with aliphatic 1-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/02Ziegler natta catalyst
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/002Pair constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Abstract

multimodal polyethylene copolymer suitable for use in cable insulation comprising: (III) 45 to 55 wt% of a lower molecular weight component which is an ethylene copolymer of ethylene and at least one C3-12 alpha olefin comonomer, said LMW component having a density of 940 to 962 kg/m3 and an MFR2 of 50 to 500 g/10min; (IV) 55 to 45 wt% of a higher molecular weight ethylene copolymer component of ethylene and at least one C3-12 alpha olefin comonomer; wherein said multimodal polyethylene copolymer has a density of 940 to 950 kg/m3, an MFR2 of 0.05 to 2.0 g/10m in. and preferably at least one of crystallization half time > 3.0 mins at 120.5°C, a crystallization half time > 5.0 mins at 121°C or a crystallization half time > 10.0 mins at 122°C. of 50 to 500 g/10min; (IV) 55 to 45 wt% of a higher molecular weight ethylene copolymer component of ethylene and at least one C3-12 alpha olefin comonomer; wherein said multimodal polyethylene copolymer has a density of 940 to 950 kg/m3, an MFR2 of 0.05 to 2.0 g/10m in. and preferably at least one of crystallization half time > 3.0 mins at 120.5°C, a crystallization half time > 5.0 mins at 121°C or a crystallization half time > 10.0 mins at 122°C.

Description

odal Polyethylene This invention relates to a multimodal high density hylene copolymer for use in the tion layer of a wire or cable, such as a data cable or telecommunications cable and to cables made from the copolymer. The invention also s to a process for the production of said copolymer. In particular, the copolymer ofuse in the insulation layer is a multimodal HDPE which exhibits slow crystallisation speed (and hence long crystallization half time) and is hence able to form an insulation layer without defects often associated with multimodal polyethylene. It is also compatible with filling nds such as petroleum jelly often used in cables to prevent ingress of water.
Background art Cables such as data cables and telecommunications cables have been used for many years to transmit ation. In any cable, a conductor is protected from external. influence by one or more sheathing layers which act to shield, protect and insulate the conductor. The conductor is typically a metal wire such as a copper wire which is surrounded by one or more sheathing layers. In their simplest form, a cable may just be copper wire ed with a single layer of insulation. It will be appreciated that much more complex cable designs exist.
In a conventional method, cables are made in an extrusion process in which the conductor is covered with molten polymer which is then cooled in a series of water baths thus creating an insulating layer. The insulation layer is typically a polyethylene polymer.
It is important that the polyethylene used for cable insulation does not have a high crystallization speed (short crystallization half time), i.e. the polyethylene should not crystallise too quickly. If a r has a very fast crystallization rate then the cable insulation layer will shrink on cooling. Shrinkage of the insulation layer is a process which the skilled person wants to avoid. Also, adhesion of the insulation layer to the conductor is poor if llisation speed is too rapid, resulting in inferior electrical properties of the produced cable.
It is known in the art that crystallization speed can be slowed by, for example, decreasing polymer density. However, lower density polymers often exhibit poorer mechanical properties. Also, lower density results in higher adsorption of fillers that can be present in the cable, in ular petroleum jelly.
Petroleum jelly is routinely used in telephone cable construction to support a group of cables. The use of petroleum jelly was first proposed in 1968 when Bell Telephone Laboratories reported a new cable design where air space in a cable was filled with a dielectric compound consisting of polyethylene and petroleum jelly. In the case of a rupture of the outer sheath, the jelly prevents water ingress, stabilizes electrical transmission, permits use of an economical sheath design, and prevents water from flowing along the cable length.
If the cable insulation al adsorbs the petroleum jelly then cable performance is again compromised. Although the cture of traditional copper multipair telephone cables in which petroleum jelly is used is in e, there s a need to ue to produce these ts in cases where it is more cost effective to extend an existing network rather than install new fibre optic technology. In addition, similar cable filling technology continues to be used for fibre optic cables.
The present inventors targeted a multimodal polyethylene polymer composition for use in the manufacture of the insulation layer in a cable such as a data cable or telecommunications cable. That cable could be a fibre optic cable or a traditional telecommunications or data cable. The cable can comprise fillers such as petroleum jelly.
In this regard, it is known that bimodal hylene grades offer superior balance of certain mechanical properties when compared to al polyethylene grades. odal polymers also tend to possess improved processability (corresponding to lower melt re in the extruder) due to their broader molecular weight distribution.
Unfortunately, bimodal polyethylenes have faster crystallization speed (shorter crystallization half times) than their unimodal counterparts, resulting in higher shrinkage and inferior adhesion to the conductor in the cable. Also, the resistance to eum jelly adsorption is worse in a multimodal polymer making them less than ideal ates in cables where petroleum jelly or other fillers are present. Whilst therefore, there are benefits to using a multimodal polyethylene in terms of their mechanical and rheological properties, those benefits are outweighed by the negative impact multimodality has on insulation layer shrinkage and adhesion to conductor and le compatibility issues with fillers such as petroleum jelly.
Therefore there is the need to combine the good mechanical and rheological properties of multimodal polyethylene with slower llization speed (longer crystallization half times) and good petroleum jelly adsorption resistance of a unimodal polyethylene. The present inventors have now found that certain multimodal polyethylene copolymers characterised by their high density, relatively high MFR, density split n fractions, and copolymeric structure offer an excellent balance of properties for cable insulation. The rs offer slow crystallisation speed (long crystallization half times) and good resistance to petroleum jelly. Being odal, the polymers also possess excellent mechanical properties, e.g. in terms of their balance of stiffness/stress crack ance and excellent rheological properties, e.g. in terms of shear thinning index, meaning the polymers are y sed into cables.
Bimodal polyethylene has been used in the manufacture of cable insulation before. In EPl,159,350 some multimodal polyethylene copolymers are described as supports for use in fibre optic cables. The polymers are however based on polymers with very low MFR, e.g. MFR5 of 0. l. to 2.0 g/ 10 min. The MFR appears to offer a compromise between processing properties and dimensional stability. er, in the examples, the LMW component in the polymer is a homopolymer. Our higher MFR values are advantageous for extrusion.
EP1,739,110 describes multimodal polymers for use in cable and film ations but these polymers are of low density and therefore lack the mechanical performance of the higher y polymers of the present ion.
The present inventors have therefore devised new polymers with an ideal balance ofMFR, density, and density split based on a two copolym er components.
They also exhibit advantageous slow crystallization speed (long crystallization half times) as our polymers are based on two copolymer fractions.
Summary of Invention Viewed from one aspect the invention provides a multimodal polyethylene copolymer suitable for use in cable insulation comprising: (1) 45 to 55 wt% of a lower molecular weight component which is an ethylene copolymer of ethylene and at least one C3-l2 alpha olefin comonomer, said LMW ent having a density of 940 to 962 kg/m3 and an MFR2 of 50 to 500 g/10min; (II) 55 to 45 wt% of a higher molecular weight ethylene copolymer component of ethylene and at least one C3-12 alpha olefin comonomer; wherein said multimodal polyethylene copolymer has a density of 940 to 950 kg/m3, an MFR; of 0.05 to 2.0 g/10min and at least one of (i) a crystallization half time > 3.0 mins at 120.50C; (ii) a crystallization half time > 5.0 mins at 1210C; or (iii) a crystallization half time > 10.0 mins at l22°C.
In one embodiment, the polymer of invention has at least two of (i) a crystallization half time > 3.0 mins at 120.5°C, (ii) a crystallization half time > 5.0 min at 121°C or (iii) a crystallization half time > 100 mins at 122°C.
Preferably, the polymer of the invention has all of the above crystallization half times.
The multimodal hylene mer of the invention is ably made using a Ziegler Natta catalyst.
Viewed from another aspect the invention provides a cable, such as a data cable or telecommunications cable, sing a conductor surrounded by an tion layer wherein said tion layer comprises, e.g. consists essentially of, a multimodal polyethylene copolymer as herein before defined.
Viewed from another aspect the invention provides a cable, such as a data cable or telecommunications cable, sing a conductor surrounded by an insulation, layer wherein said insulation layer comprises, e.g. consists essentially of, a multimodal hylene copolym er as herein before defined and wherein said cable comprises at least one filler such. as petroleum j elly. The filler is preferably present and in contact with the insulation layer.
Viewed from another aspect the invention provides the use of the multimodal polyethylene copolymer as hereinbefore defined in the manufacture of a cable, e.g. in the manufacture of the insulating layer of a cable, such as a data cable or telecommunications cable. In one embodiment, the cable of the invention additionally comprises at least one filler such as petroleum jelly.
Viewed from another aspect the ion es a process for the preparation of a multimodal polyethylene mer as herein before defined comprising; polymerising ethylene and at least one C3-12 alpha olefin comonomer in the presence of a Ziegler Natta catalyst so as to form said lower molecular weight component (I); and subsequently polymerising ethylene and at least one C3—l2 alpha olefin comonomer in the presence of component (I) and in the presence of the same Ziegler Natta st so as to form said higher molecular weight component (11) and hence form said odal polyethylene copolymer as herein before defined.
The invention further comprises extruding the formed polymer around a conductor to form a cable. If filler is present, that can be added at any convenient time, e. g. to a cooling step of tion layer.
Definitions All parameters ned above and below are measured according to test methods set out before the examples.
Detailed Description of Invention It has been found that the high density hylene copolymer according to the invention provides an improved material for cable insulation, in particular for data or telecommunications cables, especially a cable comprising at least one filler such as eum jelly. The multimodal polymer ofthe invention possesses a slow crystallisation speed (long crystallisation half-life) and resistance to the adsorption ofpetroleum j elly which is characteristic of a unimodal polyethylene. However, as the polymer of the invention is a multimodal polymer, it offers the advantageous properties above, in combination with the improved rheology, mechanical ties and processability associated with multimodal polymers.
The polymer of the ion is a multimodal high y ethylene copolymer containing at least two ethylene copolymer ons. The multimodal polyethylene mer ofthe invention comprises a lower MW fraction which is an ethylene copolymer fraction comprising ethylene copolymerised with at least one C3-12 alpha olefin. The terms component and fraction can be used interchangeably herein.
The HMW component, which by definition is different from the LMW component, is also a copolymer of ethylene and at least one C3-l2 alpha olefin but is obviously of a higher Mw than the LMW component.
In an ne copolymer fraction, the majority by mole mer residues present are derived from ethylene r units. The comonomer contribution in the HMW component preferably is up to 10% by mol, more preferably up to 5% by mo] in any copolymer fraction. In the LMW fraction, the amounts of comonomer tend to be less than in the HMW component and are sufficient to create a polymer having the density requirements of the invention.
Ideally, there are very low levels of comonomer present in the LMW copolymer fraction such as 0.05 to 3.0 mol%, e.g. 0.1 to 2.0 mol%.
The overall comonomer content in the multimodal polyethylene copolymer as a whole may be 0.1 to 4.0 % e.g. 0.5 to 3.0 mol%.
The copolymerisable monomer or monomers present in any copolymer component are C3-12 alpha olefin comonomers, particularly singly or multiply nically unsaturated comonomers, in particular C3alpha olefins such as propene, ene, hex-l—ene, oct—l -ene, and 4-methyl-pent-l-ene. The use of l- WO 07867 hexene and l-butene is particularly preferred. Ideally there is only one comonomer present. y that comonomer is l—butene. It is therefore preferred if both LMW and HMW components are ethylene ne copolymers.
The polymer of the invention is multimodal and therefore comprises at least two components. It is generally preferred if the higher molecular weight (HMW) ent has an Mw of at least 5000 more than the lower molecular weight (LMW) component, such as at least 10,000 more. atively viewed, the MFR2 of the HMW component is lower than the MFR2 of the LMW ent.
The HDPE of the invention is odal. Usually, a polyethylene composition comprising at least two polyethylene fractions, which have been produced under different risation conditions resulting in different (weight average) molecular weights and molecular weight distributions for the fractions, is referred to as modal". Accordingly, in this sense the compositions of the invention are multimodal hylenes. The prefix "multi" relates to the number of different polymer fractions the composition is consisting of. Thus, for example, a composition consisting of two fractions only is called "bimodal".
The form of the molecular weight distribution curve, i.e. the appearance of the graph of the polymer weight fraction as function of its molecular weight, of such a multimodal polyethylene will show two or more maxima or at least be distinctly broadened in comparison with the curves for the individual fractions.
For example, if a polymer is produced in a sequential multistage process, utilising reactors coupled in series and using different conditions in each reactor, the polymer fractions produced in the different reactors will each have their own molecular weight distribution and weight e molecular weight. When the molecular weight bution curve of such a polymer is recorded, the individual curves from these fractions are superimposed into the molecular weight distribution curve for the total resulting polymer product, usually yielding a curve with two or more distinct maxima.
It is preferred if the polymer of the invention is bimodal.
The polymer of the invention has an MFR2 of 0.05 to 2.0 g/10 min, preferably 0.2 to 2.0 g/10min, more preferably 0.5 to 1.5 g/l 0min. This narrowly defined MFRZ range is crucial for the slow crystallisation speed and resistance to filler. Often multimodal HDPEs for cable applications have lower MFR than taught herein. We are able to provide insulation layers in cables using a high MFR polymer and hence a more extrudable material t loss of other crucial properties such as structural integrity. The density of the multimodal ethylene copolymer is 940 to 950 kg/m3 . The polymers of the invention are therefore high density hylenes, HDPE. More ably, the polymer has a density of 942 to 948 kg/mB, such as 943 to 947 kg/m3.
Preferably, the polyethylene copolymer has a molecular weight distribution Mw/Mn, being the ratio ofthe weight average molecular weight Mw and the number average molecular weight Mn, ofmore than 9.0, more preferably more than 10.0, such as 11.0 to 20.0.
The multimodal ethylene copolymer ably has an Mw/Mn of 30.0 or below, more preferably of 25.0 or below.
The weight average molecular weight Mw of the multimodal ethylene copolymer of the invention preferably is at least 50,000, more preferably at least 70,000. Furthermore, the Mw of the ition preferably is at most 200,000, more preferably at most 150,000.
The shear thinning index (SHI 0) may be at least 16.0, such as at least .0. y the SH1 is in the range of 20.0 to 50.0, preferably 25.0 to 45.0.
The crystallisation half times of the polymer of the invention are important.
At C, crystallisation halftime is preferably more than 3.0 mins. At 121°C, crystallisation half time is preferably more than 5.0 mins. At 122°C, crystallisation halftime is preferably more than 10.0 mins, such as more than 1 1.5 mins, especially more than 12.0 or more than 12.5 mins.
The copolymer of the invention has a petroleum jelly adsorption of 5.0 to 9.0 wt%, preferably 5.5 to 8.5 wt%.
As noted above, the polymers of the invention preferably comprise a lower molecular weight ethylene copolymer component (I) and a higher molecular weight ne copolymer ent (11). The weight ratio ofLMW fraction (1) to HMW fraction (II) in the composition is in the range 45:55 to 55:45, more preferably 47:53 to 53 :47. It has been found therefore that the best results are obtained when the HMW component is present at around the same percentage as the LMW component or even slightly less, e. g. 47 to 50 wt% of the HMW component (11) and 53 to 50 wt% on (1).
An ideal polymer is therefore a lower molecular weight ethylene copolymer component (I) (e.g. with butene comonomer) with a higher molecular weight component (11) which is an ethylene mer component (e.g. with a butene comonomer).
The lower molecular weight fraction (I) has an MFRg of 50 to 500 g/10min, ably 200 to 450 g/10min. A range of 200 to 400 g/10min is preferred.
This high MFR2 in the LMW on s that there is a large difference in MW between LMW and HMW components and is important in giving the multimodal polyethylene copolymer of the invention the good rheological properties which we observe.
Fraction (1) is an ethylene copolymer with at least one C3-12 alpha olefin comonomer, preferably l—butene or 1-hexene.
The component (I) may have a density of 940 to 962 kg/m3, preferably 950 to 962 kg/m3. The use of a copolymer in this component slows crystallisation speed.
The HMW component is an ethylene copolymer. Its properties are chosen such that the desired final density and MFR are achieved. It has a lower MFRZ than the LMW component and a lower density. The MFRZ of the HMW component should be determined or calculated to be less than 0.15 n.
Where herein features of ons (I) and/or (11) of the composition of the present invention are given, these values are generally valid for the cases in which they can be directly measured on the respective fraction, e.g. when the fraction is separately produced or produced in the first stage of a multistage process. However, the composition may also be and preferably is produced in a multistage process wherein e.g. fractions (1) and (II) are produced in uent stages. In such a case, the properties of the fractions produced in the second step (or further steps) of the multistage process can either be inferred from polymers, which are separately produced in a single stage by applying identical risation conditions (e.g. identical temperature, partial pressures of the reactants/diluents, suspension medium, reaction time) with regard to the stage of the multistage s in which the on is produced, and by using a catalyst on which no previously produced polymer is present. Alternatively, the properties of the fractions produced in a higher stage of the multistage process may also be calculated, e.g. in accordance with B. Hagstrom, Conference on Polymer Processing (The Polymer Processing Society), Extended Abstracts and Final Programme, Gothenburg, August 19 to 21, 1997, 4: 13.
Thus, although not directly measurable on the tage process products, the properties of the fractions produced in higher stages of such a multistage process can be ined by applying either or both of the above methods. The skilled person will be able to select the appropriate method.
A multimodal (e.g. bimodal) polyethylene as before described may be produced by mechanical blending two or more polyethylenes (e.g. monomodal polyethylenes) having differently centred maxima in their molecular weight distributions. The monomodal polyethylenes required for ng may be available commercially or may be prepared using any conventional procedure known to the skilled man in the art. Each of the polyethylenes used in a blend and/or the final polymer composition may have the properties before described for the lower molecular weight component, higher lar weight ent and the composition, respectively.
However, it is preferred if the copolymer of the invention is formed in a multistage s. The process of the invention preferably involves: polymerising ethylene and at least one C3-12 alpha olefin mer so as to form a lower molecular weight component (I) as herein defined; and subsequently polymerising ethylene and at least one C3-12 alpha olefin mer in the presence of component (I) so as to form a higher molecular weight component (11) and hence to form the desired multimodal polyethylene copolymer of the invention.
The same Ziegler Natta catalyst is used in both stages of the process and is transferred from step (I) to step (11) along with component (I).
It is preferred if at least one ent is produced, in a gas-phase reaction.
Further preferred, one of the fractions (1) and (II) of the polyethylene composition, preferably fraction (1), is ed in a slurry reaction, preferably in a loop reactor, and one of the fractions (1) and (11), preferably fraction (II), is produced in a gas-phase reaction.
Preferably, the multimodal polyethylene composition may be produced by polymerisation using conditions which create a multimodal (e.g. bimodal) polymer product using a Ziegler Natta st system using a two or more stage, i.e. multistage, polymerisation process with ent process conditions in the different stages or zones (e.g. different temperatures, pressures, polymerisation media, hydrogen l pressures, etc).
Preferably, the multimodal (e.g. bimodal) composition is produced by a multistage ethylene polymerisation, e.g. using a series of reactors. A multistage process is defined to be a polymerisation process in which a polymer comprising two or more fractions is produced by producing each or at least two polymer fraction(s) in a separate reaction stage, usually with different reaction conditions in each stage, in the presence of the reaction product of the previous stage which comprises a risation catalyst. The polymerisation reactions used in each stage may involve conventional ethylene homopolymerisation or merisation reactions, e. g. gas—phase, slurry phase, liquid phase polymerisations, using conventional reactors, e. g. loop rs, gas phase reactors, batch reactors etc. (see for example WOW/44371 and WO96/l 8662).
Polymer compositions produced in a multistage process are also designated as tu" blends.
It is previously known to e multimodal, in particular bimodal, olefin polymers, such as multimodal polyethylene, in a multistage s comprising two or more reactors connected in series. As instance of this prior art, mention may be made ofEP 517 868, which is hereby incorporated by way of reference in its ty, including all its red embodiments as bed therein, as a preferred multistage process for the production of the polyethylene composition according to the invention.
Preferably, the main polymerisation stages of the multistage process for producing the composition according to the invention are such as described in EP 517 868, Le. the production of fractions (1) and (II) is carried out as a combination of slurry polymerisation for fraction (I)/gas—phase polymerisation for fraction (II). The slurry polymerisation is preferably performed in a led loop reactor. Further preferred, the slurry risation stage precedes the gas phase stage. ally and advantageously, the main polymerisation stages may be preceded by a prepolymerisation, in which ease up to 20 % by weight, preferably 1 to 10 0/0 by weight, more preferably 1 to 5 % by weight, of the total composition is produced. The prepolymer is preferably an ethylene homopolymer (High Density PE). At the prepolymerisation, preferably all of the catalyst is charged into a loop reactor and the prepolymerisation is performed as a slurry polymerisation. Such a prepolymerisation leads to less fine particles being produced in the following reactors and to a more homogeneous product being obtained, in the end. Any prepolymer is deemed part of the LMW component herein.
The polymerisation catalyst is a r-Natta (ZN) catalyst. The catalyst may be supported, e.g. with conventional supports including magnesium dichloride based supports or Silica. Preferably the catalyst is a ZN catalyst, more preferably the catalyst is silica supported ZN catalyst.
The Ziegler-Natta catalyst fiirther preferably comprises a group 4 (group numbering according to new IUPAC system) metal compound, preferably titanium, magnesium dichloride and aluminium.
The st may be commercially available or be produced in accordance or analogously to the literature. For the preparation of the preferable st usable in the invention nce is made to W02004055068 and WO2004055069 of Borealis, EP 0 688 794 and EP 0 810 235. The t ofthese documents in its entirety is incorporated herein. by reference, in particular concerning the general and all preferred embodiments of the catalysts described therein as well as the methods for the production of the catalysts. Particularly red Ziegler—Natta catalysts are described in EP 0 810 235.
The resulting end product consists of an intimate e of the polymers from the two or more reactors, the different molecular—weight-distribution curves of these polymers together forming a molecular—weight-distribution curve having a broad m or two or more maxima, i.e. the end product is a multimodal polymer mixture, such as l mixture.
It is preferred that the base resin, i.e. the entirety of all ric constituents, of the composition according to the invention is a l polyethylene mixture consisting of fractions (I) and (II), optionally further comprising a small prepolymerisation fraction in the amount as described above. It is also red that this bimodal polymer mixture has been ed by polymerisation as described above under different polymerisation conditions in two or more polymerisation reactors connected. in series. Owing to the flexibility with respect to reaction conditions thus obtained, it is most preferred that the polymerisation is carried out in a loop reactor/a gas-phase reactor combination.
Preferably, the polymerisation ions in the preferred, two-stage method are so chosen that the comparatively lower molecular copolymer is produced in one stage, ably the first stage, owing to a high content of transfer agent (hydrogen gas), whereas the higher molecular copolymer having a higher content of comonomer is produced in another stage, preferably the second stage. The order of these stages may, r, be reversed.
In the preferred embodiment of the polymerisation, in which a loop reactor is followed by a gas-phase reactor, the polymerisation temperature in the loop reactor preferably is 85 to 115 0C, more preferably is 90 to 105 OC, and most preferably is 92 to 100 °C, and the temperature in the gas-phase reactor ably is 70 to 105 0C, more preferably is 75 to 100°C, and most preferably is 82 to 97°C.
A chain-transfer agent, ably hydrogen, is added as required to the reactors, and preferably 100 to 800 moles of Hg/kmoles of ethylene are added, to the reactor, when the LMW on is produced, in this reactor, and 50 to 500 moles of Hz/kmoles of ethylene are added to the gas phase reactor when this reactor is producing the HMW fraction.
In the production of the composition of the present invention, preferably a compounding step is applied, wherein the composition ofthe base resin, i.e. the blend, which is typically obtained as a base resin powder from the reactor, is extruded in an extruder and then pelletised to r pellets in a manner known in the art.
The polyethylene composition may also contain minor quantities of additives such as pigments, nucleating agents, antistatic agents, fillers, antioxidants, etc., generally in amounts of up to 10 % by weight, preferably up to 5 % by weight .
Optionally, additives or other r components can be added to the composition during the compounding step in the amount as described above.
Preferably, the composition of the invention obtained from the reactor is compounded in the extruder together with additives in a manner known in the art.
The polyethylene polymer of the invention may also be combined with other polymer components such as other polymers of the ion, with other HDPEs or with other polymers such as LLDPE or LDPE. However the insulation layer of cables of the invention is preferably at least 90 wt% of the polymer of the invention, such as at least 95 wt%. In one ment, the insulation layer consists essentially of the polymer of the invention. The term “consists essentially of” means that the polymer ofthe invention is the only "non ve" polyolefin present. It will be appreciated however that such a polymer may contain standard polymer additives some of which might be supported on a polyolefin (a so called masterbatch as is well known in the art). The term “consists essentially of” does not exclude the ce of such a supported additive or a filler such as petroleum jelly.
The insulation. layer in any cable may be 0.2 to 5 mm in thickness.
Applications Still further, the present invention relates to a cable comprising a tor surrounded by an insulation layer comprising a polyethylene copolymer as described above and to the use of such a polyethylene copolymer for the production of the insulation layer in a cable. Cables of the invention are preferably data cables or telecommunications cables. Cables of the ion may contain fillers such as petroleum jelly. The r of the invention could also be used in the manufacture of fibre optic cable sheathing. Other cables of interest are pair cables and l cables.
The cables ofthe invention can comprise a single coating layer (i.e. the insulation layer defined herein). or multiple , e.g. an insulation layer and an external jacketing layer. It is preferred if the insulation layer of the invention is adjacent the conductor. It is red if the insulation layer is the only layer present.
WO 07867 2015/081343 The skilled person will appreciate that cables can be formed comprising multiple conductors in bundles. The polymer of the ion is suitable for the formation of such a cable.
The cable can be provided with a filler as is well known in the art. Cable manufacture can be effected conventionally. It is highly preferred therefore if the cable of the invention is a telecommunications or data cable. These are also referred to as CuPM — copper multi pair cables. The insulation layer surrounds the copper conductor and the cables can then be twisted into multi pairs. In one embodiment there is no other layer apart from HDPE insulation surrounding a copper conductor, e. g. for a data cable. Alternatively, there may also be a jacketing layer present.
In particular, for telecommunications cables there may also be a jacketing layer present. Also, the cable interior may be filled with a filler such as petroleum jelly to avoid moisture ation.
It will be appreciated that any parameter mentioned above is measured according to the ed test given below. In any parameter where a narrower and broader embodiment are disclosed, those embodiments are disclosed in connection with the narrower and broader embodiments of other parameters.
The invention will now be described with reference to the following non limiting examples and figure 1. Figure 1 s crystallization half—times as a function oftemperature.
Test Methods: Melt Flow Rate The melt flow rate (MFR) is determined according to ISO 1133 and is indicated in g/ 10 min. The MFR is an tion of the melt viscosity of the polymer. The MFR is determined at 190°C. The load under which the melt flow rate is determined is usually indicated as a subscript, for instance MFR2 is measured under 2.16 kg load (condition D). MFR5 is measured under 5 kg load (condition T) or MFR21 is measured under 21.6 kg load (condition G).
The quantity FRR (flow rate ratio) is an indication of molecular weight bution and denotes the ratio of flow rates at different loads. Thus, FRR21,2 denotes the value ofMFR21/MFR2.
Density Density ofthe polymer was measured according to ISO 1183 / 1872-2B.
For the purpose of this invention the density of the blend can be calculated from the densities of the components of the blend according to: [01) Z Z “’1' 'pz‘ where pb is the density of the blend, w, is the weight fraction of component “i” in the blend and “'99 pi is the density of the component 1 Molecular weight Molecular weight averages, molecular weight distribution ( Mn, Mw,Mz MWD) lar weight averages (M2, Mw and Mn), Molecular weight bution (MWD) and its broadness, described, by Mw/Mn (wherein Mn is the number average lar weight and Mw is the weight average molecular weight) were determined by Gel Permeation Chromatography (GPC) ing to ISO 16014- 122003, ISO 16014-222003, ISO 42003 and ASTM D 6474-12 using the following formulas: Zliv=1Ai M” "_ (1) Ell-:1(Ai/Mi) 21‘; (Aix Mi) M 1 = —————L 2 W ( ) Eli-1A1.
Eli: AixMiz) M2 =fi— (3) Zéilmi/Mi) For a constant elution volume interval AVi, where A, and Mi are the chromatographic peak slice area and polyolefin molecular weight (MW), respectively associated with the elution , Vi, where N is equal to the number of data points obtained from the chromatogram n the integration limits.
A high temperature GPC instrument, equipped, with either infrared (IR) detector (1R4 or 1R5 from PolymerChar cia, Spain) or ential refractometer (RI) from Agilent Technologies, equipped with 3 X Agilent—PLgel Olexis and lx Agilent- PLgel Olexis Guard columns was used. As the solvent and mobile phase 1,2,4- trichlorobenzene (TCB) stabilized with 250 mg/L 2,6-Di tert butyl—4-methyl-phenol) was used. The chromatographic system was operated at 160 CC and at a constant flow rate of 1 mL/min. 200 uL of sample solution was injected per analysis. Data collection was performed using either Agilent Cirrus software version 3.3 or PolymerChar GPC-IR l software.
The column set was calibrated using sal calibration (according to ISO 16014- 22003) with 19 narrow MWD polystyrene (PS) standards in the range of 0,5 kg/mol to 11 500 kg/mol. The PS standards were dissolved at room temperature over several hours. The conversion of the polystyrene peak lar weight to polyolefin lar weights is accomplished by using the Mark Houwink equation and the following Mark Houwink constants: KPS = 19 x 10'3 mL/g,aps = 0.655 KPE = 39 x 10'3 mL/g, mm = 0.725 KPP = 19 x 10'3 mL/g,app = 0.725 A third order polynomial fit was used to fit the calibration data.
All samples were prepared in the concentration range of 0,5 -1 mg/ml and dissolved at 160 °C for 2.5 hours for PP or 3 hours for PE under continuous gentle shaking.
Tensile properties Tensile properties were measured on injection d samples according to ISO 527-2, Specimen type Multipurpose bar 1A 4 mm thick. Tensile modulus was measured at a speed of l mm/min. Sample ation was done acc ISO 1872-2 Quantification of tructure by NMR spectroscopy Quantitative nuclear-magnetic resonance (NMR) oscopy was used to quantify the comonomer content of the polymers.
Quantitative 13C {1H} NMR spectra recorded in the molten-state using a Bruker Advance III 500 NMR spectrometer operating at 500.13 and 125.76 MHz for 1H and 13C respectively. All spectra were recorded using a 13C optimised, 7 mm angle spinning (MAS) probehead at 150°C using en gas for all pneumatics. Approximately 200 mg of material was packed into a 7 mm outer diameter zirconia MAS rotor and spun at 4 kHz. Standard single-pulse tion was employed utilising the transient NOE at short recycle delays of 3s {pollard04, klimke06} and the RS-HEPT decoupling scheme{fillip05, griffin07}. A total of 1024 (1k) transients were ed per spectrum. This setup was chosen due its high sensitivity towards low comonomer contents.
Quantitative 13C {1H} NMR spectra were processed, integrated and quantitative properties determined using custom al analysis automation ms. All chemical shifts are internally referenced to the bulk methylene signal (8+) at 30.00 ppm {randall89}.
Characteristic signals corresponding to the incorporation of 1-butene were observed (randa1189) and all contents calculated with respect to all other monomers present in the polymer.
Characteristic signals resulting from isolated 1-butene incorporation i.e.
EEBEE comonomer sequences, were observed. Isolated l—butene incorporation was quantified using the al of the signal at 39.84 ppm assigned to the *B2 sites, 3O accounting for the number of reporting sites per comonomer: B 21*}32 With no other signals indicative of other comonomer sequences, i.e. consecutive comonomer incorporation, observed the total l-butene mer content was calculated based solely on the amount of isolated l-butene sequences: Btotal = B The relative content of ethylene was quantified using the integral of the bulk methylene (8+) signals at 30.00 ppm: E =(l/2)*I5+ The total ethylene mer content was ated based the bulk methylene signals and accounting for ethylene units present in other observed comonomer sequences or end-groups: Emu: E + (5/2)*B The total mole fraction of l-butene in the polymer was then calculated as: B = ( Btotal / ( Emmi1L Btotal) The total mer incorporation of l—butene in mole percent was calculated from the mole fraction in the usual : B [mol%] = 100 * fB The total comonomer incorporation of l-butene in weight percent was calculated from the mole fraction in the rd manner: B [wt%] = 100 * (fB * 56.11) / ( (fB * 56.11.) + (fH * 84.16) + ((1- (iB + fH)) * 28.05)) klimke06 Klimke, K., Parkinson, M., Piel, C., Kaminsky, W., Spiess, H.W., Wilhelm, M., Macromol. Chem.
Phys. 2006;207:382. pollard04 Pollard, M., Klimke, K., Graf, R., Spiess, H.W., Wilhelm, M., Sperber, 0., Piel, C., Kaminsky, W., Macromolecules 2004;37:813. 3O filipOS Filip, X, Tripon, C., Filip, C., J. Mag. Resn. 2005, 176, 239 griffin07 Griffin, J.M., , C., Samoson, A., Filip, C., and Brown, S.P., Mag. Res. in Chem. 2007 45, $1, $198 randall89 J. l, Macromol. Sci, Rev. Macromol. Chem. Phys. 1989, C29, 201.
Rheology The characterization of polymer melts by dynamic shear measurements es with ISO standards 672] -l. and 6721-10. The measurements were med on an Anton Paar MCR30] stress controlled rotational rheometer, equipped with a 25 mm parallel plate geometry. Measurements were undertaken on compression moulded plates, using nitrogen atmosphere and setting a strain within the linear Viscoelastic regime. The oscillatory shear tests were done at T °C (T by 230 0C for PP and 1900C for PE) applying a frequency range n 0.0154 and 500 rad/s and setting a gap of 1.2 mm.
In a dynamic shear experiment the probe is subjected to a homogeneous deformation at a sinusoidal varying shear strain or shear stress (strain and stress controlled mode, tively). On a controlled strain experiment, the probe is subjected to a sinusoidal strain that can be expressed by V05) = Yo 15) (1) If the applied strain is within the linear Viscoelastic regime, the resulting sinusoidal stress response can be given by 0(t) = 00 sin(a)t + 6) (2) where 00 and yo are the stress and strain amplitudes, respectively a) is the angular frequency 6 is the phase shift (loss angle between applied, strain and stress response) t is the time Dynamic test results are typically expressed by means of several different rheological functions, namely the shear storage modulus, G’, the shear loss modulus, G”, the complex shear modulus, G*, the complex shear viscosity, 11*, the dynamic shear viscosity, n', the out-of-phase component of the x shear viscosity, 1]", and the loss tangent, tan )1, which can be sed as follows: 6’ = flcosa [Pa] (3) G” = @sina [Pa] (4) 6* = G’ + £6” [Pa] (5) 77* = 77’ - in” [Pas] (6) n' = 3" [Pas] (7) n" — 5' [Pas] (8) Besides the above ned rheological ons one can also determine other rheological parameters such as the so-called elasticity index E100. The elasticity index EI(x) is the value of the storage s, G’ determined for a value of the loss modulus, G" ofx kPa and can be described by on 9.
EI(x) = G'for (G = x kPa) [Pa] (9) For example, the a) is the defined by the value of the storage modulus G', determined for a value of G" equal to 5 kPa.
The determination of so-called Shear Thinning Indexes is done, as described in equation 10.
Eta* for (G*=x kPa) SINK/Y) = [Pa] (1 0) Eta“ for (G*=y kPa) For example, the SHI (5.0/300) is defined by the value of the complex viscosity, in Pas, determined for a value of G* equal to 5.0 kPa, divided by the value of the complex viscosity, in Pas, determined for a value of G* equal to 300 kPa.
The values are determined by means of a single point interpolation procedure, as defined by Rheoplus software. In situations for which a given G* value is not experimentally reached, the value is ined by means of an extrapolation, using the same procedure as . In both cases (interpolation or extrapolation), the option from Rheoplus ”- Interpolate es to x-values‘from parameter” and the “logarithmic interpolation ape” were applied.
References: Rheological characterization of polyethylene fractions” Heino, E.L., Lehtinen, A., Tanner J., a, J., Neste Oy, Porvoo, Finland, Theor. Appl.
Rheol., Proc. Int. Congr. Rheol, 11th (1992), 1, 360-362 The influence of molecular structure on some rheological properties of polyethylene”, Heino, E.L., Borealis Polymers Oy, Porvoo, Finland, Annual Transactions of the Nordic Rheology Society, 1995 Definition of terms relating to the non-ultimate mechanical properties of polymers, Pure & Appl. Chem, Vol. 70, No. 3, pp. 701-754, 1998 Zero shear viscosity The determination of the so—called Zero Shear ity shall be done in the Rheoplus software by the use of the Carreau-Yasuda model. The Carreau-Yasuda equation describes the viscosity curve of a al with Newtonian regions at low shear rates and a shear thinning region anwer law region) at medium shear rates.
The Carreau-Yasuda model is defined according with Rheoplus software by equation 1: n_—1 )1 = (3/0 - yinf) ' (1 + (11-20“) a + yinf (1) where x angular frequency in rad/s y x viscosity in Pas yo x Viscosity for angular ncy —> 0 (zero shear Viscosity) in Pas Yinf complex viscosity at angular frequency —> 00 (infinite viscosity) in Pas a Carreau constant n Power index 7t relaxation time in s This procedure will ensure a significant improvement of interlaboratory accuracy (reproducibility) for the Zero Shear Viscosity itself and Zero Shear Viscosity derived parameters (e. g. SHI(0/50). SHI(0/ 100). etc).
Isothermal Crystallisation The isothermal crystallization rates were measured according to ISO 11357-7, first edition 200201 using a TA Instruments DSC Q2000 differential scanning calorimeter equipped with an RCA 90 cooling accessory. The ens (3.5i0.2 mg) in Al crucibles were melted by g to 210 0C at the heating rate of 20 K/min, hold. for 5 min, then cooled to the isothermal temperature at the cooling rate of 40 K/min. The isothermal temperatures of 120.5 0C, 121 CC and 122 °C were selected. From crystallization exotherms the time to reach the maximum crystallization rate (peak tum), the time to reach the relative llinity of 0.5 (t 50%), and the enthalpy of crystallisation (AHC) were calculated.
Petroleum Jelly Test Petroleum jelly resistance was measured according IEC 60811—407. As the drop point of the jelly was 68°C, a 60°C pre-heating was chosen.
The following conditions are used: - Conductor thickness: 0,5 mm - Insulation thickness: 0,24 mm - Petroleum jelly: 112332, drop point 680C - Cable length is as in standard (600, 800 and 600 mm) Experimental Complex preparation: 87 kg of toluene was added into the reactor. Then 45.5 kg Bomag A in heptane was also added in the reactor. 161 kg 99.8 % 2-ethyl-l -hexanol was then introduced into the reactor at a flow rate of 24-40 kg/h. The molar ratio between Bomag—A and 2- ethyl-l -hexanol was 1:1.83.
Solid catalyst component preparation: 275 kg silica (ES747JR of Crossfield, having average particle size of 20 mm) ted at 600 0C in nitrogen was charged into a catalyst preparation r. Then, 41] kg 20 % EADC (2.0 mmol/g silica) diluted in 555 litres pentane was added into the reactor at t temperature during one hour. The temperature was then increased to 35 0C while stirring the treated. silica for one hour. The silica was dried at 50 0C for 8.5 hours. Then 655 kg of the complex ed as described above (2 mmol Mg/g silica) was added at 23 0C during ten minutes. 86 kg pentane was added into the r at 22 °C during ten minutes. The slurry was stirred for 8 hours at 50 CC. Finally, 52 kg TiCl4 was added during 0.5 hours at 45 °C. The slurry was stirred at 40 °C for five hours. The catalyst was then dried. by purging with nitrogen.
The polymers of the ion were prepared as outlined in table 1 in a Borstar process using the catalyst above and TEAL cocatalyst: Table l -=-_ressurebar catalyst feed 12.0 catalst feed :/h 44 —___ —___ production rate Sip lit ——__ —__- __-_ F—__kg/3 960 7 952 1 ——47 49 _—C4 c4 throttle valve opening _17—17_ FWh/kg __m— ——__ The properties of the inventive examples are given in Table 2 relative to a ative example 1 which is a multimodal ethylene butene copolymer with a lymer in the LMW component made using a Ziegler Natta catalyst and to Comparative example 2, a unimodal HDPE produced with Cr-based catalyst in Unipol process.
Table 2.
Final MFR2 Final dens ==___g_ _0=9456 _:607 ___-_= I—0—9_2—9-_ ___—_— ___—_— Table 2 con.
Tensile Strain at g/mol g/mol 9145 117500 10250 119500 Petroleum Isothermal cryst. half time jelly adso tion 121°C 122°C Pa*s Min min min _-----— Table 3 shows crystallization halftime as well as rheological broadness (shear thinning index) and petroleum jelly adsorption s for inventive and comparative compositions. Crystallization speed measurement results in graphical form are depicted on Figure 1.
All inventive and comparative examples have very similar densities ranging between 944-946 kg/m3 . Therefore any differences in properties will result from the differences in the r ure rather than the ences in the final density.
The same applies to the melt flow rate. Second, due to specific polymer design of the inventive examples no. 1 and 2, cantly lower crystallization speed was achieved, especially compared to the comparative example 1 — a bimodal HDPE with homopolymer in the loop and hence a very high density loop component. The bimodal grades of inventive examples 1 and 2 compare favourably with comparative example 2 — unimodal HDPE grade produced with Cr-based st. The bimodal grades of the invention possess a slightly lower crystallization speed than a unimodal grade but also s superior mechanical and rheological properties due to their bimodal nature. The latter is obvious from the fact that comparative e 2 has significantly higher zero-shear rate viscosity, resulting in higher melt pressure and higher extrusion temperatures required during cable extrusion. Finally, one can notice that the inventive example 1 and particularly the inventive example 2 have petroleum jelly adsorption results close or identical to that of the reference While the results of the other l comparative example are higher. The results therefore show that a specific combination of design ters of the inventive bimodal examples enables a low crystallization speed characteristic of a unimodal nce grade combined with very good resistance to petroleum jelly tion, combined with the superior mechanical properties of bimodal polyethylene.

Claims (16)

Claims 1.
1. A multimodal polyethylene mer suitable for use in cable tion comprising: (1) 45 to 55 wt% of a lower molecular weight component which is an ethylene mer of ethylene and at least one C3-12 alpha olefin comonomer, said LMW ent having a density of 940 to 962 kg/m3 and an MFR2 of 50 to 500 g/10min; (ll) 55 to 45 wt% of a higher molecular weight ethylene copolymer component of ethylene and at least one C3—1 2 alpha olefin comonomer; 15 wherein said odal polyethylene copolymer has a density of 940 to 950 kg/m3, an MFR2 of 0.05 to 2.0 g/10min and preferably at least one of a crystallization halftime > 3.0 mins at 120.50C, a crystallization half time > 5.0 mins at 121°C or a crystallization half time > 10.0 mins at 122°C. 20
2. A multimodal polyethylene copolymer as claimed in any preceding claim having a density of 942 to 948 kg/mi such as 943 to 947 kg/m3.
3. A multimodal polyethylene copolymer as claimed in any preceding claim having MFR2 0.2 to 2.0 g/10min, preferably 0.5 to 1.5 g/10min.
4. A multimodal polyethylene copolymer as claimed in any preceding claim prepared using a Ziegler Natta catalyst.
5. A multimodal polyethylene copolymer as claimed in any preceding claim 30 wherein said HMW copolymer ent comprises at least one of but—l-ene, hex- 1-ene and octene.
6. A multimodal polyethylene copolymer as claimed in any preceding claim having 47 to 53 wt% of a HMW component (11) and 53 to 47 wt% LMW ent (1)-
7. A multimodal polyethylene copolymer as claimed in any preceding claim having a shear ng index (SHI 5.0/300) in the range of 20.0 to 50.0., preferably 25.0 to 45.0.
8. A multimodal polyethylene copolymer as claimed in any preceding claim 10 wherein said LMW polymer is a copolymer with the comonomer 1-butene.
9. A multimodal polyethylene copolymer as claimed in any preceding claim having at least two of, such as all of (i) a crystallization half time > 30 mins at 120.5°C, 15 (ii) a crystallization half time > 5.0 mins at 121°C or (iii) a crystallization half time > 10.0 mins at 122°C, preferably at least 1 1.5 mins.
10. A multimodal polyethylene copolymer as claimed in any preceding claim 20 having n the LMW component has an MFR2 of 200 to 400 g/10min.
1]. A odal hylene copolymer as claimed in any preceding claim wherein the LMW component has a density of 950 to 962 kg/m3. 25
12. A multimodal polyethylene copolymer as claimed in any preceding claim wherein the copolymer has a petroleum jelly adsorption of 5.0 to 9.0 wt%, preferably 5.5 to 8.5 wt%.
13. A cable comprising a conductor surrounded by an tion layer 30 comprising a copolymer as claimed in claim 1 to 12, preferably wherein said insulation layer is nt said conductor.
14. A cable as claimed in claim 13 r comprising at least one filler such as petroleum jelly.
15. A cable as claimed in claims 13 or 14 which is a data cable or 5 telecommunciations cable.
16. Use of the copolymer as claimed in any one of claims 1 to 14 in the manufacture of the insulation layer of a cable. +A384O — Inv. Ex. E “mo-A3842 - Inv. Ex. .§ ‘ A3852 H — Comp. Ex. -)(-HE3366(Unipo|) - 121 . 122
NZ731056A 2014-12-30 2015-12-29 Multimodal polyethylene NZ731056B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14200665.9A EP3040376B2 (en) 2014-12-30 2014-12-30 Multimodal polyethylene
EP14200665.9 2014-12-30
PCT/EP2015/081343 WO2016107867A1 (en) 2014-12-30 2015-12-29 Multimodal polyethylene

Publications (2)

Publication Number Publication Date
NZ731056A NZ731056A (en) 2018-09-28
NZ731056B true NZ731056B (en) 2019-01-04

Family

ID=

Similar Documents

Publication Publication Date Title
AU2015373394B2 (en) Multimodal polyethylene
EP1904545B1 (en) Polyethylene composition of improved processability
KR101783570B1 (en) Blend of bimodal polyethylene with unimodal ultra high molecular weight polyethylene with improved mechanical properties
AU2014375266B2 (en) Polymer composition comprising carbon black and a carrier polymer for the carbon black
KR100935044B1 (en) Outer sheath layer for power or communication cables
AU2014372845B2 (en) Polyethylene composition for pipe applications with improved sagging properties
AU2016284462C1 (en) Polyethylene composition for pipe applications with improved sagging and extrusion properties
KR101578017B1 (en) Polyethylene composition with high rapid crack propagation resistance and pressure resistance
AU2014372845A1 (en) Polyethylene composition for pipe applications with improved sagging properties
NZ731056B (en) Multimodal polyethylene
NZ785584A (en) Cable jacket composition