NZ727394B2 - A Locking Device for a Quick Coupler - Google Patents

A Locking Device for a Quick Coupler Download PDF

Info

Publication number
NZ727394B2
NZ727394B2 NZ727394A NZ72739416A NZ727394B2 NZ 727394 B2 NZ727394 B2 NZ 727394B2 NZ 727394 A NZ727394 A NZ 727394A NZ 72739416 A NZ72739416 A NZ 72739416A NZ 727394 B2 NZ727394 B2 NZ 727394B2
Authority
NZ
New Zealand
Prior art keywords
pin
wedge
locking element
coupler
quick coupler
Prior art date
Application number
NZ727394A
Inventor
Andre Richard Anderson
James Phillip Rider Andrew
Aperahama Calvert David
James Calvert Matthew
Hugh James Rider Michael
Original Assignee
Wedgelock Equipment Limited
Filing date
Publication date
Application filed by Wedgelock Equipment Limited filed Critical Wedgelock Equipment Limited
Publication of NZ727394B2 publication Critical patent/NZ727394B2/en

Links

Abstract

wedge locking element 10 (that moves with the clamp) for a locking device of a quick coupler A for coupling the pin P2 of an attachment to earth working machinery. The wedge locking element 10 has a sloping wedge surface 13. Projecting from the wedge surface 13 is an engagement surface 12 with which the attachment pin P2 can engage but not apply any substantial driving force to the wedge locking element 10 in the event of failure of a force maintaining the wedge locking element 10 in a position where the pin P2 is retained with the coupler A. The pin engagement surface 12 lies in a plane that is substantially in line with the direction in which the locking element 10 is, in use, moved by the driving force.

Description

NEW ZEALAND Patents Ac t 2013 COMPLETE SPECIFICATION A LOCKING DEVICE FOR A QUICK COUPLER We, WEDGELOCK EQUIPMENT LIMITED a New Zealand company of 72 Montgomery Crescent, Upper Hutt, New Zealand hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:- Title of the Invention A Locking Device for a Quick Coupler Related Application This complete specification is after the provisional specification No. 714945 dated 7 December 2015.
Background to the Invention This invention relates to a locking device for a quick coupler.
Quick couplers for mounting an attachment, e.g. a bucket, to an earth working machine, such as an excavator, are known. A potential danger with a quick coupler is that the coupler can fail to hold the attachment at one or both of the mounting points at which the attachment is mounted to the quick coupler. As a result the attachment can either fall off the coupler (if the coupling at each of the mounting points fails) or swing down from the coupler (i.e. swing about one of the mounting points). The mounting points on the attachment are typically formed by so called pins and these fit into recesses of docking points of the quick coupler and then locked therein.
When the coupler is mounted to the earth working machine such as an excavator, the end that is closest to the operator is referred to herein as the "front end". As a consequence the pin of the attachment that fits into the recess/docking point at the front end is referred to herein as the "front pin". Likewise the other end of the coupler is referred to as the "rear end" and the pin of the attachment that fits therein is referred to as the "rear pin".
The failure to correctly hold the attachment in place can be due to a variety of reasons.
For example, if the quick coupler is of a type where the rear pin is retained by a sliding wedge component which is hydraulically operated an hydraulic failure can result in the quick coupler failing to retain the attachment in a working position. This will typically result from the rear pin applying a loading on the sloping leading surface of the wedge component which will drive the wedge "backward" to a position where the pin is no longer locked in the quick coupler. Consequently the attachment will swing down from the coupler about the axis of the front pin.
If the front pin is not retained by a locking device the attachment can fall completely from the coupler. In our New Zealand patent specification No. 552294 there is disclosed a safety locking device that retains the front pin in the coupler in the event of a failure which results in the release of the rear pin. As a result the attachment will only swing down from the coupler about the axis of the front pin.
In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents or such sources of information is not to be construed as an admission that such documents or such sources of information, in any jurisdiction, are prior art or form part of the common general knowledge in the art.
Summary of the Invention An object of the present invention is thus to provide a wedge locking element for a locking device of a quick coupler, the wedge locking element being such that it at least reduces the tendency of a pin retained by the wedge driving the wedge (in the event of hydraulic failure) to a position where the pin will no longer be retained by the coupler, in that the leading end of the wedge having an orientation relative to a pin with which the wedge will engage in a locking relationship being such that the possibility of the pin applying a loading on the wedge to drive the wedge to a release position is at least reduced, and/or to at least provide the public with a useful choice.
Broadly according to one aspect of the invention there is provided a quick coupler for coupling the pin of an attachment to earth working machinery, the coupler comprising a locking device comprising: a wedge locking element slidingly retained in the quick coupler and configured to move in a linear direction for coupling the pin of an attachment to earth working machinery, the wedge locking element including a sloping wedge surface, wherein projecting from the wedge surface is a pin engagement surface located at and forming a distal leading part of the wedge locking element, wherein the pin engagement surface is substantially planar and lies in a plane that is substantially in line with the linear direction in which the wedge locking element and pin engagement surface are, in use, moved by a driving force, the pin engagement surface remaining in substantial alignment with said linear direction during movement of the wedge locking element, wherein the attachment pin can engage with said pin engagement surface but not apply any substantial loading to the wedge locking element in the event of failure of the driving force maintaining the wedge locking element in a position whereby the pin is wedge coupled by the wedge surface to the coupler, and a clamp device operable to retain the pin with the pin engagement surface in the event of said failure of the driving force, wherein the clamp device is mounted to the wedge locking element for movement therewith.
Preferably the driving force is hydraulic.
Preferably the wedge locking element is adapted to couple to a hydraulic linear actuator, and more preferably the wedge locking element forms part of the hydraulic actuator.
Preferably the clamp device includes an arm mounted to be pivotable about a pivot axis, the arm incorporating a pin engagement portion distal from the pivot axis.
Preferably the arm is biased by biasing means.
Preferably the biasing means is a spring.
Brief Description of the Drawings In the following more detailed description of one embodiment of the invention and its application to a quick coupler reference will be made to the drawings which form part of this specification and in which:- Fig. 1 is a sectioned side elevation view of a prior art hydraulic quick coupler with a wedge form of pin engagement means, the drawing showing the front and rear pins of an attachment engaged in the front and rear recesses of the coupler, Fig. 2 is a further side elevation view similar to Fig. 1 of the prior art coupler but showing the coupler in a "failed mode" in which the rear pin is able to move out of the rear recess, is a sectioned side elevation view of a coupler with which front and rear pins of Fig. 3 an attachment are engaged and in which the leading part of the movable element (for locking the rear pin in the rear recess) has a profile according to the present invention, the movable element being shown in the fully retracted position, Figs. 4 to 8 are a succession of sectioned side elevation views of the coupler shown in Fig. 3 showing the rear pin in the rear recess and the progression of the movable element moving into the rear recess until it reaches a fully engaged position where the rear pin is retained in the rear recess by the movable element ( Fig. 8), Fig. 9 is a view similar to Fig. 8 but showing the coupler in a failed mode where the movable element has moved into a partially retracted position yet with the rear pin retained in engagement with the movable element by the clamp arm according to the present invention, is a view similar to Fig. 9 but showing the coupler in a failed mode where the Fig. 10 movable element has moved into a partially retracted position yet with the rear pin retained not in engagement with the movable element yet still prevented by the clamp arm from moving from the recess, Fig. 11 is a view similar to Figs. 9 and 10 showing the coupler in a failed mode where the movable element has moved into a partially retracted position yet with the rear pin prevented from moving out of the rear recess by the clamp arm and the front pin prevented from moving from the front recess by the front recess retaining element, Fig. 12 is an isometric view of an example of the movable element according to the invention with a mount on which the clamp arm is located, Fig. 13 is a further isometric view of the movable element as shown in Fig. 12 but with the clamp arm coupled to the mount, Fig. 14 is a further isometric view of the movable element as shown in of Fig. 13, Fig. 15 is an isometric view of the movable element as shown in Figs. 14 and 15 coupled to an hydraulic cylinder, Fig. 16 is a graphical illustration of two different diameter pins retained with the wedge by the clamp arm mechanism, and Fig. 17 is a view similar to Fig. 16 illustrating where the smaller sized rear pin would sit if it where not for the shaped end of the clamp arm.
Description of Preferred Embodiments of the Invention The aspects of the present invention will be described herein in relation to one form of quick coupler but it will be appreciated by the skilled addressee that other forms of quick coupler can be used.
The quick coupler as shown in Figures 1 and 2 of the drawings is a known form of quick coupler A made by our company. The quick coupler A is operated hydraulically by the hydraulics of the machine (usually an earth working machine) to which the coupler is attached. The body B of the coupler has mounting points C whereby the coupler can be attached to say the arm of an excavator (not shown).
The coupler body B has a hook shaped front recess D into which the front mounting pin P1 of an attachment engages. As mentioned above the hook shaped recess end of the quick coupler is typically referred to as the "front" of the coupler as this is the end of the coupler that will face toward the operator of the machine (e.g. excavator).
The rear mounting pin P2 of the attachment locates in the rear recess E.
The movable locking element F, which in this form of coupler is a wedge component, (hereinafter for simplicity "wedge F") is extendible to capture the rear mounting pin P2 of the attachment in the rear recess E. The wedge F is hydraulically powered.
Thus typically the excavator operator will position recess D of the coupler onto the front pin P1 of the attachment and then crowd the coupler such that the rear pin P2 engages in the recess E. The wedge F is then extended to engage with and lock the rear pin P2 in the rear recess E. The pins P1 and P2 engaged by the coupler A are shown in Fig. 1. The attachment is thereby coupled to the coupler A in the working position.
If, for example, the hydraulic power to the coupler A fails the hydraulic cylinder G that moves and holds the wedge F in its locking position will not be able to hold the wedge in the locking position. As a result the wedge F can retract which will enable release of the mounting pin P2 from the recess E to occur (see Fig. 2).
If the front pin P1 in the hook shaped recess or docking part D is not retained in the front recess the attachment can fall from the coupler and hence fall from the excavator arm. However, if the front pin P1 is retained (by say our I-Lock device L as described and claimed in our New Zealand patent specification 552294/546893) then the attachment will not fall completely off the coupler A but will swing down on the pin P1.
In the form of coupler A shown in the drawings the wedge F is part of an operating means formed by hydraulic cylinder G which applies a driving force to control the extension and retraction of the wedge F via the piston rod R of the cylinder G. This is only one example of the form that the cylinder G and wedge F arrangement may take.
As shown in Figs. 1 and 2 the leading or distal end of the wedge F includes an inclined or sloping surface M. In the event of compound hydraulic failure working forces will cause the pin P2 to drive the wedge F backward (as indicated by arrow Y in Fig. 1). This is due to the sloped face M (and the applied normal forces indicated by the arrow X in Fig. 1). Consequently, the rear pin P2 moves down the wedge face M to a point where it is no longer retained in the rear recess by the wedge F (Fig. 2) and the attachment will be free to swing about the front pin P1 as described above.
For a given attachment the distance between pins P1 and P2 is rigidly fixed, as is the diameter of the pins. In the embodiment shown and described herein the quick coupler caters to attachments which have pin diameters and pin centres which fall within the range provided by the rear recess E, relative to the front recess D. The wedge locking element of the invention thus suits multiple attachment pin centres, but could equally be applied to a single pin centre design.
According to the present invention we have devised a wedge 10 (an example of which is shown in Figs. 12 to 15) that includes at the leading end a projecting part 11 that provides a substantially flat (planar) pin engagement surface 12. This flat surface 12 extends beyond the lower extremity of the sloping wedge surface 13. The angle between the sloping surface 13 and the flat surface 12 is obtuse.
The configuration of the example of wedge shown in Figs. 12 to 15 is one which is specific to the type of coupler shown in Figs. 1 and 2. It will be appreciated by those skilled in the art that a flat projecting pin engagement surface 12 at the leading end of the wedge (as provided by the present invention) could be incorporated with other types and configurations of wedges having a sloping pin engagement surface.
The surface of the pin engagement surface 12 is substantially normal to the direction of forces (indicated by arrow "X") that will be applied by the pin P2 to the wedge 10 in a failed state of the coupler. Thus when the pin P2 reaches the end of the sloped wedge section 13 it is no longer possible to apply a loading on the wedge 10 in the same manner as is applied when the pin P2 is engaged with the sloped face 13. In other words there will be no load which would drive the wedge backward in the direction of arrow It will be appreciated that the plane in which pin engagement surface 12 lies is substantially in line with the direction in which the wedge locking element moves back and forth.
Once the rear pin P2 reaches the pin engagement surface 12 of the wedge 10, it may still be possible to apply load to the wedge 10 due to friction between the pin P2 and the pin engagement surface 12. This frictional contact can cause the wedge 10 to move backward (in direction Y) in small cyclic amounts to the point where the pin P2 can pass the extreme edge 21 of the wedge. Thus pin P2 will be able to move away from the recess to be free of the coupler such that the attachment will release from the coupler allowing the attachment to swing on pin P1.
Addition of a means of substantially retaining the relationship between the rear pin P2 and the wedge 10 is thus advantageous and the drawings illustrate such a means in the form of a clamp device 14. The presence of the clamp device 14 will ensure that after the wedge 10 has moved back by the above mentioned amount it is then pulled back again as the pin P2 moves in a direction opposite to direction Y. This clamp device 14 will thus prevent the pin P2 from passing beyond the distal end 21 of the pin engagement surface 12 of the wedge 10 and become disengaged with the coupler.
According to the present invention the clamp device 14 does not require additional hydraulic actuators to operate the clamp device. This not only reduces costs but improves reliability.
The clamp device 14 is coupled to the wedge 10 via a suitable mount 15 so as to be moveable with the wedge 10. The coupling of the clamp 14 to the wedge 10 thereby ensures that the clamp 14 may retain the appropriate relationship with the pin P2 in any wedging position of the wedge 10 with pin P2.
In the illustrated form of the clamp 14 the clamp includes a solid clamp arm 16. In the illustrated and preferred form the clamp arm 16 is substantially in the shape of an arc and is pivotally coupled at one end at 17 to the mount 15.
The clamp arm 16 is biased, preferably sprung biased, and thus in one form the clamp arm 16 is biased by a compression spring 18 (as shown) or other biasing means such as a torsional spring. As illustrated the spring 18 is engaged with the clamp arm 16 at a point spaced from but adjacent to the axis of pivot 17. The other end of the spring 18 is coupled to a cross piece 19 of the mount 15.
The mount 15 is, as described above, carried by the wedge 10. In the illustrated form the mount 15 is located in a suitably shaped recess 15a provided in the wedge 10.
The clamp arm 16 is of a design and configuration such that the pin P2 can force the clamp arm 16 to move against the bias effect of spring 18 during movement of the pin P2 into the recess E. This provides the necessary clearance to enable the pin P2 to move into the recess.
Thus, for example, the leading and pin contacting portion 20 of the clamp arm 16 is suitably profiled so that it smoothly and positively engages with and rides over the pin P2 during both the engagement of the pin P2 into recess E (when the coupler A is engaging with the attachment) and disengagement from the coupler (when the attachment is being released from the coupler A).
Figure 3 of the drawings shows the profiled end 20 of the clamp arm 16 approaching the pin P2 as the wedge 10 starts to extend under the action of the cylinder G while Fig. 4 shows end 20 of the clamp arm 16 having come into contact with the pin P2 as the wedge 10 continues to extend. Further advancement of the wedge 10 causes the end 20 of the clamp arm 16 to ride over the pin P2 (see Figs 5 and 6).
As the wedge 10 continues to advance (Fig. 7) the spring bias on clamp arm 16 causes the end 20 the ride down over the opposite side of the pin P2. Ultimately, with the wedge 10 extended as far as it can go because of the rear pin P2 being fully engaged between the wedge 10 and the opposing surface of the recess E the clamp arm 16 will lie over the pin P2 and in contact with the pin (Fig. 8).
The force available from the hydraulic cylinder G is very large in comparison to the clamp force of the clamp arm 16 provided by the biasing means (e.g. spring 18). Hence the movement of the wedge 10 will result in the clamp arm 16 easily moving against the bias of the spring 18 when engaging and disengaging with the pin P2 during normal function. Thus no additional hydraulic actuators are required to drive or operate the clamp device 14.
Fig. 8 of the drawings shows the coupler A in the engaged position with pins P1 and P2 and hence the attachment locked onto the coupler. In this position the pin P2 is in the rear recess E and the wedge 10 is extended by cylinder G so that the pin P2 is held between the wedge 10 (in this case sloping surface 13) and the surface of the recess E.
In the case of a larger diameter pin P2 (see Fig. 16) the drawing appears to show pin P2 engaged on both the sloping surface 13 and the pin engagement surface 12 but in reality there is actually a small clearance. Because of this clearance there is substantially no contact between the pin engagement surface 12 and surface of the recess E at the same time thereby avoiding wear which would occur at every engagement/disengagement.
However, if the wedge 10 retracts (e.g. due to absence of hydraulic pressure) to the point that the pin P2 could become disengaged (see Fig. 9 or 10) the presence of the clamp arm 16 substantially retains the relationship between the pin P2 and wedge 10 thereby resulting in the pin P2 automatically being retained in engagement with the wedge 10. Consequently in a failed mode of the coupler the rear pin P2 will be retained against movement out of the rear recess E.
The retention of the attachment pins P1 and P2 relies on the front pin P1 being retained by a retention means such as our I-Lock safety locking device mentioned previously. In other words the front pin P1 can only move between its normal position and the locking feature (i.e. the I-Lock) as illustrated in Fig. 11. As a result due to the fixed distance between the front and rear pins P1 and P2 of any one attachment the rear pin P2 may only move by the same amount as the front pin P1.
The skilled addressee will appreciate from the foregoing and the drawings that the coupler and in particular the rear end locking mechanism is able to work with pins of different diameters. Fig.16 of the drawings provides an illustration of two different pin diameters e.g. small and large diameter pins. Fig 17 of the drawings illustrates where the smaller pin P2 would sit if not for the shaped end 20 of the clamp arm 16.
To this end the shape and configuration of the inside surface of the distal end of the clamp arm 16 is, preferably, shaped so that it will retain the smaller diameter pin as far as possible from the distal end 21 of the flat section 12. This is shown graphically in Figs. 16 and 17 where the large and small diameters of pin P2 are shown and the smaller diameter pin is shown to be retained closer to the distal edge 21. The smaller pin P2 thus must move further, which in-turn causes the load applied by the clamp device 14 to be higher (i.e. more spring compression).
In the foregoing description the arm 16 is referred to as a clamp arm 16. However, the form and function of the arm 16 is, as will be appreciated by the skilled addressee, such that the arm 16 can be described as a "safety" arm.
The invention is open to modification. For example, the sprung clamp arm 16 can be formed by a spring member.
The present invention has been described and illustrated by way of a specific embodiment, and the embodiment has been described in detail in relation to a known type of quick coupler. It is not the intention of the Applicant to restrict or in any way limit the scope of the invention to such detail.
Additional advantages and modifications will be readily apparent to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details, representative means of manufacture and method, and illustrative examples shown and described. Accordingly, departures may be made from such details without departure from the spirit or scope of the Applicant’s general inventive concept.
The term "comprising" as used in this specification and claims means "consisting at least in part of". When interpreting statements in this specification and claims which include the term "comprising", other features besides the features prefaced by this term in each statement can also be present. Related terms such as "comprise" and "comprised" are to be interpreted in a similar manner.

Claims (7)

WHAT WE CLAIM IS: -
1. A quick coupler for coupling the pin of an attachment to earth working machinery, the coupler comprising a locking device comprising: a wedge locking element slidingly retained in the quick coupler and configured to move in a linear direction for coupling the pin of an attachment to earth working machinery, the wedge locking element including a sloping wedge surface, wherein projecting from the wedge surface is a pin engagement surface located at and forming a distal leading part of the wedge locking element, wherein the pin engagement surface is substantially planar and lies in a plane that is substantially in line with the linear direction in which the wedge locking element and pin engagement surface are, in use, moved by a driving force, the pin engagement surface remaining in substantial alignment with said linear direction during movement of the wedge locking element, wherein the attachment pin can engage with said pin engagement surface but not apply any substantial loading to the wedge locking element in the event of failure of the driving force maintaining the wedge locking element in a position whereby the pin is wedge coupled by the wedge surface to the coupler, and a clamp device operable to retain the pin with the pin engagement surface in the event of said failure of the driving force, wherein the clamp device is mounted to the wedge locking element for movement therewith.
2. A quick coupler as claimed in claim 1, wherein the wedge locking element is adapted to couple to a hydraulic linear actuator.
3. A quick coupler as claimed in claim 2, wherein the wedge locking element forms part of the hydraulic linear actuator.
4. A quick coupler as claimed in any one of the preceding claims, wherein the clamp device includes an arm mounted to be pivotable about a pivot axis, the arm incorporating a pin engagement portion distal from the pivot axis.
5. A quick coupler as claimed in claim 4, wherein the arm is biased by biasing means.
6. A quick coupler as claimed in claim 5, wherein the biasing means is a spring.
7. A quick coupler as claimed in any one of the preceding claims, wherein the driving force is hydraulic.
NZ727394A 2016-12-12 A Locking Device for a Quick Coupler NZ727394B2 (en)

Publications (1)

Publication Number Publication Date
NZ727394B2 true NZ727394B2 (en) 2024-01-04

Family

ID=

Similar Documents

Publication Publication Date Title
US20240068196A1 (en) A locking device for a quick coupler
AU2017330165B2 (en) Quick hitch coupler
CN107614796B (en) Visual indicator for a coupling
US8622645B2 (en) Coupler with gravity operated safety device
US9194097B2 (en) Couplers
US10066359B2 (en) Coupler device
JP2022510990A (en) coupler
AU2018100857A4 (en) Coupling device
NZ727394B2 (en) A Locking Device for a Quick Coupler
AU2012201264B2 (en) A safety mechanism for a coupler for coupling an accessory to a dipper arm
KR102353169B1 (en) Quick coupler for excavator
NZ751890B2 (en) Quick hitch coupler
IE20130069U1 (en) A safety mechanism for a coupler for coupling an accessory to a dipper arm
IES86256Y1 (en) A safety mechanism for a coupler for coupling an accessory to a dipper arm
CN118401720A (en) Coupling device
AU2013206464A1 (en) A ratchet and pawl locking coupler for earth moving equipment