NZ705636B2 - Hot Beverage Brewing System and Use Thereof - Google Patents

Hot Beverage Brewing System and Use Thereof Download PDF

Info

Publication number
NZ705636B2
NZ705636B2 NZ705636A NZ70563612A NZ705636B2 NZ 705636 B2 NZ705636 B2 NZ 705636B2 NZ 705636 A NZ705636 A NZ 705636A NZ 70563612 A NZ70563612 A NZ 70563612A NZ 705636 B2 NZ705636 B2 NZ 705636B2
Authority
NZ
New Zealand
Prior art keywords
chamber
fluid
upper chamber
brew
steam
Prior art date
Application number
NZ705636A
Other versions
NZ705636A (en
Inventor
Khristian Bombeck
Casey Dodge
Casey Smith
Original Assignee
Alpha Dominche Holdings Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpha Dominche Holdings Inc filed Critical Alpha Dominche Holdings Inc
Publication of NZ705636A publication Critical patent/NZ705636A/en
Publication of NZ705636B2 publication Critical patent/NZ705636B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47JKITCHEN EQUIPMENT; COFFEE MILLS; SPICE MILLS; APPARATUS FOR MAKING BEVERAGES
    • A47J31/00Apparatus for making beverages
    • A47J31/04Coffee-making apparatus with rising pipes
    • A47J31/043Vacuum-type coffee-making apparatus with rising pipes in which hot water is passed to the upper bowl in which the ground coffee is placed and subsequently the heat source is cut-off and the water is sucked through the filter by the vacuum in the lower bowl

Abstract

method for brewing a beverage, in particular the type of machine which may be known as a vacuum pot coffee maker or siphon coffee maker. The method consisting of: method of brewing a beverage, the method comprising the steps of: providing a heated fluid into a lower chamber of the brewing device from a boiler of the brewing device; providing an agitation fluid into the lower chamber, the agitation fluid forcing the heated fluid into an upper chamber of the brewing device; providing the agitation fluid into the upper chamber by forcing the heated fluid through a conduit of the brewing device, the conduit having a first open end disposed at a lower end of the lower chamber and the second open end disposed at a lower end of the upper chamber; adding a flavor base into the upper chamber; combining the heated fluid with the flavor base, forming a brewed beverage; and dispensing the brewed beverage. Wherein the brewing device comprises (a) a common inlet in fluid communication with the lower chamber, the upper chamber, the boiler, and the conduit, the common inlet providing an inlet from the lower chamber, the boiler, and the conduit to the upper chamber, and (b) a vent operable between a closed position and an open position, wherein, in the open position, the vent provides fluid communication between the lower chamber and atmosphere. from a boiler of the brewing device; providing an agitation fluid into the lower chamber, the agitation fluid forcing the heated fluid into an upper chamber of the brewing device; providing the agitation fluid into the upper chamber by forcing the heated fluid through a conduit of the brewing device, the conduit having a first open end disposed at a lower end of the lower chamber and the second open end disposed at a lower end of the upper chamber; adding a flavor base into the upper chamber; combining the heated fluid with the flavor base, forming a brewed beverage; and dispensing the brewed beverage. Wherein the brewing device comprises (a) a common inlet in fluid communication with the lower chamber, the upper chamber, the boiler, and the conduit, the common inlet providing an inlet from the lower chamber, the boiler, and the conduit to the upper chamber, and (b) a vent operable between a closed position and an open position, wherein, in the open position, the vent provides fluid communication between the lower chamber and atmosphere.

Description

HOT BEVERAGE BREWING SYSTEM AND USE THEREOF Cross—Reference to Related Applications This application claims the benefit of the filing date of U.S. provisional application no. 61/447,009, filed on 02/26/2011 as attorney docket no. 10—791, the ngs of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION Field of the Invention The present invention relates to an apparatus for brewing a beverage. ption ofthe Related Art A typical siphon coffee maker brews coffee using two chambers where vapor re and vacuum produce coffee. There have been many variations of this type of coffee maker, also known as vacuum pot coffee maker, siphon coffee maker and vacuum coffee maker. Similar systems can be used for g other s by extraction into hot .
U.S. Patent No. 7,673,555 discloses a machine for brewing a beverage that uses a mechanically operated piston to force a brewed beverage through filter for dispensing. The piston moves in an upward direction, forcing the beverage, which is in a closed , through check valves in the piston and to a volume below the piston for dispensing to a user.
Drawbacks to this type ine include added costs for the mechanically operated piston, as well as the potential for the piston to jam, thereby rendering the machine useless.
In this specification unless the contrary is expressly stated, Where a document, act or item of knowledge is referred to or discussed, this reference or discussion is not an admission that the document, act or item of knowledge or any combination thereofwas at the priority date, publicly available, known to the public, part of common general knowledge; or known to be relevant to an attempt to solve any problem with which this specification is concerned.
Object of the invention It is therefore an object of the present invention to provide an improved hot beverage brewing system and use f or machine for brewing a beverage or method ofbrewing a ge; that ameliorates some of the disadvantages and limitations of the known art or at least to provide the public with a useful choice. _ 1 _ 194782NZA_Divisional_2March2015_EHB.doc SUMNIARY OF THE INVENTION This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to fy key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
In one embodiment, the present invention is a e for brewing a beverage.
The machine includes a brew chamber and a steam chamber disposed below the brew chamber, such that the steam chamber is in fluid communication with the brew chamber. A filtering base is bly inserted into the brew chamber. The e further includes a boiler having a steam outlet in fluid communication with the steam chamber and a heated water outlet in fluid communication with the steam chamber. A fresh water supply conduit is in fluid communication with the boiler and with the heated water outlet.
Further, the present invention provides a method of brewing a beverage. The method provides a heated fluid into a lower chamber and an agitation fluid into the lower chamber, such that the agitation fluid forces the heated fluid into an upper chamber. The agitation fluid is then let into the upper chamber. A flavor base is added into the upper chamber. The heated fluid is combined with the flavor base, forming a brewed beverage. The brewed beverage is then dispensed. onally, the present invention es a e for brewing a beverage.
The machine includes an upper r having a lower end and an upper end. A filtering base is disposed inside the upper chamber and movable between the lower end and the upper end. A lower chamber is disposed below the upper chamber. A conduit provides for fluid communication between the lower chamber and the upper chamber. The machine further includes a heater having a hot water outlet in communication with the lower chamber.
In another embodiment the invention includes a machine for brewing a beverage, the e comprising: a brew chamber having a brew chamber upper end and a brew chamber lower end; a steam chamber disposed below the brew chamber, the steam chamber having steam chamber upper end and a steam chamber lower end, the steam r lower end being in fluid communication with the brew chamber; a ng base removably inserted into the brew chamber; a boiler having: 194782NZA_DivisionaL2March2015_EHB.doc a steam outlet in fluid communication with the steam chamber; and a heated water outlet in fluid communication with the steam chamber; and a fresh water supply conduit having a first leg coupled directly to the boiler and a second leg coupled to the heated water outlet.
Preferably a t is disposed in the steam chamber, the conduit having a first open end ed at the steam chamber lower end and a second open end disposed at the brew chamber lower end, the t providing fluid communication between the brew chamber and the steam chamber.
Preferably a vent valve is located at the steam chamber upper end and a drain valve located at the steam chamber lower end.
Preferably the filtering base is disposed at the brew chamber lower end during operation of the machine and wherein the ng base is movable to the brew chamber upper end after operation of the machine.
Preferably a controller is adapted to control flow of steam from the steam outlet and flow of heated water from the heated water outlet.
In another embodiment the invention includes a method of brewing a beverage, the method comprising the steps of: ing a heated fluid into a lower chamber; providing an agitation fluid into the lower chamber, the agitation fluid forcing the heated fluid into an upper chamber; ing the agitation fluid into the upper chamber; adding a flavor base into the upper chamber; combining the heated fluid with the flavor base, forming a brewed beverage; and sing the brewed beverage.
Preferably the step of, prior to dispensing the brewed beverage is, siphoning the brewed beverage from the upper chamber into the lower chamber.
Preferably the siphoning step comprises condensing the agitation fluid in the lower chamber. 194782NZA_Divisional_2March2015_EHB.doc Preferably the step of providing the agitation fluid into the lower chamber further comprises forcing the heated fluid through a conduit, the t having a first open end disposed at a lower end ofthe lower chamber and the second open end disposed at a lower end ofthe upper chamber.
Preferably the step of after forcing the heated fluid through the conduit is, ably sealing the heated fluid in the upper chamber.
Preferably the step of, after dispensing the brewed beverage is, removing the flavor base from the upper chamber.
Preferably removing the flavor base comprises moving a filtering base upward flom a bottom end ofthe upper chamber to an upper end of the upper chamber.
Preferably the step of, after removing the flavor base in the upper chamber is, rinsing the lower chamber and the upper chamber with heated water. ably the sing step comprises opening a drain valve and opening a vent valve.
Preferably the combining step finther comprises agitating the heated fluid with the agitation fluid.
Preferably setting a desired temperature for the brewed beverage and wherein the step of providing the heated fluid into the lower r comprises heating the fluid to a temperature less than the desired ature.
Preferably the step ofproviding the agitation fluid into the upper chamber raises the temperature of the fluid to the d temperature.
Preferably the step ofproviding the heated fluid comprises providing a user—specified volume of the fluid. 194782NZA_DiVisional_2March2015_EHB.doc ably the agitation fluid providing step comprises providing a user—specified volume of the agitation fluid.
In another embodiment the invention includes a machine for brewing a beverage, the machine comprising: an upper chamber having a lower end and an upper end; a filtering base disposed inside the upper chamber and e between the lower end and the upper end; a lower chamber ed below the upper chamber, the lower chamber having a lower end and an upper end; a conduit extending downward from the lower end ofthe upper chamber toward the lower end ofthe lower chamber, the conduit providing for fluid communication between the lower chamber and the upper chamber; and a boiler having a hot water outlet in communication with the lower chamber; and a check valve assembly adapted to seal the lower end of the upper chamber.
BRIEF DESCRIPTION OF THE DRAWINGS Other aspects, es, and advantages of the present invention will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals fy similar or identical elements. shows a block diagram of a e for brewing beverages such as coffee or tea or according to an exemplary embodiment ofthe invention; shows a front perspective View ofthe same embodiments ofthe invention sed here as depicted in ; shows an front elevation View of the machine disclosed here and as depicted in shows a rear perspective view ofthe machine disclosed here and as depicted in shows a sectional view of a brew vessel used in the machine disclosed here and as depicted in shows a ctive View of a plunger used in the machine disclosed here and as depicted in l94782NZAHDivisionaLZMarchZO15_EHB.doc shows a perspective view of a lower end of the plunger of shows a perspective View of an upper end of a fluid conduit use ofthe machine disclosed herein as depicted in shows a top plan View of the upper end ofthe fluid conduit of shows a bottom plan View ofthe fluid conduit of shows a sectional view ofthe upper end ofthe fluid conduit of shows a flow chart rating an exemplary operation of the machine disclosed here and depicted in FIGS. l—7C.
DETAILED DESCRIPTION A typical, non-limiting embodiment of the t invention includes a machine for g a beverage such as, but not limited to, coffee or tea, that includes a brew vessel and a plunger disposed in the brew vessel. The brew vessel is operable to receive a liquid such as water, a flavor base such as ground coffee or tea, and to allow the beverage to brew from a mixture ofthe liquid and the base. The plunger assembly is operable to filter a solid, such as spent coffee grounds or tea from the brewed beverage and to remove the spent flavor base from the brew vessel. Steam pressure from an al boiler is operable to power a siphon brewer which vely decreases the time traditionally required to brew siphon beverages, and introduces a new means to control many factors ofthe brew cycle. Regulation of steam pressure controls agitation of the brewing liquid, and might be employed to ate the brewing s. Valves, either manual or electric, are used to precisely control the flow of water and steam from the boiler. The precise control ofthese valves es for accurate achievement ofthe brew temperature, brew time, brew volume, and brew agitation.
A valve on the bottom ofthe brew vessel allows liquid to drain flom the brew vessel. In some embodiments, brewing tion is provided by means of a user interface through which a microprocessor is controlled. The microprocessor controls the water valve and the steam valve to achieve unique brew settings for each brew vessel.
Referring in general to FIGS. 1—7C, this discussion is of the embodiment of machine 17 for brewing ges that further develops the well—known art of siphon brewing. Furthermore, this machine 17 may provide a new level ofprecision, customization, and efficiency to the siphon g method. The embodiment of this machine 17 uses boiler 2 with heat exchange logy, although heat exchangers are not necessary, to power l94782NZA_Divisi0nalw2March20l S_EHB.doc one or many siphon style brew s 9. To separate the beverage fiom the flavor base, the inventive machine 17 uses plunger 11 with filtering base 12 similar in ration to the plunger apparatus used by the well-known French press brew method. However, in contrast to the French press method, with the present invention, the spent flavor base is left atop the plunger's filter base 12.
Furthermore, boiler 2 is employed to preheat the water for each brew. Flow meters 5 and valves 4, 18 initiate and control the brew s with a relatively high degree ofprecision. Steam from the boiler 2 is used to generate pressure, which forces water in the brew vessels’ steam chamber 14 upward into the brew chamber 10 ofthe brew vessel 9. The steam pressure from the boiler 2 is then lled with a valve 4 in order to heat the brew water in the brew chamber 10 to a user's specified temperature. The incoming steam re is further ted to maintain the desired brew ature, control agitation of the brewing liquid, and to terminate the brewing process. The machine 17 allows for automation of one or all steps of the siphon brewing technique. Such a machine may control one or more of the brewing parameters with a level ision that yields brewed coffee having a customizable taste from cup to cup. Furthermore, such a e may siphon brew with a speed and efficiency that renders the machine suitable for use in a high volume commercial settings. In addition, such a machine may allow one to easily change the brewing recipe fiom brew to brew, Where the recipe may be customized by a customer to the customer’s ences.
The embodiment of this machine may include but is not limited to one or more of the following components: brew vessel 9, boiler 2, temperature sensor 7, flow meter 5, steam control valve 4, water control valve 18, cooling water mixer valve 3, microprocessor— ller 6, user interface 8, fresh water inlet valve 1, and network communication port 16.
While, as shown in FIGS. 2—4, four brew vessels 9 may be used with machine 17, those skilled in the art will recognize that more or less than four brew s 9 might be incorporated into machine 17. For ease of description, only a single brew vessel 9 will be discussed.
Referring specifically to brew vessel 9 includes an upper, or brew, chamber 10 having an upper end 21 and a lower end 22. In an exemplary embodiment, brew vessel 9 might have approximate volume of about 20 ounces. Filtering base 12 is coupled to elongated plunger 11 and is removably inserted into brew vessel 9. Filtering base 12 receives and retains a flavor base, such as, for example, coffee grounds or tea leaves. In an exemplary embodiment, shown in filtering base 12 includes between about l and about l0 layers of filter media, which can be constructed from a wire mesh or otherwise porous metal 194782NZA_DivisionalfiZMarchZ01SfiEHBdoc having pore sizes of between about 0.005 and about 0.125 inches in er.
Filtering base 12 may include a plurality of spokes 24 extending outwardly from plunger 11 to at least one annular frame 26. Openings 28 between the spokes 24 allow the brewing liquid to pass through ng base 12. The filter media, r, prevents the flavor base from passing downward below ng base 12. Annular frame 26 and filtering base 12 form an open reservoir to receive and retain the flavor base and to t solid elements ofthe flavor base from escaping from the brew chamber 10 during and after the g process.
Referring specifically to ng base 12 is movable through the brew chamber 10 between the lower end 22 in an operational mode and the upper end 21 in a cleaning mode. Filtering base 12 is sized so that, While being easily movable between the lower end 22 and the upper end 21, the outer perimeter of the filtering base 12 snugly that the flavor-base or brewing engages the inner sidewall 30 of the brew chamber 10 so water is substantially unable to leak or otherwise bypass filtering base 12 during the brewing include a lubricious material, such as, process. The outer perimeter of filtering base 12 may for example, TEFLON®, which facilitates a sliding, yet sealing, engagement of filtering base 12 with inner sidewall 30 of brew r 10. Alternatively, filtering base 12 may include at least one O—ring 12a that extends around the perimeter of filtering base 12 and serves to seal filtering base 12 against inner sidewall 30 of brew chamber 10.
Referring to , check valve assembly 60 may be used at the bottom of filtering base 12 to seal lower end 22 of brew chamber 10. Check valve assembly 60 is adapted to operate between an open position wherein fluid passes between brew r 10 and steam chamber 14 and a closed position wherein fluid in brew chamber 10 is retained in brew chamber 10. Check valve assembly 60 includes valve 62 that is slidingly disposed around plunger 11 and moves along plunger 11 in the direction identified by arrow "A".
Biasing member 64, such as, for example a helical , biases valve 62 away from filtering base 12 and toward lower end 22 of brew chamber 10. Lip 63 prevents valve 62 from falling off ger 11. When plunger 11 is fully lowered into brew chamber 10, valve 62 seals brew chamber 10 fiom steam chamber 14. Valve 62 includes sealing surface 66 that extends at about a 45° angle ve to a vertical surface 68 of valve 62. O—ring 70 extends around slot 72 formed in sealing surface 66 to enhance the sealing of valve 62 With lower end 22 of brew chamber 10. Lower end 22 ofbrew chamber 10 includes a tapered opening 23 into which sealing surface 66 seats when check valve assembly 60 is in the closed position.
Biasing member 64 is sized such that, when sufficient steam re from steam 19478ZNZA_DivisionalfiZMarchZOl5gEHB.doc chamber 14 engages valve 62, g member 64 yields, thereby allowing the steam to push valve 62 upward along plunger 11 and allow the steam to enter brew chamber 10. When the steam pressure is released, biasing member 64 forces valve 62 downward along plunger 11, sealing brew chamber 10 and preventing any liquid in brew r 10 fiom flowing out of brew chamber 10 and into steam chamber 14.
Lid 32 is removably disposed over the upper end 21 ofbrew r 10. Lid 32 includes a centrally located opening 34 h which the plunger 11 extends. Lid 32 may rest on the brew chamber 10 by action of y or, alternatively, a locking mechanism, such the lid 32 to the upper end 21 as, for example, a threaded connection (not shown), may secure ofbrew chamber 10.
Plunger 11 is ently long such that, when the filtering base 12 is disposed in the lower end 22 of the brew chamber 10, a significant length ger 11 extends outwardly from the upper end 21 of brew chamber 10 and through lid 32 so that a user may be able to grasp plunger 11 and lift plunger 11 and filter base 12 toward the upper end 21 of brew chamber 10. Optionally, plunger 11 might e device 36, such as a handle or knob, at an upper end thereof to facilitate grasping r 11.
Brew vessel 9 further includes lower, or steam, chamber 14 located physically below brew chamber 10. Steam r 14 es an upper end 38 and a bottom end 40.
In an exemplary embodiment, steam chamber 14 might have approximate volume of about 24 ounces. A conduit, such as straw 13, having a first, or top, open end 42 and a second, or bottom, open end 44, distal from the first open end 42, extends downward from lower end 22 ofbrew chamber 10 and through the upper end 38 of steam chamber 14 toward the bottom end 40 of steam chamber 14, but generally does not physically contact the bottom end 40, so that at least a small volume is present between the straw 13 and the bottom end 40 of steam chamber 14.
In an exemplary embodiment, top end 42 of straw 13 might include spray tip fitting 80, shown in FIGS. 5 and 7-7C through which fluid flowing through straw 13 passes prior to entering brew chamber 10. Spray tip fitting 80 includes recessed area 81 in which top end 42 of straw 13 is inserted.
As shown in FIGS. 7-7B, spray tip fitting 80 includes a plurality of outlet openings 82 ing radially around perimeter 84 thereof. In the exemplary embodiment shown ten outlet openings 82 are shown, although those skilled in the art will recognize that more or less than ten passages can be used. Outlet openings 82 direct fluid flowing upward through straw 13 outwardly upon leaving spray tip fitting 80, thereby generating a tomado— l94782NZA_Divisiona1_2March2015_EHB.doc like or vortex effect of the fluid, which serves several purposes. A first purpose is to help increase ion of the fluid inside brew chamber 10, thereby increasing the growing efficiency of machine 17. Additionally, outlet openings 82 are configured to direct flow of a fluid exiting spray tip fitting 80 in an outward direction. The outward ng of fluid directs the energy of the fluid along the sidewall of brew chamber 10 instead of directing the fluid straight upward, thereby reducing or eliminating the potential of the fluid to spill out of the top upper chamber 10.
As shown in FIGS. 7A and 7B, spray tip fitting 80 includes a pair of opposing, parallel flat surfaces 86, 88 that are used to seat spray tip fitting 80 into a complementary fitting 39 (shown in upper end 38 of steam chamber 14. As shown , spray tip fitting 80 also includes a plurality of inlets 90 formed in the bottom e 92 of spray tip fitting 80. Each inlet 90 corresponds with one of outlet openings 82. Each passage 94 extends at an angle of about 38 degrees from vertical. Passages 94 provide fluid communication between each respective inlet 90 and ponding outlet g 82. For y, only two passages 94 are shown .
During the brewing process, fluid enters spray tip fitting 80 through inlets 90 and is directed through passages 94 around perimeter 84 and through outlet openings 82 for discharge into brew chamber 10. After the brewing process is complete, the brewed fluid reverses flow into outlet openings 82, h passages 94 and out of inlets 90 and into straw 13 to steam chamber 14.
In an exemplary embodiment, bottom end 40 of steam r 14 might be vertically recessed with a taper to allow bottom and 44 of straw 13 to extend into, but not contact, the bottom end 40. Straw 13 extends through the upper end 38 of steam chamber 14 and to brew r 10 such that straw 13 provides fluid communication between steam chamber 14 and brew chamber 10.
The bottom end 40 of steam chamber 14 includes drain valve 15 that allows for draining of steam chamber 14, as well as for dispensing a brewed beverage from brew chamber 10 after the g process completes. Steam chamber 14 further includes vent valve 19 employed to vent steam chamber 14, allowing the brewed beverage to drain fiom steam chamber 14 through drain valve 15 and out of the machine 17 for sing. In an exemplary embodiment, vent valve 19 is operatively coupled to microprocessor—controller 6 so that vent valve 19 may be opened at the end of the brewing cycle without requiring manual input from an operator.
Referring back to FIG. I, steam inlet 46 es fluid communication between _1 0.. l94782NZA_Divisional_2March20l SflEHB .doc steam control valve 4 and steam chamber 14, and brewing water inlet 48 provides fluid communication between flow meter 5 and steam chamber 14. Cold water inlet 53 provides fluid ication between a cold water supply valve 55 and steam chamber 14. Steam inlet 46, brewing water inlet 48, and cold water inlet 53 all meet at a common inlet 57 that is in direct fluid communication with steam chamber 14. Optionally, vent valve 19 may be in fluid communication with common inlet 57.
Cold water inlet 53 es a blast of cooling water directly from freshwater inlet 1 into steam chamber 14 in order to cool down any residual steam Within steam chamber 14 after the brewing process. This cooling ofthe residual steam enhances a vacuum that is formed within steam r 14 that draws brewed fluid rd from brewing chamber for dispensing.
Boiler 2 includes steam outlet 45 providing fluid communication between boiler 2 and steam control valve 4. Boiler 2 also includes heated water outlet 47 ing fluid communication between boiler 2 and water control valve 18. Boiler 2 further includes ater inlet conduit 49 providing fresh water to boiler 2 firom freshwater inlet 1.
Freshwater inlet conduit 49 includes tee 51 that diverts at least a portion of the freshwater around boiler 2 to heated water outlet 47 Via cooling water mixer valve 3. The water from heated water outlet 47 and the steam from steam outlet 45 are introduced to brew vessel 9 to provide the brewing liquid and to brew the beverage.
Microprocessor—controller 6 is operatively coupled to heating element 50 in boiler 2 to control the heating/boiling of water from freshwater inlet 1 and present inside boiler 2.
The water flows from freshwater inlet 1 to boiler 2. Freshwater inlet conduit 23 is in fluid communication with both boiler 2 and heated water outlet 47 (via cooling water mixer valve 3 and water l valve 18). Microprocessor—controller 6 is also operatively d to cooling water mixer valve 3, water control valve 18, and flowmeter 5 in order to control the flow and temperature of brewing water from boiler 2 into steam chamber 14 according to ses well known by those of ry skill in the art. onally, microprocessor—controller 6 is operatively coupled to the steam control valve 4 in order to control the flow of steam from boiler 2 into steam chamber 14.
Temperature sensor 7, located in the bottom end 22 ofbrew chamber 10, is operatively coupled to microprocessor—controller 6 to transmit temperature information inside brew chamber 10 to microprocessor—controller 6 so that microprocessor—controller 6 might regulate the temperature inside brew chamber 10 via steam control valve 4 and water control valve 18.
Feedback from temperature sensor 7, as well as flowmeter 5, is used by microprocessor— 194782NZA_Divisional_2March20ISHEHBdoc controller 6 to regulate operation of cooling water mixer valve 3, steam control valve 4, and water control valve 18 to regulate the temperature of the g liquid inside brew vessel 9.
Microprocessor—controller 6 is also operatively coupled to cold water valve 55 to te operation of cold water valve 55.
Microprocessor—controller 6 is also operatively coupled to user interface 8. An operator manipulates user interface 8 in order to instruct microprocessor—controller 6 of the desired parameters, such as, for process to brew a ge in brew vessel 9 according to example, the volume of the beverage to be brewed, the final temperature of the brewed beverage, agitation of the brew, the duration oftime that the beverage brews inside brew vessel 9, and other ated parameters.
In an ary embodiment, user interface 8 might include reader 52 that reads electronic information associated with a particular user. For e, reader 52 may be a card reader that is used to read an electronic card that is swiped through reader 52.
Alternatively, reader 52 may be an RFID device that is used to wirelessly read an electronic device, such as a key fob, that is placed near reader 52 to extract‘information from the key fob regarding desired brewing parameters. Electronic information associated with a particular user may include, but is not limited to, the name of the user, the type of ge that the user prefers, the preferred volume of beverage (i.e. 8 ounces, 12 ounces, 16 ounces), a temperature range of the beverage, ty of creamer, and whether the user prefers any added flavoring, such as, for example, whipped cream and/or sugar.
Microprocessor—controller 6 is also operatively coupled to a network communications port 16. Network communications port 16 provides a ications path between microprocessor—controller 6 and an external location such as, for example, a host server, via the Internet. Network communications port 16 allows for input to microprocessor— ller 6 via an alternative location other than user interface 8. For example, a customer communications port 16 so may be able to place an order for a brewed beverage via network that the beverage might be d and/or brewed before the customer physically arrives at the g location. Network communications port 16 might also allow for download of information from microprocessor—controller 6 to a remote location. Such information may include the number and types ofbrewing processes performed by machine 17, as well as customer information obtained via reader 52.
Referring to flowchart 800 in in operation of machine 17, an operator lates user interface 8 at step 802 in order to program microprocessor—controller 6 to brew a particular brewed ge using machine 17. The user—specified brew parameters _ 1 2- l94782NZAfiDivisiona1w2March2015_EHB.doc such as, but not limited to, brew temperature, brew time, brew volume, and brew agitation are input via the user interface 8. User interface 8 relays the brew parameters to microprocessor— controller 6, which further controls the valves 3, 4, 18, thereby achieving desired brew parameters and providing automation of the processes.
At step 804, machine 17 receives fresh water through the water inlet valve 1, which passes the fresh water into boiler 2. ally, a pump (not shown) may be used to pump water from boiler 2 to brew vessel 9. In an exemplary embodiment, however, the water may be supplied by a pressurized public water source. In another exemplary embodiment, the water may be supplied by a user—filled gravity fed water tank (not shown).
Water in boiler 2 is heated to a temperature that is sufficient to generate the substantial pressure and temperature necessary to accomplish brew cycles. In an exemplary embodiment, boiler 2 may keep the water to between about 99°C (about 210°F) and about 132°C (about 270°F), with the pressure een about 1 bar and about 2 bar. The heated water also creates steam pressure. At step 806, heated water from boiler 2 is piped to cooling water mixing valve 3 where the heated water subsequently cooled to a ature slightly below the user's specified brew temperature by additional water supplied through fieshwater inlet 1 that bypasses boiler 2 via s) tee 51. At step 808, the user—specified volume and temperature of water flows out of boiler 2 and through mixing valve 3, where the water is injected into steam chamber 14 through brewing water inlet 48 via input water control valve 18. The accuracy of this s at step 808 might be achieved by a control loop between microprocessor-controller 6, flow meter 5, temperature sensor 7, and input water control valve 18.
At step 810, steam l valve 4, controlled via microprocessor-controller 6, inlet opens, allowing the flow ofhigh pressure steam into steam r 14 through steam 46. Due to the high pressure in steam chamber 14, the water in steam chamber 14 is pushed up through straw 13, forcing open valve 62, thereby allowing the water to flow h filtering base 12 and into brew chamber 10. While the water is in brew r 10, the steam flow ues into steam chamber 14 and vents up straw 13, past valve 62, through filtering base 12, and into the water in brew chamber 10. The flow of steam into steam chamber 14 and its continued flow through straw 13 into brew chamber 10, transfers heat to and agitates the water in brew chamber 10. At step 812, once the user—specified water temperature threshold is reached in brew chamber 10, as measured by the temperature sensor 7, microprocessor—controller 6 transmits a signal to steam control valve 4 to throttle back the supply of steam to steam chamber 14, allowing valve 62 to close, thereby preventing 1 94782NZA_DiVisional_2March20 l 5_EHB.doc additional steam fl‘om ng brew chamber 10 so that an operator can remove lid 32 to add ground coffee or tea leaves or other solid flavor bases for mixing into the water of the brew chamber 10.
At step 814, after the solid flavor base is added to the brew chamber 10, the operator initiates the start of the prescribed brew time at the user interface 8. During the brew time, steam is oduced to brew chamber 10 and the amount of steam flow to brew chamber 10, via steam chamber 14 and straw 13, is regulated by microprocessor—controller 6, which transmits electronic signals to operate steam control valve 4 in order to achieve the user's brew parameters, which are provided at user interface 8. At step 816, once the specified brew time is reached, microprocessor—controller 6 transmits a signal to close steam control valve 4, thus eliminating the flow ofpressurized steam into the steam r 14.
The condensing steam generates a pressure loss in steam chamber 14, thereby g a vacuum that pulls the brewed beverage down through filtering base 12, thereby separating the solid flavor base flom the beverage.
Optionally, in step 817, microprocessor-controller 6 may open cold water valve 55 to allow cold water from fieshwater inlet 1 into steam chamber 14 in order to cool residual steam within steam chamber 14 and to generate a vacuum that draws the brewed beverage from brew chamber 10, thereby ng up the extraction time of brewed beverage fiom machine 17 and generates a higher extraction pressure. The addition of the cold water also allows the operator of machine 17 to in a more precise temperature in brew chamber The brewed beverage flows down through straw 13 and into steam chamber 14.
At step 818, once the majority of the brewed beverage has reached steam chamber 14, the brew 's vent valve 19 opens electronically via an electronic signal transmitted from microprocessor—control 6 and the brew vessel drain valve 15 is manually opened by the operator, allowing the ge to drain into a cup (not shown) below. As the beverage is draining into the cup below, at step 820, the operator pulls plunger 11 with the spent grounds atop, up and out ofbrew chamber 10 r clearing brew chamber 10 ofthe spent flavor base. The operator rinses out plunger 11 with tap water and clears it of any flavor base debris.
At step 822, once the beverage has emptied from steam r 14 into the cup, the operator places lid 32 on top of brew chamber 10, pulls up plunger 11 so that filtering base 12 is at the top end 21 ofbrew r 10, and flushes brewing vessel 9 with a blast hot water from boiler 2. The water from the flush cycle is allowed to drain out the bottom of steam chamber 14 through drain valve 15 and into the machine's drain board 20 (shown in and out l94782NZA_DiVisiona1_,2March2015_EHB.doc the machine’s drain tube (not shown). Upon completion ofthe rinse cycle, the operator replaces plunger 11 into brew chamber 10 and brew vessel 9 is ready to begin another brew cycle.
There are embodiments of the invention disclosed here with a plurality of microprocessors. In certain embodiments of the invention disclosed here, the microprocessor is connected to a network that allows multiple devices to set brew specifications and initiate brew processes. In certain embodiments, networking is wireless while in certain embodiments, networking is wired.
Certain embodiments of the inventions disclosed here reach the desired temperature much more quickly than a conventional siphon coffee maker does. Certain embodiments ofthe inventions disclosed here have much more precise temperature l than a conventional siphon coffee maker does. Typical embodiments can control the temperature Within 0.5 degree centigrade. However, other embodiments of the invention have different precisions oftemperature control. For non—limiting examples, there are embodiments of the invention in which the temperature is regulated within 1 degree rade, embodiments ofthe ion in which the temperature is ted within 2 degrees rade and embodiments ofthe ion in which the temperature is ted within 0.2 degree centigrade.
Certain embodiments of the ion disclosed here allow more efficient cleaning and rinsing than a conventional siphon coffee maker. Certain embodiments ofthe ion sed here allow superior methods for separating spent coffee from brewing liquid compared with conventional siphon coffee makers.
Certain ments of the invention disclosed here allow customizable process automation. For non—limiting example, each cup of coffee or tea can be easily brewed to an individual customer’s specifications via automation. Additionally, certain embodiments of the invention disclosed here are more suitable for office use and/or home use than conventional siphon coffee makers.
Certain embodiments ofthe inventions disclosed here are more suitable for high volume commercial used than conventional siphon coffee .
In another embodiment of this invention, some or all of the valves could be manually ed and its entire operation could be partially automated or incorporate no tion at all.
In yet another embodiment of this invention, the boiler could be heated by a means other than electricity and incorporate manual valves and operate entirely free of -15_ l94782NZA_Divisional_2March2015_EHB.doc icity.
In still another embodiment of this invention, the boiler can be omitted in an alternative heat source, such as, for example and induction burner (not shown), can be used.
For embodiment ofthe present invention with an induction burner, such an induction burner could be incorporated into bottom end 40 of steam chamber 14.
Although specific embodiments described above are intended for brewing coffee, other extractions are possible. One non—limiting example is brewing of tea. However, other tions into hot water are possible with embodiments of the invention disclosed here.
Moreover, there are embodiments ofthe invention disclosed here intended for use extracting into a liquid other than water.
In still another embodiment of this invention, the brewing machine may be equipped with an auxiliary steam wand and or an auxiliary hot water spigot.
Certain embodiments ofthe ion disclosed here are a hot liquid extraction system including a vessel, a controllable steam and water source external from the vessel which heats the liquid of the vessel, a plunger assembly disposed within the vessel operable to filter and remove a solid from the brewed beverage, and a valve to dispense the filtered beverage from the base of the brew vessel.
Certain embodiments of the invention disclosed here are similar to a conventional siphon brewing system comprising a vessel, but including an external controllable steam and hot water source, valves operable to te water flow and steam into the g vessel, and a plunger operable to separate a brewed liquid from a flavor base and to remove a spent flavor base from the .
Certain ments of the invention sed herein might possess an additional gas inlet 98 (shown in to steam chamber 14 that is in fluid communication with a gas supply ofnon—toxic liquids, such as, for example, food grade nitrogen and/or carbon dioxide, which can provide an additional and/or alternative source of agitation tially substituting for steam-based agitation) and/or cooling for the heated . The fluid. gas supply and the steam disclosed herein can be generally ed to as an agitation Microprocessor—controller 6 is also operatively coupled to gas inlet 98 to admit the gas into steam chamber 14 at the proper time during the brewing process.
Reference herein to “one embodimen ” or “an men ”means that a particular feature, ure, or characteristic described in tion with the embodiment can be included in at least one embodiment of the invention. The appearances ofthe phrase "in one embodiment” in various places in the specification are not necessarily all referring to l94782NZA_Divisional_2March2015_EHB.doc the same embodiment, nor are te or alternative embodiments necessarily mutually exclusive of other embodiments. The same applies to the term “implementation.” As used in this application, the word “exemplary” means serving as an example, instance, or illustration. Any aspect or design described herein as lary” is not necessarily to be construed as preferred or advantageous over other s or designs.
Rather, use of the word exemplary is intended to present concepts in a concrete fashion.
Additionally, the term “or” is intended to mean an inclusive “or” rather than an exclusive “or”. That is, unless specified otherwise, or clear fiom context, “X employs A or B” is intended to mean any of the natural inclusive permutations. That is, ifX employs A; X employs B; or X employs both A and B, then “X employs A or B” is satisfied under any of the foregoing instances. In addition, the articles “a” and “an” as used in this ation and the appended claims should generally be construed to mean “one or more” unless ed otherwise or clear from context to be directed to a singular form. ’9 (C Moreover, the terms “system,” “component, module,” “interface,”, “model” or the like are generally intended to refer to a computer-related entity, either hardware, a combination ofhardware and software, re, or software in execution. For example, a component may be, but is not limited to being, a process g on a processor, a processor, an , an executable, a thread of execution, a program, and/or a er. By way of illustration, both an application running on a controller and the controller can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
Although the subject matter described herein may be described in the context of illustrative implementations to process one or more computing application features/operations for a computing application having user-interactive components the subject matter is not limited to these particular embodiments. Rather, the ques described herein can be applied to any suitable type of user-interactive component execution ment methods, systems, platforms, and/or tus.
Aspects ofthe present invention may be implemented as circuit—based processes, including possible entation as a single integrated circuit (such as an ASIC or an FPGA), a chip module, a single card, or a multi—card t pack. As would be apparent to one skilled in the art, various ons of circuit elements may also be ented as processing blocks in a software program. Such software may be employed in, for example, a digital signal processor, micro—controller, or general—purpose computer. 194782NZA_Divisional_2March2015_EHB.doc Aspects of the present invention can be embodied in the fomi of methods and apparatuses for cing those methods. The present invention can also be ed in the form ofprogram code embodied in tangible media, such as magnetic recording media, optical recording media, solid state memory, floppy diskettes, CD—ROMs, hard drives, or any other machine—readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine s an apparatus for practicing the invention. The present invention can also be embodied in the form ofprogram code, for example, whether stored in a storage medium, loaded into and/or executed by a e, or transmitted over some transmission medium or carrier, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the program code is loaded into and executed by a machine, such as a er, the machine becomes an apparatus for practicing the invention. When implemented on a general—purpose processor, the program code segments combine with the processor to e a unique device that operates analogously to specific logic circuits. The present invention can also be ed in the form of a bitstream or other sequence of signal values electrically or lly transmitted through a , stored magnetic—field variations in a magnetic recording medium, etc., generated using a method and/or an apparatus of the present invention.
Unless explicitly stated otherwise, each cal value and range should be interpreted as being approximate as ifthe word "abou " or "approximately” preceded the value of the value or range.
It should be understood that the steps of the exemplary methods set forth herein are not necessarily required to be performed in the order described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps in methods may be ed in such methods, and certain steps may be omitted or combined, tent with s embodiments of the present invention.
No claim element herein is to be construed under the provisions of 35 U.S.C. § 112, sixth aph, unless the t is expressly recited using the phrase "means for” or ”step for." As used herein in reference to an element and a standard, the term “compatible” means that the t communicates with other elements in a manner wholly or partially specified by the standard, and would be recognized by other elements as sufficiently capable of communicating with the other elements in the manner specified by the standard. The compatible element does not need to operate internally in a manner specified by the standard. )9 £5 )3 6‘ Also for purposes of this description, the terms “couple, coupling, coupled,” _18_ 194782NZAHDivisional_2March2015_EHB.doc “connect,” “connecting,” or cted” refer to any manner known in the art or later developed in which energy is allowed to be transferred between two or more ts, and the osition of one or more additional elements is contemplated, although not required.
Conversely, the terms “directly coupled,” “directly connected,” etc., imply the absence of such additional ts.
It will be fiarther understood that various changes in the details, materials, and arrangements ofthe parts which have been described and illustrated in order to explain the nature of this invention may be made by those skilled in the art without departing from the scope of the invention as expressed in the following claims.
To those skilled in the art to which the invention relates, many changes in construction and widely differing embodiments and application ofthe invention will suggest themselves t departing from the scope ofthe invention as defined in the appended claims. The disclosures and the descriptions herein are purely illustrative and are not intended to be limiting.
It will also be understood that where a t, method or process as herein described or claimed and that is sold incomplete, as individual components, or as a “kit of Parts”, that such exploitation will fall within the ambit of the invention.
These and other features and characteristics of the present invention, as well as the method of operation and functions of the related ts of ures and the combination of parts and economics of manufacture, will become more nt upon consideration of the following description with reference to the accompanying drawings, all of which form part of this specification, n like reference numerals designate corresponding parts in the various figures.
For purposes of the description after, the terms “upper”, “lower”, “right”, “left”, “vertical”, “horizontal”, “top”, “bottom”, “lateral”, “longitudinal” and derivatives thereof shall relate to the invention as it is oriented in the g figures. However it is to be understood that the invention may assume various alternative ions, except where expressly specified to the contrary. It is also to be tood that the specific devices illustrated in the attached drawings, and described in the following specification are simply exemplary embodiments of the invention, hence specific dimensions and other physical _ 1 9- l9478ZNZAfiDivisionaLZMarchZO1SHEHBdoc characteristics related to the embodiments disclosed herein are not to be considered as limiting.
It is ledged that the term ‘comprise’ may, under g jurisdictions, be attributed With either an exclusive of an inclusive meaning. For the purpose of this specification, and unless otherwise noted, the term ‘comprise’ shall have an inclusive meaning — i.e. that it will be taken to mean an inclusion of not only the listed components it directly references, but also other non—specified components or elements. This rationale will also be used when the term ‘comprised’ or ‘comprising’ is used in relation to one or more steps in a method or process. l947SZNZA_DivisionalH2March2015_EHB.doc

Claims (14)

1. A method of brewing a beverage, the method comprising the steps of: providing a heated fluid into a lower chamber; providing an agitation fluid into the lower chamber, the ion fluid forcing the heated fluid into an upper chamber; providing the agitation fluid into the upper chamber; adding a flavor base into the upper chamber; combining the heated fluid with the flavor base, forming a brewed beverage; and dispensing the brewed beverage.
2. The method ing to claim 1, further comprising the step of, prior to dispensing the brewed beverage, siphoning the brewed beverage from the upper chamber into the lower chamber.
3. The method ing to claim 2, wherein the siphoning step comprises condensing the agitation fluid in the lower chamber.
4. The method according to claim 1, n the step ofproviding the agitation fluid into the lower chamber further comprises g the heated fluid through a conduit, the conduit having a first open end ed at a lower end of the lower chamber and the second open end disposed at a lower end ofthe upper chamber.
5. The method ing to claim 4, further comprising the step of after forcing the heated fluid through the conduit, releasably sealing the heated fluid in the upper chamber.
6. The method according to claim 1, further comprising the step of, after dispensing the brewed beverage, removing the flavor base from the upper chamber.
7. The method according to claim 6, wherein removing the flavor base comprises moving a filtering base upward flom a bottom end ofthe upper chamber to an upper end of the upper chamber. -2 1 _ l 94782NZA_DiVisional_2March20 lSfiEHB .doc
8. The method ing to claim 6, further comprising the step of, after removing the flavor base in the upper r, rinsing the lower chamber and the upper chamber with heated water.
9. The method according to claim 1, wherein the dispensing step comprises opening a drain valve and opening a vent valve.
10. The method according to claim 1, wherein the combining step further comprises agitating the heated fluid with the agitation fluid.
11. The method according to claim 1, further comprising, setting a desired temperature for the brewed beverage and wherein the step ofproviding the heated fluid into the lower chamber comprises heating the fluid to a temperature less than the desired temperature.
12. The method according to claim 11, wherein the step ofproviding the ion fluid into the upper chamber raises the temperature of the fluid to the desired ature.
13. The method according to claim 1, wherein the step ofproviding the heated fluid comprises ing a user-specified volume of the fluid.
14. The method according to claim 1, wherein the agitation fluid providing step comprises providing a user—specified volume ofthe agitation fluid.
NZ705636A 2011-02-26 2012-02-24 Hot Beverage Brewing System and Use Thereof NZ705636B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161000447P 2011-02-26 2011-02-26
US61/447 2011-02-26
NZ617660A NZ617660B2 (en) 2011-02-26 2012-02-24 Hot beverage brewing system and use thereof

Publications (2)

Publication Number Publication Date
NZ705636A NZ705636A (en) 2015-04-24
NZ705636B2 true NZ705636B2 (en) 2015-07-28

Family

ID=

Similar Documents

Publication Publication Date Title
US9737081B2 (en) Hot beverage brewing system and use thereof
US20130220137A1 (en) Hot beverage brewing system and use thereof
US10413112B2 (en) Beverage brewing systems
US9072404B2 (en) Method for enabling complex order specifications to a hot beverage brewing system
US8998176B2 (en) Controllable brewer
US6612224B2 (en) Method and apparatus for the preparation of hot beverages
US20090317526A1 (en) Coffee brewing system
EP2825081B1 (en) A beverage preparation machine with cleanable brewing head
US9993105B2 (en) Method of making a beverage with a controllable brewer
US20150374167A1 (en) Beverage preparation machines
EP3331407B1 (en) Apparatus for making tea latte
JP7292758B2 (en) Coffee beverage production equipment and coffee beverage production program
AU2012222219B2 (en) Hot beverage brewing system and use thereof
CN114515107A (en) Coffee machine with rapid and/or multiple extraction process features and associated systems and methods
NZ705636B2 (en) Hot Beverage Brewing System and Use Thereof
NZ617660B2 (en) Hot beverage brewing system and use thereof
EP2671477A1 (en) Hot beverage preparation apparatus comprising leafless brew receptacle
WO2023110283A1 (en) Discharge of rinsing water from a brew chamber of a beverage making device
JP2021065351A (en) Device and parameter change method