NZ627149B2 - Piperazinyl derivatives for the treatment of cancer - Google Patents

Piperazinyl derivatives for the treatment of cancer Download PDF

Info

Publication number
NZ627149B2
NZ627149B2 NZ627149A NZ62714912A NZ627149B2 NZ 627149 B2 NZ627149 B2 NZ 627149B2 NZ 627149 A NZ627149 A NZ 627149A NZ 62714912 A NZ62714912 A NZ 62714912A NZ 627149 B2 NZ627149 B2 NZ 627149B2
Authority
NZ
New Zealand
Prior art keywords
group
inhibitors
alkyl
formula
compound
Prior art date
Application number
NZ627149A
Other versions
NZ627149A (en
Inventor
Cecile Bougeret
Jean Francois Briand
Olivier Busnel
Denis Carniato
Benoit Deprez
Mathieu Gutmann
Karine Jaillardon
Original Assignee
Pitty Marc Henry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR1162586A external-priority patent/FR2985256B1/en
Application filed by Pitty Marc Henry filed Critical Pitty Marc Henry
Publication of NZ627149A publication Critical patent/NZ627149A/en
Publication of NZ627149B2 publication Critical patent/NZ627149B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/02Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings
    • C07D241/04Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/06Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/08Bridged systems

Abstract

The present disclosure relates to piperazinyl derivatives of formula (I) and the use thereof as a drug, particularly for the treatment of cancer, the pharmaceutical compositions containing said derivatives, and the method for synthesising same. An example of the piperazinyl derivatives is 2–chloro–N–[1–(4–fluoro–phenyl)–2–((R)–3–isopropyl–piperazin–1–yl)–2–oxo–ethyl]–N–(4–phenoxy–phenyl)–acetamide. –[1–(4–fluoro–phenyl)–2–((R)–3–isopropyl–piperazin–1–yl)–2–oxo–ethyl]–N–(4–phenoxy–phenyl)–acetamide.

Description

Piperazinyl derivatives for the treatment of cancer The present invention concerns piperazinyl compounds particularly useful in the treatment of cancer, compositions containing the same and their method of preparation.
With lengthening lifetimes cancer, one of the leading causes of mortality in the world, affects an increasingly greater number of persons and remains difficult to treat.
The developing resistance to anticancer agents is a serious problem which considerably curbs the treatment of numerous types of cancer. Lowered tolerance to an agent is often accompanied by cross–resistance to a variety of other agents. This multiple resistance to anticancer agents known as Multidrug Resistance, MDR, is caused by numerous mechanisms of which only a very small number have been well characterized. These mechanisms include an increase in drug efflux, an increase in cell detoxifying capability, alteration of molecular targets affected by these anticancer agents, modification of the DNA repair system and modification of apoptotic routes (Baguley, Mol. Biotechnol., 2010, 46, 308–316; Gatti et al., Methods Mol. Med. 2005, 111, 127–148; Longley et al., J. Pathol. 2005, 205, 275–292; Kohno et al., Eur. J.
Cancer 2005, 41, 2577–2586).
The development of anticancer treatments able to avoid these resistance mechanisms is a major challenge and up until the present time the initiated trials have given few results.
Anticancer agents more particularly intended for the treatment of chemotherapy– resistant cancer are described in . They meet the following general formula: where R1 and R2, together with the nitrogen atom which carries them, may form a heterocycle such as a piperazinyl group optionally substituted, the only exemplified compounds being optionally substituted on the nitrogen atom of the piperazine.
Reference to any prior art in the specification is not, and should not be taken as, an acknowledgment, or any form of suggestion, that this prior art forms part of the common general knowledge in Australia or any other jurisdiction or that this prior art could reasonably be expected to be ascertained, understood and regarded as relevant by a person skilled in the art.
As used herein, except where the context requires otherwise, the term "comprise" and variations of the term, such as "comprising", "comprises" and "comprised", are not intended to exclude other additives, components, integers or steps.
The inventors of this patent application have surprisingly discovered that the insertion of a substituent X at alpha position of the second nitrogen atom of piperazine (see formula (I) below) allows an improvement in the physicochemical properties of the compounds, in particular their solubility, their pharmacokinetic properties and biological activities.
The subject of the present patent application is therefore more particularly a substituted piperazinyl compound of following general formula (I): and the pharmaceutically acceptable salts thereof, its stereoisomers or mixtures of stereoisomers in any proportion, in particular an enantiomer mixture and notably a racemic mixture, where: – X is a (C –C ) alkyl, phenyl, benzyl, C(O)OR5 or C(O)NHR5 group; – R1 is a hydrogen atom or a C(O)H, C(O)R6 or C(O)OR6 group; – R2 is a hydrogen atom or a (C C )alkyl group; 1– 6 or R2 together with R1 or X forms a saturated hydrocarbon chain to form a 5 or 6–membered ring, in particular a 5–membered ring; – R3 is a hydrogen or halogen atom or a (C –C )alkyl or (C –C )alkoxy 1 6 1 6 group; – R4 is a hydrogen or halogen atom, CN, NO , or a (C –C )alkyl, (C – 2 1 6 1 C )alkoxy, aryloxy, benzyloxy or heteroaryloxy group, the said group optionally being substituted by one or more halogen atoms; – Ar is a thiophenyl group or a phenyl group optionally substituted by one or more halogen atoms; and - R5 and R6 independently of one another are a (C –C )alkyl, aryl–(C – 1 6 1 C )alkyl or aryl group, the said group optionally being substituted by one or more halogen atoms.
By « halogen » in the meaning of the present invention is meant a fluorine, bromine, chlorine or iodine atom. Advantageously it is a fluorine, bromine or chlorine atom.
By « alkyl » group in the meaning of the present invention is meant any saturated, straight–chain or branched hydrocarbon group, advantageously having 1 to 6, preferably 1 to 4 carbon atoms. These may particularly be methyl, ethyl, n–propyl, iso– propyl, n–butyl, iso–butyl, sec–butyl, tert–butyl, n–pentyl, neopentyl or n–hexyl groups.
Advantageously it is a methyl, ethyl, isopropyl, tert–butyl or isobutyl group.
In some cases, the alkyl group may optionally be substituted by one or more halogen atoms, in particular bromine, chlorine and fluorine and advantageously fluorine. In this case the group will particularly be the –CF group.
By « alkoxy » group in the meaning of the present invention is meant an alkyl group such as defined above linked to the remainder of the molecule via an oxygen atom. Examples of alkoxy group are the methoxy, ethoxy, isopropoxy or tert–butoxy groups. Advantageously it is the methoxy or tert–butoxy group, and further advantageously the methoxy group.
In some cases, the alkoxy group can be substituted by one or more fluorine atoms. In this case, it is advantageously the –OCHF or –OCF group, in particular – OCF .
By « aryl » group in the meaning of the present invention is meant an aromatic group preferably having 5 to 10 carbon atoms and comprising one or more fused rings.
Advantageously it is the phenyl group.
By « heteroaryl » group in the meaning of the present invention is meant any aryl group such as defined above in which one or more carbon atoms have been replaced by one or more heteroatoms, advantageously 1 to 4 and more advantageously 1 to 2, such as sulfur, nitrogen or oxygen atoms for example. Advantageously it is a furyl, thiophenyl, pyridinyl, pyrimidyl, quinolinyl, 1,2,3–thiadiazolyl benzoimidazolyl, indazolyl or 1,2,3–benzotriazolyl group.
By « aryloxy » group in the meaning of the present invention is meant an aryl group such as defined above linked to the remainder of the molecule via an oxygen atom. It is advantageously a phenyloxy group.
By « heteroaryloxy » group in the meaning of the present invention is meant a heteroaryl group such as defined above linked to the remainder of the molecule via an oxygen atom. It is advantageously a pyridinyloxy group.
By « aryl–(C –C )alkyl » group in the meaning of the present invention is meant an aryl group such as defined above linked to the remainder of the molecule via an alkyl group such as defined above comprising 1 to 6 carbon atoms. Advantageously it is a benzyl or 1–phenethyl group, and more advantageously benzyl.
In the present invention by « pharmaceutically acceptable » is meant that which is useful for the preparation of a pharmaceutical composition that is generally safe, non– toxic and neither biologically nor otherwise undesirable and is acceptable for veterinary use and human pharmacopeia use.
By « pharmaceutically acceptable salts » of a compound in the present invention is meant salts which are pharmaceutically acceptable as defined herein and which have the desired pharmacological activity of the parent compound. Such salts comprise: (1) hydrates and solvates; (2) acid addition salts formed with inorganic acids such as hydrochloric acid, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid and similar; or formed with organic acids such as acetic acid, benzenesulfonic acid, benzoic acid, camphorsulfonic acid, citric acid, ethane–sulfonic acid, fumaric acid, glucoheptonic acid, gluconic acid, glutamic acid, glycolic acid, hydroxynaphthoic acid, 2–hydroxyethanesulfonic acid, lactic acid, maleic acid, malic acid, mandelic acid, methanesulfonic acid, muconic acid, 2–naphtalenesulfonic acid, propionic acid, salicylic acid, succinic acid, dibenzoyl–L– tartaric acid, tartaric acid, p–toluenesulfonic acid, trimethylacetic acid, trifluoroacetic acid and similar, advantageously it is hydrochloric acid; and (3) the salts formed when an acid proton present in the parent compound is either + + + replaced by a metal ion e.g. an alkaline metal ion (Na , K or Li for example), an 2+ 2+ alkaline–earth metal ion (such as Ca or Mg ) or an aluminium ion; or it is coordinated with an organic or inorganic base. Acceptable organic bases comprise diethanolamine, ethanolamine, N–methylglucamine, triethanolamine, tromethamine and similar. Acceptable inorganic bases comprise aluminium hydroxide, calcium hydroxide, potassium hydroxide, sodium carbonate and sodium hydroxide.
In the present invention by « stereoisomers » it is meant to designate diastereoisomers or enantiomers. They are therefore optical isomers. The stereoisomers which are not images of one another in a mirror are therefore designated as « diastereoisomers », and the stereoisomers which are non–superimposable images in a mirror are designated as « enantiomers ».
A carbon atom linked to four non–identical substituents is called a chiral centre.
An equimolar mixture of two enantiomers is called a racemic mixture.
The compounds of the present invention can in particular meet the following formula (I–bis): (I –bis), the nitrogen atom carrying the X group then being of (S) configuration.
Advantageously X is a (C –C )alkyl, in particular (C –C )alkyl, phenyl or 1 6 1 4 benzyl group.
Advantageously R1 is a hydrogen atom or a C(O)R6 or C(O)OR6 group, in particular a hydrogen atom.
Advantageously R2 is a hydrogen atom or a (C –C )alkyl group e.g. methyl.
Advantageously R3 is a hydrogen atom or a (C –C )alkyl group e.g. methyl.
Advantageously R4 is a hydrogen or halogen atom, or a (C –C )alkyl, (C – 1 6 1 C )alkoxy or aryloxy group, the said group optionally being substituted by one or more halogen atoms, fluorine in particular.
Advantageously Ar is a thiophenyl group or a phenyl group substituted by one or more fluorine atoms such as 4–fluoro–phenyl.
According to one particular embodiment of the invention, X is a (C –C )alkyl, phenyl, benzyl, C(O)OR5, C(O)NHR5 group; R1 is a hydrogen atom; R2 is a hydrogen atom or a (C –C )alkyl group, advantageously (C –C )alkyl or together with R1 or X 1 6 1 4 forms a saturated hydrocarbon chain to form a 5–membered ring; R3 is a hydrogen or halogen atom or a (C –C )alkyl group, in particular (C –C )alkyl, or a (C –C )alkoxy 1 6 1 3 1 6 e.g. methoxy; R4 is a halogen atom, CN, NO or a (C –C )alkyl, (C –C )alkoxy, 2 1 6 1 6 aryloxy, benzyloxy or heteroaryloxy group, the said group optionally being substituted by one or more halogen atoms; Ar is a thiophenyl group or a phenyl group optionally substituted by a halogen; and R5 and R6 independently of one another are a (C – C )alkyl, aryl–(C –C )alkyl or aryl group, the said group optionally being substituted by 6 1 6 one or more halogen atoms.
More advantageously, X is a (C –C )alkyl, phenyl, benzyl, C(O)OR5, C(O)NHR5 group; R1 is a hydrogen atom; R2 is a hydrogen atom or a C –C )alkyl group, advantageously (C –C )alkyl; R3 is a hydrogen or halogen atom or a (C – 1 4 1 C )alkyl group, in particular (C –C )alkyl, or a (C –C )alkoxy, e.g. methoxy; R4 is a 6 1 3 1 6 halogen atom or a (C –C )alkyl, (C –C )alkoxy, aryloxy, benzyloxy or heteroaryloxy 1 6 1 6 group, the said group optionally being substituted by one or more halogen atoms; Ar is a thiophenyl group or phenyl group optionally substituted by a halogen; and R5 and R6 independently of one another are a (C –C )alkyl, aryl–(C –C )alkyl or aryl group, the 1 6 1 6 said group optionally being substituted by one or more halogen atoms.
Further advantageously, X is a (C –C )alkyl, phenyl or benzyl group; R1 and R2 are a hydrogen atom; R3 is a hydrogen or halogen atom or a (C –C )alkyl group, in particular (C –C )alkyl; R4 is a halogen atom or a (C –C )alkyl, (C –C )alkoxy, aryloxy 1 3 1 6 1 6 or benzyloxy group, the said group optionally being substituted by one or more halogen atoms; Ar is a thiophenyl group or a phenyl group optionally substituted by a halogen; and R5 and R6 independently of one another are a (C –C )alkyl, aryl–(C –C )alkyl or 1 6 1 6 aryl group, the said group optionally being substituted by one or halogen atoms.
Preferably X is a (C –C )alkyl, phenyl or benzyl group; R1 and R2 are a hydrogen atom; R3 is a hydrogen atom or a (C –C )alkyl group, in particular (C – 1 6 1 C )alkyl; R4 is a halogen atom or a (C –C )alkyl, (C –C )alkoxy, aryloxy or benzyloxy 3 1 6 1 6 group, the said group optionally being substituted by one or more halogen atoms; Ar represents a thiophenyl group or a phenyl group optionally substituted by a fluorine atom such as 4–fluoro–phenyl; and R5 and R6 independently of one another are a (C – C )alkyl, aryl–(C –C )alkyl or aryl group, the said group optionally being substituted by 6 1 6 one or more fluorine atoms.
In particular it is one of the compounds in Examples I–1a to I–63 described in the experimental part below, or one of the pharmaceutically acceptable salts thereof, their stereoisomers or mixtures of stereoisomers in any proportion, in particular an enantiomer mixture and especially a racemic mixture.
The present invention also concerns a compound of formula (I) such as defined above for use thereof as drug intended in particular for the treatment or prevention of cancer, and particularly to treat chemotherapy–resistant cancer.
The present invention also concerns the use of a compound of formula (I) such as defined above to produce a drug particularly intended to treat or prevent cancer, in particular to treat chemotherapy–resistant cancer.
The present invention also concerns a method for treating or preventing cancer, in particular chemotherapy–resistant cancer, comprising the administration of a sufficient amount of formula (I) compound such as defined above to a patient in need thereof.
A further subject of the invention is a pharmaceutical composition comprising at least one formula (I) compound such as defined above in association with one or more pharmaceutically acceptable excipients.
In one particular embodiment, this composition may comprise at least one other active ingredient.
In particular this or these active ingredient(s) may be anticancer agents conventionally used to treat cancer. These anticancer agents can be selected in particular from among cisplatin and the derivatives thereof such as carboplatin and oxalyplatin; taxanes such as taxol, taxotere, paclitaxel and docetaxel; vinca alkaloids such as vinblastine, vincristine and vinorelbine; purine analogues such as mercaptopurine, thioguanine, pentostatin and 2–chlorodeoxyadenosine; topoisomerase I inhibitors such as camptothecin compounds e.g. irinotecan and topotecan; topoisomerase II inhibitors such as epipodophyllotoxin, podophyllotoxin and the derivatives thereof e.g. etoposide and teniposide; anti–tumour nucleoside derivatives such as 5–fluorouracil, leucovorin, gemcitabine or capecitabine; alkylating agents such as nitrogen mustards e.g. cyclophosphamide, mechlorethamine, chlorambucil and melphalan, nitroso–ureas such as carmustin, lomustin and streptozocin, alkylsulfonates such as busulfan, ethylenimines and methylmelamines such as thiotepa and hexamethylmelamine, and tetrazines such as dacarbazine; derivatives of anti–tumour anthracyclines such as daunorubicin, adriamycin, doxil, idarubicin and mitoxantrone; molecules targeting the IGF–I receptor such as picropodophyllin; derivatives of tetracarcin such as tetrocarcin A; corticosteroids such as prednisone; antibodies such as trastuzumab (anti–HER2 antibody), rituximab (anti–CD20 antibody), gemtuzamab, cetuximab, pertuzumab and bevacizumab; antagonists or selective modulators of oestrogen receptors such as tamoxifen, fulvestrant, toremifene, droloxifene, faslodex and raloxifene; aromatase inhibitors such as exemestane, anastrozole, letrozole and vorozole; differentiating agents such as retinoids e.g. retinoic acid and vitamin D and agents blocking the metabolism of retinoic acid such as accutane; DNA methyl–transferase inhibitors such as azacytidine and decitabine; antifolates such as permetrexed disodium; antibiotics such as antinomycin D, bleomycin, mitomycin C, actinomycin D, carminomycin, daunomycin and plicamycin; antimetabolites such as chlofarabine, aminopterin, cytosine arabinoside, floxuridine and methotrexate; apoptosis–inducing agents and anti– angiogenic Bcl–2 inhibitors such as YC 137, BH 312, ABT 737, gossypol, HA 14–1, TW 37 and decanoic acid; agents binding to tubulin such as combrestatin, derivatives of colchicine and nocodazole; kinase inhibitors such as flavoperidol, imatinib mesylate, erlotinib and gefitinib; farnesyl transferase inhibitors such as tipifarnib; inhibitors of histone–deacetylases such as sodium butyrate, suberoylanilide hydroxamic acid, depsipeptide, NVP- LAQ824, R306465, JNJ–26481585 and trichostatin A; inhibitors of the ubiquitin–proteasome system such as MLN .41, bortezomib and yondelis; and telomerase inhibitors such as telomestatin.
The compounds of the invention can be given via oral, sublingual, parenteral, sub–cutaneous, intramuscular, intravenous, transdermal, local or rectal route.
In the pharmaceutical compositions of the present invention for oral, sublingual, parenteral, sub–cutaneous, intramuscular, intravenous, transdermal, local or rectal route, the active ingredient can be administered in unit administration forms, in a mixture with conventional pharmaceutical carriers, to animals or to human beings. Suitable unit administration forms include forms via oral route such as tablets, capsules, powders, granules and oral solutions or suspensions, sublingual and buccal administration forms, parenteral, sub–cutaneous, intramuscular, intravenous, intranasal or intraocular administration forms, and rectal administration forms.
When a solid composition is prepared in tablet form, the main active ingredient is mixed with a pharmaceutical carrier such as gelatin, starch, lactose, magnesium stearate, talc, gum arabic or analogues. It is possible to coat the tablets with sucrose or other suitable materials, or they can be treated so that they have sustained or delayed release and continuously release a predetermined amount of active ingredient.
A capsule preparation is obtained by mixing the active ingredient with a diluent and pouring the mixture obtained into soft or hard capsules.
A preparation in syrup or elixir form can contain the active ingredient together with a sweetener, an antiseptic and taste enhancer and suitable colouring agent.
Water–dispersible powders or granules can contain the active ingredient in a mixture with dispersing agents or wetting agents, or suspending agents, and also with taste enhancers or sweeteners.
For rectal administration, recourse is made to suppositories prepared with binders which melt at rectal temperature e.g. cocoa butter or polyethylene glycols.
For parenteral, intranasal or intraocular administration use is made of aqueous suspensions, of saline isotonic solutions or sterile, injectable solutions which contain pharmacologically compatible dispersing agents and/or wetting agents.
The active ingredient can also be formulated in microcapsule form optionally with one or more additive carriers.
The compounds of the invention can be used at doses of between 0.01 mg and 1000 mg per day, given in a single daily dose or in several doses throughout the day e.g. twice daily in equal doses. The daily administered dose is advantageously between 5 mg and 500 mg, more advantageously between 10 mg and 200 mg. It may be necessary to use doses outside these ranges which persons skilled in the art will know how to determine.
A further subject of the invention is a pharmaceutical composition comprising: (i) at least one formula (I) compound such as defined above; and (ii) at least one other active ingredient as combination products for simultaneous, separate or time–staggered use.
It is effectively frequent for cancer to be treated with bi- or tri–therapy. It may be useful in particular to associate the molecules of the invention with one or more anticancer compounds first allowing treatment of the cancer and secondly preventing the onset of resistant cancer cells.
In particular, this or these active ingredient(s) may be anticancer agents usually used to treat cancer. These anticancer agents can be selected in particular from among cisplatin and its derivatives such as carboplatin and oxalyplatin; taxanes such as taxol, taxotere, paclitaxel and docetaxel; vinca alkaloids such as vinblastine, vincristine and vinorelbine; purine analogues such as mercaptopurine, thioguanine, pentostatin and 2– chlorodeoxyadenosine; topoisomerase I inhibitors such as camptothecin compounds e.g. irinotecan and topotecan; topoisomerase II inhibitors such as epipodophyllotoxin, podophyllotoxin and the derivatives thereof such as etoposide and teniposide; anti– tumour nucleoside derivatives such as 5–fluorouracil, leucovorin, gemcitabine or capecitabine; alkylating agents such as nitrogen mustards e.g. cyclophosphamide, mechlorethamine, chlorambucil and melphalan, nitroso–ureas such as carmustin, lomustin and streptozocin, alkylsulfonates such as busulfan, ethylenimines and methylmelamines such as thiotepa and hexamethylmelamine, and tetrazines such as dacarbazine; anti–tumour anthracycline derivatives such as daunorubicin, adriamycin, doxil, idarubicin and mitoxantrone; molecules targeting the IGF–I receptor such as picropodophyllin; tetracarcin derivatives such as tetrocarcin A; corticosteroids such as prednisone; antibodies such as trastuzumab (anti–HER2 antibody), rituximab (anti– CD20 antibody), gemtuzamab, cetuximab, pertuzumab and bevacizumab; antagonists or selective modulators of oestrogen receptors such as tamoxifen, fulvestrant, toremifene, droloxifene, faslodex and raloxifene; aromatase inhibitors such as exemestane, anastrozole, letrozole and vorozole; differentiating agents such as retinoids e.g. retinoic acid and vitamin D and agents blocking the metabolism of retinoic acid such as accutane; DNA methyl–transferase inhibitors such as azacytidine and decitabine; antifolates such as permetrexed disodium; antibiotics such as antinomycin D, bleomycin, mitomycin C, actinomycin D, carminomycin, daunomycin and plicamycin; antimetabolites such as chlofarabine, aminopterin, cytosine arabinoside, floxuridine and methotrexate; apoptosis–inducing agents and anti–angiogenic agents of Bcl–2 inhibitors such as YC 137, BH 312, ABT 737, gossypol, HA 14–1, TW 37 and decanoic acid; agents binding to tubulin such as combrestatin, derivatives of colchicine an nocodazole; kinase inhibitors such as flavoperidol, imatinib mesylate, erlotinib an gefitinib; farnesyl transferase inhibitors such as tipifarnib; inhibitors of histone– deacetylases such as sodium butyrate, suberoylanilide hydroxamic acid, depsipeptide, NVP- LAQ824, R306465, JNJ–26481585 and trichostatin A; inhibitors of the ubiquitin–proteasome system such as MLN .41, bortezomib and yondelis; and telomerase inhibitors such as telomestatin.
A further subject of the invention is a pharmaceutical composition such as defined above, for use thereof as drug to treat or prevent cancer in particular, and particularly chemotherapy–resistant cancer.
The present invention also concerns a method for preparing a formula (I) compound such as defined above comprising the following successive steps: a) reacting an amine of following formula (II): (II) where X, R1, R2, R3, R4 and Ar are such as previously defined, R1 not representing a hydrogen atom; with chloroacetyl chloride in the presence of a base to give a formula (I) compound where R1 ≠ H; and b) optionally deprotecting the nitrogen atom carrying the R1 ≠ H group to give a formula (I) compound where R1 = H.
Step a) : The base used for this step is preferably a weak base such as NaHCO .
The amine of formula (II) can be obtained by reaction of a piperazine of following formula (III): (III) where X, R1 and R2 are as previously defined, R1 not representing a hydrogen atom, with an acid of following formula (IV): (IV) where R3, R4 and Ar are as previously defined.
This reaction can be conducted under peptide coupling conditions well known to skilled persons.
Coupling is therefore preferably performed in the presence of a coupling agent such as diisopropylcarbodiimide (DIC), dicyclohexylcarbodiimide (DCC), 1–(3– dimethylaminopropyl)–3–ethylcarbodiimide hydrochloride (EDC), carbonyldiimidazole (CDI), 2–(1H–benzotriazole–1–yl)–1,1,3,3–tetramethyluronium hexafluorophosphate (HBTU), 2–(1H–benzotriazole–1–yl)–1,1,3,3–tetramethyluronium tetrafluoroborate (TBTU) or O–(7–azobenzotriazol–1–yl)–1,1,3,3–tetramethyluronium hexafluorophosphate (HATU), optionally associated with a coupling auxiliary such as N–hydroxy succinimide (NHS), N–hydroxy benzotriazole (HOBt), 3,4–dihydro–3– hydroxy–4–oxo–1,2,3–benzotriazole (HOOBt), l–hydroxy–7–azabenzotriazole (HAt) or N–hydroxysulfosuccinimide (sulfo NHS). Preferably it is HBTU.
A base such as diisopropyl–ethylamine (DIPEA) may also be present.
The piperazine of formula (III) is either obtained commercially or prepared following methods well known to persons skilled in the art.
The acid of formula (IV) can be prepared using the following successive steps: i) reacting a ketoester of following formula (V): where Ar is as previously defined and R represents a (C –C )alkyl group e.g. ethyl, with an aniline of following formula (VI): (VI) where R3 and R4 are as previously defined, to give an imine of following formula (VII): (VII) where R, R3, R4 and Ar are as previously defined; ii) reducing the imine of formula (VII) obtained at the preceding step to give an amine of following formula (VIII) : (VII) where R, R3, R4 and Ar are as previously defined; and iii) saponifying the ester function of the formula (VIII) compound obtained at the preceding step to give the acid of formula (IV).
Step i) can be conducted in the presence of an acid such as paratoluene sulfonic acid (PTSA). The reaction can be performed in a polar solvent such as toluene.
Preferably the reaction medium is heated under reflux using Dean–Stark apparatus to remove the water as and when it is formed during the reaction.
The ketoester (V) used for this reaction is either obtained commercially or prepared via Friedel–Crafts reaction using ethyl oxalyl chloride and the corresponding aromatic in the presence of a Lewis acid such as aluminium chloride AlCl .
The aniline (VI) used for this reaction is either obtained commercially or prepared using methods well known to skilled persons.
Reducing step ii) can be performed in the presence of a reducing agent well known to skilled persons such as sodium cyanoborohydride.
Saponification step iii) can be performed under conditions well known to skilled persons, in particular in the presence of a base such as NaOH, KOH or LiOH.
Step b): This step is preferably conducted with a formula (I) compound in which R1 = CO R6, such as CO tBu, via treatment with an acid such as HCl.
The compound thus obtained can be separated from the reaction medium using methods well known to skilled persons, e.g. by extraction, evaporation of the solvent or by precipitation and filtration.
The compound may also be purified if necessary using techniques well known to skilled persons, e.g. by recrystallization if the compound is crystalline, by distillation, by silica gel chromatography or high performance liquid chromatography (HPLC).
The method of the present invention to prepare compounds of the present invention where R1 ≠ H is shown in the following reaction scheme: The following examples illustrate the invention but are not limiting thereof.
FIGURE: Figure 1 gives the time–plasma concentration curves for a mouse given compound I–43 dia2 administered via intravenous route (IV) at a dose of 10 mg/kg or via oral route (PO) at a dose of 30 mg/kg.
EXAMPLES: I - Synthesis of compounds of the invention In the following section two different nomenclatures were adopted when the two diastereoisomers of a compound of the invention were separated:  a / b each designating the particular structure of a single diastereoisomer;  dia1 / dia2 respectively designating the least polar and most polar diastereoisomer in the chromatographic system used.
The particular stereochemistry of each of the diastereoisomers was not determined.
Therefore, it was impossible to allocate the particular structure a and b to each isolated diastereoisomer dia1 and dia2. This is why a double nomenclature is used.
The following abbreviations are used in this section: TLC Thin Layer Chromatography DCM Dichloromethane DIEA Diisopropylethylamine HBTU 2–(1H–Benzotriazole–1–yl)–1,1,3,3–tetramethyluronium hexafluorophosphate LCMS Liquid Chromatography coupled with Mass Spectrometer NMR Nuclear Magnetic Resonance RT Room temperature Examples I –1a and I –1b : Diastereoisomers of the tert –butyl ester of 4–[2–[(2 – chloro –acetyl) –(4 –phenoxy –phenyl) –amino] –2–(4 –fluoro –phenyl) –acetyl] –(S) –2– isopropyl –piperazine –1–carboxylic acid.
I –1a I –1b Stage 1: Ethyl ester of (4–fluoro–phenyl)–oxo–acetic acid (1): To a solution of aluminium chloride (21.13 g; 160 mmol) in DCM (200 mL) at 0°C under argon, ethyl oxalyl chloride (17.9 mL; 160 mmol) was added dropwise for 10 min. The medium was left under agitation for 10 minutes. Fluorobenzene (14.7 mL; 160 mmol) diluted in 30 mL of DCM, was added dropwise at 0°C. The medium was left under agitation at room temperature for 12 hours. The medium was washed with water and the organic phase dried over MgSO . After evaporation, the recovered oil was purified by flash chromatography on silica gel eluting with cyclohexane–ethyl acetate 90:10.
A yellow oil was recovered (17.08 g; 54 %).
H NMR (300 MHz, CDCl ):  8.04–8.14 (m; 1.8 H); 7.15–7.24 (m; 1.9 H); 4.46 (q; J = 7.2 Hz; 2.0 H); 1.44 (t; J = 7.2 Hz; 3.0 H).
Stage 2: Ethyl ester of (4–fluoro–phenyl)–[(Z)–4–phenoxy–phenylimino]–acetic acid (2): To a solution of 1 (3.92 g; 20 mmol) in toluene (25 mL) were successively added para– toluene sulfonic acid (200 mg; 1 mmol) and 4–phenoxyphenyl–aniline (3.70 g; 20 mmol) in the presence of a molecular sieve. The medium was placed under reflux in DeanStark apparatus for 20 hours. The medium was washed in water and the organic phase dried over MgSO . After evaporation, the recovered oil was purified by flash silica gel chromatography eluting with cyclohexane–ethyl acetate 90:10.
Recovery of a yellow oil (6.27 g; 86 %).
LCMS [M+H] = 364 (C H FNO ) 22 18 3 Stage 3: Ethyl ester of (4–fluoro–phenyl)–(4–phenoxy–phenylamino)–acetic acid (3): To a solution of 2 (6.27 g; 17.26 mmol) in methanol (75 mL) and acetic acid (7.5 mL), sodium cyanoborohydride (1.63 g; 26 mmol) was added. The medium was left under agitation for 1 hour at RT. The methanol was partly evaporated, the solution neutralized with Na CO with the addition of water if necessary. The medium was extracted with DCM and the organic phase dried over MgSO . After evaporation, the recovered oil was purified by flash chromatography on silica gel eluting with cyclohexane–ethyl acetate 95:5.
Recovery of a yellow oil (5.91 g; 93 %).
LCMS [M+H] = 366 (C H FNO ) 22 20 3 H NMR (300 MHz, CDCl ):  7.45–7.54 (m; 1.9 H); 7.23–7.31 (m; 1.9 H); 6.97–7.11 (m; 2.9 H); 6.81–6.94 (m; 3.9 H); 6.54 (d; J = 9.0 Hz; 2.0 H); 5.01 (br; 1.0 H); 4.90 (br; 0.9 H); 4.10–4.32 (m; 2.0 H); 1.23 (t; J = 7.0 Hz; 3.0 H).
Stage 4: (4–fluoro–phenyl)–(4–phenoxy–phenylamino)–acetic acid (4) : To a solution of 3 (8.04 g; 22 mmol) in 130 mL of acetonitrile was added 66 mL of a 1 M solution of LiOH (3 eq). The reaction medium was left under agitation for 2 to 3 hours, completion of the reaction being controlled by TLC (cyclohexane–ethyl acetate 60:40). The acetonitrile was partly evaporated, the medium acidified with a 1 M solution of HCl with the addition of 200 mL of water. The medium was filtered and the recovered solid washed three times in water and dried in vacuo in a drying oven in the presence of P O .
Recovery of a white powder (7.17 g; 97 %).
LCMS [M+H] = 338 (C H FNO ) 16 3 H NMR (300 MHz, DMSO):  7.55 (dd; J = 8.5 Hz; J = 5.6 Hz; 2.1 H); 7.28 (t; J = 7.9 Hz; 2.1 H); 7.20 (t; J = 8.5 Hz; 2.1 H); 6.99 (t; J = 7.0 Hz; 1.1 H); 6.74–6.90 (m; 4.0 H; 6.62–6.70 (m; 2.0 H); 5.10 (s 1.0 H).
Stage 5: Tert–butyl ester of 4–[2–(4–fluoro–phenyl)–2–(4–phenoxy–phenylamino)– acetyl]–(S)–2–isopropyl–piperazine–1–carboxylic acid (5): To a solution of 4 (7.17 g; 21.2 mmol) in DCM (150 mL) in the presence of one equivalent of DIEA (3.7 mL) was added a solution of Boc–alpha–(S)–isopropyl– piperazine hydrochloride (5.63 g; 21.26 mmol) in the presence of 1 eq of DIEA (3.7 mL) in 50 mL of DCM, followed by HBTU (8.06 g; 21.2 mmol). The medium was left under agitation for 12 hours. The medium was washed with water and the organic phase dried over MgSO . After evaporation the recovered oil was purified by flash chromatography on silica gel eluting with cyclohexane–ethyl acetate 80:20.
Recovery of a white foam (11.90 g; 100 %).
LCMS [M+H] = 548 (C H FN O ) 32 38 3 4 Stage 6 Tert–butyl ester of 4–[2–[(2–chloro–acetyl)–(4–phenoxy–phenyl)–amino]–2– (4–fluoro–phenyl)–acetyl]–(S)–2–isopropyl–piperazine–1–carboxylic acid To a solution of 5 (11.86 g; 22.66 mmol) in 250 mL of DCM in the presence of NaHCO (7.30 g; 87.0 mmol) the chloroacetyl chloride (3.45 mL; 43.3 mmol) was added. The medium was left under agitation for 12 hours. The medium was washed with water and the organic phase dried over MgSO . After evaporation the recovered oil was purified by flash chromatography on silica gel with cyclohexane–ethyl acetate gradient of 95–5’ to 50–50 to obtain two diastereoisomers separately in the form of colourless foam: Least polar diastereoisomer (I –1 dia1) (3.80 g; 28 %) LCMS [M+H] = 625 (C H ClFN O ) 34 39 3 5 H NMR (300 MHz, CDCl ):  7.92–8.01 (m; 1.0 H); 7.30–7.40 (m; 2.0 H); 7.10–7.18 (m; 1.1 H); 7.01–7.09 (m; 1.1 H); 6.84–7.00 (m; 6.1 H); 6.55–6.65 (m; 1.1 H); 6.32– 6.48 (m; 2.1 H); 4.72 (d; J = 13.5 Hz; 0.5 H) 4.63 (d; J = 13.5 Hz; 0.4 H); 3.52–3.96 (m; 4.0 H); 3.10–3.27 (m; 0.5 H); 2.85–3.07 (m; 0.4 H); 2.23–2.85 (m; 0.5 H + 0.7 H + 0.4 H); 1.87–2.14 (m; 0.6 H); 1.42 (s; 8.7 H); 1.17 (d; J = 6.6 Hz; 1.0 H); 1.03 (d; J = 6.6 Hz; 1.3 H); 0.88 (d; J = 6.6 Hz; 1.1 H); 0.69 (d; J = 6.6 Hz; 1.3 H).
Most polar diastereoisomer (I –1 dia2) (3.29 g; 24 %) LCMS [M+H] = 625 (C H ClFN O ) 34 39 3 5 H NMR (300 MHz, CD Cl ):  7.85–8.00 (m; 1.0 H); 7.36 (t; J = 7.6 Hz; 2.1 H); 6.99– 7.21 (m; 3.2 H); 6.81–6.98 (m; 5.2 H); 6.63 (br; 1.1 H); 6.35–65.5 (m; 2.1 H); 4.65 (d; J = 13.1 Hz; 0.6 H) 4.42 (d; J = 13.1 Hz; 0.3 H); 3.50–4.16 (m; 4.9 H); 3.00–3.43 (m; 0.9 H); 2.57–2.90 (m; 1.9 H); 1.98–2.18 (m; 0.7 H); 1.36–1.49 (m; 10.0 H); 1.73 (d; J = 6.5 Hz; 2.1 H); 0.90 (d; J = 6.5 Hz; 2.1 H); 0.63 (d; J = 6.5 Hz; 1.0 H); 0.20 (d; J = 6.5 Hz; 0.9 H).
Examples I –2a and I –2b: Diastereoisomers of the tert –butyl ester of 4–[ –2–[(2 – chloro –acetyl) –(4 –phenoxy –phenyl) –amino] –2–(4 –fluoro –phenyl) –acetyl] –(R) –2– isopropyl –piperazine –1–carboxylic acid.
I –2a I –2b Stage 1: Tert–butyl ester of 4–[2–(4–fluoro–phenyl)–2–(4–phenoxy–phenylamino)– acetyl]–(R)–2–isopropyl–piperazine–1–carboxylic acid (6): To a solution of (4–fluoro–phenyl)–(4–phenoxy–phenylamino)–acetic acid 4 (253 mg; 0.75 mmol) in DCM (10 mL) in the presence of one equivalent of DIEA (131 µL) was added a solution of Boc–alpha–(R)–isopropyl–piperazine (171 mg; 0.75 mmol) in the presence of 1 eq of DIEA (131 µL) in 5 mL of DCM, followed by HBTU (285 mg; 0.75 mmol). The medium was left under agitation for 12 hours. The medium was washed with water and the organic phase dried over MgSO . After evaporation the recovered oil was purified by flash chromatography on silica gel eluting with cyclohexane–ethyl acetate 80:20.
Recovery of a white foam (369 mg; 90 %).
LCMS [M+H] = 548 (C H FN O ) 32 38 3 4 Stage 2: Ter–butyl ester of 4–[–2–[(2–chloro–acetyl)–(4–phenoxy–phenyl)–amino]–2– (4–fluoro–phenyl)–acetyl]–(R)–2–isopropyl–piperazine–1–carboxylic acid: Both diastereoisomers were prepared from 6 following the same operating mode as for the preparation in Example 1 (stage 6).
Separate recovery of the two diastereoisomers in the form of a colourless foam.
Least polar diastereoisomer (I –2 dia1) (195 mg; 42 %) LCMS [M+H] = 625 (C H ClFN O ) 34 39 3 5 H NMR (300 MHz, CD Cl ):  7.85–8.00 (m; 1.0 H); 7.36 (t; J = 7.6 Hz; 2.0 H); 6.99– 7.21 (m; 3.1 H); 6.81–6.98 (m; 4.9 H); 6.63 (br; 1.0 H); 6.35–6.55 (m; 2.1 H); 4.65 (d; J = 13.0 Hz; 0.7 H) 4.42 (d; J = 13.0 Hz; 0.2 H); 3.50–4.16 (m; 4.9 H); 3.00–3.43 (m.; 0.8 H); 2.57–3.90 (m; 2.0 H); 1.98–2.18 (m; 0.8 H); 1.36–1.49 (m; 10.5 H); 1.73 (d; J = 6.5 Hz; 2.0 H); 0.90 (d; J = 6.5 Hz; 2.0 H); 0.63 (d; J = 6.5 Hz; 0.8 H);0.20 (d; J = 6.5 Hz; 0.8 H).
Most polar diastereoisomer (I –2 dia2) (122 mg; 26 %) LCMS [M+H] = 625 (C H ClFN O ) 34 39 3 5 H NMR (300 MHz, CDCl ):  7.92–8.01 (m; 1.0 H); 7.30–7.40 (m; 2.0 H); 7.10–7.18 (m; 1.0 H); 7.01–7.09 (m; 1.1 H); 6.84–7.00 (m; 6.0 H); 6.55–6.65 (m; 1.1 H); 6.32– 6.48 (m; 2.1 H); 4.72 (d; J = 13.5 Hz; 0.4 H) 4.63 (d; J = 13.5 Hz; 0.3 H); 3.52–3.96 (m; 4.7 H); 3.10–3.27 (m; 0.7 H); 2.85–3.07 (m; 0.5 H); 2.23–2.85 (m; 0.5 H + 0.6 H + 0.8 H); 1.87–2.14 (m; 0.9 H); 1.42 (s; 8.6 H); 1.17 (d; J = 6.6 Hz; 1.4 H); 1.03 (d; J = 6.6 Hz; 2.1 H); 0.88 (d; J = 6.6 Hz; 2.1 H); 0.69 (d; J = 6.6 Hz; 1.6 H).
Examples I –3a and I –3b : Hydrochloride of the diastereoisomers of 2–chloro –N – [1–(4 –fluoro –phenyl) –2 –((S) –3–isopropyl –piperazin –1–yl) –2–oxo –ethyl]–N –(4– phenoxy –phenyl) –acetamide.
I –3a I –3b To a solution of the I–1dia2 diastereoisomer (3.24 g; 5.2 mmol) in 50 mL of DCM the HCl gas was added by bubbling. The reaction medium was left under agitation for 12 hours at RT. The DCM was evaporated and the residual oil precipitated in ether.
The example I –3 dia2 was obtained in the form of a white power after filtration: (2.53 g; 87 %).
LCMS [M+H] = 524 (C H Cl FN O ) 29 32 2 3 3 H NMR (300 MHz, DMSO):  8.60–9.35 (m; 1.6 H); 7.77 (br; 0.8 H); 7.30–7.40 (m; 2.0 H); 7.00–7.23 (m; 5.1 H); 6.80–7.00 (m; 3.1 H); 6.54–6.76 (m; 3.0 H); 4.56 (d; J = 13.3 Hz; 1.0 H); 3.88–4.16 (m; 3.0 H); 3.00–3.30 (m; 3.1 H); 2.65–2.96 (m; 1.7 H); 1.52–2.00 (m; 1.6 H); 1.00 (t; J = 7.4 Hz; 2.4 H); 0.59 (dd; J = 15.6 Hz; J = 6.7 Hz; 3.5 Applying the same procedure starting from example I –1dia1, example I –3 dia1 was obtained in the form of a white powder after filtration: (63 mg).
LCMS [M+H] = 524 (C H Cl FN O ) 29 32 2 3 3 H NMR (300 MHz, DMSO):  8.65–9.6 (br; 1.2 H); 7.77 (br.; 0.8 H); 7.30–7.40 (m; 2.0 H); 6.36–7.25 (m; 11.7 H); 4.40–4.60 (m; 0.8 H); 4.00–4.12 (m; 2.0 H); 3.76–3.98 (m; 0.9 H); 3.37–3.63 (m; 0.9 H); 2.65–3.30 (m; 4.0 H); 1.77–2.06 (m; 1.6 H); 0.89– 1.06 (m; 6.1 H).
Examples I –4a and I –4b : Hydrochloride of the diastereoismers of 2–Chloro –N – [1–(4 –fluoro –phenyl) –2 –((R) –3–isopropyl –piperazin –1–yl) –2–oxo –ethyl]–N –(4– phenoxy –phenyl) –acetamide.
I –4a I –4b The same protocol was followed as for Examples I–3a and I–3b starting from each of the diastereoisomers I–2a and I–2b.
Starting from the first diastereoisomer of Example I –2 (I –4 dia1): Recovery of a white powder after filtration: (95 mg) LCMS [M+H] = 524 (C H Cl FN O ) 29 32 2 3 3 H NMR (300 MHz, DMSO):  8.65–9.6 (br; 1.3 H).; 7.77 (br; 0.4 H); 7.30–7.40 (m; 2.0 H); 6.36–7.25 (m; 11.8 H); 4.40–4.60 (m; 0.9 H); 4.00–4.12 (m; 2.0 H); 3.76–3.98 (m; 1.0 H); 3.37–3.63 (m; 1.0 H); 2.65–3.30 (m; 3.8 H); 1.77–2.06 (m; 1.8 H); 0.89– 1.06 (m; 6.1 H).
Starting from the second diastereoisomer of Example I –2 (I –4 dia2): Recovery of a white powder after filtration: (95 mg) LCMS [M+H] = 524 (C H Cl FN O ) 29 32 2 3 3 H NMR (300 MHz, DMSO):  8.60–9.35 (m; 1.7 H); 7.77 (br; 0.9 H); 7.30–7.40 (m; 2.0 H); 7.00–7.23 (m; 5.0 H); 6.80–7.00 (m; 3.0 H); 6.54–6.76 (m; 2.9 H); 4.56 (d; J = 13.3 Hz; 1.0 H); 3.88–4.16 (m; 3.0 H); 3.00–3.30 (m; 3.1 H); 2.65–2.96 (m; 1.7 H); 1.52–2.06 (m; 1.9 H); 1.00 (t; J = 7.2 Hz; 2.4 H); 0.59 (dd; J = 15.4 Hz; J = 6.7 Hz; 3.3 Examples I –5a and I –5b: Diastereoisomers of the tert –butyl ester of 4–[ –2–[(2 – chloro –acetyl) –(2 –methyl –4–phenoxy –phenyl)–amino] –2–(4 –fluoro –phenyl) – acetyl] –(S) –2–isopropyl –piperazine –1–carboxylic acid.
I –5a I –5b Stage 1: Tert–butyl ester of 4–[2–(4–fluoro–phenyl)–2–(2–methyl–4–phenoxy– phenylamino)–acetyl]–(S)–2–isopropyl–piperazine–1–carboxylic acid (8): To a solution of (4–fluoro–phenyl)–(2–methyl–4–phenoxy–phenylamino)–acetic acid (9.29 g; 26.4 mmol) in DCM (150 mL) in the presence of one equivalent of DIEA (4.6 mL) was added a solution of Boc–alpha–(S)–isopropyl–piperazine hydrochloride (7.00 g; 26.4 mmol) in the presence of 1 eq of DIEA (4.6 mL) in 50 mL of DCM, followed by HBTU (10.00 g; 26.4 mmol). The medium was left under agitation for 12 hours. The medium was washed with water and the organic phase dried over MgSO .
After evaporation the recovered oil was purified by flash chromatography on silica gel eluting with cyclohexane–ethyl acetate 80:20.
Recovery of a white foam (14.13 g; 95 %).
LCMS [M+H] = 562 (C H FN O ) 33 40 3 4 Stage 2: Tert–butyl ester of 4–[–2–[(2–chloro–acetyl)–(2–methyl–4–phenoxy–phenyl)– amino]–2–(4–fluoro–phenyl)–acetyl]–(S)–2–isopropyl–piperazine–1–carboxylic acid To a solution of 8 (14.13 g; 25.1 mmol) in 250 mL of DCM in the presence of NaHCO (8.40 g; 100.0 mmol) was added chloroacetyl chloride (4.00 mL; 50.0 mmol). The medium was left under agitation for 12 hours. The medium was washed with water and the organic phase dried over MgSO . After evaporation the recovered oil was purified by flash chromatography on silica gel eluting with cyclohexane–ethyl acetate 90:10 gradually up to 50:50.
Recovery of both diastereoisomers in the form of a colourless foam: Least polar diastereoisomer (I –5 dia1) (3.83 g; 24 %) LCMS [M+H] = 639 (C H ClFN O ) 41 3 5 H NMR (300 MHz, CD Cl ):  7.94–8.57 (m; 1.0 H); 7.35 (t; J = 7.9 Hz; 2.0 H); 7.07– 7.27 (m; 3.0 H); 6.74–6.95 (m; 5.0 H); 6.58 (br d; J = 2.6 Hz; 1.1 H); 6.51 (br s; 0.2 H); 6.41 (s; 0.8 H); 6.31 (br s; 0.3 H); 4.62 (d; J = 13.5 Hz; 0.7 H) 4.39 (d; J = 13.5 Hz; 0.3 H); 3.53–4.05 (m; 4.8 H); 3.04–3.46 (m; 0.8 H); 2.41–2.96 (m; 2.1 H); 2.04–2.23 (m; 0.8 H); 1.82–1.95 (m; 2.2 H); 1.43 (br s; 10.1 H); 1.07 (d; J = 6.5 Hz; 2.1 H); 0.90 (d; J = 6.5 Hz; 2.3 H); 0.63 (d; J = 6.5 Hz; 1.0 H); 0.29 (d; J = 6.5 Hz; 0.8 H).
Most polar diastereoisomer (I –5 dia2) (4.40 g; 27 %) LCMS [M+H] = 639 (C H ClFN O ) 41 3 5 H NMR (300 MHz, CDCl ):  8.00–8.10 (m; 1.0 H); 7.30–7.40 (m; 2.1 H); 6.98–7.18 (m; 3.2 H); 6.73–6.90 (m; 5.3 H); 6.52–6.58 (m; 1.0 H); 6.34–6.39 (m; 1.0 H); 4.71 (d; J = 13.5 Hz; 0.7 H); 4.49 (d; J = 13.5 Hz; 0.4 H); 3.50–4.00 (m; 4.7 H); 3.10–3.30 (m; 0.7 H); 2.86–3.07 (m; 0.4 H); 2.54–2.85 (m; 1.5 H); 2.30–2.47 (m; 0.4 H); 1.80–1.87 (m; 2.8 H); 1.54–1.60 (m; 2.5 H); 1.42 (br s; 8.8 H); 1.19 (d; J = 6.6 Hz; 1.1 H); 1.00 (d; J = 6.6 Hz; 1.5 H); 0.88 (d; J = 6.6 Hz; 1.2 H); 0.64 (d; J = 6.6 Hz; 1.5 H).
Examples I –6a and I –6b : Diastereosiomers of the tert –butyl ester of 4–[ –2–[(2– chloro –acetyl) –(4 –phenoxy –phenyl) –amino] –2–(4 –fluoro –phenyl) –acetyl] –(R) –2– isopropyl –piperazine –1–carboxylic acid I –6a I –6b These two diastereoisomers were prepared in the same manner as in the preceding example in the form of colourless foam: Least polar diastereoisomer (I –6 dia1) (97 m; 30 %) LCMS [M+H] = 639 (C H ClFN O ) 41 3 5 H NMR (300 MHz, CD Cl ):  7.94–8.57 (m; 0.9 H); 7.35 (t; J = 7.9 Hz; 1.9 H); 7.05– 7.25 (m; 3.1 H); 6.72–6.93 (m; 5.0 H); 6.58 (br d; J = 2.6 Hz; 1.1 H); 6.41 (s; 0.8 H); 6.31 (br s; 0.3 H); 4.63 (d; J = 13.5 Hz; 0.8 H) 4.40 (d; J = 13.5 Hz; 0.3 H); 3.51–4.06 (m; 4.8 H); 3.03–3.45 (m; 1.0 H); 2.41–2.96 (m; 1.6 H); 2.02–2.21 (m; 0.8 H); 1.82– 1.95 (m; 2.1 H); 1.43 (br s; 10.1 H); 1.07 (d; J = 6.5 Hz; 2.1 H); 0.90 (d; J = 6.5 Hz; 2.3 H); 0.63 (d; J = 6.5 Hz; 1.0 H); 0.29 (d; J = 6.5 Hz; 0.8 H).
Most polar diastereoisomer (I –6 dia2) (90 mg; 28 %) LCMS [M+H] = 639 (C H ClFN O ) 41 3 5 H NMR (300 MHz, CDCl ):  8.00–8.10 (m; 1.0 H); 7.30–7.40 (m; 2.1 H); 6.98–7.18 (m; 3.1 H); 6.73–6.90 (m; 5.1 H); 6.52–6.58 (m; 1.0 H); 6.34–6.39 (m; 1.0 H); 4.70 (d; J = 13.5 Hz; 0.7 H); 4.49 (d; J = 13.5 Hz; 0.4 H); 3.50–4.00 (m; 4.8 H); 3.10–3.30 (m; 0.7 H); 2.86–3.07 (m; 0.4 H); 2.54–2.85 (m; 1.5 H); 2.30–2.47 (m; 0.4 H); 1.80–1.87 (m; 2.8 H); 1.54–1.60 (m; 2.6 H); 1.42 (br s; 8.6 H); 1.20 (d; J = 6.6 Hz; 1.1 H); 1.01 (d; J = 6.6 Hz; 1.5 H); 0.89 (d; J = 6.6 Hz; 1.2 H); 0.64 (d; J = 6.6 Hz; 1.5 H).
Examples I –7a and I –7b: Hydrochloride of the diastereoisomers of 2–chloro –N –[ – 1–(4–fluoro –phenyl)–2–((S) –3–isopropyl –piperazin –1–yl) –2–oxo–ethyl] –N –(2– methyl –4–phenoxy –phenyl)–acetamide I –7a I –7b To a solution of one of the diastereoisomers I–5a and I–5b in 50 mL of DCM the HCl gas was added by bubbling. The reaction medium was left under agitation for 12 hours at RT. The DCM was evaporated and the residual oil precipitated in ethyl ether.
Starting from the first diastereoisomer of Example I –5 (I –7 dia1): Recovery of a white powder after filtration: (26 mg) LCMS [M+H] = 538 (C H Cl FN O ) 34 2 3 3 H NMR (300 MHz, DMSO):  8.79–9.33 (m; 1.3 H); 7.83 (t; J = 9.0 Hz; 1.0 H); 7.24– 7.40 (m; 4.0 H); 6.97–7.15 (m; 3.1 H); 6.73–6.89 (m; 3.2 H); 6.64 (d; J = 2.7 Hz; 0.9 H); 6.51–6.59 (m; 1.0 H); 4.40–4.55 (br m; 1.1 H); 3.86–4.09 (m; 3.6 H); 3.45–3.60 (m; 0.7 H); 2.78–3.05 (m; 2.8 H); 1.79–2.00 (m; 4.5 H); 1.61–1.77 (m; 0.7 H); 0.97 (d; J = 6.7 Hz; 6.0 H).
Starting from the second diastereoisomer of Example I –5 (I –7 dia2): Recovery of a white powder after filtration: (2.62 g) LCMS [M+H] = 538 (C H Cl FN O ) 34 2 3 3 H NMR (300 MHz, DMSO) :  8.78–9.51 (m; 1.9 H); 7.82 (t; J = 8.9 Hz; 0.9 H); 7.20– 7.41 (m; 4.0 H); 6.97–7.16 (m; 3.1 H); 6.71–6.90 (m; 3.1 H); 6.61–6.70 (m; 1.9 H); 4.46–4.60 (br m; 1.0 H); 3.85–4.15 (m; 3.1 H); 3.00–3.30 (m; 3.0 H); 2.57–2.96 (m; 1.8 H); 1.43–1.98 (m; 4.3 H); 1.00 (dd; J = 8.8 Hz; J = 7.0 Hz; 2.7 H); 0.71 (d; J = 6.8 Hz; 1.6 H); 0.65 (d; J = 6.8 Hz; 1.5 H).
Example I –8: Hydrochloride of 2–chloro –N –[ –1–(4–fluoro –phenyl) –2–((R) –3– isopropyl –piperazin –1–yl) –2–oxo–ethyl] –N –(2 –methyl –4–phenoxy –phenyl)– acetamide I –8a I –8b The same protocol as in the preceding example was followed starting from each of the diastereoisomers of Example I–6.
Starting from the first diastereoisomer of Example I –6 (I –8 dia1) : Recovery of a white powder after filtration: (34 mg; 56 %) LCMS [M+H] = 538 (C H Cl FN O ) 34 2 3 3 H NMR (300 MHz, DMSO):  8.79–9.33 (m; 1.3 H); 7.83 (t; J = 9.0 Hz; 0.9 H); 7.24– 7.40 (m; 4.0 H); 6.97–7.15 (m; 3.1 H); 6.73–6.89 (m; 3.1 H); 6.64 (d; J = 2.7 Hz; 1.0 H); 6.51–6.59 (m; 1.0 H); 4.41–4.56 (br m; 1.1 H); 3.86–4.09 (m; 3.4 H); 3.45–3.60 (m; 0.7 H); 2.78–3.05 (m; 2.8 H); 1.79–2.00 (m; 4.4 H); 1.61–1.77 (m; 0.8 H); 0.97 (d; J = 6.7 Hz; 6.0 H).
Starting from the second diastereoisomer of Example I –6 (I –8 dia2): Recovery of a white powder after filtration: (30 mg; 54 %) LCMS [M+H] = 538 (C H Cl FN O ) 34 2 3 3 H NMR (300 MHz, DMSO):  8.78–9.51 (m; 1.5 H); 7.82 (t; J = 8.9 Hz; 1.0 H); 7.20– 7.41 (m; 4.0 H); 6.97–7.16 (m; 3.1 H); 6.71–6.90 (m; 3.2 H); 6.61–6.70 (m; 1.9 H); 4.46–4.60 (br m; 1.0 H); 3.85–4.15 (m; 3.1 H); 3.00–3.30 (m; 2.9 H); 2.57–2.96 (m; 1.8 H); 1.43–1.98 (m; 4.3 H); 1.00 (dd; J = 8.8 Hz; J = 7.0 Hz; 2.7 H); 0.71 (d; J = 6.8 Hz; 1.6 H); 0.65 (d; J = 6.8 Hz; 1.5 H).
Using the same operating modes and the same separation modes by silica chromatography as above, the following examples were prepared from diversely substituted anilines and piperazines. They were isolated either in the form of a mixture of two or four diastereoisomers (one example number for the same chemical structure) or in the form of separate diastereoisomers. In this latter case the nomenclature a / b was used to designate each of the diastereoisomers.
I–10 I–11 I–12 I–13 I–14 I–15a I–15b I–16a I–16b I–17a I–17b I–18a I–18b I–19a I–19b I–20a I–20b I–21a I–21b I–22a I–22b I–24 I–23 I–25a I–25b I–26a I–26b I–27a I–27b The following examples were obtained by replacing the ethyl ester of (4–fluoro– phenyl)–oxo–acetic acid by ethyl thiophene–2–glyoxylate and following the same operating modes as previously.
I–29 I–28 I–31 I–30 I–32 I–33 I–34 I–35 I–36 I–37 I–38 I–39 I–40a I–40b I–41a I–41b I–42a I–42b I–43a I–43b I–44 I–45 I–46a I–46b I–47a I–47b I–49 I–48 I–50a I–50b I–51a I–51b I–52a I–52b I–53a I–53b I–54a I–54b I–55a I–55b I–56b I–56a HN O N Cl N Cl I–58 I–57 Cl N Cl I–60 I–59 N Cl I–61 I–62 I–63 II - Pharmacological study of the compounds of the present invention 1) Cytotoxicity tests The effects of the compounds of the invention on the proliferation of cancer cells were studied on different human cancer cell lines of different tissue origin (MCF–7: breast cancer, MCF–7/adr adriamycin–resistant breast cancer, HL–60: acute promyelocytic leukaemia, HL–60/R10: doxorubicin–resistant acute promyelocytic leukaemia, HT29 : colon adenocarcinoma, Mia Paca2: pancreatic tumour, Panc–1: pancreatic exocrine tumour, SK–OV–3: cisplatin- and adriamycin resistant ovarian cancer). The cancer cells used for this study were incubated at 37°C in the presence of one of the compounds of the invention added to the culture medium at different concentrations.
The cancer cell lines were obtained from ATCC (American Type Culture Collection) for MCF–7, from Hôpital de la Pitié Salpetrière for MCF–7/adr and from Oncodesign (Dijon, France) for HL–60, HL–60/R10, HT29, MiaPaCa2, Panc–1 and SK–OV–3.
They were cultured in RPMI 1640 medium containing 2 mM L–Glutamine supplemented with 10 % foetal calf serum (Lonza; Verviers, Belgium). All the cell lines were held in culture at 37°C in a humid atmosphere containing 5 % CO . Cell proliferation was assessed using the ViaLight® Plus Assay Kit (Lonza; Verviers, Belgium) following the manufacturer’s instructions. The cells were seeded in 96–well culture plates compatible with luminescence read–off (white plates with transparent bottom) in a proportion of 5 000 to 10 000 cells per well in 100 µl of culture medium.
After a pre–incubation time of 24 hours at 37°C, the compounds of the invention dissolved in dimethylsulfoxide (DMSO) were individually added to each well in a proportion of 0.5 µl per well. After 72 hours’ incubation at 37°C in a humid atmosphere containing 5 % CO , 50 µl of lysis buffer were added to each well and 15 minutes later 100 µl of ATP measuring agent were added. The plates were read under a luminometer to evaluate cell viability. The data obtained was processed by computer to obtain the EC value i.e. the concentration value of each of the compounds which induces 50 % cell viability compared with a control value (0.5 % DMSO alone).
The results obtained are given in following Tables 1 and 2.
Table 1: Results obtained with cell lines HL–60, HL60/R10, MCF–7 and MCF–7/adr (EC expressed in nM) EC (nM) Example N° HL –60 HL60/R10 MCF –7 MCF –7 /adr I–1 dia1 1799 –219 –2500 338 I–1 dia2 824 23 1304 39 I–2 dia1 728 40 2091 49 I–2 dia2 2061 472 2500 645 I–3 dia1 1311 15 927 55 I–3 dia2 504 2 301 9 I–4 dia1 648 4 315 13 I–4 dia2 1321 62 863 166 I–7 dia1 2500 604 2500 618 I–7 dia2 1938 26 1954 98 I–8 dia1 2029 54 1740 148 I–8 dia2 1737 312 2410 477 I–9 771 99 2500 108 I–10 641 131 2500 151 EC (nM) Example N° HL –60 HL60/R10 MCF –7 MCF –7 /adr I–11 939 68 2500 102 I–12 2321 82 1787 421 I–13 1989 88 2500 532 I–14 1848 95 2500 232 I–16 dia1 1478 450 2500 527 I–16 dia2 1913 317 2500 443 I–17 dia1 2313 353 2500 898 I–17 dia2 1604 49 1994 152 I–18 dia1 1596 140 2500 485 I–18 dia2 352 44 591 152 I–19 dia1 516 97 2500 128 I–19 dia2 453 24 2500 35 I–20 dia1 196 80 1571 73 I–20 dia2 1478 139 2500 165 I–21 dia1 2447 13 1950 93 I–21 dia2 630 8 869 10 I–22 dia1 1995 17 569 131 I–22 dia2 1149 18 430 34 I–23 559 12 nd nd I–24 626 15 nd nd I–25 dia1 1122 43 nd nd I–25 dia2 819 103 nd nd I–26 dia1 2447 13 1950 93 I–26 dia2 630 8 869 10 I–27 dia1 1995 17 569 131 I–27 dia2 1149 18 430 34 I–28 623 206 nd nd I–29 939 38 1032 54 I–30 202 10 1006 44 I–31 766 64 2500 89 I–32 175 78 2500 58 I–33 2500 157 2500 394 I–34 1123 30 1775 100 I–35 300 249 632 863 I–36 372 28 2500 24 I–37 967 154 2500 156 I–38 2500 189 2500 851 I–39 1814 9 776 52 EC (nM) Example N° HL –60 HL60/R10 MCF –7 MCF –7 /adr I–40 dia1 2129 248 2500 371 I–40 dia2 2500 487 2500 827 I–43 dia2 1886 20 1424 126 I–44 215 7 nd nd I–45 2136 17 nd nd I–46 dia1 2500 318 2500 544 I–46 dia2 449 10 1184 58 I–47 dia1 936 54 nd nd I–47 dia2 849 8 nd nd I–48 1991 10 nd nd I–49 1166 321 nd nd I–50 dia1 2102 259 nd Nd I–50 dia2 841 8 nd nd I–51 dia1 145 96 nd nd I–51 dia2 3 1 nd nd I–52 dia1 2500 194 nd nd I–52 dia2 223 24 nd nd I–53 dia1 1981 645 2064 462 I–53 dia2 547 305 nd nd I–58 1058 11 870 88 I–59 956 16 745 106 nd = non–determined Table 2: Results obtained with other cell lines (EC expressed in nM) Example N° EC (nM) HT29 Mia PaCa2 Panc –1 SK –OV –3 I–3 dia2 1 2 1 1 I–7 dia2 8 13 5 7 I–43 dia2 18 7 9 I–46 dia2 6 10 4 6 I–50 dia2 9 2200 9 11 Following Tables 3 and 4 illustrate the gain in cytotoxic activity on the resistant HL60/R10 line, obtained with the compounds having a piperazine substituted at alpha position of nitrogen 4 of the piperazine compared with a non–substituted piperazine and/or substituted at another position of the piperazine. The best cytotoxic activity is obtained with the absolute configuration (S) of this substitution.
Table 3: Results obtained with different substitutions of piperazine EC (nM) Example HL –60 HL –60/R10 1627 226 Comparative example 2321 82 I–12 EC (nM) Example HL –60 HL –60/R10 1989 88 I–14 1848 95 I–13 Table 4: Results obtained with different substitutions of piperazine EC (nM) Example HL –60 HL –60/R10 579 21 Comparative example 1058 11 I–58 662 65 Comparative example EC (nM) Example HL –60 HL –60/R10 966 16 I–59 311 38 Comparative example 2) Determination of aqueous solubility Aqueous solubility is a major physicochemical parameter for improving the ADME properties (Absorption, Distribution, Metabolism and Excretion) in a molecule (Drug– like properties: concepts, structure design and methods, Edward Harvel Kerns, Li Di; Academic Press, 2008).
The aqueous solubility of each compound was measured at pH 7.4. It was measured using HPLC on the supernatants obtained by centrifugation after saturation of the media with excess compound after an agitation time of 24 h and at a temperature of 20°C. The preparation and treatment of the samples was robotized.
Table 5 shows the gain in aqueous solubility obtained for a compound of the invention I–58 compared with a non–substituted piperazine or substituted at another position.
Table 5: Aqueous solubility obtained with different piperazine substitutions.
Solubility Example (µg/mL) Comparative example I–58 Comparative example Solubility Example (µg/mL) I–59 I–62 3) Pharmacokinetic parameters in mice The pharmacokinetic behaviour of compounds is a pre–requisite for reasonable use thereof in in vivo experimentation. The compounds were given in DMSO solution via intravenous route (IV) or oral route (PO) to balb/c mice. Blood samples were taken at times ranging from 5 minutes to 6 hours, the plasmas were collected and the concentration of the compounds in each sample was assayed by LC/MS/MS. The data obtained allowed the plotting of time–concentration curves and determination of fundamental parameters such as plasma half–life of the compound (T½), area under curve at a given time (AUCt) and the maximum concentration obtained (Cmax). Table 6 shows the gain contributed by piperazine substitution on the pharmacokinetic parameters of the compounds administered via intravenous route at a dose of 10 mg/kg.
Figure 1 gives the time - plasma concentration curves in a mouse after administration of I–43 dia2 via IV and PO route. Compound I–43 dia2 therefore shows good bioavailability in a mouse, in particular via oral route.
Table 6: Pharmacokinetic parameters obtained with various piperazine substitutions.
Cmax AUCt AUCinf Example t (h) (ng/mL) (ng/mL*h) (ng/mL*h) 1469.50 1278.25 1321.68 1.38 Comparative example 3797.6 3287.08 3837.61 2.64 I–63 1424.37 1677.94 2057.38 2.47 I–43 dia 2

Claims (17)

1. A compound of following general formula (I): and the pharmaceutically acceptable salts thereof, its stereoisomers or mixtures of stereoisomers in any proportion, in particular an enantiomer mixture, and particularly a racemic mixture, where: – X is a (C –C )alkyl, phenyl, benzyl, C(O)OR5 or C(O)NHR5 group; – R1 is a hydrogen atom or a C(O)H, C(O)R6 or C(O)OR6 group; – R2 is a hydrogen atom or a (C –C )alkyl group; or R2 together with R1 or X forms a saturated hydrocarbon chain to form a 5- or 6–membered ring, in particular a 5–membered ring; – R3 is a hydrogen or halogen atom or a (C –C )alkyl or (C –C )alkoxy group; 1 6 1 6 – R4 is a hydrogen or halogen atom, CN, NO , or a (C –C )alkyl, (C –C )alkoxy, 2 1 6 1 6 aryloxy, benzyloxy or heteroaryloxy group, the said group optionally being substituted by one or more halogen atoms; – Ar is a thiophenyl group or a phenyl group optionally substituted by one or more halogen atoms; and - R5 and R6 independently of one another are a (C –C )alkyl, aryl–(C –C )alkyl 1 6 1 6 or aryl group, the said group optionally being substituted by one or more halogen atoms.
2. The compound according to claim 1, characterized in that it meets the following formula (I–bis): (I –bis).
3. The compound according to any one of claims 1 and 2, characterized in that Ar is a thiophenyl group or a phenyl group substituted by one or more fluorine atoms such as 4–fluoro–phenyl.
4. The compound according to any one of claims 1 to 3, characterized in that R4 is a hydrogen or halogen atom or a (C –C )alkyl, (C –C )alkoxy or aryloxy group, 1 6 1 6 the said group optionally being substituted by one or more halogen atoms, fluorine in particular.
5. The compound according to any one of claims 1 to 4, characterized in that R3 is a hydrogen atom or a (C –C )alkyl group e.g. methyl.
6. The compound according to any one of claims 1 to 5, characterized in that X is a (C –C )alkyl, phenyl or benzyl group; R1 and R2 are a hydrogen atom; R3 is a hydrogen atom or a (C –C )alkyl group, in particular (C –C )alkyl; R4 is a halogen 1 6 1 3 atom or a (C –C )alkyl, (C –C )alkoxy, aryloxy or benzyloxy group, the said group 1 6 1 6 optionally being substituted by one or more halogen atoms; Ar is a thiophenyl group or a phenyl group optionally substituted by a fluorine atom such as 4–fluoro–phenyl; and R5 and R6 independently of one another are a (C –C )alkyl, aryl–(C –C )alkyl or aryl 1 6 1 6 group, the said group optionally being substituted by one or more fluorine atoms.
7. The compound according to claim 1, characterized in that the compound is selected from among: I–1a I–1b I–2a I–2b I–3a I–3b I–4a I–4b I–5a I–5b I–6a I–6b I–7a I–7b I–8a I–8b I–9 I–10 I–11 I–12 I–13 I–14 I–15a I–15b I–16a I–16b I–17a I–17b I–18a I–18b I–19a I–19b I–20a I–20b I–21a I–21b I–22a I–22b I–23 I–24 I–25a I–25b I–26a I–26b I–27a I–27b I–28 I–29 I–30 I–31 I–32 I–33 N Cl I–34 I–35 N Cl I–36 I–37 I–39 I–38 I–40a I–40b I–41a I–41b I–42a I–42b I–43a I–43b I–45 I–44 I–46a I–46b I–47a I–47b I–48 I–49 I–50a I–50b I–51a I–51b I–52a I–52b I–53a I–53b I–54a I–54b I–55a I–55b I–56a I–56b HN O N Cl I–57 I–58 N Cl I–59 I–60 I–61 I–62 I–63
8. A compound of general formula (I) according to any one of claims 1 to 7 for use as a drug.
9. A compound of general formula (I) according to any one of claims 1 to 7 for use in the treatment or prevention of cancer and chemotherapy–resistant cancer.
10. A pharmaceutical composition comprising at least one compound of general formula (I) according to any one of claims 1 to 7, in association with one or more pharmaceutically acceptable excipients.
11. The pharmaceutical composition according to claim 10, characterized in that it comprises at least one other active ingredient such as an anticancer agent.
12. The pharmaceutical composition according to claim 11, characterized in that the active ingredient(s) are chosen from among cisplatin and its derivatives such as carboplatin and oxalyplatin; taxanes such as taxol, taxotere, paclitaxel and docetaxel; vinca alkaloids such as vinblastine, vincristine and vinorelbine; purine analogues such as mercaptopurine, thioguanine, pentostatin and 2–chlorodeoxyadenosine; topoisomerase I inhibitors such as camptothecin compounds e.g. irinotecan and topotecan; topoisomerase II inhibitors such as epipodophyllotoxin, podophyllotoxin and the derivatives thereof such as etoposide and teniposide; anti–tumour nucleoside derivatives such as 5–fluorouracil, leucovorin, gemcitabine or capecitabine; alkylating agents such as nitrogen mustards e.g. cyclophosphamide, mechlorethamine, chlorambucil and melphalan, nitroso–ureas such as carmustin, lomustin and streptozocin, alkylsulfonates such as busulfan, ethylenimines and methylmelamines such as thiotepa and hexamethylmelamine, and tetrazines such as dacarbazine; derivatives of anti–tumour anthracyclines such as daunorubicin, adriamycin, doxil, idarubicin and mitoxantrone; molecules targeting the IGF–I receptor such as picropodophyllin; tetracarcin derivatives such as tetrocarcin A; corticosteroids such as prednisone; antibodies such as trastuzumab (anti–HER2 antibody), rituximab (anti– CD20 antibody), gemtuzamab, cetuximab, pertuzumab and bevacizumab; antagonists or selective modulators of oestrogen receptors such as tamoxifen, fulvestrant, toremifene, droloxifene, faslodex and raloxifene, aromatase inhibitors such as exemestane, anastrozole, letrozole and vorozole; differentiating agents such as retinoids e.g. retinoic acid and vitamin D and agents blocking the metabolism of retinoic acid such as accutane; DNA methyl–transferase inhibitors such as azacytidine and decitabine; antifolates such as permetrexed disodium; antibiotics such as antinomycin D, bleomycin, mitomycin C, actinomycin D, carminomycin, daunomycin and plicamycin; antimetabolites such as chlofarabine, aminopterin, cytosine arabinoside, floxuridine and methotrexate; apoptosis–inducing agents and anti–angiogenic agents of Bcl–2 inhibitors such as YC 137, BH 312, ABT 737, gossypol, HA 14–1, TW 37 and decanoic acid; agents binding to tubulin such as combrestatin, colchicine derivatives and nocodazole; kinase inhibitors such as flavoperidol, imatinib mesylate, erlotinib and gefitinib; farnesyl transferase inhibitors such as tipifarnib; histone–deacetylase inhibitors such as sodium butyrate, suberoylanilide hydroxamic acid, depsipeptide, NVP- LAQ824, R306465, JNJ–26481585 and trichostatin A; inhibitors of the ubiquitin–proteasome system such as MLN .41, bortezomib and yondelis; and telomerase inhibitors such as telomestatin.
13. A pharmaceutical composition comprising: (i) at least one formula (I) compound according to any one of claims 1 to 7; and (ii) at least one other active ingredient such as an anticancer agent, as combination products for simultaneous, separate or time–staggered use thereof.
14. The pharmaceutical composition according to claim 13, characterized in that the active ingredient(s) are selected from among cisplatin and the derivatives thereof such as carboplatin and oxalyplatin; taxanes such as taxol, taxotere, paclitaxel and docetaxel; vinca alkaloids such as vinblastine, vincristine and vinorelbine; purine analogues such as mercaptopurine, thioguanine, pentostatin and 2– chlorodeoxyadenosine; topoisomerase I inhibitors such as camptothecin compounds e.g. irinotecan and topotecan; topoisomerase II inhibitors such as epipodophyllotoxin, podophyllotoxin and the derivatives thereof such as etoposide and teniposide; anti– tumour nucleoside derivatives such as 5–fluorouracil, leucovorin, gemcitabine or capecitabine; alkylating agents such as nitrogen mustards e.g. cyclophosphamide, mechlorethamine, chlorambucil and melphalan, nitroso–ureas such as carmustin, lomustin and streptozocin, alkylsulfonates such as busulfan, ethylenimines and methylmelamines such as thiotepa and hexamethylmelamine, and tetrazines such as dacarbazine; derivatives of anti–tumour anthracyclines such as daunorubicin, adriamycin, doxil, idarubicin and mitoxantrone; molecules targeting the IGF–I receptor such as picropodophyllin; tetracarcin derivatives such as tetrocarcin A; corticosteroids such as prednisone; antibodies such as trastuzumab (anti–HER2 antibody), rituximab (anti–CD20 antibody), gemtuzamab, cetuximab, pertuzumab and bevacizumab; antagonists or selective modulators of oestrogen receptors such as tamoxifen, fulvestrant, toremifene, droloxifene, faslodex and raloxifene; aromatase inhibitors such as exemestane, anastrozole, letrozole and vorozole; differentiating agents such as retinoids e.g. retinoic acid and vitamin D and agents blocking the metabolism of retinoic acid such as accutane; DNA methyl–transferase inhibitors such as azacytidine and decitabine; antifolates such as permetrexed disodium; antibiotics such as antinomycin D, bleomycin, mitomycin C, actinomycin D, carminomycin, daunomycin and plicamycin; antimetabolites such as chlofarabine, aminopterin, cytosine arabinoside, floxuridine and methotrexate; apoptosis–inducing agents and anti–angiogenic agents of Bcl–2 inhibitors such as YC 137, BH 312, ABT 737, gossypol, HA 14–1, TW 37 and decanoic acid; agents binding to tubulin such as combrestatin, colchicine derivatives and nocodazole; kinase inhibitors such as flavoperidol, imatinib mesylate, erlotinib and gefitinib; farnesyl transferase inhibitors such as tipifarnib; histone–deacetylase inhibitors such as sodium butyrate, suberoylanilide hydroxamic acid, depsipeptide, NVP- LAQ824, R306465, JNJ–26481585 and trichostatin A; inhibitors of the ubiquitin–proteasome system such as MLN .41, bortezomib and yondelis; and telomerase inhibitors such as telomestatin.
15. The pharmaceutical composition according to any one of claims 10 to 14 for use as a drug intended to treat or prevent cancer, in particular to treat a chemotherapy– resistant cancer.
16. A method for preparing a formula (I) compound according to any one of claims 1 to 7 comprising the following successive steps: a) reacting an amine of following formula (II): (II) where X, R1, R2, R3, R4 and Ar are as defined in claim 1, R1 not representing a hydrogen atom, with chloroacetyl chloride in the presence of a base to give a formula (I) compound where R1 ≠ H; and b) optionally deprotecting the nitrogen atom carrying the R1 ≠ H group to give a formula (I) compound where R1 = H.
17. The method according to claim 16 comprising the following successive steps: i) reacting a ketoester of following formula (V): where Ar is as defined in claim 1 and R represents a (C –C )alkyl group, such as ethyl; with an aniline of following formula (VI): (VI) where R3 and R4 are as defined in claim 1, to give an imine of following formula (VII): (VII) where R3, R4 and Ar are as defined in claim 1 and R is as defined above in claim 17; ii) reducing the imine of formula (VII) obtained at the preceding step to give an amine of following formula (VIII): (VII) where R3, R4 and Ar are as defined in claim 1 and R is as defined above in claim 17; iii) saponifying the ester function of the formula (VIII) compound obtained at the preceding step to give an acid of following formula (IV): (IV) where R3, R4 and Ar are as defined in claim 1; iv) reacting the acid of formula (IV) obtained at the preceding step with a piperazine of following formula (III): (III) where X, R1 and R2 are as defined in claim 1, R1 not representing a hydrogen atom, to give an amine of formula (II) according to claim 16; v) reacting the amine of formula (II) obtained at the preceding step with chloroacetyl chloride in the presence of a base to give a formula (I) compound where R1 ≠ H; and vi) optionally deprotecting the nitrogen atom carrying the R1 ≠ H group to give a formula (I) compound where R1 = H.
NZ627149A 2011-12-30 2012-12-28 Piperazinyl derivatives for the treatment of cancer NZ627149B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1162586 2011-12-30
FR1162586A FR2985256B1 (en) 2011-12-30 2011-12-30 PIPERAZINYL DERIVATIVES FOR THE TREATMENT OF CANCERS
PCT/EP2012/077059 WO2013098393A1 (en) 2011-12-30 2012-12-28 Piperazinyl derivatives for the treatment of cancer

Publications (2)

Publication Number Publication Date
NZ627149A NZ627149A (en) 2015-08-28
NZ627149B2 true NZ627149B2 (en) 2015-12-01

Family

ID=

Similar Documents

Publication Publication Date Title
JP5438008B2 (en) Inhibitors of the interaction between MDM2 and p53
CA2929661A1 (en) Deuterated diaminopyrimidine compounds and pharmaceutical compositions comprising such compounds
US10662173B2 (en) Indole and pyrrole compounds, a process for their preparation and pharmaceutical compositions containing them
CN101602741A (en) N-arylsulfonylheterocyamines amines as the replacement of inhibitors of gamma-secretase
JPWO2020045334A1 (en) Optically active azabicyclo ring derivative
JP6679059B1 (en) Compounds and methods for the treatment of rabies
EP4110340A1 (en) Potent and selective degraders of alk
CA3061238A1 (en) Indole derivatives as efflux pump inhibitors
CA3095415A1 (en) Compound with anticancer activity
US9877962B2 (en) Piperazinyl derivatives for the treatment of cancer
EP4043457A1 (en) Aromatic heterocyclic compound having tricyclic structure, and preparation method therefor and application thereof
NZ627149B2 (en) Piperazinyl derivatives for the treatment of cancer
AU2012360815B2 (en) Piperazinyl derivatives for the treatment of cancer
CA3152923A1 (en) Bet degrader
CN115052661A (en) Compound and drug using the same
KR20100015647A (en) Mono-hydrochloric salts of an inhibitor of histone deacetylase
JP2002201168A (en) Cyclohexane derivative