NZ626459B2 - Method and apparatus for intra mode coding - Google Patents

Method and apparatus for intra mode coding Download PDF

Info

Publication number
NZ626459B2
NZ626459B2 NZ626459A NZ62645912A NZ626459B2 NZ 626459 B2 NZ626459 B2 NZ 626459B2 NZ 626459 A NZ626459 A NZ 626459A NZ 62645912 A NZ62645912 A NZ 62645912A NZ 626459 B2 NZ626459 B2 NZ 626459B2
Authority
NZ
New Zealand
Prior art keywords
intra prediction
prediction modes
intra
mode
modes
Prior art date
Application number
NZ626459A
Other versions
NZ626459A (en
Inventor
Mei Guo
Shaw Min Lei
Shan Liu
Original Assignee
Hfi Innovation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2012/070425 external-priority patent/WO2013106986A1/en
Application filed by Hfi Innovation Inc filed Critical Hfi Innovation Inc
Priority to NZ709833A priority Critical patent/NZ709833B2/en
Publication of NZ626459A publication Critical patent/NZ626459A/en
Publication of NZ626459B2 publication Critical patent/NZ626459B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/12Selection from among a plurality of transforms or standards, e.g. selection between discrete cosine transform [DCT] and sub-band transform or selection between H.263 and H.264
    • H04N19/122Selection of transform size, e.g. 8x8 or 2x4x8 DCT; Selection of sub-band transforms of varying structure or type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/30Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability
    • H04N19/33Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using hierarchical techniques, e.g. scalability in the spatial domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Abstract

Disclosed are method and apparatus for predictive Intra coding of a block. The method comprises determining a set of Intra prediction modes and applying predictive Intra coding to a PU (prediction unit) of an image based on one or more neighbouring PUs according a current Intra prediction mode. The current Intra prediction mode is selected from the set of Intra prediction modes. The set of Intra prediction modes is used for PUs corresponding to different block sizes including a 4x4 block size and at least one other block size. current Intra prediction mode is selected from the set of Intra prediction modes. The set of Intra prediction modes is used for PUs corresponding to different block sizes including a 4x4 block size and at least one other block size.

Description

METHOD AND APPARATUS FOR INTRA MODE CODING CROSS REFERENCE TO RELATED APPLICATIONS The present invention claims priority to PCT Patent Application, Serial No. , filed on January 16, 2012, entitled “Intra Mode Coding”. The PCT Patent Application is hereby incorporated by reference in its entirety.
TECHNICAL FIELD The present invention relates to video coding. In particular, the present invention relates to coding techniques associated with Intra prediction.
BACKGROUND Intra prediction exploits spatial correlation within a picture or within a picture region. In order to improve coding efficiency, the High-Efficiency Video Coding (HEVC) standard being developed under the Joint Collaborative Team on Video Coding (JCT-VC) group of video coding experts from ITU-T Study Group exploits block-based spatial prediction extensively. In HEVC, multiple Intra prediction modes are used to exploit spatial features and the number of Intra prediction modes depends on the block size of a Prediction Unit (PU). In HEVC Test Model Version 5.0 (HM-5.0), the size of the PU for Intra coding can be 64x64, 32x32, 16x16, 8x8, or 4x4. A total of 18 Intra prediction modes (mode 0 to mode 17) are used for 4x4 PU while 35 Intra modes (mode 0 to mode 34) are used for 8x8, 16x16, 32x32 and 64x64 PU as shown in Fig. 1. The 35 Intra prediction modes include 33 directional prediction modes, one DC mode and one Planar mode as shown in Fig. 1. Each Intra prediction mode, except for Intra prediction modes 0 and 3, has an associated angle as shown in Fig. 2. In HM-5.0, the Intra mode coding first maps the Intra mode index (i.e., intraPredMode) to intraPredOrder as shown in Table 1. Then intraPredOrder is mapped to the angle parameter (i.e., intraPredAngle) as shown in Table 2. 206583NZ_spec_20150708_PLH Table 1. intraPredMode 0 1 2 3 4 5 6 7 8 9 intraPredOrder - - - - 1 5 13 17 21 29 intraPredMode 10 11 12 13 14 15 16 17 18 19 intraPredOrder 33 3 7 11 15 19 23 27 31 2 intraPredMode 20 21 22 23 24 25 26 27 28 29 intraPredOrder 4 6 8 10 12 14 16 18 20 22 intraPredMode 30 31 32 33 34 intraPredOrder 24 26 28 30 32 Table 2. intraPredOrder 0 1 2 3 4 5 6 7 8 9 intraPredAngle - -32 -26 -21 -17 -13 -9 -5 -2 - intraPredOrder 10 11 12 13 14 15 16 17 18 19 intraPredAngle 2 5 9 13 17 21 26 32 -26 -21 intraPredOrder 20 21 22 23 24 25 26 27 28 29 intraPredAngle -17 -13 -9 -5 -2 - 2 5 9 13 intraPredOrder 30 31 32 33 intraPredAngle 17 21 26 32 An alternative to the Intra mode index of Fig. 1 is to label each mode with its respective physical directions. Fig. 3 illustrates an example of Intra mode labeling, where “h” refers to the horizontal direction and “v” refers to the vertical direction.
In HM-5.0, the Intra mode coding of luma component comprises two most probable modes (MPMs) and the remaining modes. The two most probable modes are derived for each PU from the Intra mode of the above PU and the Intra mode of the left PU. If intraPredMode of the current PU is equal to either of the most probable modes, a flag prev_intra_pred_flag is set to 1 to indicate that intraPredMode of the current PU matches one of the most probable modes and the index of the matched most probable mode is transmitted following the flag. If intraPredMode of the current PU doesn’t match any of the most probable modes, prev_intra_pred_flag is set to 0 to indicate this case and rem_intra_luma_pred_mode is transmitted following the flag to signal the index of the remaining mode matching intraPredMode of the current PU. The binarization of 206583NZ_spec_20150708_PLH rem_intra_luma_pred_mode in CABAC is shown in Table 3 for 4x4 PU and in Table 4 for 8x8, 16x16, 32x32, and 64x64 PUs.
Table 3.
Value of Bin string rem_intra_luma_pred_mode less than 16 Fixed Length, 0000~1111 Table 4.
Value of Bin string rem_intra_luma_pred_mode less than 31 Fixed Length, 00000~11110 31 111110 32 111111 For 8x8, 16x16, 32x32 and 64x64 PU, there are 33 remaining modes, i.e., 33 possible values of rem_intra_luma_pred_mode as shown in Table 4. This requires one additional bit for rem_intra_luma_pred_mode equal to 32 or 33 compared to other remaining modes. This causes the code length of rem_intra_luma_pred_mode to be non-uniform and additional operations may be necessary for the corresponding coding process. It is desirable to be able to use fixed length codes for all remaining Intra prediction modes.
SUMMARY A method and apparatus of predictive Intra coding of a block are disclosed. In one embodiment according to the present invention, a same set of Intra prediction modes is used for PUs corresponding to different block sizes including a 4x4 block size and at least one other block size. For example, the set of Intra prediction modes is used for 8x8, 16x16, 32x32 and 64x64 PUs is also used for the 4x4 PU.
In another embodiment of the present invention, the number of Intra prediction modes in the set is reduced by removing at least one Intra prediction mode from the set. In order to lower the impact on system performance due to Intra prediction mode removal, the removed Intra prediction mode is carefully selected. For example, when the set of 35 Intra prediction modes is used, intraPredMode corresponding to 18, 34, or 26 can be removed without causing any significant impact on the performance. The current Intra prediction mode can be coded predictively based on neighboring PUs, wherein the current Intra prediction mode is predicted using 2 most probable 206583NZ_spec_20150708_PLH modes (MPMs) and 32 remaining modes. The 32 remaining modes can be represented using 5-bit fixed length codes.
BRIEF DESCRIPTION OF DRAWINGS Fig. 1 illustrates the 35 Intra prediction modes for High-Efficiency Video Coding (HEVC) labeled with Intra mode indices.
Fig. 2 illustrates the Intra prediction angles associated with Intra prediction modes for High- Efficiency Video Coding (HEVC).
Fig. 3 illustrates the 35 Intra prediction modes for High-Efficiency Video Coding (HEVC) labeled with physical directions.
Fig. 4A illustrates an example of Intra prediction mode reduction by removing “h+6” Intra prediction mode (i.e., intraPredMode 18) according to an embodiment of the present invention.
Fig. 4B illustrates another example of Intra prediction mode reduction by removing “h+7” Intra prediction mode (i.e., intraPredMode 34) according to an embodiment of the present invention.
Fig. 4C illustrates another example of Intra prediction mode reduction by removing “v+7” Intra prediction mode (i.e., intraPredMode 26) according to an embodiment of the present invention.
Fig. 5 illustrates an exemplary flowchart for a system sharing Intra prediction modes between 4x4 PUs and PUs of other block sizes according to an embodiment of the present invention.
Fig. 6 illustrates an exemplary flowchart for a system incorporating a reduced set of Intra prediction modes according to an embodiment of the present invention.
DETAILED DESCRIPTION As mentioned earlier, in HM-5.0, the 4x4 PU uses 18 Intra prediction modes and the 8x8, 16x16, 32x32 and 64x64 PUs use 35 Intra prediction modes. In other words, the 4x4 PU and larger PUs use different sets of Intra prediction modes. This situation is the same for other coding systems as well. For example, in H.264/AVC and RealVideo 8, the 4x4 block uses 9 Intra prediction modes while the 16x16 block uses 4 Intra prediction modes. In VP8, the 4x4 block uses 10 Intra prediction modes while the 16x16 block uses 4 Intra prediction modes. The use of different sets of Intra prediction modes between the 4x4 PU (or block) and other PUs (or blocks) will increase system complexity. Therefore, an embodiment of the present invention unifies the Intra prediction modes between the 4x4 PU and PUs having other block sizes. As an example, the 4x4 PU uses the 206583NZ_spec_20150708_PLH same Intra prediction modes as 8x8, 16x16, 32x32 and 64x64 PUs. In this case, instead of 18 Intra prediction modes, the 4x4 PU may also use the set of 35 Intra prediction modes as the 8x8, 16x16, 32x32 and 64x64 PUs.
In Intra mode coding, more Intra prediction modes will require more bits to represent a selected Intra prediction mode for a current Intra mode. It is desirable to reduce the number of Intra prediction modes with negligible performance impact. According to one embodiment of the present invention, the set of 35 Intra prediction modes is reduced to a set of 34 Intra prediction modes. By examining the 35 Intra prediction modes shown in Fig. 1 and Fig. 3, it is noticed that neither Intra prediction mode 18 (i.e., “h+6”) nor Intra prediction mode 34 (i.e., “h+7”) is included in the original set of 18 Intra prediction modes for the 4x4 PU. Therefore, either Intra prediction mode 18 (i.e., “h+6”) or Intra prediction mode 34 (i.e., “h+7”) can be removed from the set of 35 Intra prediction modes according to one embodiment.
Upon removal of an Intra prediction mode from the set of 35 Intra prediction modes, the mapping between the Intra mode indexes (i.e., intraPredMode) and intraPredOrder has to be modified accordingly and an example of modified mapping is shown in Table 5 (intraPredMode 18 removal) and Table 6 (intraPredMode 34 removal). Similarly, the mapping between intraPredOrder and the angle parameters (i.e., intraPredAngle) has to be modified as well and an example of the modified mapping is shown in Table 7 (intraPredMode 18 removal) and Table 8 (intraPredMode 34 removal). In HM-5.0, the current Intra prediction mode is coded using predictive coding based on the 2 most probable modes (MPMs) and remaining modes. When the 2 most probable modes are used, there will be 32 remaining modes after one Intra prediction mode is removed. The binarization of the 32 remaining modes for CABAC can be done using 5-bit fixed length codes as shown in Table 9. In tables 5 through 8, the “*” symbol indicates that there is no corresponding mapping element.
While the mapping between intraPredMode and intraPredOrder can be represent in a table form as shown in Tables 5 and 6, the mapping may also be represented in an ordered set form. For example, Table 5 can be represented by the ordered set {*, *, *, *, 1, 5, 13, 17, 21, 29, 32, 3, 7, 11, , 19, 23, 27, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 31}, wherein the first 4 ordered elements (i.e., “*,*,*,*” ) correspond to intraPredMode = 0, 1, 2 and 3 respectively. The fifth ordered element (i.e., “1”) correspond to intraPredMode=4, and so on. Similarly, Table 6 can be represented by the ordered set {*, *, *, *, 1, 5, 13, 17, 21, 29, 32, 3, 7, 11, 15, 19, 23, 27, 31, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}.
The ordered set representation can also be applied to the mapping between intraPredOrder and intraPredAngle as shown in Tables 7 and 8. Accordingly, Table 7 can be represented by the 206583NZ_spec_20150708_PLH ordered set {*, -32, -26, -21, -17, -13, -9, -5, -2, *,2, 5, 9, 13, 17, 21, 26, 32, -26, -21, -17, -13, -9, - , -2, *, 2, 5, 9, 13, 17, 26, 32} and Table 8 can be represented by the ordered set {*, -32, -26, -21, - 17, -13, -9, -5, -2, *,2, 5, 9, 13, 17, 21, 26, 32, -26, -21, -17, -13, -9, -5, -2, *, 2, 5, 9, 13, 17, 21, 32}.
Table 5. intraPredMode 0 1 2 3 4 5 6 7 8 9 intraPredOrder * * * * 1 5 13 17 21 29 intraPredMode 10 11 12 13 14 15 16 17 18 19 intraPredOrder 32 3 7 11 15 19 23 27 2 4 intraPredMode 20 21 22 23 24 25 26 27 28 29 intraPredOrder 6 8 10 12 14 16 18 20 22 24 intraPredMode 30 31 32 33 intraPredOrder 26 28 30 31 Table 6. intraPredMode 0 1 2 3 4 5 6 7 8 9 intraPredOrder * * * * 1 5 13 17 21 29 intraPredMode 10 11 12 13 14 15 16 17 18 19 intraPredOrder 31 2 32 3 7 11 15 19 23 27 intraPredMode 20 21 22 23 24 25 26 27 28 29 intraPredOrder 4 6 8 10 12 14 16 18 20 22 intraPredMode 30 31 32 33 intraPredOrder 24 26 28 30 206583NZ_spec_20150708_PLH Table 7. intraPredOrder 0 1 2 3 4 5 6 7 8 9 intraPredAngle * -32 -26 -21 -17 -13 -9 -5 -2 * intraPredOrder 10 11 12 13 14 15 16 17 18 19 intraPredAngle 2 5 9 13 17 21 26 32 -26 -21 intraPredOrder 20 21 22 23 24 25 26 27 28 29 intraPredAngle -17 -13 -9 -5 -2 * 2 5 9 13 intraPredOrder 30 31 32 intraPredAngle 17 26 32 Table 8. intraPredOrder 0 1 2 3 4 5 6 7 8 9 intraPredAngle * -32 -26 -21 -17 -13 -9 -5 -2 * intraPredOrder 10 11 12 13 14 15 16 17 18 19 intraPredAngle 2 5 9 13 17 21 26 32 -26 -21 intraPredOrder 20 21 22 23 24 25 26 27 28 29 intraPredAngle -17 -13 -9 -5 -2 * 2 5 9 13 intraPredOrder 30 31 32 intraPredAngle 17 21 32 Table 9.
Value of Bin string rem_intra_luma_pred_mode less than 32 Fixed Length, 00000~11110 While removal of Intra prediction mode 18 or 34 is used in the above examples as a means to reduce the number of Intra prediction modes, other Intra prediction mode may be selected for removal as well. For example, Intra prediction mode 26 can be removed and an example of modified mapping between the Intra mode indexes (i.e., intraPredMode) and intraPredOrder is shown in Table 10 and an example of modified mapping between the intraPredOrder and the angle parameters (i.e., intraPredAngle) is shown in Table 11. 206583NZ_spec_20150708_PLH Table 10. intraPredMode 0 1 2 3 4 5 6 7 8 9 intraPredOrder * * * * 1 5 13 16 20 28 intraPredMode 10 11 12 13 14 15 16 17 18 19 intraPredOrder 32 3 7 11 15 18 22 26 30 2 intraPredMode 20 21 22 23 24 25 26 27 28 29 intraPredOrder 4 6 8 10 12 14 17 19 21 23 intraPredMode 30 31 32 33 intraPredOrder 27 29 31 Table 11. intraPredOrder 0 1 2 3 4 5 6 7 8 9 intraPredAngle * -32 -26 -21 -17 -13 -9 -5 -2 * intraPredOrder 10 11 12 13 14 15 16 17 18 19 intraPredAngle 2 5 9 13 17 21 32 -26 -21 -17 intraPredOrder 20 21 22 23 24 25 26 27 28 29 intraPredAngle -13 -9 -5 -2 * 2 5 9 13 17 intraPredOrder 30 31 32 intraPredAngle 21 26 32 The ordered set representation for Table 10 is {*, *, *, *, 1, 5, 13, 16, 20, 28, 32, 3, 7, 11, 15, 18, 22, 26, 30, 2, 4, 6, 8, 10, 12, 14, 17, 19, 21, 23, 25, 27, 29, 31} and the ordered set representation for Table 11 is {*, -32, -26, -21, -17, -13, -9, -5, -2, *, 2, 5, 9, 13, 17, 21, 32, -26, -21, -17, -13, -9, -5, -2, *, 2, 5, 9, 13, 17, 21, 26, 32}.
The performance of a coding system incorporating an embodiment of the present invention is compared with a reference system based on HEVC system without reduced number of Intra prediction modes. The performance is measured in terms of BD rate, where a negative value implies performance improvement over the reference system. The BD rate comparison is performed by adjusting coding parameters so that the underlying systems result in about the same objective quality. The performance results are shown in Table 12 for the case where Intra prediction mode 18 (i.e., “h+6”) is removed. In Table 12, HE refers to High Efficiency coding configuration. Classes A through E refer to different sets of test video. As shown in Table 12, the impact on performance in terms of BD rate for Y, U and V components is very small. The 206583NZ_spec_20150708_PLH performance results are shown in Table 13 for the case where Intra prediction mode 34 (i.e., “h+7”) is removed. Again, the impact on performance is very small.
Table 12.
All Intra HE Y U V 0.13% 0.12% 0.12% Class A 0.01% 0.04% 0.01% Class B 0.04% 0.05% 0.05% Class C 0.03% 0.04% -0.02% Class D 0.04% 0.03% 0.03% Class E 0.05% 0.06% 0.04% Overall Enc Time[%] 100% Dec Time[%] 100% Table 13.
All Intra HE Y U V 0.04% 0.01% 0.03% Class A 0.01% 0.00% 0.02% Class B 0.03% 0.02% 0.01% Class C 0.01% 0.02% 0.01% Class D 0.02% 0.15% 0.04% Class E 0.02% 0.03% 0.02% Overall Enc Time[%] 100% Dec Time[%] 100% When a system adopts a unified set of Intra prediction modes for the 4x4 PU and PUs of other sizes, both the encoder side and the decoder side will use this unified set. Fig. 5 illustrates an exemplary flowchart of a coding system that shares the same set of Intra prediction modes between 4x4 PUs and PUs having other block sizes. A set of Intra prediction modes is determined in step 510. For a video encoder, the set of Intra prediction modes may be determined according to a pre- defined set. For example, the set with 35 Intra prediction modes as defined in HM-5.0 may be used.
For a video decoder, the set of Intra prediction modes may also be determined according to a pre- defined set. Alternatively, a video encoder may use a set of Intra prediction modes of its own and convey the information in the bitstream. In this case, the decoder can determine the set of Intra prediction modes from the received bitstream. The predictive Intra coding is then applied to a PU of an image based on one or more neighboring PUs according to a current Intra prediction mode as shown in step 520, wherein the current Intra prediction mode is selected from the set of Intra 206583NZ_spec_20150708_PLH prediction modes, and wherein the set of Intra prediction modes is used for PUs corresponding to different block sizes including a 4x4 block size and at least one other block size. The predictive Intra coding may correspond to predictive Intra encoding for a video encoder or predictive Intra decoding for a video decoder. For a video encoder, the current Intra prediction mode may be selected according to a performance criterion, such as minimal RD rate. The current Intra prediction mode may be selected in a predictive fashion. Information related to the current Intra prediction mode may have to be incorporated in the bitstream so that a decoder may derive the same information. For a video decoder, the current Intra prediction mode may be derived from the bitstream or inferred from coding conditions.
When a system uses a set of reduced number of Intra prediction modes, the reduced set will be used in the encoder as well as the decoder so that the system can operate properly. Fig. 6 illustrates an exemplary flowchart for a coding system that uses a reduced set of Intra prediction modes. A reduced set of Intra prediction modes is determined in step 610, wherein the reduced set of Intra prediction modes is derived from an original set of Intra prediction modes by removing at least one Intra prediction mode from the original set of Intra prediction modes. At a video encoder side, the encoder may determine the reduced set according to one pre-defined set. The encoder may also select a reduced set of its own. The information regarding the reduced set may have to be incorporated in the bitstream so that a decoder may derive the same information. The predictive Intra coding is then applied to a PU of an image based on one or more neighboring PUs according a current Intra prediction mode as shown in step 620, wherein the current Intra prediction mode is selected from the reduced set of Intra prediction modes. Again, for a video encoder, the current Intra prediction mode may be selected according to a performance criterion, such as minimal RD rate. The current Intra prediction mode may be selected in a predictive fashion. Information related to the current Intra prediction mode may have to be incorporated in the bitstream so that a decoder may derive the same information. For a video decoder, the current Intra prediction mode may be derived from the bitstream or inferred from coding conditions.
The flowcharts shown in Fig. 5 and Fig. 6 are intended for serving as examples of sharing a set of Intra prediction modes and using a reduced set of Intra prediction modes according to embodiments of the present invention. A person skilled in the art may practice the present invention by modifying individual steps, splitting or combining steps with departing from the spirit of the present invention.
The above description is presented to enable a person of ordinary skill in the art to practice the present invention as provided in the context of a particular application and its requirement. Various modifications to the described embodiments will be apparent to those with skill in the art, and the 206583NZ_spec_20150708_PLH general principles defined herein may be applied to other embodiments. Therefore, the present invention is not intended to be limited to the particular embodiments shown and described, but is to be accorded the widest scope consistent with the principles and novel features herein disclosed. In the above detailed description, various specific details are illustrated in order to provide a thorough understanding of the present invention. Nevertheless, it will be understood by those skilled in the art that the present invention may be practiced.
Embodiment of the present invention as described above may be implemented in various hardware, software codes, or a combination of both. For example, an embodiment of the present invention can be a circuit integrated into a video compression chip or program code integrated into video compression software to perform the processing described herein. An embodiment of the present invention may also be program code to be executed on a Digital Signal Processor (DSP) to perform the processing described herein. The invention may also involve a number of functions to be performed by a computer processor, a digital signal processor, a microprocessor, or field programmable gate array (FPGA). These processors can be configured to perform particular tasks according to the invention, by executing machine-readable software code or firmware code that defines the particular methods embodied by the invention. The software code or firmware code may be developed in different programming languages and different formats or styles. The software code may also be compiled for different target platforms. However, different code formats, styles and languages of software codes and other means of configuring code to perform the tasks in accordance with the invention will not depart from the spirit and scope of the invention.
The invention may be embodied in other specific forms without departing from its spirit or essential characteristics. The described examples are to be considered in all respects only as illustrative and not restrictive. The scope of the invention is therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope. 206583NZ_spec_20150708_PLH

Claims (8)

1. A method for predictive Intra coding of a block, the method comprising: determining a set of Intra prediction modes; and applying predictive Intra coding to a PU (prediction unit) of an image based on one or more neighboring PUs according a current Intra prediction mode, wherein the current Intra prediction mode is selected from the set of Intra prediction modes, and wherein the set of Intra prediction modes is used for PUs corresponding to different block sizes including a 4x4 block size and at least one other block size.
2. The method of Claim 1, wherein said at least one other block size includes 8x8, 16x16, 32x32 and 64x64.
3. The method of Claim 1, wherein the set of Intra prediction modes contains 35 Intra prediction modes.
4. The method of Claim 1, wherein the set of Intra prediction modes is used for PUs corresponding to all block sizes.
5. An apparatus for predictive Intra coding of a block, the apparatus comprising: means for determining a set of Intra prediction modes; and means for applying predictive Intra coding to a PU (prediction unit) of an image based on one or more neighboring PUs according a current Intra prediction mode, wherein the current Intra prediction mode is selected from the set of Intra prediction modes, and wherein the set of Intra prediction modes is used for PUs corresponding to different block sizes including a 4x4 block size and at least one other block size.
6. The apparatus of Claim 5, wherein said at least one other block size includes 8x8, 16x16, 32x32 and 64x64.
7. The apparatus of Claim 5, wherein the set of Intra prediction modes contains 35 Intra prediction modes.
8. The apparatus of Claim 5, wherein the set of Intra prediction modes is used for PUs corresponding to all block sizes. 206583NZ_spec_20150708_PLH
NZ626459A 2012-01-16 2012-12-28 Method and apparatus for intra mode coding NZ626459B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ709833A NZ709833B2 (en) 2012-01-16 2012-12-28 Method and apparatus for intra mode coding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
PCT/CN2012/070425 WO2013106986A1 (en) 2012-01-16 2012-01-16 Methods and apparatuses of intra mode coding
CNPCT/CN2012/070425 2012-01-16
PCT/CN2012/087887 WO2013107270A1 (en) 2012-01-16 2012-12-28 Method and apparatus for intra mode coding

Publications (2)

Publication Number Publication Date
NZ626459A NZ626459A (en) 2015-07-31
NZ626459B2 true NZ626459B2 (en) 2015-11-03

Family

ID=

Similar Documents

Publication Publication Date Title
US10638156B2 (en) Method and apparatus for intra mode coding
US10230981B2 (en) Method and apparatus for intra mode coding in HEVC
US10321140B2 (en) Method of video coding for chroma components
US10750169B2 (en) Method and apparatus for intra chroma coding in image and video coding
US10200718B2 (en) Method and apparatus for a low complexity transform unit partitioning structure for HEVC
KR102413941B1 (en) Apparatus and method for intra prediction coding/decoding based on adaptive candidate modes
US20140119439A1 (en) Method and apparatus of intra mode coding
GB2531004A (en) Residual colour transform signalled at sequence level for specific coding modes
MX2013013523A (en) Method and apparatus for coding of intra prediction mode.
NZ626459B2 (en) Method and apparatus for intra mode coding
NZ709833B2 (en) Method and apparatus for intra mode coding
CN113132724A (en) Encoding and decoding method, device and equipment thereof