NZ624616B2 - Kit comprising serum replacement and labile factors - Google Patents
Kit comprising serum replacement and labile factors Download PDFInfo
- Publication number
- NZ624616B2 NZ624616B2 NZ624616A NZ62461612A NZ624616B2 NZ 624616 B2 NZ624616 B2 NZ 624616B2 NZ 624616 A NZ624616 A NZ 624616A NZ 62461612 A NZ62461612 A NZ 62461612A NZ 624616 B2 NZ624616 B2 NZ 624616B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- kit
- cells
- labile
- factor
- serum replacement
- Prior art date
Links
- 210000002966 Serum Anatomy 0.000 title claims abstract description 128
- 210000004027 cells Anatomy 0.000 claims abstract description 174
- 102000018233 Fibroblast growth factor family Human genes 0.000 claims abstract description 33
- 108050007372 Fibroblast growth factor family Proteins 0.000 claims abstract description 33
- 108090000901 Transferrin Proteins 0.000 claims abstract description 29
- 102000004338 Transferrin Human genes 0.000 claims abstract description 29
- 239000012581 transferrin Substances 0.000 claims abstract description 29
- 102100010813 EGF Human genes 0.000 claims abstract description 27
- 229940116977 Epidermal Growth Factor Drugs 0.000 claims abstract description 27
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims abstract description 26
- AUYYCJSJGJYCDS-LBPRGKRZSA-N Thyrolar Chemical compound IC1=CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C(I)=C1 AUYYCJSJGJYCDS-LBPRGKRZSA-N 0.000 claims abstract description 19
- 238000000338 in vitro Methods 0.000 claims abstract description 17
- 230000001976 improved Effects 0.000 claims abstract description 14
- 102000004877 Insulin Human genes 0.000 claims abstract description 13
- 108090001061 Insulin Proteins 0.000 claims abstract description 13
- 102000005157 Somatostatin Human genes 0.000 claims abstract description 13
- 108010056088 Somatostatin Proteins 0.000 claims abstract description 13
- 229960000553 Somatostatin Drugs 0.000 claims abstract description 13
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical compound C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 claims abstract description 13
- 108010088761 Epidermal growth factor Proteins 0.000 claims abstract description 5
- 239000003102 growth factor Substances 0.000 claims description 71
- 238000004113 cell culture Methods 0.000 claims description 32
- 230000012010 growth Effects 0.000 claims description 31
- 101700033006 EGF Proteins 0.000 claims description 22
- 239000002502 liposome Substances 0.000 claims description 20
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 18
- 239000003795 chemical substances by application Substances 0.000 claims description 16
- 102000037018 Iron transporter Human genes 0.000 claims description 12
- 108091006891 Iron transporter Proteins 0.000 claims description 12
- 230000021164 cell adhesion Effects 0.000 claims description 12
- 239000010949 copper Substances 0.000 claims description 12
- 102100009661 VTN Human genes 0.000 claims description 11
- 108010031318 Vitronectin Proteins 0.000 claims description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 11
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 11
- 238000004806 packaging method and process Methods 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 10
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 239000002105 nanoparticle Substances 0.000 claims description 10
- 229910052742 iron Inorganic materials 0.000 claims description 9
- 210000003719 B-Lymphocytes Anatomy 0.000 claims description 7
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 7
- 239000000194 fatty acid Substances 0.000 claims description 7
- 150000004665 fatty acids Chemical class 0.000 claims description 7
- 230000036499 Half live Effects 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 6
- 150000002632 lipids Chemical class 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 6
- 210000001744 T-Lymphocytes Anatomy 0.000 claims description 5
- 230000000050 nutritive Effects 0.000 claims description 5
- 210000001671 Embryonic Stem Cells Anatomy 0.000 claims description 4
- 210000003494 Hepatocytes Anatomy 0.000 claims description 4
- 210000002540 Macrophages Anatomy 0.000 claims description 4
- 201000011510 cancer Diseases 0.000 claims description 4
- 210000001778 pluripotent stem cell Anatomy 0.000 claims description 4
- AJVRSHNXSHMMCH-UHFFFAOYSA-K 2-hydroxypropane-1,2,3-tricarboxylate;iron(3+);hydrate Chemical compound O.[Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O AJVRSHNXSHMMCH-UHFFFAOYSA-K 0.000 claims description 3
- FRHBOQMZUOWXQL-UHFFFAOYSA-L Ammonium ferric citrate Chemical compound [NH4+].[Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FRHBOQMZUOWXQL-UHFFFAOYSA-L 0.000 claims description 3
- 239000001729 Ammonium fumarate Substances 0.000 claims description 3
- KGECWXXIGSTYSQ-UHFFFAOYSA-N Ammonium malate Chemical compound [NH4+].[NH4+].[O-]C(=O)C(O)CC([O-])=O KGECWXXIGSTYSQ-UHFFFAOYSA-N 0.000 claims description 3
- 239000001715 Ammonium malate Substances 0.000 claims description 3
- 102000008186 Collagen Human genes 0.000 claims description 3
- 108010035532 Collagen Proteins 0.000 claims description 3
- 102100008658 FN1 Human genes 0.000 claims description 3
- UEUDBBQFZIMOQJ-UHFFFAOYSA-K Ferric ammonium oxalate Chemical compound [NH4+].[NH4+].[NH4+].[Fe+3].[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O.[O-]C(=O)C([O-])=O UEUDBBQFZIMOQJ-UHFFFAOYSA-K 0.000 claims description 3
- 108010067306 Fibronectins Proteins 0.000 claims description 3
- 210000003958 Hematopoietic Stem Cells Anatomy 0.000 claims description 3
- APVZWAOKZPNDNR-UHFFFAOYSA-L Iron(II) citrate Chemical compound [Fe+2].OC(=O)CC(O)(C([O-])=O)CC([O-])=O APVZWAOKZPNDNR-UHFFFAOYSA-L 0.000 claims description 3
- BAUYGSIQEAFULO-UHFFFAOYSA-L Iron(II) sulfate Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 3
- 229940078795 Lactoferrin Drugs 0.000 claims description 3
- 108010063045 Lactoferrin Proteins 0.000 claims description 3
- 102000010445 Lactoferrin Human genes 0.000 claims description 3
- 210000003738 Lymphoid Progenitor Cells Anatomy 0.000 claims description 3
- 210000003643 Myeloid Progenitor Cells Anatomy 0.000 claims description 3
- 210000000496 Pancreas Anatomy 0.000 claims description 3
- 235000019297 ammonium fumarate Nutrition 0.000 claims description 3
- 235000019292 ammonium malate Nutrition 0.000 claims description 3
- NHJPVZLSLOHJDM-UHFFFAOYSA-N azane;butanedioic acid Chemical compound [NH4+].[NH4+].[O-]C(=O)CCC([O-])=O NHJPVZLSLOHJDM-UHFFFAOYSA-N 0.000 claims description 3
- 210000004271 bone marrow stromal cells Anatomy 0.000 claims description 3
- 201000009030 carcinoma Diseases 0.000 claims description 3
- 229920001436 collagen Polymers 0.000 claims description 3
- 229960005188 collagen Drugs 0.000 claims description 3
- 229960004642 ferric ammonium citrate Drugs 0.000 claims description 3
- 229960002413 ferric citrate Drugs 0.000 claims description 3
- 235000019850 ferrous citrate Nutrition 0.000 claims description 3
- 239000011640 ferrous citrate Substances 0.000 claims description 3
- 235000003891 ferrous sulphate Nutrition 0.000 claims description 3
- 239000011790 ferrous sulphate Substances 0.000 claims description 3
- 230000037320 fibronectin Effects 0.000 claims description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N fumaric acid Chemical compound OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 claims description 3
- 235000000011 iron ammonium citrate Nutrition 0.000 claims description 3
- 239000004313 iron ammonium citrate Substances 0.000 claims description 3
- 235000021242 lactoferrin Nutrition 0.000 claims description 3
- 230000001737 promoting Effects 0.000 claims description 3
- 150000003432 sterols Chemical class 0.000 claims description 3
- 235000003702 sterols Nutrition 0.000 claims description 3
- 239000002609 media Substances 0.000 description 98
- 239000000203 mixture Substances 0.000 description 33
- 210000000988 Bone and Bones Anatomy 0.000 description 17
- 230000035755 proliferation Effects 0.000 description 17
- 229940088597 Hormone Drugs 0.000 description 16
- 239000005556 hormone Substances 0.000 description 16
- 235000018102 proteins Nutrition 0.000 description 16
- 102000004169 proteins and genes Human genes 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- 230000000921 morphogenic Effects 0.000 description 15
- 241000282414 Homo sapiens Species 0.000 description 13
- 230000010261 cell growth Effects 0.000 description 12
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 11
- -1 somatastatin Proteins 0.000 description 11
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 108010009583 Transforming Growth Factors Proteins 0.000 description 10
- 102000009618 Transforming Growth Factors Human genes 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- 210000000130 stem cell Anatomy 0.000 description 9
- 230000004069 differentiation Effects 0.000 description 8
- 239000001963 growth media Substances 0.000 description 8
- 239000011780 sodium chloride Substances 0.000 description 8
- 235000002639 sodium chloride Nutrition 0.000 description 8
- 102000004127 Cytokines Human genes 0.000 description 7
- 108090000695 Cytokines Proteins 0.000 description 7
- 241000238631 Hexapoda Species 0.000 description 7
- 235000001014 amino acid Nutrition 0.000 description 7
- 150000001413 amino acids Chemical class 0.000 description 7
- 239000002041 carbon nanotube Substances 0.000 description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 description 7
- 230000004663 cell proliferation Effects 0.000 description 7
- 235000015097 nutrients Nutrition 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000011573 trace mineral Substances 0.000 description 7
- 235000013619 trace mineral Nutrition 0.000 description 7
- 230000035899 viability Effects 0.000 description 7
- 102000015696 Interleukins Human genes 0.000 description 6
- 108010063738 Interleukins Proteins 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- 229940029983 VITAMINS Drugs 0.000 description 6
- 229940021016 Vitamin IV solution additives Drugs 0.000 description 6
- 239000006143 cell culture media Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 239000011782 vitamin Substances 0.000 description 6
- 235000013343 vitamin Nutrition 0.000 description 6
- 229930003231 vitamins Natural products 0.000 description 6
- 241000283984 Rodentia Species 0.000 description 5
- 102100015249 VEGFA Human genes 0.000 description 5
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 5
- 239000003242 anti bacterial agent Substances 0.000 description 5
- UIIMBOGNXHQVGW-UHFFFAOYSA-M buffer Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000009472 formulation Methods 0.000 description 5
- UCSJYZPVAKXKNQ-HZYVHMACSA-N 1-[(1S,2R,3R,4S,5R,6R)-3-carbamimidamido-6-{[(2R,3R,4R,5S)-3-{[(2S,3S,4S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-3-(methylamino)oxan-2-yl]oxy}-4-formyl-4-hydroxy-5-methyloxolan-2-yl]oxy}-2,4,5-trihydroxycyclohexyl]guanidine Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 229940064005 Antibiotic throat preparations Drugs 0.000 description 4
- 229940083879 Antibiotics FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR TOPICAL USE Drugs 0.000 description 4
- 229940042052 Antibiotics for systemic use Drugs 0.000 description 4
- 229940042786 Antitubercular Antibiotics Drugs 0.000 description 4
- 102000019034 Chemokines Human genes 0.000 description 4
- 108010012236 Chemokines Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N D-Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- IQFYYKKMVGJFEH-XLPZGREQSA-N DEOXYTHYMIDINE Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 4
- 229940093922 Gynecological Antibiotics Drugs 0.000 description 4
- 108090001007 Interleukin-8 Proteins 0.000 description 4
- 102000004890 Interleukin-8 Human genes 0.000 description 4
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 4
- 229940024982 Topical Antifungal Antibiotics Drugs 0.000 description 4
- 230000003115 biocidal Effects 0.000 description 4
- 239000002158 endotoxin Substances 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 229940079866 intestinal antibiotics Drugs 0.000 description 4
- 210000004962 mammalian cells Anatomy 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 229940005935 ophthalmologic Antibiotics Drugs 0.000 description 4
- 239000000813 peptide hormone Substances 0.000 description 4
- 239000003270 steroid hormone Substances 0.000 description 4
- 230000004083 survival Effects 0.000 description 4
- 108010002386 Interleukin-3 Proteins 0.000 description 3
- 108090001005 Interleukin-6 Proteins 0.000 description 3
- 239000007760 Iscove's Modified Dulbecco's Medium Substances 0.000 description 3
- 210000004698 Lymphocytes Anatomy 0.000 description 3
- PLXBWHJQWKZRKG-UHFFFAOYSA-N Resazurin Chemical compound C1=CC(=O)C=C2OC3=CC(O)=CC=C3[N+]([O-])=C21 PLXBWHJQWKZRKG-UHFFFAOYSA-N 0.000 description 3
- 210000000952 Spleen Anatomy 0.000 description 3
- 102000036902 Thrombopoietin Human genes 0.000 description 3
- 108010041111 Thrombopoietin Proteins 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000001464 adherent Effects 0.000 description 3
- 235000021120 animal protein Nutrition 0.000 description 3
- 239000007640 basal medium Substances 0.000 description 3
- 102000024070 binding proteins Human genes 0.000 description 3
- 108091007650 binding proteins Proteins 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 210000004748 cultured cells Anatomy 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 239000000122 growth hormone Substances 0.000 description 3
- 210000003292 kidney cell Anatomy 0.000 description 3
- 230000000670 limiting Effects 0.000 description 3
- 239000005022 packaging material Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000004017 serum-free culture media Substances 0.000 description 3
- 150000003431 steroids Chemical class 0.000 description 3
- QHCUFBJTNREJPR-LBPRGKRZSA-N (2S)-2-amino-3-[4-(4-hydroxyphenoxy)-3,5,5-triiodocyclohexa-1,3-dien-1-yl]propanoic acid Chemical compound IC1(I)CC(C[C@H](N)C(O)=O)=CC(I)=C1OC1=CC=C(O)C=C1 QHCUFBJTNREJPR-LBPRGKRZSA-N 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N (3β)-Cholest-5-en-3-ol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 210000004369 Blood Anatomy 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 102100006400 CSF2 Human genes 0.000 description 2
- 102100014691 CXCL12 Human genes 0.000 description 2
- 102000014914 Carrier Proteins Human genes 0.000 description 2
- 108010078791 Carrier Proteins Proteins 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 108010008951 Chemokine CXCL12 Proteins 0.000 description 2
- 210000001612 Chondrocytes Anatomy 0.000 description 2
- 102000037217 Copper transporters Human genes 0.000 description 2
- 108091006481 Copper transporters Proteins 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L Copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L Copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N Cortisol Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 229960003957 Dexamethasone Drugs 0.000 description 2
- UREBDLICKHMUKA-CXSFZGCWSA-N Dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 210000002889 Endothelial Cells Anatomy 0.000 description 2
- 102100007155 FGF1 Human genes 0.000 description 2
- 101700064732 FGF1 Proteins 0.000 description 2
- 102000003972 Fibroblast Growth Factor 7 Human genes 0.000 description 2
- 108090000385 Fibroblast Growth Factor 7 Proteins 0.000 description 2
- 108010010803 Gelatin Proteins 0.000 description 2
- CEAZRRDELHUEMR-URQXQFDESA-N Gentamicin Chemical compound O1[C@H](C(C)NC)CC[C@@H](N)[C@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](NC)[C@@](C)(O)CO2)O)[C@H](N)C[C@@H]1N CEAZRRDELHUEMR-URQXQFDESA-N 0.000 description 2
- 239000006147 Glasgow's Minimal Essential Medium Substances 0.000 description 2
- 102000018997 Growth Hormone Human genes 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N HEPES Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- 210000004408 Hybridomas Anatomy 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 210000003734 Kidney Anatomy 0.000 description 2
- XUIIKFGFIJCVMT-LBPRGKRZSA-N L-thyroxine zwitterion Chemical compound IC1=CC(C[C@H]([NH3+])C([O-])=O)=CC(I)=C1OC1=CC(I)=C(O)C(I)=C1 XUIIKFGFIJCVMT-LBPRGKRZSA-N 0.000 description 2
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 2
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 2
- 206010028980 Neoplasm Diseases 0.000 description 2
- 210000001672 Ovary Anatomy 0.000 description 2
- 102100012897 PGF Human genes 0.000 description 2
- 229940049954 Penicillin Drugs 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 108010082093 Placenta Growth Factor Proteins 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 108010078762 Protein Precursors Proteins 0.000 description 2
- 102000014961 Protein Precursors Human genes 0.000 description 2
- 229960005322 Streptomycin Drugs 0.000 description 2
- 229940104230 Thymidine Drugs 0.000 description 2
- 108010001801 Tumor Necrosis Factor-alpha Proteins 0.000 description 2
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 2
- 230000002378 acidificating Effects 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229960000626 benzylpenicillin Drugs 0.000 description 2
- 238000004166 bioassay Methods 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000003139 buffering Effects 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000030833 cell death Effects 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- 229920003013 deoxyribonucleic acid Polymers 0.000 description 2
- 235000020774 essential nutrients Nutrition 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 229960002518 gentamicin Drugs 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 229960000890 hydrocortisone Drugs 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 239000012194 insect media Substances 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 229950008325 levothyroxine Drugs 0.000 description 2
- 230000004301 light adaptation Effects 0.000 description 2
- 239000004005 microsphere Substances 0.000 description 2
- 210000003061 neural cell Anatomy 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N precursor Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 210000001082 somatic cell Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 210000001519 tissues Anatomy 0.000 description 2
- 239000008215 water for injection Substances 0.000 description 2
- OIRDTQYFTABQOQ-GAWUUDPSSA-N 9-β-D-XYLOFURANOSYL-ADENINE Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@H](O)[C@H]1O OIRDTQYFTABQOQ-GAWUUDPSSA-N 0.000 description 1
- OIRDTQYFTABQOQ-SXVXDFOESA-N Adenosine Natural products Nc1ncnc2c1ncn2[C@@H]3O[C@@H](CO)[C@H](O)[C@@H]3O OIRDTQYFTABQOQ-SXVXDFOESA-N 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 241000256173 Aedes albopictus Species 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N Ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N BRL-49594 Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 108010081589 Becaplermin Proteins 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 229940098773 Bovine Serum Albumin Drugs 0.000 description 1
- 108091003117 Bovine Serum Albumin Proteins 0.000 description 1
- 229940077737 Brain-Derived Neurotrophic Factor Drugs 0.000 description 1
- 108090000715 Brain-Derived Neurotrophic Factor Proteins 0.000 description 1
- 102000004219 Brain-Derived Neurotrophic Factor Human genes 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 229940107161 Cholesterol Drugs 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- GRRNUXAQVGOGFE-UHFFFAOYSA-N Destomysin Chemical compound OC1C(NC)CC(N)C(O)C1OC1C2OC3(C(C(O)C(O)C(C(N)CO)O3)O)OC2C(O)C(CO)O1 GRRNUXAQVGOGFE-UHFFFAOYSA-N 0.000 description 1
- 241000255601 Drosophila melanogaster Species 0.000 description 1
- 102100004921 EDN1 Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 108010072834 Endothelin-1 Proteins 0.000 description 1
- ZUBDGKVDJUIMQQ-UBFCDGJISA-N Endothelin-1 Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(O)=O)NC(=O)[C@H]1NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](C(C)C)NC(=O)[C@H]2CSSC[C@@H](C(N[C@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N2)=O)NC(=O)[C@@H](CO)NC(=O)[C@H](N)CSSC1)C1=CNC=N1 ZUBDGKVDJUIMQQ-UBFCDGJISA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 210000003743 Erythrocytes Anatomy 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 102100008634 FGF2 Human genes 0.000 description 1
- 101700082364 FGF2 Proteins 0.000 description 1
- 101700010264 FGF5 Proteins 0.000 description 1
- 102100007408 FGF5 Human genes 0.000 description 1
- 241000272184 Falconiformes Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 102000003971 Fibroblast Growth Factor 1 Human genes 0.000 description 1
- 108090000386 Fibroblast Growth Factor 1 Proteins 0.000 description 1
- 102000003974 Fibroblast Growth Factor 2 Human genes 0.000 description 1
- 108090000379 Fibroblast Growth Factor 2 Proteins 0.000 description 1
- 102000003967 Fibroblast Growth Factor 5 Human genes 0.000 description 1
- 108090000380 Fibroblast Growth Factor 5 Proteins 0.000 description 1
- 102000003968 Fibroblast Growth Factor 6 Human genes 0.000 description 1
- 108090000382 Fibroblast Growth Factor 6 Proteins 0.000 description 1
- 108090000368 Fibroblast Growth Factor 8 Proteins 0.000 description 1
- 102000003956 Fibroblast Growth Factor 8 Human genes 0.000 description 1
- 102000003957 Fibroblast Growth Factor 9 Human genes 0.000 description 1
- 108090000367 Fibroblast Growth Factor 9 Proteins 0.000 description 1
- 102000004864 Fibroblast growth factor 10 Human genes 0.000 description 1
- 108090001047 Fibroblast growth factor 10 Proteins 0.000 description 1
- 101700015668 GSTO Proteins 0.000 description 1
- 229960002743 Glutamine Drugs 0.000 description 1
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 1
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100016400 HBEGF Human genes 0.000 description 1
- 101700029736 HBEGF Proteins 0.000 description 1
- 239000012593 Hanks’ Balanced Salt Solution Substances 0.000 description 1
- 206010073071 Hepatocellular carcinoma Diseases 0.000 description 1
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 1
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 229940097277 Hygromycin B Drugs 0.000 description 1
- 102100015977 IL16 Human genes 0.000 description 1
- 101700036616 IL16 Proteins 0.000 description 1
- 102000020344 Insulin-Like Growth Factor Binding Proteins Human genes 0.000 description 1
- 108091022066 Insulin-Like Growth Factor Binding Proteins Proteins 0.000 description 1
- 102400000022 Insulin-Like Growth Factor II Human genes 0.000 description 1
- 108090001117 Insulin-Like Growth Factor II Proteins 0.000 description 1
- 102000004218 Insulin-like growth factor I Human genes 0.000 description 1
- 108090000723 Insulin-like growth factor I Proteins 0.000 description 1
- 108090000174 Interleukin-10 Proteins 0.000 description 1
- 108090000177 Interleukin-11 Proteins 0.000 description 1
- 108010065805 Interleukin-12 Proteins 0.000 description 1
- 108090000176 Interleukin-13 Proteins 0.000 description 1
- 102000003812 Interleukin-15 Human genes 0.000 description 1
- 108090000172 Interleukin-15 Proteins 0.000 description 1
- 102000013691 Interleukin-17 Human genes 0.000 description 1
- 108050003558 Interleukin-17 family Proteins 0.000 description 1
- 102000003810 Interleukin-18 Human genes 0.000 description 1
- 108090000171 Interleukin-18 Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 108090000978 Interleukin-4 Proteins 0.000 description 1
- 108010002616 Interleukin-5 Proteins 0.000 description 1
- 108010002586 Interleukin-7 Proteins 0.000 description 1
- 108010002335 Interleukin-9 Proteins 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N Kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 210000002510 Keratinocytes Anatomy 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 108010085895 Laminin Proteins 0.000 description 1
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 1
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 1
- 210000004185 Liver Anatomy 0.000 description 1
- 210000004072 Lung Anatomy 0.000 description 1
- 238000000134 MTT assay Methods 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 108020004999 Messenger RNA Proteins 0.000 description 1
- 230000036740 Metabolism Effects 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 210000001616 Monocytes Anatomy 0.000 description 1
- 240000001307 Myosotis scorpioides Species 0.000 description 1
- 229940032018 Neurotrophin 3 Drugs 0.000 description 1
- 102000004230 Neurotrophin-3 Human genes 0.000 description 1
- 108090000742 Neurotrophin-3 Proteins 0.000 description 1
- 102000003683 Neurotrophin-4 Human genes 0.000 description 1
- 108090000099 Neurotrophin-4 Proteins 0.000 description 1
- 210000000440 Neutrophils Anatomy 0.000 description 1
- 101710021413 ORF VII Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241000283898 Ovis Species 0.000 description 1
- 101700082933 PDGFA Proteins 0.000 description 1
- 102100007812 PDGFA Human genes 0.000 description 1
- 102100007815 PDGFB Human genes 0.000 description 1
- 101700063947 PDGFB Proteins 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 229920000954 Polyglycolide Polymers 0.000 description 1
- 210000003324 RBC Anatomy 0.000 description 1
- 239000007759 RPMI Media 1640 Substances 0.000 description 1
- 241000700157 Rattus norvegicus Species 0.000 description 1
- 102000007312 Recombinant Proteins Human genes 0.000 description 1
- 108010033725 Recombinant Proteins Proteins 0.000 description 1
- 210000000717 Sertoli cell Anatomy 0.000 description 1
- LXMSZDCAJNLERA-ZHYRCANASA-N Spironolactone Chemical compound C([C@@H]1[C@]2(C)CC[C@@H]3[C@@]4(C)CCC(=O)C=C4C[C@H]([C@@H]13)SC(=O)C)C[C@@]21CCC(=O)O1 LXMSZDCAJNLERA-ZHYRCANASA-N 0.000 description 1
- 241000256251 Spodoptera frugiperda Species 0.000 description 1
- 102100008604 TYMP Human genes 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 108091000099 Thymidine Phosphorylase Proteins 0.000 description 1
- SHGAZHPCJJPHSC-NWVFGJFESA-N Tretinoin Chemical compound OC(=O)/C=C(\C)/C=C/C=C(C)C=CC1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-NWVFGJFESA-N 0.000 description 1
- 229960001727 Tretinoin Drugs 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 229960004854 VIRAL VACCINES Drugs 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 150000001280 alpha hydroxy acids Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000003868 ammonium compounds Chemical class 0.000 description 1
- 229960003942 amphotericin B Drugs 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000038129 antigens Human genes 0.000 description 1
- 108091007172 antigens Proteins 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 229960000070 antineoplastic Monoclonal antibodies Drugs 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 239000005667 attractant Substances 0.000 description 1
- 230000001580 bacterial Effects 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 101710026424 buc Proteins 0.000 description 1
- 229910021388 buckminsterfullerene Inorganic materials 0.000 description 1
- 239000008366 buffered solution Substances 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- 239000011852 carbon nanoparticle Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000001516 cell proliferation assay Methods 0.000 description 1
- 239000002458 cell surface marker Substances 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 238000002659 cell therapy Methods 0.000 description 1
- 230000003833 cell viability Effects 0.000 description 1
- 230000001413 cellular Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 230000031902 chemoattractant activity Effects 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 230000001886 ciliary Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000003271 compound fluorescence assay Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003247 decreasing Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000009509 drug development Methods 0.000 description 1
- 229940079593 drugs Drugs 0.000 description 1
- 238000002296 dynamic light scattering Methods 0.000 description 1
- 230000000459 effect on growth Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000002919 epithelial cells Anatomy 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 210000003527 eukaryotic cell Anatomy 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000011124 ex vivo culture Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N fe2+ Chemical class [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 230000001605 fetal Effects 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 101700034648 fgf8b Proteins 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 229940098448 fibroblast growth factor 7 Drugs 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 229910003472 fullerene Inorganic materials 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 150000002337 glycosamines Chemical class 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000001771 impaired Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012577 media supplement Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229920002106 messenger RNA Polymers 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000035786 metabolism Effects 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 238000007431 microscopic evaluation Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000006011 modification reaction Methods 0.000 description 1
- 229960000060 monoclonal antibodies Drugs 0.000 description 1
- 102000005614 monoclonal antibodies Human genes 0.000 description 1
- 108010045030 monoclonal antibodies Proteins 0.000 description 1
- 230000000877 morphologic Effects 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229960004927 neomycin Drugs 0.000 description 1
- 210000004255 neuroglia Anatomy 0.000 description 1
- 229940097998 neurotrophin 4 Drugs 0.000 description 1
- 230000003287 optical Effects 0.000 description 1
- 230000003204 osmotic Effects 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 108010000685 platelet-derived growth factor AB Proteins 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000747 poly(lactic acid) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 230000002062 proliferating Effects 0.000 description 1
- 230000004952 protein activity Effects 0.000 description 1
- 230000002829 reduced Effects 0.000 description 1
- 229930002330 retinoic acid Natural products 0.000 description 1
- 239000012090 serum-supplement Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000008227 sterile water for injection Substances 0.000 description 1
- 230000004936 stimulating Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000001225 therapeutic Effects 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 210000004881 tumor cells Anatomy 0.000 description 1
- 229960005486 vaccines Drugs 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/105—Insulin-like growth factors [IGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/11—Epidermal growth factor [EGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/115—Basic fibroblast growth factor (bFGF, FGF-2)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/165—Vascular endothelial growth factor [VEGF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/10—Growth factors
- C12N2501/19—Growth and differentiation factors [GDF]
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/33—Insulin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/39—Steroid hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2501/00—Active agents used in cell culture processes, e.g. differentation
- C12N2501/30—Hormones
- C12N2501/38—Hormones with nuclear receptors
- C12N2501/395—Thyroid hormones
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2533/00—Supports or coatings for cell culture, characterised by material
- C12N2533/50—Proteins
- C12N2533/52—Fibronectin; Laminin
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
- C12N5/0031—Serum-free culture media
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N5/00—Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
- C12N5/0018—Culture media for cell or tissue culture
- C12N5/0043—Medium free of human- or animal-derived components
Abstract
Disclosed is a kit when used for improved culture of cells in vitro comprising a first container comprising a serum replacement and one or more separate containers comprising a labile factor cocktail consisting of at least two and up to six labile factors, wherein said labile factor cocktail comprises: (i) transferrin; or (ii) triiodo-L-thyronine and at least one other labile factor selected from the group consisting of insulin growth factor, epidermal growth factor, fibroblast growth factor, somatostatin, transferrin and triiodo-L-thyronine and instructions for use. es: (i) transferrin; or (ii) triiodo-L-thyronine and at least one other labile factor selected from the group consisting of insulin growth factor, epidermal growth factor, fibroblast growth factor, somatostatin, transferrin and triiodo-L-thyronine and instructions for use.
Description
KAE510519NZPR
KIT COMPRISING SERUM REPLACEMENT AND LABILE FACTORS
The present application claims the priority benefit of U.S. Provisional Patent
Application No. 61/558,740, filed November 11, 2011, incorporated by reference herein in its
entirety.
FIELD OF THE INVENTION
The present disclosure, relates, in general, to a kit for culturing cells comprising a
serum replacement and one or more labile factors, such as growth factors, cytokines, or
hormones, wherein the serum replacement and labile factors are packaged separately in the
kit. The kit provides for extended shelf life of the components and improved efficacy and
consistency of cell growth in culture.
BACKGROUND OF THE INVENTION
Culture of cells, e.g., mammalian cells or insect cells, for in vitro experiments or ex
vivo culture for administration to a human or animal is an important tool for the study and
treatment of human diseases. Cell culture is widely used for the production of various
biologically active products, such as viral vaccines, monoclonal antibodies, polypeptide
growth factors, hormones, enzymes and tumor specific antigens. However, many of the
media or methods used to culture the cells comprise components that can have negative
effects on cell growth and/or maintenance of an undifferentiated cell culture. For example,
mammalian or insect cell culture media is often supplemented with blood-derived serum,
such as fetal calf serum (FCS) or fetal bovine serum (FBS,) in order to provide growth
factors, carrier proteins, attachment and spreading factors, nutrients and trace elements that
promote proliferation and growth of cells in culture. However, the factors found in FCS or
FBS, such as transforming growth factor (TGF) beta or retinoic acid, can promote
differentiation of certain cell types (Ke et al., Am J Pathol. 137:833-43, 1990) or initiate
unintended downstream signaling in the cells that promotes unwanted cellular activity in
culture (Veldhoen et al., Nat Immunol. 7(11):1151-6, 2006).
Additionally, the uncharacterized nature of the serum composition and lot-to-lot
variation of the serum make use of a serum replacement and culture in serum-free media
desirable (Pei et al., Arch Androl. 49(5):331-42, 2003). Moreover, for cells, recombinant
proteins or vaccines for therapeutic use that have been grown in cell culture, the addition of
304195635
KAE510519NZPR
animal-derived components is undesirable due to potential virus contamination and/or to the
potential immunogenic effect of the animal proteins when administered to humans.
Serum replacements have been developed in attempts to minimize the effects of FCS
on cell culture, as well as minimize the amount of animal protein used for culture of human
cells. Serum replacement, such as KNOCKOUT™ serum replacement (Invitrogen, Carlsbad,
CA), is termed a chemically defined culture medium, lacking serum and containing essential
nutrients and other proteins for cell growth. KNOCKOUT SR™ contains protein factors, all
of which have a short half life included in the commercial formulation. KNOCKOUT SR™
cannot be used as a replacement for FBS in the plating of feeder cells due to the lack of
attachment factors, which results in inadequate cell attachment in this formulation. PC-1™
serum free media (Lonza, Walkersville, MD) is a low-protein, serum-free medium formulated
in a specially modified DMEM/F12 media base and contains a complete HEPES buffering
system with known amounts of insulin, transferrin, fatty acids and proprietary proteins. The
transferrin in PC-1 media exhibits a half life of 2-4 weeks in solution.
Cellgro COMPLETE™ (Cellgro, Manassas, VA) is a serum-free, low-protein
formulation based on a mix of DMEM/F12, RPMI 1640 and McCoy's 5A. Cellgro
COMPLETE™ does not contain insulin, transferrin, cholesterol, growth or attachment
factors. Cellgro COMPLETE™ comprises a mixture of trace elements and high molecular
weight carbohydrates, extra vitamins, a non-animal protein source, and bovine serum albumin
(1 g/L). Cellgro FREE™ (Cellgro, Manassas, VA) is a serum-free and protein-free growth
medium that does not contain any hormones or growth factors.
Serum-free medias are also described in International Patent Publication Nos.
WO2009023194, WO2008137641, WO2006017370, WO2001011011, WO2007071389,
WO2007016366, WO2006045064, WO2003064598, WO2001011011, US Patent Publication
Nos. US20050037492, US20080113433, US20080299540, US Patent Nos. 5,324,666,
6,162,643, 6,103,529, 6,048,728, 7,709,229 and European Patent Application No.
EP2243827.
US Patent 7,220,538 describes a cell culture media comprising lipophilic
nanoparticles and base nutritive media.
[008A] It is an object of the present invention to provide a kit when used for improved
culture of cells in vitro and/or a use of a kit that overcome or ameliorate at least one of the
304195635
KAE510519NZPR
disadvantages of the prior art. Other objects of the invention will be apparent from the
description and from the claims and are to be read disjunctively and with the alternative
object of to at least provide the public with a useful choice.
SUMMARY
The present disclosure provides a kit comprising reagents for culture of cells in vitro.
The kit provides serum replacement and labile factors, packaged in separate containers,
which when used for cell culture allows for improved growth and consistency of cells grown
using the reagents provided in the kit described herein.
In various aspects, the disclosure provides a kit for improved culture of cells in vitro
comprising a first container comprising a serum replacement and one or more separate
containers comprising at least one labile factor, such as a growth factor, and instructions for
use.
[010A] In various embodiments, the disclosure provides a kit when used for improved
culture of cells in vitro comprising a first container comprising a serum replacement and one
or more separate containers comprising a labile factor cocktail consisting of at least two and
up to six labile factors, wherein said labile factor cocktail comprises: (i) transferrin; or (ii)
triiodo-L-thyronine and at least one other labile factor selected from the group consisting of
insulin growth factor, epidermal growth factor, fibroblast growth factor, somatostatin,
transferrin and triiodo-L-thyronine and instructions for use.
In various embodiments, the serum replacement comprises, i) liposomes and ii) base
nutritive media. In a related embodiment, the liposome is a nanoparticle.
In various embodiments, the liposomes comprise lipids, fatty acids, sterols and/or
free fatty acids. In various embodiments, the nanoparticle has a mean diameter ranging from
about 50 to 500 nm, from about 100 nm to about 300 nm or from about 100 to 200 nm.
In various embodiments, the serum replacement is added to a basic media prior to
cell culture. Standard basic media are known in the art and commercially available.
Examples of such media include, but are not limited to, Dulbecco's Modified Eagle's Medium
(DMEM), DMEM F12, Iscove’s Modified Dulbecco’s Medium, Ham's Nutrient mixture F-
, Roswell Park Memorial Institute Medium (RPMI), MCDB 131, Click’s medium,
304195635
KAE510519NZPR
McCoy s 5A Medium, Medium 199, William's Medium E, and insect media such as Grace's
medium and TNM-FH.
Any of these media are optionally supplemented with salts, amino acids, vitamins,
buffers, nucleotides, antibiotics, trace elements, and glucose or an equivalent energy source.
Other optional supplements may also be included at appropriate concentrations that would be
known to those skilled in the art. Media supplements are well-known in the art and
commercially available, and are described in greater detail in the Detailed Description.
In various embodiments, it is further contemplated that the serum replacement itself
comprises the elements of a base media and supplements as described above, e.g., salts,
amino acids, vitamins, buffers, nucleotides, antibiotics, trace elements, and glucose or an
equivalent energy source, such that the serum replacement is provided as a serum-free
complete media.
In various embodiments, the labile factor is in frozen, liquid or lyophilized form.
In various embodiments, the labile factor is a growth factor, cytokine, a chemokine,
a hormone (steroid hormone or peptide hormone), an iron transporter, a peptide factor or a
steroid.
In various embodiments, the hormone is selected from the group consisting of
insulin, somatastatin, growth hormone, hydrocortisone, dexamethasone 3,3 ,5-Triiodo-L-
thyronine, and L-Thyroxine.
In various embodiments, the labile factor is a growth factor selected from the group
consisting of insulin growth factor (IGF), epidermal growth factor (EGF), fibroblast growth
factor (FGF), somatostatin, and triiodo-L-thyronine. Additional growth factors contemplated
for use in the kit are known in the art and described further in the Detailed Description.
In various embodiments, the labile factor is a human labile factor. In various
embodiments, the labile factor is a rodent (e.g., mouse, rat) labile factor.
In various embodiments, the labile factor is packaged such that when it is added to
the serum replacement a final concentration of the labile factor is in the range from about
0.05 to 250 ng/ml, from about 0.05 to 100 ng/ml, from about 0.05 to 50 ng/ml, from about
0.05 to 10 ng/ml, from about 0.1 to 5 ng/ml, from about 0.5 to 2.5 ng/ml, or from about 1 to 5
304195635
KAE510519NZPR
ng/ml. It is further contemplated that the labile factor is in a final concentration of about
0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 ng/ml.
In various embodiments, the growth factor is packaged such that when it is added to
the serum replacement a final concentration of the growth factor is in the range from about
0.05 to 250 ng/ml, from about 0.05 to 100 ng/ml, from about 0.05 to 50 ng/ml, from about
0.05 to 10 ng/ml, from about 0.1 to 5 ng/ml, from about 0.5 to 2.5 ng/ml, or from about 1 to 5
ng/ml. It is further contemplated that the growth factor or cytokine is in a final concentration
of about 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 ng/ml. In various embodiments, the
growth factor is a human growth factor. In various embodiments, the growth factor is a
rodent (e.g., mouse, rat) growth factor.
In various embodiments, the serum replacement further comprises an iron source or
an iron transporter. In various embodiments, the iron source or iron transporter is selected
from the group consisting of transferrin, lactoferrin, ferrous sulphate, ferrous citrate, ferric
citrate, ferric ammonium citrate, ferric ammonium oxalate, ferric ammonium fumarate, ferric
ammonium malate and ferric ammonium succinate.
In various embodiments, the serum replacement further comprises a copper source or
copper transporter (e.g., GHK-Cu). Exemplary copper sources include, but are not limited to,
copper chloride and copper sulfate.
In various embodiments, it is contemplated that the serum replacement and one or
more labile factors is not intended to cause differentiation of the cells in culture. In various
embodiments, the serum replacement media and one or more labile factors do not cause
differentiation of the cells in culture.
In various embodiments, the kit further comprises a container comprising an agent
for promoting cell adhesion. In various embodiments, the agent that promotes cell adhesion
is selected from the group consisting of collagen, fibronectin, vitronectin, synthetic
microcarriers and wrapped carbon tubes.
In various embodiments, the iron source or iron transporter, copper source or cell
adhesion agent is packaged such that when it is added to the serum replacement a final
concentration of the iron transporter, copper source or cell adhesion agent is in the range from
about 0.05 to 250 ng/ml, from about 0.05 to 100 ng/ml, from about 0.05 to 50 ng/ml, from
304195635
KAE510519NZPR
about 0.05 to 10 ng/ml, from about 0.1 to 5 ng/ml, from about 0.5 to 2.5 ng/ml, or from about
1 to 5 ng/ml. It is further contemplated that the iron transporter, copper source or cell
adhesion agent is in a final concentration of about 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10
ng/ml.
In various embodiments, the labile factor supplement is formulated as a cocktail
comprising two, three, four, five or more of IGF, EGF, FGF, transferrin, somatostatin, and
triiodo-L-thyronine. In various embodiments, the FGF is basic FGF (bFGF, FGF-2) or acidic
FGF (aFGF, FGF-1).
In various embodiments, the growth factors in the cocktail are packaged such that
when added to the serum replacement a final concentration of IGF is from 0.5 to 3 ng/ml, a
final concentration of EGF is from 1-10 ng/ml, a final concentration of FGF is from 3-10
ng/ml, a final concentration of transferrin is from 3-10 ng/ml, a final concentration of
somatostatin and triiodo-L-thyronine is from 5-15 ng/ml. In various embodiments, the IGF is
at a final concentration of 1 ng/ml. In various embodiments, the EGF and FGF are at a final
concentration of 5 ng/ml. In various embodiments the transferrin is at a final concentration of
ng/ml. In various embodiments, the somatastatin and triiodo-L-thyronine are at a final
concentration of 10 ng/ml.
In various embodiments, the kit comprises vitronectin packaged such that when
added to the serum replacement the final concentration of vitronectin is at a concentration
from 100-500 ng/ml. In various embodiments, the vitronectin is at a final concentration of
250 ng/ml.
In various embodiments, the serum replacement is animal-component free.
In various embodiments, the separately packaged labile factor, such as a growth
factor, has a longer half-life when introduced into the serum replacement than the same labile
factor when pre-packaged in the serum replacement or a basic media.
In various embodiments, packaging the one or more labile factors separately from
the serum replacement improves the growth and consistency of the cell in cell culture
compared to cell culture with a media pre-packaged to contain the labile factor. For example,
it is contemplated that the appearance of the cells in culture is consistent and the cells expand
304195635
KAE510519NZPR
at a regular rate compared to growth of cells in another media prepackaged to contain the
labile factor(s).
In various embodiments, the cells are selected from the group consisting of
mammalian cells and insect cells. In various embodiments, the cell is isolated from a
mammalian subject. In various embodiments, the cell is a primary culture of a cell line. In
various embodiments, the cell is selected from the group consisting of pluripotent stem cells,
embryonic stem cells, bone marrow stromal cells, hematopoietic progenitor cells, lymphoid
stem cells, myeloid stem cells, T cells, B cells, macrophages, hepatic cells, pancreatic cells,
and cell lines.
Mammalian cell lines contemplated include, but are not limited to, CHO, CHOK1,
DXB-11, DG-44, CHO/-DHFR, CV1, COS-7, HEK293, BHK, TM4, VERO, HELA, MDCK,
BRL 3A, W138, Hep G2, SK-Hep, MMT, TRI, MRC 5, FS4, a T cell line (e.g., Jurkat ), a B
cell line (e.g., BJAB, EW36, CA46, ST486 and MC116, Raji, Namalva and Daudi), 3T3,
RIN, A549, PC12, K562, PER.C6®, SP2/0, NS-0, U20S, HT1080, hybridomas, cancer cell
lines, and other cell lines well-known in the art. Insect cell lines contemplated include, but
are not limited to, Sf9, Sf21, HIGH FIVE™, EXPRESSF+® , S2, Tn5, TN-368, BmN,
Schneider 2, D2, C6/36 and KC cells.
In various embodiments, the serum replacement and the one or more labile factor are
combined within 1, 2, 3, 4, 5, 6 or 7 days of use in the cell culture.
In one embodiment, the serum replacement is packaged in a volume of 10 ml, 50 ml,
100 ml, 500 ml or 1L. In a related embodiment, the serum replacement is packaged in a 1X,
5X, 10X or 20X solution.
In various embodiments, the kit further comprises selection or induction factors,
including an antibacterial, anti-fungal or anti-microbial agent. Exemplary agents
contemplated include, but are not limited to, gentamicin, ampicillin, amphotericin B,
penicillin, streptomycin, hygromycin B, kanamycin, neomycin, methotrexate, isopropyl -D-
1-thiogalactopyranoside (IPTG), and other selection or induction factors known in the art, or
combinations thereof.
In various embodiments, the container is selected from the group consisting of a
tube, vial, ampoule, and bottle. It is contemplated that the container is made from material
304195635
KAE510519NZPR
well-known in the art, including, but not limited to, glass, polypropylene, polystyrene, and
other plastics.
In various embodiments, the container is coated to prevent loss of protein activity.
Coating includes additives to the container that prevent the growth factor or other protein in a
container from adhering to the container wall. Additives include, but are not limited to, non-
animal derived carrier proteins, surfactants, amino acids, and sugars. It is contemplated that
additives are adapted for the lyophilized forms or the aqueous forms of growth factor.
In various embodiments, the kit further comprises cells packaged in a separate
container.
In another aspect, the disclosure contemplates use of a kit as described herein for
culture of cells in vitro.
It is understood that each feature or embodiment, or combination, described herein is
a non-limiting, illustrative example of any of the aspects of the invention and, as such, is
meant to be combinable with any other feature or embodiment, or combination, described
herein. Each of these types of embodiments is a non-limiting example of a feature that is
intended to be combined with any other feature, or combination of features, described herein
without having to list every possible combination. Such features or combinations of features
apply to any of the aspects of the invention. Where examples of values falling within ranges
are disclosed, any of these examples are contemplated as possible endpoints of a range, any
and all numeric values between such endpoints are contemplated, and any and all
combinations of upper and lower endpoints are envisioned.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates that culture of cells with media containing serum replacement
(SR) in which growth factors were co-manufactured with the serum replacement (combined
a significant period of time prior to cell culture) (Medium+10% Co-manufactured SR) does
not promote cell proliferation even after stimulation in vitro (Figure 1A), whereas culture
with serum replacement to which growth factors were added just prior to cell culture
(Media+10% SR+Growth Factors) results in cell proliferation (Figure 1B). Proliferation
expressed as increase in optical density (OD) at 450 nm.
304195635
KAE510519NZPR
DETAILED DESCRIPTION
The present disclosure provides a kit for culture of cells in vitro, comprising a serum
replacement media and a labile factor, wherein the serum replacement and the labile factor
are packaged separately in the kit. The kit provides for improved cell culture conditions
compared to other serum free medias or serum replacements comprising labile factors by
packaging the labile factors, such as growth factors, cytokines, hormones and the like,
separately from the serum replacement or media composition. The present kit provides
advantages over other serum replacements or medias in that separate packaging of the labile
factor provides for improved half-life of the labile factor and a more efficient and consistent
cell growth in culture. Not to be bound by theory, it is believed that the inclusion of a labile
factor, such as growth factors, cytokines, or hormones, in the media when shipped or addition
of the labile factor too long prior to cell culture reduces the longevity and potency of the
factor when used for cell culture, resulting in sub-optimal growth or survival of the cells in
vitro. The present kit overcomes this problem and provides advantages heretofore
undisclosed in the art.
Definitions
As used herein “serum replacement” or “serum replacement media” refers to a
composition that can be used in conjunction with a basal media or as a complete media in
order to promote cell growth and survival in culture. In various embodiments, serum
replacement is used in basal or complete media as a replacement for any serum that is
characteristically added to media for culture of cells in vitro. It is contemplated that the
serum replacement comprises proteins and other factors for growth and survival of cells in
culture. In various embodiments, the serum replacement is added to a basal media prior to
use in cell culture. It is further contemplated that, in various embodiments, a serum
replacement may comprise a base media and base nutrients such as salts, amino acids,
vitamins, trace elements, and the like, such that the serum replacement is useful as a serum-
free complete media for cell culture.
As used herein a “basal media”, “base media”, “base medium” or “base nutritive
media” refers to a basal salt nutrient or an aqueous solution of salts and other elements that
provide cells with water and certain bulk inorganic ions essential for normal cell metabolism
and maintains intra- and extra-cellular osmotic balance. In various embodiments, a base
media comprises at least one carbohydrate as an energy source, and/or a buffering system to
304195635
KAE510519NZPR
maintain the medium within the physiological pH range. Examples of commercially
available basal media include, but are not limited to, Dulbecco's Modified Eagle's Medium
(DMEM), Minimal Essential Medium (MEM), Basal Medium Eagle (BME), RPMl 1640,
Ham's F- 10, Ham's F-12, -Minimal Essential Medium ( MEM), Glasgow's Minimal
Essential Medium (G-MEM), Iscove's Modified Dulbecco's Medium, or a general purpose
media modified for use with pluripotent cells, such as X-VIVO (Lonza) or a hematopoeitic
base media. A base media can be supplemented with nutrients as described in greater detail
in the Detailed Description. A “complete media” is a cell culture medium with growth
supplements already added to basal medium.
As used herein, “labile factor” refers to a substance that functions in a specific
biochemical reaction or bodily process and that can undergo a chemical change, for example,
such that the factor can be degraded over time. Exemplary labile factors include, but are not
limited to, growth factors, cytokines, chemokines, hormones (steroid and peptide hormones),
iron transporters, peptide factors and steroids.
As used herein, “growth factor” refers to an agent that promotes growth,
proliferation or differentiation of cells. Growth factors contemplated include, but are not
limited to, such agents as cytokines, chemokines, or peptide growth factors. Growth factors
contemplated for use in the present kit are well-known in the art and described further in the
Detailed Description. In various embodiments, the growth factor is a human growth factor.
In various embodiments, the growth factor is a rodent (e.g., mouse, rat) growth factor.
In various embodiments, growth factors or labile factors are general or non-specific
growth factors that promote growth of most cell types. In one embodiment, the growth factor
is selected from the group consisting of insulin growth factor, epidermal growth factor,
fibroblast growth factor, somatostatin, triiodo-L-thyronine., interleukin (IL)-2, IL-6 or IL-3.
In other embodiments, the growth factor is specific to promote growth of a particular cell
type.
In various embodiments, the labile factor is supplied as a single factor or as a
mixture comprising two or more labile factors. A mixture of two or more labile factors is
referred to herein as a labile factor cocktail. In various embodiments, the labile factor cocktail
comprises two or more growth factors.
304195635
KAE510519NZPR
It is contemplated that when the labile factors are packaged, they are packaged such
that when added to the serum replacement the labile factor is at a final concentration
appropriate for use in cell culture. It is understood that if the specification refers to a
concentration of a labile factor, it is referring to the final concentration of that factor as it is
used in the serum replacement or cell culture media.
As used herein, “liposome” refers to a closed structure comprising an outer lipid bi-
or multi-layer membrane surrounding an internal aqueous space. Liposomes may be multi-
laminar or unilaminar. The liposome is contemplated to range in size from 5 to 10 μM in
diameter to nanoparticle size. In certain embodiments, the liposome nanoparticle is from
about 50 to 500 nm, from about 100 nm to 300 nm or from about 100 to 200 nm in diameter.
As used herein “improved culture of cells” refers to the increased proliferation of
cells, increased growth of cells, decreased cell death, or increased protein production
(recombinant or endogenous) of cells when cultured using a kit described herein compared to
culture of the cells not using a kit described herein, e.g., using a basal medium comprising
serum replacement with growth factors added to the medium upon manufacture, and not
compared to culture of cells in medium plus an appropriate amount of serum. Increased
proliferation, increased growth and changes in cell death are measured using methods well-
known in the art, including growth curve analysis, microscopic evaluation by trypan blue,
tritiated thymidine ( H) proliferation assay, MTT assay, resazurin based assays and DNA
laddering analysis. Increased protein production of cells is measured using techniques known
in the art, including quantitation of total protein or mRNA, or quantitation of levels of a
particular protein of interest.
As used herein, the term “do not cause differentiation of the cells” or “not intended
to cause differentiation of cells” refers to a state of development of the cell in culture,
wherein cells cultured using the kit herein do not take on the characteristics of another cell
type or differ substantially in the morphology, profile of protein production or cell surface
marker expression as a result of use of the kit herein. For stem cells and progenitor cells,
culturing cells such that they do not differentiate is used herein to mean that the cells can
proliferate in culture, but the cells remain substantially undifferentiated and express markers
of stem or progenitor cells after cell culture. For example, a stem cell or other progenitor cell
is “undifferentiated” when a substantial proportion of stem cells and their derivatives in the
population display morphological characteristics of pluripotent cells, and are able to develop
304195635
KAE510519NZPR
into multiple cell types. Characteristics of pluripotent stem cells are described in US Patent
Publication No. 20050037492 and International Patent Publication No. .
Alternatively, if the cells are already a fully differentiated cell type or a cell line, cell culture
using the kit herein does not cause these cells to differentiate as defined above.
As used herein, “animal-component free” refers to a composition in which the
components are not derived from animals. It is contemplated that the components are either
produced recombinantly or derived from plants or other sources other than isolated directly
from an animal. As used herein, animal-component free allows for recombinant production
of labile factors in animal-based cell lines.
As used herein, “container” refers to a receptacle for holding a composition such as
serum replacement, growth factor or adhesion agent. It is contemplated that a composition
useful in a kit described herein is packaged in a container for transport of the kit. Exemplary
containers include, but are not limited to, a vessel, vial, tube, ampoule, bottle, flask, and the
like. It is further contemplated that the container is adapted for packaging the serum
replacement, growth factor or adhesion agent in lyophilized, liquid or frozen form. It is
contemplated that the container is made from material well-known in the art, including, but
not limited to, glass, polypropylene, polystyrene, and other plastics.
As used herein, the term “pre-packaged” or “pre-packaged with labile factor” refers
to a serum replacement or media that was either co-manufactured with labile factors, such as
growth factors, such that the media and growth factors were combined at the time of
manufacture, or a serum replacement or media to which labile factors were added a
significant period of time prior to use, e.g., 4 months, 5 months, 6 months, or up to 1 year or
more prior to use. For example, some commercially sold serum replacement or media is
manufactured to contain factors that promote cell growth such that the product, when sold,
already contains labile factors, such as growth factors or transferrin, combined in the serum
replacement or media, i.e., is pre-packaged with the labile factors.
Serum Replacement
In various embodiments, the serum replacement comprises, i) liposomes and ii) base
nutritive media.
304195635
KAE510519NZPR
Liposomes may be multi-laminar or unilaminar. The liposome is contemplated to
range in size from 5 to 10 μM in diameter to nanoparticle size. In some embodiments, the
liposomes are nanoparticles. In certain embodiments, the nanoparticles have a mean diameter
ranging from about 50 to 500 nm, from about 100 to about 300 nm, or from about 100 to 200
nm. Liposome size can be measured using methods known in the art, including use of a
Zetasizer (Malvern Instruments, United Kingdom), which measures particle size as the
average diameter value of the entire particles by the dynamic light scattering method.
In some embodiments, the liposomes comprise lipids, fatty acids, sterols and/or free
fatty acids. Methods of making liposomes are known in the art including, liquid hydration or
solvent spherule preparation for making multi-laminar vesicles (having series of concentric
bi-layer of lipid); and sanitation, French press, solvent injection, detergent removal, reverse
phase evaporation, calcium induced fusion, microfluidization or freeze-thaw methods to
prepare unilaminar vesicles (having a single layer of lipids).
Liposome preparation is described in US Patent 7,220,538, hereby incorporated by
reference, US Patent No. 6,217,899; US Patent Publication No. 20100021531, Lichtenberg et
al., Methods Biochem Anal. 33:337-462, 1988; and G. Gregoriadis: "Liposome Technology
Liposome Preparation and Related Techniques," 2nd edition, Vol. I-III, CRC Press.
In various embodiments, the serum replacement is added to a basic media. Standard
basic media are known to in the art and commercially available. Examples of basic media
include, but are not limited to, Dulbecco's Modified Eagle's Medium (DMEM), DMEM F12
(1:1), Iscove’s Modified Dulbecco’s Medium, Ham's Nutrient mixture F-10, Roswell Park
Memorial Institute Medium (RPMI), MCDB 131, Click’s medium, McCoy s 5A Medium,
Medium 199, William's Medium E, and insect media such as Grace's medium and TNM-FH.
Any of these media are optionally supplemented with salts (such as sodium chloride,
calcium, magnesium, and phosphate), amino acids, vitamins, buffers (such as HEPES),
nucleotides (such as adenosine and thymidine), antibiotics (such as gentamicin drug), trace
elements (defined as inorganic compounds usually present at final concentrations in the
micromolar range), and glucose or an equivalent energy source. Any other necessary
supplements may also be included at appropriate concentrations that would be known to
those skilled in the art. The culture conditions, such as temperature, pH, and the like, will be
apparent to the ordinarily skilled artisan.
304195635
KAE510519NZPR
In various embodiments, the serum replacement itself comprises the elements of a
base media and supplements as described above, e.g., salts, amino acids, vitamins, buffers,
nucleotides, antibiotics, trace elements, and glucose or an equivalent energy source, such that
the serum replacement is capable of use as a serum-free complete media.
In various embodiments, the serum replacement comprises an iron source or iron
transporter. Exemplary iron sources include, but are not limited to, ferric and ferrous salts
such as ferrous sulphate, ferrous citrate, ferric citrate, ferric ammonium compounds, such as
ferric ammonium citrate, ferric ammonium oxalate, ferric ammonium fumarate, ferric
ammonium malate and ferric ammonium succinate. Exemplary iron transporters include, but
are not limited to, transferrin and lactoferrin.
In various embodiment, the serum replacement further comprises a copper source or
copper transporter (e.g., GHK-Cu). Exemplary copper sources include, but are not limited to,
copper chloride and copper sulfate.
In various embodiments, the iron source or copper source is packaged such that
when it is added to the serum replacement a final concentration of the labile factor is in the
range from about 0.05 to 250 ng/ml, from about 0.05 to 100 ng/ml, from about 0.05 to 50
ng/ml, from about 0.05 to 10 ng/ml, from about 0.1 to 5 ng/ml, from about 0.5 to 2.5 ng/ml,
or from about 1 to 5 ng/ml. It is further contemplated that the iron source or copper source is
in a final concentration of about 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 ng/ml.
Labile Factors
It is contemplated that the labile factors contemplated for use in the kit are effective
to promote growth and proliferation of cells in vitro. Labile factors include, but are not
limited to, such agents as cytokines, chemokines, hormones (steroid or peptide hormones)
iron transporters, peptide factors, steroids or a growth stimulating amine, such as histamine.
In various embodiments, the labile factor is a human labile factor. In various embodiments,
the growth factor is a rodent (e.g., mouse, rat) labile factor.
In various embodiments, labile factors or growth factors are general or non-specific
growth factors that promote growth of most cell types. In various embodiments, the growth
factor is specific for a particular cell type, e.g., promotes growth of a family of cell types or a
particular type of cell, such as lymphocytes or T cells. In various embodiments, the growth
304195635
KAE510519NZPR
factor is a human growth factor. In various embodiments, the labile factor or growth factor is
a rodent (e.g., mouse, rat) growth factor.
Exemplary growth factors contemplated for packaging in the kit include, but are not
limited to, bone morphogenic protein (BMP)-1, bone morphogenic protein-2, bone
morphogenic protein-3, bone morphogenic protein-4, bone morphogenic protein-5, bone
morphogenic protein-6, bone morphogenic protein-7, bone morphogenic protein-8, bone
morphogenic protein-9, bone morphogenic protein-10, bone morphogenic protein-11, bone
morphogenic protein-12, bone morphogenic protein-13, bone morphogenic protein-14, bone
morphogenic protein-15, brain derived neurotrophic factor, ciliary neutrophic factor,
cytokine-induced neutrophil chemotactic factor 1, cytokine-induced neutrophil chemotactic
factor 2 , cytokine-induced neutrophil chemotactic factor 2 , endothelial cell growth
factor, endothelin 1, epidermal growth factor, epithelial-derived neutrophil attractant,
fibroblast growth factor (FGF) 4, fibroblast growth factor 5, fibroblast growth factor 6,
fibroblast growth factor 7, fibroblast growth factor 8, fibroblast growth factor 8b, fibroblast
growth factor 8c, fibroblast growth factor 9, fibroblast growth factor 10, fibroblast growth
factor (acidic), fibroblast growth factor (basic), growth related protein, growth related protein
, growth related protein , growth related protein , heparin binding epidermal growth
factor, hepatocyte growth factor, insulin-like growth factor I, insulin-like growth factor II,
insulin-like growth factor binding protein, keratinocyte growth factor, leukemia inhibitory
factor, neurotrophin-3, neurotrophin-4, placenta growth factor, placenta growth factor 2,
platelet-derived endothelial cell growth factor, platelet derived growth factor, platelet derived
growth factor A chain, platelet derived growth factor AA, platelet derived growth factor AB,
platelet derived growth factor B chain, platelet derived growth factor BB, pre-B cell growth
stimulating factor, stem cell factor, transforming growth factor , transforming growth factor
, transforming growth factor 1, transforming growth factor 1.2, transforming growth
factor 2, transforming growth factor 3, latent transforming growth factor 1, transforming
growth factor binding protein I, transforming growth factor binding protein II,
transforming growth factor binding protein III, and vascular endothelial growth factor.
Exemplary cytokines for packaging in the kit include, but are not limited to,
interleukin (IL) -1, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13,
IL-14, IL-15, IL-16, IL-17, IL-18, interferon (IFN), IFN- , tumor necrosis factor (TNF) 0,
TNF1, TNF2, TNF- , macrophage colony stimulating factor (M-CSF), granulocyte-
304195635
KAE510519NZPR
monocyte colony stimulating factor (GM-CSF), granulocyte colony stimulating factor (G-
CSF), megakaryocyte colony stimulating factor (Meg-CSF), , thrombopoietin, stem cell
factor, and erythropoietin. Chemokines contemplated for use in the kit include, but are not
limited to, IP-10 and Stromal Cell-Derived Factor 1 .
Exemplary hormones contemplated for packaging in the kit include, but are not
limited to, steroid hormones and peptide hormones, such as insulin, somatastatin, growth
hormone, hydrocortisone, dexamethosone, 3,3 ,5-Triiodo-L-thyronine, and L-Thyroxine.
In various embodiments, the labile factor is selected from the group consisting
insulin growth factor (IGF), epidermal growth factor (EGF), fibroblast growth factor (FGF),
somatostatin, triiodo-L-thyronine, interleukin (IL)-2, IL-6 and IL-3.
It is contemplated that the labile factor is included in a concentration appropriate for
the cell type in the cell culture. In various embodiments, the growth factor is packaged such
that a final concentration of the growth factor or cytokine when added to the media is in the
range of from about 0.05 to 250 ng/ml, from about 0.05 to 100 ng/ml, from about 0.05 to 50
ng/ml, from about 0.05 to 10 ng/ml, from about 0.1 to 5 ng/ml, 0.5 to 2.5 ng/ml, or 1 to 5
ng/ml. It is further contemplated that the growth factor or cytokine is in a final concentration
of about 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 ng/ml.
In various embodiments, the labile factor is formulated as a cocktail comprising two,
three, four, five, six or more labile factors described herein. In various embodiments, the
labile factor supplement is formulated as a cocktail comprising two, three, four, five or more
of IGF, EGF, FGF, transferrin, somatostatin, and triiodo-L-thyronine.
In various embodiments, the growth factors in the cocktail are packaged such that,
when added to the serum replacement, a final concentration of IGF is from 0.5 to 3 ng/ml, a
final concentration of EGF is from 1-10 ng/ml, a final concentration of FGF is from 3-10
ng/ml, a final concentration of transferrin is from 3-10 ng/ml, a final concentration of
somatostatin and triiodo-L-thyronine is from 5-15 ng/ml. In various embodiments, the IGF is
at a final concentration of 1 ng/ml. In various embodiments, the EGF and FGF are at a final
concentration of 5 ng/ml. In various embodiments the transferrin is at a final concentration of
ng/ml. In various embodiments, the somatastatin and triiodo-L-thyronine are at a final
concentration of 10 ng/ml.
304195635
KAE510519NZPR
It is contemplated that the serum replacement media and one or more labile factor
are intended to not cause differentiation of the cells in culture. In various embodiments, the
serum replacement media and one or more labile factors do not cause differentiation of the
cells in culture.
In various embodiments, the kit further comprises a container comprising a factor for
promoting cell adhesion. In various embodiments, the factor that promotes cell adhesion is
selected from the group consisting of collagen, fibronectin, vitronectin, gelatin, laminin,
synthetic microcarriers and wrapped carbon tubes.
In various embodiments, the cell adhesion agent is packaged such that when it is
added to the serum replacement a final concentration of the cell adhesion agent is in the range
from about 0.05 to 250 ng/ml, from about 5 to 500 ng/ml, from about 50 to 500 ng/ml, from
about 100 to 500 ng/ml, from about 0.05 to 100 ng/ml, from about 0.05 to 50 ng/ml, from
about 0.05 to 10 ng/ml, from about 0.1 to 5 ng/ml, from about 0.5 to 2.5 ng/ml, or from about
1 to 5 ng/ml. It is further contemplated that the cell adhesion agent is in a final concentration
of about 0.05, 0.1, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 ng/ml.
In various embodiments, the kit comprises vitronectin packaged at a final
concentration range from 100-500 ng/ml. In various embodiments, the vitronectin is at a
final concentration of 250 ng/ml.
Synthetic microcarriers are known in the art, and include hydrogels, alpha-hydroxy
acid family polymers, such as polylactic acid, polyglycolic acid, are polycaprolactone and
mixtures thereof. Exemplary microcarriers include, but are not limited to, poly(D,L-lactide-
co-glycotide) microcarriers, poly(methyl methacrylate) (PMMA) microspheres, alginate
microgels, and gelatin microspheres. Exemplary wrapped carbon tubes, such as carbon
nanotubes (CNT), are known in the art and described in U.S. Patent Nos. 5,753,088,
,641,466; 5,292,813 and 5,558,903 and US Patent publication No. 20090148417, which
describes carbon nanotubes, such as fullerene, carbon buckyball (buckminsterfullerene),
carbon nanotube, carbon nanofiber and carbon nanoparticle. Carbon nanotubes are useful as
a multilayered shell, a multi-wall nanotube or a single-wall nanotube. In some embodiments,
the carbon nanotube is functionalized. Exemplary functional groups linked to CNT include
thiol and carboxyl groups. DNA wrapped carbon tubes are described in Lee et al.,
Angewandte Chemie International Edition 48: 5116–5120, 2009.
304195635
KAE510519NZPR
In various embodiments, the labile factor is in lyophilized, liquid or frozen form.
Methods for preserving labile factors in these different forms is well-known in the art. For
example, methods of lyophilizing protein or other material is described in Tang et al., Pharm
Res. 21:191-200, (2004) and Chang et al., Pharm Res. 13:243-9 (1996). Lyophilized material
can be reconstituted by adding back a volume of pure water or sterile water for injection
(WFI) (typically equivalent to the volume removed during lyophilization), or other
appropriate buffer [Chen, Drug Development and Industrial Pharmacy, 18:1311-1354
(1992)]. Labile factors for liquid or frozen formulation are prepared in an appropriate
buffered solution at a desired concentration that prevents aggregation or precipitation of the
growth factor as determined by one of ordinary skill.
Cell Culture
It is contemplated that the kit described herein is useful for culture of cells in vitro,
preferably for cells that typically require serum supplements or defined media for adequate
growth in vitro. Such cells include eukaryotic cells such as mammalian and insect cells.
Mammalian cells contemplated to benefit from use of the kit include, without limitation,
hamster, monkey, chimpanzee, dog, cat, bovine, porcine, mouse, rat, rabbit, sheep and human
cells. Insect cells include cells derived from Spodoptera frugiperda (caterpillar), Aedes
aegypti (mosquito), Aedes albopictus (mosquito), Drosophila melanogaster (fruitfly), and
Bombyx mori.
It is contemplated that the cells cultured with the serum replacement are
immortalized cells (a cell line) or non-immortalized (primary or secondary) cells, and can be
any of a wide variety of cell types that are found in vivo, e.g., fibroblasts, keratinocytes,
epithelial cells, ovary cells, endothelial cells, glial cells, neural cells, formed elements of the
blood (e.g., lymphocytes, bone marrow cells), chondrocytes and other bone-derived cells,
hepatocytes, pancreas cells, and precursors of these somatic cell types.
In various embodiments, the cells contemplated for use with the kit are isolated from
a mammalian subject. Cells isolated from a mammalian subject include, but are not limited
to, pluripotent stem cells, embryonic stem cells, bone marrow stromal cells, hematopoietic
progenitor cells, lymphoid stem cells, myeloid stem cells, lymphocytes, T cells, B cells,
macrophages, endothelial cells, glial cells, neural cells, chondrocytes and other bone-derived
304195635
KAE510519NZPR
cells, hepatocytes, pancreas cells, precursors of somatic cell types, and any carcinoma or
tumor derived cell.
In various embodiments, the cells are a cell line. Exemplary cell lines include, but
are not limited to, Chinese hamster ovary cells, including CHOK1, DXB-11, DG-44, and
CHO/-DHFR; monkey kidney CV1, COS-7; human embryonic kidney (HEK) 293; baby
hamster kidney cells (BHK); mouse sertoli cells (TM4); African green monkey kidney cells
(VERO); human cervical carcinoma cells (HELA); canine kidney cells (MDCK); buffalo rat
liver cells (BRL 3A); human lung cells (W138); human hepatoma cells (Hep G2; SK-Hep);
mouse mammary tumor (MMT); TRI cells; MRC 5 cells; FS4 cells; a T cell line (Jurkat), a B
cell line, mouse 3T3, RIN, A549, PC12, K562, PER.C6®, SP2/0, NS-0, U20S, HT1080,
hybridomas, tumor cells, and immortalized primary cells.
Exemplary insect cell lines, include, but not limited to, Sf9, Sf21, HIGH FIVE™,
EXPRESSF+® , S2, Tn5, TN-368, BmN, Schneider 2, D2, C6/36 and KC cells.
Serum replacement and cell culture conditions contemplated in the present kit may
be adapted to any culture substrate suitable for growing cells. Substrates having a suitable
surface include tissue culture wells, culture flasks, roller bottles, gas-permeable containers,
flat or parallel plate bioreactors or cell factories. Also contemplated are culture conditions in
which the cells are attached to microcarriers or particles kept in suspension in stirred tank
vessels.
Cell culture methods are described generally in the Culture of Animal Cells: A
Manual of Basic Technique, 6 Edition, 2010 (R. I. Freshney ed., Wiley & Sons); General
Techniques of Cell Culture (M. A. Harrison & I. F. Rae, Cambridge Univ. Press), and
Embryonic Stem Cells: Methods and Protocols (K. Turksen ed., Humana Press). Other
reference texts include Creating a High Performance Culture (Aroselli, Hu. Res. Dev. Pr.
1996) and Limits to Growth (D. H. Meadows et al., Universe Publ. 1974). Tissue culture
supplies and reagents are well-known to one of skill and commercially available.
It is understood that the cells are placed in culture at densities appropriate for the
particular cell line or isolated cell type used with the components of the kit. In certain
3 3 4 4 5 5 6
embodiments the cells are cultured at 1x10 , 5x10 , 1x10 , 5x10 , 1x10 , 5x10 , 1x10 , or
5x10 cells/ml.
304195635
KAE510519NZPR
In various embodiments, the serum replacement and the one or more labile factor or
cytokine are combined within 1, 2, 3, 4, 5, 6 or 7 days of use in the cell culture.
It is contemplated that packaging the labile factor separately from the serum
replacement improves the efficacy of the labile factor in cell culture compared to a media
packaged already comprising the labile factor. For example, it is contemplated that the half-
life of the labile factor is longer when used as in the present kit compared to media
comprising the labile factor. Further, it is contemplated that packaging the one or more labile
factors separately from the serum replacement improves the growth of the cells in cell culture
compared to cells cultured with media pre-packaged with the labile factor.
In various embodiments, the serum replacement and labile factor compositions are
packaged in a container, such as a sealed bottle or vessel or other container disclosed herein,
with a label affixed to the container or included in the package that describes use of the
compositions for use in vitro, in vivo, or ex vivo. In various aspects, the compositions are
packaged in a unit dosage form. The kit optionally includes a device suitable for combining
the labile factor with the serum replacement, and alternatively combining the labile factor and
serum replacement with a basic media. In various aspects, the kit contains a label that
describes use of the labile factor and serum replacement for cell culture.
It is further contemplated that the kit is packaged into suitable packaging material.
The term "packaging material" refers to a physical structure housing the components of the
kit. The packaging material can maintain the components sterilely, and can be made of
material commonly used for such purposes (e.g., paper, corrugated fiber, glass, plastic, foil,
ampoules, and other materials known in the art).
Additional aspects and details of the present kit will be apparent from the following
examples, which are intended to be illustrative rather than limiting.
EXAMPLES
Example 1
Serum replacement with fresh labile factor promotes cell proliferation in vitro
In order to test the ability of the serum replacement to promote growth of cells in
culture, B cells were isolated from a mouse spleen using standard techniques and stimulated
to proliferate using bacterial lipopolysaccharide (LPS) (100 ng/ml).
304195635
KAE510519NZPR
Briefly, single cell suspensions from spleens were isolated from mice by mechanical
disruption through mesh stainless steel screens. Red blood cells in the spleen samples were
lysed by hypotonic shock in Tris-NH4Cl (pH 7.3) and cells were resuspended in HBSS. Cells
were then washed again and cultured in 96-well plates (Corning-Costar, Acton, MA) at a
density of 5×10 viable cells/ml in DMEM (Life Technologies) [2 mM L-glutamine (Life
Technologies, Carlsbad, CA), 100 U/ml penicillin (Life Technologies), 100 g/ml streptomycin
(Life Technologies), 0.1 M nonessential amino acids (Life Technologies) and 5×10-5M 2-ME)]
containing 10% FBS (HyClone, Logan UT) or serum replacement, used here as a complete
media containing a base media and essential nutrients. The serum replacement used in Figure
1A was serum replacement pre-packaged or manufactured with labile factor that had been
combined over a six months prior to the performance of the experiment. The serum
replacement in Figure 1B was serum replacement in which labile factors (FGF, EFG, and IGF
and transferrin) had been added shortly before culture (e.g., within 1 day). Cells were
incubated at 37°C in a humidified atmosphere containing 7.5% CO .
Figure 1A shows that media + 10% FBS allowed for significant proliferation of B
cells when stimulated by LPS. Culture of B cells in serum replacement containing labile
factors packaged together more than 6 months prior to the experiment did not provide
sufficient nutrients to allow proliferation of B cells even after LPS stimulation (Figure 1A).
In contrast, cells cultured in serum replacement to which labile factors were added just prior
to cell culture proliferated as well as cells cultured in media containing 10% FBS
(Figure 1B).
T cells and macrophages isolated from mice and cultured in fresh 10% serum
replacement media as described above also exhibited proliferation or activation in cell
culture, respectively. In addition, CHO-K1 and A-549 cell lines adapted to and cultured in
serum replacement as above demonstrated good proliferative responses.
These results demonstrate that inclusion of labile factors in the cell culture media
when packaging the media can lead to inefficient and impaired growth and survival of cells in
culture due to breakdown of the growth factor over time. Addition of labile factors to serum
replacement shortly before use of the media in cell culture restores the ability of the serum
replacement media to enable healthy growth and proliferation of cultured cells.
304195635
KAE510519NZPR
Example 2
Growth of cell lines in serum replacement and labile factors
Growth in serum-free media can require adaptation of particular cell lines to grow
in a serum free environment. In order to determine whether cell lines can be adapted to grow
in the serum-replacement comprising freshly added labile factors, viability and growth assays
were carried out.
Cell adaptation was carried out over a period of 6-10 weeks. CHO-K1 cells and
A549-NFkB SEAP cells were seeded in 6 well plates with 2 x 10 cells per well and time
until population doubling and cell viability after 72 hours were measured. At 24, 48 and 72
hours, one well of the plate was harvested and the total number of cells counted by cytometer
and viability of the harvested cells assessed by cell morphology under a microscope.
Adapted CHO cells were grown in media plus 10% serum replacement, adapted A549 cells
were grown in media plus 10% serum replacement. Control wells were grown in media
containing 5% FBS.
CHO cells exhibited 95% viability (control, 96% viability) and cell population
doubled by approximately 30 hours (control, approximately 24 hours). A549 cells exhibited
cell doubling at approximately 3.5 days compared to approximately 2.5 days for control cells.
A549 viability and control viability were approximately 98% after 72 hours.
These results demonstrate that cell lines typically grown in media containing FBS
can be adapted to grow in media comprising the present serum replacement.
As noted above, addition of fresh labile factor(s) to culture media can improve
proliferation and viability of cultured cells. To determine if addition of fresh labile factors
has beneficial effects on cell lines cultured in serum replacement media, labile factors were
added to culture media alone or in combination and cell proliferation measured using a
Resazurin fluorescence assay following the manufacturer’s protocol (Sigma, St. Louis, MO).
An increase in fluorescence (Resazurin fluorescent units, RFU) is indicative of increased cell
proliferation in the sample.
Initial growth factors tested included insulin growth factor (IGF), vascular
endothelial growth factor (VEGF), fibroblast growth factor (FGF) and epidermal growth
factor (EGF). Culture of CHO cells (5 x 10 cells/ml) in 10% serum replacement media alone
or with growth factors, listed at the final concentration in the cell culture media as follows,
resulted in the measured RFU: (1) control, Serum replacement (SR) with no growth factor,
304195635
KAE510519NZPR
approximately 1000 RFU, (2) SR + 1 ng/ml IGF, approximately 2000 RFU; (3) SR + VEGF
and 1 ng/ml IGF, approximately 2200 RFU at all VEGF concentrations tested; (4) SR + FGF
and 1 ng/ml IGF, approximately 2700 RFU at 1.5-3.5 ng/ml FGF and approximately 3000
RFU at 5 ng/ml FGF; (5) SR + EGF, approximately 2100 RFU at all EGF concentrations
tested.
Addition of transferrin (final concentration 5 ng/ml) alone to serum replacement
improved growth of CHO cells to a small extent, but addition of growth factors (IGF and
EGF) in addition to transferrin had an improved effect on growth of cultured cells. Addition
of trasnsferrin plus IGF and EGF in the serum replacement resulted in a rate of cell
proliferation greater than 50% the rate of cells cultured in FBS, e.g., approximately 15500
RFU for SR + growth factors and transferrin compared to approximately 18000 RFU for FBS
control. The proliferation observed for the serum replacement plus added factors is a
significantly improved proliferation compared to serum replacement alone or other serum
replacements commercially available. See e.g., Lund et al., Cytotherapy 11(2):189-97, 2009,
which describes that certain serum replacements are inferior to and less consistent than
culture in FBS.
FBS provides certain factors such as adherence factors that allow adherent cells to
stick to plates more efficiently, thereby improving cell growth and speeding up the time it
takes to reach exponential growth in culture. Adherent factors were added to the serum
replacement media and the growth of adherent CHO-K1 cells was assessed. Adapted CHO-
K1 cells (5x 10 cells/ml) were cultured in control media (10% FBS) or 10% serum
replacement media plus vitronectin at 250 ng/ml final concentration and cell adherence and
morphology visualized. Cells cultured in the presence of vitronectin showed cell morphology
comparable with control cells cultured in FBS, and were adhered by approximately 24 hours
after culture. Cells cultured in serum replacement without FBS did not adhere until
approximately 96 hours after culture and do not spread well on the surface.
Growth hormones are also present in typical FBS used in culture media (Brunner et al.,
ALTEX 27: 53-62, 2010). To determine if addition of one or more hormones improved cell growth
in media containing serum replacement described herein, a mixture of hormones (somatostatin-10
ng/ml, dexamethasone-20 ng/ml, or 3,3,5-trijodo-L-thyronine-10 ng/ml), or growth factors (EGF -
ng/ml, IGF- 1 ng/ml, and FGF-5 ng/ml) (all concentrations given at final concentration in culture
media) were added to the culture media. Control cells were cultured in media plus 5% FBS.
304195635
KAE510519NZPR
Culture of CHO cells in serum replacement containing IGF, and transferrin (5 ng/ml final)
plus hormone mix resulted in proliferation measured at approximately 14000 RFU while control
proliferation was approximately 20000 RFU. Removal of dexamethasone from the hormone mix
had no effect on CHO cell proliferation. Addition of a growth factor mix (EGF, IGF and FGF) to
the culture medium containing hormones reduced proliferation to approximately 9500 RFU. These
results demonstrate that addition of hormones to the serum replacement can improve proliferation
of cells compared to culture in serum replacement containing only IGF and transferrin.
In order to minimize the number of separate vials in the kit contemplated herein, in one
aspect the labile factors are formulated in a cocktail comprising two or more of the labile factors
packaged separately from the basal serum replacement media. Prior to the present disclosure there
was prevailing thought in the field that combining multiple labile factors in a single formulation at a
concentration appropriate for culture of cells was unnecessary, complicated and difficult to carry
out under good manufacturing practice (GMP) standards. The ability to combine all the necessary
factors are beyond the production capabilities of many manufacturers. The inventors, however,
have overcome the difficulties in the field and worked with manufacturers to devise a way to
manufacture a cocktail comprising more than one labile factor for use in the kit herein.
Numerous modifications and variations in the invention as set forth in the above
illustrative examples are expected to occur to those skilled in the art. Consequently only such
limitations as appear in the appended claims should be placed on the invention.
Unless the context clearly requires otherwise, throughout the description and the claims,
the words “comprise”, “comprising”, and the like, are to be construed in an inclusive sense as
opposed to an exclusive or exhaustive sense, that is to say, in the sense of “including, but not
limited to”.
The reference to any prior art in the specification is not, and should not be taken as,
an acknowledgement or any form of suggestion that the prior art forms part of the common
general knowledge in New Zealand.
304195635
KAE510519NZPR
Claims (21)
1. A kit when used for improved culture of cells in vitro comprising a first container comprising a serum replacement and one or more separate containers comprising a labile factor cocktail consisting of at least two and up to six labile factors, wherein said labile factor cocktail comprises: (i) transferrin; or (ii) triiodo-L-thyronine and at least one other labile factor selected from the group consisting of insulin growth factor, epidermal growth factor, fibroblast growth factor, somatostatin, transferrin and triiodo-L- thyronine and instructions for use.
2. The kit of claim 1, wherein the serum replacement comprises, i) liposomes and ii) base nutritive media.
3. The kit of claim 2, wherein the liposome is a nanoparticle.
4. The kit of claim 3, wherein the nanoparticles have a mean diameter ranging from about 50 nm to about 500 nm.
5. The kit of claim 2, 3 or 4, wherein the liposome comprises lipids, fatty acids, sterols and/or free fatty acids.
6. The kit of any one of claims 1 to 5, wherein the labile factor is in frozen, liquid or lyophilized form.
7. The kit of any one of claims 1 to 6, wherein the kit comprises two, three, four, five, or six labile factors.
8. The kit of claim any one of claims 1 to 7, wherein the labile factor is packaged such that a final concentration of the growth factor when added to the media is in the range of 0.05 to 250 ng/ml.
9. The kit of any one of claims 1 to 8, further comprising an iron source or iron transporter.
10. The kit of claim 9, wherein the iron source or iron transporter is selected from the group consisting of transferrin, lactoferrin, ferrous sulphate, ferrous citrate, ferric citrate, ferric ammonium citrate, ferric ammonium oxalate, ferric ammonium fumarate, ferric ammonium malate and ferric ammonium succinate. 304195635 KAE510519NZPR
11. The kit of any one of claims 1 to 10, further comprising a copper source.
12. The kit of any one of claims 1 to 11, further comprising a container comprising an agent for promoting cell adhesion.
13. The kit of claim 12, wherein the agent that promotes cell adhesion is selected from the group consisting of collagen, fibronectin, vitronectin, synthetic microcarriers and wrapped carbon tubes.
14. The kit of any one of claims 1 to 13, wherein the labile factor cocktail consists of two or more of insulin growth factor (IGF), epidermal growth factor (EGF), fibroblast growth factor (FGF), transferrin, somatostatin, and triiodo-L-thyronine.
15. The kit of claim 14, wherein when added to the serum replacement the final concentration of IGF is from 0.5 to 3 ng/ml, the final concentration of EGF is from 1-10 ng/ml, the final concentration of FGF is from 3-10 ng/ml, the final concentration of transferrin is from 3-10 ng/ml, and the final concentration of somatostatin and triiodo-L- thyronine are from 5-15 ng/ml.
16. The kit of claim 13, wherein the vitronectin is at a final concentration range from 100- 500 ng/ml when added to the serum replacement.
17. The kit of any one of claims 1 to 18, wherein the serum replacement is animal- component free.
18. The kit of any one of claims 1 to 17, wherein the separately packaged labile factor has a longer half-life when introduced into serum replacement than the same labile factor when pre-packaged in serum replacement.
19. The kit of any one of claims 1 to 18, wherein packaging the labile factors separate from the serum replacement improves the growth of the cell in cell culture compared to culture with a media pre-packaged with the labile factor.
20. The kit of any one of claims 1 to 19, wherein the cell is selected from the group consisting of pluripotent stem cells, embryonic stem cells, bone marrow stromal cells, hematopoietic progenitor cells, lymphoid stem cells, myeloid stem cells, T cells, B cells, macrophages, hepatic cells, pancreas cells, a carcinoma cell and cell lines. 304195635 KAE510519NZPR
21. The kit of claim 20, wherein the cell line is selected from the group consisting of CHO, CHOK1, DXB-11, DG-44, CHO/-DHFR, CV1, COS-7, HEK293, BHK, TM4, VERO, HELA, MDCK, BRL 3A, W138, Hep G2, SK-Hep, MMT, TRI, MRC 5, FS4, a T cell line, a B cell line, 3T3, RIN, A549, PC12, K562, PER.C6, SP
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161558740P | 2011-11-11 | 2011-11-11 | |
US61/558,740 | 2011-11-11 | ||
PCT/US2012/064508 WO2013071151A1 (en) | 2011-11-11 | 2012-11-09 | Kit comprising serum replacement and labile factors |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ624616A NZ624616A (en) | 2017-01-27 |
NZ624616B2 true NZ624616B2 (en) | 2017-04-28 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20130130373A1 (en) | Kit Comprising Serum Replacement and Labile Factors | |
EP3326661B1 (en) | Bio-ink composition having improved physical and biological properties | |
US11492594B2 (en) | Method for producing engineered heart muscle (EHM) | |
US11198849B2 (en) | Method for stem cell culture and cells derived therefrom | |
EP3074505B1 (en) | Serum-free medium | |
JP6682429B2 (en) | Medium composition for maturing cardiomyocytes derived from pluripotent mammalian stem cells | |
Philp et al. | Complex extracellular matrices promote tissue‐specific stem cell differentiation | |
You et al. | Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide | |
CN104717987A (en) | Engineered three-dimensional connective tissue constructs and methods of making the same | |
US20060105455A1 (en) | Covalently attached collagen VI for cell attachment and proliferation | |
JP7492013B2 (en) | Use of FGF activators in culture media | |
EP3434782A1 (en) | Protein production method | |
CN108531449B (en) | Culture medium and method for directionally inducing rat embryonic stem cells to differentiate into myocardial cells | |
US20220364050A1 (en) | Method for producing culture medium composition for suspension culturing adherent cells | |
NZ624616B2 (en) | Kit comprising serum replacement and labile factors | |
WO2011077894A1 (en) | Method for enhancing formation of spheroid and culture medium for enhancing formation of spheroid | |
JP2012125207A (en) | Scaffold for culturing corneal parenchymal cell | |
Rodríguez-Seguí et al. | Influence of fabrication parameters in cellular microarrays for stem cell studies |