NZ622145B2 - High concentration antibody formulations - Google Patents
High concentration antibody formulations Download PDFInfo
- Publication number
- NZ622145B2 NZ622145B2 NZ622145A NZ62214512A NZ622145B2 NZ 622145 B2 NZ622145 B2 NZ 622145B2 NZ 622145 A NZ622145 A NZ 622145A NZ 62214512 A NZ62214512 A NZ 62214512A NZ 622145 B2 NZ622145 B2 NZ 622145B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- antibody
- months
- solution
- igg
- aqueous solution
- Prior art date
Links
- 102000004965 antibodies Human genes 0.000 title claims abstract description 554
- 108090001123 antibodies Proteins 0.000 title claims abstract description 554
- 239000000203 mixture Substances 0.000 title claims abstract description 104
- 239000000243 solution Substances 0.000 claims abstract description 358
- 239000007864 aqueous solution Substances 0.000 claims abstract description 133
- 238000009472 formulation Methods 0.000 claims abstract description 43
- 238000011026 diafiltration Methods 0.000 claims abstract description 37
- 238000004519 manufacturing process Methods 0.000 claims abstract description 19
- 230000000295 complement Effects 0.000 claims description 120
- 201000010099 disease Diseases 0.000 claims description 100
- 239000003814 drug Substances 0.000 claims description 67
- 108010063231 eculizumab Proteins 0.000 claims description 46
- 229960002224 eculizumab Drugs 0.000 claims description 45
- 210000001508 Eye Anatomy 0.000 claims description 39
- 239000003795 chemical substances by application Substances 0.000 claims description 37
- 206010039073 Rheumatoid arthritis Diseases 0.000 claims description 32
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 claims description 29
- 208000002780 Macular Degeneration Diseases 0.000 claims description 27
- UIIMBOGNXHQVGW-UHFFFAOYSA-M buffer Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 claims description 26
- 206010064930 Age-related macular degeneration Diseases 0.000 claims description 25
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 25
- FBPFZTCFMRRESA-KAZBKCHUSA-N D-Mannitol Natural products OC[C@@H](O)[C@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KAZBKCHUSA-N 0.000 claims description 25
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 25
- FBPFZTCFMRRESA-KVTDHHQDSA-N Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 25
- 238000002347 injection Methods 0.000 claims description 25
- 239000007924 injection Substances 0.000 claims description 25
- 239000000594 mannitol Substances 0.000 claims description 25
- 235000010355 mannitol Nutrition 0.000 claims description 25
- 239000000600 sorbitol Substances 0.000 claims description 25
- 206010028417 Myasthenia gravis Diseases 0.000 claims description 24
- 239000011780 sodium chloride Substances 0.000 claims description 20
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 16
- 201000006647 atypical hemolytic-uremic syndrome Diseases 0.000 claims description 15
- 239000002552 dosage form Substances 0.000 claims description 15
- 208000003343 Antiphospholipid Syndrome Diseases 0.000 claims description 11
- 101700037337 PIGA Proteins 0.000 claims description 9
- 102100012341 PIGA Human genes 0.000 claims description 9
- 238000007792 addition Methods 0.000 claims description 9
- 239000006199 nebulizer Substances 0.000 claims description 9
- 201000003045 paroxysmal nocturnal hemoglobinuria Diseases 0.000 claims description 9
- 229940071643 Prefilled Syringe Drugs 0.000 claims description 8
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 8
- 231100000562 fetal loss Toxicity 0.000 claims description 8
- 239000010452 phosphate Substances 0.000 claims description 8
- 206010059245 Angiopathy Diseases 0.000 claims description 7
- 208000006673 Asthma Diseases 0.000 claims description 7
- 239000001488 sodium phosphate Substances 0.000 claims description 7
- 229910000162 sodium phosphate Inorganic materials 0.000 claims description 7
- 238000010254 subcutaneous injection Methods 0.000 claims description 7
- 239000007929 subcutaneous injection Substances 0.000 claims description 7
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 claims description 7
- 206010012601 Diabetes mellitus Diseases 0.000 claims description 6
- 201000006417 multiple sclerosis Diseases 0.000 claims description 6
- 230000000306 recurrent Effects 0.000 claims description 6
- 230000002269 spontaneous Effects 0.000 claims description 6
- 238000007920 subcutaneous administration Methods 0.000 claims description 6
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 claims description 5
- 238000010255 intramuscular injection Methods 0.000 claims description 5
- 239000007927 intramuscular injection Substances 0.000 claims description 5
- 201000007023 thrombotic thrombocytopenic purpura Diseases 0.000 claims description 5
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 claims description 4
- 208000009094 Anemia, Hemolytic, Autoimmune Diseases 0.000 claims description 4
- 208000002267 Anti-Neutrophil Cytoplasmic Antibody-Associated Vasculitis Diseases 0.000 claims description 4
- 206010006451 Bronchitis Diseases 0.000 claims description 4
- 102000008186 Collagen Human genes 0.000 claims description 4
- 108010035532 Collagen Proteins 0.000 claims description 4
- 206010070976 Craniocerebral injury Diseases 0.000 claims description 4
- 206010014561 Emphysema Diseases 0.000 claims description 4
- 206010014989 Epidermolysis bullosa Diseases 0.000 claims description 4
- 206010021245 Idiopathic thrombocytopenic purpura Diseases 0.000 claims description 4
- 206010065579 Multifocal motor neuropathy Diseases 0.000 claims description 4
- 208000008795 Neuromyelitis Optica Diseases 0.000 claims description 4
- 206010029888 Obliterative bronchiolitis Diseases 0.000 claims description 4
- 208000005069 Pulmonary Fibrosis Diseases 0.000 claims description 4
- 208000002098 Purpura, Thrombocytopenic, Idiopathic Diseases 0.000 claims description 4
- 206010063837 Reperfusion injury Diseases 0.000 claims description 4
- 208000004644 Retinal Vein Occlusion Diseases 0.000 claims description 4
- 208000005765 Traumatic Brain Injury Diseases 0.000 claims description 4
- 201000000028 adult respiratory distress syndrome Diseases 0.000 claims description 4
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 claims description 4
- 201000003710 autoimmune thrombocytopenic purpura Diseases 0.000 claims description 4
- 201000009267 bronchiectasis Diseases 0.000 claims description 4
- 201000003848 bronchiolitis obliterans Diseases 0.000 claims description 4
- 201000005667 central retinal vein occlusion Diseases 0.000 claims description 4
- 229920001436 collagen Polymers 0.000 claims description 4
- 229960005188 collagen Drugs 0.000 claims description 4
- 201000000306 sarcoidosis Diseases 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 208000008637 Anti-Glomerular Basement Membrane Disease Diseases 0.000 claims description 3
- 208000005783 Autoimmune Thyroiditis Diseases 0.000 claims description 3
- 206010004161 Basedow's disease Diseases 0.000 claims description 3
- 206010009868 Cold type haemolytic anaemia Diseases 0.000 claims description 3
- 206010018620 Goodpasture's syndrome Diseases 0.000 claims description 3
- 208000003807 Graves Disease Diseases 0.000 claims description 3
- 201000004779 Graves' disease Diseases 0.000 claims description 3
- 208000005777 Lupus Nephritis Diseases 0.000 claims description 3
- 206010030032 Ocular disorder Diseases 0.000 claims description 3
- 241000721454 Pemphigus Species 0.000 claims description 3
- 238000009295 crossflow filtration Methods 0.000 claims description 3
- 201000001981 dermatomyositis Diseases 0.000 claims description 3
- 201000004681 psoriasis Diseases 0.000 claims description 3
- MTCFGRXMJLQNBG-UWTATZPHSA-N D-serine Chemical compound OC[C@@H](N)C(O)=O MTCFGRXMJLQNBG-UWTATZPHSA-N 0.000 claims 1
- 208000006682 alpha 1-Antitrypsin Deficiency Diseases 0.000 claims 1
- 230000000052 comparative effect Effects 0.000 claims 1
- 108090001095 Immunoglobulin G Proteins 0.000 description 193
- 241000282414 Homo sapiens Species 0.000 description 102
- 239000000178 monomer Substances 0.000 description 94
- 210000004027 cells Anatomy 0.000 description 69
- 238000003860 storage Methods 0.000 description 64
- 102000004169 proteins and genes Human genes 0.000 description 62
- 108090000623 proteins and genes Proteins 0.000 description 62
- 235000018102 proteins Nutrition 0.000 description 61
- 230000035492 administration Effects 0.000 description 40
- 108091007172 antigens Proteins 0.000 description 39
- 102000038129 antigens Human genes 0.000 description 39
- 238000000034 method Methods 0.000 description 39
- 239000000427 antigen Substances 0.000 description 37
- 230000000694 effects Effects 0.000 description 34
- 230000001225 therapeutic Effects 0.000 description 30
- 238000003998 size exclusion chromatography high performance liquid chromatography Methods 0.000 description 29
- 229960002885 Histidine Drugs 0.000 description 26
- 230000002949 hemolytic Effects 0.000 description 26
- 229920001184 polypeptide Polymers 0.000 description 25
- 235000010356 sorbitol Nutrition 0.000 description 24
- 102100012590 C3 Human genes 0.000 description 23
- MTCFGRXMJLQNBG-REOHCLBHSA-N L-serine Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 23
- 239000012465 retentate Substances 0.000 description 23
- 101710028050 C3 Proteins 0.000 description 22
- 206010018910 Haemolysis Diseases 0.000 description 22
- 206010043561 Thrombocytopenic purpura Diseases 0.000 description 22
- 229960001153 serine Drugs 0.000 description 21
- 235000001014 amino acid Nutrition 0.000 description 20
- 239000006172 buffering agent Substances 0.000 description 20
- 150000001413 amino acids Chemical class 0.000 description 19
- 238000004166 bioassay Methods 0.000 description 19
- 235000002639 sodium chloride Nutrition 0.000 description 19
- 102100007517 C5 Human genes 0.000 description 17
- 101700007095 C5 Proteins 0.000 description 17
- 229940079593 drugs Drugs 0.000 description 17
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 17
- 201000009910 diseases by infectious agent Diseases 0.000 description 16
- 210000002966 Serum Anatomy 0.000 description 15
- 125000003275 alpha amino acid group Chemical group 0.000 description 15
- 229920003013 deoxyribonucleic acid Polymers 0.000 description 15
- DHMQDGOQFOQNFH-UHFFFAOYSA-N glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 15
- 230000035772 mutation Effects 0.000 description 15
- 239000012466 permeate Substances 0.000 description 15
- 210000004369 Blood Anatomy 0.000 description 14
- 239000008280 blood Substances 0.000 description 14
- 238000003776 cleavage reaction Methods 0.000 description 14
- 230000000875 corresponding Effects 0.000 description 14
- 230000002401 inhibitory effect Effects 0.000 description 14
- 108010045030 monoclonal antibodies Proteins 0.000 description 14
- 102000005614 monoclonal antibodies Human genes 0.000 description 14
- 239000000523 sample Substances 0.000 description 14
- -1 L-histidine) Chemical compound 0.000 description 13
- 150000001720 carbohydrates Chemical class 0.000 description 13
- 230000002829 reduced Effects 0.000 description 13
- 108091005662 ADAMTS13 Proteins 0.000 description 12
- 102000001661 ADAMTS13 Protein Human genes 0.000 description 12
- 210000004408 Hybridomas Anatomy 0.000 description 12
- 210000003734 Kidney Anatomy 0.000 description 12
- 235000014633 carbohydrates Nutrition 0.000 description 12
- 230000035935 pregnancy Effects 0.000 description 12
- 150000003839 salts Chemical class 0.000 description 12
- 210000001519 tissues Anatomy 0.000 description 12
- 210000001772 Blood Platelets Anatomy 0.000 description 11
- 108010034753 Complement Membrane Attack Complex Proteins 0.000 description 11
- 210000003743 Erythrocytes Anatomy 0.000 description 11
- 102000018358 Immunoglobulins Human genes 0.000 description 11
- 108060003951 Immunoglobulins Proteins 0.000 description 11
- 210000002381 Plasma Anatomy 0.000 description 11
- 238000004113 cell culture Methods 0.000 description 11
- 230000014509 gene expression Effects 0.000 description 11
- 230000001264 neutralization Effects 0.000 description 11
- 241000894007 species Species 0.000 description 11
- 238000002560 therapeutic procedure Methods 0.000 description 11
- 102000004190 Enzymes Human genes 0.000 description 10
- 108090000790 Enzymes Proteins 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 230000024203 complement activation Effects 0.000 description 10
- 230000002068 genetic Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 230000035693 Fab Effects 0.000 description 9
- 102000001554 Hemoglobins Human genes 0.000 description 9
- 108010054147 Hemoglobins Proteins 0.000 description 9
- 229920001213 Polysorbate 20 Polymers 0.000 description 9
- 210000003324 RBC Anatomy 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 9
- 229960000070 antineoplastic Monoclonal antibodies Drugs 0.000 description 9
- 201000011510 cancer Diseases 0.000 description 9
- 108091006028 chimera Proteins 0.000 description 9
- 230000001965 increased Effects 0.000 description 9
- 229960000060 monoclonal antibodies Drugs 0.000 description 9
- 230000037361 pathway Effects 0.000 description 9
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 9
- 108010071919 Bispecific Antibodies Proteins 0.000 description 8
- 229940110715 ENZYMES FOR TREATMENT OF WOUNDS AND ULCERS Drugs 0.000 description 8
- 239000004471 Glycine Substances 0.000 description 8
- 241000282412 Homo Species 0.000 description 8
- 210000001503 Joints Anatomy 0.000 description 8
- 241000124008 Mammalia Species 0.000 description 8
- 108020004511 Recombinant DNA Proteins 0.000 description 8
- HDTRYLNUVZCQOY-LIZSDCNHSA-N Trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 8
- 230000000890 antigenic Effects 0.000 description 8
- 229940019336 antithrombotic Enzymes Drugs 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 239000000499 gel Substances 0.000 description 8
- 229940020899 hematological Enzymes Drugs 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 238000001155 isoelectric focusing Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 8
- 239000002609 media Substances 0.000 description 8
- 239000008363 phosphate buffer Substances 0.000 description 8
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 8
- 229920000053 polysorbate 80 Polymers 0.000 description 8
- 238000011084 recovery Methods 0.000 description 8
- 230000001603 reducing Effects 0.000 description 8
- 239000004094 surface-active agent Substances 0.000 description 8
- 101710038213 AKR1C4 Proteins 0.000 description 7
- 101700073818 CDR1 Proteins 0.000 description 7
- 108010053085 Complement Factor H Proteins 0.000 description 7
- 102000016550 Complement Factor H Human genes 0.000 description 7
- 229960002449 Glycine Drugs 0.000 description 7
- 210000004185 Liver Anatomy 0.000 description 7
- 208000009856 Lung Disease Diseases 0.000 description 7
- 241001465754 Metazoa Species 0.000 description 7
- 206010035226 Plasma cell myeloma Diseases 0.000 description 7
- 229940068977 Polysorbate 20 Drugs 0.000 description 7
- 102100009178 RUNX1T1 Human genes 0.000 description 7
- 101710034060 RUNX1T1 Proteins 0.000 description 7
- 230000015556 catabolic process Effects 0.000 description 7
- 230000004927 fusion Effects 0.000 description 7
- 239000003112 inhibitor Substances 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- 201000000050 myeloid neoplasm Diseases 0.000 description 7
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 7
- QZNNVYOVQUKYSC-JEDNCBNOSA-N (2S)-2-amino-3-(1H-imidazol-5-yl)propanoic acid;hydron;chloride Chemical compound Cl.OC(=O)[C@@H](N)CC1=CN=CN1 QZNNVYOVQUKYSC-JEDNCBNOSA-N 0.000 description 6
- 108009000280 Complement Activation Proteins 0.000 description 6
- 108090000056 Complement Factor B Proteins 0.000 description 6
- 102000003712 Complement Factor B Human genes 0.000 description 6
- 102000003855 L-lactate dehydrogenases Human genes 0.000 description 6
- 108091000084 L-lactate dehydrogenases Proteins 0.000 description 6
- 125000000539 amino acid group Chemical group 0.000 description 6
- 230000001580 bacterial Effects 0.000 description 6
- 230000004059 degradation Effects 0.000 description 6
- 238000006731 degradation reaction Methods 0.000 description 6
- 230000001809 detectable Effects 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 238000006062 fragmentation reaction Methods 0.000 description 6
- 239000001963 growth media Substances 0.000 description 6
- 238000004128 high performance liquid chromatography Methods 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 108020004707 nucleic acids Proteins 0.000 description 6
- 150000007523 nucleic acids Chemical class 0.000 description 6
- 230000003204 osmotic Effects 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000000717 retained Effects 0.000 description 6
- 230000003248 secreting Effects 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 235000011008 sodium phosphates Nutrition 0.000 description 6
- 206010003246 Arthritis Diseases 0.000 description 5
- 108010005144 Bevacizumab Proteins 0.000 description 5
- 206010027527 Microangiopathic haemolytic anaemia Diseases 0.000 description 5
- 229920001850 Nucleic acid sequence Polymers 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 229940068968 Polysorbate 80 Drugs 0.000 description 5
- 210000000952 Spleen Anatomy 0.000 description 5
- 206010043554 Thrombocytopenia Diseases 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 239000003146 anticoagulant agent Substances 0.000 description 5
- 229960000397 bevacizumab Drugs 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 239000003246 corticosteroid Substances 0.000 description 5
- 239000012537 formulation buffer Substances 0.000 description 5
- 230000002163 immunogen Effects 0.000 description 5
- 210000004962 mammalian cells Anatomy 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000006011 modification reaction Methods 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 5
- OZAIFHULBGXAKX-UHFFFAOYSA-N precursor Substances N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 230000002522 swelling Effects 0.000 description 5
- 238000002054 transplantation Methods 0.000 description 5
- DPFYBZWSVVKNPZ-AQWIXGDGSA-N (3S,4S,6R)-2-[[(2R,4R,5R)-3,5-dihydroxy-4-methoxy-6-(methoxymethyl)oxan-2-yl]methoxymethyl]-6-ethyloxane-3,4,5-triol Chemical compound O[C@H]1[C@@H](O)C(O)[C@@H](CC)OC1COC[C@@H]1C(O)[C@H](OC)[C@H](O)C(COC)O1 DPFYBZWSVVKNPZ-AQWIXGDGSA-N 0.000 description 4
- 208000007502 Anemia Diseases 0.000 description 4
- 108090000206 Autoantibodies Proteins 0.000 description 4
- 102000003852 Autoantibodies Human genes 0.000 description 4
- 108010056457 Complement C3 Nephritic Factor Proteins 0.000 description 4
- 206010016256 Fatigue Diseases 0.000 description 4
- 201000005624 HELLP syndrome Diseases 0.000 description 4
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 4
- 206010028980 Neoplasm Diseases 0.000 description 4
- 208000002193 Pain Diseases 0.000 description 4
- 239000002202 Polyethylene glycol Substances 0.000 description 4
- 206010047115 Vasculitis Diseases 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 108010049535 anti-IgE antibodies Proteins 0.000 description 4
- 230000003276 anti-hypertensive Effects 0.000 description 4
- BPYKTIZUTYGOLE-IFADSCNNSA-N bilirubin Chemical compound N1C(=O)C(C)=C(C=C)\C1=C\C1=C(C)C(CCC(O)=O)=C(CC2=C(C(C)=C(\C=C/3C(=C(C=C)C(=O)N\3)C)N2)CCC(O)=O)N1 BPYKTIZUTYGOLE-IFADSCNNSA-N 0.000 description 4
- 238000002648 combination therapy Methods 0.000 description 4
- 230000003247 decreasing Effects 0.000 description 4
- 239000003889 eye drop Substances 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 201000001066 hemolytic-uremic syndrome Diseases 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 230000000670 limiting Effects 0.000 description 4
- 239000002773 nucleotide Substances 0.000 description 4
- 125000003729 nucleotide group Chemical group 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 4
- 238000001356 surgical procedure Methods 0.000 description 4
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 4
- XOJVVFBFDXDTEG-UHFFFAOYSA-N Bute hydrocarbon Chemical compound CC(C)CCCC(C)CCCC(C)CCCC(C)C XOJVVFBFDXDTEG-UHFFFAOYSA-N 0.000 description 3
- 102100019144 CD46 Human genes 0.000 description 3
- 101710027020 CD46 Proteins 0.000 description 3
- 102100015637 CFHR5 Human genes 0.000 description 3
- 101710002642 CFHR5 Proteins 0.000 description 3
- 102100016295 CFI Human genes 0.000 description 3
- 108090000044 Complement Factor I Proteins 0.000 description 3
- 229920002676 Complementary DNA Polymers 0.000 description 3
- 229940064701 Corticosteroid nasal preparations for topical use Drugs 0.000 description 3
- 229960001334 Corticosteroids Drugs 0.000 description 3
- 108010036949 Cyclosporine Proteins 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 208000005721 HIV Infections Diseases 0.000 description 3
- 102000014702 Haptoglobin Human genes 0.000 description 3
- 108050005077 Haptoglobin Proteins 0.000 description 3
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 3
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- 108010030046 Intravenous Immunoglobulins Proteins 0.000 description 3
- DKYWVDODHFEZIM-UHFFFAOYSA-N Ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 description 3
- 210000003127 Knee Anatomy 0.000 description 3
- 210000000138 Mast Cells Anatomy 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 101710043203 P23p89 Proteins 0.000 description 3
- 208000008425 Protein Deficiency Diseases 0.000 description 3
- 206010037660 Pyrexia Diseases 0.000 description 3
- 241000700159 Rattus Species 0.000 description 3
- 206010038436 Renal failure acute Diseases 0.000 description 3
- 101710009148 SERPINA1 Proteins 0.000 description 3
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 3
- 108010070144 Single-Chain Antibodies Proteins 0.000 description 3
- 102000005632 Single-Chain Antibodies Human genes 0.000 description 3
- 229940083542 Sodium Drugs 0.000 description 3
- 210000001138 Tears Anatomy 0.000 description 3
- 208000007536 Thrombosis Diseases 0.000 description 3
- 208000006303 Thrombotic Microangiopathy Diseases 0.000 description 3
- 206010043645 Thrombotic microangiopathy Diseases 0.000 description 3
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Chemical class CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 238000010171 animal model Methods 0.000 description 3
- 230000003042 antagnostic Effects 0.000 description 3
- 239000005557 antagonist Substances 0.000 description 3
- 230000002429 anti-coagulation Effects 0.000 description 3
- 230000001475 anti-trypsic Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 3
- 230000001413 cellular Effects 0.000 description 3
- 238000004587 chromatography analysis Methods 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical class OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000004154 complement system Effects 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 239000007857 degradation product Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 101710034616 gVIII-1 Proteins 0.000 description 3
- 210000004602 germ cell Anatomy 0.000 description 3
- 230000036541 health Effects 0.000 description 3
- 201000001820 human immunodeficiency virus infectious disease Diseases 0.000 description 3
- 230000001900 immune effect Effects 0.000 description 3
- 230000001976 improved Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 230000003902 lesions Effects 0.000 description 3
- 230000002101 lytic Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 230000000813 microbial Effects 0.000 description 3
- 230000000051 modifying Effects 0.000 description 3
- 239000000041 non-steroidal anti-inflammatory agent Substances 0.000 description 3
- 229940021182 non-steroidal anti-inflammatory drugs Drugs 0.000 description 3
- 230000002093 peripheral Effects 0.000 description 3
- 238000002823 phage display Methods 0.000 description 3
- 239000008180 pharmaceutical surfactant Substances 0.000 description 3
- 230000002335 preservative Effects 0.000 description 3
- 239000003755 preservative agent Substances 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 238000000159 protein binding assay Methods 0.000 description 3
- 201000001474 proteinuria Diseases 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000003381 stabilizer Substances 0.000 description 3
- 238000010186 staining Methods 0.000 description 3
- 235000000346 sugar Nutrition 0.000 description 3
- 201000010874 syndrome Diseases 0.000 description 3
- 229940083878 topical for treatment of hemorrhoids and anal fissures Corticosteroids Drugs 0.000 description 3
- 239000002753 trypsin inhibitor Substances 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- PMATZTZNYRCHOR-CGLBZJNRSA-N (3S,6S,9S,12R,15S,18S,21S,24S,30S,33S)-30-ethyl-33-[(E,1R,2R)-1-hydroxy-2-methylhex-4-enyl]-1,4,7,10,12,15,19,25,28-nonamethyl-6,9,18,24-tetrakis(2-methylpropyl)-3,21-di(propan-2-yl)-1,4,7,10,13,16,19,22,25,28,31-undecazacyclotritriacontane-2,5,8,11,14,17 Chemical compound CC[C@@H]1NC(=O)[C@H]([C@H](O)[C@H](C)C\C=C\C)N(C)C(=O)[C@H](C(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](CC(C)C)N(C)C(=O)[C@@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)N(C)C(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-CGLBZJNRSA-N 0.000 description 2
- 229920000160 (ribonucleotides)n+m Polymers 0.000 description 2
- VHJLVAABSRFDPM-UHFFFAOYSA-N 1,4-dimercaptobutane-2,3-diol Chemical compound SCC(O)C(O)CS VHJLVAABSRFDPM-UHFFFAOYSA-N 0.000 description 2
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 2
- PJVWKTKQMONHTI-UHFFFAOYSA-N 4-hydroxy-3-(3-oxo-1-phenylbutyl)-1-benzopyran-2-one Chemical compound OC=1C2=CC=CC=C2OC(=O)C=1C(CC(=O)C)C1=CC=CC=C1 PJVWKTKQMONHTI-UHFFFAOYSA-N 0.000 description 2
- 229940030600 ANTIHYPERTENSIVES Drugs 0.000 description 2
- 206010000087 Abdominal pain upper Diseases 0.000 description 2
- 108010082126 Alanine Transaminase Proteins 0.000 description 2
- 229940023808 Albuterol Drugs 0.000 description 2
- 102000005590 Anaphylatoxin C5a Receptor Human genes 0.000 description 2
- 108010089414 Anaphylatoxins Proteins 0.000 description 2
- 210000000628 Antibody-Producing Cells Anatomy 0.000 description 2
- 210000003567 Ascitic Fluid Anatomy 0.000 description 2
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 2
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 2
- 239000005528 B01AC05 - Ticlopidine Substances 0.000 description 2
- 206010060945 Bacterial infection Diseases 0.000 description 2
- 210000001124 Body Fluids Anatomy 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241001260012 Bursa Species 0.000 description 2
- 101700049499 C5AR1 Proteins 0.000 description 2
- 102100016300 CFH Human genes 0.000 description 2
- 102100020197 CFP Human genes 0.000 description 2
- 241000282472 Canis lupus familiaris Species 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 210000003169 Central Nervous System Anatomy 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 206010008958 Chronic lymphocytic leukaemia Diseases 0.000 description 2
- 210000004087 Cornea Anatomy 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 238000001712 DNA sequencing Methods 0.000 description 2
- 229940119744 Dextran 40 Drugs 0.000 description 2
- 229940119743 Dextran 70 Drugs 0.000 description 2
- HUPFGZXOMWLGNK-UHFFFAOYSA-N Diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 229960003748 Edrophonium Drugs 0.000 description 2
- VWLHWLSRQJQWRG-UHFFFAOYSA-O Edrophonum Chemical compound CC[N+](C)(C)C1=CC=CC(O)=C1 VWLHWLSRQJQWRG-UHFFFAOYSA-O 0.000 description 2
- 229940088598 Enzyme Drugs 0.000 description 2
- KAQKFAOMNZTLHT-VVUHWYTRSA-N Epoprostenol Chemical compound O1C(=CCCCC(O)=O)C[C@@H]2[C@@H](/C=C/[C@@H](O)CCCCC)[C@H](O)C[C@@H]21 KAQKFAOMNZTLHT-VVUHWYTRSA-N 0.000 description 2
- 206010015995 Eyelid ptosis Diseases 0.000 description 2
- 241000282326 Felis catus Species 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- BJHIKXHVCXFQLS-UYFOZJQFSA-N Fructose Natural products OC[C@@H](O)[C@@H](O)[C@H](O)C(=O)CO BJHIKXHVCXFQLS-UYFOZJQFSA-N 0.000 description 2
- 102100010966 GPT Human genes 0.000 description 2
- 241000699694 Gerbillinae Species 0.000 description 2
- 206010018370 Glomerulonephritis membranoproliferative Diseases 0.000 description 2
- RGHNJXZEOKUKBD-SQOUGZDYSA-N Gluconic acid Chemical class OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)=O RGHNJXZEOKUKBD-SQOUGZDYSA-N 0.000 description 2
- 229940015001 Glycerin Drugs 0.000 description 2
- 101710015954 HVA1 Proteins 0.000 description 2
- 208000007475 Hemolytic Anemia Diseases 0.000 description 2
- 229960002897 Heparin Drugs 0.000 description 2
- ZFGMDIBRIDKWMY-PASTXAENSA-N Heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 2
- 208000005176 Hepatitis C Diseases 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 108010064750 Humanized Monoclonal Antibodies Proteins 0.000 description 2
- 102000015434 Humanized Monoclonal Antibodies Human genes 0.000 description 2
- 210000004754 Hybrid Cells Anatomy 0.000 description 2
- 206010020772 Hypertension Diseases 0.000 description 2
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Ilacox Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 description 2
- 102000013463 Immunoglobulin Light Chains Human genes 0.000 description 2
- 108010065825 Immunoglobulin Light Chains Proteins 0.000 description 2
- 108010053490 Infliximab Proteins 0.000 description 2
- 206010061255 Ischaemia Diseases 0.000 description 2
- 208000001083 Kidney Disease Diseases 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- 101700065814 LEA2 Proteins 0.000 description 2
- 101700021338 LEC Proteins 0.000 description 2
- 101700077545 LECC Proteins 0.000 description 2
- 101700028499 LECG Proteins 0.000 description 2
- 101700063913 LECT Proteins 0.000 description 2
- 208000000429 Leukemia, Lymphocytic, Chronic, B-Cell Diseases 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 210000004759 MCP Anatomy 0.000 description 2
- 210000002540 Macrophages Anatomy 0.000 description 2
- VQHSOMBJVWLPSR-WUJBLJFYSA-N Maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 2
- GUBGYTABKSRVRQ-YOLKTULGSA-N Maltose Natural products O([C@@H]1[C@H](O)[C@@H](O)[C@H](O)O[C@H]1CO)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 GUBGYTABKSRVRQ-YOLKTULGSA-N 0.000 description 2
- 102000009112 Mannose-Binding Lectin Human genes 0.000 description 2
- 108010087870 Mannose-Binding Lectin Proteins 0.000 description 2
- 208000004451 Membranoproliferative Glomerulonephritis Diseases 0.000 description 2
- 229940071648 Metered Dose Inhaler Drugs 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L MgCl2 Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 210000003205 Muscles Anatomy 0.000 description 2
- CMWTZPSULFXXJA-VIFPVBQESA-N Naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 description 2
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N Oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 2
- 101710034340 Os04g0173800 Proteins 0.000 description 2
- 206010025310 Other lymphomas Diseases 0.000 description 2
- 241000283898 Ovis Species 0.000 description 2
- OFPXSFXSNFPTHF-UHFFFAOYSA-N Oxaprozin Chemical compound O1C(CCC(=O)O)=NC(C=2C=CC=CC=2)=C1C1=CC=CC=C1 OFPXSFXSNFPTHF-UHFFFAOYSA-N 0.000 description 2
- 229940005014 Pegaptanib Sodium Drugs 0.000 description 2
- VVNCNSJFMMFHPL-VKHMYHEASA-N Penicillamine Chemical compound CC(C)(S)[C@@H](N)C(O)=O VVNCNSJFMMFHPL-VKHMYHEASA-N 0.000 description 2
- QYSPLQLAKJAUJT-UHFFFAOYSA-N Piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 description 2
- 108010005642 Properdin Proteins 0.000 description 2
- 229940107568 Pulmozyme Drugs 0.000 description 2
- 206010037549 Purpura Diseases 0.000 description 2
- 241001672981 Purpura Species 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- 229960003876 Ranibizumab Drugs 0.000 description 2
- 108010062724 Ranibizumab Proteins 0.000 description 2
- 229940116176 Remicade Drugs 0.000 description 2
- 210000001525 Retina Anatomy 0.000 description 2
- 108010001645 Rituximab Proteins 0.000 description 2
- NDAUXUAQIAJITI-UHFFFAOYSA-N Salbutamol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 description 2
- 210000003786 Sclera Anatomy 0.000 description 2
- 108010079723 Shiga Toxin Proteins 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Chemical class OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 2
- 229960000894 Sulindac Drugs 0.000 description 2
- MLKXDPUZXIRXEP-MFOYZWKCSA-N Sulindac Chemical compound CC1=C(CC(O)=O)C2=CC(F)=CC=C2\C1=C/C1=CC=C(S(C)=O)C=C1 MLKXDPUZXIRXEP-MFOYZWKCSA-N 0.000 description 2
- 239000000150 Sympathomimetic Substances 0.000 description 2
- 229960005001 Ticlopidine Drugs 0.000 description 2
- PHWBOXQYWZNQIN-UHFFFAOYSA-N Ticlopidine Chemical compound ClC1=CC=CC=C1CN1CC(C=CS2)=C2CC1 PHWBOXQYWZNQIN-UHFFFAOYSA-N 0.000 description 2
- 206010052779 Transplant rejections Diseases 0.000 description 2
- 229940116507 URINE TEST DRUGS Drugs 0.000 description 2
- 230000036462 Unbound Effects 0.000 description 2
- 210000002700 Urine Anatomy 0.000 description 2
- 206010053648 Vascular occlusion Diseases 0.000 description 2
- YTZALCGQUPRCGW-ZSFNYQMMSA-N Verteporfin Chemical compound N1C(C=C2C(=C(CCC(O)=O)C(C=C3C(CCC(=O)OC)=C(C)C(N3)=C3)=N2)C)=C(C=C)C(C)=C1C=C1C2=CC=C(C(=O)OC)[C@@H](C(=O)OC)[C@@]2(C)C3=N1 YTZALCGQUPRCGW-ZSFNYQMMSA-N 0.000 description 2
- 206010047461 Viral infection Diseases 0.000 description 2
- 208000001756 Virus Disease Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 210000000707 Wrist Anatomy 0.000 description 2
- 230000001594 aberrant Effects 0.000 description 2
- 102000034433 acetylcholine receptors Human genes 0.000 description 2
- 108020000715 acetylcholine receptors Proteins 0.000 description 2
- 229960001138 acetylsalicylic acid Drugs 0.000 description 2
- 230000002378 acidificating Effects 0.000 description 2
- 230000001154 acute Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 239000002260 anti-inflammatory agent Substances 0.000 description 2
- 229940121363 anti-inflammatory agents Drugs 0.000 description 2
- 230000000111 anti-oxidant Effects 0.000 description 2
- 239000002220 antihypertensive agent Substances 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 235000006708 antioxidants Nutrition 0.000 description 2
- BSYNRYMUTXBXSQ-UHFFFAOYSA-N aspirin Chemical compound CC(=O)OC1=CC=CC=C1C(O)=O BSYNRYMUTXBXSQ-UHFFFAOYSA-N 0.000 description 2
- 230000001363 autoimmune Effects 0.000 description 2
- 230000003115 biocidal Effects 0.000 description 2
- 230000004397 blinking Effects 0.000 description 2
- 230000000903 blocking Effects 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 238000009534 blood test Methods 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 230000003139 buffering Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000001684 chronic Effects 0.000 description 2
- 229960001265 ciclosporin Drugs 0.000 description 2
- 238000002983 circular dichroism Methods 0.000 description 2
- 230000004087 circulation Effects 0.000 description 2
- 239000008395 clarifying agent Substances 0.000 description 2
- 238000009535 clinical urine test Methods 0.000 description 2
- 239000004074 complement inhibitor Substances 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000012228 culture supernatant Substances 0.000 description 2
- 230000009089 cytolysis Effects 0.000 description 2
- 238000000326 densiometry Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 150000002019 disulfides Chemical group 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 229960001123 epoprostenol Drugs 0.000 description 2
- NNYBQONXHNTVIJ-UHFFFAOYSA-N etodolac Chemical compound C1COC(CC)(CC(O)=O)C2=C1C(C=CC=C1CC)=C1N2 NNYBQONXHNTVIJ-UHFFFAOYSA-N 0.000 description 2
- 230000005714 functional activity Effects 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- 235000011187 glycerol Nutrition 0.000 description 2
- 229960005150 glycerol Drugs 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 229920000669 heparin Polymers 0.000 description 2
- NTYJJOPFIAHURM-UHFFFAOYSA-N histamine Chemical compound NCCC1=CN=CN1 NTYJJOPFIAHURM-UHFFFAOYSA-N 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 239000003018 immunosuppressive agent Substances 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000002458 infectious Effects 0.000 description 2
- 230000002757 inflammatory Effects 0.000 description 2
- 229960000598 infliximab Drugs 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000010253 intravenous injection Methods 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 101700036391 lecA Proteins 0.000 description 2
- 239000002523 lectin Substances 0.000 description 2
- 125000005645 linoleyl group Chemical group 0.000 description 2
- 238000011068 load Methods 0.000 description 2
- 230000002934 lysing Effects 0.000 description 2
- 101700001016 mbhA Proteins 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L mgso4 Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- BLXXJMDCKKHMKV-UHFFFAOYSA-N nabumeton Chemical compound C1=C(CCC(C)=O)C=CC2=CC(OC)=CC=C21 BLXXJMDCKKHMKV-UHFFFAOYSA-N 0.000 description 2
- 230000001662 opsonic Effects 0.000 description 2
- 230000004768 organ dysfunction Effects 0.000 description 2
- 210000000056 organs Anatomy 0.000 description 2
- 101710031992 pRL90232 Proteins 0.000 description 2
- 230000001717 pathogenic Effects 0.000 description 2
- 229960001639 penicillamine Drugs 0.000 description 2
- 239000008194 pharmaceutical composition Substances 0.000 description 2
- 229960002702 piroxicam Drugs 0.000 description 2
- 101710035540 plaa2 Proteins 0.000 description 2
- 238000002616 plasmapheresis Methods 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000001103 potassium chloride Substances 0.000 description 2
- 235000011164 potassium chloride Nutrition 0.000 description 2
- 201000011461 pre-eclampsia Diseases 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000000770 pro-inflamatory Effects 0.000 description 2
- 201000003004 ptosis Diseases 0.000 description 2
- 230000002685 pulmonary Effects 0.000 description 2
- 229960004641 rituximab Drugs 0.000 description 2
- 201000005404 rubella Diseases 0.000 description 2
- 229960002052 salbutamol Drugs 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 150000003384 small molecules Chemical class 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000001370 static light scattering Methods 0.000 description 2
- 239000012536 storage buffer Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 2
- 230000002459 sustained Effects 0.000 description 2
- 230000001975 sympathomimetic Effects 0.000 description 2
- 230000000699 topical Effects 0.000 description 2
- 230000002588 toxic Effects 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- 239000002525 vasculotropin inhibitor Substances 0.000 description 2
- 230000017613 viral reproduction Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000000080 wetting agent Substances 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N β-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- NFGXHKASABOEEW-UHFFFAOYSA-N (+)-methoprene Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 1
- LNAZSHAWQACDHT-XIYTZBAFSA-N (2R,3R,4S,5R,6S)-4,5-dimethoxy-2-(methoxymethyl)-3-[(2S,3R,4S,5R,6R)-3,4,5-trimethoxy-6-(methoxymethyl)oxan-2-yl]oxy-6-[(2R,3R,4S,5R,6R)-4,5,6-trimethoxy-2-(methoxymethyl)oxan-3-yl]oxyoxane Chemical compound CO[C@@H]1[C@@H](OC)[C@H](OC)[C@@H](COC)O[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@H]2[C@@H]([C@@H](OC)[C@H](OC)O[C@@H]2COC)OC)O[C@@H]1COC LNAZSHAWQACDHT-XIYTZBAFSA-N 0.000 description 1
- AJBMORBNKXNZSF-COSHMZDQSA-N (2S,3S,4S,5R,6R)-6-[(2R,3R,4S,5R,6R)-6-[(2R,3S,4S,5R,6R)-2-carboxy-4,5-dimethoxy-6-[(2R,3R,4S,5R,6S)-6-methoxy-4,5-disulfooxy-2-(sulfooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-4,5-disulfooxy-2-(sulfooxymethyl)oxan-3-yl]oxy-4,5-dimethoxy-3-[(2R,3R,4S,5R,6R)-3,4 Chemical compound OS(=O)(=O)O[C@@H]1[C@@H](OS(O)(=O)=O)[C@@H](OC)O[C@H](COS(O)(=O)=O)[C@H]1O[C@H]1[C@H](OC)[C@@H](OC)[C@H](O[C@@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](OC)[C@H](O[C@@H]4[C@@H]([C@@H](OC)[C@H](OC)[C@@H](COS(O)(=O)=O)O4)OC)[C@H](O3)C(O)=O)OC)[C@@H](COS(O)(=O)=O)O2)OS(O)(=O)=O)[C@H](C(O)=O)O1 AJBMORBNKXNZSF-COSHMZDQSA-N 0.000 description 1
- SNIOPGDIGTZGOP-UHFFFAOYSA-N 1,2,3-propanetrioltrinitrate Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 1
- KKMIHKCGXQMFEU-UHFFFAOYSA-N 2-[dimethyl(tetradecyl)azaniumyl]acetate Chemical group CCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O KKMIHKCGXQMFEU-UHFFFAOYSA-N 0.000 description 1
- TYIOVYZMKITKRO-UHFFFAOYSA-N 2-[hexadecyl(dimethyl)azaniumyl]acetate Chemical compound CCCCCCCCCCCCCCCC[N+](C)(C)CC([O-])=O TYIOVYZMKITKRO-UHFFFAOYSA-N 0.000 description 1
- SNQVCAOGQHOSEN-UHFFFAOYSA-N 2-[methyl(octadecyl)amino]acetic acid Chemical compound CCCCCCCCCCCCCCCCCCN(C)CC(O)=O SNQVCAOGQHOSEN-UHFFFAOYSA-N 0.000 description 1
- CBCSCFDVRNETAU-UHFFFAOYSA-M 2-carboxyphenolate;2-hydroxyethyl(trimethyl)azanium;magnesium Chemical compound [Mg].C[N+](C)(C)CCO.OC(=O)C1=CC=CC=C1[O-] CBCSCFDVRNETAU-UHFFFAOYSA-M 0.000 description 1
- DIROHOMJLWMERM-UHFFFAOYSA-N 3-[dimethyl(octadecyl)azaniumyl]propane-1-sulfonate Chemical compound CCCCCCCCCCCCCCCCCC[N+](C)(C)CCCS([O-])(=O)=O DIROHOMJLWMERM-UHFFFAOYSA-N 0.000 description 1
- CWSZBVAUYPTXTG-UHFFFAOYSA-N 5-[6-[[3,4-dihydroxy-6-(hydroxymethyl)-5-methoxyoxan-2-yl]oxymethyl]-3,4-dihydroxy-5-[4-hydroxy-3-(2-hydroxyethoxy)-6-(hydroxymethyl)-5-methoxyoxan-2-yl]oxyoxan-2-yl]oxy-6-(hydroxymethyl)-2-methyloxane-3,4-diol Chemical compound O1C(CO)C(OC)C(O)C(O)C1OCC1C(OC2C(C(O)C(OC)C(CO)O2)OCCO)C(O)C(O)C(OC2C(OC(C)C(O)C2O)CO)O1 CWSZBVAUYPTXTG-UHFFFAOYSA-N 0.000 description 1
- HRZFUMHJMZEROT-UHFFFAOYSA-L 7681-57-4 Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])(=O)=O HRZFUMHJMZEROT-UHFFFAOYSA-L 0.000 description 1
- 239000005541 ACE inhibitor Substances 0.000 description 1
- 229960004676 ANTITHROMBOTIC AGENTS Drugs 0.000 description 1
- 108010061171 Abatacept Proteins 0.000 description 1
- 208000004998 Abdominal Pain Diseases 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 206010000565 Acquired immunodeficiency syndrome Diseases 0.000 description 1
- 229940013181 Advil Drugs 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 210000002821 Alveolar epithelial cell Anatomy 0.000 description 1
- 206010001889 Alveolitis Diseases 0.000 description 1
- 206010001897 Alzheimer's disease Diseases 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N Ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229960004233 Ancrod Drugs 0.000 description 1
- 108010001779 Ancrod Proteins 0.000 description 1
- 210000003423 Ankle Anatomy 0.000 description 1
- 229940064005 Antibiotic throat preparations Drugs 0.000 description 1
- 229940083879 Antibiotics FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR TOPICAL USE Drugs 0.000 description 1
- 229940042052 Antibiotics for systemic use Drugs 0.000 description 1
- 229940037157 Anticorticosteroids Drugs 0.000 description 1
- 108010047814 Antigen-Antibody Complex Proteins 0.000 description 1
- 210000000612 Antigen-Presenting Cells Anatomy 0.000 description 1
- 108090000298 Antinuclear Antibodies Proteins 0.000 description 1
- 108090000866 Antiphospholipid Antibodies Proteins 0.000 description 1
- 229940042786 Antitubercular Antibiotics Drugs 0.000 description 1
- YZXBAPSDXZZRGB-DOFZRALJSA-N Arachidonic acid Chemical class CCCCC\C=C/C\C=C/C\C=C/C\C=C/CCCC(O)=O YZXBAPSDXZZRGB-DOFZRALJSA-N 0.000 description 1
- KXNPVXPOPUZYGB-XYVMCAHJSA-N Argatroban Chemical compound OC(=O)[C@H]1C[C@H](C)CCN1C(=O)[C@H](CCCN=C(N)N)NS(=O)(=O)C1=CC=CC2=C1NC[C@H](C)C2 KXNPVXPOPUZYGB-XYVMCAHJSA-N 0.000 description 1
- 206010003210 Arteriosclerosis Diseases 0.000 description 1
- 206010003230 Arteritis Diseases 0.000 description 1
- 208000006820 Arthralgia Diseases 0.000 description 1
- 229940097776 Arthrotec Drugs 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 206010003816 Autoimmune disease Diseases 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 206010003885 Azotaemia Diseases 0.000 description 1
- 239000005552 B01AC04 - Clopidogrel Substances 0.000 description 1
- 101700008793 BNP Proteins 0.000 description 1
- 101700018247 BPP Proteins 0.000 description 1
- 101700071361 BPP4 Proteins 0.000 description 1
- 101700034740 BPP8 Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 241000202712 Bartonella sp. Species 0.000 description 1
- 210000003651 Basophils Anatomy 0.000 description 1
- 229960000686 Benzalkonium Chloride Drugs 0.000 description 1
- 229960001950 Benzethonium Chloride Drugs 0.000 description 1
- UREZNYTWGJKWBI-UHFFFAOYSA-M Benzethonium chloride Chemical compound [Cl-].C1=CC(C(C)(C)CC(C)(C)C)=CC=C1OCCOCC[N+](C)(C)CC1=CC=CC=C1 UREZNYTWGJKWBI-UHFFFAOYSA-M 0.000 description 1
- 102000006734 Beta-Globulins Human genes 0.000 description 1
- 108010087504 Beta-Globulins Proteins 0.000 description 1
- OIRCOABEOLEUMC-GEJPAHFPSA-N Bivalirudin Chemical compound C([C@@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)CNC(=O)CNC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 OIRCOABEOLEUMC-GEJPAHFPSA-N 0.000 description 1
- 229960001561 Bleomycin Drugs 0.000 description 1
- 108010006654 Bleomycin Proteins 0.000 description 1
- 210000000601 Blood Cells Anatomy 0.000 description 1
- 230000036868 Blood Concentration Effects 0.000 description 1
- 210000004204 Blood Vessels Anatomy 0.000 description 1
- 210000001185 Bone Marrow Anatomy 0.000 description 1
- 210000000988 Bone and Bones Anatomy 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N Boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- 241000701822 Bovine papillomavirus Species 0.000 description 1
- 102000025380 C-Reactive Protein Human genes 0.000 description 1
- 108010074051 C-Reactive Protein Proteins 0.000 description 1
- 101700031312 CAPG Proteins 0.000 description 1
- 101710010587 CASP13 Proteins 0.000 description 1
- 101700015712 CHEP Proteins 0.000 description 1
- 101700041290 CRBL Proteins 0.000 description 1
- 102000003922 Calcium Channels Human genes 0.000 description 1
- 108090000312 Calcium Channels Proteins 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N Carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 208000008787 Cardiovascular Disease Diseases 0.000 description 1
- 229940047475 Cataflam Drugs 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000700199 Cavia porcellus Species 0.000 description 1
- 210000000170 Cell Membrane Anatomy 0.000 description 1
- 206010008479 Chest pain Diseases 0.000 description 1
- OSASVXMJTNOKOY-UHFFFAOYSA-N Chlorobutanol Chemical compound CC(C)(O)C(Cl)(Cl)Cl OSASVXMJTNOKOY-UHFFFAOYSA-N 0.000 description 1
- 229960004926 Chlorobutanol Drugs 0.000 description 1
- 210000003161 Choroid Anatomy 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 241000434299 Cinchona officinalis Species 0.000 description 1
- 108010078804 Classical Pathway Complement C5 Convertase Proteins 0.000 description 1
- 229960003009 Clopidogrel Drugs 0.000 description 1
- GKTWGGQPFAXNFI-HNNXBMFYSA-N Clopidogrel Chemical compound C1([C@H](N2CC=3C=CSC=3CC2)C(=O)OC)=CC=CC=C1Cl GKTWGGQPFAXNFI-HNNXBMFYSA-N 0.000 description 1
- 229920001405 Coding region Polymers 0.000 description 1
- 108010028780 Complement C3 Proteins 0.000 description 1
- 108010047548 Complement C4b-Binding Protein Proteins 0.000 description 1
- 102000006912 Complement C4b-Binding Protein Human genes 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 108020004635 Complementary DNA Proteins 0.000 description 1
- 206010056370 Congestive cardiomyopathy Diseases 0.000 description 1
- 208000008313 Contusions Diseases 0.000 description 1
- 206010010904 Convulsion Diseases 0.000 description 1
- 229940072645 Coumadin Drugs 0.000 description 1
- 229940120894 Cromolyn Sodium Drugs 0.000 description 1
- 229940119017 Cyclosporine Drugs 0.000 description 1
- OJLOPKGSLYJEMD-LNQMSSPSSA-N Cyotec Chemical compound CCCCC(C)(O)CC=C[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(=O)OC OJLOPKGSLYJEMD-LNQMSSPSSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- GZCGUPFRVQAUEE-KCDKBNATSA-N D-(+)-Galactose Natural products OC[C@@H](O)[C@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-KCDKBNATSA-N 0.000 description 1
- GUBGYTABKSRVRQ-CUHNMECISA-N D-Cellobiose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-CUHNMECISA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N D-Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N D-sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 description 1
- 101710034658 DNASE1 Proteins 0.000 description 1
- 229960003850 Dabigatran Drugs 0.000 description 1
- 229940070230 Daypro Drugs 0.000 description 1
- 208000000264 Deglutition Disorders Diseases 0.000 description 1
- 210000004443 Dendritic Cells Anatomy 0.000 description 1
- 229940119679 Deoxyribonucleases Drugs 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 229960003957 Dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N Dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 208000004205 Diabetic Angiopathy Diseases 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 208000003164 Diplopia Diseases 0.000 description 1
- 208000009190 Disseminated Intravascular Coagulation Diseases 0.000 description 1
- 229940072701 Dolobid Drugs 0.000 description 1
- 206010059866 Drug resistance Diseases 0.000 description 1
- 229940112141 Dry Powder Inhaler Drugs 0.000 description 1
- 206010013950 Dysphagia Diseases 0.000 description 1
- 102000033147 ERVK-25 Human genes 0.000 description 1
- 210000001513 Elbow Anatomy 0.000 description 1
- 208000005189 Embolism Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 210000002889 Endothelial Cells Anatomy 0.000 description 1
- 210000003979 Eosinophils Anatomy 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 208000010228 Erectile Dysfunction Diseases 0.000 description 1
- 208000007985 Erythema Infectiosum Diseases 0.000 description 1
- 108010008165 Etanercept Proteins 0.000 description 1
- 229960005293 Etodolac Drugs 0.000 description 1
- 230000036826 Excretion Effects 0.000 description 1
- 229920000665 Exon Polymers 0.000 description 1
- 210000003414 Extremities Anatomy 0.000 description 1
- 210000000416 Exudates and Transudates Anatomy 0.000 description 1
- 210000000744 Eyelids Anatomy 0.000 description 1
- 101700053597 FCER2 Proteins 0.000 description 1
- 102100014608 FCER2 Human genes 0.000 description 1
- 229940065410 Feldene Drugs 0.000 description 1
- 210000001145 Finger Joint Anatomy 0.000 description 1
- 210000002683 Foot Anatomy 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- 102100011343 GLB1 Human genes 0.000 description 1
- 102100014497 GOLPH3 Human genes 0.000 description 1
- 101710008339 GOLPH3 Proteins 0.000 description 1
- 241000287828 Gallus gallus Species 0.000 description 1
- 206010017711 Gangrene Diseases 0.000 description 1
- 206010017758 Gastric cancer Diseases 0.000 description 1
- 208000008032 Gastrointestinal Hemorrhage Diseases 0.000 description 1
- 210000001035 Gastrointestinal Tract Anatomy 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 229940014259 Gelatin Drugs 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 206010018364 Glomerulonephritis Diseases 0.000 description 1
- 210000003714 Granulocytes Anatomy 0.000 description 1
- 229940093922 Gynecological Antibiotics Drugs 0.000 description 1
- 206010018901 Haemoglobinaemia Diseases 0.000 description 1
- 230000036499 Half live Effects 0.000 description 1
- 210000004247 Hand Anatomy 0.000 description 1
- 206010019233 Headache Diseases 0.000 description 1
- 208000006750 Hematuria Diseases 0.000 description 1
- 108010017480 Hemosiderin Proteins 0.000 description 1
- RPTUSVTUFVMDQK-UHFFFAOYSA-N Hidralazin Chemical compound C1=CC=C2C(NN)=NN=CC2=C1 RPTUSVTUFVMDQK-UHFFFAOYSA-N 0.000 description 1
- 210000001624 Hip Anatomy 0.000 description 1
- 206010020365 Homocystinuria Diseases 0.000 description 1
- 229940088597 Hormone Drugs 0.000 description 1
- 229960002474 Hydralazine Drugs 0.000 description 1
- XXSMGPRMXLTPCZ-UHFFFAOYSA-N Hydroxychloroquine Chemical compound ClC1=CC=C2C(NC(C)CCCN(CCO)CC)=CC=NC2=C1 XXSMGPRMXLTPCZ-UHFFFAOYSA-N 0.000 description 1
- 229960004171 Hydroxychloroquine Drugs 0.000 description 1
- 239000004354 Hydroxyethyl cellulose Substances 0.000 description 1
- 229920000663 Hydroxyethyl cellulose Polymers 0.000 description 1
- 102000004286 Hydroxymethylglutaryl CoA Reductases Human genes 0.000 description 1
- 108090000895 Hydroxymethylglutaryl CoA Reductases Proteins 0.000 description 1
- 206010020578 Hyperbilirubinaemia Diseases 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010020993 Hypoglycaemia Diseases 0.000 description 1
- 229940072221 IMMUNOGLOBULINS Drugs 0.000 description 1
- 210000000987 Immune System Anatomy 0.000 description 1
- 229940089536 Indocin Drugs 0.000 description 1
- CGIGDMFJXJATDK-UHFFFAOYSA-N Indometacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 description 1
- 229960000905 Indomethacin Drugs 0.000 description 1
- 206010022114 Injury Diseases 0.000 description 1
- 102000014150 Interferons Human genes 0.000 description 1
- 108010050904 Interferons Proteins 0.000 description 1
- 208000006897 Interstitial Lung Disease Diseases 0.000 description 1
- 206010022822 Intravascular haemolysis Diseases 0.000 description 1
- 229960001361 Ipratropium Bromide Drugs 0.000 description 1
- 206010022998 Irritability Diseases 0.000 description 1
- 206010023230 Joint stiffness Diseases 0.000 description 1
- 208000007766 Kaposi Sarcoma Diseases 0.000 description 1
- 201000007313 Kawasaki disease Diseases 0.000 description 1
- 102000007330 LDL Lipoproteins Human genes 0.000 description 1
- 108010007622 LDL Lipoproteins Proteins 0.000 description 1
- SGUAFYQXFOLMHL-UHFFFAOYSA-N Labetalol Chemical compound C=1C=C(O)C(C(N)=O)=CC=1C(O)CNC(C)CCC1=CC=CC=C1 SGUAFYQXFOLMHL-UHFFFAOYSA-N 0.000 description 1
- 229940116108 Lactase Drugs 0.000 description 1
- 108010059881 Lactase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-UUNJERMWSA-N Lactose Natural products O([C@@H]1[C@H](O)[C@H](O)[C@H](O)O[C@@H]1CO)[C@H]1[C@@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1 GUBGYTABKSRVRQ-UUNJERMWSA-N 0.000 description 1
- 239000004166 Lanolin Substances 0.000 description 1
- 229940039717 Lanolin Drugs 0.000 description 1
- OTQCKZUSUGYWBD-BRHMIFOHSA-N Lepirudin Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O)C(C)C)[C@@H](C)O)[C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(C)C)[C@@H](C)O)C1=CC=C(O)C=C1 OTQCKZUSUGYWBD-BRHMIFOHSA-N 0.000 description 1
- 206010024264 Lethargy Diseases 0.000 description 1
- 206010024324 Leukaemias Diseases 0.000 description 1
- 210000000265 Leukocytes Anatomy 0.000 description 1
- 239000000867 Lipoxygenase Inhibitor Substances 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 229940063718 Lodine Drugs 0.000 description 1
- 210000004072 Lung Anatomy 0.000 description 1
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 1
- 206010025135 Lupus erythematosus Diseases 0.000 description 1
- 210000004698 Lymphocytes Anatomy 0.000 description 1
- 102100005476 MMACHC Human genes 0.000 description 1
- 108060004995 MMACHC Proteins 0.000 description 1
- 206010025482 Malaise Diseases 0.000 description 1
- 229920002774 Maltodextrin Polymers 0.000 description 1
- 229920001776 Mature messenger RNA Polymers 0.000 description 1
- 102000005919 Membrane Cofactor Protein Human genes 0.000 description 1
- 108010005662 Membrane Cofactor Protein Proteins 0.000 description 1
- FEWJPZIEWOKRBE-XIXRPRMCSA-N Mesotartaric acid Chemical class OC(=O)[C@@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-XIXRPRMCSA-N 0.000 description 1
- 108020004999 Messenger RNA Proteins 0.000 description 1
- 206010027476 Metastasis Diseases 0.000 description 1
- 229960002900 Methylcellulose Drugs 0.000 description 1
- 206010059521 Methylmalonic aciduria Diseases 0.000 description 1
- 229960004857 Mitomycin Drugs 0.000 description 1
- 229940112801 Mobic Drugs 0.000 description 1
- 210000001616 Monocytes Anatomy 0.000 description 1
- 229940072709 Motrin Drugs 0.000 description 1
- 108090000393 Muromonab-CD3 Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028323 Muscle pain Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 1
- 208000000112 Myalgia Diseases 0.000 description 1
- 208000001572 Mycoplasma Pneumonia Diseases 0.000 description 1
- 201000008235 Mycoplasma pneumoniae pneumonia Diseases 0.000 description 1
- 208000010125 Myocardial Infarction Diseases 0.000 description 1
- 208000003067 Myocardial Ischemia Diseases 0.000 description 1
- 208000009525 Myocarditis Diseases 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- NZXVYLJKFYSEPO-UHFFFAOYSA-N N-[3-(dimethylamino)propyl]-16-methylheptadecanamide Chemical compound CC(C)CCCCCCCCCCCCCCC(=O)NCCCN(C)C NZXVYLJKFYSEPO-UHFFFAOYSA-N 0.000 description 1
- 101700062818 NP Proteins 0.000 description 1
- 108091007229 NSP3 Papain-like protease domain Proteins 0.000 description 1
- 206010028813 Nausea Diseases 0.000 description 1
- 206010062212 Neisseria infection Diseases 0.000 description 1
- 206010065673 Nephritic syndrome Diseases 0.000 description 1
- 206010029151 Nephropathy Diseases 0.000 description 1
- 208000005736 Nervous System Malformations Diseases 0.000 description 1
- 210000000440 Neutrophils Anatomy 0.000 description 1
- HYIMSNHJOBLJNT-UHFFFAOYSA-N Nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 description 1
- 229960001597 Nifedipine Drugs 0.000 description 1
- 239000000006 Nitroglycerin Substances 0.000 description 1
- 229940014995 Nitroglycerin Drugs 0.000 description 1
- 206010029592 Non-Hodgkin's lymphomas Diseases 0.000 description 1
- 229940072711 Nuprin Drugs 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- 206010033128 Ovarian cancer Diseases 0.000 description 1
- 102000004316 Oxidoreductases Human genes 0.000 description 1
- 108090000854 Oxidoreductases Proteins 0.000 description 1
- 206010033546 Pallor Diseases 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241000282577 Pan troglodytes Species 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 206010033775 Paraesthesia Diseases 0.000 description 1
- 206010033799 Paralysis Diseases 0.000 description 1
- 206010053857 Partial lipodystrophy Diseases 0.000 description 1
- 229940090048 Pen Injector Drugs 0.000 description 1
- 108091005771 Peptidases Proteins 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 239000004264 Petrolatum Substances 0.000 description 1
- 229940066842 Petrolatum Drugs 0.000 description 1
- NFBAXHOPROOJAW-UHFFFAOYSA-N Phenindione Chemical compound O=C1C2=CC=CC=C2C(=O)C1C1=CC=CC=C1 NFBAXHOPROOJAW-UHFFFAOYSA-N 0.000 description 1
- 229960000280 Phenindione Drugs 0.000 description 1
- XNGIFLGASWRNHJ-UHFFFAOYSA-N Phthalic acid Chemical class OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229960000502 Poloxamer Drugs 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 241001505332 Polyomavirus sp. Species 0.000 description 1
- 229940068965 Polysorbates Drugs 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M Potassium bicarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- XOFYZVNMUHMLCC-ZPOLXVRWSA-N Prednisone Chemical compound O=C1C=C[C@]2(C)[C@H]3C(=O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 XOFYZVNMUHMLCC-ZPOLXVRWSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 229960000948 Quinine Drugs 0.000 description 1
- 230000025458 RNA interference Effects 0.000 description 1
- 239000007759 RPMI Media 1640 Substances 0.000 description 1
- 101710029124 RPS3A Proteins 0.000 description 1
- 229940087462 Relafen Drugs 0.000 description 1
- 206010038428 Renal disease Diseases 0.000 description 1
- 206010038435 Renal failure Diseases 0.000 description 1
- 210000003019 Respiratory Muscles Anatomy 0.000 description 1
- 206010038796 Reticulocytosis Diseases 0.000 description 1
- 241000219061 Rheum Species 0.000 description 1
- 108010075569 Rheumatoid Factor Proteins 0.000 description 1
- 229940061969 Rheumatrex Drugs 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102100013834 SLC3A2 Human genes 0.000 description 1
- 101710007458 SLC3A2 Proteins 0.000 description 1
- 101700050571 SUOX Proteins 0.000 description 1
- 210000003296 Saliva Anatomy 0.000 description 1
- 206010039911 Seizure Diseases 0.000 description 1
- 206010040070 Septic shock Diseases 0.000 description 1
- 102000012479 Serine Proteases Human genes 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- 108010091769 Shiga Toxin 1 Proteins 0.000 description 1
- 108010090763 Shiga Toxin 2 Proteins 0.000 description 1
- 108010017898 Shiga Toxins Proteins 0.000 description 1
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 210000003491 Skin Anatomy 0.000 description 1
- 206010040984 Sleep disease Diseases 0.000 description 1
- 229940091252 Sodium supplements Drugs 0.000 description 1
- 229940055944 Soliris Drugs 0.000 description 1
- 208000008513 Spinal Cord Injury Diseases 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 241000193998 Streptococcus pneumoniae Species 0.000 description 1
- 229940031000 Streptococcus pneumoniae Drugs 0.000 description 1
- CZMRCDWAGMRECN-GDQSFJPYSA-N Sucrose Natural products O([C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1)[C@@]1(CO)[C@H](O)[C@@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-GDQSFJPYSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 241000282898 Sus scrofa Species 0.000 description 1
- 206010042674 Swelling Diseases 0.000 description 1
- 229940064707 Sympathomimetics Drugs 0.000 description 1
- 108091008153 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- 208000001106 Takayasu Arteritis Diseases 0.000 description 1
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 1
- 229960001603 Tamoxifen Drugs 0.000 description 1
- 229940033663 Thimerosal Drugs 0.000 description 1
- RTKIYNMVFMVABJ-UHFFFAOYSA-L Thiomersal Chemical compound [Na+].CC[Hg]SC1=CC=CC=C1C([O-])=O RTKIYNMVFMVABJ-UHFFFAOYSA-L 0.000 description 1
- UMGDCJDMYOKAJW-UHFFFAOYSA-N Thiourea Chemical compound NC(N)=S UMGDCJDMYOKAJW-UHFFFAOYSA-N 0.000 description 1
- NLVFBUXFDBBNBW-PBSUHMDJSA-N Tobramycin Chemical compound N[C@@H]1C[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N NLVFBUXFDBBNBW-PBSUHMDJSA-N 0.000 description 1
- 229960000707 Tobramycin Drugs 0.000 description 1
- 229940024982 Topical Antifungal Antibiotics Drugs 0.000 description 1
- 231100000765 Toxin Toxicity 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 229940111528 Trexall Drugs 0.000 description 1
- GSEJCLTVZPLZKY-UHFFFAOYSA-N Tris Chemical group OCCN(CCO)CCO GSEJCLTVZPLZKY-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- MDYZKJNTKZIUSK-UHFFFAOYSA-N Tyloxapol Chemical compound O=C.C1CO1.CC(C)(C)CC(C)(C)C1=CC=C(O)C=C1 MDYZKJNTKZIUSK-UHFFFAOYSA-N 0.000 description 1
- 208000009852 Uremia Diseases 0.000 description 1
- 101710004889 Vejaci Proteins 0.000 description 1
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 1
- 229960003895 Verteporfin Drugs 0.000 description 1
- 229960004528 Vincristine Drugs 0.000 description 1
- 206010047513 Vision blurred Diseases 0.000 description 1
- 206010047571 Visual impairment Diseases 0.000 description 1
- 229940061392 Visudyne Drugs 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Vitamin C Chemical class OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 210000004127 Vitreous Body Anatomy 0.000 description 1
- 229940063674 Voltaren Drugs 0.000 description 1
- 229960005080 Warfarin Drugs 0.000 description 1
- 210000003857 Wrist Joint Anatomy 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N Xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 Xylitol Drugs 0.000 description 1
- 229960003697 abatacept Drugs 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000003213 activating Effects 0.000 description 1
- 230000002730 additional Effects 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 230000004523 agglutinating Effects 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000000556 agonist Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- GZCGUPFRVQAUEE-KVTDHHQDSA-N aldehydo-D-mannose Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)C=O GZCGUPFRVQAUEE-KVTDHHQDSA-N 0.000 description 1
- 201000005794 allergic hypersensitivity disease Diseases 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000001078 anti-cholinergic Effects 0.000 description 1
- 230000001387 anti-histamine Effects 0.000 description 1
- 230000002924 anti-infective Effects 0.000 description 1
- 230000000573 anti-seizure Effects 0.000 description 1
- 230000000692 anti-sense Effects 0.000 description 1
- 239000000739 antihistaminic agent Substances 0.000 description 1
- 239000003524 antilipemic agent Substances 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000002246 antineoplastic agent Substances 0.000 description 1
- 239000004019 antithrombin Substances 0.000 description 1
- 239000012062 aqueous buffer Substances 0.000 description 1
- 229960003856 argatroban Drugs 0.000 description 1
- 230000002917 arthritic Effects 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Chemical class 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 201000001320 atherosclerosis Diseases 0.000 description 1
- 201000009596 autoimmune hypersensitivity disease Diseases 0.000 description 1
- 244000052616 bacterial pathogens Species 0.000 description 1
- 201000004532 bilirubin metabolic disease Diseases 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 108010055460 bivalirudin Proteins 0.000 description 1
- 229960001500 bivalirudin Drugs 0.000 description 1
- OYVAGSVQBOHSSS-UAPAGMARSA-O bleomycin A2 Chemical compound N([C@H](C(=O)N[C@H](C)[C@@H](O)[C@H](C)C(=O)N[C@@H]([C@H](O)C)C(=O)NCCC=1SC=C(N=1)C=1SC=C(N=1)C(=O)NCCC[S+](C)C)[C@@H](O[C@H]1[C@H]([C@@H](O)[C@H](O)[C@H](CO)O1)O[C@@H]1[C@H]([C@@H](OC(N)=O)[C@H](O)[C@@H](CO)O1)O)C=1N=CNC=1)C(=O)C1=NC([C@H](CC(N)=O)NC[C@H](N)C(N)=O)=NC(N)=C1C OYVAGSVQBOHSSS-UAPAGMARSA-O 0.000 description 1
- 201000004569 blindness Diseases 0.000 description 1
- 239000002981 blocking agent Substances 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000002798 bone marrow cell Anatomy 0.000 description 1
- 239000004327 boric acid Substances 0.000 description 1
- 229960002645 boric acid Drugs 0.000 description 1
- 235000010338 boric acid Nutrition 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 210000000424 bronchial epithelial cell Anatomy 0.000 description 1
- 210000003678 bronchial smooth muscle cell Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000001314 canonical amino-acid group Chemical group 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 230000002612 cardiopulmonary Effects 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 201000001084 cerebrovascular disease Diseases 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000005482 chemotactic factor Substances 0.000 description 1
- PRQROPMIIGLWRP-BZSNNMDCSA-N chemotactic peptide Chemical compound CSCC[C@H](NC=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 PRQROPMIIGLWRP-BZSNNMDCSA-N 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 230000001055 chewing Effects 0.000 description 1
- 239000000812 cholinergic antagonist Substances 0.000 description 1
- 239000000544 cholinesterase inhibitor Substances 0.000 description 1
- 229960004316 cisplatin Drugs 0.000 description 1
- 229960004106 citric acid Drugs 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000004186 co-expression Effects 0.000 description 1
- 108010052926 complement C3d,g Proteins 0.000 description 1
- 102000006834 complement receptors Human genes 0.000 description 1
- 108010047295 complement receptors Proteins 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000007887 coronary angioplasty Methods 0.000 description 1
- 230000000139 costimulatory Effects 0.000 description 1
- 230000002089 crippling Effects 0.000 description 1
- 229960000265 cromoglicic acid Drugs 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- PMATZTZNYRCHOR-UHFFFAOYSA-N cyclosporine A Chemical compound CCC1NC(=O)C(C(O)C(C)CC=CC)N(C)C(=O)C(C(C)C)N(C)C(=O)C(CC(C)C)N(C)C(=O)C(CC(C)C)N(C)C(=O)C(C)NC(=O)C(C)NC(=O)C(CC(C)C)N(C)C(=O)C(C(C)C)NC(=O)C(CC(C)C)N(C)C(=O)CN(C)C1=O PMATZTZNYRCHOR-UHFFFAOYSA-N 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- YBSJFWOBGCMAKL-UHFFFAOYSA-N dabigatran Chemical compound N=1C2=CC(C(=O)N(CCC(O)=O)C=3N=CC=CC=3)=CC=C2N(C)C=1CNC1=CC=C(C(N)=N)C=C1 YBSJFWOBGCMAKL-UHFFFAOYSA-N 0.000 description 1
- 230000004300 dark adaptation Effects 0.000 description 1
- 229960004120 defibrotide Drugs 0.000 description 1
- 230000000593 degrading Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 230000002939 deleterious Effects 0.000 description 1
- 230000000779 depleting Effects 0.000 description 1
- 230000000994 depressed Effects 0.000 description 1
- 230000001627 detrimental Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 201000009101 diabetic angiopathy Diseases 0.000 description 1
- 239000012538 diafiltration buffer Substances 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 201000008286 diarrhea Diseases 0.000 description 1
- 229960001259 diclofenac Drugs 0.000 description 1
- KXZOIWWTXOCYKR-UHFFFAOYSA-M diclofenac potassium Chemical compound [K+].[O-]C(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl KXZOIWWTXOCYKR-UHFFFAOYSA-M 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000000113 differential scanning calorimetry Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 229960000616 diflunisal Drugs 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 201000010046 dilated cardiomyopathy Diseases 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 230000003292 diminished Effects 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 201000008325 diseases of cellular proliferation Diseases 0.000 description 1
- VLARUOGDXDTHEH-UHFFFAOYSA-L disodium cromoglycate Chemical compound [Na+].[Na+].O1C(C([O-])=O)=CC(=O)C2=C1C=CC=C2OCC(O)COC1=CC=CC2=C1C(=O)C=C(C([O-])=O)O2 VLARUOGDXDTHEH-UHFFFAOYSA-L 0.000 description 1
- LNGNZSMIUVQZOX-UHFFFAOYSA-L disodium;dioxido(sulfanylidene)-$l^{4}-sulfane Chemical compound [Na+].[Na+].[O-]S([O-])=S LNGNZSMIUVQZOX-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000006196 drop Substances 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000002567 electromyography Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000002570 electrooculography Methods 0.000 description 1
- 238000002571 electroretinography Methods 0.000 description 1
- 230000002996 emotional Effects 0.000 description 1
- 201000003908 endometrial adenocarcinoma Diseases 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000002708 enhancing Effects 0.000 description 1
- 230000002255 enzymatic Effects 0.000 description 1
- 230000001667 episodic Effects 0.000 description 1
- 230000003628 erosive Effects 0.000 description 1
- 229960000403 etanercept Drugs 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N ethanolamine Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 230000001747 exhibiting Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 201000001155 extrinsic allergic alveolitis Diseases 0.000 description 1
- 230000001815 facial Effects 0.000 description 1
- 230000001605 fetal Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000003527 fibrinolytic agent Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229960001318 fondaparinux Drugs 0.000 description 1
- KANJSNBRCNMZMV-ABRZTLGGSA-N fondaparinux Chemical compound O[C@@H]1[C@@H](NS(O)(=O)=O)[C@@H](OC)O[C@H](COS(O)(=O)=O)[C@H]1O[C@H]1[C@H](OS(O)(=O)=O)[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O[C@@H]4[C@@H]([C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O4)NS(O)(=O)=O)[C@H](O3)C(O)=O)O)[C@@H](COS(O)(=O)=O)O2)NS(O)(=O)=O)[C@H](C(O)=O)O1 KANJSNBRCNMZMV-ABRZTLGGSA-N 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037240 fusion proteins Human genes 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 108010074605 gamma-Globulins Proteins 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010363 gene targeting Methods 0.000 description 1
- 239000000174 gluconic acid Chemical class 0.000 description 1
- 235000012208 gluconic acid Nutrition 0.000 description 1
- 229950006191 gluconic acid Drugs 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Polymers 0.000 description 1
- 229960003711 glyceryl trinitrate Drugs 0.000 description 1
- 201000005569 gout Diseases 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 238000001631 haemodialysis Methods 0.000 description 1
- 231100000869 headache Toxicity 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 230000002489 hematologic Effects 0.000 description 1
- 230000000322 hemodialysis Effects 0.000 description 1
- 201000001505 hemoglobinuria Diseases 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 239000000833 heterodimer Substances 0.000 description 1
- 229960001340 histamine Drugs 0.000 description 1
- 239000000938 histamine H1 antagonist Substances 0.000 description 1
- 239000003301 histamine release inhibitor Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000000887 hydrating Effects 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000003301 hydrolyzing Effects 0.000 description 1
- 235000019447 hydroxyethyl cellulose Nutrition 0.000 description 1
- 229940071826 hydroxyethyl cellulose Drugs 0.000 description 1
- 230000002218 hypoglycaemic Effects 0.000 description 1
- 229960001680 ibuprofen Drugs 0.000 description 1
- 238000002318 immunoblotting Methods 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 238000003125 immunofluorescent labeling Methods 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 201000006747 infectious mononucleosis Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory Effects 0.000 description 1
- 229940079322 interferon Drugs 0.000 description 1
- 239000003407 interleukin 1 receptor blocking agent Substances 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 229940079866 intestinal antibiotics Drugs 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- LHLMOSXCXGLMMN-VVQPYUEFSA-M ipratropium bromide Chemical compound [Br-].O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 LHLMOSXCXGLMMN-VVQPYUEFSA-M 0.000 description 1
- 238000010829 isocratic elution Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- BJHIKXHVCXFQLS-PYWDMBMJSA-N keto-D-sorbose Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)C(=O)CO BJHIKXHVCXFQLS-PYWDMBMJSA-N 0.000 description 1
- 229960000991 ketoprofen Drugs 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 230000003907 kidney function Effects 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 229960001632 labetalol Drugs 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 235000019388 lanolin Nutrition 0.000 description 1
- 229960004408 lepirudin Drugs 0.000 description 1
- 230000001665 lethal Effects 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 239000003199 leukotriene receptor blocking agent Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 201000005202 lung cancer Diseases 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 201000005857 malignant hypertension Diseases 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 229960001855 mannitol Drugs 0.000 description 1
- 230000018984 mastication Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000001404 mediated Effects 0.000 description 1
- 229960001929 meloxicam Drugs 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 229920002106 messenger RNA Polymers 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- 201000003694 methylmalonic acidemia Diseases 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 239000011325 microbead Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000003094 microcapsule Substances 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- LBFBRXGCXUHRJY-HKHDRNBDSA-M montelukast sodium Chemical compound [Na+].CC(C)(O)C1=CC=CC=C1CC[C@H](C=1C=C(\C=C\C=2N=C3C=C(Cl)C=CC3=CC=2)C=CC=1)SCC1(CC([O-])=O)CC1 LBFBRXGCXUHRJY-HKHDRNBDSA-M 0.000 description 1
- 229960001951 montelukast sodium Drugs 0.000 description 1
- 230000000877 morphologic Effects 0.000 description 1
- 101700045377 mvp1 Proteins 0.000 description 1
- 229960004270 nabumetone Drugs 0.000 description 1
- 229960002009 naproxen Drugs 0.000 description 1
- 238000002663 nebulization Methods 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000003499 nucleic acid array Methods 0.000 description 1
- 229940005935 ophthalmologic Antibiotics Drugs 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000001151 other effect Effects 0.000 description 1
- 229960002739 oxaprozin Drugs 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 230000001734 parasympathetic Effects 0.000 description 1
- 230000036961 partial Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 244000052769 pathogens Species 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000000546 pharmaceutic aid Substances 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 239000000106 platelet aggregation inhibitor Substances 0.000 description 1
- 230000004983 pleiotropic Effects 0.000 description 1
- 229920001983 poloxamer Polymers 0.000 description 1
- 229920002496 poly(ether sulfone) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 108091008117 polyclonal antibodies Proteins 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 150000004804 polysaccharides Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 229940094025 potassium bicarbonate Drugs 0.000 description 1
- 239000001184 potassium carbonate Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 230000003389 potentiating Effects 0.000 description 1
- 230000001376 precipitating Effects 0.000 description 1
- 229960004618 prednisone Drugs 0.000 description 1
- 239000000651 prodrug Substances 0.000 description 1
- 229940002612 prodrugs Drugs 0.000 description 1
- 230000002250 progressing Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 230000006432 protein unfolding Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000002285 radioactive Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 230000036647 reaction Effects 0.000 description 1
- 239000003642 reactive oxygen metabolite Substances 0.000 description 1
- 102000027656 receptor tyrosine kinases Human genes 0.000 description 1
- 108091007921 receptor tyrosine kinases Proteins 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 239000012557 regeneration buffer Substances 0.000 description 1
- 230000001105 regulatory Effects 0.000 description 1
- 230000003362 replicative Effects 0.000 description 1
- 200000000008 restenosis Diseases 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 230000004243 retinal function Effects 0.000 description 1
- 230000000250 revascularization Effects 0.000 description 1
- 229920002033 ribozyme Polymers 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000002000 scavenging Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 231100000486 side effect Toxicity 0.000 description 1
- 238000009097 single-agent therapy Methods 0.000 description 1
- 230000007958 sleep Effects 0.000 description 1
- 230000016160 smooth muscle contraction Effects 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 235000015424 sodium Nutrition 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- 229940001607 sodium bisulfite Drugs 0.000 description 1
- 239000001187 sodium carbonate Substances 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229940001584 sodium metabisulfite Drugs 0.000 description 1
- 235000010262 sodium metabisulphite Nutrition 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000001384 succinic acid Chemical class 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000004083 survival Effects 0.000 description 1
- 238000004114 suspension culture Methods 0.000 description 1
- 230000000152 swallowing Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing Effects 0.000 description 1
- 239000011975 tartaric acid Chemical class 0.000 description 1
- 229960001367 tartaric acid Drugs 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 230000004488 tear evaporation Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- BQMKAHQKDSZAIQ-UHFFFAOYSA-N tetrasodium;iron(3+);nitroxyl anion;pentacyanide Chemical compound [Na+].[Na+].[Na+].[Na+].[Fe+3].N#[C-].N#[C-].N#[C-].N#[C-].N#[C-].O=[N-] BQMKAHQKDSZAIQ-UHFFFAOYSA-N 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- QQILXENAYPUNEA-UHFFFAOYSA-M tolmetin sodium dihydrate Chemical compound O.O.[Na+].C1=CC(C)=CC=C1C(=O)C1=CC=C(CC([O-])=O)N1C QQILXENAYPUNEA-UHFFFAOYSA-M 0.000 description 1
- 231100000224 toxic side effect Toxicity 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 108020003112 toxins Proteins 0.000 description 1
- 235000013619 trace mineral Nutrition 0.000 description 1
- 239000011573 trace mineral Substances 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- LXZZYRPGZAFOLE-UHFFFAOYSA-L transplatin Chemical compound [H][N]([H])([H])[Pt](Cl)(Cl)[N]([H])([H])[H] LXZZYRPGZAFOLE-UHFFFAOYSA-L 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- WUUHFRRPHJEEKV-UHFFFAOYSA-N tripotassium borate Chemical class [K+].[K+].[K+].[O-]B([O-])[O-] WUUHFRRPHJEEKV-UHFFFAOYSA-N 0.000 description 1
- 229960001322 trypsin Drugs 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 239000002451 tumor necrosis factor inhibitor Substances 0.000 description 1
- 229920001664 tyloxapol Polymers 0.000 description 1
- 229960004224 tyloxapol Drugs 0.000 description 1
- 238000004450 types of analysis Methods 0.000 description 1
- 238000002562 urinalysis Methods 0.000 description 1
- 201000011528 vascular disease Diseases 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 244000052613 viral pathogens Species 0.000 description 1
- 230000004393 visual impairment Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- MWLSOWXNZPKENC-SSDOTTSWSA-N zileuton Chemical compound C1=CC=C2SC([C@H](N(O)C(N)=O)C)=CC2=C1 MWLSOWXNZPKENC-SSDOTTSWSA-N 0.000 description 1
- 229960005332 zileuton Drugs 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N α-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
Abstract
Disclosed is a method for producing a concentrated antibody solution comprising greater than 100 mg/mL of an anti-C5 antibody, the method comprising: providing a first aqueous solution comprising an anti-C5 antibody, the first aqueous solution having a first formulation and comprising no more than 50 mg/mL of the anti-C5 antibody; subjecting the first aqueous solution to diafiltration to thereby produce a second aqueous solution, wherein the second aqueous solution has a second formulation as a result of the diafiltration; and concentrating the second aqueous solution to produce a concentrated antibody solution comprising greater than 100 mg/mL of the anti-C5 antibody. an 50 mg/mL of the anti-C5 antibody; subjecting the first aqueous solution to diafiltration to thereby produce a second aqueous solution, wherein the second aqueous solution has a second formulation as a result of the diafiltration; and concentrating the second aqueous solution to produce a concentrated antibody solution comprising greater than 100 mg/mL of the anti-C5 antibody.
Description
HIGH CONCENTRATION ANTIBODY FORMULATIONS
The present application is a divisional application of New Zealand Application
No. 598610 which is incorporated in its entirety herein by reference.
Technical Field
The field of the invention is medicine, immunology, molecular biology, and protein
chemistry.
Background
Any discussion of the prior art throughout the specification should in no way be
considered as an admission that such prior art is widely known or forms part of common
general knowledge in the field.
The complement system acts in conjunction with other immunological systems of the
body to defend against intrusion of cellular and viral pathogens. There are at least 25
complement proteins, which are found as a complex collection of plasma proteins and
membrane cofactors. The plasma proteins make up about 10% of the globulins in vertebrate
serum. Complement components achieve their immune defensive functions by interacting in a
series of intricate but precise enzymatic cleavage and membrane binding events. The resulting
complement cascade leads to the production of products with opsonic, immunoregulatory, and
lytic functions. A concise summary of the biologic activities associated with complement
activation is provided, for example, in The Merck Manual, 16 Edition.
The complement cascade can progress via the classical pathway (CP), the lectin
pathway, or the alternative pathway (AP). The lectin pathway is typically initiated with binding
of mannose-binding lectin (MBL) to high mannose substrates. The AP can be antibody
independent, and can be initiated by certain molecules on pathogen surfaces. The CP is
typically initiated by antibody recognition of, and binding to, an antigenic site on a target cell.
These pathways converge at the C3 convertase – the point where complement component C3 is
cleaved by an active protease to yield C3a and C3b.
The AP C3 convertase is initiated by the spontaneous hydrolysis of complement component C3,
which is abundant in the plasma in the blood. This process, also known as “tickover,” occurs
through the spontaneous cleavage of a thioester bond in C3 to form C3i or C3(H O). Tickover
is facilitated by the presence of surfaces that support the binding of activated C3 and/or have
neutral or positive charge characteristics (e.g., bacterial cell surfaces). This formation of
C3(H O) allows for the binding of plasma protein Factor B, which in turn allows Factor D to
cleave Factor B into Ba and Bb. The Bb fragment remains bound to C3 to form a complex
containing C3(H O)Bb – the “fluid-
phase” or “initiation” C3 convertase. Although only produced in small amounts, the
fluid-phase C3 convertase can cleave multiple C3 proteins into C3a and C3b and results
in the generation of C3b and its subsequent covalent binding to a surface (e.g., a bacterial
surface). Factor B bound to the surface-bound C3b is cleaved by Factor D to thus form
the surface-bound AP C3 convertase complex containing C3b,Bb. (See, e.g., Müller-
Eberhard (1988) Ann Rev Biochem 57:321-347.)
The AP C5 convertase – (C3b) ,Bb – is formed upon addition of a second C3b
monomer to the AP C3 convertase. (See, e.g., Medicus et al. (1976) J Exp Med
144:1076-1093 and Fearon et al. (1975) J Exp Med 142:856-863.) The role of the second
C3b molecule is to bind C5 and present it for cleavage by Bb. (See, e.g., Isenman et al.
(1980) J Immunol 124:326-331.) The AP C3 and C5 convertases are stabilized by the
addition of the trimeric protein properdin as described in, e.g., Medicus et al. (1976),
supra. However, properdin binding is not required to form a functioning alternative
pathway C3 or C5 convertase. See, e.g., Schreiber et al. (1978) Proc Natl Acad Sci USA
75: 3948-3952 and Sissons et al. (1980) Proc Natl Acad Sci USA 77: 559-562.
The CP C3 convertase is formed upon interaction of complement component C1,
which is a complex of C1q, C1r, and C1s, with an antibody that is bound to a target
antigen (e.g., a microbial antigen). The binding of the C1q portion of C1 to the antibody-
antigen complex causes a conformational change in C1 that activates Clr. Active C1r
then cleaves the C1-associated C1s to thereby generate an active serine protease. Active
C1s cleaves complement component C4 into C4b and C4a. Like C3b, the newly
generated C4b fragment contains a highly reactive thiol that readily forms amide or ester
bonds with suitable molecules on a target surface (e.g., a microbial cell surface). C1s
also cleaves complement component C2 into C2b and C2a. The complex formed by C4b
and C2a is the CP C3 convertase, which is capable of processing C3 into C3a and C3b.
The CP C5 convertase – C4b,C2a,C3b – is formed upon addition of a C3b monomer to
the CP C3 convertase. See, e.g., Müller-Eberhard (1988), supra and Cooper et al. (1970)
J Exp Med 132:775-793.
In addition to its role in C3 and C5 convertases, C3b also functions as an opsonin
through its interaction with complement receptors present on the surfaces of antigen-
presenting cells such as macrophages and dendritic cells. The opsonic function of C3b is
generally considered to be one of the most important anti-infective functions of the
complement system. Patients with genetic lesions that block C3b function are prone to
infection by a broad variety of pathogenic organisms, while patients with lesions later in
the complement cascade sequence, i.e., patients with lesions that block C5 functions, are
found to be more prone only to Neisseria infection, and then only somewhat more prone.
The AP and CP C5 convertases cleave C5, which is a 190 kDa beta globulin
found in normal human serum at approximately 75 μg/ml (0.4 μM). C5 is glycosylated,
with about 1.5-3 percent of its mass attributed to carbohydrate. Mature C5 is a
heterodimer of a 999 amino acid 115 kDa alpha chain that is disulfide linked to a 655
amino acid 75 kDa beta chain. C5 is synthesized as a single chain precursor protein
product of a single copy gene (Haviland et al. (1991) J Immunol 146:362-368). The
cDNA sequence of the transcript of this gene predicts a secreted pro-C5 precursor of
1658 amino acids along with an 18 amino acid leader sequence (see, e.g., U.S. Patent No.
6,355,245).
The pro-C5 precursor is cleaved after amino acids 655 and 659, to yield the beta
chain as an amino terminal fragment (amino acid residues +1 to 655 of the above
sequence) and the alpha chain as a carboxyl terminal fragment (amino acid residues 660
to 1658 of the above sequence), with four amino acids (amino acid residues 656-659 of
the above sequence) deleted between the two.
C5a is cleaved from the alpha chain of C5 by either alternative or classical C5
convertase as an amino terminal fragment comprising the first 74 amino acids of the
alpha chain (i.e., amino acid residues 660-733 of the above sequence). Approximately 20
percent of the 11 kDa mass of C5a is attributed to carbohydrate. The cleavage site for
convertase action is at, or immediately adjacent to, amino acid residue 733 of the above
sequence. A compound that would bind at, or adjacent, to this cleavage site would have
the potential to block access of the C5 convertase enzymes to the cleavage site and
thereby act as a complement inhibitor. A compound that binds to C5 at a site distal to the
cleavage site could also have the potential to block C5 cleavage, for example, by way of
steric hindrance-mediated inhibition of the interaction between C5 and the C5 convertase.
A compound, in a mechanism of action consistent with that of the tick saliva complement
inhibitor OmCI, may also prevent C5 cleavage by reducing flexibility of the C345C
domain of the alpha chain of C5, which reduces access of the C5 convertase to the
cleavage site of C5. See, e.g., Fredslund et al. (2008) Nat Immunol 9(7):753-760.
C5 can also be activated by means other than C5 convertase activity. Limited
trypsin digestion (see, e.g., Minta and Man (1997) J Immunol 119:1597-1602 and Wetsel
and Kolb (1982) J Immunol 128:2209-2216) and acid treatment (Yamamoto and Gewurz
(1978) J Immunol 120:2008 and Damerau et al. (1989) Molec Immunol 26:1133-1142)
can also cleave C5 and produce active C5b.
Cleavage of C5 releases C5a, a potent anaphylatoxin and chemotactic factor, and
leads to the formation of the lytic terminal complement complex, C5b-9. C5a and C5b-9
also have pleiotropic cell activating properties, by amplifying the release of downstream
inflammatory factors, such as hydrolytic enzymes, reactive oxygen species, arachidonic
acid metabolites and various cytokines.
The first step in the formation of the terminal complement complex involves the
combination of C5b with C6, C7, and C8 to form the C5b-8 complex at the surface of the
target cell. Upon the binding of the C5b-8 complex with several C9 molecules, the
membrane attack complex (MAC, C5b-9, terminal complement complex–TCC) is
formed. When sufficient numbers of MACs insert into target cell membranes the
openings they create (MAC pores) mediate rapid osmotic lysis of the target cells. Lower,
non-lytic concentrations of MACs can produce other effects. In particular, membrane
insertion of small numbers of the C5b-9 complexes into endothelial cells and platelets
can cause deleterious cell activation. In some cases activation may precede cell lysis.
As mentioned above, C3a and C5a are anaphylatoxins. These activated
complement components can trigger mast cell degranulation, which releases histamine
from basophils and mast cells, and other mediators of inflammation, resulting in smooth
muscle contraction, increased vascular permeability, leukocyte activation, and other
inflammatory phenomena including cellular proliferation resulting in hypercellularity.
C5a also functions as a chemotactic peptide that serves to attract pro-inflammatory
granulocytes to the site of complement activation.
C5a receptors are found on the surfaces of bronchial and alveolar epithelial cells
and bronchial smooth muscle cells. C5a receptors have also been found on eosinophils,
mast cells, monocytes, neutrophils, and activated lymphocytes.
While a properly functioning complement system provides a robust defense
against infecting microbes, inappropriate regulation or activation of complement has been
implicated in the pathogenesis of a variety of disorders including, e.g., rheumatoid
arthritis (RA); lupus nephritis; asthma; ischemia-reperfusion injury; atypical hemolytic
uremic syndrome (aHUS); dense deposit disease (DDD); paroxysmal nocturnal
hemoglobinuria (PNH); macular degeneration (e.g., age-related macular degeneration
(AMD)); hemolysis, elevated liver enzymes, and low platelets (HELLP) syndrome;
thrombotic thrombocytopenic purpura (TTP); spontaneous fetal loss; Pauci-immune
vasculitis; epidermolysis bullosa; recurrent fetal loss; multiple sclerosis (MS); traumatic
brain injury; and injury resulting from myocardial infarction, cardiopulmonary bypass
and hemodialysis. (See, e.g., Holers et al. (2008) Immunological Reviews 223:300-316.)
Inhibition of complement (e.g., inhibition of: terminal complement formation, C5
cleavage, or complement activation) has been demonstrated to be effective in treating
several complement-associated disorders both in animal models and in humans. See,
e.g., Rother et al. (2007) Nature Biotechnology 25(11):1256-1264; Wang et al. (1996)
Proc Natl Acad Sci USA 93:8563-8568; Wang et al. (1995) Proc Natl Acad Sci USA
92:8955-8959; Rinder et al. (1995) J Clin Invest 96:1564-1572; Kroshus et al. (1995)
Transplantation 60:1194-1202; Homeister et al. (1993) J Immunol 150:1055-1064;
Weisman et al. (1990) Science 249:146-151; Amsterdam et al. (1995) Am J Physiol
268:H448-H457; and Rabinovici et al. (1992) J Immunol 149:1744 1750.
Summary
This disclosure relates to stable, highly-concentrated liquid formulations of
antibodies as well as methods for making and using the formulations. The disclosure
provides, among other things, formulation conditions suitable for maintaining over
considerable time the physical and functional stability of an anti-C5 antibody (e.g.,
eculizumab) in high concentration solutions. For example, the disclosure provides
formulation conditions capable of maintaining an anti-C5 antibody in predominantly
monomeric form for up to 2 years at 2°C to 8°C, even when the antibody is maintained in
solutions at concentrations of approximately 100 mg/mL. In addition, as described herein
and exemplified in the working examples, such formulations also minimize aggregation,
fragmentation, or degradation of an anti-C5 antibody within the highly-concentrated
solutions. For example, the disclosure provides formulation conditions capable of
maintaining for two years an anti-C5 antibody in a highly-concentrated form with no
detectable antibody fragmentation or degradation products (as determined using size
exclusion chromatography-high performance liquid chromatography (SEC-HPLC)) and
no more than 2% aggregate. Also provided herein are conditions suitable for formulating
solutions of an anti-C5 antibody such as eculizumab at greater than 200 mg/mL.
The benefits of stable, highly-concentrated aqueous solutions of an anti-C5
antibody are numerous. First, for therapeutic applications which require the antibody to
be administered to a patient in a small volume, therapeutic efficacy often turns on the
amount of antibody that can be administered in that small volume. In the absence of the
ability to formulate an anti-C5 antibody to high concentrations, use of, for example,
subcutaneous, intravitreal, and/or intraarticular delivery routes would often be precluded.
Relatedly, highly-concentrated antibody formulations allow for more patient choice
regarding the route of administration. For therapeutic applications that require frequent
and/or chronic administration, self-delivery or –administration is made possible by high
concentration formulations and can be more appealing to patients than intravenous
infusion. For example, high concentration formulations of an anti-C5 antibody can allow
a patient to self-administer the antibody by, e.g., subcutaneous injection. Therefore, the
ability to formulate the antibody at high concentrations can increase compliance of
administration by providing an easy home administration alternative to patients with
complement-associated disorders.
Furthermore, methods for producing the aqueous solutions described herein do
not require a lyophilization step, nor do the featured high concentration aqueous solutions
need to be reconstituted from lyophilized material. The instantly featured high
concentration antibody solutions provide several advantages over reconstituted
lyophilized antibody formulations. First, medical practitioners must locally reconstitute
lyophilized antibody solutions aseptically, which increases the opportunity for microbial
contamination of the solution prior to administration. In addition, reconstitution requires
considerable care to be certain that all of the solids contained in the reconstitution vessel
are properly dissolved in solution. The high concentration aqueous solutions provided
herein thus provide the medical practitioner, caregiver, and/or patient with a fast, easy,
safe, and efficient means for delivering a therapeutic antibody to a patient in need thereof.
Other benefits of high concentration formulations include, e.g., manufacturing
cost savings from decreasing bulk storage space and/or the number of product fills. In
addition, the ability to produce a product having a longer shelf-life will ultimately require
fewer production runs, which ultimately reduces cost for the manufacturer and consumer of the
highly-concentrated therapeutic antibody.
According to the first aspect, the present invention provides a method for producing a
concentrated antibody solution comprising greater than 100 mg/mL of an anti-C5 antibody, the
method comprising:
providing a first aqueous solution comprising an anti-C5 antibody, the first aqueous
solution having a first formulation and comprising no more than 50 mg/mL of the anti-C5
antibody;
subjecting the first aqueous solution to diafiltration to thereby produce a second aqueous
solution, wherein the second aqueous solution has a second formulation as a result of the
diafiltration; and
concentrating the second aqueous solution to produce a concentrated antibody solution
comprising greater than 100 mg/mL of the anti-C5 antibody.
According to the second aspect, the present invention provides an aqueous solution
comprising an anti-C5 antibody at a concentration of greater than 100 mg/mL produced by the
method according to the first aspect.
According to the third aspect, the present invention provides a kit comprising: (i) the
aqueous solution according to the second aspect; and (ii) a means for delivering the solution to
a patient in need thereof.
According to a fourth aspect, the present invention provides a pre-filled syringe
comprising the aqueous solution according to the second aspect.
According to a fifth aspect, the present invention provides the use of the aqueous
solution of the second aspect in the manufacture of a medicament for treating a patient afflicted
with a complement-associated disorder.
Unless the context clearly requires otherwise, throughout the description and the claims,
the words “comprise”, “comprising”, and the like are to be construed in an inclusive sense as
opposed to an exclusive or exhaustive sense; that is to say, in the sense of “including, but not
limited to”.
In one aspect, the disclosure features an aqueous solution comprising an anti-C5
antibody at a concentration of 40 mg/mL to 200 mg/mL. In another aspect, the disclosure
features an aqueous solution comprising an anti-C5 antibody at a concentration of greater than
200 mg/mL. Additional exemplary concentrations, including fixed concentrations as well as
exemplary ranges of concentrations, are provided herein.
In some embodiments, any of the solutions described herein comprise at least one
buffering agent at a concentration of 10 mM to 300 mM, inclusive. In some embodiments, any
of the solutions described herein comprise at least one buffering agent at a concentration of
mM to 200 mM, inclusive. In some embodiments, the at least one buffering agent is present
in the solution at a concentration of at least, or equal to, 20 mM. In some embodiments, the at
least one buffering agent is present in the solution at a concentration of at least, or equal to, 50
mM. In some embodiments, the at least one buffering agent is an amino acid. The amino acid
can be, e.g., one selected from the group consisting of histidine (e.g., L-histidine), serine (e.g.,
L-serine), and glycine (e.g., L-glycine). In some embodiments, any of the solutions described
herein comprise two or more buffering agents. The two or more buffering agents can be, e.g.,
histidine and serine. In some embodiments, the two or more buffering agents are histidine and
glycine.
In some embodiments, any of the solutions described herein comprise at least one
carbohydrate excipient at a concentration of 0.1 to 5%. In some embodiments, the at least one
carbohydrate excipient is present in the solution at a concentration of at least, or equal to, 1.5%.
In some embodiments, the at least one carbohydrate excipient is present in the solution at a
concentration of at least, or equal to, 3%. The at least one carbohydrate excipient can be, e.g.,
one selected from the group consisting of sorbitol and mannitol. In some embodiments, any of
the solutions described herein comprise two or more carbohydrate excipients. At least two of
the excipients can be, e.g., sorbitol and mannitol.
In some embodiments, any of the solutions described herein comprise a formulation that
comprises, or consists of, the following composition: (i) at least 20 mM histidine; at least 50
mM glycine; at least 3% (w/v) sorbitol; and at least 1.5% (w/v) mannitol; (ii) 20 mM histidine;
50 mM glycine; 3% (w/v) sorbitol; and 1.5% (w/v)
mannitol; (iii) at least 20 mM histidine; at least 50 mM serine; at least 3% (w/v) sorbitol;
and at least 1.5% (w/v) mannitol; or (iv) at least 20 mM histidine; at least 50 mM serine;
at least 2.5% (w/v) sorbitol; and at least 1.5% (w/v) mannitol. Additional exemplary
formulations are set forth herein.
In some embodiments, any of the solutions described herein comprise a
surfactant. The surfactant can be, e.g., polysorbate 20 or polysorbate 80. The
concentration of the surfactant in the solution can be, e.g., between 0.001% to 0.02%,
inclusive.
In some embodiments, any of the solutions described herein can have a pH
between 6.5 and 7.5.
In some embodiments, any of the solutions described herein are sterile solutions.
In some embodiments of any of the solutions described herein, the anti-C5
antibody is eculizumab.
In some embodiments of any of the solutions described herein, the anti-C5
antibody remains at least 95 (e.g., at least 96, 97, 98, or 99) % monomeric during storage
at 2°C to 8°C for at least six months as determined by SEC-HPLC. In some
embodiments of any of the solutions described herein, the anti-C5 antibody remains at
least 95 (e.g., at least 96, 97, 98, or 99) % monomeric during storage at 2°C to 8°C for at
least one year as determined by SEC-HPLC. In some embodiments of any of the
solutions described herein, the anti-C5 antibody remains at least 95 (e.g., at least 96, 97,
98, or 99) % monomeric during storage at 2°C to 8°C for at least six months as
determined by SEC-HPLC. In some embodiments of any of the solutions described
herein, the anti-C5 antibody remains at least 95 (e.g., at least 96, 97, 98, or 99) %
monomeric during storage at 2°C to 8°C for at least one year as determined by SEC-
HPLC. In some embodiments of any of the solutions described herein, the anti-C5
antibody remains at least 95 (e.g., at least 96, 97, 98, or 99) % monomeric during storage
at 2°C to 8°C for at least 18 months as determined by SEC-HPLC. In some embodiments
of any of the solutions described herein, the anti-C5 antibody remains at least 95 (e.g., at
least 96, 97, 98, or 99) % monomeric during storage at 2°C to 8°C for at least two years
as determined by SEC-HPLC.
In some embodiments of any of the solutions described herein, less than 2% of the
anti-C5 antibody in the solution is aggregated as determined by SEC-HPLC. In some
embodiments of any of the solutions described herein, less than 1% of the anti-C5
antibody in the solution is aggregated as determined by SEC-HPLC.
In some embodiments of any of the solutions described herein, less than 1% of the
anti-C5 antibody in the solution is fragmented as determined by SEC-HPLC. In some
embodiments of any of the solutions described herein, less than 0.5% of the anti-C5
antibody in the solution is fragmented as determined by SEC-HPLC. In some
embodiments of any of the solutions described herein, during storage at 2°C to 8°C for at
least six months the anti-C5 antibody retains at least 80 (e.g., at least 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99) % of its C5-binding activity, as
compared to a reference anti-C5 antibody corresponding to the anti-C5 antibody prior to
storage. In some embodiments of any of the solutions described herein, during storage at
2°C to 8°C for at least one year the anti-C5 antibody retains at least 80 (e.g., at least 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99) % of its C5-
binding activity, as compared to a reference anti-C5 antibody corresponding to the anti-
C5 antibody prior to storage. In some embodiments of any of the solutions described
herein, during storage at 2°C to 8°C for at least 18 months the anti-C5 antibody retains at
least 80 (e.g., at least 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98,
or 99) % of its C5-binding activity, as compared to a reference anti-C5 antibody
corresponding to the anti-C5 antibody prior to storage. In some embodiments of any of
the solutions described herein, during storage at 2°C to 8°C for at least two years the anti-
C5 antibody retains at least 80 (e.g., at least 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92,
93, 94, 95, 96, 97, 98, or 99) % of its C5-binding activity, as compared to a reference
anti-C5 antibody corresponding to the anti-C5 antibody prior to storage. In some
embodiments of any of the solutions described herein, during storage at 2°C to 8°C for at
least six months the anti-C5 antibody retains at least 80 (e.g., at least 81, 82, 83, 84, 85,
86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99) % of its ability to inhibit
hemolysis, as compared to a reference anti-C5 antibody corresponding to the anti-C5
antibody prior to storage. In some embodiments of any of the solutions described herein,
during storage at 2°C to 8°C for at least one year the anti-C5 antibody retains at least 80
(e.g., at least 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99) %
of its ability to inhibit hemolysis, as compared to a reference anti-C5 antibody
corresponding to the anti-C5 antibody prior to storage. In some embodiments of any of
the solutions described herein, during storage at 2°C to 8°C for at least 18 months the
anti-C5 antibody retains at least 80 (e.g., at least 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91,
92, 93, 94, 95, 96, 97, 98, or 99) % of its ability to inhibit hemolysis, as compared to a
reference anti-C5 antibody corresponding to the anti-C5 antibody prior to storage. In
some embodiments of any of the solutions described herein, during storage at 2°C to 8°C
for at least two years the anti-C5 antibody retains at least 80 (e.g., at least 81, 82, 83, 84,
85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99) % of its ability to inhibit
hemolysis, as compared to a reference anti-C5 antibody corresponding to the anti-C5
antibody prior to storage.
In another aspect, the disclosure features an aqueous solution comprising an anti-
C5 antibody at a concentration of 100 ± 20 (e.g., 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90,
91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110,
111, 112, 113, 114, 115, 116, 117, 118, 119, or 120) mg/mL; 20 ± 5 (e.g., 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, or 25) mM L-histidine; 50 ± 15 (e.g., 35, 36, 37, 38, 39, 40, 41, 42,
43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, or 65)
mM L-serine; 3 ± 1 (e.g., 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4,
3.5, 3.6, 3.7, 3.8, 3.9, or 4) % sorbitol; and 1.5 ± 0.5 (e.g., 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1.7, 1.8, 1.9, or 2) % mannitol, wherein the solution has a pH of 7.1 ± 0.5 (e.g., 6.6, 6.7,
6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, or 7.6).
In yet another aspect, the disclosure features a method for producing a
concentrated antibody solution comprising greater than (or equal to) 100 mg/mL of an
anti-C5 antibody. The method comprises: providing a first aqueous solution comprising
an anti-C5 antibody, the first aqueous solution having a first formulation and comprising
no more than 50 (e.g., no more than 49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36,
35, 34, 33, 32, or 31) mg/mL of the anti-C5 antibody; subjecting the first aqueous
solution to diafiltration to thereby produce a second aqueous solution, wherein the second
aqueous solution has a second formulation as a result of the diafiltration; and
concentrating the second aqueous solution to produce a concentrated antibody solution
comprising greater than (or equal to) 100 mg/mL of the anti-C5 antibody. In some
embodiments, the first aqueous solution comprises greater than 30 mg/mL, but no more
than 50 mg/mL, of the anti-C5 antibody. In some embodiments, the first aqueous
solution comprises greater than 35 mg/mL, but no more than 50 mg/mL, of the anti-C5
antibody. In some embodiments, the first aqueous solution comprises greater than 35
mg/mL, but no more than 45 mg/mL, of the anti-C5 antibody. In some embodiments, the
anti-C5 antibody is not lyophilized prior to or following the diafiltration or concentrating.
In some embodiments of any of the methods, the first formulation is a phosphate
buffer-based formulation. The first formulation can comprise, e.g.: at least 20 mM
sodium phosphate and at least 80 mM sodium chloride.
In some embodiments of any of the above methods, the second formulation
comprises: at least 20 mM histidine; at least 50 mM serine; at least 2.5% (w/v) sorbitol;
and at least 1.5% (w/v) mannitol.
In some embodiments of any of the above methods, the concentrating comprises
tangential flow filtration and/or use of a stir cell.
In some embodiments of any of the above methods, more than one round of
diafiltration is performed. In some embodiments, at least two rounds of diafiltration are
performed. In some embodiments, at least four rounds of diafiltration are performed. In
some embodiments of any of the above methods, the diafiltration comprises continuous
addition of a buffer having the second formulation.
In some embodiments of any of the above methods, the concentrated antibody
solution comprises greater than (or equal to) 105 (e.g., greater than, or equal to, 106, 107,
108, 109, 110, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185,
190, 195, 200, 205, or 208) mg/mL of the anti-C5 antibody.
In some embodiments of any of the above methods, at least 80 (e.g., at least 81,
82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99) % of the anti-C5
antibody present in the first aqueous solution is recovered in the high concentration
aqueous solution. In some embodiments of any of the above methods, at least 90% of the
anti-C5 antibody present in the first aqueous solution is recovered in the high
concentration aqueous solution.
In some embodiments of any of the above methods, the anti-C5 antibody is
eculizumab.
In yet another aspect, the disclosure features an aqueous solution comprising an
anti-C5 antibody at a concentration of greater than 100 mg/mL produced by any of the
above methods.
In another aspect, the disclosure features a kit comprising: (i) any of the solutions
described herein; and (ii) a means for delivering the solution to a patient in need thereof.
In some embodiments of any of the kits described herein, the means is suitable for
subcutaneous delivery of the solution to the patient. In some embodiments of any of the
kits described herein, the means is suitable for delivery of the solution to the eye. In
some embodiments of any of the kits described herein, the means is suitable for
intraarticular delivery of the solution to the patient.
In some embodiments of any of the kits described herein, the means is a syringe
or a double-barreled syringe. In some embodiments of any of the kits described herein,
the means is: (a) a transscleral patch comprising the solution; or (b) a contact lens
comprising the solution or partially coated in the solution.
In some embodiments of any of the kits described herein, the means is suitable for
intrapulmonary delivery of the solution to the patient. For example, the means can be an
inhaler or a nebulizer.
In some embodiments of any of the kits described herein, the solution is
formulated for aerosol administration or nebulized administration to the patient.
In some embodiments, any of the kits described herein further comprise at least
one additional active agent for use in treating a complement-associated disorder in a
subject. Such agents are recited herein.
In yet another aspect, the disclosure features a kit comprising one or more
containers, wherein each container comprises an aqueous solution described herein and
wherein each container comprises at least one pharmaceutical unit dosage form of the
anti-C5 antibody. In some embodiments, each container comprises between 0.05 mg to
mg of the anti-C5 antibody. In some embodiments, the kit comprises between about 1
mg and 100 mg of the anti-C5 antibody.
In some embodiments of any of the kits described herein, each container has a
volume of 0.01 mL to 1 mL, inclusive. In some embodiments of any of the kits described
herein, at least one container comprises an aqueous solution suitable for intravitreal
injection to a patient,
intraarticular injection to a patient, intramuscular injection to a patient, subcutaneous
injection to a patient, and/or intrapulmonary administration to a patient. For example, a
kit described herein can comprise at least one container comprising an aqueous solution
suitable for use with a nebulizer or inhaler.
In another aspect, the disclosure features a pre-filled syringe comprising any of
the aqueous solutions described herein. In some embodiments, the solution is formulated
for intraocular, intravitreal, and/or intraarticular administration. In some embodiments,
the solution is formulated for intramuscular or subcutaneous administration.
In some embodiments, any of the pre-filled syringes described herein comprise at
least one pharmaceutical unit dosage form of the anti-C5 antibody in the solution. Each
pharmaceutical unit dosage form can have, e.g., a volume of between 0.02 mL to 0.1 mL,
inclusive. In some embodiments, the pharmaceutical unit dosage form has a volume of
no more than 0.05 mL.
In some embodiments, any of the pre-filled syringes described herein comprise
between 0.05 mg to 10 mg of the anti-C5 antibody. In some embodiments, the syringe
comprises between about 1 mg and 100 mg of the anti-C5 antibody.
In yet another aspect, the disclosure features a method for treating a patient
afflicted with a complement-associated disorder. The method comprises administering to
a patient afflicted with a complement-associated disorder a therapeutically effective
amount of any of the aqueous solutions described herein to thereby treat the complement-
associated disorder. In some embodiments, the methods can be performed using any of
the kits or pre-filled syringes described herein. In some embodiments, the method can
further comprise, prior to administering the aqueous solution to the patient, determining
that the patient is afflicted with the complement-associated disorder.
In some embodiments, the complement-associated disorder is a complement-
associated disorder of the eye. For example, the complement-associated disorder of the
eye can be age-related macular degeneration (AMD), a diabetes-associated ocular
disorder, or central retinal vein occlusion. In some embodiments, the complement-
associated disorder of the eye is wet AMD. In some embodiments, the disorder is dry
AMD. In such embodiments, the aqueous solution can be administered to the patient by
way of intravitreal injection. In such embodiments, the aqueous solution can be
administered to the patient by way of a transscleral patch or as an eye drop (for example,
the solution can be formulated for use as an eye drop).
In some embodiments, the complement-associated disorder is rheumatoid
arthritis. In such embodiments, e.g., the aqueous solution can be administered to the
patient by way of intraarticular injection. In some embodiments, the aqueous solution
can be administered by way of intravenous or subcutaneous injection.
In some embodiments, the complement-associated disorder is a pulmonary
disorder. The pulmonary disorder can be selected from the group consisting of, e.g.,
asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome,
pulmonary fibrosis, -1 anti-trypsin deficiency, emphysema, bronchiectasis, bronchiolitis
obliterans, sarcoidosis, a collagen vascular disorder, and bronchitis. In such
embodiments, the aqueous solution can be delivered to the patient by way of
intrapulmonary administration, e.g., through the use of a nebulizer or an inhaler.
In some embodiments, the complement-associated disorder is selected from the
group consisting of ischemia-reperfusion injury, atypical hemolytic uremic syndrome,
thrombotic thrombocytopenic purpura, paroxysmal nocturnal hemoglobinuria, dense
deposit disease, age-related macular degeneration, spontaneous fetal loss, Pauci-immune
vasculitis, epidermolysis bullosa, recurrent fetal loss, multiple sclerosis, traumatic brain
injury, myasthenia gravis, cold agglutinin disease, dermatomyositis, Degos’ disease,
Graves’ disease, Hashimoto’s thyroiditis, type I diabetes, psoriasis, pemphigus,
autoimmune hemolytic anemia, idiopathic thrombocytopenic purpura, Goodpasture
syndrome, multifocal motor neuropathy, neuromyelitis optica, antiphospholipid
syndrome, and catastrophic antiphospholipid syndrome.
In some embodiments, any of the therapeutic methods described herein further
comprise administering to the patient one or more additional therapeutic agents for (a)
treating a complement-associated disorder or (b) ameliorating one or more symptoms
associated with the complement-associated disorder.
In yet another embodiment, the disclosure features an aqueous solution
comprising an anti-C5 antibody at a concentration of at least 40 mg/mL. The anti-C5
antibody in the solution remains at least 97% monomeric during storage at 2°C to 8°C for
at least six months as determined by SEC-HPLC. In some embodiments, the
concentration of the anti-C5 antibody in the solution is at least 50 (e.g., at least 55, 60,
65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, or 200)
mg/mL. In some embodiments, the concentration of the anti-C5 antibody in the solution
is greater than 200 mg/mL. The antibody can be, e.g., eculizumab.
In another aspect, the disclosure features an aqueous solution comprising an anti-
C5 antibody at a concentration of greater than 40 mg/mL with the proviso that the
solution is not formulated as follows: 20 mM histidine, 50 mM glycine, 3% (w/v)
sorbitol, 1.5% (w/v) mannitol, 0.001% to 0.02% Tween 80, and a pH of 6 to 8 (e.g., with
a physiologic osmolality). In some embodiments, the concentration of the anti-C5
antibody in the solution is at least 50 (e.g., at least 55, 60, 65, 70, 75, 80, 85, 90, 95, 100,
110, 120, 130, 140, 150, 160, 170, 180, 190, or 200) mg/mL. In some embodiments, the
concentration of the anti-C5 antibody in the solution is greater than 200 mg/mL. The
antibody can be, e.g., eculizumab.
In some embodiments of the aqueous solutions described above, the anti-C5
antibody remains at least 98% monomeric during storage at 2°C to 8°C for at least one
year (e.g., at least 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, or 24 months) as determined
by SEC-HPLC.
In some embodiments of the aqueous solutions described above, less than 2 (e.g.,
less than 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1.0, 0.9, 0.8. 0.7, 0.6, 0.5, 0.4, 0.3, or
0.2) % of the anti-C5 antibody in the solution is aggregated as determined by SEC-
HPLC.
In some embodiments of the aqueous solutions described above, less than 0.5
(e.g., less than 0.4, 0.3, 0.2, or 0.1) % of the anti-C5 antibody in the solution is
fragmented as determined by SEC-HPLC.
In some embodiments of the aqueous solutions described above, during storage at
2°C to 8°C for at least six (e.g., at least seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, or 24) months the anti-C5 antibody retains at least 90 (e.g., at least
91, 92, 93, 94, 95, 96, 97, 98, or 99) % of its C5-binding activity, as compared to a
reference anti-C5 antibody corresponding to the anti-C5 antibody prior to storage.
Suitable methods for evaluating the binding activity of a sample of a stored solution
containing a specified concentration of anti-C5 antibody are known in the art and
described herein.
In some embodiments of the aqueous solutions described above, during storage at
2°C to 8°C for at least six (e.g., at least seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, or 24) months the anti-C5 antibody retains at least 90 (e.g., at least
91, 92, 93, 94, 95, 96, 97, 98, or 99) % of its ability to inhibit hemolysis, as compared to
a reference anti-C5 antibody corresponding to the anti-C5 antibody prior to storage.
Suitable methods for evaluating the ability of a sample of a stored solution containing a
specified concentration of anti-C5 antibody to inhibit hemolysis are known in the art and
described herein.
In some embodiments of the aqueous solutions described above, the solutions can
be sterile. In some embodiments of any of the aqueous solutions described above, the
solutions can comprise: at least 20 mM histidine; at least 50 mM serine; at least 3% (w/v)
sorbitol; and at least 1.5% (w/v) mannitol. In some embodiments of the aqueous
solutions described above, the solutions can comprise: at least 20 mM histidine; at least
50 mM serine; at least 2.5% (w/v) sorbitol; and at least 1.5% (w/v) mannitol. In some
embodiments of any of the aqueous solutions described above, the solutions can contain:
mM histidine; 50 mM serine; 3% (w/v) sorbitol; and 1.5% (w/v) mannitol.
In some embodiments of the aqueous solutions described above, the solution can
comprise a surfactant such as, for example, polysorbate 20 or polysorbate 80. The
concentration of the surfactant in the solution can be, e.g., between 0.001% to 0.02%,
inclusive.
In some embodiments of the aqueous solutions described above, the pH of the
solution can be, for example, between 6.5 and 7.5, inclusive.
As used throughout the present disclosure, the term “antibody” refers to a whole
antibody (e.g., IgM, IgG, IgA, IgD, or IgE) molecule as well as antigen-binding
fragments thereof, which fragments can be generated by any one of a variety of methods
that are known in the art and described herein. The term “antibody” includes a
polyclonal antibody, a monoclonal antibody, a chimerized or chimeric antibody, a
humanized antibody, a deimmunized human antibody, and a fully human antibody. The
antibody can be made in or derived from any of a variety of species, e.g., mammals such
as humans, non-human primates (e.g., monkeys, baboons, or chimpanzees), horses, cattle,
pigs, sheep, goats, dogs, cats, rabbits, guinea pigs, gerbils, hamsters, rats, and mice. The
antibody can be a purified or a recombinant antibody. “Antibody fragments,” “antigen-
binding fragments,” or similar terms refer to a fragment of an antibody that retains the
ability to bind to an antigen (e.g., human complement component C5 or a biologically
active fragment thereof such as C5a or C5b), e.g., a single chain antibody, a single chain
Fv fragment (scFv), an Fd fragment, an Fab fragment, an Fab’ fragment, or an F(ab’)
fragment. An scFv fragment is a single polypeptide chain that includes both the heavy
and light chain variable regions of the antibody from which the scFv is derived. In
addition, diabodies (Poljak (1994) Structure 2(12):1121-1123; Hudson et al. (1999) J
Immunol Methods 23(1-2):177-189, the disclosures of both of which are incorporated
herein by reference in their entirety), minibodies, single domain or nanobodies (Huang et
al. (2010) Expert Rev Mol Diagn 10(6):777-785; Smolarek et al. (2010) Cell Mol Life Sci
67(19):3371-3387), and intrabodies (Huston et al. (2001) Hum Antibodies 10(3-4):127-
142; Wheeler et al. (2003) Mol Ther 8(3):355-366; Stocks (2004) Drug Discov Today
9(22):960-966, the disclosures of each of which are incorporated herein by reference in
their entirety) that bind to human C5 protein are embraced by the definition of “antigen-
binding fragment” and can be incorporated into the compositions and used in the methods
described herein.
Unless otherwise defined, all technical and scientific terms used herein have the
same meaning as commonly understood by one of ordinary skill in the art to which this
disclosure pertains. In case of conflict, the present document, including definitions, will
control. Preferred methods and materials are described below, although methods and
materials similar or equivalent to those described herein can also be used in the practice
or testing of the presently disclosed methods and compositions. All publications, patent
applications, patents, and other references mentioned herein are incorporated by reference
in their entirety.
Other features and advantages of the present disclosure, e.g., methods for treating
a complement-associated disorder, will be apparent from the following description, the
examples, and from the claims.
Brief Description of the Drawings
Fig. 1 is a flow chart depicting the formulation scheme for preparing five different
solutions of eculizumab. A detailed description of the particular composition of solutions
I to V, as well as the nature of the HSSM and HTT buffers is set forth in Example 2
(infra).
Detailed Description
The disclosure features stable, aqueous solutions containing a high concentration
of an antibody that binds to human complement component C5. The solutions can be
used in a variety of therapeutic applications such as methods for treating or preventing
complement-associated disorders. While in no way intended to be limiting, exemplary
solutions, formulations, therapeutic kits, and methods for making and using any of the
foregoing are elaborated on below and are exemplified in the working Examples.
Highly-Concentrated Antibody Solutions
The disclosure provides aqueous solutions comprising a high concentration of an
antibody that binds to human complement component C5 [hereinafter an “anti-C5
antibody” or an “anti-human C5 antibody”] such as eculizumab. Such solutions are
sometimes referred to herein as “high concentration antibody solutions.” As used herein,
a “high concentration” of an anti-C5 antibody in an aqueous solution is a concentration of
the antibody that is at least, equal to, or greater than, 40 (e.g., at least, equal to, or greater
than, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105, 110, 115, 120, 125, 130, 135,
140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225,
230, 235, 240, 245, 250, 255, 260, 265, 270, 275, 280, 285, or 290) mg/mL. In some
embodiments, the anti-C5 antibody is present in the solution at a concentration of more
than 200 (e.g., more than 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250, 255,
260, 265, 270, 275, 280, 285, or 290) mg/mL. In some embodiments, the antibody is
present in the solution at a concentration of, e.g., 40 mg/mL to 200 mg/mL, 50 mg/mL to
200 mg/mL, 60 mg/mL to 200 mg/mL, 70 mg/mL to 200 mg/mL, 80 mg/mL to 200
mg/mL, 90 mg/mL to 200 mg/mL, 100 mg/mL to 200 mg/mL, 110 mg/mL to 200
mg/mL, 120 mg/mL to 200 mg/mL, 130 mg/mL to 200 mg/mL, 140 mg/mL to 200
mg/mL, 150 mg/mL to 200 mg/mL, 40 mg/mL to 100 mg/mL, 50 mg/mL to 100 mg/mL,
60 mg/mL to 100 mg/mL, 70 mg/mL to 100 mg/mL, 80 mg/mL to 100 mg/mL, 90
mg/mL to 100 mg/mL, 40 mg/mL to 150 mg/mL, 50 mg/mL to 150 mg/mL, 60 mg/mL to
150 mg/mL, 70 mg/mL to 150 mg/mL, 80 mg/mL to 150 mg/mL, 90 mg/mL to 150
mg/mL, 100 mg/mL to 150 mg/mL, 110 mg/mL to 150 mg/mL, 120 mg/mL to 150
mg/mL, 40 mg/mL to 50 mg/mL, 40 mg/mL to 250 mg/mL, 50 mg/mL to 250 mg/mL, 60
mg/mL to 250 mg/mL, 70 mg/mL to 250 mg/mL, 80 mg/mL to 250 mg/mL, 90 mg/mL to
250 mg/mL, 100 mg/mL to 250 mg/mL, 110 mg/mL to 250 mg/mL, 120 mg/mL to 250
mg/mL, 130 mg/mL to 250 mg/mL, 140 mg/mL to 250 mg/mL, 150 mg/mL to 250
mg/mL, 160 mg/mL to 250 mg/mL, 170 mg/mL to 250 mg/mL, 180 mg/mL to 250
mg/mL, 190 mg/mL to 250 mg/mL, 200 mg/mL to 250 mg/mL, greater than 200 mg/mL
(e.g., at least 201 mg/mL) to 250 mg/mL, or greater than 200 mg/mL (e.g., 201 mg/mL or
greater) to 300 mg/mL.
In some embodiments, the anti-C5 antibody binds to an epitope in the human pro-
C5 precursor protein. For example, the anti-C5 antibody can bind to an epitope in the
human complement component C5 protein comprising, or consisting of, the amino acid
sequence depicted in SEQ ID NO:1 (NCBI Accession No. AAA51925 and Haviland et
al., supra).
An “epitope” refers to the site on a protein (e.g., a human complement component
C5 protein) that is bound by an antibody. “Overlapping epitopes” include at least one
(e.g., two, three, four, five, or six) common amino acid residue(s).
In some embodiments, the anti-C5 antibody binds to an epitope in the human pro-
C5 precursor protein lacking the leader sequence. For example, the anti-C5 antibody can
bind to an epitope in the human complement component C5 protein comprising, or
consisting of, the amino acid sequence depicted in SEQ ID NO:2, which is a human C5
protein lacking the amino terminal leader sequence.
In some embodiments, the anti-C5 antibody can bind to an epitope in the alpha
chain of the human complement component C5 protein. For example, the anti-C5
antibody can bind to an epitope within, or overlapping with, a protein having the amino
acid sequence depicted in SEQ ID NO:3, which is the human complement component C5
alpha chain protein. Antibodies that bind to the alpha chain of C5 are described in, for
example, Ames et al. (1994) J Immunol 152:4572-4581.
In some embodiments, the anti-C5 antibody can bind to an epitope in the beta
chain of the human complement component C5 protein. For example, the anti-C5
antibody can bind to an epitope within, or overlapping with, a protein having the amino
acid sequence depicted in SEQ ID NO:4, which is the human complement component C5
beta chain protein. Antibodies that bind to the C5 beta chain are described in, e.g.,
Moongkarndi et al. (1982) Immunobiol 162:397; Moongkarndi et al. (1983) Immunobiol
165:323; and Mollnes et al. (1988) Scand J Immunol 28:307-312.
In some embodiments, the anti-C5 antibody can bind to an epitope within, or
overlapping with, an antigenic peptide fragment of a human complement component C5
protein. For example, the anti-C5 antibody can bind to an epitope within, or overlapping
with, an antigen peptide fragment of a human complement component C5 protein, the
fragment containing, or consisting of, the following amino acid sequence:
VIDHQGTKSSKCVRQKVEGSS (SEQ ID NO:5) or KSSKC (SEQ ID NO:6).
In some embodiments, the anti-C5 antibody can bind to an epitope within, or
overlapping with, a fragment of a human complement component C5 protein, the
fragment containing, or consisting of, any one of the following amino acid sequences
(which are exemplary antigenic fragments of SEQ ID NO:1):
NFSLETWFGKEILVKTLRVVPEGVKRESYSGVTLDPRGIYGTISRRKEFPYRIPLD
LVPKTEIKRILSVKGLLVGEILSAVLSQEGINILTHLPKGSAEAELMSVVPVFYVFH
YLETGNHWNIFHSD (SEQ ID NO:7);
SESPVIDHQGTKSSKCVRQKVEGSSSHLVTFTVLPLEIGLHNINFSLETWFGKEILV
KTLRVVPEGVKRESYSGVTLDPRGIYGTISRRKEFPYRIPLDLVPKTEIKRILSVKG
LLVGEILSAVLSQEGINILTHLPKGSAEAELMSVVPVFYVFHYLETGNHWNIFHSD
PLIEKQKLKKKLKEGMLSIMSYRNADYSYS (SEQ ID NO:8);
SHKDMQLGRLHMKTLLPVSKPEIRSYFPES (SEQ ID NO:9);
SHKDMQLGRLHMKTLLPVSKPEIRSYFPESWLWEVHLVPRRKQLQFALPDSLTT
WEIQGIGISNTGICVADTVKAKVFKDVFLEMNIPYSVVRGEQIQLKGTVYNYRTS
GMQFCVKMSAVEGICTSESPVIDHQGTKSSKCVRQKVEGSSSHLVTFTVLPLEIG
LHNINFSLETWFGKEILVKTLRVVPEGVKRESYSGVTLDPRGIYGTISRRKEFPYRI
PLDLVPKTEIKRILSVKGLLVGEILSAVLSQEGINILTHLPKGSAEAELMSVVPVFY
VFHYLETGNHWNIFHSDPLIEKQKLKKKLKEGMLSIMSYRNADYSYS (SEQ ID
NO:10); and DHQGTKSSKCVRQKVEG (SEQ ID NO:11).
Additional exemplary antigenic fragments of human complement component C5
are disclosed in, e.g., U.S. Patent No. 6,355,245, the disclosure of which is incorporated
herein by reference.
In some embodiments, the anti-C5 antibody specifically binds to a human
complement component C5 protein (e.g., the human C5 protein having the amino acid
sequence depicted in SEQ ID NO:1). The terms “specific binding” or “specifically
binds” refer to two molecules forming a complex (e.g., a complex between an antibody
and a complement component C5 protein) that is relatively stable under physiologic
conditions. Typically, binding is considered specific when the association constant (K )
6 -1
is higher than 10 M . Thus, an antibody can specifically bind to a C5 protein with a K
6 7 8 9 10 11 12
of at least (or greater than) 10 (e.g., at least or greater than 10 , 10 , 10 , 10 , 10 10 ,
13 14 15 -1
, 10 , or 10 or higher) M . Examples of antibodies that specifically bind to a
human complement component C5 protein are described in, e.g., U.S. Patent No.
6,355,245, the disclosure of which is incorporated herein by reference in its entirety.
Methods for determining whether an antibody binds to a protein antigen and/or
the affinity for an antibody to a protein antigen are known in the art. For example, the
binding of an antibody to a protein antigen can be detected and/or quantified using a
variety of techniques such as, but not limited to, Western blot, dot blot, surface plasmon
resonance (SPR) method (e.g., BIAcore™ system; Pharmacia Biosensor AB, Uppsala,
Sweden and Piscataway, N.J.), or enzyme-linked immunosorbent assays (ELISA). See,
e.g., Harlow and Lane (1988) “Antibodies: A Laboratory Manual” Cold Spring Harbor
Laboratory Press, Cold Spring Harbor, N.Y.; Benny K. C. Lo (2004) “Antibody
Engineering: Methods and Protocols,” Humana Press (ISBN: 1588290921); Borrebaek
(1992) “Antibody Engineering, A Practical Guide,” W.H. Freeman and Co., NY;
Borrebaek (1995) “Antibody Engineering,” 2 Edition, Oxford University Press, NY,
Oxford; Johne et al. (1993) J Immunol Meth 160:191-198; Jonsson et al. (1993) Ann Biol
Clin 51:19-26; and Jonsson et al. (1991) Biotechniques 11:620-627. See also, U.S. Patent
No. 6,355,245.
In some embodiments, the anti-C5 antibody can crossblock binding of another
antibody that binds to an epitope within, or overlapping with, a human complement
component C5 protein. In some embodiments, the anti-C5 antibody can crossblock
binding of an antibody that binds to an epitope within, or overlapping with, a peptide
fragment of a human complement component C5 protein. The peptide fragment can be a
fragment of a human complement component C5 protein having the amino acid sequence
depicted in any one of SEQ ID NOS:1-11. For example, the peptide fragment can
contain, or consist of, the following amino acid sequence:
VIDHQGTKSSKCVRQKVEGSS (SEQ ID NO:5).
As used herein, the term “crossblocking antibody” refers to an antibody that
lowers the amount of binding of anti-C5 antibody to an epitope on a complement
component C5 protein relative to the amount of binding of the anti-C5 antibody to the
epitope in the absence of the antibody. Suitable methods for determining whether a first
antibody crossblocks binding of a second antibody to an epitope are known in the art.
For example, crossblocking antibodies can be identified by comparing the binding of the
5G1.1 anti-C5 monoclonal antibody (produced by the hybridoma cell line ATCC
designation HB-11625; see U.S. Patent No. 6,355,245) in the presence and absence of a
test antibody. Decreased binding of the 5G1.1 antibody in the presence of the test
antibody as compared to binding of the 5G1.1 antibody in the absence of the test antibody
indicates the test antibody is a crossblocking antibody.
Methods for identifying the epitope to which a particular antibody (e.g., an anti-
C5 antibody) binds are also known in the art. For example, the binding epitope of an
anti-C5 antibody can be identified by measuring the binding of the antibody to several
(e.g., three, four, five, six, seven, eight, nine, 10, 15, 20, or 30 or more) overlapping
peptide fragments of a complement component C5 protein (e.g., several overlapping
fragments of a protein having the amino acid sequence depicted in any one of SEQ ID
NOs:1-11). Each of the different overlapping peptides is then bound to a unique address
on a solid support, e.g., separate wells of a multi-well assay plate. Next, the anti-C5
antibody is interrogated by contacting it to each of the peptides in the assay plate for an
amount of time and under conditions that allow for the antibody to bind to its epitope.
Unbound anti-C5 antibody is removed by washing each of the wells. Next, a detectably-
labeled secondary antibody that binds to the anti-C5 antibody, if present in a well of the
plate, is contacted to each of the wells, and unbound secondary antibody is removed by
washing steps. The presence or amount of the detectable signal produced by the
detectably-labeled secondary antibody in a well is an indication that the anti-C5 antibody
binds to the particular peptide fragment associated with the well. See, e.g., Harlow and
Lane (supra), Benny K. C. Lo (supra), and U.S. Patent Application Publication No.
20060153836, the disclosure of which is incorporated by reference in its entirety. A
particular epitope to which an antibody binds can also be identified using BIAcore™
chromatographic techniques (see, e.g., Pharmacia BIAtechnology Handbook, “Epitope
Mapping,” Section 6.3.2, (May 1994); and Johne et al. (1993) J Immunol Methods
160:191-8).
The anti-C5 antibodies described herein can have activity in blocking the
generation or activity of the C5a and/or C5b active fragments of a complement
component C5 protein (e.g., a human C5 protein). Through this blocking effect, the anti-
C5 antibodies inhibit, e.g., the proinflammatory effects of C5a and the generation of the
C5b-9 membrane attack complex (MAC) at the surface of a cell. Anti-C5 antibodies that
have the ability to block the generation of C5a are described in, e.g., Moongkarndi et al.
(1982) Immunobiol 162:397 and Moongkarndi et al. (1983) Immunobiol 165:323.
Inhibition of complement component C5 can also reduce the cell-lysing ability of
complement in a subject’s body fluids. Such reductions of the cell-lysing ability of
complement present can be measured by methods well known in the art such as, for
example, by a conventional hemolytic assay such as the hemolysis assay described by
Kabat and Mayer (eds), “Experimental Immunochemistry, 2 Edition,” 135-240,
Springfield, IL, CC Thomas (1961), pages 135-139, or a conventional variation of that
assay such as the chicken erythrocyte hemolysis method as described in, e.g., Hillmen et
al. (2004) N Engl J Med 350(6):552.
In some embodiments, an anti-C5 antibody, or antigen-binding fragment thereof,
can reduce the ability of a C5 protein to bind to human complement component C3b (e.g.,
C3b present in an AP or CP C5 convertase complex) by greater than 50 (e.g., greater than
55, 60, 65, 70, 75, 80, 85, 90, or 95 or more) %. In some embodiments, upon binding to a
C5 protein, the anti-C5 antibody or antigen-binding fragment thereof can reduce the
ability of the C5 protein to bind to complement component C4b (e.g., C4b present in a
CP C5 convertase) by greater than 50 (e.g., greater than 55, 60, 65, 70, 75, 80, 85, 90, or
95 or more) %. Methods for determining whether an antibody can block the generation
or activity of the C5a and/or C5b active fragments of a complement component C5
protein, or binding to complement component C4b or C3b, are known in the art and
described in, e.g., U.S. Patent No. 6,355,245 and Wurzner et al. (1991) Complement
Inflamm 8:328-340. (See also below.)
In some embodiments, an anti-C5 antibody binds to an amino-terminal region of
the alpha chain of a complement component C5 protein, but does not bind to free C5a.
Epitopes for an anti-C5 antibody within the amino-terminal region of the alpha chain
include, e.g., epitopes within the human sequence VIDHQGTKSSKCVRQKVEGSS
(SEQ ID NO:5).
In some embodiments, the composition comprises, and/or the antibody is,
eculizumab (Soliris®; Alexion Pharmaceuticals, Inc., Cheshire, CT) or a biologically-
active fragment thereof. (See, e.g., Kaplan (2002) Curr Opin Investig Drugs 3(7):1017-
23; Hill (2005) Clin Adv Hematol Oncol 3(11):849-50; and Rother et al. (2007) Nature
Biotechnology 25(11):1256-1488.) The amino acid sequence of the light chain of
eculizumab is as follows:
DIQMTQSPSSLSASVGDRVTITCGASENIYGALNWYQQKPGKAPKLLIYGATNLA
DGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQNVLNTPLTFGQGTKVEIKRTVA
APSVFIFPPSDEQLKSGTASVVCLLNNFYPREAKVQWKVDNALQSGNSQESVTE
QDSKDSTYSLSSTLTLSKADYEKHKVYACEVTHQGLSSPVTKSFNRGEC (SEQ
ID NO:12). The amino acid sequence of the heavy chain of eculizumab is as follows:
QVQLVQSGAEVKKPGASVKVSCKASGYIFSNYWIQWVRQAPGQGLEWMGEILP
GSGSTEYTENFKDRVTMTRDTSTSTVYMELSSLRSEDTAVYYCARYFFGSSPNW
YFDVWGQGTLVTVSSASTKGPSVFPLAPCSRSTSESTAALGCLVKDYFPEPVTVS
WNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSNFGTQTYTCNVDHKPSNTKV
DKTVERKCCVECPPCPAPPVAGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSQED
PEVQFNWYVDGVEVHNAKTKPREEQFNSTYRVVSVLTVLHQDWLNGKEYKCK
VSNKGLPSSIEKTISKAKGQPREPQVYTLPPSQEEMTKNQVSLTCLVKGFYPSDIA
VEWESNGQPENNYKTTPPVLDSDGSFFLYSRLTVDKSRWQEGNVFSCSVMHEAL
HNHYTQKSLSLSLGK (SEQ ID NO:13).
As described herein and exemplified in the working examples, the featured
aqueous solutions provide the anti-C5 antibody formulated therein with marked stability
– both physical/chemical stability as well as functional stability. For example, the
formulations described herein are capable of maintaining the structural integrity of an
anti-C5 antibody present at high concentrations in a solution. That is, an anti-C5
antibody in a featured aqueous buffer can remain predominantly monomeric after storage
for at least one month (e.g., at least two months, three months, four months, five months,
six months, seven months, eight months, nine months, 10 months, 11 months, 12 months,
13 months, 14 months, 15 months, 16 months, 17 months, 18 months, 19 months, 20
months, 21 months, 22 months, 23 months, 24 months, or more) at approximately 2°C to
8°C (e.g., storage at, e.g., 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10°C). As exemplified in the working
examples described herein, the inventors provide formulations suitable for maintaining an
anti-C5 antibody at approximately 30 mg/mL or approximately 100 mg/mL in
predominantly monomeric form for up to two years at approximately 2°C to 8°C. As
used herein, an anti-C5 antibody formulated at a high concentration in a featured aqueous
solution is “predominantly monomeric,” or in “predominantly monomeric form,” if the
antibody present in the solution is at least 95 (e.g., at least 95.1, 95.2, 95.3, 95.4, 95.5,
95.6, 95.7, 95.8, 95.9, 96, 96.1, 96.2, 96.3, 96.4, 96.5, 96.6, 96.7, 96.8, 96.9, 97, 97.1,
97.2, 97.3, 97.4, 97.5, 97.6, 97.7, 97.8, 97.9, 98, 98.1, 98.2, 98.3, 98.4, 98.5, 98.6, 98.7,
98.8, 98.9, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, or 99.9 or greater) %
monomeric, e.g., as determined using size exclusion chromatography high performance
liquid chromatography (SEC-HPLC). That is: less than 5 (e.g., less than 4.9. 4.8, 4.7,
4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4.0, 3.9, 3.8, 3.7, 3.6, 3.5, 3.4, 3.3, 3.2, 3.1, 3.0, 2.9, 2.8, 2.7,
2.6, 2.5, 2.4, 2.3, 2.2, 2.1, 2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1, 0.9, 0.8, 0.7, 0.6,
0.5, 0.4, 0.3, 0.2, or 0.1) % of the antibody in the solution is oligomeric, aggregated,
and/or fragmented. As used herein, antibody fragmentation refers to improperly
assembled constituents or degradation products of a whole antibody having a lower
molecular weight than the whole antibody. Such fragmentation forms include, but are
not limited to, a free monomeric heavy chain polypeptide, a dimeric heavy chain
polypeptide (e.g., disulfide-linked heavy chain polypeptide), a dimeric heavy chain
polypeptide bound to one light chain polypeptide, a monomeric heavy chain polypeptide
bound to one light chain polypeptide, or further degradation product(s) or fragment(s) of
a light chain or heavy chain polypeptide. In some embodiments, less than 2 (e.g., less
than 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1)
% of the antibody is aggregated after storage for at least one month (e.g., at least two
months, three months, four months, five months, six months, seven months, eight
months, nine months, 10 months, 11 months, 12 months, 13 months, 14 months, 15
months, 16 months, 17 months, 18 months, 19 months, 20 months, 21 months, 22
months, 23 months, 24 months, or more) at 2°C to 8°C. In some embodiments, less than
1 (e.g., less than 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1) % of the antibody is
fragmented after storage for at least one month (e.g., at least two months, three months,
four months, five months, six months, seven months, eight months, nine months, 10
months, 11 months, 12 months, 13 months, 14 months, 15 months, 16 months, 17
months, 18 months, 19 months, 20 months, 21 months, 22 months, 23 months, 24
months, or more) at 2°C to 8°C. Methods for determining the amount of monomeric
antibody, as well as the amount of oligomeric, aggregated, or fragmented forms of the
anti-C5 antibody present in solution are described herein and exemplified in the working
examples. For example, a skilled artisan can determine the percentage of whole,
fragmented, unfolded intermediates, and/or aggregated antibody species present in a
given solution using, e.g., size exclusion chromatography high-performance liquid
chromatography (SEC-HPLC), static light scattering (SLS), Fourier transform infrared
spectroscopy (FTIR), circular dichroism (CD), urea-induced protein unfolding
techniques, intrinsic tryptophan fluorescence, non-reducing sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE), and differential scanning calorimetry
(DSC). In the working examples described herein, the inventors exemplify the use of,
among others, SEC-HPLC and SDS-PAGE to determine the physical state of the anti-C5
antibodies in solution.
In some embodiments, the formulation conditions described herein are capable of
maintaining the anti-C5 antibody in at least 95 (e.g., at least 95.1, 95.2, 95.3, 95.4, 95.5,
95.6, 95.7, 95.8, 95.9, 96, 96.1, 96.2, 96.3, 96.4, 96.5, 96.6, 96.7, 96.8, 96.9, 97, 97.1,
97.2, 97.3, 97.4, 97.5, 97.6, 97.7, 97.8, 97.9, 98, 98.1, 98.2, 98.3, 98.4, 98.5, 98.6, 98.7,
98.8, 98.9, 99, 99.1, 99.2, 99.3, 99.4, 99.5, 99.6, 99.7, 99.8, or 99.9 or greater) %
monomeric form when stored for at least one month (e.g., at least two months, three
months, four months, five months, six months, seven months, eight months, nine months,
months, 11 months, 12 months, 13 months, 14 months, 15 months, 16 months, 17
months, 18 months, 19 months, 20 months, 21 months, 22 months, 23 months, 24
months, or more) at approximately -20°C (e.g., -20 ± 5°C). The percentage of
monomeric form of the antibody in solution can be determined using SEC-HPLC. That
is: less than 5 (e.g., less than 4.9. 4.8, 4.7, 4.6, 4.5, 4.4, 4.3, 4.2, 4.1, 4.0, 3.9, 3.8, 3.7, 3.6,
3.5, 3.4, 3.3, 3.2, 3.1, 3.0, 2.9, 2.8, 2.7, 2.6, 2.5, 2.4, 2.3, 2.2, 2.1, 2, 1.9, 1.8, 1.7, 1.6, 1.5,
1.4, 1.3, 1.2, 1.1, 1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1) % of the antibody in the
solution can become oligomeric, aggregated, and/or fragmented, when the aqueous
solution is stored for at least one month at -20°C. As described above, in some
embodiments, less than 2 (e.g., less than 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1, 1, 0.9,
0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, or 0.1) % of the antibody is aggregated after storage for at
least one month (e.g., at least two months, three months, four months, five months, six
months, seven months, eight months, nine months, 10 months, 11 months, 12 months, 13
months, 14 months, 15 months, 16 months, 17 months, 18 months, 19 months, 20
months, 21 months, 22 months, 23 months, 24 months, or more) at approximately -20°C.
In some embodiments, less than 1 (e.g., less than 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, or
0.1) % of the antibody is fragmented after storage for at least one month (e.g., at least two
months, three months, four months, five months, six months, seven months, eight
months, nine months, 10 months, 11 months, 12 months, 13 months, 14 months, 15
months, 16 months, 17 months, 18 months, 19 months, 20 months, 21 months, 22
months, 23 months, 24 months, or more) at -20°C.
As described herein and exemplified in the working examples, the anti-C5
antibody containing solutions featured herein can retain at least 90 (e.g., 91, 92, 93, 94,
95, 96, 97, 98, 99, or even 100) % of their biological/functional activity (e.g., ability to
bind to human C5) after storage for at least one month (e.g., at least two months, three
months, four months, five months, six months, seven months, eight months, nine months,
months, 11 months, 12 months, 13 months, 14 months, 15 months, 16 months, 17
months, 18 months, 19 months, 20 months, 21 months, 22 months, 23 months, 24
months, or more) at 2°C to 8°C. Antibody present in a featured solution can retain, in
some embodiments, at least 90 (e.g., 91, 92, 93, 94, 95, 96, 97, 98, 99, or even 100) % of
its activity to inhibit hemolysis after storage for at least one month (e.g., at least two
months, three months, four months, five months, six months, seven months, eight
months, nine months, 10 months, 11 months, 12 months, 13 months, 14 months, 15
months, 16 months, 17 months, 18 months, 19 months, 20 months, 21 months, 22
months, 23 months, 24 months, or more) at 2°C to 8°C. Suitable hemolytic assay
methods for determining whether an antibody in a featured solution retains its activity are
described herein and known in the art, e.g., in vitro hemolytic assays using avian or
porcine erythrocytes. Suitable methods for evaluating the ability of an antibody
preparation to bind to human complement component C5 are known in the art and
described herein.
In some embodiments, any of the aqueous solutions described herein can contain
one or more common excipients and/or additives such as buffering agents, sugars or
saccharides, salts, and surfactants. Additionally or alternatively, the solutions can further
contain one or more solubilizers, diluents, binders, stabilizers, salts, lipophilic solvents,
amino acids, chelators, or preservatives.
The solutions described herein can also include a buffering or pH-adjusting agent.
In some embodiments, any of the aqueous solutions described herein can have, or can be
adjusted to have, a neutral pH. As used herein, “neutral pH” is a pH that is between, and
inclusive of, 7 and 8. Accordingly, as used herein neutral pH is inclusive of particular pH
values such as 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, and 8.0. In some embodiments,
neutral pH is at least pH 7 (e.g., at least pH 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.7 or 7.9), but
less than pH 8 (e.g., less than pH 7.9, 7.8, 7.7, 7.6, 7.5, 7.4, 7.3, 7.2, or 7.1). That is, in
some embodiments neutral pH can be, e.g., at least pH 7, but less than pH 7.5. In some
embodiments, neutral pH can be between pH 7 and pH 7.5. In some embodiments,
neutral pH can be between pH 7 and pH 7.2. In some embodiments, neutral pH can be,
e.g., pH 7. One of skill in the art will also appreciate that human blood (such as human
blood from a healthy patient) has a neutral pH as defined herein, e.g., the pH of human
blood is approximately pH 7.35 to pH 7.45. See, e.g., Boron and Boulpaep (2003)
“Medical physiology: a cellular and molecular approach,” W.B. Saunders, New York
(ISBN:0721632564). In some embodiments, the pH of a highly-concentrated antibody
solution described herein is between approximately 6.4 and 7.5, inclusive (e.g.,
approximately 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8. 6.9, 7, 7.1, 7.2, 7.3, 7.4, 7.5, 7.6, or 7.7).
Buffering agents useful in the aqueous solutions described herein include, e.g.,
salts of citric acid, ascorbic acid, gluconic acid, carbonic acid, tartaric acid, succinic acid,
acetic acid, or phthalic acid. In some embodiments, the buffer is a Tris-based or
phosphate buffer.
In some embodiments, the aqueous solutions described herein can include one or
more amino acids, which can, among other things, provide buffering capacity. Suitable
amino acids for use in the solutions featured herein include, e.g., histidine, glycine, and
serine. In some embodiments, the featured solutions do not include a free amino acid as a
buffering agent. In some embodiments, the featured solutions include but one free amino
acid (e.g., histidine) as a buffering agent. In some embodiments, the featured solutions
can include two or more (e.g., two, three, four, five, six, or seven or more) different
amino acids as buffering agents, e.g., serine and histidine.
The buffering agents are generally used at concentrations between approximately
1 mM and 200 mM, depending, in part, on the buffering capacity required. In some
embodiments, an aqueous solution described herein can include a buffering agent at a
concentration of less than, or approximately, 300 (e.g., less than, or approximately, 290,
280, 270, 260, 250, 240, 230, 220, 210, 200, 190, 180, 170, 160, 150, 140, 130, 120, 110,
100, 90, 80, 70, 60, 50, 40, 30, 25, 20, 15, or 10) mM. In some embodiments, an aqueous
solution described herein contains a buffering agent at a concentration of at least 10 (e.g.,
at least 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170,
180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, or 300 or more) mM. In
some embodiments, an aqueous solution described herein can include a buffering agent at
a concentration of between about 10 mM to 50 mM, 15 mM to 50 mM, 20 mM to 50
mM, 25 mM to 50 mM, 30 mM to 50 mM, 40 mM to 50 mM, 10 mM to 100 mM, 15
mM to 100 mM, 20 mM to 100 mM, 25 mM to 100 mM, 30 mM to 100 mM, 40 mM to
100 mM, 10 mM to 150 mM, 15 mM to 150 mM, 20 mM to 150 mM, 25 mM to 150
mM, 30 mM to 150 mM, 40 mM to 150 mM, 50 mM to 100 mM, 60 mM to 100 mM, 70
mM to 100 mM, 80 mM to 100 mM, 50 mM to 150 mM, 60 mM to 150 mM, 70 mM to
150 mM, 80 mM to 150 mM, 90 mM to 150 mM, 100 mM to 150 mM, 10 mM to 200
mM, 15 mM to 200 mM, 20 mM to 200 mM, 25 mM to 200 mM, 30 mM to 200 mM, 40
mM to 200 mM, 50 mM to 200 mM, 60 mM to 200 mM, 70 mM to 200 mM, 80 mM to
200 mM, 90 mM to 200 mM, 100 mM to 200 mM, 150 mM to 200 mM, 10 mM to 250
mM, 15 mM to 250 mM, 20 mM to 250 mM, 25 mM to 250 mM, 30 mM to 250 mM, 40
mM to 250 mM, 50 mM to 250 mM, 60 mM to 250 mM, 70 mM to 250 mM, 80 mM to
250 mM, 90 mM to 250 mM, 100 mM to 250 mM, 150 mM to 250 mM, or 200 mM to
250 mM. It is understood that in embodiments where a featured solution contains two or
more (e.g., at least two, three, four, five, six, seven, eight, nine, or 10 or more) different
buffering agents, each of the two or more buffering agents can independently be present
at, e.g., one of the above described concentrations.
In some embodiments, any of the aqueous solutions described herein can contain
a salt, e.g., sodium chloride, potassium chloride, or magnesium chloride. In some
embodiments, an aqueous solution described herein contains a salt at a concentration of at
least 10 (e.g., at least 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140,
150, 160, 170, 180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, or 300 or
more) mM. In some embodiments, an aqueous solution described herein can include a
salt at a concentration of less than, or approximately, 200 (e.g., less than, or
approximately, 190, 180, 170, 160, 150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40,
, 25, 20, 15, or 10) mM. In some embodiments, an aqueous solution described herein
can include a salt at a concentration of between about 10 mM to 50 mM, 15 mM to 50
mM, 20 mM to 50 mM, 25 mM to 50 mM, 30 mM to 50 mM, 40 mM to 50 mM, 10 mM
to 100 mM, 15 mM to 100 mM, 20 mM to 100 mM, 25 mM to 100 mM, 30 mM to 100
mM, 40 mM to 100 mM, 10 mM to 150 mM, 15 mM to 150 mM, 20 mM to 150 mM, 25
mM to 150 mM, 30 mM to 150 mM, 40 mM to 150 mM, 50 mM to 100 mM, 60 mM to
100 mM, 70 mM to 100 mM, 80 mM to 100 mM, 50 mM to 150 mM, 60 mM to 150
mM, 70 mM to 150 mM, 80 mM to 150 mM, 90 mM to 150 mM, 100 mM to 150 mM,
mM to 200 mM, 15 mM to 200 mM, 20 mM to 200 mM, 25 mM to 200 mM, 30 mM
to 200 mM, 40 mM to 200 mM, 50 mM to 200 mM, 60 mM to 200 mM, 70 mM to 200
mM, 80 mM to 200 mM, 90 mM to 200 mM, 100 mM to 200 mM, 150 mM to 200 mM,
10 mM to 250 mM, 15 mM to 250 mM, 20 mM to 250 mM, 25 mM to 250 mM, 30 mM
to 250 mM, 40 mM to 250 mM, 50 mM to 250 mM, 60 mM to 250 mM, 70 mM to 250
mM, 80 mM to 250 mM, 90 mM to 250 mM, 100 mM to 250 mM, 150 mM to 250 mM,
or 200 mM to 250 mM. It is understood that in embodiments where a featured solution
contains two or more (e.g., at least two, three, four, five, six, seven, eight, nine, or 10 or
more) different salts, each of the two or more salts can independently be present at, e.g.,
one of the above described concentrations.
In some embodiments, any of the aqueous solutions described herein can contain
a carbohydrate excipient. Suitable carbohydrate excipients are described in, e.g.,
Katakam and Banga (1995) J Pharm Pharmacol 47(2):103-107; Andya et al. (2003)
AAPS PharmSci 5(2): Article 10; and Shire (2009) “Current Trends in Monoclonal
Antibody Development and Manufacturing,” Volume 11, Springer, 354 pages.
Carbohydrate excipients suitable for use in the solutions described herein include,
without limitation, monosaccharides such as fructose, maltose, galactose, glucose, D-
mannose, and sorbose; disaccharides such as lactose, sucrose, trehalose, and cellobiose;
polysaccharides such as maltodextrins, dextrans, and starches; and sugar alcohols such as
mannitol, xylitol, maltitol, lactitol, and sorbitol. In some embodiments, a carbohydrate
excipient is present in a solution featured herein at a concentration of at least, or
approximately, 0.5 (e.g., at least, or approximately, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.25, 3.5, 3.75, 4, 4.25,
4.5, 4.75, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, or more) %. In embodiments where a
featured solution contains two or more (e.g., at least two, three, four, five, six, seven,
eight, nine, or 10 or more) different carbohydrate excipients (e.g., sorbitol and mannitol),
each excipient can, independently, be present at any of the above-described
concentrations.
In some embodiments, an aqueous solution described herein can contain a
surfactant such as an anionic, cationic, or nonionic surfactant. Pharmaceutically-
acceptable surfactants include, without limitation: polysorbates: Triton™ (e.g., Triton™
or Triton™ 80), sodium octyl glycoside; lauryl-, myristyl-, linoleyl-, or
stearylsulfobetaine; lauryl-, myristyl-, linoleyl- or stearyl-sarcosine; linoleyl-, myristyl-,
or cetylbetaine; lauroamidopropyl-, cocamidopropyl-, linoleamidopropyl-,
myristamidopropyl-, palmidopropyl-, or isostearamidopropyl-betaine (e.g.
lauroamidopropyl); myristamidopropyl-, palmidopropyl-, or isostearamidopropyl-
dimethylamine; sodium methyl cocoyl-, or disodium methyl oleyl-taurate; and polyethyl
glycol, polypropyl glycol, and copolymers of ethylene and propylene glycol. In some
embodiments, the aqueous solutions described herein contain a surfactant (e.g., any of the
pharmaceutically-acceptable surfactants described herein or known in the art) at a
concentration of at least, or approximately, 0.001 (e.g., at least, or approximately, 0.002,
0.003, 0.004, 0.005, 0.006, 0.007, 0.008, 0.009, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07,
0.08, 0.09, 0.1, 0.11, 0.12, 0.13, 0.14, 0.15, 0.16, 0.17, 0.18, 0.19, 0.2, 0.21, 0.22, 0.23,
0.24, 0.25, 0.26, 0.27, 0.28, 0.29, 0.3, 0.31, 0.32, 0.33, 0.34, 0.35, 0.36, 0.37, 0.38, 0.39,
0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, or 0.5 or more) %. In some
embodiments, an aqueous solution described herein contains no more than 0.2 (e.g., no
more than 0.19, 0.18, 0.17, 0.16, 0.15, 0.14, 0.13, 0.12, 0.11, 0.10, 0.09, 0.08, 0.07, 0.06,
0.05, 0.04, 0.03, 0.02, 0.01, 0.009, 0.008, 0.007, 0.006, 0.005, 0.004, 0.003, 0.002, or
0.001) % of a pharmaceutically-acceptable surfactant.
In some embodiments, an aqueous solution described herein can be formulated to
comprise the following elements: 20 mM histidine, 50 mM serine, 3% sorbitol, and 1.5%
mannitol. In some embodiments, this solution is formulated at pH 7. In some
embodiments, the aqueous solution can consist of the foregoing elements along with an
anti-C5 antibody (e.g., any one of the anti-C5 antibodies described herein) at any of the
high concentrations described herein.
In some embodiments, an aqueous solution described herein can comprise, or
consist of: (i) an anti-C5 antibody (e.g., eculizumab) at a concentration of at least, or
approximately, 80 (e.g., at least, or approximately, 85, 90, 95, 100, 105, 110, 115, 120,
125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 210, 220,
230, 240, or 250 or more) mg/mL; (ii) at least, or approximately, 10 (e.g., at least, or
approximately, 15 or 20 or more) mM histidine; (ii) at least, or approximately, 10 (e.g., at
least, or approximately, 15, 20, 25, 30, 35, 40, 45, or 50 or more) mM serine; (iv) at least,
or approximately, 1 (e.g., at least, or approximately, 1.5, 2, 2.5, or 3 or more) % sorbitol;
and (v) at least 0.5 (e.g., at least, or approximately, 0.75, 1, 1.25, or 1.5 or more) %
mannitol, wherein the solution is formulated at neutral pH (e.g., a pH of approximately
In some embodiments, an aqueous solution described herein can comprise, or
consist of: (i) eculizumab at a concentration of at least, or approximately 100 mg/mL; (ii)
at least, or approximately, 20 mM histidine; (ii) at least, or approximately, 50 mM serine;
(iv) at least, or approximately, 3% sorbitol; and (v) at least, or approximately, 1.5%
mannitol, wherein the solution is formulated at a pH of approximately 7.
In some embodiments, an aqueous solution described herein can be formulated to
comprise the following elements: 10 mM histidine HCl, 10% alpha-trehalose dihydrate,
and 0.01% polysorbate 20. In some embodiments, this solution is formulated at pH 7. In
some embodiments, the aqueous solution can consist of the foregoing elements along
with an anti-C5 antibody (e.g., any one of the anti-C5 antibodies described herein) at any
of the high concentrations described herein.
In some embodiments, the aqueous solutions described herein do not contain the
following elements at the recited concentrations and pH: 20 mM histidine; 50 nM
glycine; 3% (w/v) sorbitol; 1.5% (w/v) mannitol; 0.001% to 0.02% Tween 80; and a pH
of 6 to 8. In some embodiments, an aqueous solution described herein does not contain
trehalose (e.g., alpha-trehalose). In some embodiments, an aqueous solution described
herein is not a phosphate-based buffer (e.g., phosphate buffered saline). For example, in
some embodiments, the solution does not contain sodium phosphate. In some
embodiments, the aqueous solutions described herein do not contain the following
elements at the recited concentrations: 10 mM sodium phosphate, 150 mM sodium
chloride, 0.001% to 0.02% Tween 80, and at a pH of 6 to 8.
In some embodiments, any of the aqueous solutions described herein are isotonic
with respect to human blood. In some embodiments, a solution described herein has an
osmotic pressure of between approximately 270 mOsm/kg and 328 mOsm/kg, e.g.,
approximately, 270 mOsm/kg, 275 mOsm/kg, 280 mOsm/kg, 285 mOsm/kg, 290
mOsm/kg, 295 mOsm/kg, 300 mOsm/kg, 305 mOsm/kg, 310 mOsm/kg, 315 mOsm/kg,
320 mOsm/kg, 325 mOsm/kg, or 328 mOsm/kg. In some embodiments, a solution
described herein has an osmotic pressure that is at least or greater than 250 (e.g., at least,
or greater than, 255, 260, 265, 270, 275, 280, 285, 290, 295, 300, 305, 310, 315, 320,
325, or 327) mOsm/kg, but not more than, or less than, 350 (e.g., not more than, or less
than, 345, 340, 335, 327, 325, 320, 315, 310, 305, or 300) mOsm/kg. In some
embodiments, the solutions described herein can contain, or be formulated with, one or
more tonicity agents useful for maintaining or modulating the osmotic pressure of a
solution. For example, a solution described herein can contain one or more amino acids,
certain pharmaceutically-acceptable salts, or sugars.
The aqueous solutions described herein can be sterile, pharmaceutical-grade
compositions, e.g., for administration to a subject for the treatment or prevention of a
complement-associated disorder. The compositions can be formulated according to
standard methods. Pharmaceutical formulation is a well-established art, and is further
described in, e.g., Gennaro (2000) “Remington: The Science and Practice of Pharmacy,”
Edition, Lippincott, Williams & Wilkins (ISBN: 0683306472); Ansel et al. (1999)
“Pharmaceutical Dosage Forms and Drug Delivery Systems,” 7 Edition, Lippincott
Williams & Wilkins Publishers (ISBN: 0683305727); and Kibbe (2000) “Handbook of
Pharmaceutical Excipients American Pharmaceutical Association,” 3 Edition (ISBN:
091733096X). Suitable formulation methods for the high concentration antibody
solutions described herein are exemplified in the working examples.
In some embodiments, a high concentration antibody solution described herein
can be formulated for delivery to the eye. As used herein, the term “eye” refers to any
and all anatomical tissues and structures associated with an eye. In some embodiments,
an aqueous solution described herein can be administered locally, for example, by way of
topical application or intravitreal injection. For example, in some embodiments, solution
can be formulated for administration by way of an eye dropper.
In some embodiments, a sterile, aqueous solution contains, e.g., additional
ingredients such as, but not limited to, preservatives, buffers, tonicity agents, antioxidants
and stabilizers, nonionic wetting or clarifying agents, and viscosity-increasing agents.
Suitable preservatives for use in such a solution include benzalkonium chloride,
benzethonium chloride, chlorobutanol, thimerosal and the like. Suitable buffers include,
e.g., boric acid, sodium and potassium bicarbonate, sodium and potassium borates,
sodium and potassium carbonate, sodium acetate, and sodium biphosphate, in amounts
sufficient to maintain the pH at between about pH 6 and pH 8 (see above for suitable pH
ranges). Suitable tonicity agents are dextran 40, dextran 70, dextrose, glycerin,
potassium chloride, propylene glycol, and sodium chloride.
Suitable antioxidants and stabilizers include sodium bisulfite, sodium
metabisulfite, sodium thiosulfite, and thiourea. Suitable wetting and clarifying agents
include polysorbate 80, polysorbate 20, poloxamer 282 and tyloxapol. Suitable viscosity-
increasing agents include dextran 40, dextran 70, gelatin, glycerin, hydroxyethylcellulose,
hydroxmethylpropylcellulose, lanolin, methylcellulose, petrolatum, polyethylene glycol,
polyvinyl alcohol, polyvinylpyrrolidone, and carboxymethylcellulose.
In some embodiments, a highly-concentrated antibody solution described herein
can be formulated for administration to the eye, e.g., topical administration to the eye of
the subject in need of treatment (e.g., a subject afflicted with AMD). For example, in
some embodiments, a highly-concentrated antibody solution described herein can be
formulated as an eye drop. In addition, a highly-concentrated antibody solution described
herein can be formulated for use with any of a variety of devices developed for
introducing therapeutic compounds into the vitreal cavity of the eye. For example, U.S.
patent application publication no. 20020026176 describes a pharmaceutical-containing
plug that can be inserted through the sclera such that it projects into the vitreous cavity to
deliver the pharmaceutical agent into the vitreous cavity. In another example, U.S. patent
no. 5,443,505 describes an implantable device for introduction into a suprachoroidal
space or an avascular region for sustained release of drug into the interior of the eye.
Additional methods and devices (e.g., a transscleral patch and delivery via contact lenses)
for delivery of a therapeutic agent to the eye are described in, e.g., Ambati and Adamis
(2002) Prog Retin Eye Res 21(2):145-151; Ranta and Urtti (2006) Adv Drug Delivery Rev
58(11):1164-1181; Barocas and Balachandran (2008) Expert Opin Drug Delivery 5(1):1-
(10); Gulsen and Chauhan (2004) Invest Opthalmol Vis Sci 45:2342-2347; Kim et al.
(2007) Ophthalmic Res 39:244-254; and PCT publication no. WO 04/073551, the
disclosures of which are incorporated herein by reference in their entirety.
In some embodiments, an antibody or antigen-binding fragment described herein
can be formulated in a composition suitable for intrapulmonary administration (e.g., for
administration via nebulization; see below) to a mammal such as a human. Methods for
preparing such compositions are well known in the art and described in, e.g., U.S. patent
application publication no. 20080202513; U.S. patent nos. 7,112,341 and 6,019,968; and
PCT application publication nos. WO 00/061178 and WO 06/122257, the disclosures of
each of which are incorporated herein by reference in their entirety. Dry powder inhaler
formulations and suitable systems for administration of the formulations are described in,
e.g., U.S. patent application publication no. 20070235029, PCT Publication No. WO
00/69887; and U.S. patent no. 5,997,848.
Pulmonary drug delivery may be achieved by inhalation, and administration by
inhalation herein may be oral and/or nasal. Examples of pharmaceutical devices for
pulmonary delivery include metered dose inhalers and nebulizers. For example, an
antibody or antigen-binding fragment thereof can be administered to the lungs of a
subject by way of a nebulizer. Nebulizers use compressed air to deliver a compound as a
liquefied aerosol or mist. A nebulizer can be, e.g., a jet nebulizer (e.g., air or liquid-jet
nebulizers) or an ultrasonic nebulizer. Additional devices and intrapulmonary
administration methods are set forth in, e.g., U.S. Patent Application Publication Nos.
20050271660 and 20090110679, the disclosures of each of which are incorporated herein
by reference in their entirety.
In some embodiments, the solutions provided herein are present in unit dosage
form, which can be particularly suitable for self-administration. A formulated
product of the present disclosure can be included within a container, typically, for
example, a vial, cartridge, prefilled syringe or disposable pen. A doser such as the doser
device described in U.S. Patent No. 6,302,855 may also be used, for example, with an
injection system of the present disclosure.
An injection system of the present disclosure may employ a delivery pen as
described in U.S. Patent No. 5,308,341. Pen devices, most commonly used for self-
delivery of insulin to patients with diabetes, are well known in the art. Such devices can
comprise at least one injection needle (e.g., a 31 gauge needle of about 5 to 8 mm in
length), are typically pre-filled with one or more therapeutic unit doses of a therapeutic
solution, and are useful for rapidly delivering the solution to a subject with as little pain
as possible.
One medication delivery pen includes a vial holder into which a vial of insulin or
other medication may be received. The vial holder is an elongate generally tubular
structure with proximal and distal ends. The distal end of the vial holder includes
mounting means for engaging a double-ended needle cannula. The proximal end also
includes mounting means for engaging a pen body which includes a driver and dose
setting apparatus. A disposable medication (e.g., a high concentration solution of an anti-
C5 antibody) containing vial for use with the prior art vial holder includes a distal end
having a pierceable elastomeric septum that can be pierced by one end of a double-ended
needle cannula. The proximal end of this vial includes a stopper slidably disposed in
fluid tight engagement with the cylindrical wall of the vial. This medication delivery pen
is used by inserting the vial of medication into the vial holder. A pen body then is
connected to the proximal end of the vial holder. The pen body includes a dose setting
apparatus for designating a dose of medication to be delivered by the pen and a driving
apparatus for urging the stopper of the vial distally for a distance corresponding to the
selected dose. The user of the pen mounts a double-ended needle cannula to the distal
end of the vial holder such that the proximal point of the needle cannula pierces the
septum on the vial. The patient then selects a dose and operates the pen to urge the
stopper distally to deliver the selected dose. The dose selecting apparatus returns to zero
upon injection of the selected dose. The patient then removes and discards the needle
cannula, and keeps the prior art medication delivery pen in a convenient location for the
next required medication administration. The medication in the vial will become
exhausted after several such administrations of medication. The patient then separates
the vial holder from the pen body. The empty vial may then be removed and discarded.
A new vial can be inserted into the vial holder, and the vial holder and pen body can be
reassembled and used as explained above. Accordingly, a medication delivery pen
generally has a drive mechanism for accurate dosing and ease of use.
A dosage mechanism such as a rotatable knob allows the user to accurately adjust
the amount of medication that will be injected by the pen from a prepackaged vial of
medication. To inject the dose of medication, the user inserts the needle under the skin
and depresses the knob once as far as it will depress. The pen may be an entirely
mechanical device or it may be combined with electronic circuitry to accurately set
and/or indicate the dosage of medication that is injected into the user. See U.S. Patent No.
6,192,891.
In some embodiments, the needle of the pen device is disposable and the kits
include one or more disposable replacement needles. Pen devices suitable for delivery of
the any one of the presently featured antibody solutions are also described in, e.g., U.S.
patent nos. 6,277,099; 6,200,296; and 6,146,361, the disclosures of each of which are
incorporated herein by reference in their entirety. A microneedle-based pen device is
described in, e.g., U.S. patent no. 7,556,615, the disclosure of which is incorporated
herein by reference in its entirety. See also the Precision Pen Injector (PPI) device,
Molly™, manufactured by Scandinavian Health Ltd.
The present disclosure also presents controlled-release or extended-release
formulations suitable for chronic and/or self-administration of a medication. The various
formulations can be administered to a patient in need of treatment with the medication as
a bolus or by continuous infusion over a period of time.
In some embodiments, a high concentration anti-C5 antibody solution described
herein is formulated for sustained-release, extended-release, timed-release, controlled-
release, or continuous-release administration. In some embodiments, depot formulations
are used to administer the antibody to the subject in need thereof. In this method, the
antibody is formulated with one or more carriers providing a gradual release of active
agent over a period of a number of hours or days. Such formulations are often based
upon a degrading matrix which gradually disperses in the body to release the active
agent.
In some embodiments, a highly-concentrated antibody solution described herein
can be formulated with one or more additional active agents useful for treating or
preventing a complement-associated disorder (e.g., an AP-associated disorder or a CP-
associated disorder) in a subject. Additional agents for treating a complement-associated
disorder in a subject will vary depending on the particular disorder being treated, but can
include, without limitation, an antihypertensive (e.g., an angiotensin-converting enzyme
inhibitor) [for use in treating, e.g., HELLP syndrome], an anticoagulant, a corticosteroid
(e.g., prednisone), or an immunosuppressive agent (e.g., vincristine or cyclosporine A).
Examples of anticoagulants include, e.g., warfarin (Coumadin), aspirin, heparin,
phenindione, fondaparinux, idraparinux, and thrombin inhibitors (e.g., argatroban,
lepirudin, bivalirudin, or dabigatran). An anti-C5 antibody described herein can also be
formulated with a fibrinolytic agent (e.g., ancrod, -aminocaproic acid, antiplasmin-a ,
prostacyclin, and defibrotide) for the treatment of a complement-associated disorder. In
some embodiments, an anti-C5 antibody can be formulated with a lipid-lowering agent
such as an inhibitor of hydroxymethylglutaryl CoA reductase. In some embodiments, an
anti-C5 antibody can be formulated with, or for use with, an anti-CD20 agent such as
rituximab (Rituxan™; Biogen Idec, Cambridge, MA). In some embodiments, e.g., for
the treatment of RA, an anti-C5 antibody can be formulated with one or both of
infliximab (Remicade®; Centocor, Inc.) and methotrexate (Rheumatrex®, Trexall®). In
some embodiments, an anti-C5 antibody described herein can be formulated with a non-
steroidal anti-inflammatory drug (NSAID). Many different NSAIDS are available, some
over the counter including ibuprofen (Advil®, Motrin®, Nuprin ®) and naproxen
(Alleve®) and many others are available by prescription including meloxicam (Mobic®),
etodolac (Lodine®), nabumetone (Relafen®), sulindac (Clinoril®), tolementin
(Tolectin®), choline magnesium salicylate (Trilasate®), diclofenac (Cataflam®,
Voltaren®, Arthrotec®), Diflusinal (Dolobid®), indomethicin (Indocin®), ketoprofen
(Orudis®, Oruvail®), oxaprozin (Daypro®), and piroxicam (Feldene®). In some
embodiments a C5-binding polypeptide can be formulated for use with an anti-
hypertensive, an anti-seizure agent (e.g., magnesium sulfate), or an anti-thrombotic agent.
Anti-hypertensives include, e.g., labetalol, hydralazine, nifedipine, calcium channel
antagonists, nitroglycerin, or sodium nitroprussiate. (See, e.g., Mihu et al. (2007) J
Gastrointestin Liver Dis 16(4):419-424.) Anti-thrombotic agents include, e.g., heparin,
antithrombin, prostacyclin, or low dose aspirin.
In some embodiments, a highly-concentrated antibody solution described herein
can be formulated for administration with one or more additional therapeutic agents for
use in treating a complement-associated disorder of the eye. Such additional therapeutic
agents can be, e.g., bevacizumab or the Fab fragment of bevacizumab or ranibizumab,
both sold by Roche Pharmaceuticals, Inc., and pegaptanib sodium (Mucogen®; Pfizer,
Inc.). Such a kit can also, optionally, include instructions for administering the anti-C5
antibody to a subject.
In some embodiments, a highly-concentrated antibody solution described herein
can be formulated with one or more additional therapeutic agents for use in treating a
complement-associated pulmonary disorder such as, but not limited to, asthma, chronic
obstructive pulmonary disease, acute respiratory distress syndrome, pulmonary fibrosis,
-1 anti-trypsin deficiency, emphysema, bronchiectasis, bronchiolitis obliterans,
sarcoidosis, a collagen vascular disorder, and bronchitis. Such additional therapeutic
agents include, e.g., sympathomimetics (e.g., albuterol), antibiotics, deoxyribonucleases
(e.g., Pulmozyme®), anticholinergic drugs, anti-IgE inhibitors (e.g., anti-IgE antibodies),
and corticosteroids.
In some embodiments, a highly-concentrated antibody solution described herein
can be formulated for administration to a subject along with intravenous gamma globulin
therapy (IVIG), plasmapheresis, plasma replacement, or plasma exchange. In some
embodiments, an anti-C5 antibody can be formulated for use before, during, or after a
kidney transplant.
When a highly-concentrated antibody solution described herein is to be used in
combination with a second active agent, the agents can be formulated separately or
together. For example, the respective pharmaceutical compositions can be mixed, e.g.,
just prior to administration, and administered together or can be administered separately,
e.g., at the same or different times (see below).
Methods for Preparing the Highly-Concentrated Antibody Solutions
The disclosure also provides exemplary methods for preparing a highly-
concentrated antibody solution containing more than 100 mg/mL of an anti-C5 antibody.
For example, as described herein and exemplified in the working examples, the inventors
have identified improved methods for concentrating an anti-C5 antibody solution that
results not only in a higher recovery of antibody from the process, but also a more
concentrated final solution. That is, under this method the anti-C5 antibody eculizumab
can be concentrated in solution up to 224 mg/mL with an 85% recovery of the antibody
starting material.
The method requires a first aqueous solution comprising an anti-C5 antibody, the
first aqueous solution having a first formulation and comprising, preferably, no more than
50 mg/mL of the anti-C5 antibody. In some embodiments, the first aqueous solution
having a first formulation comprises no more than approximately 40 mg/mL of the anti-
C5 antibody. In some embodiments, the provided solution contains between about 20 to
about 50 (e.g., 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, or 49) mg/mL of the anti-C5 antibody. In some
embodiments, the provided solution contains less than 50 (e.g., less than 49, 48, 47, 46,
45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33, 32, 31, 30, 29, or 28) mg/mL of the anti-
C5 antibody. The first formulation buffer can be, e.g., a phosphate-based buffer such as
phosphate-buffered saline. Suitable phosphate-based buffers for use in these preparation
methods are set forth in the working examples. In some embodiments, the first aqueous
solution is initially concentrated to around 30 mg/mL to 50 mg/mL of the anti-C5
antibody. For example, the first aqueous solution can be concentrated to around 30
mg/mL to 40 mg/mL of the anti-C5 antibody using a tangential flow filter (TFF) or a stir
cell. In some embodiments, the first aqueous solution is obtained by concentrating a
“starting” solution having an anti-C5 antibody concentration of less than, or equal to, 15
(e.g., less than or equal to 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2 or even 1) mg/mL. The
formulation of the starting solution can be the same or can be different from the
formulation of the first aqueous solution.
The method includes subjecting the first aqueous solution to diafiltration to
thereby produce a second aqueous solution. Diafiltration is a membrane-based separation
process useful for reducing, removing, or exchanging salts or other buffer components
from a solution of interest. Diafiltration involves a buffering-exchanging process where a
protein solution (e.g., the first solution containing the anti-C5 antibody) is placed onto a
filter having a specified pore size, wherein pressure applied to the solution upon the
column forces components of the solution that are smaller than the pores of the filter to
pass through the filter. Higher molecular weight species, such as an anti-C5 antibody,
that are unable to pass through the pores of the filter are retained (retentate). By applying
a volume of a second buffer solution into the retentate container during the diafiltration
process, the lower molecular weight buffer components can be exchanged resulting in a
retentate having a different formulation than that of the first solution. Typically, a
volume of the second buffer equal to volume of the retentate is applied in each “round” of
diafiltration. For example, 5 mL of the first solution can placed on the filter and 5 mL of
the second buffer is added to the first solution before or during the application of a
pressure suitable to gently force the lower molecular weight components of the buffer
(e.g., water, salts, etc.) through the filter. In such an example, pressure would be applied
until the initial 10 mL volume was reduced to a 5 mL retentate. A second round of
diafiltration could be performed wherein an additional 5 mL of the second buffer is
applied to the retentate upon the filter. Pressure is applied to the solution on the filter
until the 10 mL volume is reduced again to 5 mL. In some embodiments, diafiltration
can involve the use of pressure and/or tangential flow to force low molecular weight
molecules across a flat sheet membrane. In some embodiments, the diafiltration buffer
can be added continuously during the process to maintain a constant retentate volume
while the buffer is exchanged.
In some embodiments, one round of diafiltration will be performed. In some
embodiments, two or more (e.g., three, four, five, six, seven, eight, nine, or 10 or more)
rounds of diafiltration are performed. Following the one or more rounds of diafiltration,
the original formulation of the first aqueous solution has been exchanged to a second
formulation, thus resulting in a second aqueous solution. In some embodiments, the
second formulation comprises: at least 20 mM histidine; at least 50 mM serine; at least
2.5% (w/v) sorbitol; and at least 1.5% (w/v) mannitol. Exemplary second formulations
are described herein and exemplified in the working examples.
The methods can also include, following the diafiltration step, concentrating the
second aqueous solution to produce a concentrated antibody solution comprising greater
than 100 mg/mL of the anti-C5 antibody. In some embodiments, the concentration step is
performed to produce a concentrated antibody solution having greater than 125 (e.g., 130,
135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220,
or greater than 225) mg/mL. The concentration step can include, e.g., tangential flow
filtration or a stir cell.
As described herein, the methods allow at least 90 (e.g., at least 91, 92, 93, 94, 95,
96, 97, 98, 99, or even 100) % of the anti-C5 antibody present in the first aqueous
solution to be recovered in the high concentration aqueous solution.
Methods for Producing an Antibody
Suitable methods for producing an antibody, or antigen-binding fragments
thereof, in accordance with the disclosure are known in the art (see, e.g., U.S. Patent No.
6,355,245) and described herein. For example, monoclonal anti-C5 antibodies may be
generated using complement component C5-expressing cells, a C5 polypeptide, or an
antigenic fragment of C5 polypeptide, as an immunogen, thus raising an immune
response in animals from which antibody-producing cells and in turn monoclonal
antibodies may be isolated. The sequence of such antibodies may be determined and the
antibodies or variants thereof produced by recombinant techniques. Recombinant
techniques may be used to produce chimeric, CDR-grafted, humanized and fully human
antibodies based on the sequence of the monoclonal antibodies as well as polypeptides
capable of binding to human complement component C5.
Moreover, antibodies derived from recombinant libraries (“phage antibodies”)
may be selected using C5-expressing cells, or polypeptides derived therefrom, as bait to
isolate the antibodies or polypeptides on the basis of target specificity. The production
and isolation of non-human and chimeric anti-C5 antibodies are well within the purview
of the skilled artisan.
Recombinant DNA technology can be used to modify one or more characteristics
of the antibodies produced in non-human cells. Thus, chimeric antibodies can be
constructed in order to decrease the immunogenicity thereof in diagnostic or therapeutic
applications. Moreover, immunogenicity can be minimized by humanizing the antibodies
by CDR grafting and, optionally, framework modification. See, U.S. Patent Nos.
,225,539 and 7,393,648, the contents of each of which are incorporated herein by
reference.
Antibodies can be obtained from animal serum or, in the case of monoclonal
antibodies or fragments thereof, produced in cell culture. Recombinant DNA technology
can be used to produce the antibodies according to established procedure, including
procedures in bacterial or preferably mammalian cell culture. The selected cell culture
system preferably secretes the antibody product.
In another embodiment, a process for the production of an antibody disclosed
herein includes culturing a host, e.g., E. coli or a mammalian cell, which has been
transformed with a hybrid vector. The vector includes one or more expression cassettes
containing a promoter operably linked to a first DNA sequence encoding a signal peptide
linked in the proper reading frame to a second DNA sequence encoding the antibody
protein. The antibody protein is then collected and isolated. Optionally, the expression
cassette may include a promoter operably linked to polycistronic (e.g., bicistronic) DNA
sequences encoding antibody proteins each individually operably linked to a signal
peptide in the proper reading frame.
Multiplication of hybridoma cells or mammalian host cells in vitro is carried out
in suitable culture media, which include the customary standard culture media (such as,
for example Dulbecco’s Modified Eagle Medium (DMEM) or RPMI 1640 medium),
optionally replenished by a mammalian serum (e.g. fetal calf serum), or trace elements
and growth sustaining supplements (e.g. feeder cells such as normal mouse peritoneal
exudate cells, spleen cells, bone marrow macrophages, 2-aminoethanol, insulin,
transferrin, low density lipoprotein, oleic acid, or the like). Multiplication of host cells
which are bacterial cells or yeast cells is likewise carried out in suitable culture media
known in the art. For example, for bacteria suitable culture media include medium LE,
NZCYM, NZYM, NZM, Terrific Broth, SOB, SOC, 2 x YT, or M9 Minimal Medium.
For yeast, suitable culture media include medium YPD, YEPD, Minimal Medium, or
Complete Minimal Dropout Medium.
In vitro production provides relatively pure antibody preparations and allows
scale-up production to give large amounts of the desired antibodies. Techniques for
bacterial cell, yeast, plant, or mammalian cell cultivation are known in the art and include
homogeneous suspension culture (e.g. in an airlift reactor or in a continuous stirrer
reactor), and immobilized or entrapped cell culture (e.g. in hollow fibers, microcapsules,
on agarose microbeads or ceramic cartridges).
Large quantities of the desired antibodies can also be obtained by multiplying
mammalian cells in vivo. For this purpose, hybridoma cells producing the desired
antibodies are injected into histocompatible mammals to cause growth of antibody-
producing tumors. Optionally, the animals are primed with a hydrocarbon, especially
mineral oils such as pristane (tetramethyl-pentadecane), prior to the injection. After one
to three weeks, the antibodies are isolated from the body fluids of those mammals. For
example, hybridoma cells obtained by fusion of suitable myeloma cells with antibody-
producing spleen cells from Balb/c mice, or transfected cells derived from hybridoma cell
line Sp2/0 that produce the desired antibodies are injected intraperitoneally into Balb/c
mice optionally pre-treated with pristane. After one to two weeks, ascitic fluid is taken
from the animals.
The foregoing, and other, techniques are discussed in, for example, Kohler and
Milstein, (1975) Nature 256:495-497; U.S. Patent No. 4,376,110; Harlow and Lane,
Antibodies: a Laboratory Manual, (1988) Cold Spring Harbor, the disclosures of which
are all incorporated herein by reference. Techniques for the preparation of recombinant
antibody molecules are described in the above references and also in, e.g.:WO97/08320;
U.S. Patent No. 5,427,908; U.S. Patent No. 5,508,717; Smith (1985) Science 225:1315-
1317; Parmley and Smith (1988) Gene 73:305-318; De La Cruz et al. (1988) J Biol Chem
263:4318-4322; U.S. Patent No. 5,403,484; U.S. Patent No. 5,223,409; WO88/06630;
WO92/15679; U.S. Patent No. 5,780,279; U.S. Patent No. 5,571,698; U.S. Patent No.
6,040,136; Davis et al. (1999) Cancer Metastasis Rev 18(4):421-5; and Taylor et al.
(1992) Nucleic Acids Res 20: 6287-6295; Tomizuka et al. (2000) Proc Natl Acad Sci USA
97(2): 722-727, the contents of each of which are incorporated herein by reference in
their entirety.
The cell culture supernatants are screened for the desired antibodies,
preferentially by immunofluorescent staining of complement component C5-expressing
cells, by immunoblotting, by an enzyme immunoassay, e.g. a sandwich assay or a dot-
assay, or a radioimmunoassay.
For isolation of the antibodies, the immunoglobulins in the culture supernatants or
in the ascitic fluid may be concentrated, e.g., by precipitation with ammonium sulfate,
dialysis against hygroscopic material such as polyethylene glycol, filtration through
selective membranes, or the like. If necessary and/or desired, the antibodies are purified
by the customary chromatography methods, for example gel filtration, ion-exchange
chromatography, chromatography over DEAE-cellulose and/or (immuno-) affinity
chromatography, e.g. affinity chromatography with one or more surface polypeptides
derived from a complement component C5-expressing cell line, or with Protein-A or -G.
Another embodiment provides a process for the preparation of a bacterial cell line
secreting antibodies directed against a C5 protein in a suitable mammal. For example a
rabbit is immunized with pooled samples from C5-expressing tissue or cells or C5
polypeptide or fragments thereof. A phage display library produced from the immunized
rabbit is constructed and panned for the desired antibodies in accordance with methods
well known in the art (such as, e.g., the methods disclosed in the various references
incorporated herein by reference).
Hybridoma cells secreting the monoclonal antibodies are also disclosed. The
preferred hybridoma cells are genetically stable, secrete monoclonal antibodies described
herein of the desired specificity, and can be expanded from deep-frozen cultures by
thawing and propagation in vitro or as ascites in vivo.
In another embodiment, a process is provided for the preparation of a hybridoma
cell line secreting monoclonal antibodies against a complement component C5 protein.
In that process, a suitable mammal, for example a Balb/c mouse, is immunized with one
or more polypeptides or antigenic fragments of C5 or with one or more polypeptides or
antigenic fragments derived from a C5-expressing cell, the C5-expressing cell itself, or an
antigenic carrier containing a purified polypeptide as described. Antibody-producing
cells of the immunized mammal are grown briefly in culture or fused with cells of a
suitable myeloma cell line. The hybrid cells obtained in the fusion are cloned, and cell
clones secreting the desired antibodies are selected. For example, spleen cells of Balb/c
mice immunized with a C5-expressing Chronic Lymphocytic Leukemia (CLL) cell line
are fused with cells of the myeloma cell line PAI or the myeloma cell line Sp2/0-Ag 14.
The obtained hybrid cells are then screened for secretion of the desired antibodies and
positive hybridoma cells are cloned.
Methods for preparing a hybridoma cell line include immunizing Balb/c mice by
injecting subcutaneously and/or intraperitoneally an immunogenic composition
containing human C5 protein (or an immunogenic fragment thereof) several times, e.g.,
four to six times, over several months, e.g., between two and four months. Spleen cells
from the immunized mice are taken two to four days after the last injection and fused
with cells of the myeloma cell line PAI in the presence of a fusion promoter, preferably
polyethylene glycol. Preferably, the myeloma cells are fused with a three- to twenty-fold
excess of spleen cells from the immunized mice in a solution containing about 30% to
about 50% polyethylene glycol of a molecular weight around 4000. After the fusion, the
cells are expanded in suitable culture media as described supra, supplemented with a
selection medium, for example HAT medium, at regular intervals in order to prevent
normal myeloma cells from overgrowing the desired hybridoma cells.
The antibodies and fragments thereof can be “chimeric.” Chimeric antibodies and
antigen-binding fragments thereof comprise portions from two or more different species
(e.g., mouse and human). Chimeric antibodies can be produced with mouse variable
regions of desired specificity spliced onto human constant domain gene segments (for
example, U.S. Patent No. 4,816,567). In this manner, non-human antibodies can be
modified to make them more suitable for human clinical application (e.g., methods for
treating or preventing a complement associated disorder in a human subject).
The monoclonal antibodies of the present disclosure include “humanized” forms
of the non-human (e.g., mouse) antibodies. Humanized or CDR-grafted mAbs are
particularly useful as therapeutic agents for humans because they are not cleared from the
circulation as rapidly as mouse antibodies and do not typically provoke an adverse
immune reaction. Methods of preparing humanized antibodies are generally well known
in the art. For example, humanization can be essentially performed following the method
of Winter and co-workers (see, e.g., Jones et al. (1986) Nature 321:522-525; Riechmann
et al. (1988) Nature 332:323-327; and Verhoeyen et al. (1988) Science 239:1534-1536),
by substituting rodent CDRs or CDR sequences for the corresponding sequences of a
human antibody. Also see, e.g., Staelens et al. (2006) Mol Immunol 43:1243-1257. In
some embodiments, humanized forms of non-human (e.g., mouse) antibodies are human
antibodies (recipient antibody) in which hypervariable (CDR) region residues of the
recipient antibody are replaced by hypervariable region residues from a non-human
species (donor antibody) such as a mouse, rat, rabbit, or non-human primate having the
desired specificity, affinity, and binding capacity. In some instances, framework region
residues of the human immunoglobulin are also replaced by corresponding non-human
residues (so called “back mutations”). In addition, phage display libraries can be used to
vary amino acids at chosen positions within the antibody sequence. The properties of a
humanized antibody are also affected by the choice of the human framework.
Furthermore, humanized and chimerized antibodies can be modified to comprise residues
that are not found in the recipient antibody or in the donor antibody in order to further
improve antibody properties, such as, for example, affinity or effector function.
Fully human antibodies are also provided in the disclosure. The term “human
antibody” includes antibodies having variable and constant regions (if present) derived
from human germline immunoglobulin sequences. Human antibodies can include amino
acid residues not encoded by human germline immunoglobulin sequences (e.g.,
mutations introduced by random or site-specific mutagenesis in vitro or by somatic
mutation in vivo). However, the term “human antibody” does not include antibodies in
which CDR sequences derived from the germline of another mammalian species, such as
a mouse, have been grafted onto human framework sequences (i.e., humanized
antibodies). Fully human or human antibodies may be derived from transgenic mice
carrying human antibody genes (carrying the variable (V), diversity (D), joining (J), and
constant (C) exons) or from human cells. For example, it is now possible to produce
transgenic animals (e.g., mice) that are capable, upon immunization, of producing a full
repertoire of human antibodies in the absence of endogenous immunoglobulin
production. (See, e.g., Jakobovits et al. (1993) Proc Natl Acad Sci USA 90:2551;
Jakobovits et al. (1993) Nature 362:255-258; Bruggemann et al. (1993) Year in Immunol.
7:33; and Duchosal et al. (1992) Nature 355:258.) Transgenic mice strains can be
engineered to contain gene sequences from unrearranged human immunoglobulin genes.
The human sequences may code for both the heavy and light chains of human antibodies
and would function correctly in the mice, undergoing rearrangement to provide a wide
antibody repertoire similar to that in humans. The transgenic mice can be immunized
with the target protein (e.g., a complement component C5 protein, fragments thereof, or
cells expressing C5 protein) to create a diverse array of specific antibodies and their
encoding RNA. Nucleic acids encoding the antibody chain components of such
antibodies may then be cloned from the animal into a display vector. Typically, separate
populations of nucleic acids encoding heavy and light chain sequences are cloned, and
the separate populations then recombined on insertion into the vector, such that any given
copy of the vector receives a random combination of a heavy and a light chain. The
vector is designed to express antibody chains so that they can be assembled and displayed
on the outer surface of a display package containing the vector. For example, antibody
chains can be expressed as fusion proteins with a phage coat protein from the outer
surface of the phage. Thereafter, display packages can be screened for display of
antibodies binding to a target.
In addition, human antibodies can be derived from phage-display libraries
(Hoogenboom et al. (1991) J Mol Biol 227:381; Marks et al. (1991) J Mol Biol 222:581-
597; and Vaughan et al. (1996) Nature Biotech 14:309 (1996)). Synthetic phage libraries
can be created which use randomized combinations of synthetic human antibody V-
regions. By selection on antigen fully human antibodies can be made in which the V-
regions are very human-like in nature. See, e.g., U.S. Patent Nos. 6,794,132; 6,680,209;
and 4,634,666, and Ostberg et al. (1983) Hybridoma 2:361-367, the contents of each of
which are incorporated herein by reference in their entirety.
For the generation of human antibodies, also see Mendez et al. (1998) Nature
Genetics 15:146-156 and Green and Jakobovits (1998) J Exp Med 188:483-495, the
disclosures of which are hereby incorporated by reference in their entirety. Human
antibodies are further discussed and delineated in U.S. Patent Nos.: 5,939,598; 6,673,986;
6,114,598; 6,075,181; 6,162,963; 6,150,584; 6,713,610; and 6,657,103 as well as U.S.
Patent Application Publication Nos. 20030229905 A1, 20040010810 A1, 20040093622
A1, 20060040363 A1, 20050054055 A1, 20050076395 A1, and 20050287630 A1. See
also International Patent Application Publication Nos. WO 94/02602, WO 96/34096, and
WO 98/24893, and European Patent No. EP 0 463 151 B1. The disclosures of each of the
above-cited patents, applications, and references are hereby incorporated by reference in
their entirety.
In an alternative approach, others, including GenPharm International, Inc., have
utilized a “minilocus” approach. In the minilocus approach, an exogenous Ig locus is
mimicked through the inclusion of pieces (individual genes) from the Ig locus. Thus, one
or more V genes, one or more D genes, one or more J genes, a mu constant region,
H H H
and a second constant region (preferably a gamma constant region) are formed into a
construct for insertion into an animal. This approach is described in, e.g., U.S. Patent
Nos.: 5,545,807; 5,545,806; 5,625,825; 5,625,126; 5,633,425; 5,661,016; 5,770,429;
5,789,650; 5,814,318; 5,591,669; 5,612,205; 5,721,367; 5,789,215; 5,643,763; 5,569,825;
,877,397; 6,300,129; 5,874,299; 6,255,458; and 7,041,871, the disclosures of which are
hereby incorporated by reference. See also European Patent No. 0 546 073 B1,
International Patent Application Publication Nos. WO 92/03918, WO 92/22645, WO
92/22647, WO 92/22670, WO 93/12227, WO 94/00569, WO 94/25585, WO 96/14436,
WO 97/13852, and WO 98/24884, the disclosures of each of which are hereby
incorporated by reference in their entirety. See further Taylor et al. (1992) Nucleic Acids
Res 20: 6287; Chen et al. (1993) Int Immunol 5:647; Tuaillon et al. (1993) Proc Natl
Acad Sci USA 90: 3720-4; Choi et al. (1993) Nature Genetics 4: 117; Lonberg et al.
(1994) Nature 368: 856-859; Taylor et al. (1994) Int Immunol 6: 579-591; Tuaillon et al.
(1995) J Immunol 154: 6453-65; Fishwild et al. (1996) Nature Biotechnol 14: 845; and
Tuaillon et al. (2000) Eur J Immunol 10: 2998-3005, the disclosures of each of which are
hereby incorporated by reference in their entirety.
In certain embodiments, de-immunized anti-C5 antibodies or antigen-binding
fragments thereof are provided. De-immunized antibodies or antigen-binding fragments
thereof are antibodies that have been modified so as to render the antibody or antigen-
binding fragment thereof non-immunogenic, or less immunogenic, to a given species
(e.g., to a human). De-immunization can be achieved by modifying the antibody or
antigen-binding fragment thereof utilizing any of a variety of techniques known to those
skilled in the art (see, e.g., PCT Publication Nos. WO 04/108158 and WO 00/34317).
For example, an antibody or antigen-binding fragment thereof may be de-immunized by
identifying potential T cell epitopes and/or B cell epitopes within the amino acid
sequence of the antibody or antigen-binding fragment thereof and removing one or more
of the potential T cell epitopes and/or B cell epitopes from the antibody or antigen-
binding fragment thereof, for example, using recombinant techniques. The modified
antibody or antigen-binding fragment thereof may then optionally be produced and tested
to identify antibodies or antigen-binding fragments thereof that have retained one or more
desired biological activities, such as, for example, binding affinity, but have reduced
immunogenicity. Methods for identifying potential T cell epitopes and/or B cell epitopes
may be carried out using techniques known in the art, such as, for example,
computational methods (see e.g., PCT Publication No. WO 02/069232), in vitro or in
silico techniques, and biological assays or physical methods (such as, for example,
determination of the binding of peptides to MHC molecules, determination of the binding
of peptide:MHC complexes to the T cell receptors from the species to receive the
antibody or antigen-binding fragment thereof, testing of the protein or peptide parts
thereof using transgenic animals with the MHC molecules of the species to receive the
antibody or antigen-binding fragment thereof, or testing with transgenic animals
reconstituted with immune system cells from the species to receive the antibody or
antigen-binding fragment thereof, etc.). In various embodiments, the de-immunized anti-
C5 antibodies described herein include de-immunized antigen-binding fragments, Fab,
Fv, scFv, Fab’ and F(ab’) , monoclonal antibodies, murine antibodies, engineered
antibodies (such as, for example, chimeric, single chain, CDR-grafted, humanized, and
artificially selected antibodies), synthetic antibodies and semi-synthetic antibodies.
In some embodiments, a recombinant DNA comprising an insert coding for a
heavy chain variable domain and/or for a light chain variable domain of an anti-C5
antibody or a C5 protein-expressing cell line is produced. The term DNA includes
coding single stranded DNAs, double stranded DNAs consisting of said coding DNAs
and of complementary DNAs thereto, or these complementary (single stranded) DNAs
themselves.
Furthermore, a DNA encoding a heavy chain variable domain and/or a light chain
variable domain of anti-C5 antibodies can be enzymatically or chemically synthesized to
contain the authentic DNA sequence coding for a heavy chain variable domain and/or for
the light chain variable domain, or a mutant thereof. A mutant of the authentic DNA is a
DNA encoding a heavy chain variable domain and/or a light chain variable domain of the
above-mentioned antibodies in which one or more amino acids are deleted, inserted, or
exchanged with one or more other amino acids. Preferably said modification(s) are
outside the CDRs of the heavy chain variable domain and/or the CDRs of the light chain
variable domain of the antibody in humanization and expression optimization
applications. The term mutant DNA also embraces silent mutants wherein one or more
nucleotides are replaced by other nucleotides with the new codons coding for the same
amino acid(s). The term mutant sequence also includes a degenerate sequence.
Degenerate sequences are degenerate within the meaning of the genetic code in that an
unlimited number of nucleotides are replaced by other nucleotides without resulting in a
change of the amino acid sequence originally encoded. Such degenerate sequences may
be useful due to their different restriction sites and/or frequency of particular codons
which are preferred by the specific host, particularly E. coli, to obtain an optimal
expression of the heavy chain murine variable domain and/or a light chain murine
variable domain.
The term mutant is intended to include a DNA mutant obtained by in vitro
mutagenesis of the authentic DNA according to methods known in the art.
For the assembly of complete tetrameric immunoglobulin molecules and the
expression of chimeric antibodies, the recombinant DNA inserts coding for heavy and
light chain variable domains are fused with the corresponding DNAs coding for heavy
and light chain constant domains, then transferred into appropriate host cells, for example
after incorporation into hybrid vectors.
Recombinant DNAs including an insert coding for a heavy chain murine variable
domain of an anti-C5 antibody-expressing cell line fused to a human constant domain
IgG, for example γ1, γ2, γ3 or γ4, in particular embodiments γ1 or γ4, may be used.
Recombinant DNAs including an insert coding for a light chain murine variable domain
of an antibody fused to a human constant domain κ or λ, preferably κ, are also provided.
Another embodiment pertains to recombinant DNAs coding for a recombinant
polypeptide wherein the heavy chain variable domain and the light chain variable domain
are linked by way of a spacer group, optionally comprising a signal sequence facilitating
the processing of the antibody in the host cell and/or a DNA sequence encoding a peptide
facilitating the purification of the antibody and/or a cleavage site and/or a peptide spacer
and/or an agent.
Accordingly, the monoclonal antibodies or antigen-binding fragments of the
disclosure can be naked antibodies or antigen-binding fragments that are not conjugated
to other agents, for example, a therapeutic agent or detectable label. Alternatively, the
monoclonal antibody or antigen-binding fragment can be conjugated to an agent such as,
for example, a cytotoxic agent, a small molecule, a hormone, an enzyme, a growth factor,
a cytokine, a ribozyme, a peptidomimetic, a chemical, a prodrug, a nucleic acid molecule
including coding sequences (such as antisense, RNAi, gene-targeting constructs, etc.), or
a detectable label (e.g., an NMR or X-ray contrasting agent, fluorescent molecule, etc.).
In certain embodiments, an anti-C5 antibody or antigen-binding fragment (e.g., Fab, Fv,
single-chain (scFv), Fab’, and F(ab’) ) is linked to a molecule that increases the half-life
of the antibody or antigen-binding fragment (see above).
Several possible vector systems are available for the expression of cloned heavy
chain and light chain genes in mammalian cells. One class of vectors relies upon the
integration of the desired gene sequences into the host cell genome. Cells which have
stably integrated DNA can be selected by simultaneously introducing drug resistance
genes such as E. coli gpt (Mulligan and Berg (1981) Proc Natl Acad Sci USA, 78:2072-
2076) or Tn5 neo (Southern and Berg (1982) J Mol Appl Genet 1:327-341). The
selectable marker gene can be either linked to the DNA gene sequences to be expressed,
or introduced into the same cell by co-transfection (Wigler et al. (1979) Cell 16:777-785).
A second class of vectors utilizes DNA elements which confer autonomously replicating
capabilities to an extrachromosomal plasmid. These vectors can be derived from animal
viruses, such as bovine papillomavirus (Sarver et al. (1982) Proc Natl Acad Sci USA,
79:7147-7151), polyoma virus (Deans et al. (1984) Proc Natl Acad Sci USA 81:1292-
1296), or SV40 virus (Lusky and Botchan (1981) Nature 293:79-81).
Since an immunoglobulin cDNA is comprised only of sequences representing the
mature mRNA encoding an antibody protein, additional gene expression elements
regulating transcription of the gene and processing of the RNA are required for the
synthesis of immunoglobulin mRNA. These elements may include splice signals,
transcription promoters, including inducible promoters, enhancers, and termination
signals. cDNA expression vectors incorporating such elements include those described
by Okayama and Berg (1983) Mol Cell Biol 3:280-289; Cepko et al. (1984) Cell 37:1053-
1062; and Kaufman (1985) Proc Natl Acad Sci USA 82:689-693.
As is evident from the disclosure, the anti-C5 antibodies can be used in therapies
(e.g., therapies for a complement associated disorder), including combination therapies.
In the therapeutic embodiments of the present disclosure, bispecific antibodies are
contemplated. Bispecific antibodies are monoclonal, preferably human or humanized,
antibodies that have binding specificities for at least two different antigens. In the present
case, one of the binding specificities is for the human complement component C5 antigen
and the other one is for any other antigen.
Methods for making bispecific antibodies are within the purview of those skilled
in the art. Traditionally, the recombinant production of bispecific antibodies is based on
the co-expression of two immunoglobulin heavy-chain/light-chain pairs, where the two
heavy chains have different specificities (Milstein and Cuello (1983) Nature 305:537-
539). Antibody variable domains with the desired binding specificities (antibody-antigen
combining sites) can be fused to immunoglobulin constant domain sequences. The fusion
preferably is with an immunoglobulin heavy-chain constant domain, including at least
part of the hinge, C 2, and C 3 regions. DNAs encoding the immunoglobulin heavy-
chain fusions and, if desired, the immunoglobulin light chain, are inserted into separate
expression vectors, and are co-transfected into a suitable host organism. For further
details of illustrative currently known methods for generating bispecific antibodies see,
e.g., Suresh et al. (1986) Methods Enzymol 121:210-228; PCT Publication No. WO
96/27011; Brennan et al. (1985) Science 229:81-83; Shalaby et al. J Exp Med (1992)
175:217-225; Kostelny et al. (1992) J Immunol 148(5):1547-1553; Hollinger et al. (1993)
Proc Natl Acad Sci USA 90:6444-6448; Gruber et al. (1994) J Immunol 152:5368-5474;
and Tutt et al. (1991) J Immunol 147:60-69. Bispecific antibodies also include cross-
linked or heteroconjugate antibodies. Heteroconjugate antibodies may be made using any
convenient cross-linking methods. Suitable cross-linking agents are well known in the
art, and are disclosed in U.S. Pat. No. 4,676,980, along with a number of cross-linking
techniques.
Various techniques for making and isolating bispecific antibody fragments
directly from recombinant cell culture have also been described. For example, bispecific
antibodies have been produced using leucine zippers. See, e.g., Kostelny et al. (1992) J
Immunol 148(5):1547-1553. The leucine zipper peptides from the Fos and Jun proteins
may be linked to the Fab’ portions of two different antibodies by gene fusion. The
antibody homodimers may be reduced at the hinge region to form monomers and then re-
oxidized to form the antibody heterodimers. This method can also be utilized for the
production of antibody homodimers. The “diabody” technology described by Hollinger
et al. (1993) Proc Natl Acad Sci USA 90:6444-6448 has provided an alternative
mechanism for making bispecific antibody fragments. The fragments comprise a heavy-
chain variable domain (VH) connected to a light-chain variable domain (VL) by a linker
which is too short to allow pairing between the two domains on the same chain.
Accordingly, the VH and VL domains of one fragment are forced to pair with the
complementary VL and VH domains of another fragment, thereby forming two antigen-
binding sites. Another strategy for making bispecific antibody fragments by the use of
single-chain Fv (scFv) dimers has also been reported. See, e.g., Gruber et al. (1994) J
Immunol 152:5368-5374. Alternatively, the antibodies can be “linear antibodies” as
described in, e.g., Zapata et al. (1995) Protein Eng 8(10):1057-1062. Briefly, these
antibodies comprise a pair of tandem Fd segments (V -C 1-V -C 1) which form a pair
H H H H
of antigen binding regions. Linear antibodies can be bispecific or monospecific.
The disclosure also embraces variant forms of bispecific antibodies such as the
tetravalent dual variable domain immunoglobulin (DVD-Ig) molecules described in Wu
et al. (2007) Nat Biotechnol 25(11):1290-1297. The DVD-Ig molecules are designed
such that two different light chain variable domains (VL) from two different parent
antibodies are linked in tandem directly or via a short linker by recombinant DNA
techniques, followed by the light chain constant domain. Methods for generating DVD-
Ig molecules from two parent antibodies are further described in, e.g., PCT Publication
Nos. WO 08/024188 and WO 07/024715, the disclosures of each of which are
incorporated herein by reference in their entirety.
Methods for Treatment
The above-described compositions (e.g., any of the high concentration antibody
solutions) are useful in, inter alia, methods for treating or preventing a variety of
complement-associated disorders (e.g., AP-associated disorders or CP-associated
disorders) in a subject. The compositions can be administered to a subject, e.g., a human
subject, using a variety of methods that depend, in part, on the route of administration.
The route can be, e.g., intravenous injection or infusion (IV), subcutaneous injection
(SC), intraperitoneal (IP) injection, intraocular injection, intraarticular injection, or
intramuscular injection (IM).
In some embodiments, a high concentration antibody solution described herein is
therapeutically delivered to a subject by way of local administration. As used herein,
“local administration” or “local delivery,” refers to delivery that does not rely upon
transport of the composition or active agent (e.g., an anti-C5 antibody) to its intended
target tissue or site via the vascular system. For example, the composition may be
delivered by injection or implantation of the composition or agent or by injection or
implantation of a device containing the composition or agent. Following local
administration in the vicinity of a target tissue or site, the composition or agent, or one or
more components thereof, may diffuse to the intended target tissue or site.
In some embodiments, a high concentration antibody solution can be locally
administered to a joint (e.g., an articulated joint). For example, in embodiments where
the complement-associated disorder is arthritis, the solution can be administered directly
to a joint (e.g., into a joint space) or in the vicinity of a joint. Examples of intraarticular
joints to which a high concentration antibody solution described herein can be locally
administered include, e.g., the hip, knee, elbow, wrist, sternoclavicular,
temperomandibular, carpal, tarsal, ankle, and any other joint subject to arthritic
conditions. A high concentration solution described herein can also be administered to
bursa such as, e.g., acromial, bicipitoradial, cubitoradial, deltoid, infrapatellar, ischial,
and any other bursa known in the art of medicine.
In some embodiments, a high concentration antibody solution described herein
can be locally administered to the eye, e.g., to treat patients afflicted with a complement-
associated disorder of the eye such as wet or dry AMD. As used herein, the term “eye”
refers to any and all anatomical tissues and structures associated with an eye. The eye
has a wall composed of three distinct layers: the outer sclera, the middle choroid layer,
and the inner retina. The chamber behind the lens is filled with a gelatinous fluid referred
to as the vitreous humor. At the back of the eye is the retina, which detects light. The
cornea is an optically transparent tissue, which conveys images to the back of the eye.
The cornea includes one pathway for the permeation of drugs into the eye. Other
anatomical tissue structures associated with the eye include the lacrimal drainage system,
which includes a secretory system, a distributive system and an excretory system. The
secretory system comprises secretors that are stimulated by blinking and temperature
change due to tear evaporation and reflex secretors that have an efferent parasympathetic
nerve supply and secrete tears in response to physical or emotional stimulation. The
distributive system includes the eyelids and the tear meniscus around the lid edges of an
open eye, which spread tears over the ocular surface by blinking, thus reducing dry areas
from developing.
In some embodiments, a high concentration antibody solution described herein is
administered to the posterior chamber of the eye. In some embodiments, a high
concentration antibody solution is administered intravitreally. In some embodiments, a
high concentration antibody solution described herein is administered transsclerally.
It is understood that in some embodiments a high concentration antibody solution
described herein can be administered systemically for use in treating, e.g., RA, wet or dry
AMD, or any other complement-associated disorder described herein.
A suitable dose of a high concentration antibody solution described herein, which
dose is capable of treating or preventing a complement-associated disorder in a subject,
can depend on a variety of factors including, e.g., the age, sex, and weight of a subject to
be treated and the particular inhibitor compound used. For example, a different dose of
an anti-C5 antibody (and thus a different concentration of the antibody in solution or a
different volume of a high concentration antibody solution) may be required to treat an
elderly subject with RA as compared to the dose of an anti-C5 antibody that is required to
treat a younger subject. Other factors affecting the dose administered to the subject
include, e.g., the type or severity of the complement-associated disorder. For example, a
subject having RA may require administration of a different dosage of a high
concentration antibody solution described herein than a subject with AMD. Other factors
can include, e.g., other medical disorders concurrently or previously affecting the subject,
the general health of the subject, the genetic disposition of the subject, diet, time of
administration, rate of excretion, drug combination, and any other additional therapeutics
that are administered to the subject. It should also be understood that a specific dosage
and treatment regimen for any particular subject is generally governed by the judgment of
the treating medical practitioner (e.g., doctor or nurse).
An anti-C5 antibody as part of a high concentration antibody solution described
herein can be administered as a fixed dose, or in a milligram per kilogram (mg/kg) dose.
In some embodiments where local administration is preferred, a dose can be selected that
results in local inhibition of C5 cleavage (through the action of the anti-C5 antibody), but
with no substantial effect on systemic complement activity. In some embodiments, the
dose can also be chosen to reduce or avoid production of antibodies or other host immune
responses against the therapeutic antibodies in the composition. While in no way
intended to be limiting, exemplary dosages of an anti-C5 antibody locally administered to
the eye of a patient afflicted with AMD include 0.5 mg to 5 mg (e.g., at least 0.5, 0.6, 0.7,
0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8,
2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9.
or 5 mg) per dose. The dose, or pharmaceutical unit dosage form, can be provided to the
eye of the patient in a volume of, e.g., up to 50 (e.g., one, two, three, four, five, six,
seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, or 50)
microliters. Accordingly, the disclosure embraces and features pharmaceutical unit
dosage forms of an anti-C5 antibody for use in treating AMD (e.g., wet or dry AMD) in a
patient by intravitreal injection, which dosage form includes between 0.5 mg to 5 mg,
inclusive in a volume of not more than 50 microliters.
While in no way intended to be limiting, exemplary dosages of an anti-C5
antibody locally administered to a joint (e.g., an articulated joint) of a patient afflicted
with rheumatoid arthritis (RA) include 0.5 to 10 mg (e.g., at least 0.5, 0.6, 0.7, 0.8, 0.9, 1,
1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1,
3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5, 5.1, 5.2,
.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3,
7.4, 7.5, 7.6, 7.7, 7.8, 7.9, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8, 8.9, 9, 9.1, 9.2, 9.3, 9.4,
9.5, 9.6, 9.7, 9.8, 9.9, or 10 mg) per dose. The dose, or pharmaceutical unit dosage form,
can be provided to a joint of the patient in a volume of, e.g., up to 500 (e.g., one, two,
three, four, five, six, seven, eight, nine, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,
23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46,
47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 110, 120, 130, 140, 150, 160, 170,
180, 190, 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350,
360, 370, 380, 390, 400, 410, 420, 430, 440, 450, 460, 470, 480, 490, or 500) microliters.
Accordingly, the disclosure embraces and features pharmaceutical unit dosage forms of
an anti-C5 antibody for use in treating RA in a patient by intraarticular injection, which
dosage form includes between 0.5 mg to 10 mg, inclusive in a volume of not more than
500 microliters.
Methods for detecting systemic hemolytic activity, as well as inhibition of said
activity, are well known in the art and are described herein.
In some embodiments, the concentrated solution of an anti-C5 antibody can be
diluted into a pharmaceutically-acceptable diluent for, e.g., systemic delivery of the
antibody to the subject. While in no way intended to be limiting, exemplary dosages of
an anti-C5 antibody to be administered systemically to treat complement-associated
disorder include, e.g., 1-100 g/kg, 0.5-50 g/kg, 0.1-100 g/kg, 0.5-25 g/kg, 1-20
g/kg, and 1-10 g/kg, 1-100 mg/kg, 0.5-50 mg/kg, 0.1-100 mg/kg, 0.5-25 mg/kg, 1-20
mg/kg, and 1-10 mg/kg. Exemplary dosages of an antibody described herein include,
without limitation, 0.1 g/kg, 0.5 g/kg, 1.0 g/kg, 2.0 g/kg, 4 g/kg, and 8 g/kg, 0.1
mg/kg, 0.5 mg/kg, 1.0 mg/kg, 2.0 mg/kg, 4 mg/kg, and 8 mg/kg.
A therapeutically-effective amount of an anti-C5 antibody described herein can be
readily determined by one of ordinary skill in the art based, in part, on the effect of the
administered antibody, or the combinatorial effect of the antibody and one or more
additional active agents, if more than one agent is used. A therapeutically effective
amount of an antibody described herein can also vary according to factors such as the
disease state, age, sex, and weight of the individual, and the ability of the antibody (and
one or more additional active agents) to elicit a desired response in the individual, e.g.,
amelioration of at least one condition parameter, e.g., amelioration of at least one
symptom of the complement-associated disorder. For example, a therapeutically
effective amount of a C5-binding polypeptide can inhibit (lessen the severity of or
eliminate the occurrence of) and/or prevent a particular disorder, and/or any one of the
symptoms of the particular disorder known in the art or described herein. A
therapeutically effective amount is also one in which any toxic or detrimental effects of
the composition are outweighed by the therapeutically beneficial effects.
Suitable human doses of any of the anti-C5 antibodies described herein can
further be evaluated in, e.g., Phase I dose escalation studies. See, e.g., van Gurp et al.
(2008) Am J Transplantation 8(8):1711-1718; Hanouska et al. (2007) Clin Cancer Res
13(2, part 1):523-531; and Hetherington et al. (2006) Antimicrobial Agents and
Chemotherapy 50(10): 3499-3500.
The terms “therapeutically effective amount” or “therapeutically effective dose,”
or similar terms used herein are intended to mean an amount of an agent (e.g., an anti-C5
antibody) that will elicit the desired biological or medical response (e.g., an improvement
in one or more symptoms of a complement-associated disorder). In some embodiments,
a high concentration antibody solution described herein contains a therapeutically
effective amount of the anti-C5 antibody. In some embodiments, the high concentration
antibody solution described herein contains an anti-C5 antibody and one or more (e.g.,
one, two, three, four, five, six, seven, eight, nine, 10, or 11 or more) additional
therapeutic agents such that the composition as a whole is therapeutically effective. For
example, a high concentration antibody solution can contain anti-C5 antibody and a
VEGF inhibitor (e.g., an anti-VEGF antibody such as bevacizumab), wherein the anti-C5
antibody and VEGF inhibitor are each at a concentration that when combined are
therapeutically effective for treating or preventing a complement-associated disorder in a
subject.
Toxicity and therapeutic efficacy of such compositions can be determined by
known pharmaceutical procedures in cell cultures or experimental animals (e.g., animal
models of any of the complement-associated disorders described herein). These
procedures can be used, e.g., for determining the LD (the dose lethal to 50% of the
population) and the ED (the dose therapeutically effective in 50% of the population).
The dose ratio between toxic and therapeutic effects is the therapeutic index and it can be
expressed as the ratio LD /ED . An anti-C5 antibody that exhibits a high therapeutic
50 50
index is preferred. While compositions that exhibit toxic side effects may be used, care
should be taken to design a delivery system that targets such compounds to the site of
affected tissue and to minimize potential damage to normal cells and, thereby, reduce
side effects.
The data obtained from the cell culture assays and animal studies can be used in
formulating a range of dosage for use in humans. The dosage of such antibodies lies
generally within a range of circulating concentrations of the anti-C5 antibody that include
the ED with little or no toxicity. The dosage may vary within this range depending
upon the dosage form employed and the route of administration utilized. For an anti-C5
antibody used as described herein (e.g., for treating or preventing a complement-
associated disorder), the therapeutically effective dose can be estimated initially from cell
culture assays. A dose can be formulated in animal models to achieve a circulating
plasma concentration range that includes the IC (i.e., the concentration of the test
compound which achieves a half-maximal inhibition of symptoms) as determined in cell
culture. Such information can be used to more accurately determine useful doses in
humans. Levels in plasma may be measured, for example, by high performance liquid
chromatography or by ELISA.
In some embodiments, the methods can be performed in conjunction with other
therapies for complement-associated disorders. For example, the composition can be
administered to a subject at the same time, prior to, or after, plasmapheresis, IVIG
therapy, plasma replacement, or plasma exchange. See, e.g., Appel et al. (2005) J Am
Soc Nephrol 16:1392-1404. In some embodiments, a high concentration antibody
solution described herein is not administered in conjunction with IVIG. In some
embodiments, e.g., for patients with aHUS, the composition can be administered to a
subject at the same time, prior to, or after, a kidney transplant.
A “subject,” as used herein, can be any mammal. For example, a subject can be a
human, a non-human primate (e.g., monkey, baboon, or chimpanzee), a horse, a cow, a
pig, a sheep, a goat, a dog, a cat, a rabbit, a guinea pig, a gerbil, a hamster, a rat, or a
mouse. In some embodiments, the subject is an infant (e.g., a human infant).
As used herein, a subject “in need of prevention,” “in need of treatment,” or “in
need thereof,” refers to one, who by the judgment of an appropriate medical practitioner
(e.g., a doctor, a nurse, or a nurse practitioner in the case of humans; a veterinarian in the
case of non-human mammals), would reasonably benefit from a given treatment (such as
treatment with a solution comprising a high concentration of an anti-C5 antibody).
As described above, the high concentration antibody solutions described herein
can be used to treat a variety of complement-associated disorders such as, e.g., AP-
associated disorders and/or CP-associated disorders. Such disorders include, without
limitation, rheumatoid arthritis (RA); antiphospholipid antibody syndrome; lupus
nephritis; ischemia-reperfusion injury; atypical hemolytic uremic syndrome (aHUS);
typical or infectious hemolytic uremic syndrome (tHUS); dense deposit disease (DDD);
paroxysmal nocturnal hemoglobinuria (PNH); neuromyelitis optica (NMO); multifocal
motor neuropathy (MMN); multiple sclerosis (MS); macular degeneration (e.g., age-
related macular degeneration (AMD)); hemolysis, elevated liver enzymes, and low
platelets (HELLP) syndrome; thrombotic thrombocytopenic purpura (TTP); spontaneous
fetal loss; Pauci-immune vasculitis; epidermolysis bullosa; recurrent fetal loss; and
traumatic brain injury. (See, e.g., Holers (2008) Immunological Reviews 223:300-316
and Holers and Thurman (2004) Molecular Immunology 41:147-152.) In some
embodiments, the complement-associated disorder is a complement-associated vascular
disorder such as, but not limited to, a diabetes-associated vascular disorder (e.g., of the
eye), central retinal vein occlusion, a cardiovascular disorder, myocarditis, a
cerebrovascular disorder, a peripheral (e.g., musculoskeletal) vascular disorder, a
renovascular disorder, a mesenteric/enteric vascular disorder, revascularization to
transplants and/or replants, vasculitis, Henoch-Schönlein purpura nephritis, systemic
lupus erythematosus-associated vasculitis, vasculitis associated with rheumatoid arthritis,
immune complex vasculitis, Takayasu’s disease, dilated cardiomyopathy, diabetic
angiopathy, Kawasaki’s disease (arteritis), venous gas embolus (VGE), and restenosis
following stent placement, rotational atherectomy, and percutaneous transluminal
coronary angioplasty (PTCA). (See, e.g., U.S. patent application publication no.
20070172483.) Additional complement-associated disorders include, without limitation,
myasthenia gravis, cold agglutinin disease, dermatomyositis, Graves’ disease,
atherosclerosis, Alzheimer’s disease, Guillain-Barré Syndrome, Degos’ disease, graft
rejection (e.g., transplant rejection), sepsis, burn (e.g., severe burn), systemic
inflammatory response sepsis, septic shock, spinal cord injury, glomerulonephritis,
Hashimoto’s thyroiditis, type I diabetes, psoriasis, pemphigus, autoimmune hemolytic
anemia (AIHA), idiopathic thrombocytopenic purpura (ITP), Goodpasture syndrome,
antiphospholipid syndrome (APS), and catastrophic APS (CAPS). In some
embodiments, the high concentration antibody solutions described herein can be used in
methods for treating thrombotic microangiopathy (TMA), e.g., TMA associated with a
complement-associated disorder such as any of the complement-associated disorders
described herein.
Complement-associated disorders also include complement-associated pulmonary
disorders such as, but not limited to, asthma, bronchitis, a chronic obstructive pulmonary
disease (COPD), an interstitial lung disease, -1 anti-trypsin deficiency, emphysema,
bronchiectasis, bronchiolitis obliterans, alveolitis, sarcoidosis, pulmonary fibrosis, and
collagen vascular disorders.
As used herein, a subject “at risk for developing a complement-associated
disorder” (e.g., an AP-associated disorder or a CP-associated disorder) is a subject having
one or more (e.g., two, three, four, five, six, seven, or eight or more) risk factors for
developing the disorder. Risk factors will vary depending on the particular complement-
associated disorder, but are well known in the art of medicine. For example, risk factors
for developing DDD include, e.g., a predisposition to develop the condition, i.e., a family
history of the condition or a genetic predisposition to develop the condition such as, e.g.,
one or more mutations in the gene encoding complement factor H (CFH), complement
factor H-related 5 (CFHR5), and/or complement component C3 (C3). Such DDD-
associated mutations as well methods for determining whether a subject carries one or
more of the mutations are known in the art and described in, e.g., Licht et al. (2006)
Kidney Int 70:42-50; Zipfel et al. (2006) “The role of complement in
membranoproliferative glomerulonephritis,” In: Complement and Kidney Disease,
Springer, Berlin, pages 199-221; Ault et al. (1997) J Biol Chem 272:25168-75; Abrera-
Abeleda et al. (2006) J Med Genet 43:582-589; Poznansky et al. (1989) J Immunol
143:1254-1258; Jansen et al. (1998) Kidney Int 53:331-349; and Hegasy et al. (2002) Am
J Pathol 161:2027-2034. Thus, a human at risk for developing DDD can be, e.g., one
who has one or more DDD-associated mutations in the gene encoding CFH or one with a
family history of developing the disease.
Risk factors for TTP are well known in the art of medicine and include, e.g., a
predisposition to develop the condition, i.e., a family history of the condition or a genetic
predisposition to develop the condition such as, e.g., one or more mutations in the
ADAMTS13 gene. ADAMTS13 mutations associated with TTP are reviewed in detail
in, e.g., Levy et al. (2001) Nature 413:488-494; Kokame et al. (2004) Semin Hematol
41:34-40; Licht et al. (2004) Kidney Int 66:955-958; and Noris et al. (2005) J Am Soc
Nephrol 16:1177-1183. Risk factors for TTP also include those conditions or agents that
are known to precipitate TTP, or TTP recurrence, such as, but not limited to, cancer,
bacterial infections (e.g., Bartonella sp. infections), viral infections (e.g., HIV and
Kaposi's sarcoma virus), pregnancy, or surgery. See, e.g., Avery et al. (1998) Am J
Hematol 58:148-149 and Tsai, supra. TTP, or recurrence of TTP, has also been
associated with the use of certain therapeutic agents (drugs) including, e.g., ticlopidine,
FK506, corticosteroids, tamoxifen, or cyclosporin A (see, e.g., Gordon et al. (1997) Sem
in Hematol 34(2):140-147). Hereinafter, such manifestations of TTP may be, where
appropriate, referred to as, e.g., “infection-associated TTP,” “pregnancy-associated TTP,”
or “drug-associated TTP.” Thus, a human at risk for developing TTP can be, e.g., one
who has one or more TTP-associated mutations in the ADAMTS13 gene. A human at
risk for developing a recurrent form of TTP can be one, e.g., who has had TTP and has an
infection, is pregnant, or is undergoing surgery.
Risk factors for aHUS are well known in the art of medicine and include, e.g., a
predisposition to develop the condition, i.e., a family history of the condition or a genetic
predisposition to develop the condition such as, e.g., one or more mutations in
complement Factor H (CFH), membrane cofactor protein (MCP; CD46), C4b-binding
protein, complement factor B (CFB), or complement factor I (CFI). (See, e.g.,
Warwicker et al. (1998) Kidney Int 53:836-844; Richards et al. (2001) Am J Hum Genet
68:485-490; Caprioli et al. (2001) Am Soc Nephrol 12:297-307; Neuman et al. (2003) J
Med Genet 40:676-681; Richards et al. (2006) Proc Natl Acad Sci USA 100:12966-
12971; Fremeaux-Bacchi et al. (2005) J Am Soc Nephrol 17:2017-2025; Esparza-
Gordillo et al. (2005) Hum Mol Genet 14:703-712; Goicoechea de Jorge et al. (2007)
Proc Natl Acad Sci USA 104(1):240-245; Blom et al. (2008) J Immunol 180(9):6385-91;
and Fremeaux-Bacchi et al. (2004) J Medical Genet 41:e84). (See also Kavanagh et al.
(2006) supra.) Risk factors also include, e.g., infection with Streptococcus pneumoniae,
pregnancy, cancer, exposure to anti-cancer agents (e.g., quinine, mitomycin C, cisplatin,
or bleomycin), exposure to immunotherapeutic agents (e.g., cyclosporine, OKT3, or
interferon), exposure to anti-platelet agents (e.g., ticlopidine or clopidogrel), HIV
infection, transplantation, autoimmune disease, and combined methylmalonic aciduria
and homocystinuria (cblC). See, e.g., Constantinescu et al. (2004) Am J Kidney Dis
43:976-982; George (2003) Curr Opin Hematol 10:339-344; Gottschall et al. (1994) Am
J Hematol 47:283-289; Valavaara et al. (1985) Cancer 55:47-50; Miralbell et al. (1996) J
Clin Oncol 14:579-585; Dragon-Durey et al. (2005) J Am Soc Nephrol 16:555-63; and
Becker et al. (2004) Clin Infect Dis 39:S267-S275.
Risk factors for HELLP are well known in the art of medicine and include, e.g.,
multiparous pregnancy, maternal age over 25 years, Caucasian race, the occurrence of
preeclampsia or HELLP in a previous pregnancy, and a history of poor pregnancy
outcome. (See, e.g., Sahin et al. (2001) Nagoya Med J 44(3):145-152; Sullivan et al.
(1994) Am J Obstet Gynecol 171:940-943; and Padden et al. (1999) Am Fam Physician
60(3):829-836.) For example, a pregnant, Caucasian woman who developed
preeclampsia during a first pregnancy can be one at risk for developing HELLP
syndrome during, or following, a second pregnancy.
Risk factors for CAD are well known in the art of medicine and include, e.g.,
conditions or agents that are known to precipitate CAD, or CAD recurrence, such as, but
not limited to, neoplasms or infections (e.g., bacterial and viral infections). Conditions
known to be associated with the development of CAD include, e.g., HIV infection (and
AIDS), hepatitis C infection, Mycoplasma pneumonia infection, Epstein-Barr virus
(EBV) infection, cytomegalovirus (CMV) infection, rubella, or infectious mononucleosis.
Neoplasms associated with CAD include, without limitation, non-Hodgkin’s lymphoma.
Hereinafter, such manifestations of CAD may be, where appropriate, referred to as, e.g.,
“infection-associated CAD” or “neoplasm-associated CAD.” Thus, a human at risk for
developing CAD can be, e.g., one who has an HIV infection, rubella, or a lymphoma.
See also, e.g., Gertz (2006) Hematology 1:19-23; Horwitz et al. (1977) Blood 50:195-
202; Finland and Barnes (1958) AMA Arch Intern Med 191:462-466; Wang et al. (2004)
Acta Paediatr Taiwan 45:293-295; Michaux et al. (1998) Ann Hematol 76:201-204; and
Chang et al. (2004) Cancer Genet Cytogenet 152:66-69.
Risk factors for myasthenia gravis (MG) are well known in the art of medicine
and include, e.g., a predisposition to develop the condition, i.e., a family history of the
condition or a genetic predisposition to develop the condition such as familial MG. For
example, some HLA types are associated with an increased risk for developing MG.
Risk factors for MG include the ingestion or exposure to certain MG-inducing drugs such
as, but not limited to, D-penicillamine. See, e.g., Drosos et al. (1993) Clin Exp
Rheumatol 11(4):387-91 and Kaeser et al. (1984) Acta Neurol Scand Suppl 100:39-47.
As MG can be episodic, a subject who has previously experienced one or more symptoms
of having MG can be at risk for relapse. Thus, a human at risk for developing MG can
be, e.g., one who has a family history of MG and/or one who has ingested or been
administered an MG-inducing drug such as D-penicillamine.
As used herein, a subject “at risk for developing CAPS” is a subject having one or
more (e.g., two, three, four, five, six, seven, or eight or more) risk factors for developing
the disorder. Approximately 60% of the incidences of CAPS are preceded by a
precipitating event such as an infection. Thus, risk factors for CAPS include those
conditions known to precipitate CAPS such as, but not limited to, certain cancers (e.g.,
gastric cancer, ovarian cancer, lymphoma, leukemia, endometrial cancer,
adenocarcinoma, and lung cancer), pregnancy, puerperium, transplantation, primary APS,
rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), surgery (e.g., eye
surgery), and certain infections. Infections include, e.g., parvovirus B19 infection and
hepatitis C infection. Hereinafter, such manifestations of CAPS may be referred to as,
e.g., “cancer-associated CAPS,” “transplantation-associated CAPS,” “RA-associated
CAPS,” “infection-associated CAPS,” or “SLE-associated CAPS.” See, e.g., Soltész et
al. (2000) Haematologia (Budep) 30(4):303-311; Ideguchi et al. (2007) Lupus 16(1):59-
64; Manner et al. (2008) Am J Med Sci 335(5):394-7; Miesbach et al. (2006) Autoimmune
Rev 6(2):94-7; Gómez-Puerta et al. (2006) Autoimmune Rev 6(2):85-8; Gómez-Puerta et
al. (2006) Semin Arthritis Rheum 35(5):322-32; Kasamon et al. (2005) Haematologia
90(3):50-53; Atherson et al. (1998) Medicine 77(3):195-207; and Canpolat et al. (2008)
Clin Pediatr 47(6):593-7. Thus, a human at risk for developing CAPS can be, e.g., one
who has primary CAPS and/or a cancer that is known to be associated with CAPS.
From the above it will be clear that subjects “at risk for developing a complement-
associated disorder” (e.g., an AP-associated disorder or a CP-associated disorder) are not
all the subjects within a species of interest.
A subject “suspected of having a complement-associated disorder” (e.g., an
alternative complement pathway-associated disorder) is one having one or more (e.g.,
two, three, four, five, six, seven, eight, nine, or 10 or more) symptoms of the disease.
Symptoms of these disorders will vary depending on the particular disorder, but are
known to those of skill in the art of medicine. For example, symptoms of DDD include,
e.g.: one or both of hematuria and proteinuria; acute nephritic syndrome; drusen
development and/or visual impairment; acquired partial lipodystrophy and complications
thereof; and the presence of serum C3 nephritic factor (C3NeF), an autoantibody directed
against C3bBb, the C3 convertase of the alternative complement pathway. (See, e.g.,
Appel et al. (2005), supra). Symptoms of aHUS include, e.g., severe hypertension,
proteinuria, uremia, lethargy/fatigue, irritability, thrombocytopenia, microangiopathic
hemolytic anemia, and renal function impairment (e.g., acute renal failure). Symptoms of
TTP include, e.g., microthrombi, thrombocytopenia, fever, low ADAMTS13
metalloproteinase expression or activity, fluctuating central nervous system
abnormalities, renal failure, microangiopathic hemolytic anemia, bruising, purpura,
nausea and vomiting (e.g., resulting from ischemia in the GI tract or from central nervous
system involvement), chest pain due to cardiac ischemia, seizures, and muscle and joint
pain. Symptoms of RA can include, e.g., stiffness, swelling, fatigue, anemia, weight loss,
fever, and often, crippling pain. Some common symptoms of rheumatoid arthritis include
joint stiffness upon awakening that lasts an hour or longer; swelling in a specific finger or
wrist joints; swelling in the soft tissue around the joints; and swelling on both sides of the
joint. Swelling can occur with or without pain, and can worsen progressively or remain
the same for years before progressing. Symptoms of HELLP are known in the art of
medicine and include, e.g., malaise, epigastric pain, nausea, vomiting, headache, right
upper quadrant pain, hypertension, proteinuria, blurred vision, gastrointestinal bleeding,
hypoglycemia, paresthesia, elevated liver enzymes/liver damage, anemia (hemolytic
anemia), and low platelet count, any of which in combination with pregnancy or recent
pregnancy. (See, e.g., Tomsen (1995) Am J Obstet Gynecol 172:1876-1890; Sibai (1986)
Am J Obstet Gynecol 162:311-316; and Padden (1999), supra.) Symptoms of PNH
include, e.g., hemolytic anemia (a decreased number of red blood cells), hemoglobinuria
(the presence of hemoglobin in the urine particularly evident after sleeping), and
hemoglobinemia (the presence of hemoglobin in the bloodstream). PNH-afflicted
subjects are known to have paroxysms, which are defined here as incidences of dark-
colored urine, dysphagia, fatigue, erectile dysfunction, thrombosis, and recurrent
abdominal pain.
Symptoms of CAPS are well known in the art of medicine and include, e.g.,
histopathological evidence of multiple small vessel occlusions; the presence of
antiphospholipid antibodies (usually at high titer), vascular thromboses, severe multi-
organ dysfunction, malignant hypertension, acute respiratory distress syndrome,
disseminated intravascular coagulation, microangiopathic hemolytic anemia,
schistocytes, and thrombocytopenia. CAPS can be distinguished from APS in that
patients with CAPS generally present with severe multiple organ dysfunction or failure,
which is characterized by rapid, diffuse small vessel ischemia and thromboses
predominantly affecting the parenchymal organs. In contrast, APS is associated with
single venous or arterial medium-to-large blood vessel occlusions. Symptoms of MG
include, e.g., fatigability and a range of muscle weakness-related conditions including:
ptosis (of one or both eyes), diplopia, unstable gait, depressed or distorted facial
expressions, and difficulty chewing, talking, or swallowing. In some instances, a subject
can present with partial or complete paralysis of the respiratory muscles. Symptoms of
CAD include, e.g., pain, fever, pallor, anemia, reduced blood flow to the extremities (e.g.,
with gangrene), and renal disease or acute renal failure. In some embodiments, the
symptoms can occur following exposure to cold temperatures.
From the above it will be clear that subjects “suspected of having a complement-
associated disorder” are not all the subjects within a species of interest.
In some embodiments, the methods can include identifying the subject as one
having, suspected of having, or at risk for developing, a complement-associated disorder
in a subject. Suitable methods for identifying the subject are known in the art. For
example, suitable methods (e.g., sequencing techniques or use of microarrays) for
determining whether a human subject has a DDD-associated mutation in a CFH, CFHR5,
or C3 gene are described in, e.g., Licht et al. (2006) Kidney Int 70:42-50; Zipfel et al.
(2006), supra; Ault et al. (1997) J Biol Chem 272:25168-75; Abrera-Abeleda et al. (2006)
J Med Genet 43:582-589; Poznansky et al. (1989) J Immunol 143:1254-1258; Jansen et
al. (1998) Kidney Int 53:331-349; and Hegasy et al. (2002) Am J Pathol 161:2027-2034.
Methods for detecting the presence of characteristic DDD-associated electron-dense
deposits are also well known in the art. For example, a medical practitioner can obtain a
tissue biopsy from the kidney of a patient and subject the tissue to electron microscopy.
The medical practitioner may also examine the tissue by immunofluorescence to detect
the presence of C3 using an anti-C3 antibody and/or light microscopy to determine if
there is membranoproliferative glomerulonephritis. See, e.g., Walker et al. (2007) Mod
Pathol 20:605-616 and Habib et al. (1975) Kidney Int 7:204-215. In some embodiments,
the identification of a subject as one having DDD can include assaying a blood sample
for the presence of C3NeF. Methods for detecting the presence of C3NeF in blood are
described in, e.g., Schwertz et al. (2001) Pediatr Allergy Immunol 12:166-172.
In some embodiments, the medical practitioner can determine whether there is
increased complement activation in a subject’s serum. Indicia of increased complement
activation include, e.g., a reduction in CH50, a decrease in C3, and an increase in
C3dg/C3d. See, e.g., Appel et al. (2005), supra. In some embodiments, a medical
practitioner can examine a subject’s eye for evidence of the development of drusen
and/or other visual pathologies such as AMD. For example, a medical practitioner can
use tests of retinal function such as, but not limited to, dark adaptation,
electroretinography, and electrooculography (see, e.g., Colville et al. (2003) Am J Kidney
Dis 42:E2-5).
Methods for identifying a subject as one having, suspected of having, or at risk for
developing, TTP are also known in the art. For example, Miyata et al. describe a variety
of assays for measuring ADAMTS13 activity in a biological sample obtained from a
subject (Curr Opin Hematol (2007) 14(3):277-283). Suitable ADAMTS13 activity
assays, as well as phenotypically normal ranges of ADAMTS13 activity in a human
subject, are described in, e.g., Tsai (2003) J Am Soc Nephrol 14:1072-1081; Furlan et al.
(1998) New Engl J Med 339:1578-1584; Matsumoto et al. (2004) Blood 103:1305-1310;
and Mori et al. (2002) Transfusion 42:572-580. Methods for detecting the presence of
inhibitors of ADAMTS13 (e.g., autoantibodies that bind to ADAMTS13) in a biological
sample obtained from a subject are known in the art. For example, a serum sample from
a patient can be mixed with a serum sample from a subject without TTP to detect the
presence of anti-ADAMTS13 antibodies. In another example, immunoglobulin protein
can be isolated from patient serum and used in in vitro ADAMTS13 activity assays to
determine if an anti-ADAMTS13 antibody is present. See, e.g., Dong et al. (2008) Am J
Hematol 83(10):815-817. In some embodiments, risk of developing TTP can be
determined by assessing whether a patient carries one or more mutations in the
ADAMTS13 gene. Suitable methods (e.g., nucleic acid arrays or DNA sequencing) for
detecting a mutation in the ADAMTS13 gene are known in the art and described in, e.g.,
Levy et al., supra; Kokame et al., supra; Licht et al., supra; and Noris et al., supra.
In addition, methods for identifying a subject as one having, suspected of having,
or at risk for developing aHUS are known in the art. For example, laboratory tests can be
performed to determine whether a human subject has thrombocytopenia,
microangiopathic hemolytic anemia, or acute renal insufficiency. Thrombocytopenia can
be diagnosed by a medical professional as one or more of: (i) a platelet count that is less
than 150,000/mm (e.g., less than 60,000/mm ); (ii) a reduction in platelet survival time,
reflecting enhanced platelet disruption in the circulation; and (iii) giant platelets observed
in a peripheral smear, which is consistent with secondary activation of
thrombocytopoiesis. Microangiopathic hemolytic anemia can be diagnosed by a medical
professional as one or more of: (i) hemoglobin concentrations that are less than 10 mg/dL
(e.g., less than 6.5 mg/dL); (ii) increased serum lactate dehydrogenase (LDH)
concentrations (>460 U/L); (iii) hyperbilirubinemia, reticulocytosis, circulating free
hemoglobin, and low or undetectable haptoglobin concentrations; and (iv) the detection
of fragmented red blood cells (schistocytes) with the typical aspect of burr or helmet cells
in the peripheral smear together with a negative Coombs test. (See, e.g., Kaplan et al.
(1992) “Hemolytic Uremic Syndrome and Thrombotic Thrombocytopenic Purpura,”
Informa Health Care (ISBN 0824786637) and Zipfel (2005) “Complement and Kidney
Disease,” Springer (ISBN 3764371668).)
A subject can also be identified as having aHUS by evaluating blood
concentrations of C3 and C4 as a measure of complement activation or dysregulation. In
addition, as is clear from the foregoing disclosure, a subject can be identified as having
genetic aHUS by identifying the subject as harboring one or more mutations in a gene
associated with aHUS such as CFI, CFB, CFH, or MCP (supra). Suitable methods for
detecting a mutation in a gene include, e.g., DNA sequencing and nucleic acid array
techniques. (See, e.g., Breslin et al. (2006) Clin Am Soc Nephrol 1:88-99 and
Goicoechea de Jorge et al. (2007) Proc Natl Acad Sci USA 104:240-245.)
Methods for diagnosing a subject as one having, suspected of having, or at risk for
developing, RA are also known in the art of medicine. For example, a medical
practitioner can examine the small joints of the hands, wrists, feet, and knees to identify
inflammation in a symmetrical distribution. The practitioner may also perform a number
of tests to exclude other types of joint inflammation including arthritis due to infection or
gout. In addition, rheumatoid arthritis is associated with abnormal antibodies in the
blood circulation of afflicted patients. For example, an antibody referred to as
“rheumatoid factor” is found in approximately 80% of patients. In another example, anti-
citrulline antibody is present in many patients with rheumatoid arthritis and thus it is
useful in the diagnosis of rheumatoid arthritis when evaluating patients with unexplained
joint inflammation. See, e.g., van Venrooij et al. (2008) Ann NY Acad Sci 1143:268-285
and Habib et al. (2007) Immunol Invest 37(8):849-857. Another antibody called “the
antinuclear antibody” (ANA) is also frequently found in patients with rheumatoid
arthritis. See, e.g., Benucci et al. (2008) Clin Rheumatol 27(1):91-95; Julkunen et al.
(2005) Scan J Rheumatol 34(2):122-124; and Miyawaki et al. (2005) J Rheumatol
32(8):1488-1494.
A medical practitioner can also examine red blood cell sedimentation rate to help
in diagnosing RA in a subject. The sedimentation rate can be used as a crude measure of
the inflammation of the joints and is usually faster during disease flares and slower
during remissions. Another blood test that can be used to measure the degree of
inflammation present in the body is the C-reactive protein.
Furthermore, joint x-rays can also be used to diagnose a subject as having
rheumatoid arthritis. As RA progresses, the x-rays can show bony erosions typical of
rheumatoid arthritis in the joints. Joint x-rays can also be helpful in monitoring the
progression of disease and joint damage over time. Bone scanning, a radioactive test
procedure, can demonstrate the inflamed joints.
Methods for identifying a subject as one having, suspected of having, or at risk for
developing, HELLP are known in the art of medicine. Hallmark symptoms of HELLP
syndrome include hemolysis, elevated liver enzymes, and low platelet count. Thus, a
variety of tests can be performed on blood from a subject to determine the level of
hemolysis, the concentration of any of a variety of liver enzymes, and the platelet level in
the blood. For example, the presence of schistocytes and/or elevated free hemoglobin,
bilirubin, or serum LDH levels is an indication of intravascular hemolysis. Routine
laboratory testing can be used to determine the platelet count as well as the blood level of
liver enzymes such as, but not limited to, aspartate aminotransferase (AST) and alanine
transaminase (ALT). Suitable methods for identifying a subject as having HELLP
syndrome are also described in, e.g., Sibai et al. (1993), supra; Martin et al. (1990),
supra; Padden (1999), supra; and Gleicher and Buttino (1998) “Principles & Practice of
Medical Therapy in Pregnancy,” 3 Edition, Appleton & Lange (ISBN 083857677X).
Methods for identifying a subject as having, suspected of having, or at risk for
developing PNH are known in the art of medicine. The laboratory evaluation of
hemolysis normally includes hematologic, serologic, and urine tests. Hematologic tests
include an examination of the blood smear for morphologic abnormalities of red blood
cells (RBC), and the measurement of the reticulocyte count in whole blood (to determine
bone marrow compensation for RBC loss). Serologic tests include lactate dehydrogenase
(LDH; widely performed), and free hemoglobin (not widely performed) as a direct
measure of hemolysis. LDH levels, in the absence of tissue damage in other organs, can
be useful in the diagnosis and monitoring of patients with hemolysis. Other serologic
tests include bilirubin or haptoglobin, as measures of breakdown products or scavenging
reserve, respectively. Urine tests include bilirubin, hemosiderin, and free hemoglobin,
and are generally used to measure gross severity of hemolysis and for differentiation of
intravascular vs. extravascular etiologies of hemolysis rather than routine monitoring of
hemolysis. Further, RBC numbers, RBC hemoglobin, and hematocrit are generally
performed to determine the extent of any accompanying anemia.
Suitable methods for identifying the subject as having MG can be qualitative or
quantitative. For example, a medical practitioner can examine the status of a subject’s
motor functions using a physical examination. Other qualitative tests include, e.g., an
ice-pack test, wherein an ice pack is applied to a subject’s eye (in a case of ocular MG) to
determine if one or more symptoms (e.g., ptosis) are improved by cold (see, e.g., Sethi et
al. (1987) Neurology 37(8):1383-1385). Other tests include, e.g., the “sleep test,” which
is based on the tendency for MG symptoms to improve following rest. In some
embodiments, quantitative or semi-quantitative tests can be employed by a medical
practitioner to determine if a subject has, is suspected of having, or is at risk for
developing, MG. For example, a medical practitioner can perform a test to detect the
presence or amount of MG-associated autoantibodies in a serum sample obtained from a
subject. MG-associated autoantibodies include, e.g., antibodies that bind to, and
modulate the activity of, acetylcholine receptor (AChR), muscle-specific receptor
tyrosine kinase (MuSK), and/or striational protein. (See, e.g., Conti-Fine et al. (2006),
supra). Suitable assays useful for detecting the presence or amount of an MG-associated
antibody in a biological sample are known in the art and described in, e.g., Hoch et al.
(2001) Nat Med 7:365-368; Vincent et al. (2004) Semin Neurol 24:125-133; McConville
et al. (2004) Ann Neurol 55:580-584; Boneva et al. (2006) J Neuroimmunol 177:119-131;
and Romi et al. (2005) Arch Neurol 62:442-446.
Additional methods for diagnosing MG include, e.g., electrodiagnostic tests (e.g.,
single-fiber electromyography) and the Tensilon (or edrophonium) test, which involves
injecting a subject with the acetylcholinesterase inhibitor edrophonium and monitoring
the subject for an improvement in one or more symptoms. See, e.g., Pascuzzi (2003)
Semin Neurol 23(1):83-88; Katirji et al. (2002) Neurol Clin 20:557-586; and “Guidelines
in Electrodiagnostic Medicine. American Association of Electrodiagnostic Medicine,”
Muscle Nerve 15:229-253.
A subject can be identified as having CAD using an assay to detect the presence
or amount (titer) of agglutinating autoantibodies that bind to the I antigen on red blood
cells. The antibodies can be monoclonal (e.g., monoclonal IgM or IgA) or polyclonal.
Suitable methods for detecting these antibodies are described in, e.g., Christenson and
Dacie (1957) Br J Haematol 3:153-164 and Christenson et al. (1957) Br J Haematol
3:262-275. A subject can also be diagnosed as having CAD using one or more of a
complete blood cell count (CBC), urinalysis, biochemical studies, and a Coombs test to
test for hemolysis in blood. For example, biochemical studies can be used to detect
elevated lactase dehydrogenase levels, elevated unconjugated bilirubin levels, low
haptoglobin levels, and/or the presence of free plasma hemoglobin, all of which can be
indicative of acute hemolysis. Other tests that can be used to detect CAD include
detecting complement levels in the serum. For example, due to consumption during the
acute phase of hemolysis, measured plasma complement levels (e.g., C2, C3, and C4) are
decreased in CAD.
Typical (or infectious) HUS, unlike aHUS, is often identifiable by a prodrome of
diarrhea, often bloody in nature, which results from infection with a shiga-toxin
producing microorganism. A subject can be identified as having typical HUS when shiga
toxins and/or serum antibodies against shiga toxin or LPS are detected in the stool of an
individual. Suitable methods for testing for anti-shiga toxin antibodies or LPS are known
in the art. For example, methods for detecting antibodies that bind to shiga toxins Stx1
and Stx2 or LPS in humans are described in, e.g., Ludwig et al. (2001) J Clin Microbiol
39(6):2272-2279.
In some embodiments, a high concentration antibody solution described herein
can be administered to a subject as a monotherapy. Alternatively, as described above, the
solution can be administered to a subject as a combination therapy with another
treatment, e.g., another treatment for DDD, TTP, wet or dry AMD, aHUS, PNH, RA,
HELLP, MG, CAD, CAPS, tHUS, or any other complement-associated disorder known
in the art or described herein. For example, the combination therapy can include
administering to the subject (e.g., a human patient) one or more additional agents (e.g.,
anti-coagulants, anti-hypertensives, or corticosteroids) that provide a therapeutic benefit
to the subject who has, or is at risk of developing, DDD. In some embodiments, the
combination therapy can include administering to the subject (e.g., a human patient) by
way of a high concentration antibody solution an anti-C5 antibody and an
immunosuppressive agent such as Remicade® for use in treating RA. In some
embodiments, a high concentration antibody solution and the one or more additional
active agents are administered at the same time. In other embodiments, a high
concentration antibody solution is administered first in time and the one or more
additional active agents are administered second in time. In some embodiments, the one
or more additional active agents are administered first in time and high concentration
antibody solution is administered second in time.
An anti-C5 antibody described herein can replace or augment a previously or
currently administered therapy. For example, upon treating with an anti-C5 antibody,
administration of the one or more additional active agents can cease or diminish, e.g., be
administered at lower levels. In some embodiments, administration of the previous
therapy can be maintained. In some embodiments, a previous therapy will be maintained
until the level of the anti-C5 antibody reaches a level sufficient to provide a therapeutic
effect. The two therapies can be administered in combination.
Monitoring a subject (e.g., a human patient) for an improvement in a
complement-associated disorder, as defined herein, means evaluating the subject for a
change in a disease parameter, e.g., an improvement in one or more symptoms of the
disease (e.g., an improvement in one or more symptoms of a pulmonary disorder). Such
symptoms include any of the symptoms of complement-associated disorders known in
the art and/or described herein. In some embodiments, the evaluation is performed at
least 1 hour, e.g., at least 2, 4, 6, 8, 12, 24, or 48 hours, or at least 1 day, 2 days, 4 days,
days, 13 days, 20 days or more, or at least 1 week, 2 weeks, 4 weeks, 10 weeks, 13
weeks, 20 weeks or more, after an administration. The subject can be evaluated in one or
more of the following periods: prior to beginning of treatment; during the treatment; or
after one or more elements of the treatment have been administered. Evaluating can
include evaluating the need for further treatment, e.g., evaluating whether a dosage,
frequency of administration, or duration of treatment should be altered. It can also
include evaluating the need to add or drop a selected therapeutic modality, e.g., adding or
dropping any of the treatments for any of the complement-associated disorders described
herein.
Therapeutic Kits
The disclosure also features therapeutic kits containing, among other things, one
or more of the high concentration solutions described herein. The therapeutic kits can
contain, e.g., a suitable means for delivery of one or more solutions to a patient in need
thereof, e.g., a patient afflicted with, suspected of having, or at risk for developing, a
complement-associated disorder such as AMD (e.g., wet or dry AMD), a diabetes-
associated ocular disorder, central retinal vein occlusion, RA, asthma, or any of the
additional complement-associated disorders described herein. In some embodiments, the
means is suitable for invasive (e.g., intravascular (e.g., intravenous), subcutaneous,
intraarticular, intraocular, intravitreal, or intramuscular) delivery of the solution to a
patient. In some embodiments, the means is suitable for subcutaneous delivery of the
antibody or antigen-binding fragment thereof to the subject. For example, the means can
be a syringe or an osmotic pump. In some embodiments, the solution contained in the kit
can be formulated as an eye drop, the means being an eye dropper. In some
embodiments, the kit contains a means that is pre-loaded with the solution to be
administered. For example, a therapeutic kit can contain a syringe pre-filled with an
aqueous solution (e.g., a pen device containing the solution) described herein or the kit
can contain a pump (e.g., an osmotic pump) and one or more disposable cassettes
configured for use with the pump, the cassettes pre-filled with an aqueous solution
described herein. In another example, the kit can contain a transscleral or implantable
delivery device (e.g., a plug) that is pre-filled with (or otherwise contains) a high
concentration solution described herein.
In some embodiments, the means for delivering the high concentration solution is
a pen device for drug delivery.
In some embodiments, the means can be suitable for administration of a high
concentration antibody solution described herein to the eye of a patient afflicted with a
complement-associated disorder of the eye such as AMD. The means can be, e.g., a
syringe, a transscleral patch, or even a contact lens containing or soaked in the solution.
The means can, in some embodiments, be an eye dropper, wherein the solution is
formulated for such administration. The means can also be, e.g., a contact lens case in
embodiments in which, e.g., the solution is formulated as part of a contact lens hydrating,
cleaning, or soaking solution. Such therapeutic kits can also include, e.g., one or more
additional therapeutic agents for use in treating complement-associated disorder of the
eye. The therapeutic agents can be, e.g., bevacizumab or the Fab fragment of
bevacizumab, ranibizumab, both sold by Roche Pharmaceuticals, Inc., pegaptanib sodium
(Mucogen®; Pfizer, Inc.), and verteporfin (Visudyne®; Novartis). Such a kit can also,
optionally, include instructions for administering a solution described herein to a patient.
In some embodiments, the means can be suitable for intraarticular administration
of a solution described herein to a patient in need thereof, e.g., a patient afflicted with
complement-associated disorder affecting the joints such as RA. The means can be, e.g.,
a syringe or a double-barreled syringe. See, e.g., U.S. Patent Nos. 6,065,645 and
6,698,622. A double-barreled syringe is useful for administering to a joint two different
compositions with only one injection. Two separate syringes may be incorporated for use
in administering the therapeutic while drawing off knee fluid for analysis (tapping) in a
push-pull fashion. Additional therapeutic agents that can be administered with the high
concentration antibody solutions described herein in conjunction with the double-barreled
syringe, or which can otherwise be generally included in the therapeutic kits described
herein, include, e.g., NSAIDs, corticosteroids, methotrexate, hydroxychloroquine, anti-
TNF agents such as etanercept and infliximab, a B cell depleting agent such as rituximab,
an interleukin-1 antagonist, or a T cell costimulatory blocking agent such as abatacept.
Such a kit can also, optionally, include instructions for administering a solution described
herein to a patient.
In some embodiments, the means is suitable for intrapulmonary delivery of the
solutions to a subject, e.g., for use in treatment or prevention of a complement-associated
pulmonary disorder such as, but not limited to, COPD or asthma. Accordingly, the
means can be, e.g., an oral or nasal inhaler (see above). The inhaler can be, e.g., a
metered dose inhaler (MDI) or a nebulizer. Such a kit can also, optionally, include
instructions for administering (e.g., self-administration of) the anti-C5a antibody or
antigen-binding fragment thereof to a subject. The therapeutic kits are designed for use
in treating or preventing a complement-associated pulmonary disorder and can include
one or more additional active agents including, but not limited to, another antibody
therapeutic (e.g., an anti-IgE antibody, an anti-IL-4 antibody, or an anti-IL-5 antibody), a
small molecule anti-IgE inhibitor (e.g., montelukast sodium), a sympathomimetic (e.g.,
albuterol), an antibiotic (e.g., tobramycin), a deoxyribonuclease (e.g., Pulmozyme®), an
anticholinergic drug (e.g., ipratropium bromide), a corticosteroid (e.g., dexamethasone), a
-adrenoreceptor agonist, a leukotriene inhibitor (e.g., zileuton), a 5-lipoxygenase
inhibitor, a phosphodiesterase (PDE) inhibitor, a CD23 antagonist, an IL-13 antagonist, a
cytokine release inhibitor, a histamine H1 receptor antagonist, an anti-histamine, an anti-
inflammatory agent (e.g., cromolyn sodium or any other anti-inflammatory agent known
in the art or described herein), or a histamine release inhibitor.
The following examples are intended to illustrate, not limit, the invention.
Examples
Example 1. Process for Formulating and Concentrating Solutions of Eculizumab
Several high concentration formulations of the anti-C5 antibody, eculizumab,
were prepared as follows.
Materials and Methods
Instrumentation
The formulation process utilized a Millipore Pellicon® XL tangential flow filter
(TFF), Biomax™ 50K Polyethersulfone membrane having a 50 cm surface area. Also
used was a Millipore Sterivex 0.22 micron filter unit (catalogue number SVGV010RS).
Reagents
The formulation process also utilized a number of buffers as follows: (a)
Formulation Buffer: 20 mM histidine, 50 mM serine, 2.5% sorbitol, 1.5% mannitol, pH
7.4; (b) Phosphate Buffer: 20 mM sodium phosphate, 80 mM NaCl, pH 6.4; (c)
Regeneration Buffer: 0.5 M sodium hydroxide; and (d) Storage Buffer: 0.1 M sodium
hydroxide. Also used was a buffer containing eculizumab in the above-described
Phosphate Buffer.
Formulation
The tangential flow filter (TFF) was prepared by washing from it the storage
buffer using 500 mL of deionized water at a feed flow rate (FR) of 50 mL/minute. The
permeate outlet was left open during this process. The TFF was equilibrated using 100
mL of the Phosphate Buffer at a feed flow rate of 50 mL/minute with the permeate outlet
open. All of these steps were performed at room temperature.
For all subsequent steps, the pressure was maintained at 40 psi by adjusting the
permeate outlet flow rate with a clamp. Eculizumab, initially present at approximately 10
mg/mL in Phosphate Buffer (as described above), was concentrated to 50 mg/mL (for the
first run and 40 mg/ml for the second run) at a feed flow rate of 50 mL/minute. The
concentrated solution was then diafiltered with six equivalent volumes, for the first run,
or four equivalent volumes, for the second run, of the Formulation Buffer. Concentration
was continued by gradually reducing the feed flow rate to maintain column pressure at 40
psi, until the feed flow rate reached 2 mL/minute.
Recovery Method
To recover the concentrated eculizumab solution from the column, the permeate
outlet was closed and the antibody allowed to circulate for five minutes. The TFF was
then flushed out with air, while the permeate outlet was closed. The volume of the
recovered solution was measured and recorded. A sample of the high concentration
antibody solution was filtered through a 0.22 micron Sterivex filter, diluted 1:100 in
formulation buffer. The concentration of the antibody in the diluted sample was
determined by measuring A and using an extinction coefficient of 1.46.
Results
The first run process, described above, required 5.3 hours to complete. A detailed
description of the physical and chemical parameters of the TFF flow-through (permeate)
and retained (retentate) fractions by time is shown in Table 1.
Table 1.
Time Time Pressure Feed Permeate Retentate Permeate Permeate Est. Details
(min) (hrs) (psi) FR FR Volume Volume Conc. Retentate
(ml/min) (ml/min) (ml) (ml) (mg/ml) Conc.
(mg/ml)
0 0.0 40 50 0.0 550 0 0.05 10.3
24 0.4 40 50 7.5 370 180 0.05 15
52 0.9 40 50 6.1 200 350 0.05 29
68 1.1 40 50 4.7 120 425 0.05 46 Diafiltr.
104 1.7 40 50 3.9 120 140 0.05 47 Diafiltr.
118 2.0 40 50 3.6 120 190 0.05 47 Diafiltr.
126 2.1 40 50 3.8 120 220 0.05 47 Diafiltr.
146 2.4 40 50 4.0 120 300 0.05 47 Diafiltr.
226 3.8 40 50 3.8 120 600 0.05 47 Diafiltr.
241 4.0 40 47 2.5 70 38 0.05 81
247 4.1 40 41 1.7 60 48 0.05 95
254 4.2 40 35 1.0 53 55 0.05 107
261 4.4 40 27 0.7 48 60 0.05 116
275 4.6 40 15 0.7 38 70 0.05 150
294 4.9 40 6 0.3 33 75 0.05 172
318 5.3 35 2 0.2 28 80 0.05 186
x : 5.7 g at 100% purity; actual measured retentate concentration.
x : Recovered 98% at 100% purity; actual measured retentate concentration.
x : Recovered 75% at 100% purity; actual measured retentate concentration.
“Diafiltr.” refers to diafiltration.
“FR” refers to flow rate.
The “conc.” refers to the concentration of eculizumab in each respective fraction
(permeate or retentate).
The initial concentration of eculizumab in the Phosphate Buffer was approximately 10
mg/mL (10.3 mg/mL). Following buffer exchange and diafiltration, the concentration of
the solution was initially increased to 116 mg/mL with 98% recovery (100% purity) of
the antibody starting material. Further concentration to 186 mg/mL resulted in a 75%
recovery (at 100% purity) of the antibody starting material.
The second run process, described above, required 8.8 hours to complete. A
detailed description of the physical and chemical parameters of the TFF flow-through
(permeate) and retained (retentate) fractions by time is shown in Table 2.
Table 2.
Time Time Pressure Feed Permeate Retentate Permeate Permeate Est. Details
(min) (hrs) (psi) FR FR Volume Volume Conc. Retentate
(ml/min) (ml/min) (ml) (ml) (mg/ml) Conc.
(mg/ml)
0 0.0 40 50 0.0 620 0 0.06 8
0.2 40 50 7.5 545 75 0.06 10
33 0.6 40 50 6.5 395 225 0.06 14
50 0.8 40 50 5.6 300 320 0.06 18
70 1.2 40 50 4.8 205 415 0.06 26
85 1.4 40 50 3.7 150 470 0.06 35
137 2.3 40 50 3.8 150 200 0.06 37 Diafiltr.
237 4.0 40 50 3.0 150 500 0.06 37 Diafiltr.
303 5.1 40 50 3.0 150 700 0.06 37 Diafiltr.
367 6.1 40 50 3.1 150 900 0.06 37 Diafiltr.
377 6.3 40 50 2.6 119 26 0.06 45
382 6.4 40 50 2.8 105 40 0.06 51
388 6.5 40 50 2.0 93 52 0.06 58
397 6.6 40 50 1.8 77 68 0.06 70
410 6.8 40 50 1.1 63 82 0.06 86
422 7.0 40 40 0.8 53 92 0.06 101
431 7.2 40 30 0.7 47 98 0.06 114
444 7.4 40 21 0.5 41 104 0.06 131
451 7.5 40 16 0.3 39 106 0.06 138
456 7.6 40 15 0.4 37 108 0.06 145
468 7.8 40 9 0.2 35 110 0.06 151
489 8.2 40 5 0.1 33 112 0.06 163
527 8.8 40 2 0.2 25 120 0.06 208
x : 5.37 g at 100% purity; actual measured retentate concentration.
x : Recovered 98% at 100% purity; actual measured retentate concentration.
x : Recovered 85% at 100% purity; actual measured retentate concentration.
“Diafiltr.” refers to diafiltration.
“FR” refers to flow rate.
The “conc.” refers to the concentration of eculizumab in each respective fraction
(permeate or retentate).
The initial concentration of eculizumab in the Phosphate Buffer was approximately 10
mg/mL (8.4 mg/mL). Following buffer exchange and diafiltration, the concentration of
the solution was initially increased to 151 mg/mL with 98% recovery (100% purity as
determined by SEC-HPLC) of the antibody starting material. Further concentration to
208 mg/mL resulted in an 85% recovery (at 100% purity) of the antibody starting
material.
From the results of the first and second run, diafiltering at 40 mg/mL not only
improved the final recovery by 10%, but also allowed for the production of high
concentration solution having an even higher final concentration of eculizumab (208
mg/mL).
Example 2. Production of Additional Exemplary Eculizumab Formulations
Two additional formulations were developed and evaluated as to their ability to
support high concentration solutions of eculizumab. One of the formulations was a
histidine/serine/sorbitol/mannitol (HSSM) formulation and the other, a
histidine/trehalose/Tween®-20 (HTT) formulation (see below). Two concentrations of
eculizumab, approximately 30 mg/mL and approximately 100 mg/mL, were evaluated in
each formulation buffer. A third, phosphate-based buffer was also evaluated. A detailed
description of the five different antibody solutions (solutions I to V) evaluated is set forth
below.
I. 105 mg/mL eculizumab;
mM histidine HCl;
50 mM serine;
3% sorbitol; and
1.5% mannitol; at pH 7.0.
II. 30 mg/mL eculizumab;
mM histidine HCl;
50 mM serine;
3% sorbitol; and
1.5% mannitol; at pH 7.0.
III. 105 mg/mL eculizumab;
mM histidine HCl;
% alpha-trehalose dihydrate; and
0.01% polysorbate 20; at pH 7.0.
IV. 30.2 mg/mL eculizumab;
10 mM histidine HCl;
% alpha-trehalose dehydrate; and
0.01% polysorbate 20; at pH 7.0.
V. 10 mg/mL eculizumab;
mM sodium phosphate;
150 mM sodium chloride; and
0.02% polysorbate 80; at pH 7.0.
Solutions I-V were prepared by way of concentration and formulation as
described above in Example 1, or with only routine and minor modifications to the
procedures. Briefly, to prepare solutions I and II, a 10 mg/mL solution of eculizumab in
a phosphate-based buffer was concentrated to 30 mg/mL using a TFF. Next, the 30
mg/mL concentrate was subjected to six rounds of diafiltration (as described above in
Example 1) into the HSSM formulation (20 mM histidine, 50 mM serine, 3% sorbitol,
and 1.5% mannitol, at pH 7.0) to thereby produce solution II. A portion of solution II
was further concentrated as described in Example 1 to 100 mg/mL, to produce solution I
(the retentate).
Solution IV was prepared by diafiltration of the 30 mg/mL, phosphate-based
eculizumab solution in the HTT buffer (10 mM histidine HCl; 10% alpha-trehalose
dihydrate and 0.01% polysorbate 20, at pH 7.0), followed by the addition of Tween 20 to
0.01%. To prepare solution III, the 30 mg/mL, phosphate-based eculizumab solution was
diafiltered in HTT buffer and then further concentrated using the TFF as described in
Example 1. Tween 20 was added to the retentate to a concentration of 0.01%. A flow
chart depicting the steps for formulation of the five solutions is shown in Fig. 1. Each of
the solutions was passed through a 0.22 M filter.
Example 3. Stability of an Anti-C5 Antibody Formulated at High Concentration
A series of experiments was performed to evaluate the structural and functional
stability of eculizumab formulated at high concentrations in aqueous solution (as
prepared in Example 2). Sample aliquots of 2 mL were stored at -20°C, 2-8°C, and 37°C,
and then evaluated at specified time intervals (e.g., one month, two months, three months,
six months, nine months, 12 months, 18 months, and 24 months). The solutions were
subjected to a number of chemical evaluations: appearance (visual inspection),
osmolality, concentration (using a UV spectrophotometer), purity (by size exclusion
chromatography-HPLC), isoelectric focusing (IEF), and sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE). The functional stability of the
antibody in each solution was tested using a human C5-binding assay. The results of
each of the evaluations are provided below in the following tables (Roman numerals I to
V in the tables correspond to the five named solutions above).
Methods and Results
A. Appearance (Visual color, clarity, particles)
The appearance of each solution (under the varied storage conditions) was
evaluated visually by observation of the vial against both a white and a black
background. The test was performed at the intervals recited in the following tables for
samples maintained at 2-8°C, -20°C, and 37°C. All solutions stored at 2-8°C were found
to be clear, colorless, and particulate free even after 24 months of storage.
All solutions stored at -20°C were found to be clear, colorless, and particulate free
at one month of storage. Solution V was not tested beyond 1 month, but solutions I to IV
were clear, colorless, and particulate free for up to 6 months of storage. At 12 months,
solution II contained small white particles. At 24 months solution I also contained small
white particles. Solutions III and IV remained clear, colorless, and particulate free for at
least 24 months.
All solutions stored at 37°C were found to be clear, colorless, and particulate free
for at least 1 month. After two months of storage at 37°C, solutions I and III appeared
pale yellow in color. After three months of storage at 37°C, solutions I, II, III, and IV all
appeared pale yellow in color and remained unchanged through six months.
B. Osmolality
The osmolality of each solution was measured using freezing point depression.
The test was performed at the time intervals recited in the tables below for samples stored
at 2-8°C, -20°C, and 37°C. Samples were tested in triplicate and the value reported
herein is the mean of the three results.
All solutions stored at 2-8°C had initial (T ) osmolalities ranging from 299 to 365
mOsm/kg. After 24 months of storage at 2-8°C, the osmolality for each solution showed
slight fluctuations, which were within the error of the method. The measured
osmolalities for solutions I, II, and IV stored at 2-8°C remained within ± 15% of the
initial measured osmolality, which is typically the osmolality specification for solutions
in the earliest stage of development.
All solutions stored at -20°C had initially-measured osmolalities ranging from
299 to 365 mOsm/kg. The osmolality for each solution stored up to 24 months at -
°C showed slight fluctuations, which are within the error of the method. The
osmolalities for all solutions remained within ± 15% of the initially-measured
osmolalities.
All solutions stored at 37°C had initial (T ) osmolalities ranging from 299 to 365
mOsm/kg. The osmolality of solutions I, II, and IV showed slight fluctuations during the
first six months measurement, all of which were within the error of the method. The
osmolalities for all solutions remained within ± 15% of the initial osmolality. Solution
III, however, had a measured osmolality of 863 mOsm/kg at 6 months, well above ± 15%
of the initial osmolality. While the disclosure is not bound by any particular theory or
mechanism of action, it is believed that the solution by six months storage at 37°C had
undergone significant degradation, which resulted in an aberrant measurement at this
time point.
C. Protein Concentration
Absorbance at 280 nm was used to determine the protein concentration in each
test sample using an extinction coefficient of 1.46. The test sample was diluted to give an
absorbance reading in the linear range of the assay (0.2 to 1.0 absorbance units). The
absorbance of triplicate samples was measured by one operator, and then repeated
independently by a second operator. The value reported is determined from the
absorbance mean of the six measurements and the applied extinction coefficient.
D. Purity by HPLC Gel Permeation
The relative percents of monomeric IgG, aggregate, and fragments of the anti-C5
antibody were determined using SEC-HPLC (also referred to as gel permeation (GP)-
HPLC). Test samples were injected onto a TSKgel G3000 SWXL column (Sigma-
Aldrich) equilibrated with phosphate buffered saline (PBS), pH 7.0. The isocratic elution
of the proteins is accomplished with a 20 minute run using the PBS, pH 7.0, at a flow rate
of 1.0 mL/minute. Protein peaks were monitored by spectrophotometry at a wavelength
of 214 nm and the percent purity of the monomeric IgG is expressed as a percentage of
the total integrated peak area. Detection of the larger mass multimers was by observation
of peaks eluting prior to the monomer peak. A measurement was made at each of the
intervals recited in the following tables for samples stored at 2-8°C, -20°C, and 37°C.
All solutions stored at 2-8°C had an initially-measured (T ) purity of 99.1%
monomer or greater. The purity for most of the solutions at up to six months of storage at
2-8°C showed slight fluctuations equal to the variability of the method throughout the
study. The purity for all solutions remained equal to or greater than 98.0% for up to 24
months of storage. The stability profile of solution II (in the so-called “HSSM”
formulation) most closely resembled the profile of the control (Solution IV – 10 mg/mL
in 10 mM sodium phosphate, 150 mM sodium chloride, 0.02% polysorbate 80, pH 7.0).
All solutions stored at -20°C had a purity of 99.1% monomer or greater at T=0.
From T=0 through T=24 months, the purity for most of the solutions showed slight
fluctuations equal to the variability of the method throughout the study. The purity of
Solutions 1 and 2 remained virtually unchanged through T=24 months. The purity of
Solution 3 remained above 98.7% through 12 months, and then dropped to 97.3% at 24
months. Solution 4 had a purity of ≥ 98.5% through 24 months. Solutions 1, 2, and 4 all
remained at above 98.0% through 24 months. Solution 3 remained above 95.0% through
24 months.
All solutions stored at 37°C had a purity of 99.1% monomer or greater at T=0.
Beginning at the 1 month time point, significant increases in aggregate and fragments
were seen in all solutions. The purity of solutions I, II, and III remained above 90.5%
through six months. Solution IV had a purity of ≥ 97.4% through six months.
Solutions III and IV contained detectable amounts of fragment at T (0.3 and
0.7%, respectively) which then increased in all storage conditions during the study.
E. SDS-PAGE (Non-Reduced Coomassie)
Samples of the stored solutions were denatured by heating in the presence of
sodium dodecyl sulfate (SDS). The polypeptides present in the samples were separated
according to molecular size by electrophoresis through a gradient 4% to 20% w/v
pre-cast Tris-glycine SDS-polyacrylamide gel. The proteins within the gel were
visualized by staining the gel with Coomassie Blue.
Polypeptide bands within the gels were quantified using laser densitometry. The
limit of quantitation of the staining procedure was approximately 0.08 g/polypeptide
band. That is, when an 8 g test sample was applied, the limit of quantitation of a single
discrete impurity is equivalent to approximately 1.0% of the total protein. The
reproducibility of the method expressed as a coefficient of variation is approximately
1.8%. The test was performed at the intervals in the following tables (below) for samples
stored at 2-8°C, -20°C, and 37°C.
All solutions stored at 2-8°C had an initially-measured (T ) relative percentage of
at least 90% IgG. The percent IgG for all solutions stored at 2-8°C was ≥ 90% at 24
months. All solutions stored at -20°C also had an initially-measured relative percentage
of 90% IgG. The percent IgG for solutions I and IV was ≥ 90% at 24 months. Solutions
II and III had percentage of IgG of 89% and 88%, respectively, at 24 months. As the
percentage of IgG at T was 90%, 88% and 89% were within the error of the method and
did not necessarily represent a significant change in quality.
All solutions stored at 37°C had a relative percent IgG of 90% at T . The
percentage of IgG for solution IV remained ≥ 90% through 3 months of storage. Solution
I contained 88% IgG at 3 months, which was within the error of the method, and did not
necessarily represent a significant change in quality. At 6 months of storage at 37°C, all
solutions were ≤ 73% IgG, indicating significant degradation of the antibody.
F. SDS-PAGE (Reduced Coomassie)
Samples were prepared and analyzed as described under Section E “SDS-PAGE
(Non-reduced Coomassie)”; however, the samples were further denatured in the presence
of 50 mM dithiothreitol (DTT) to disrupt disulfide bonds within the antibody structure.
The test was performed at the intervals in the following tables (below) for samples stored
at 2-8°C, -20°C, and 37°C.
All solutions stored at 2-8°C had a relative percent of IgG as heavy and light
chain of 100% at T . The percent of IgG as heavy and light chain for all of the solutions
stored at 2-8°C remained at 100% throughout the study. All solutions stored at -20°C
also had a relative percent of IgG as heavy and light chain of 100% throughout the study.
All solutions stored at 37°C had a relative percent of IgG as heavy and light chain
of 100% at T . At 1 month, the relative percentage of IgG as heavy and light chain
remained at 100% for solutions III and IV. The percentage of IgG as heavy and light
chains for solution I fell to 99% and for Solution II fell to 98% after one month of storage
at 37°C. After two months of storage at 37°C, all solutions were ≤ 98.0% IgG as heavy
and light chains. The percentage of IgG as heavy and light chains continued to fall
through six months of storage at 37°C for each solution, indicating significant
degradation of the antibody.
G. Isoelectric Focusing
The isoelectric focusing studies used a flat bed electrophoresis system. Pre-cast
agarose gels covering a pH range of 3.0 to 10.0 were employed. Samples of the stored
samples were loaded onto the gel at a predetermined optimized load position along with
commercially available pI marker standards. Following focusing for a set number of
volt-hours, separated charge variants were visualized by staining with a Coomassie Blue
staining solution. The banding pattern of samples on the stained gel was analyzed using
laser densitometry. The pI of the separated isoforms and the relative mass of each
isoform (as a percentage of total mass) was also determined. pIs are calculated by
interpolation from a standard curve established by the pI marker standards. The relative
mass of each isoform as a percent of total mass is calculated from its response relative to
the total response of the sample load. The measurements were performed at the intervals
in the following tables (below) for samples stored at 2-8°C, -20°C, and 37°C.
All solutions stored at 2-8°C had banding patterns comparable to a reference
antibody standard and pI ranges of approximately 5.66 to 6.35 at T . Minor variations in
pI were seen throughout the study, which are within the variability of the method. After
up to 12 months of storage, banding patterns of the antibody present in the samples were
comparable to the reference antibody standard and the pI of all bands remained between
.48 and 6.60 for all of the solutions. Solutions I and II had banding patterns which
remained comparable to the reference antibody material and the pI of all bands between
5.48 and 6.60 through 24 months of storage at 2-8°C. Solutions III and IV did exhibit a
change in the banding pattern beginning at the 18 month time point. That is, the most
basic band was not detected.
All solutions stored at -20°C had banding patterns comparable to the reference
antibody material and pI ranges of ~5.66 to 6.35 at T . Minor variations in pI were seen
throughout the study, which are within the variability of the method. Throughout 24
months of storage at -20°C, banding patterns were comparable to the reference antibody
material and the pI of all bands was between 5.61 and 6.44 for all of the solutions.
All solutions stored at 37°C had banding patterns comparable to the reference
antibody and pI ranges of ~5.66 to 6.35 at T=0. After up to 1 month of storage, banding
patterns were comparable to reference material and the pI of all bands was between 5.45
and 6.43 for all of the solutions. After two months of storage, smearing between the
bands appeared, an additional acidic band appeared, and the intensities of the bands
diminished. No significant difference was seen between the four solutions tested at this
temperature condition. The appearance of smearing, development of more acidic bands,
and changes in intensity of the main band continued for the duration of the 24 month
study.
H. Potency by C5 Binding Assay
The C5 binding assay used to test the functional characteristics of the stored
solutions was a quantitative immunoassay. A standard curve was prepared from a
reference anti-C5 antibody standard to include concentrations at 500, 250, 125, 62.5 and
31.3 binding units (BU)/mL. A four-parameter fit was applied to the standard curve and
test sample results were interpolated from the curve. Each sample was diluted and tested
in triplicate at each of three dilutions predetermined to fall within the linear range of the
assay. Results were averaged and observed test results in units of BU/mL were divided
by the product concentration in mg/mL to obtain results in BU/mg. The measurements
were performed at the intervals in the following tables (below) for samples stored at 2-
8°C, -20°C, and 37°C.
All solutions stored at 2-8°C exhibited binding activity ranging from 946,875 to
1,063,353 BU/mg at T . Throughout the 24 month study, the purity for all of the tested
solutions remained between 855,801 and 1,194,123 BU/mg. At 12 months, solution I
contained 1,306,497 BU/mg, but at 18 and 24 months solution I contained 1,013,876 and
920,747 BU/mg, respectively. All solutions stored at -20°C contained 946,875 to
1,063,353 BU/mg at T . Throughout the 24 month study, the activity present in all
solutions stored at -20°C remained between 778,672 and 1,148,100 BU/mg.
All solutions stored at 37°C exhibited initially-measured binding activity ranging
from 946,875 to 1,063,353 BU/mg. After six months of storage at 37°C, solutions I and
IV exhibiting activity of between 827,206 and 1,202,435 BU/mg. Solutions II and III
exhibited binding activity between 1,019,401 and 1,243,601 BU/mg after 3 months,
whereas, at six months, the activity of the antibody maintained at 37°C in solution II and
III was 1,679,080 and 1,976,400 BU/mg respectively. Again, while the disclosure is not
bound by any particular theory or mechanism of action, it is believed that the solution by
six months storage at 37°C had undergone significant degradation, which resulted in an
aberrant measurement at this time point.
Table 3. Appearance and Osmolality of Eculizumab Solutions at 2 to 8°C for 24 Months
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
Clear and Clear and Clear and Clear and
Clear and colorless, colorless, colorless, colorless,
colorless, Particulate Particulate Particulate Particulate
0 Particulate free free free free free
Clear and Clear and Clear and Clear and
Clear and colorless, colorless, colorless, colorless,
colorless, Particulate Particulate Particulate Particulate
1 Particulate free free free free free
Clear and Clear and Clear and Clear and
Clear and colorless, colorless, colorless, colorless,
colorless, Particulate Particulate Particulate Particulate
2 Particulate free free free free free
Appearance Clear and Clear and Clear and Clear and
Clear and colorless, colorless, colorless, colorless,
colorless, Particulate Particulate Particulate Particulate
3 Particulate free free free free free
Clear and Clear and Clear and Clear and
Clear and colorless, colorless, colorless, colorless,
colorless, Particulate Particulate Particulate Particulate
6 Particulate free free free free free
Clear and
colorless, Clear and Clear and Clear and Clear and
Particulate free colorless, colorless, colorless, colorless,
Particulate Particulate Particulate Particulate
9 free free free free
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
Clear and Clear and Clear and
Clear and Clear and
colorless, colorless, colorless,
colorless, colorless,
Particulate Particulate Particulate
Particulate free Particulate free
12 free free free
Clear and Clear and Clear and
Clear and Clear and
colorless, colorless, colorless,
colorless, colorless,
Particulate Particulate Particulate
Particulate free Particulate free
18 free free free
Clear and Clear and Clear and
Clear and Clear and
colorless, colorless, colorless,
colorless, colorless,
Particulate Particulate Particulate
Particulate free Particulate free
24 free free free
0 365 mOsm/kg 333 mOsm/kg 356 mOsm/kg 313 mOsm/kg 299 mOsm/kg
6 367 mOsm/kg 336 mOsm/kg 364 mOsm/kg 326 mOsm/kg 300 mOsm/kg
Osmolality
12 371 mOsm/kg 335 mOsm/kg 366 mOsm/kg 310 mOsm/kg mOsm/kg
337 358 324 303
18 366 mOsm/kg mOsm/kg mOsm/kg mOsm/kg mOsm/kg
338 382 321 306
24 372 mOsm/kg mOsm/kg mOsm/kg mOsm/kg mOsm/kg
Table 4. Protein Concentration and SEC-HPLC Evaluation of Eculizumab Solutions Stored at 2 to 8°C for 24 Months
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
0 105.9 mg/mL 29.3 mg/mL 107.6 mg/mL 31.1 mg/mL 10.0 mg/mL
1 108.4 mg/mL 29.9 mg/mL 108.6 mg/mL 31.2 mg/mL 10.2 mg/mL
2 104.0 mg/mL 29.1 mg/mL 101.6 mg/mL 30.0 mg/mL 10.0 mg/mL
3 102.8 mg/mL 29.0 mg/mL 104.3 mg/mL 30.2 mg/mL 9.8 mg/mL
Protein
6 104.0 mg/mL 29.1 mg/mL 103.1 mg/mL 30.4 mg/mL 9.9 mg/mL
Concentration
9 110.0 mg/mL 30.8 mg/mL 112.1 mg/mL 31.6 mg/mL 10.0 mg/mL
12 106.2 mg/mL 30.2 mg/mL 109.8 mg/mL 31.3 mg/mL 10.1 mg/mL
18 108.7 mg/mL 30.6 mg/mL 110.9 mg/mL 31.2 mg/mL 10.1 mg/mL
24 106.4 mg/mL 30.7 mg/mL 111.8 mg/mL 32.5 mg/mL 10.3 mg/mL
0.3% 0.2%
0.3% 0.2% 0.2%
aggregates aggregates
aggregates aggregates aggregates
99.5% 99.1%
99.7% 99.8% 99.8%
monomer monomer
monomer monomer monomer
0.3% 0.7%
0% fragments 0% fragments 0% fragments
0 fragments fragments
0.4% 0.3% 0.4% 0.4% 0.3%
aggregates aggregates aggregates aggregates aggregates
SEC-HPLC
99.6% 99.7% 98.7% 98.7% 99.7%
monomer monomer monomer monomer monomer
0% fragments 0% fragments 0.9% 0.9% 0% fragments
fragments fragments
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
2 0.4% 0.3%
0.5% 0.4% 0.3%
aggregates aggregates
aggregates aggregates aggregates
98.6% 98.6%
99.5% 99.6% 99.7%
monomer monomer
monomer monomer monomer
1.0% 1.2%
0% fragments 0% fragments 0% fragments
fragments fragments
0.3% 0.2%
0.5% 0.4% 0.3%
aggregates aggregates
aggregates aggregates aggregates
98.7% 98.5%
99.5% 99.6% 99.7%
monomer monomer
monomer monomer monomer
1.0% 1.3%
0% fragments 0% fragments 0% fragments
3 fragments fragments
0.4% 0.3% 0.3%
0.6% 0.4%
aggregates aggregates aggregates
aggregates aggregates
98.8% 98.8% 99.6%
99.4% 99.6%
monomer monomer monomer
monomer monomer
0.7% 1.0% 0.1%
0% fragments 0% fragments
6 fragments fragments fragments
0.5% 0.3%
0.9% 0.3% 0.4%
aggregates aggregates
aggregates aggregates aggregates
99.3% 99.4%
99.2% 99.7% 99.7%
monomer monomer
monomer monomer monomer
0.2% 0.3%
0% fragments 0% fragments 0% fragments
9 fragments fragments
0.5% 0.4%
1.3% 0.7% 0.6%
aggregates aggregates
aggregates aggregates aggregates
98.9% 98.8%
98.7% 99.3% 99.5%
monomer monomer
monomer monomer monomer
0.6% 0.9%
0% fragments 0% fragments 0% fragments
12 fragments fragments
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
18 0.6% 0.3%
1.6% 0.8% 0.5%
aggregates aggregates
aggregates aggregates aggregates
99.2% 99.3%
98.4% 99.2% 99.5%
monomer monomer
monomer monomer monomer
0.2% 0.3%
0% fragments 0% fragments 0% fragments
fragments fragments
0.7% 0.3 %
2.0% 0.9% 0.6%
aggregates aggregates
aggregates aggregates aggregates
99.1% 99.4%
98.0% 99.1% 99.4%
monomer monomer
monomer monomer monomer
0.2% 0.3%
0% fragments 0% fragments 0% fragments
24 fragments fragments
Table 5. SDS-PAGE Analysis of Eculizumab Solutions Stored at 2 to 8°C for 24 Months
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
0 90% IgG 90% IgG 90% IgG 90% IgG 90% IgG
1 92% IgG 92% IgG 92% IgG 92% IgG 92% IgG
2 91% IgG 91% IgG 92% IgG 90% IgG 93% IgG
3 92% IgG 92% IgG 92% IgG 92% IgG 91% IgG
SDS-PAGE
6 89% IgG 89% IgG 90% IgG 90% IgG 90% IgG
Non-reduced
9 91% IgG 91% IgG 91% IgG 91% IgG 90% IgG
12 90% IgG 90% IgG 90% IgG 90% IgG 91% IgG
18 90% IgG 90% IgG 91% IgG 90% IgG 91% IgG
24 91% IgG 90% IgG 91% IgG 90% IgG 91% IgG
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
100% IgG as 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
0 light chains light chains light chains light chains light chains
100% IgG as 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
1 light chains light chains light chains light chains light chains
100% IgG as 100% IgG as 99% IgG as 99% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
2 light chains light chains light chains light chains light chains
100% IgG as 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
3 light chains light chains light chains light chains light chains
100% IgG as 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
6 light chains light chains light chains light chains light chains
SDS-PAGE
Reduced 100% IgG as 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
9 light chains light chains light chains light chains light chains
100% IgG as 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
12 light chains light chains light chains light chains light chains
100% IgG as 100% IgG as 100% IgG as 100% IgG as
18 heavy and heavy and heavy and heavy and
100% IgG as
heavy and light chains light chains light chains light chains
light chains
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
100% IgG as 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
24 light chains light chains light chains light chains light chains
Table 6. IEF and C5-binding Analysis of Eculizumab Solutions Stored at 2 to 8°C for 24 Months
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
3 major bands 3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and All major and
minor bands minor bands minor bands minor bands minor bands
resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
0 5.68 and 6.35 5.67 and 6.35 5.67 and 6.35 5.66 and 6.35 5.72 and 6.35
3 major bands 3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and All major and
minor bands minor bands minor bands minor bands minor bands
IEF resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
1 5.68 and 6.44 5.69 and 6.57 5.68 and 6.54 5.69 and 6.54 5.67 and 6.40
3 major bands 3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and All major and
minor bands minor bands minor bands minor bands minor bands
resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
.50 and 6.42 5.48 and 6.40 5.51 and 6.43 5.53 and 6.46 5.54 and 6.48
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
3 major bands 3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and All major and
minor bands minor bands minor bands minor bands minor bands
resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
.69 and 6.42 5.68 and 6.41 5.68 and 6.41 5.69 and 6.41 5.69 and 6.41
3 major bands 3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and All major and
minor bands minor bands minor bands minor bands minor bands
resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
6 5.79 and 6.40 5.79 and 6.39 5.78 and 6.40 5.81 and 6.42 5.82 and 6.44
3 major bands 3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and All major and
minor bands minor bands minor bands minor bands minor bands
resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
9 5.83 and 6.40 5.83 and 6.41 5.85 and 6.42 5.77 and 6.35 5.80 and 6.36
3 major bands 3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and All major and
minor bands minor bands minor bands minor bands minor bands
resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
.83 and 6.47 5.84 and 6.51 5.87 and 6.60 5.87 and 6.54 5.85 and 6.52
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
2 major bands
All major and
2 major bands
minor bands
All major and
3 major bands 3 major bands resolved 3 major bands
minor bands
All major and All major and between pI All major and
resolved
minor bands minor bands 5.60 and 6.33 minor bands
18 between pI
resolved resolved (Does not resolved
.58 and 6.30
between pI between pI compare to between pI
(Does not
.60 and 6.31 5.58 and 6.30 Reference). 5.61 and 6.34
compare to
Reference).
2 major bands 2 major bands
3 major bands 3 major bands All Major and All Major and 3 major
All major and All major and minor bands minor bands bands All
minor bands minor bands between pI between pI Major and
resolved resolved 5.60 to 6.24 5.75 to 6.25 minor bands
between pI between pI Does not Does not between pI
.64 to 6.29 5.63 to 6.26 compare to compare to 5.62 to 6.26
24 Reference. Reference.
1,026,912 1,063,353 1,019,401 967,645 946,875
0 BU/mg BU/mg BU/mg BU/mg BU/mg
1,067,612 1,025,293 981,238 1,078,726 960,989
1 BU/mg BU/mg BU/mg BU/mg BU/mg
1,038,662 1,172,680 1,103,182 1,052,083 1,097,917
C5 Binding
2 BU/mg BU/mg BU/mg BU/mg BU/mg
1,031,534 1,127,155 1,074,624 968,543 1,140,519
3 BU/mg BU/mg BU/mg BU/mg BU/mg
879,407 856,959 1,121,484BU/ 860,403 894,360
6 BU/mg BU/mg mg BU/mg BU/mg
Time 2-8°C
Analytical
Point
method
(months) I II III IV V
1,009,470 1,015,625 BU 965,470 BU/ 973,674 BU/ 1,026,042
9 BU/mg /mg mg mg BU/mg
1,306,497 1,194,123 1,107,127 1,097,244 1,127,269
12 BU/mg BU/mg BU/mg BU/mg BU/mg
1,013,876 855,801 958,070 948,518 898,309
18 BU/mg BU/mg BU/mg BU/mg BU/mg
920,747 958,880 1,036,747 848,043 914,522
24 BU/mg BU/mg BU/mg BU/mg BU/mg
“BU” refers to binding units.
Table 7. Appearance, Osmolality, and Protein Concentration of Eculizumab Solutions Stored at 37°C for Up to 24 months
Time 37°C
Analytical
Point
method
(months) I II III IV V
Clear and Clear and Clear and Clear and Clear and
colorless, colorless, colorless, colorless, colorless,
0 Particulate free Particulate free Particulate free Particulate free Particulate free
Clear and Clear and Clear and Clear and
colorless, colorless, colorless, colorless,
1 Particulate free Particulate free Particulate free Particulate free n/a
Appearance
Clear, pale Clear and Clear, pale Clear and
yellow, colorless, yellow, colorless,
2 Particulate free Particulate free Particulate free Particulate free n/a
Clear, pale Clear, pale Clear, pale Clear, pale
yellow, yellow, yellow, yellow,
3 Particulate free Particulate free Particulate free Particulate free n/a
Time 37°C
Analytical
Point
method
(months) I II III IV V
Clear, pale Clear, pale Clear, pale Clear, pale
yellow, yellow, yellow, yellow,
6 Particulate free Particulate free Particulate free Particulate free n/a
0 365 mOsm/kg 333 mOsm/kg 356 mOsm/kg 313 mOsm/kg 299 mOsm/kg
Osmolality
6 394 mOsm/kg 349 mOsm/kg 863 mOsm/kg 332 mOsm/kg n/a
0 105.9 mg/mL 29.3 mg/mL 107.6 mg/mL 31.1 mg/mL 10.0 mg/mL
1 99.0 mg/mL 30.1 mg/mL 111.7 mg/mL 31.8 mg/mL n/a
Protein
2 115.1 mg/mL 29.8 mg/mL 114.3 mg/mL 31.7 mg/mL n/a
Concentration
3 106.2 mg/mL 30.1 mg/mL 113.7 mg/mL 31.5 mg/mL n/a
109.5 mg/mL 139.3 mg/mL
6 38.6 mg/mL 35.7 mg/mL n/a
Table 8. SEC-HPLC and SDS-PAGE Analysis of Eculizumab Solutions Stored at 37°C for Up to 24 Months
Time 37°C
Analytical
Point
method
(months) I II III IV V
0.3% 0.2%
0.3% 0.2% 0.2%
aggregates aggregates
aggregates aggregates aggregates
99.5% 99.1%
99.7% 99.8% 99.8%
monomer monomer
monomer monomer monomer
0.3% 0.7%
0% fragments 0% fragments 0% fragments
0 fragments fragments
2.3% 1.4% 1.4% 0.7%
aggregates aggregates aggregates aggregates
97.6% 98.5% 97.9% 98.3%
monomer monomer monomer monomer
0.1% 0.1% 0.7% 1.0%
1 fragments fragments fragments fragments n/a
4.1% 2.5% 2.2% 1.0%
SEC-HPLC aggregates aggregates aggregates aggregates
95.7% 97.3% 97.1% 98.0%
monomer monomer monomer monomer
0.2% 0.2% 0.7% 1.0%
2 fragments fragments fragments fragments n/a
.4% 3.2% 5.6% 1.1%
aggregates aggregates aggregates aggregates
94.5% 96.5% 96.1% 97.9%
monomer monomer monomer monomer
0.2% 0.3% 1.4% 1.0%
fragments fragments fragments fragments
3 n/a
Time 37°C
Analytical
Point
method
(months) I II III IV V
9.1% 6.0% 3.8% 1.8%
aggregates aggregates aggregates aggregates
90.5% 93.4% 94.9% 97.4%
monomer monomer monomer monomer
0.4% 0.5% 1.3% 0.8%
6 fragments fragments fragments fragments n/a
0 90% IgG 90% IgG 90% IgG 90% IgG n/a
1 92% IgG 91% IgG 92% IgG 92% IgG n/a
SDS-PAGE
2 91% IgG 92% IgG 91% IgG 92% IgG n/a
Non-reduced
3 88% IgG 79% IgG 84% IgG 91% IgG n/a
6 62% IgG 60% IgG 70% IgG 73% IgG n/a
100% IgG as 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and heavy and
0 light chains light chains light chains light chains light chains
99% IgG as 98% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and
1 light chains light chains light chains light chains n/a
96% IgG as 96% IgG as 98% IgG as 97% IgG as
SDS-PAGE
heavy and heavy and heavy and heavy and
Reduced
2 light chains light chains light chains light chains n/a
95% IgG as 94% IgG as 97% IgG as 97% IgG as
heavy and heavy and heavy and heavy and
3 light chains light chains light chains light chains n/a
88% IgG as 85% IgG as 93% IgG as 91% IgG as
heavy and heavy and heavy and heavy and
6 light chains light chains light chains light chains n/a
Table 9. IEF and C5-Binding Analysis of Eculizumab Solutions Stored at 37°C for Up to 24 Months
Time 37°C
Analytical
Point
method
(months) I II III IV V
3 major bands 3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and All major and
minor bands minor bands minor bands minor bands minor bands
resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
0 5.68 and 6.35 5.67 and 6.35 5.67 and 6.35 5.66 and 6.35 5.72 and 6.35
3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and
minor bands minor bands minor bands minor bands
resolved resolved resolved resolved
between pI between pI between pI between pI
1 5.58 and 6.42 5.56 and 6.43 5.55 and 6.43 5.56 and 6.41
3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and
minor bands minor bands minor bands minor bands
resolved resolved resolved resolved
between pI between pI between pI between pI
2 5.21 and 6.33 5.17 and 6.32 5.18 and 6.31 5.19 and 6.31
3 major bands 3 major bands 3 major bands 3 major bands
All major and All major and All major and All major and
minor bands minor bands minor bands minor bands
3 n/a
resolved resolved resolved resolved
between pI between pI between pI between pI
.49 and 6.39 5.49 and 6.39 5.50 and 6.43 5.49 and 6.42
Time 37°C
Analytical
Point
method
(months) I II III IV V
6 major bands 6 major bands 5 major bands 5 major bands
2 minor bands 1 minor bands 2 minor bands 3 minor bands
All major and All major and All major and All major and
minor bands minor bands minor bands minor bands n/a
resolved resolved resolved resolved
between pI between pI between pI between pI
6 5.62 and 6.44 5.61 and 6.28 5.70 and 6.40 5.62 and 6.41
1,026,912 1,063,353 1,019,401 967,645 946,875
0 BU/mg BU/mg BU/mg BU/mg BU/mg
1,153,199 1,122,301 1,076,171 950,275
1 BU/mg BU/mg BU/mg BU/mg
1,157,508 1,243,601 1,056,248 1,042,981
C5 Binding
2 BU/mg BU/mg BU/mg BU/mg n/a
1,126,020 1,167,982 1085,642 1,013,889
3 BU/mg BU/mg BU/mg BU/mg n/a
1,202,435 1,679,080 1,976,400 827,206
6 BU/mg BU/mg BU/mg BU/mg n/a
Table 10. Appearance, Osmolality, and Protein Concentration Determinations for Eculizumab Solutions Stored at -20°C for Up to
24 Months
Analytical Time -20°C
method Point I II III IV V
(months)
0 Clear and Clear and Clear and Clear and
Appearance
colorless, colorless, colorless, colorless, Clear and
Particulate Particulate Particulate Particulate colorless,
free free free free Particulate free
1 Clear and Clear and Clear and Clear and
colorless, colorless, colorless, colorless,
Particulate Particulate Particulate Particulate
free free free free n/a
6 Clear and Clear and Clear and Clear and
colorless, colorless, colorless, colorless,
Particulate Particulate Particulate Particulate
free free free free n/a
12 Clear and
Clear and Clear and Clear and
colorless,
colorless, colorless, colorless,
Small, white
Particulate Particulate Particulate
particles
free free free
observed n/a
24 Clear and
colorless,
Clear and Clear and
Clear and Particulate
colorless, colorless,
colorless, free
Small, white Small, white
Particulate
particles particles
free
observed observed
Analytical Time -20°C
method Point I II III IV V
(months)
0 365 333 356 313 299 mOsm/kg
Osmolality
mOsm/kg mOsm/kg mOsm/kg mOsm/kg
6 361 336 356 316
mOsm/kg mOsm/kg mOsm/kg mOsm/kg
12 366 337 362 316
mOsm/kg mOsm/kg mOsm/kg mOsm/kg
24 369 339 368 316
mOsm/kg mOsm/kg mOsm/kg mOsm/kg
Protein 0
105.9 mg/mL 29.3 mg/mL 107.6 mg/mL 31.1 mg/mL 10.0 mg/mL
Conc.
107.5 mg/mL 29.3 mg/mL 109.1 mg/mL 31.2 mg/mL n/a
6 n/a
104.3 mg/mL 28.8 mg/mL 104.9 mg/mL 30.3 mg/mL
105.7 mg/mL 30.2 mg/mL 105.6 mg/mL 31.2 mg/mL n/a
107.3mg/mL 30.6 mg/mL 110.1mg/mL 32.2 mg/mL n/a
Table 11. SEC-HPLC, SDS-PAGE, IEF, and C5-binding Analyses for Eculizumab Solutions Stored at -20°C for Up to 24 Months
Analytical method Time -20°C
Point
I II III IV V
SEC-HPLC 0 0.3% 0.2%
0.3% 0.2% 0.2%
aggregates aggregates
aggregates aggregates aggregates
99.5% 99.1%
99.7% 99.8% 99.8%
monomer monomer
monomer monomer monomer
0.3% 0.7%
0% fragments 0% fragments 0% fragments
fragments fragments
1 0.4% 0.4% 0.3% n/a
0.3%
aggregates aggregates aggregates
aggregates
99.6% 98.7% 98.6%
99.7%
monomer monomer monomer
monomer
0 % 1.0% 1.2%
0% fragments
fragments fragments fragments
6 0.3% 0.9% 0.2% n/a
0.3%
aggregates aggregates aggregates
aggregates
99.7% 99.3% 98.7%
99.7%
monomer monomer monomer
monomer
0 % 0.1% 1.1%
0% fragments
fragments fragments fragments
12 0.4% 0.4% 0.3% n/a
0.3%
aggregates aggregates aggregates
aggregates
99.6% 98.7% 98.5%
99.7%
monomer monomer monomer
monomer
0 % 1.0% 1.3%
0% fragments
fragments fragments fragments
24 0.4% 1.7% 0.2% n/a
0.3%
aggregates aggregates aggregates
aggregates
99.6% 97.3% 98.6%
99.7%
monomer monomer monomer
monomer
0 % 1.0% 1.1%
0% fragments
fragments fragments fragments
Analytical method Time -20°C
Point I II III IV V
SDS-PAGE 0 n/a
90% IgG 90% IgG 90% IgG 90% IgG
Non-reduced
92% IgG 91% IgG 92% IgG 92% IgG n/a
90% IgG 89% IgG 89% IgG 89% IgG n/a
90% IgG 90% IgG 90% IgG 90% IgG n/a
90% IgG 89% IgG 88% IgG 91% IgG n/a
SDS-PAGE 0 100% IgG as 100% IgG as 100% IgG as 100% IgG as
Reduced heavy and heavy and heavy and heavy and n/a
light chains light chains light chains light chains
1 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and n/a
light chains light chains light chains light chains
6 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and n/a
light chains light chains light chains light chains
12 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and n/a
light chains light chains light chains light chains
24 100% IgG as 100% IgG as 100% IgG as 100% IgG as
heavy and heavy and heavy and heavy and n/a
light chains light chains light chains light chains
3 major 3 major 3 major 3 major 3 major
bands bands bands bands bands
All major and All major and All major and All major and All major and
0 minor bands minor bands minor bands minor bands minor bands
resolved resolved resolved resolved resolved
between pI between pI between pI between pI between pI
.68 and 6.35 5.67 and 6.35 5.67 and 6.35 5.66 and 6.35 5.72 and 6.35
Analytical method Time -20°C
Point I II III IV V
1 3 major 3 major 3 major 3 major
bands bands bands bands
All major and All major and All major and All major and
minor bands minor bands minor bands minor bands n/a
resolved resolved resolved resolved
between pI between pI between pI between pI
.67 and 6.41 5.64 and 6.37 5.61 and 6.36 5.63 and 6.35
6 3 major 3 major 3 major 3 major
bands bands bands bands
All major and All major and All major and All major and
minor bands minor bands minor bands minor bands n/a
resolved resolved resolved resolved
between pI between pI between pI between pI
.76 and 6.44 5.75 and 6.42 5.72 and 6.41 5.73 and 6.42
12 3 major 3 major 3 major 3 major
bands bands bands bands
All major and All major and All major and All major and
minor bands minor bands minor bands minor bands n/a
resolved resolved resolved resolved
between pI between pI between pI between pI
.83 and 6.38 5.82 and 6.37 5.83 and 6.38 5.81 and 6.37
24 3 major 3 major 3 major 3 major
bands bands bands bands
All major and All major and All major and All major and
minor bands minor bands minor bands minor bands
resolved resolved resolved resolved n/a
between pI between pI between pI between pI
.64 to 6.27 5.62 to 6.26 5.63 to 6.27 5.63 to 6.26
Analytical method Time -20°C
Point I II III IV V
C5 Binding 0
1,026,912 1,063,353 1,019,401 967,645 946,875
BU/mg BU/mg BU/mg BU/mg BU/mg
1 1,032,946 1,071,886 903,223 806,290
BU/mg BU/mg BU/mg BU/mg
6 1,067,633 n/a
904,948 912,575 778,672
BU/mg
BU/mg BU/mg BU/mg
12 1,148,100 1,081,333 1,144,255 1,068,710
BU/mg BU/mg BU/mg BU/mg
24 894,507 918,210 954,360 790,264
BU/mg BU/mg BU/mg BU/mg
Discussion
As set forth in Tables 3 to 6, the high concentration antibody formulations
described herein were markedly stable over a two year period. Each of solutions I to IV
remained clear, colorless, and particulate-free over the course of the study, which
indicated that no visible precipitation occurred during a two-year storage period. There
was also no significant change in osmolality or protein concentration of these solutions,
even at 24 months.
Moreover, the antibody present in solutions I and III (105 mg/mL antibody)
remained at least 98% monomeric. As shown in Table 5, the antibody present in solution
III remained over 99% monomeric even at the 2 year testing. Each of the solutions
maintained the anti-C5 antibody as over 99% monomer when stored at 2°C to 8°C for up
to 9 months. The highly-concentrated solutions not only maintained a high percentage of
monomeric antibody, but contained very few aggregates or degradation or fragmentation
products. For example, solutions I and II contained no detectable fragmentation products
as determined by SEC-HPLC, even at 24 months of storage at 2°C to 8°C. Solutions III
and IV contained less than 0.5% fragments at 24 months (0.2% antibody fragments in
solution III at 24 months and 0.3% antibody fragments in solution IV at 24 months).
None of the solutions contains more than 2% aggregates at 24 months, with solutions II,
III, and IV containing less than 1% aggregates at 24 months. These results indicate that
the formulations described herein are capable of substantially maintaining the structural
integrity of the anti-C5 antibody dissolved therein for at least 24 months storage at 2°C to
8°C.
The solutions were also evaluated for retention of functional activity by
measuring C5-binding activity. As set forth in Table 6, each of the solutions tested
retained approximately 90% or more of their C5-binding activity after 24 months of
storage at 2°C to 8°C. The antibody formulated in solution III retained 100% of its C5-
binding ability at 24 months. Virtually no change in the binding activity of the antibody
to C5 was detected in any of the formulations tested at one year. These results indicate
that the formulations described herein maintain the functional as well as structural
stability of the anti-C5 antibodies dissolved therein for at least 2 years at 2°C to 8°C.
While the present disclosure has been described with reference to the specific
embodiments thereof, it should be understood by those skilled in the art that various
changes may be made and equivalents may be substituted without departing from the true
spirit and scope of the disclosure. In addition, many modifications may be made to adapt
a particular situation, material, composition of matter, process, process step or steps, to
the objective, spirit and scope of the present disclosure. All such modifications are
intended to be within the scope of the disclosure.
Claims (30)
1. A method for producing a concentrated antibody solution comprising greater than 100 mg/mL of an anti-C5 antibody, the method comprising: providing a first aqueous solution comprising an anti-C5 antibody, the first aqueous solution having a first formulation and comprising no more than 50 mg/mL of the anti-C5 antibody; subjecting the first aqueous solution to diafiltration to thereby produce a second aqueous solution, wherein the second aqueous solution has a second formulation as a result of the diafiltration; and concentrating the second aqueous solution to produce a concentrated antibody solution comprising greater than 100 mg/mL of the anti-C5 antibody.
2. The method of claim 1, wherein the anti-C5 antibody is not lyophilized prior to or following the diafiltration or concentrating.
3. The method of claim 1 or claim 2, wherein the first formulation is a phosphate buffer- based formulation.
4. The method of claim 3, wherein the first formulation comprises: at least 20 mM sodium phosphate; and at least 80 mM sodium chloride.
5. The method according to any one of claims 1 to 4, wherein the second formulation comprises: at least 20 mM histidine; at least 50 mM serine; at least 2.5% (w/v) sorbitol; and at least 1.5% (w/v) mannitol.
6. The method according to any one of claims 1 to 5, wherein the concentrating comprises tangential flow filtration.
7. The method according to any one of claims 1 to 5, wherein the concentrating comprises use of a stir cell.
8. The method according to any one of claims 1 to 7, wherein more than one round of diafiltration is performed.
9. The method of claim 8, wherein at least four rounds of diafiltration are performed.
10. The method of any one of claims 1 to 9, wherein the diafiltration comprises continuous addition of a buffer having the second formulation.
11. The method according to any one of claims 1 to 10, wherein the first aqueous solution comprises no more than 40 mg/mL of the anti-C5 antibody.
12. The method according to any one of claims 1 to 11, wherein the concentrated antibody solution comprises greater than: 110 mg/mL of the anti-C5 antibody; 125 mg/mL of the anti-C5 antibody; 150 mg/mL of the anti-C5 antibody; 200 mg/mL of the anti-C5 antibody; or 208 mg/mL of the anti-C5 antibody.
13. The method according to any one of claims 1 to 12, wherein at least 90% of the anti- C5 antibody present in the first aqueous solution is recovered in the high concentration aqueous solution.
14. The method according to any one of claims 1 to 13, wherein the anti-C5 antibody is eculizumab.
15. An aqueous solution comprising an anti-C5 antibody at a concentration of greater than 100 mg/mL produced by the method according to any one of claims 1 to 14.
16. A kit comprising: (i) the aqueous solution according to claim 15; and (ii) a means for delivering the solution to a patient in need thereof.
17. The kit of claim 16, wherein the means is suitable for: (i) subcutaneous delivery of the solution to the patient; (ii) delivery of the solution to the eye; (iii) intraarticular delivery of the solution to the patient; or (iv) intrapulmonary delivery of the solution to the patient.
18. The kit of claim 16 or claim 17, wherein the means is: a syringe, a double-barreled syringe, a transscleral patch comprising the solution; a contact lens comprising the solution or partially coated in the solution; an inhaler; or a nebulizer.
19. The kit of any one of claims 16 to 18, further comprising at least one additional active agent for use in treating a complement-associated disorder in a subject.
20. A kit comprising one or more containers, wherein each container comprises an aqueous solution according to claim 15, and wherein each container comprises at least one pharmaceutical unit dosage form of the anti-C5 antibody.
21. The kit of claim 20, wherein each container comprises between: (i) 0.05 mg to 10 mg of the anti-C5 antibody; or (ii) 1 mg to 100 mg of the anti-C5 antibody.
22. The kit according to claim 20 or claim 21, wherein each container has a volume of 0.01 mL to 1 mL, inclusive.
23. The kit according to any one of claims 20 to 22, wherein at least one container comprises an aqueous solution suitable for intravitreal injection, intraarticular injection, intramuscular injection, intraocular injection, or subcutaneous injection.
24. A pre-filled syringe comprising the aqueous solution according to claim 15.
25. The pre-filled syringe of claim 24, wherein the solution is formulated for intravitreal injection, intraarticular injection, intramuscular injection, intraocular injection, or subcutaneous injection.
26. The pre-filled syringe of claim 24 or claim 25, wherein the syringe comprises at least one pharmaceutical unit dosage form of the anti-C5 antibody in the solution.
27. The pre-filled syringe according to any one of claims 24 to 26, wherein the syringe comprises between: (i) 0.05 mg to 10 mg of the anti-C5 antibody; or (ii) 1 mg to 100 mg of the anti-C5 antibody.
28. Use of the aqueous solution of claim 15 in the manufacture of a medicament for treating a patient afflicted with a complement-associated disorder.
29. The use according to claim 28, wherein the complement-associated disorder is selected from the group consisting of age-related macular degeneration (AMD), a diabetes- associated ocular disorder, rheumatoid arthritis, central retinal vein occlusion, wet AMD, dry AMD, asthma, chronic obstructive pulmonary disease, acute respiratory distress syndrome, pulmonary fibrosis, α-1 anti-trypsin deficiency, emphysema, bronchiectasis, bronchiolitis obliterans, sarcoidosis, a collagen vascular disorder, bronchitis, ischemia-reperfusion injury, atypical hemolytic uremic syndrome, thrombotic thrombocytopenic purpura, paroxysmal nocturnal hemoglobinuria, sepsis, severe burn, lupus nephritis, dense deposit disease, spontaneous fetal loss, Pauci-immune vasculitis, epidermolysis bullosa, recurrent fetal loss, multiple sclerosis, traumatic brain injury, myasthenia gravis, cold agglutinin disease, dermatomyositis, Degos’ disease, Graves’ disease, Hashimoto’s thyroiditis, type I diabetes, psoriasis, pemphigus, autoimmune hemolytic anemia, idiopathic thrombocytopenic purpura, Goodpasture syndrome, multifocal motor neuropathy, neuromyelitis optica, antiphospholipid syndrome, and catastrophic antiphospholipid syndrome.
30. A method according to any one of claims 1 to 14; or aqueous solution according to claim 15; or kit according to any one of claims 16 to 23; or pre-filled syringe according to any one of claims 24 to 27; or use according to claim 28 or claim 29, substantially as herein described with reference to any one of the examples, but excluding comparative examples.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161450334P | 2011-03-08 | 2011-03-08 | |
US61/450334 | 2011-03-08 | ||
NZ598610A NZ598610A (en) | 2011-03-08 | 2012-03-07 | High concentration antibody formulations |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ622145A NZ622145A (en) | 2014-10-31 |
NZ622145B2 true NZ622145B2 (en) | 2015-02-03 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9925262B2 (en) | Kits comprising formulations of anti-C5 antibodies | |
JP6189895B2 (en) | Methods and compositions for treating complement related disorders | |
EP2445937B1 (en) | Bispecific antibodies that bind to complement proteins | |
US20130273052A1 (en) | Polypeptides that bind to human complement component c5 | |
BR112012027900A2 (en) | ANTI-C5A ANTIBODIES AND METHODS FOR USING ANTIBODIES | |
AU2018201961B2 (en) | Methods and compositions for treating complement-associated disorders | |
AU2015230852B2 (en) | High concentration antibody formulations | |
NZ622145B2 (en) | High concentration antibody formulations | |
NZ622145A (en) | High concentration antibody formulations |