NZ622087B2 - Binding molecules for bcma and cd3 - Google Patents
Binding molecules for bcma and cd3 Download PDFInfo
- Publication number
- NZ622087B2 NZ622087B2 NZ622087A NZ62208712A NZ622087B2 NZ 622087 B2 NZ622087 B2 NZ 622087B2 NZ 622087 A NZ622087 A NZ 622087A NZ 62208712 A NZ62208712 A NZ 62208712A NZ 622087 B2 NZ622087 B2 NZ 622087B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- seq
- depicted
- cdr
- region
- bcma
- Prior art date
Links
- 230000027455 binding Effects 0.000 title claims abstract description 380
- 101710038604 TNFRSF17 Proteins 0.000 title description 3
- 108010008014 B-Cell Maturation Antigen Proteins 0.000 claims abstract description 411
- 102000006942 B-Cell Maturation Antigen Human genes 0.000 claims abstract description 411
- 125000000539 amino acid group Chemical group 0.000 claims abstract description 40
- 102000005962 receptors Human genes 0.000 claims abstract description 18
- 108020003175 receptors Proteins 0.000 claims abstract description 18
- BGFTWECWAICPDG-UHFFFAOYSA-N 2-[bis(4-chlorophenyl)methyl]-4-N-[3-[bis(4-chlorophenyl)methyl]-4-(dimethylamino)phenyl]-1-N,1-N-dimethylbenzene-1,4-diamine Chemical compound C1=C(C(C=2C=CC(Cl)=CC=2)C=2C=CC(Cl)=CC=2)C(N(C)C)=CC=C1NC(C=1)=CC=C(N(C)C)C=1C(C=1C=CC(Cl)=CC=1)C1=CC=C(Cl)C=C1 BGFTWECWAICPDG-UHFFFAOYSA-N 0.000 claims abstract 8
- 210000004027 cells Anatomy 0.000 claims description 391
- 241000282414 Homo sapiens Species 0.000 claims description 300
- 102000004965 antibodies Human genes 0.000 claims description 222
- 108090001123 antibodies Proteins 0.000 claims description 222
- 241000282553 Macaca Species 0.000 claims description 72
- 206010035226 Plasma cell myeloma Diseases 0.000 claims description 59
- 231100000491 EC50 Toxicity 0.000 claims description 45
- 201000010099 disease Diseases 0.000 claims description 44
- 239000003814 drug Substances 0.000 claims description 44
- 238000000034 method Methods 0.000 claims description 40
- 201000009251 multiple myeloma Diseases 0.000 claims description 35
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 23
- 150000007523 nucleic acids Chemical group 0.000 claims description 18
- 239000008194 pharmaceutical composition Substances 0.000 claims description 16
- 229920001850 Nucleic acid sequence Polymers 0.000 claims description 12
- 108020004707 nucleic acids Proteins 0.000 claims description 11
- 206010062081 Plasma cell disease Diseases 0.000 claims description 10
- 206010003816 Autoimmune disease Diseases 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 206010047802 Waldenstrom's macroglobulinaemias Diseases 0.000 claims description 6
- 208000007452 Plasmacytoma Diseases 0.000 claims description 5
- 230000002265 prevention Effects 0.000 claims description 5
- 210000000988 Bone and Bones Anatomy 0.000 claims description 4
- 206010025135 Lupus erythematosus Diseases 0.000 claims description 4
- 208000010190 Monoclonal Gammopathy of Undetermined Significance Diseases 0.000 claims description 3
- 208000003359 Plasma Cell Leukemia Diseases 0.000 claims description 3
- 201000006569 extramedullary plasmacytoma Diseases 0.000 claims description 3
- 201000008064 heavy chain disease Diseases 0.000 claims description 3
- 201000000564 macroglobulinemia Diseases 0.000 claims description 3
- 201000005328 monoclonal gammopathy of uncertain significance Diseases 0.000 claims description 3
- 201000009234 osteosclerotic myeloma Diseases 0.000 claims description 3
- 206010002023 Amyloidosis Diseases 0.000 claims description 2
- 206010002022 Amyloidosis Diseases 0.000 claims description 2
- 201000009596 autoimmune hypersensitivity disease Diseases 0.000 claims description 2
- 230000001363 autoimmune Effects 0.000 claims 1
- 235000001014 amino acid Nutrition 0.000 description 74
- 108010071919 Bispecific Antibodies Proteins 0.000 description 71
- 150000001413 amino acids Chemical class 0.000 description 69
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 64
- 102000004169 proteins and genes Human genes 0.000 description 63
- 108090000623 proteins and genes Proteins 0.000 description 63
- 239000000427 antigen Substances 0.000 description 59
- 108091007172 antigens Proteins 0.000 description 59
- 102000038129 antigens Human genes 0.000 description 59
- 235000018102 proteins Nutrition 0.000 description 57
- 229920001405 Coding region Polymers 0.000 description 48
- 210000003819 Peripheral blood mononuclear cell Anatomy 0.000 description 44
- 229940021015 I.V. solution additive Amino Acids Drugs 0.000 description 41
- 238000004166 bioassay Methods 0.000 description 36
- 239000000203 mixture Substances 0.000 description 36
- 229940079593 drugs Drugs 0.000 description 35
- 231100000263 cytotoxicity test Toxicity 0.000 description 33
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 30
- 230000001472 cytotoxic Effects 0.000 description 29
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 29
- 229920001184 polypeptide Polymers 0.000 description 29
- 102000018358 Immunoglobulins Human genes 0.000 description 28
- 108060003951 Immunoglobulins Proteins 0.000 description 28
- 238000002784 cytotoxicity assay Methods 0.000 description 28
- 239000002953 phosphate buffered saline Substances 0.000 description 26
- 210000001744 T-Lymphocytes Anatomy 0.000 description 24
- 201000000050 myeloid neoplasm Diseases 0.000 description 24
- 230000035492 administration Effects 0.000 description 23
- 238000006467 substitution reaction Methods 0.000 description 23
- 241001163844 Olive mild mosaic virus Species 0.000 description 22
- 239000011230 binding agent Substances 0.000 description 22
- 102100001249 ALB Human genes 0.000 description 21
- 230000009089 cytolysis Effects 0.000 description 21
- 238000000684 flow cytometry Methods 0.000 description 21
- 150000002500 ions Chemical class 0.000 description 21
- 230000002934 lysing Effects 0.000 description 21
- 229920002676 Complementary DNA Polymers 0.000 description 20
- 108091006028 chimera Proteins 0.000 description 20
- UIIMBOGNXHQVGW-UHFFFAOYSA-M buffer Substances [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 19
- 101710027066 ALB Proteins 0.000 description 18
- 229940050528 albumin Drugs 0.000 description 18
- 238000004458 analytical method Methods 0.000 description 18
- 239000002299 complementary DNA Substances 0.000 description 18
- 230000000694 effects Effects 0.000 description 18
- 210000004369 Blood Anatomy 0.000 description 16
- 239000008280 blood Substances 0.000 description 16
- 239000000539 dimer Substances 0.000 description 16
- 241000699666 Mus <mouse, genus> Species 0.000 description 14
- 240000002546 Prunus mume Species 0.000 description 14
- 235000011158 Prunus mume Nutrition 0.000 description 14
- 102000005614 monoclonal antibodies Human genes 0.000 description 14
- 108010045030 monoclonal antibodies Proteins 0.000 description 14
- 210000003719 B-Lymphocytes Anatomy 0.000 description 13
- 210000002381 Plasma Anatomy 0.000 description 13
- 230000000875 corresponding Effects 0.000 description 13
- 230000004048 modification Effects 0.000 description 13
- 238000006011 modification reaction Methods 0.000 description 13
- 210000004408 Hybridomas Anatomy 0.000 description 12
- 206010028980 Neoplasm Diseases 0.000 description 12
- 241000700159 Rattus Species 0.000 description 12
- 201000011510 cancer Diseases 0.000 description 12
- 229910052804 chromium Inorganic materials 0.000 description 12
- 239000011651 chromium Substances 0.000 description 12
- -1 his Chemical compound 0.000 description 12
- 239000002609 media Substances 0.000 description 12
- 230000035772 mutation Effects 0.000 description 12
- 229960000070 antineoplastic Monoclonal antibodies Drugs 0.000 description 11
- 239000002502 liposome Substances 0.000 description 11
- 229960000060 monoclonal antibodies Drugs 0.000 description 11
- 230000003389 potentiating Effects 0.000 description 11
- FAPWRFPIFSIZLT-UHFFFAOYSA-M sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 11
- 238000002560 therapeutic procedure Methods 0.000 description 11
- NFGXHKASABOEEW-UHFFFAOYSA-N (+)-methoprene Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 10
- 102000016605 B-Cell Activating Factor Human genes 0.000 description 10
- 108010028006 B-Cell Activating Factor Proteins 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 10
- 230000004927 fusion Effects 0.000 description 10
- 238000000338 in vitro Methods 0.000 description 10
- 239000003446 ligand Substances 0.000 description 10
- 238000005259 measurement Methods 0.000 description 10
- 102100003268 CD14 Human genes 0.000 description 9
- 101700027514 CD14 Proteins 0.000 description 9
- 108020004705 Codon Proteins 0.000 description 9
- 108091006822 Human Serum Albumin Proteins 0.000 description 9
- 102000008100 Human Serum Albumin Human genes 0.000 description 9
- 240000003297 Hyphaene thebaica Species 0.000 description 9
- 235000012565 Hyphaene thebaica Nutrition 0.000 description 9
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 9
- 235000004279 alanine Nutrition 0.000 description 9
- 238000005119 centrifugation Methods 0.000 description 9
- 238000001514 detection method Methods 0.000 description 9
- 230000001965 increased Effects 0.000 description 9
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 8
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 8
- 102100007544 NCAM1 Human genes 0.000 description 8
- 101700077124 NCAM1 Proteins 0.000 description 8
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 8
- 210000002966 Serum Anatomy 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 8
- 230000003013 cytotoxicity Effects 0.000 description 8
- 231100000135 cytotoxicity Toxicity 0.000 description 8
- 238000011156 evaluation Methods 0.000 description 8
- 230000003993 interaction Effects 0.000 description 8
- 101700063973 lgg-1 Proteins 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 239000006228 supernatant Substances 0.000 description 8
- 201000005804 Eastern equine encephalitis Diseases 0.000 description 7
- 230000035693 Fab Effects 0.000 description 7
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 7
- 238000004587 chromatography analysis Methods 0.000 description 7
- 230000001939 inductive effect Effects 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000002703 mutagenesis Methods 0.000 description 7
- 231100000350 mutagenesis Toxicity 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 241000894007 species Species 0.000 description 7
- 230000004083 survival Effects 0.000 description 7
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 6
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 6
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 6
- 210000004379 Membranes Anatomy 0.000 description 6
- 108091007229 NSP3 Papain-like protease domain Proteins 0.000 description 6
- 210000004011 Plasma Cells Anatomy 0.000 description 6
- 210000003491 Skin Anatomy 0.000 description 6
- 101000551314 TNFRSF17 Proteins 0.000 description 6
- 229920003013 deoxyribonucleic acid Polymers 0.000 description 6
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 108020001507 fusion proteins Proteins 0.000 description 6
- 102000037240 fusion proteins Human genes 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 230000012010 growth Effects 0.000 description 6
- 102000037911 human TNFRSF17 protein Human genes 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 238000003780 insertion Methods 0.000 description 6
- 230000001404 mediated Effects 0.000 description 6
- 239000012528 membrane Substances 0.000 description 6
- 229960000485 methotrexate Drugs 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 230000000275 pharmacokinetic Effects 0.000 description 6
- 238000000746 purification Methods 0.000 description 6
- 230000001603 reducing Effects 0.000 description 6
- 239000011780 sodium chloride Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 230000002194 synthesizing Effects 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- CZMRCDWAGMRECN-UGDNZRGBSA-N D-sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 5
- 108010064750 Humanized Monoclonal Antibodies Proteins 0.000 description 5
- 102000015434 Humanized Monoclonal Antibodies Human genes 0.000 description 5
- 210000000822 Killer Cells, Natural Anatomy 0.000 description 5
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 5
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 5
- XUJNEKJLAYXESH-REOHCLBHSA-N L-cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 5
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 5
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N L-serine Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 5
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 5
- 210000000826 Nictitating Membrane Anatomy 0.000 description 5
- XJMOSONTPMZWPB-UHFFFAOYSA-M Propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 5
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 5
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 5
- 108010070144 Single-Chain Antibodies Proteins 0.000 description 5
- 102000005632 Single-Chain Antibodies Human genes 0.000 description 5
- 102100009534 TNF Human genes 0.000 description 5
- 239000000969 carrier Substances 0.000 description 5
- 238000010367 cloning Methods 0.000 description 5
- 231100000433 cytotoxic Toxicity 0.000 description 5
- 231100000673 dose–response relationship Toxicity 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N edta Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 210000004602 germ cell Anatomy 0.000 description 5
- 235000017423 hawthorn Nutrition 0.000 description 5
- 150000002411 histidines Chemical class 0.000 description 5
- 238000002826 magnetic-activated cell sorting Methods 0.000 description 5
- 238000002823 phage display Methods 0.000 description 5
- 230000001225 therapeutic Effects 0.000 description 5
- 239000003981 vehicle Substances 0.000 description 5
- UCSJYZPVAKXKNQ-HZYVHMACSA-N 1-[(1S,2R,3R,4S,5R,6R)-3-carbamimidamido-6-{[(2R,3R,4R,5S)-3-{[(2S,3S,4S,5R,6S)-4,5-dihydroxy-6-(hydroxymethyl)-3-(methylamino)oxan-2-yl]oxy}-4-formyl-4-hydroxy-5-methyloxolan-2-yl]oxy}-2,4,5-trihydroxycyclohexyl]guanidine Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 241000256844 Apis mellifera Species 0.000 description 4
- 210000001185 Bone Marrow Anatomy 0.000 description 4
- 101710007887 DHFR Proteins 0.000 description 4
- 102100005838 DHFR Human genes 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 4
- 210000003743 Erythrocytes Anatomy 0.000 description 4
- 230000036499 Half live Effects 0.000 description 4
- 229940072221 IMMUNOGLOBULINS Drugs 0.000 description 4
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- 125000000393 L-methionino group Chemical group [H]OC(=O)[C@@]([H])(N([H])[*])C([H])([H])C(SC([H])([H])[H])([H])[H] 0.000 description 4
- 101800001171 Leader peptide Proteins 0.000 description 4
- 210000004185 Liver Anatomy 0.000 description 4
- 210000004698 Lymphocytes Anatomy 0.000 description 4
- 101710017500 MitHPPK/DHPS Proteins 0.000 description 4
- 210000004681 Ovum Anatomy 0.000 description 4
- 241000282577 Pan troglodytes Species 0.000 description 4
- 108010004729 Phycoerythrin Proteins 0.000 description 4
- 108020004511 Recombinant DNA Proteins 0.000 description 4
- DAEPDZWVDSPTHF-UHFFFAOYSA-M Sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 4
- 229940035295 Ting Drugs 0.000 description 4
- 241000700605 Viruses Species 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 231100000494 adverse effect Toxicity 0.000 description 4
- 238000001042 affinity chromatography Methods 0.000 description 4
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 4
- 230000000890 antigenic Effects 0.000 description 4
- 108010051561 belimumab Proteins 0.000 description 4
- 229960003270 belimumab Drugs 0.000 description 4
- 238000002512 chemotherapy Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 230000001419 dependent Effects 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 238000005755 formation reaction Methods 0.000 description 4
- 210000002865 immune cell Anatomy 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 4
- 210000003292 kidney cell Anatomy 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 4
- 239000011325 microbead Substances 0.000 description 4
- 238000010369 molecular cloning Methods 0.000 description 4
- 229920001223 polyethylene glycol Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000012146 running buffer Substances 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- 210000001519 tissues Anatomy 0.000 description 4
- 238000001890 transfection Methods 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- 210000004881 tumor cells Anatomy 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 102000008102 Ankyrins Human genes 0.000 description 3
- 108010049777 Ankyrins Proteins 0.000 description 3
- 239000004475 Arginine Substances 0.000 description 3
- 229950009925 Atacicept Drugs 0.000 description 3
- 108010046304 B-Cell Activation Factor Receptor Proteins 0.000 description 3
- 102000007536 B-Cell Activation Factor Receptor Human genes 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- GXJABQQUPOEUTA-RDJZCZTQSA-N Bortezomib Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)B(O)O)NC(=O)C=1N=CC=NC=1)C1=CC=CC=C1 GXJABQQUPOEUTA-RDJZCZTQSA-N 0.000 description 3
- 210000001736 Capillaries Anatomy 0.000 description 3
- 241000282693 Cercopithecidae Species 0.000 description 3
- 241000338243 Dyella-like sp. DHo Species 0.000 description 3
- 102000018651 Epithelial Cell Adhesion Molecule Human genes 0.000 description 3
- 108010066687 Epithelial Cell Adhesion Molecule Proteins 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 229920001917 Ficoll Polymers 0.000 description 3
- 241000233866 Fungi Species 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 241000238631 Hexapoda Species 0.000 description 3
- 206010021425 Immune system disease Diseases 0.000 description 3
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 3
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 3
- GOTYRUGSSMKFNF-UHFFFAOYSA-N Lenalidomide Chemical compound C1C=2C(N)=CC=CC=2C(=O)N1C1CCC(=O)NC1=O GOTYRUGSSMKFNF-UHFFFAOYSA-N 0.000 description 3
- 210000001322 Periplasm Anatomy 0.000 description 3
- 239000004698 Polyethylene (PE) Substances 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- 206010039073 Rheumatoid arthritis Diseases 0.000 description 3
- 108010071390 Serum Albumin Proteins 0.000 description 3
- 108060008443 TPPP Proteins 0.000 description 3
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 3
- HDTRYLNUVZCQOY-LIZSDCNHSA-N Trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000000259 anti-tumor Effects 0.000 description 3
- 229960003121 arginine Drugs 0.000 description 3
- 229960001467 bortezomib Drugs 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000004113 cell culture Methods 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 230000000295 complement Effects 0.000 description 3
- 230000004069 differentiation Effects 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 239000003937 drug carrier Substances 0.000 description 3
- 210000003162 effector T lymphocyte Anatomy 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 230000001747 exhibiting Effects 0.000 description 3
- 230000002349 favourable Effects 0.000 description 3
- 230000002068 genetic Effects 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 125000000267 glycino group Chemical group [H]N([*])C([H])([H])C(=O)O[H] 0.000 description 3
- 229960004942 lenalidomide Drugs 0.000 description 3
- 230000000670 limiting Effects 0.000 description 3
- 150000002632 lipids Chemical class 0.000 description 3
- 229960003646 lysine Drugs 0.000 description 3
- 239000003094 microcapsule Substances 0.000 description 3
- 230000003000 nontoxic Effects 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 210000000056 organs Anatomy 0.000 description 3
- 230000001575 pathological Effects 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 230000002062 proliferating Effects 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 210000000130 stem cell Anatomy 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 231100000730 tolerability Toxicity 0.000 description 3
- 230000001131 transforming Effects 0.000 description 3
- 230000004614 tumor growth Effects 0.000 description 3
- 238000000108 ultra-filtration Methods 0.000 description 3
- 230000003612 virological Effects 0.000 description 3
- HVYWMOMLDIMFJA-DPAQBDIFSA-N (3β)-Cholest-5-en-3-ol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- HMFKFHLTUCJZJO-UHFFFAOYSA-N 2-{2-[3,4-bis(2-hydroxyethoxy)oxolan-2-yl]-2-(2-hydroxyethoxy)ethoxy}ethyl dodecanoate Chemical compound CCCCCCCCCCCC(=O)OCCOCC(OCCO)C1OCC(OCCO)C1OCCO HMFKFHLTUCJZJO-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K 2qpq Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- 102100017268 AFDN Human genes 0.000 description 2
- 108010047814 Antigen-Antibody Complex Proteins 0.000 description 2
- 229960001230 Asparagine Drugs 0.000 description 2
- 230000036912 Bioavailability Effects 0.000 description 2
- 230000036868 Blood Concentration Effects 0.000 description 2
- 210000001772 Blood Platelets Anatomy 0.000 description 2
- 241000283707 Capra Species 0.000 description 2
- 231100000023 Cell-mediated cytotoxicity Toxicity 0.000 description 2
- 206010057250 Cell-mediated cytotoxicity Diseases 0.000 description 2
- 108010023798 Charybdotoxin Proteins 0.000 description 2
- 206010008958 Chronic lymphocytic leukaemia Diseases 0.000 description 2
- 230000037242 Cmax Effects 0.000 description 2
- 229940064701 Corticosteroid nasal preparations for topical use Drugs 0.000 description 2
- 229960001334 Corticosteroids Drugs 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 108010025905 Cystine-Knot Miniproteins Proteins 0.000 description 2
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 2
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 241000255925 Diptera Species 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 102000016359 Fibronectins Human genes 0.000 description 2
- 108010067306 Fibronectins Proteins 0.000 description 2
- 229960002743 Glutamine Drugs 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N HEPES Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- 101700086956 IFNG Proteins 0.000 description 2
- 102100016020 IFNG Human genes 0.000 description 2
- 101700015573 IMMU Proteins 0.000 description 2
- 229960000310 ISOLEUCINE Drugs 0.000 description 2
- RAXXELZNTBOGNW-UHFFFAOYSA-N Imidazole Chemical compound C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 210000003734 Kidney Anatomy 0.000 description 2
- 244000285963 Kluyveromyces fragilis Species 0.000 description 2
- 241001138401 Kluyveromyces lactis Species 0.000 description 2
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 2
- 230000035832 Lag time Effects 0.000 description 2
- 230000035648 Lag-time Effects 0.000 description 2
- 210000000265 Leukocytes Anatomy 0.000 description 2
- 102000019298 Lipocalins Human genes 0.000 description 2
- 108050006654 Lipocalins Proteins 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 241000282567 Macaca fascicularis Species 0.000 description 2
- 241000282560 Macaca mulatta Species 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 230000036740 Metabolism Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 206010029592 Non-Hodgkin's lymphomas Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 229940043515 Other immunoglobulins in ATC Drugs 0.000 description 2
- 102000000470 PDZ domain Human genes 0.000 description 2
- 108050008994 PDZ domain Proteins 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N PMSF Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 229940049954 Penicillin Drugs 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 229920001451 Polypropylene glycol Polymers 0.000 description 2
- 229960002429 Proline Drugs 0.000 description 2
- PYMYPHUHKUWMLA-LMVFSUKVSA-N Ribose Natural products OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PYMYPHUHKUWMLA-LMVFSUKVSA-N 0.000 description 2
- 101700023290 SEEP Proteins 0.000 description 2
- 241000288960 Saguinus oedipus Species 0.000 description 2
- 241000282696 Saimiri sciureus Species 0.000 description 2
- 241000311088 Schwanniomyces Species 0.000 description 2
- 229940054269 Sodium Pyruvate Drugs 0.000 description 2
- 241000256251 Spodoptera frugiperda Species 0.000 description 2
- 229960005322 Streptomycin Drugs 0.000 description 2
- CZMRCDWAGMRECN-GDQSFJPYSA-N Sucrose Natural products O([C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@H](CO)O1)[C@@]1(CO)[C@H](O)[C@@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-GDQSFJPYSA-N 0.000 description 2
- 108091008153 T cell receptors Proteins 0.000 description 2
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 2
- 210000000400 T-Lymphocytes, Cytotoxic Anatomy 0.000 description 2
- 102100008794 TNFRSF17 Human genes 0.000 description 2
- UEJJHQNACJXSKW-UHFFFAOYSA-N Thalidomide Chemical compound O=C1C2=CC=CC=C2C(=O)N1C1CCC(=O)NC1=O UEJJHQNACJXSKW-UHFFFAOYSA-N 0.000 description 2
- 229960003433 Thalidomide Drugs 0.000 description 2
- 229940094937 Thioredoxin Drugs 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 230000035852 Tmax Effects 0.000 description 2
- 102000003298 Tumor Necrosis Factor Receptors Human genes 0.000 description 2
- 108060008683 Tumor Necrosis Factor Receptors Proteins 0.000 description 2
- 230000036462 Unbound Effects 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N Xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 2
- 229960002675 Xylitol Drugs 0.000 description 2
- SRBFZHDQGSBBOR-SQOUGZDYSA-N Xylose Natural products O[C@@H]1CO[C@@H](O)[C@@H](O)[C@@H]1O SRBFZHDQGSBBOR-SQOUGZDYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 230000003042 antagnostic Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 239000002246 antineoplastic agent Substances 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- UHOVQNZJYSORNB-UHFFFAOYSA-N benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 2
- 229960000626 benzylpenicillin Drugs 0.000 description 2
- 230000035514 bioavailability Effects 0.000 description 2
- 230000003115 biocidal Effects 0.000 description 2
- 238000009583 bone marrow aspiration Methods 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000003246 corticosteroid Substances 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 2
- 230000001086 cytosolic Effects 0.000 description 2
- 238000000432 density-gradient centrifugation Methods 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 238000000113 differential scanning calorimetry Methods 0.000 description 2
- 235000013601 eggs Nutrition 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 230000002708 enhancing Effects 0.000 description 2
- 239000003797 essential amino acid Substances 0.000 description 2
- 235000020776 essential amino acid Nutrition 0.000 description 2
- 210000003527 eukaryotic cell Anatomy 0.000 description 2
- 230000037320 fibronectin Effects 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000012537 formulation buffer Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 230000003899 glycosylation Effects 0.000 description 2
- 238000006206 glycosylation reaction Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002440 hepatic Effects 0.000 description 2
- 230000013632 homeostatic process Effects 0.000 description 2
- 229910052588 hydroxylapatite Inorganic materials 0.000 description 2
- 101710004685 imm Proteins 0.000 description 2
- 230000001976 improved Effects 0.000 description 2
- 230000003834 intracellular Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- XJENLUNLXRJLEZ-UHFFFAOYSA-M lissamine rhodamine Chemical compound [Na+].C=12C=C(C)C(N(CC)CC)=CC2=[O+]C=2C=C(N(CC)CC)C(C)=CC=2C=1C1=CC=C(S([O-])(=O)=O)C=C1S([O-])(=O)=O XJENLUNLXRJLEZ-UHFFFAOYSA-M 0.000 description 2
- 238000007477 logistic regression Methods 0.000 description 2
- 239000012139 lysis buffer Substances 0.000 description 2
- 210000004962 mammalian cells Anatomy 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 210000003519 mature B lymphocyte Anatomy 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000035786 metabolism Effects 0.000 description 2
- 230000001264 neutralization Effects 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- XYJRXVWERLGGKC-UHFFFAOYSA-D pentacalcium;hydroxide;triphosphate Chemical compound [OH-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O XYJRXVWERLGGKC-UHFFFAOYSA-D 0.000 description 2
- 210000003720 plasmablast Anatomy 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 230000002335 preservative Effects 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 235000013930 proline Nutrition 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 102220286690 rs1554306525 Human genes 0.000 description 2
- 102220046242 rs587782759 Human genes 0.000 description 2
- 239000002795 scorpion venom Substances 0.000 description 2
- 230000003248 secreting Effects 0.000 description 2
- 230000028327 secretion Effects 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000600 sorbitol Substances 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 108020001568 subdomains Proteins 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 102000002933 thioredoxin family Human genes 0.000 description 2
- 108060008226 thioredoxin family Proteins 0.000 description 2
- 229940083878 topical for treatment of hemorrhoids and anal fissures Corticosteroids Drugs 0.000 description 2
- 230000002588 toxic Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001052 transient Effects 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 230000035513 volume of distribution Effects 0.000 description 2
- 239000000811 xylitol Substances 0.000 description 2
- 235000010447 xylitol Nutrition 0.000 description 2
- 229920000160 (ribonucleotides)n+m Polymers 0.000 description 1
- HTCSFFGLRQDZDE-UHFFFAOYSA-N 2-azaniumyl-2-phenylpropanoate Chemical compound OC(=O)C(N)(C)C1=CC=CC=C1 HTCSFFGLRQDZDE-UHFFFAOYSA-N 0.000 description 1
- 238000005084 2D-nuclear magnetic resonance Methods 0.000 description 1
- QFVHZQCOUORWEI-UHFFFAOYSA-N 4-[(4-anilino-5-sulfonaphthalen-1-yl)diazenyl]-5-hydroxynaphthalene-2,7-disulfonic acid Chemical compound C=12C(O)=CC(S(O)(=O)=O)=CC2=CC(S(O)(=O)=O)=CC=1N=NC(C1=CC=CC(=C11)S(O)(=O)=O)=CC=C1NC1=CC=CC=C1 QFVHZQCOUORWEI-UHFFFAOYSA-N 0.000 description 1
- AOJJSUZBOXZQNB-TZSSRYMLSA-N ADRIAMYCIN Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 1
- 102100017796 APP Human genes 0.000 description 1
- 108060000460 APP Proteins 0.000 description 1
- 206010069754 Acquired gene mutation Diseases 0.000 description 1
- 206010000880 Acute myeloid leukaemia Diseases 0.000 description 1
- 241000256111 Aedes <genus> Species 0.000 description 1
- 241000256118 Aedes aegypti Species 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- RDIKFPRVLJLMER-BQBZGAKWSA-N Ala-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C)N RDIKFPRVLJLMER-BQBZGAKWSA-N 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N Ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229940064005 Antibiotic throat preparations Drugs 0.000 description 1
- 229940083879 Antibiotics FOR TREATMENT OF HEMORRHOIDS AND ANAL FISSURES FOR TOPICAL USE Drugs 0.000 description 1
- 229940042052 Antibiotics for systemic use Drugs 0.000 description 1
- 108010032595 Antibody Binding Sites Proteins 0.000 description 1
- 229940042786 Antitubercular Antibiotics Drugs 0.000 description 1
- 241000219194 Arabidopsis Species 0.000 description 1
- 206010003119 Arrhythmia Diseases 0.000 description 1
- 210000001367 Arteries Anatomy 0.000 description 1
- 229960005261 Aspartic Acid Drugs 0.000 description 1
- 241000228212 Aspergillus Species 0.000 description 1
- 241000351920 Aspergillus nidulans Species 0.000 description 1
- 241000228245 Aspergillus niger Species 0.000 description 1
- 241001203868 Autographa californica Species 0.000 description 1
- 108091008154 B cell receptors Proteins 0.000 description 1
- 230000003844 B-cell-activation Effects 0.000 description 1
- 241000616946 Betanodavirus sp. Species 0.000 description 1
- 210000004204 Blood Vessels Anatomy 0.000 description 1
- 210000001124 Body Fluids Anatomy 0.000 description 1
- 241000255789 Bombyx mori Species 0.000 description 1
- 241000409811 Bombyx mori nucleopolyhedrovirus Species 0.000 description 1
- 229940098773 Bovine Serum Albumin Drugs 0.000 description 1
- 241000714266 Bovine leukemia virus Species 0.000 description 1
- 206010006187 Breast cancer Diseases 0.000 description 1
- 241000724256 Brome mosaic virus Species 0.000 description 1
- 102100008431 CCL26 Human genes 0.000 description 1
- 101700040437 CCL26 Proteins 0.000 description 1
- 102100016449 CCL5 Human genes 0.000 description 1
- 101700063377 CCL5 Proteins 0.000 description 1
- 108010045374 CD36 Antigens Proteins 0.000 description 1
- 102100005832 CD69 Human genes 0.000 description 1
- 101700080416 CD69 Proteins 0.000 description 1
- 210000001266 CD8-Positive T-Lymphocytes Anatomy 0.000 description 1
- 102100005552 CR1 Human genes 0.000 description 1
- 101700042195 CR1 Proteins 0.000 description 1
- 102100005310 CTLA4 Human genes 0.000 description 1
- 101700054183 CTLA4 Proteins 0.000 description 1
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 206010007521 Cardiac arrhythmias Diseases 0.000 description 1
- 210000000170 Cell Membrane Anatomy 0.000 description 1
- 241001227713 Chiron Species 0.000 description 1
- 241000282552 Chlorocebus aethiops Species 0.000 description 1
- 229940107161 Cholesterol Drugs 0.000 description 1
- 210000000349 Chromosomes Anatomy 0.000 description 1
- 210000004507 Chromosomes, Artificial Anatomy 0.000 description 1
- 229920000453 Consensus sequence Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- 229960004397 Cyclophosphamide Drugs 0.000 description 1
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- GZCGUPFRVQAUEE-KCDKBNATSA-N D-(+)-Galactose Natural products OC[C@@H](O)[C@H](O)[C@H](O)[C@@H](O)C=O GZCGUPFRVQAUEE-KCDKBNATSA-N 0.000 description 1
- 150000008574 D-amino acids Chemical class 0.000 description 1
- QIVBCDIJIAJPQS-SECBINFHSA-N D-tryptophane Chemical compound C1=CC=C2C(C[C@@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-SECBINFHSA-N 0.000 description 1
- 229960003957 Dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N Dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 229960004679 Doxorubicin Drugs 0.000 description 1
- 238000004435 EPR spectroscopy Methods 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N Ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 240000001414 Eucalyptus viminalis Species 0.000 description 1
- 230000036826 Excretion Effects 0.000 description 1
- 210000001723 Extracellular Space Anatomy 0.000 description 1
- 108050001049 Extracellular protein Proteins 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- FBPFZTCFMRRESA-GUCUJZIJSA-N Galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 description 1
- 102000000802 Galectin 3 Human genes 0.000 description 1
- 108010001517 Galectin 3 Proteins 0.000 description 1
- 206010017758 Gastric cancer Diseases 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 210000001280 Germinal Center Anatomy 0.000 description 1
- 229940049906 Glutamate Drugs 0.000 description 1
- 229960002989 Glutamic Acid Drugs 0.000 description 1
- RWSXRVCMGQZWBV-WDSKDSINSA-N Glutathione Chemical compound OC(=O)[C@@H](N)CCC(=O)N[C@@H](CS)C(=O)NCC(O)=O RWSXRVCMGQZWBV-WDSKDSINSA-N 0.000 description 1
- 229960003180 Glutathione Drugs 0.000 description 1
- 108010024636 Glutathione Proteins 0.000 description 1
- 240000007842 Glycine max Species 0.000 description 1
- 210000002288 Golgi Apparatus Anatomy 0.000 description 1
- 240000006962 Gossypium hirsutum Species 0.000 description 1
- 210000002397 Granulocyte Precursor Cells Anatomy 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N Guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- 229940093922 Gynecological Antibiotics Drugs 0.000 description 1
- 101710010703 HEPACAM2 Proteins 0.000 description 1
- 229940031574 HYDROXYMETHYL CELLULOSE Drugs 0.000 description 1
- 206010066476 Haematological malignancy Diseases 0.000 description 1
- 208000002250 Hematologic Neoplasms Diseases 0.000 description 1
- 229960002897 Heparin Drugs 0.000 description 1
- ZFGMDIBRIDKWMY-PASTXAENSA-N Heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 1
- 206010073071 Hepatocellular carcinoma Diseases 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 102200116529 IFT27 S30N Human genes 0.000 description 1
- 102100006815 IL2RA Human genes 0.000 description 1
- 101700082799 IL2RA Proteins 0.000 description 1
- 102200116581 IL36RN N47S Human genes 0.000 description 1
- 101700015336 ISG20 Proteins 0.000 description 1
- 210000000987 Immune System Anatomy 0.000 description 1
- 206010061598 Immunodeficiency Diseases 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000012745 Immunoglobulin Subunits Human genes 0.000 description 1
- 108010079585 Immunoglobulin Subunits Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 206010022000 Influenza Diseases 0.000 description 1
- 210000003093 Intracellular Space Anatomy 0.000 description 1
- 239000007836 KH2PO4 Substances 0.000 description 1
- 241000235649 Kluyveromyces Species 0.000 description 1
- 241000235058 Komagataella pastoris Species 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-2-aminohexanoic acid zwitterion Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 102000003855 L-lactate dehydrogenases Human genes 0.000 description 1
- 108091000084 L-lactate dehydrogenases Proteins 0.000 description 1
- 125000000174 L-prolyl group Chemical group [H]N1C([H])([H])C([H])([H])C([H])([H])[C@@]1([H])C(*)=O 0.000 description 1
- 241000710789 Lactate dehydrogenase-elevating virus Species 0.000 description 1
- 206010024324 Leukaemias Diseases 0.000 description 1
- AGBQKNBQESQNJD-SSDOTTSWSA-N Lipoic acid Chemical compound OC(=O)CCCC[C@@H]1CCSS1 AGBQKNBQESQNJD-SSDOTTSWSA-N 0.000 description 1
- 210000004072 Lung Anatomy 0.000 description 1
- 244000276497 Lycopersicon esculentum Species 0.000 description 1
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 1
- 210000001165 Lymph Nodes Anatomy 0.000 description 1
- 229960005357 Lysine Acetate Drugs 0.000 description 1
- 101710028361 MARVELD2 Proteins 0.000 description 1
- 231100000070 MTS assay Toxicity 0.000 description 1
- 231100000002 MTT assay Toxicity 0.000 description 1
- 102100015275 MYOM2 Human genes 0.000 description 1
- 101700036747 MYOM2 Proteins 0.000 description 1
- 239000004907 Macro-emulsion Substances 0.000 description 1
- 240000004212 Madhuca longifolia Species 0.000 description 1
- 235000005058 Madhuca longifolia Nutrition 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N Maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 241001599018 Melanogaster Species 0.000 description 1
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N Melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 description 1
- 102000018697 Membrane Proteins Human genes 0.000 description 1
- 108010052285 Membrane Proteins Proteins 0.000 description 1
- 108020004999 Messenger RNA Proteins 0.000 description 1
- 230000035633 Metabolized Effects 0.000 description 1
- KNWQLFOXPQZGPX-UHFFFAOYSA-N Methanesulfonyl fluoride Chemical compound CS(F)(=O)=O KNWQLFOXPQZGPX-UHFFFAOYSA-N 0.000 description 1
- 206010060880 Monoclonal gammopathy Diseases 0.000 description 1
- GNSKLFRGEWLPPA-UHFFFAOYSA-M Monopotassium phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 1
- 108090000393 Muromonab-CD3 Proteins 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 229940028444 Muse Drugs 0.000 description 1
- 101710014325 N118 Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 241001182492 Nes Species 0.000 description 1
- 241000221960 Neurospora Species 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 240000008962 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 229920000272 Oligonucleotide Polymers 0.000 description 1
- 206010025310 Other lymphomas Diseases 0.000 description 1
- 210000001672 Ovary Anatomy 0.000 description 1
- 102200076550 PRKD3 N42D Human genes 0.000 description 1
- 241000228143 Penicillium Species 0.000 description 1
- 210000003200 Peritoneal Cavity Anatomy 0.000 description 1
- 240000007377 Petunia x hybrida Species 0.000 description 1
- FSXRLASFHBWESK-HOTGVXAUSA-N Phe-Tyr Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)C1=CC=CC=C1 FSXRLASFHBWESK-HOTGVXAUSA-N 0.000 description 1
- 229940067631 Phospholipids Drugs 0.000 description 1
- 241000276498 Pollachius virens Species 0.000 description 1
- 229920000805 Polyaspartic acid Polymers 0.000 description 1
- 229920002560 Polyethylene Glycol 3000 Polymers 0.000 description 1
- 229920002562 Polyethylene Glycol 3350 Polymers 0.000 description 1
- 229920001030 Polyethylene Glycol 4000 Polymers 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 229940087463 Proleukin Drugs 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 102100010692 RPL35A Human genes 0.000 description 1
- 101710037100 RPL35A Proteins 0.000 description 1
- 239000007759 RPMI Media 1640 Substances 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010033725 Recombinant Proteins Proteins 0.000 description 1
- 102000007312 Recombinant Proteins Human genes 0.000 description 1
- 206010038435 Renal failure Diseases 0.000 description 1
- 229940120975 Revlimid Drugs 0.000 description 1
- HEBKCHPVOIAQTA-ZXFHETKHSA-N Ribitol Chemical compound OC[C@H](O)[C@H](O)[C@H](O)CO HEBKCHPVOIAQTA-ZXFHETKHSA-N 0.000 description 1
- HEBKCHPVOIAQTA-QWWZWVQMSA-N Ribitol Natural products OC[C@@H](O)C(O)[C@H](O)CO HEBKCHPVOIAQTA-QWWZWVQMSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102000035266 SCARB3 Human genes 0.000 description 1
- 102200021342 SDHB A43P Human genes 0.000 description 1
- 229940046307 SODIUM THIOGLYCOLATE Drugs 0.000 description 1
- 235000003534 Saccharomyces carlsbergensis Nutrition 0.000 description 1
- 229940081969 Saccharomyces cerevisiae Drugs 0.000 description 1
- 206010039491 Sarcoma Diseases 0.000 description 1
- 241000235347 Schizosaccharomyces pombe Species 0.000 description 1
- 241000239226 Scorpiones Species 0.000 description 1
- PPQRSMGDOHLTBE-UWVGGRQHSA-N Ser-Phe Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 PPQRSMGDOHLTBE-UWVGGRQHSA-N 0.000 description 1
- 210000000717 Sertoli cell Anatomy 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 208000004346 Smoldering Multiple Myeloma Diseases 0.000 description 1
- 240000001016 Solanum tuberosum Species 0.000 description 1
- 235000002595 Solanum tuberosum Nutrition 0.000 description 1
- UQZIYBXSHAGNOE-XNSRJBNMSA-N Stachyose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO[C@@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@@H]3[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO)O3)O)O2)O)O1 UQZIYBXSHAGNOE-XNSRJBNMSA-N 0.000 description 1
- UQZIYBXSHAGNOE-USOSMYMVSA-N Stachyose Natural products O(C[C@H]1[C@@H](O)[C@H](O)[C@H](O)[C@@H](O[C@@]2(CO)[C@H](O)[C@@H](O)[C@@H](CO)O2)O1)[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@H](CO[C@@H]2[C@@H](O)[C@@H](O)[C@@H](O)[C@H](CO)O2)O1 UQZIYBXSHAGNOE-USOSMYMVSA-N 0.000 description 1
- 239000012505 Superdex™ Substances 0.000 description 1
- 210000000225 Synapses Anatomy 0.000 description 1
- 241000255588 Tephritidae Species 0.000 description 1
- 230000036201 Tissue concentration Effects 0.000 description 1
- 230000035624 Tlag Effects 0.000 description 1
- 241001149964 Tolypocladium Species 0.000 description 1
- 229940024982 Topical Antifungal Antibiotics Drugs 0.000 description 1
- 231100000765 Toxin Toxicity 0.000 description 1
- 241000223259 Trichoderma Species 0.000 description 1
- 241001106462 Ulmus Species 0.000 description 1
- 241000377209 Unicorn Species 0.000 description 1
- 210000002700 Urine Anatomy 0.000 description 1
- 101700055524 VME1 Proteins 0.000 description 1
- 240000004652 Vaccinium ovalifolium Species 0.000 description 1
- 210000003462 Veins Anatomy 0.000 description 1
- 229940099039 Velcade Drugs 0.000 description 1
- 229960004528 Vincristine Drugs 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Vitamin C Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- 231100000480 WST assay Toxicity 0.000 description 1
- 229960003487 Xylose Drugs 0.000 description 1
- 241000235013 Yarrowia Species 0.000 description 1
- 240000008042 Zea mays Species 0.000 description 1
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L Zinc chloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
- ZCBJDQBSLZREAA-UHFFFAOYSA-N [4-[2-(4-acetyloxyphenyl)-3-oxo-4H-1,4-benzoxazin-2-yl]phenyl] acetate Chemical compound C1=CC(OC(=O)C)=CC=C1C1(C=2C=CC(OC(C)=O)=CC=2)C(=O)NC2=CC=CC=C2O1 ZCBJDQBSLZREAA-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K [O-]P([O-])([O-])=O Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000003070 absorption delaying agent Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- RRNJROHIFSLGRA-JEDNCBNOSA-N acetic acid;(2S)-2,6-diaminohexanoic acid Chemical compound CC(O)=O.NCCCC[C@H](N)C(O)=O RRNJROHIFSLGRA-JEDNCBNOSA-N 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000002378 acidificating Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000001154 acute Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001476 alcoholic Effects 0.000 description 1
- 201000005794 allergic hypersensitivity disease Diseases 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000000540 analysis of variance Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003957 anion exchange resin Substances 0.000 description 1
- 230000000845 anti-microbial Effects 0.000 description 1
- 230000000111 anti-oxidant Effects 0.000 description 1
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 230000024306 antigen processing and presentation of peptide antigen Effects 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 230000001580 bacterial Effects 0.000 description 1
- 244000052616 bacterial pathogens Species 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 230000001588 bifunctional Effects 0.000 description 1
- 229920002988 biodegradable polymer Polymers 0.000 description 1
- 239000004621 biodegradable polymer Substances 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000031018 biological processes and functions Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 230000000711 cancerogenic Effects 0.000 description 1
- 201000009030 carcinoma Diseases 0.000 description 1
- 239000003729 cation exchange resin Substances 0.000 description 1
- 230000020411 cell activation Effects 0.000 description 1
- 239000006143 cell culture media Substances 0.000 description 1
- 230000024245 cell differentiation Effects 0.000 description 1
- 239000002771 cell marker Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000010382 chemical cross-linking Methods 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000011098 chromatofocusing Methods 0.000 description 1
- 230000002759 chromosomal Effects 0.000 description 1
- 230000001684 chronic Effects 0.000 description 1
- 238000009643 clonogenic assay Methods 0.000 description 1
- 231100000096 clonogenic assay Toxicity 0.000 description 1
- 238000005354 coacervation Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000005094 computer simulation Methods 0.000 description 1
- 229920000407 conserved sequence Polymers 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 239000005289 controlled pore glass Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 235000005822 corn Nutrition 0.000 description 1
- 235000005824 corn Nutrition 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 150000003999 cyclitols Chemical class 0.000 description 1
- 230000001461 cytolytic Effects 0.000 description 1
- 239000002254 cytotoxic agent Substances 0.000 description 1
- 231100000599 cytotoxic agent Toxicity 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 231100000517 death Toxicity 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 201000009910 diseases by infectious agent Diseases 0.000 description 1
- 239000002612 dispersion media Substances 0.000 description 1
- 230000035510 distribution Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 150000002019 disulfides Chemical class 0.000 description 1
- 229940000406 drug candidates Drugs 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000006167 equilibration buffer Substances 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000010579 first pass effect Methods 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 230000005714 functional activity Effects 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000002496 gastric Effects 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 238000001641 gel filtration chromatography Methods 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 230000001744 histochemical Effects 0.000 description 1
- 230000028996 humoral immune response Effects 0.000 description 1
- 230000004727 humoral immunity Effects 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 230000002209 hydrophobic Effects 0.000 description 1
- 229920003063 hydroxymethyl cellulose Polymers 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000001597 immobilized metal affinity chromatography Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 108010023260 immunoglobulin Fv Proteins 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 230000036046 immunoreaction Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory Effects 0.000 description 1
- 230000002452 interceptive Effects 0.000 description 1
- 229940079866 intestinal antibiotics Drugs 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 238000006317 isomerization reaction Methods 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- BJHIKXHVCXFQLS-PYWDMBMJSA-N keto-D-sorbose Chemical compound OC[C@@H](O)[C@H](O)[C@@H](O)C(=O)CO BJHIKXHVCXFQLS-PYWDMBMJSA-N 0.000 description 1
- 201000006370 kidney failure Diseases 0.000 description 1
- 239000000832 lactitol Substances 0.000 description 1
- 229960003451 lactitol Drugs 0.000 description 1
- 235000010448 lactitol Nutrition 0.000 description 1
- 235000019136 lipoic acid Nutrition 0.000 description 1
- 210000002809 long lived plasma cell Anatomy 0.000 description 1
- 238000002595 magnetic resonance imaging Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035800 maturation Effects 0.000 description 1
- 229960001924 melphalan Drugs 0.000 description 1
- 210000001806 memory B lymphocyte Anatomy 0.000 description 1
- 229920002106 messenger RNA Polymers 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 239000004005 microsphere Substances 0.000 description 1
- 230000003278 mimic Effects 0.000 description 1
- 229910003455 mixed metal oxide Inorganic materials 0.000 description 1
- 230000000051 modifying Effects 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 1
- 235000019796 monopotassium phosphate Nutrition 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 101700045377 mvp1 Proteins 0.000 description 1
- 210000001167 myeloblast Anatomy 0.000 description 1
- 210000004160 naive B lymphocyte Anatomy 0.000 description 1
- 239000002088 nanocapsule Substances 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 239000000346 nonvolatile oil Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 235000019198 oils Nutrition 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 229940005935 ophthalmologic Antibiotics Drugs 0.000 description 1
- 230000003287 optical Effects 0.000 description 1
- 150000002895 organic esters Chemical class 0.000 description 1
- 230000001590 oxidative Effects 0.000 description 1
- 238000004091 panning Methods 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000149 penetrating Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 230000000737 periodic Effects 0.000 description 1
- 230000002093 peripheral Effects 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- 108010084572 phenylalanyl-valine Proteins 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- 150000008104 phosphatidylethanolamines Chemical class 0.000 description 1
- 150000003904 phospholipids Chemical class 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000000865 phosphorylative Effects 0.000 description 1
- 239000002504 physiological saline solution Substances 0.000 description 1
- 229920001993 poloxamer 188 Polymers 0.000 description 1
- 229920000333 poly(propyleneimine) Polymers 0.000 description 1
- 230000001402 polyadenylating Effects 0.000 description 1
- 108010054442 polyalanine Proteins 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920000023 polynucleotide Polymers 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000002600 positron emission tomography Methods 0.000 description 1
- 230000001124 posttranscriptional Effects 0.000 description 1
- 230000001323 posttranslational Effects 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 230000001686 pro-survival Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000002797 proteolythic Effects 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 239000003638 reducing agent Substances 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 238000002702 ribosome display Methods 0.000 description 1
- 102220320590 rs1554306309 Human genes 0.000 description 1
- 102220094060 rs749212640 Human genes 0.000 description 1
- 102220274075 rs749430925 Human genes 0.000 description 1
- 102220058912 rs786203228 Human genes 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000002864 sequence alignment Methods 0.000 description 1
- 210000002619 short lived plasma cell Anatomy 0.000 description 1
- 231100000486 side effect Toxicity 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- KEAYESYHFKHZAL-UHFFFAOYSA-N sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- GNBVPFITFYNRCN-UHFFFAOYSA-M sodium thioglycolate Chemical compound [Na+].[O-]C(=O)CS GNBVPFITFYNRCN-UHFFFAOYSA-M 0.000 description 1
- PHPHRWZFQRLJIA-UZUGEDCSSA-M sodium;(2S,3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol;chloride Chemical compound [Na+].[Cl-].OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@@H]1O PHPHRWZFQRLJIA-UZUGEDCSSA-M 0.000 description 1
- 230000000392 somatic Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000002269 spontaneous Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000010186 staining Methods 0.000 description 1
- 239000008174 sterile solution Substances 0.000 description 1
- 150000003431 steroids Chemical class 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 201000000498 stomach carcinoma Diseases 0.000 description 1
- 239000012536 storage buffer Substances 0.000 description 1
- 229940086735 succinate Drugs 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-L succinate(2-) Chemical compound [O-]C(=O)CCC([O-])=O KDYFGRWQOYBRFD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 1
- 230000003390 teratogenic Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229960002663 thioctic acid Drugs 0.000 description 1
- 230000000699 topical Effects 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 102000035402 transmembrane proteins Human genes 0.000 description 1
- 108091005683 transmembrane proteins Proteins 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 238000005353 urine analysis Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- OGWKCGZFUXNPDA-XQKSVPLYSA-N vincristine Chemical compound C([N@]1C[C@@H](C[C@]2(C(=O)OC)C=3C(=CC4=C([C@]56[C@H]([C@@]([C@H](OC(C)=O)[C@]7(CC)C=CCN([C@H]67)CC5)(O)C(=O)OC)N4C=O)C=3)OC)C[C@@](C1)(O)CC)CC1=C2NC2=CC=CC=C12 OGWKCGZFUXNPDA-XQKSVPLYSA-N 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 238000002424 x-ray crystallography Methods 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N α-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/57—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
- A61K2039/575—Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 humoral response
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/0005—Vertebrate antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/04—Antineoplastic agents specific for metastasis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/70578—NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2803—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily
- C07K16/2809—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the immunoglobulin superfamily against the T-cell receptor (TcR)-CD3 complex
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2875—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF/TNF superfamily, e.g. CD70, CD95L, CD153, CD154
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2878—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against the NGF-receptor/TNF-receptor superfamily, e.g. CD27, CD30, CD40, CD95
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/46—Hybrid immunoglobulins
- C07K16/468—Immunoglobulins having two or more different antigen binding sites, e.g. multifunctional antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/31—Immunoglobulins specific features characterized by aspects of specificity or valency multispecific
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/60—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments
- C07K2317/62—Immunoglobulins specific features characterized by non-natural combinations of immunoglobulin fragments comprising only variable region components
- C07K2317/622—Single chain antibody (scFv)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/94—Stability, e.g. half-life, pH, temperature or enzyme-resistance
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/20—Fusion polypeptide containing a tag with affinity for a non-protein ligand
- C07K2319/21—Fusion polypeptide containing a tag with affinity for a non-protein ligand containing a His-tag
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/30—Non-immunoglobulin-derived peptide or protein having an immunoglobulin constant or Fc region, or a fragment thereof, attached thereto
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/31—Fusion polypeptide fusions, other than Fc, for prolonged plasma life, e.g. albumin
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/40—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
- C07K2319/43—Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation containing a FLAG-tag
Abstract
Disclosed is a binding molecule which is at least bispecific comprising a first and a second binding domain, wherein: (a) the first binding domain binds to epitope cluster 3 of BCMA (CQLRCSSNTPPLTCQRYC); and (b) the second binding domain binds to the T cell CD3 receptor complex; and wherein epitope cluster 3 of BCMA corresponds to amino acid residues 24 to 41 of the sequence as depicted in SEQ ID NO: 1002. itope cluster 3 of BCMA corresponds to amino acid residues 24 to 41 of the sequence as depicted in SEQ ID NO: 1002.
Description
Binding molecules for BCMA and CD3
The present invention relates to a binding molecule which is at least bispecific comprising a first
and a second binding , n the first binding domain is capable of binding to epitope
cluster3 of BCMA, and the second binding domain is capable of binding to the Tcell CD3
receptor x. Moreover, the invention provides a nucleic acid sequence ng the
binding molecule, a vector sing said c acid sequence and a host cell transformed or
transfected with said . Furthermore, the invention provides a process for the production of
the binding molecule of the invention, a medical use of said binding molecule and a kit
comprising said binding le.
BCMA (B-cell maturation antigen, TNFRSF17, CD269) is a transmembrane protein belonging to
the TNF receptor super family. BCMA is originally reported as an integral membrane protein in
the Golgi apparatus of human mature B lymphocytes, i.e., as an intracellular protein (Gras et al.,
(1995) International Immunol 093-1105) showing that BCMA seems to have an important
role during B-cell development and homeostasis. The finding of Gras et al. might be associated
with the fact that the BCMA protein that was described in Gras et al. is, because of a
chromosomal translocation, a fusion n between BCMA and lL-2. Meanwhile BCMA is,
r, established to be a B-cell marker that is essential for B-cell development and
homeostasis (Schliemann et al., (2001) Science 293 (5537):2111-2114) due to its presumably
essential interaction with its ligands BAFF (B cell activating factor), also designated as TALL-1
or TNFSF13B, and APRIL (A proliferation-inducing ligand).
BCMA expression is restricted to the B-cell lineage and mainly present on plasma cells and
plasmablasts and to some extent on memory B-cells, but lly absent on peripheral and
3O naive B-cells. BCMA is also sed on multiple myeloma (MM) cells. Together with its family
members transmembrane activator and cyclophylin ligand interactor (TACI) and B cell activation
factor of TNF family receptor (BAFF-R), BCMA regulates different aspects of humoral immunity,
B-cell development and tasis. Expression of BCMA appears rather late in B-cell
differentiation and contributes to the long term survival of plasmablasts and plasma cells in the
bone marrow. Targeted deletion of the BCMA gene in mice does not affect the generation of
mature B-cells, the quality and magnitude of humoral immune responses, formation of germinal
center and the generation of short-lived plasma cells. However, such mice have significantly
d numbers of long-lived plasma cells in the bone marrow, indicating the importance of
BCMA for their survival (O’Connor et al., 2004).
In line with this finding, BCMA also supports growth and survival of multiple myeloma (MM)
cells. Novak et al found that MM cell lines and freshly isolated MM cells express BCMA and
TACI protein on their cell surfaces and have variable expression of BAFF-R protein on their cell
e (Novak et al., (2004) Blood 103(2):689—694).
Multiple myeloma (MM) is the second most common hematological malignancy and constitutes
2% of all cancer deaths. MM is a genous disease and caused by mostly by chromosome
translocations inter alia t(11;14),t(4;14),t(8;14),del(13),del(17) (Drach et al., (1998) Blood
92(3):802-809; Gertz et al., (2005) Blood 106(8):2837-2840; Facon et al., (2001) Blood
97(6):1566-1571). MM-affected patients may experience a variety of disease-related symptoms
due to, bone marrow infiltration, bone destruction, renal failure, immunodeficiency, and the
psychosocial burden of a cancer diagnosis. As of 2006, the 5-year relative survival rate for MM
was approximately 34% highlighting that MM is a difficult-to-treat disease where there are
currently no curative options.
Exciting new therapies such as chemotherapy and stem cell transplantation approaches are
becoming available and have improved al rates but often bring unwanted side effects, and
thus MM remains still incurable (Lee et al., (2004) J Natl Compr Canc Netw 8 (4): 379-383). To
date, the two most ntly used treatment options for patients with multiple myeloma are
ations of steroids, thalidomide, lenalidomide, bortezomib or various cytotoxic agents, and
for younger patients high dose chemotherapy concepts with autologous stem cell
transplantation.
Most lants are of the gous type, i.e. using the patient’s own cells. Such transplants,
although not curative, have been shown to prolong life in selected ts. They can be
performed as initial therapy in newly diagnosed patients or at the time of relapse. Sometimes, in
ed patients, more than one lant may be recommended to adequately l the
disease.
Chemotherapeutic agents used for treating the disease are Cyclophosphamid, Doxorubicin,
Vincristin and Melphalan, combination ies with immunomodulating agents such as
thalidomide mid®), lenalidomide (Revlimid®), bortezomib (Velcade®) and corticosteroids
(e.g. Dexamethasone) have emerged as important options for the treatment of myeloma, both in
newly diagnosed patients and in patients with advanced disease in whom chemotherapy or
transplantation have .
The currently used therapies are usually not curative. Stem cell transplantation may not be an
option for many patients e of advanced age, presence of other serious illness, or other
al limitations. Chemotherapy only partially controls multiple myeloma, it rarely leads to
complete remission. Thus, there is an urgent need for new, innovative treatments.
ci et al. (Blood, 2005; 105(10) identified pecific antibodies in le myeloma
patients after they had ed donor lymphocyte ons (DLI). Serum of these patients was
capable of mediating BCMA-specific cell lysis by ADCC and CDC and was solely detected in
patients with anti-tumor responses (4/9), but not in non-responding patients (0/6). The authors
speculate that induction of BCMA-specific antibodies contributes to elimination of myeloma cells
and long-term remission of patients.
Ryan et al. (Mol. Cancer Ther. 2007; 6(11) reported the generation of an antagonistic BCMA-
specific antibody that prevents NF-KB activation which is associated with a potent pro-survival
signaling pathway in normal and malignant s. In addition, the antibody conferred potent
antibody-dependent cell-mediated cytotoxicity (ADCC) to multiple myeloma cell lines in vitro
which was significantly enhanced by Fc-engineering.
Other approaches in fighting blood-borne tumors or autoimmune disorders focus on the
interaction between BAFF and APRIL, i.e., ligands of the TNF ligand super family, and their
receptors TACI, BAFF-R and BCMA which are activated by BAFF and/or APRIL. For example,
by fusing the Fc-domain of human immunoglobulin to TACI, Zymogenetics, Inc. has generated
Atacicept (TACI-lg) to neutralize both these ligands and prevent receptor activation. Atacicept is
currently in clinical trials for the treatment of Systemic Lupus matosus (SLE, phase III),
multiple sclerosis (MS, phase II) and rheumatoid arthritis (RA, phase II), as well as in phase I
clinical trials for the treatment of the B-cell malignancies chronic lymphocytic leukaemia (CLL),
non-Hodgkins lymphoma (NHL) and MM. ln preclinical s atacicept reduces growth and
survival of primary MM cells and MM cell lines in vitro (Moreaux et al, Blood, 2004, 103) and in
vivo by et al, Leukemia, 2008, 22, ), demonstrating the relevance of TACI ligands
for MM cells. Since most MM cells and derived cell lines express BCMA and TACI, both
receptors might contribute to ligand-mediated growth and survival. These data suggest that
antagonizing both BCMA and TACI might be beneficial in the treatment of plasma cell disorders.
In addition, BCMA-specific antibodies that cross react with TACI have been
described (WO 02/066516).
Human Genome Sciences and GlaxoSmithKline have developed an dy
targeting BAFF which is called Belimumab. Belimumab blocks the binding of soluble
BAFF to its receptors BAFF-R, BCMA and TACI on B cells. Belimumab does not bind
B cells directly, but by binding BAFF, belimumab inhibits the survival of B cells,
including autoreactive B cells, and reduces the differentiation of B cells into
immunoglobulin-producing plasma cells.
Nevertheless, despite the fact that BCMA; BAFF-R and TACI, i.e., B cell receptors
belonging to the TNF receptor super family, and their ligands BAFF and APRIL are
subject to therapies in fighting against cancer and/or autoimmune disorders, there is
still a need for having available further options for the treatment of such medical
ions.
Accordingly, there is provided herewith means and methods for the solution of this
m in the form of a binding molecule which is at least bispecific with one g
domain to cytotoxic cells, i.e., cytotoxic T cells, and with a second g domain to
BCMA.
Thus, in a first aspect the t ion provides a binding molecule which is at
least bispecific comprising a first and a second binding domain, wherein
(a) the first binding domain is capable of binding to epitope cluster 3 of BCMA
(CQLRCSSNTPPLTCQRYC) (SEQ ID NO:1016); and
(b) the second binding domain is capable of binding to the T cell CD3 receptor
complex; and
wherein epitope cluster 3 of BCMA corresponds to amino acid residues 24 to 41 of
the sequence as depicted in SEQ ID NO: 1002.
In another aspect the present invention provides a binding molecule which is at least
bispecific comprising a first and a second binding domain, wherein
(a) the first binding domain binds to epitope cluster 3 of BCMA
SSNTPPLTCQRYC); and
(b) the second binding domain binds to the T cell CD3 or complex;
wherein epitope cluster 3 of BCMA corresponds to amino acid residues 24 to 41 of
the sequence as depicted in SEQ ID NO: 1002.
It must be noted that as used herein, the singular forms “a”, “an”, and “the”, include
plural references unless the context clearly indicates otherwise. Thus, for example,
reference to “a reagent” includes one or more of such different reagents and
reference to “the method” includes reference to equivalent steps and methods known
to those of ordinary skill in the art that could be modified or tuted for the
methods described herein.
Unless otherwise indicated, the term "at least" preceding a series of elements is to be
understood to refer to every element in the . Those skilled in the art will
recognize, or be able to ascertain using no more than routine mentation, many
lents to the specific
[Text continued on page 5]
embodiments of the invention described herein. Such equivalents are intended to be
encompassed by the present ion.
The term "and/or" wherever used herein es the meaning of "and", "or" and "all or any
other combination of the elements ted by said term".
The term "about" or "approximately" as used herein means within i20%, preferably within
145%, more preferably within i10%, and most preferably within i5% of a given value or range.
Throughout this specification and the claims which follow, unless the context requires othenNise,
the word “comprise”, and variations such as ises” and “comprising”, will be understood to
imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion
of any other integer or step or group of integer or step. When used herein the term “comprising”
can be substituted with the term “containing” or “including” or sometimes when used herein with
the term “having”.
When used herein “consisting of' excludes any element, step, or ingredient not specified in the
claim element. When used herein, "consisting essentially of" does not exclude materials or
steps that do not materially affect the basic and novel teristics of the claim.
In each ce herein any of the terms "comprising", "consisting essentially of" and "consisting
of' may be replaced with either of the other two terms.
Epitope cluster 3 is comprised by the extracellular domain of BCMA. The "BCMA extracellular
domain" or "BCMA ECD" refers to a form of BCMA which is essentially free of embrane
and asmic domains of BCMA. It will be understood by the skilled artisan that the
transmembrane domain identified for the BCMA polypeptide of the present invention is identified
pursuant to criteria routinely employed in the art for identifying that type of hobic .
The exact boundaries of a transmembrane domain may vary but most likely by no more than
about 5 amino acids at either end of the domain specifically mentioned herein. A preferred
BCMA ECD is shown in SEQ ID NO: 1007.
The T cell CD3 receptor complex is a protein complex and is composed of four distinct chains.
In mammals, the complex contains a CD3v chain, a CD36 chain, and two CD35 (epsilon)
chains. These chains associate with a molecule known as the T cell receptor (TCR) and the
C chain to generate an activation signal in T lymphocytes.
The redirected lysis of target cells via the tment of T cells by bispecific molecules es
cytolytic synapse formation and delivery of perforin and mes. The engaged T cells are
capable of serial target cell lysis, and are not affected by immune escape mechanisms
interfering with peptide antigen processing and presentation, or clonal T cell differentiation; see,
for example, .
The term “binding molecule” in the sense of the t sure indicates any molecule
capable of (specifically) binding to, interacting with or izing the target molecules BCMA
and CD3. According to the present invention, binding molecules are preferably polypeptides.
Such polypeptides may include proteinaceous parts and non-proteinaceous parts (e.g. chemical
linkers or chemical cross-linking agents such as glutaraldehyde).
A binding molecule, so to say, provides the scaffold for said one or more binding domains so
that said binding domains can bind/interact with the target molecules BCMA and CD3. For
example, such a scaffold could be provided by protein A, in particular, the Z-domain thereof
(affibodies), lmmE7 (immunity proteins), BPTl/APPI (Kunitz domains), Ras-binding protein AF-6
(PDZ-domains), charybdotoxin (Scorpion toxin), , Min-23 (knottins), lipocalins
(anticalins), neokarzinostatin, a fibronectin domain, an ankyrin consensus repeat domain or
thioredoxin (Skerra, Curr. Opin. Biotechnol. 18, 295-304 (2005); Hosse et al., Protein Sci. 15,
14-27 ; Nicaise et al., Protein Sci. 13, 1882-1891 (2004) ; Nygren and Uhlen, Curr. Opin.
Struc. Biol. 7, 463-469 (1997)). A preferred binding molecule is an dy.
It is envisaged that the binding molecule is ed by (or obtainable by) phage-display or
library screening s rather than by grafting CDR sequences from a pre-existing
(monoclonal) antibody into a scaffold, for example, a scaffold as sed herein.
The term “bispecific” as used herein refers to a binding molecule which comprises at least a first
and a second g domain, wherein the first binding domain is capable of binding to one
3O antigen or , and the second g domain is capable of binding to another antigen or
target. The ng molecule” of the invention also comprises multispecific binding molecules
such as e.g. cific binding molecules, the latter ones including three binding domains.
It is also envisaged that the binding molecule of the invention has, in addition to its function to
bind to the target molecules BCMA and CD3, a further function. In this format, the binding
molecule is a tri-or multifunctional binding molecule by targeting plasma cells through binding to
BCMA, mediating cytotoxic T cell activity through CD3 g and ing a further function
such as a fully functional Fc constant domain ing antibody-dependent cellular cytotoxicity
through recruitment of effector cells like NK cells, a label (fluorescent etc.), a therapeutic agent
such as, e.g. a toxin or radionuclide, and/or means to enhance serum half-life, etc.
The term "binding domain" characterizes in connection with the present invention a domain
which is capable of specifically binding to/interacting with a given target epitope or a given
target site on the target molecules BCMA and CD3.
Binding domains can be derived from a binding domain donor such as for e an antibody,
protein A, lmmE7 (immunity proteins), PPI (Kunitz domains), Ras-binding protein AF-6
(PDZ-domains), charybdotoxin (Scorpion toxin), CTLA-4, Min-23 (knottins), lipocalins
(anticalins), neokarzinostatin, a fibronectin domain, an ankyrin consensus repeat domain or
thioredoxin (Skerra, Curr. Opin. hnol. 18, 295-304 (2005); Hosse et al., Protein Sci. 15,
14-27 (2006); Nicaise et al., Protein Sci. 13, 1882-1891 (2004) ; Nygren and Uhlen, Curr. Opin.
Struc. Biol. 7, 463-469 (1997)). A preferred binding domain is d from an antibody. It is
ged that a binding domain of the present invention comprises at least said part of any of
the aforementioned binding domains that is required for binding to/interacting with a given target
epitope or a given target site on the target molecules BCMA and CD3.
It is envisaged that the binding domain of the entioned binding domain donors is
characterized by that part of these donors that is responsible for binding the respective target,
i.e. when that part is removed from the binding domain donor, said donor loses its binding
capability. “Loses” means a reduction of at least 50% of the binding lity when compared
with the g donor. Methods to map these binding sites are well known in the art — it is
ore within the standard dge of the skilled person to locate/map the binding site of a
binding domain donor and, thereby, to “derive” said binding domain from the respective binding
domain .
3O The term "epitope" refers to a site on an antigen to which a binding domain, such as an antibody
or immunoglobulin or derivative or fragment of an antibody or of an immunoglobulin, specifically
binds. An “epitope” is antigenic and thus the term epitope is sometimes also referred to herein
as “antigenic structure” or “antigenic determinant”. Thus, the binding domain is an "antigen-
interaction-site". Said g/interaction is also understood to define a "specific recognition". In
one example, said g domain which (specifically) binds to / interacts with a given target
epitope or a given target site on the target molecules BCMA and CD3 is an antibody or
immunoglobulin, and said binding domain is a VH and/or VL region of an antibody or of an
immunoglobulin.
“Epitopes” can be formed both by contiguous amino acids or non-contiguous amino acids
juxtaposed by tertiary folding of a protein. A "linear e" is an epitope where an amino acid
primary ce comprises the recognized epitope. A linear epitope lly includes at least
3 or at least 4, and more usually, at least 5 or at least 6 or at least 7, for example, about 8 to
about 10 amino acids in a unique sequence.
A "conformational epitope", in contrast to a linear epitope, is an epitope wherein the primary
ce of the amino acids comprising the epitope is not the sole defining component of the
epitope recognized (e.g., an epitope wherein the primary sequence of amino acids is not
necessarily recognized by the binding ). Typically a conformational epitope comprises an
increased number of amino acids ve to a linear epitope. With regard to recognition of
conformational epitopes, the binding domain recognizes a three-dimensional structure of the
antigen, preferably a e or protein or fragment thereof (in the context of the present
invention, the antigen for one of the binding s is comprised within the BCMA protein).
For example, when a protein molecule folds to form a dimensional structure, certain
amino acids and/or the ptide backbone g the conformational e become
juxtaposed enabling the antibody to recognize the epitope. Methods of determining the
conformation of epitopes include, but are not limited to, x-ray crystallography, two-dimensional
nuclear magnetic resonance (2D-NMR) spectroscopy and site-directed spin ing and
electron paramagnetic resonance (EPR) spectroscopy. Moreover, the provided examples
describe a further method to test whether a given binding domain binds to one or more epitope
cluster(s) of a given protein, in ular BCMA.
In one aspect, the first binding domain of the present invention is capable of binding to epitope
cluster 3 of human BCMA, preferably human BCMA ECD. Accordingly, when the respective
epitope cluster in the human BCMA protein is exchanged with the respective epitope cluster of
a murine BCMA antigen (resulting in a construct comprising human BCMA, wherein human
3O epitope cluster 3 is replaced with murine epitope cluster 3; see SEQ ID NO: 1011), a decrease
in the binding of the binding domain will occur. Said decrease is preferably at least 10%, 20%,
%, 40%, 50%; more preferably at least 60%, 70%, 80%, 90%, 95% or even 100% in
comparison to the respective epitope cluster in the human BCMA protein, whereby binding to
the respective epitope cluster in the human BCMA protein is set to be 100%. It is envisaged that
the aforementioned human BCMA/murine BCMA as are expressed in CHO cells. It is
also ged that the human BCMA/murine BCMA chimeras are fused with a transmembrane
domain and/or cytoplasmic domain of a ent membrane-bound protein such as EpCAM; see
Figure 2a.
A method to test this loss of binding due to exchange with the tive epitope cluster of a
non-human (e.g. ) BCMA antigen is described in the appended Examples, in particular in
Examples 1-3. A further method to ine the contribution of a specific residue of a target
n to the recognition by a given binding le or binding domain is alanine scanning
(see e.g. Morrison KL & Weiss GA. Cur Opin Chem Biol. 2001 Jun;5(3):302—7), where each
residue to be analyzed is ed by alanine, e.g. via site-directed mutagenesis. Alanine is
used because of its non-bulky, chemically inert, methyl functional group that nevertheless
mimics the secondary structure references that many of the other amino acids possess.
Sometimes bulky amino acids such as valine or leucine can be used in cases where
conservation of the size of mutated residues is desired. Alanine scanning is a mature
technology which has been used for a long period of time.
As used herein, the term “epitope cluster” denotes the entirety of epitopes lying in a defined
uous stretch of an antigen. An epitope cluster can se one, two or more epitopes.
The epitope clusters that were defined — in the context of the t invention — in the
ellular domain of BCMA are described above and depicted in Figure 1.
The terms “(capable of) binding to”, "specifically recognizing", “directed to” and “reacting with”
mean in accordance with this invention that a binding domain is capable of specifically
interacting with one or more, preferably at least two, more preferably at least three and most
preferably at least four amino acids of an epitope.
As used herein, the terms "specifically interacting", “specifically binding” or “specifically bind(s)”
mean that a binding domain exhibits appreciable affinity for a particular protein or antigen and,
generally, does not exhibit significant reactivity with proteins or antigens other than BCMA or
CD3. “Appreciable affinity” includes binding with an affinity of about 10'6M (KD) or stronger.
Preferably, g is ered specific when binding affinity is about 10'12 to 10'8 M, 10'12 to
3O 10'9 M, 10'12 to 104° M, 10'11 to 10'8 M, preferably of about 10'11 to 10'9 M. Whether a binding
domain specifically reacts with or binds to a target can be tested y by, inter alia, comparing
the reaction of said binding domain with a target protein or antigen with the reaction of said
binding domain with proteins or antigens other than BCMA or CD3. Preferably, a binding
domain of the invention does not essentially bind or is not capable of binding to proteins or
antigens other than BCMA or CD3 (i.e. the first binding domain is not capable of binding to
proteins other than BCMA and the second g domain is not capable of binding to ns
other than CD3).
The term “does not essentially bind”, or “is not capable of binding” means that a binding domain
of the present invention does not bind another protein or antigen other than BCMA or CD3, i.e.,
does not show reactivity of more than 30%, preferably not more than 20%, more preferably not
more than 10%, particularly preferably not more than 9%, 8%, 7%, 6% or 5% with proteins or
antigens other than BCMA or CD3, whereby binding to BCMA or CD3, respectively, is set to be
100%.
Specific binding is believed to be effected by specific motifs in the amino acid ce of the
binding domain and the n. Thus, binding is achieved as a result of their primary,
secondary and/or tertiary structure as well as the result of secondary modifications of said
structures. The specific interaction of the antigen-interaction-site with its specific antigen may
result in a simple binding of said site to the antigen. Moreover, the specific interaction of the
antigen-interaction-site with its specific antigen may alternatively or additionally result in the
initiation of a signal, e.g. due to the induction of a change of the conformation of the antigen, an
oligomerization of the antigen, etc.
In one aspect, the first binding domain of the present invention binds to epitope cluster 3 of
human BCMA and is further capable of binding to epitope cluster 3 of macaque BCMA such as
BCMA from Macaca a (SEQ ID NO:1017) or Macaca fascicularis (SEQ ID NO:1017). It is
envisaged that the first g domain does or does not bind to murine BCMA.
Accordingly, in one embodiment, a binding domain which binds to human BCMA, in particular to
e cluster 3 of the extracellular protein domain of BCMA formed by amino acid residues 24
to 41 of the human sequence as ed in SEQ ID NO: 1002, also binds to macaque BCMA,
in particular to epitope cluster 3 of the ellular n domain of BCMA formed by amino
acid residues 24 to 41 of the macaque BCMA sequence as depicted in SEQ ID NO: 1006.
3O In one ment, a first binding domain of a binding molecule is capable of binding to e
cluster 3 of BCMA, wherein epitope cluster 3 of BCMA corresponds to amino acid residues 24
to 41 of the sequence as depicted in SEQ ID NO: 1002 (human BCMA full-length polypeptide)
or SEQ ID NO: 1007 (human BCMA extracellular domain: amino acids 1-54 of SEQ ID
NO: 1002).
In one aspect of the present invention, the first g domain of the binding molecule is
additionally or alternatively capable of binding to epitope cluster 3 of Cal/ithrix jacchus,
Saguinus oedipus and/or Saimiri sciureus BCMA.
Proteins (including fragments thereof, preferably biologically active fragments, and peptides,
usually having less than 30 amino acids) comprise one or more amino acids coupled to each
other via a nt peptide bond (resulting in a chain of amino acids). The term "polypeptide"
as used herein describes a group of les, which t of more than 30 amino acids.
Polypeptides may further form multimers such as dimers, trimers and higher oligomers, i.e.
consisting of more than one polypeptide molecule. Polypeptide molecules forming such ,
trimers etc. may be identical or non-identical. The corresponding higher order ures of such
multimers are, consequently, termed homo- or heterodimers, homo- or heterotrimers etc. An
e for a romultimer is an antibody molecule, which, in its naturally occurring form,
consists of two identical light polypeptide chains and two identical heavy polypeptide chains.
The terms "polypeptide" and "protein" also refer to naturally modified polypeptides/proteins
wherein the modification is effected e.g. by post-translational modifications like glycosylation,
acetylation, phosphorylation and the like. A “polypeptide” when referred to herein may also be
chemically modified such as pegylated. Such modifications are well known in the art.
In another aspect of the invention, the second binding domain is capable of binding to CD3
epsilon. In still another aspect of the invention, the second binding domain is capable of binding
to human CD3 and to macaque CD3, ably to human CD3 epsilon and to e CD3
epsilon. Additionally or alternatively, the second binding domain is capable of binding to
hrix jacchus, Saguinus oedipus and/or Saimiri sciureus CD3 epsilon. According to these
embodiments, one or both binding domains of the binding molecule of the invention are
preferably species specific for members of the mammalian order of primates. Cross-
species specific CD3 binding domains are, for example, described in .
It is particularly preferred for the binding molecule of the present invention that the second
binding domain capable of binding to the T cell CD3 receptor complex comprises a VL region
sing CDR-L‘l, CDR-L2 and CDR-L3 selected from:
(a) CDR-L1 as depicted in SEQ ID NO: 27 of WO 19567, CDR-L2 as depicted in
SEQID NO: 28 of and CDR-L3 as depicted in SEQID NO: 29 of
WC 2008/1 1 9567;
(b) CDR-L1 as depicted in SEQ ID NO: 117 of WO 19567, CDR-L2 as depicted in
SEQ ID NO: 118 of and CDR-L3 as depicted in SEQ ID NO: 119 of
WO 19567; and
(c) CDR-L1 as depicted in SEQ ID NO: 153 of , CDR-L2 as depicted in
SEQ ID NO: 154 of WO 19567 and CDR-L3 as depicted in SEQ ID NO: 155 of
In an alternatively preferred embodiment of the binding molecule of the present invention, the
second binding domain capable of binding to the T cell CD3 receptor complex comprises a VH
region comprising CDR-H 1, CDR-H2 and CDR-H3 selected from:
(a) CDR-H1 as depicted in SEQ ID NO: 12 of , CDR-H2 as depicted in
SEQ ID NO: 13 of and CDR-H3 as depicted in SEQ ID NO: 14 of
(b) CDR-H1 as depicted in SEQ ID NO: 30 of , CDR-H2 as ed in
SEQID NO: 31 of and CDR-H3 as depicted in SEQID NO: 32 of
(C) CDR-H1 as depicted in SEQ ID NO: 48 of , CDR-H2 as depicted in
SEQID NO: 49 of WO 19567 and CDR-H3 as depicted in SEQID NO: 50 of
(d) CDR-H1 as depicted in SEQ ID NO: 66 of , CDR-H2 as depicted in
SEQID NO: 67 of and CDR-H3 as depicted in SEQID NO: 68 of
(e) CDR-H1 as ed in SEQ ID NO: 84 of , CDR-H2 as depicted in
SEQID NO: 85 of and CDR-H3 as depicted in SEQID NO: 86 of
;
(f) CDR-H1 as depicted in SEQ ID NO: 102 of , CDR-H2 as ed in
SEQ ID NO: 103 of and CDR-H3 as depicted in SEQ ID NO: 104 of
(g) CDR-H1 as depicted in SEQ ID NO: 120 of , CDR-H2 as depicted in
SEQ ID NO: 121 of and CDR-H3 as depicted in SEQ ID NO: 122 of
(h) CDR-H1 as depicted in SEQ ID NO: 138 of , CDR-H2 as depicted in
SEQ ID NO: 139 of and CDR-H3 as depicted in SEQ ID NO: 140 of
(i) CDR-H1 as ed in SEQ ID NO: 156 of , CDR-H2 as depicted in
SEQ ID NO: 157 of and CDR-H3 as depicted in SEQ ID NO: 158 of
; and
(j) CDR-H1 as depicted in SEQ ID NO: 174 of WO 19567, CDR-H2 as depicted in
SEQ ID NO: 175 of and CDR-H3 as ed in SEQ ID NO: 176 of
It is further preferred for the binding molecule of the present invention that the second g
domain capable of binding to the T cell CD3 receptor x comprises a VL region selected
from the group consisting of a VL region as depicted in SEQ ID NO: 35, 39, 125, 129, 161 or
165 of .
It is alternatively red that the second binding domain e of binding to the T cell CD3
receptor complex comprises a VH region selected from the group consisting of a VH region as
depicted in SEQ ID NO: 15, 19, 33, 37, 51, 55, 69, 73, 87, 91, 105, 109, 123, 127, 141, 145,
159, 163, 177 or 181 of .
More preferably, the binding molecule of the present ion is characterized by the second
binding domain capable of binding to the T cell CD3 receptor complex comprising a VL region
and a VH region selected from the group consisting of:
(a) a VL region as depicted in SEQ ID NO: 17 or 21 of and a VH region
as depicted in SEQ ID NO: 15 or 19 of ;
(b) a VL region as depicted in SEQ ID NO: 35 or 39 of and a VH region
as depicted in SEQ ID NO: 33 or 37 of ;
(c) a VL region as depicted in SEQ ID NO: 53 or 57 of and a VH region
as depicted in SEQ ID NO: 51 or 55 of ;
(d) a VL region as depicted in SEQ ID NO: 71 or 75 of and a VH region
as depicted in SEQ ID NO: 69 or 73 of ;
(e) a VL region as depicted in SEQ ID NO: 89 or 93 of and a VH region
as depicted in SEQ ID NO: 87 or 91 of ;
(f) a VL region as depicted in SEQ ID NO: 107 or 111 of and a VH region
as depicted in SEQ ID NO: 105 or 109 of ;
(g) a VL region as depicted in SEQ ID NO: 125 or 129 of and a VH region
as depicted in SEQ ID NO: 123 or 127 of ;
(h) a VL region as depicted in SEQ ID NO: 143 or 147 of and a VH region
as depicted in SEQ ID NO: 141 or 145 of ;
(i) a VL region as depicted in SEQ ID NO: 161 or 165 of and a VH region
as depicted in SEQ ID NO: 159 or 163 of WO 19567; and
(j) a VL region as depicted in SEQ ID NO: 179 or 183 of and a VH region
as ed in SEQ ID NO: 177 or 181 of .
ing to a preferred embodiment of the binding molecule of the t invention, in
particular the second binding domain capable of binding to the T cell CD3 receptor complex, the
pairs of VH-regions and VL-regions are in the format of a single chain antibody . The VH
and VL regions are arranged in the order VH-VL or VL-VH. It is preferred that the VH-region is
oned N-terminally to a linker sequence. The VL-region is positioned C-terminally of the
anersequence.
A preferred embodiment of the above described binding molecule of the present invention is
characterized by the second binding domain capable of binding to the Tcell CD3 receptor
complex comprising an amino acid sequence selected from the group consisting of SEQ ID
NOs: 23, 25, 41, 43, 59, 61, 77, 79, 95, 97, 113, 115, 131, 133, 149, 151, 167, 169, 185 or 187
of .
The affinity of the first binding domain for human BCMA is preferably 515 nM, more preferably
s10nM, even more preferably 55 nM, even more preferably 51 nM, even more preferably
$0.5 nM, even more preferably $0.1 nM, and most preferably $0.05 nM. The affinity of the first
binding domain for macaque BCMA is preferably 515 nM, more preferably 510 nM, even more
preferably 55 nM, even more preferably 51 nM, even more preferably $0.5 nM, even more
preferably $0.1nM, and most preferably $0.05 nM or even $0.01 nM. The ty can be
measured for example in a Biacore assay or in a Scatchard assay, e.g. as described in the
Examples. The affinity gap for g to macaque BCMA versus human BCMA is preferably
[1:10—1:5] or [5:1-10:1], more preferably [1:5-5:1], and most preferably [1:2-3:1] or even [1:1-
3O 3:1]. Other s of determining the affinity are well-known to the skilled person.
Cytotoxicity mediated by BCMA/CD3 bispecific binding molecules can be measured in various
ways. or cells can be e.g. stimulated ed (human) CD8 positive Tcells or
unstimulated (human) peripheral blood mononuclear cells (PBMC). If the target cells are of
macaque origin or express or are transfected with macaque BCMA, the effector cells should
2012/072699
also be of macaque origin such as a macaque Tcell line, e.g. 4119Lan. The target cells
should express (at least the extracellular domain of) BCMA, e.g. human or macaque BCMA.
Target cells can be a cell line (such as CHO) which is stably or transiently transfected with
BCMA, e.g. human or macaque BCMA. atively, the target cells can be a BCMA positive
natural expresser cell line, such as the human multiple myeloma cell line L363 or NCl-H929.
Usually EC50-values are ed to be lower with target cell lines expressing higher levels of
BCMA on the cell surface. The effector to target cell (E:T) ratio is usually about 10:1, but can
also vary. Cytotoxic activity of BCMA/CD3 bispecific binding molecules can be measured in an
51-chromium release assay (incubation time of about 18 hours) or in a in a FACS-based
cytotoxicity assay ation time of about 48 hours). Modifications of the assay incubation
time (cytotoxic reaction) are also possible. Other methods of measuring cytotoxicity are well-
known to the skilled person and comprise MTT or MTS assays, sed assays including
bioluminescent assays, the sulforhodamine B (SRB) assay, WST assay, clonogenic assay and
the ECIS technology.
The cytotoxic activity mediated by BCMA/CD3 bispecific g molecules of the present
invention is preferably measured in a cell-based cytotoxicity assay. It is represented by the EC50
value, which corresponds to the half maximal effective concentration (concentration of the
binding molecule which induces a cytotoxic response halfway between the baseline and
maximum). Preferably, the EC50 value of the BCMA/CD3 bispecific binding molecules is
520.000 pg/ml, more preferably S5000 pg/ml, even more preferably $1000 pg/ml, even more
preferably S500 pg/ml, even more preferably S350 pg/ml, even more preferably S320 pg/ml,
even more ably 5250 pg/ml, even more ably 5100 pg/ml, even more preferably
550 pg/ml, even more preferably 510 pg/ml, and most preferably 55 pg/ml.
Any of the above given EC50 values can be combined with any one of the indicated scenarios of
a cell-based xicity assay. For example, when (human) CD8 positive T cells or a macaque
Tcell line are used as effector cells, the EC50 value of the BCMA/CD3 bispecific binding
molecule is preferably $1000 pg/ml, more preferably S500 pg/ml, even more preferably
3O 5250 pg/ml, even more preferably 5100 pg/ml, even more preferably 550 pg/ml, even more
preferably 510 pg/ml, and most ably 55 pg/ml. If in this assay the target cells are (human
or macaque) BCMA transfected cells such as CHO cells, the EC50 value of the BCMA/CD3
bispecific binding le is ably 5150 pg/ml, more preferably 5100 pg/ml, even more
preferably 550 pg/ml, even more preferably 530 pg/ml, even more ably 510 pg/ml, and
most preferably 55 pg/ml.
If the target cells are a BCMA positive natural expresser cell line, then the EC50 value is
preferably S350 pg/ml, more ably S320 pg/ml, even more preferably 5250 pg/ml, even
more preferably 5200 pg/ml, even more preferably S100 pg/ml, even more preferably
5150 pg/ml, even more preferably S100 pg/ml, and most preferably 550 pg/ml, or lower.
When (human) PBMCs are used as effector cells, the EC50 value of the BCMA/CD3 bispecific
binding molecule is preferably S1000 pg/ml, more preferably S750 pg/ml, more ably
5500 pg/ml, even more preferably S350 pg/ml, even more ably S320 pg/ml, even more
preferably 5250 pg/ml, even more preferably S100 pg/ml, and most preferably 550 pg/ml, or
lower.
In a particularly preferred ment, the D3 bispecific g molecules of the
present ion are characterized by an EC50 of S350 pg/ml or less, more preferably
5320 pg/ml or less. In that embodiment the target cells are L363 cells and the effector cells are
unstimulated human PBMCs. The skilled person knows how to measure the EC50 value without
further ado. Moreover, the specification teaches a specific instruction how to measure the EC50
value; see, for example, Example 8.3, below.A suitable protocol is as follows:
a) e human peripheral blood clear cells (PBMC) by Ficoll density gradient
centrifugation from enriched lymphocyte ations (buffy coats)
b) Optionally wash with Dulbecco’s PBS (Gibco)
c) Remove remaining erythrocytes from PBMC via incubation with erythrocyte lysis buffer
(155 mM NH4CI, 10 mM KHC03, 100 uM EDTA)
c) Remove platelets via the supernatant upon centrifugation of PBMC at 100 x g
d) Deplete CD14+ cells and NK cells
e) lsolate CD14/CD56 negative cells using, e.g. LS Columns nyi Biotec, #130—042—
401)
f) Culture PBMC w/o CD14+/CD56+ cells, e.g. in RPMI complete medium i.e. RPM|1640
(Biochrom AG, #FG1215) supplemented with 10% FBS (Biochrom AG, #80115), 1xnon-
essential amino acids (Biochrom AG, #K0293), 10 mM Hepes buffer (Biochrom AG, #L1613), 1
mM sodium pyruvate (Biochrom AG, #L0473) and 100 U/mL penicillin/streptomycin (Biochrom
AG, #A2213) at 37°C in an incubator until needed.
g) Label target cells
h) Mix effector and target cells, preferably at equal volumes, so as to have an E:T cell ratio
of 10:1
i) Add the binding molecule, preferably in a serial dilution
j) Proceed for 48 hours in a 7% COZ humidified incubator
k) Monitor target cell membrane integrity, e.g., by adding propidium iodide (PI) at a final
concentration of 1 ug/mL, for example, by flow cytometry
l) Calculate EC50, e.g., according to the following formula:
Cytotoxicity [%] :M x 100
target cells
n = number of events
Using GraphPad Prism 5 software (Graph Pad Software, San Diego), the percentage of
cytotoxicity was plotted against the corresponding bispecific antibody trations. Dose
response curves can be analyzed with the four tric logistic regression models for
evaluation of sigmoid dose response curves with fixed hill slope and EC50 values were
ated.
In view of the above, it is preferred that the binding molecule of the t ion is
characterized by an EC50 (pg/ml) of 350 or less, preferably 320 or less.
The present ion also relates to binding molecules described herein which are
characterized by an EC50 (pg/ml) which equates to the EC50 (pg/ml) of any one of the
BCMA/CD3 bispecific binding molecules BCMA-83 x CD3, BCMA-62 x CD3, BCMA-5 x CD3,
BCMA-98 x CD3, BCMA-71 x CD3, BCMA-34 x CD3, BCMA-74 x CD3, BCMA-20 x CD3. In
order to determine as to whether the EC50 of a binding molecule as bed herein equates
to the EC50 of any one of BCMA-83 x CD3, BCMA-62 x CD3, BCMA-5 x CD3, BCMA-
98 x CD3, 1 x CD3, BCMA-34 x CD3, BCMA-74 x CD3, BCMA-20 x CD3, it is
envisaged that for the determination of the EC50 value the same assay is applied. The term
“equates to” includes thereby a deviation of +/- 10%, ably +/- 7.5%, more preferably +/-
%, even more preferably +/- 2.5% of the respective EC50 value.
The BCMA/CD3 bispecific binding molecules BCMA-83 x CD3, BCMA-62 x CD3, BCMA-
x CD3, BCMA-98 x CD3, BCMA-71 x CD3, BCMA-34 x CD3, BCMA-74 x CD3, BCMA-
20xCD3 that serve as “reference” g molecules in the above described assay are
preferably produced in CHO cells.
The difference in cytotoxic activity between the monomeric and the dimeric isoform of individual
BCMA/CD3 bispecific binding molecules (such as antibodies) is referred to as “potency gap”.
This potency gap can e.g. be calculated as ratio n EC50 values of the molecule’s
monomeric and dimeric form. Potency gaps of the BCMA/CD3 bispecific binding molecules of
the present invention are preferably 55, more preferably 54, even more preferably 53, even
more preferably 52 and most ably 51.
Preferably, the BCMA/CD3 bispecific binding molecules of the present invention do not bind to,
interact with, ize or cross-react with human BAFF-R and/or human TACI. Methods to
detect cross-reactivity with human BAFF-R and/or human TACI are disclosed in Example 9.
It is also preferred that the BCMA/CD3 bispecific binding molecules of the present invention
present with very low dimer conversion after a number of freeze/thaw cycles. Preferably the
dimer percentages are 55%, more ably 54%, even more ably 53%, even more
preferably 52.5%, even more preferably 52%, even more preferably 51.5%, and most preferably
51%, for example after three /thaw cycles. A freeze-thaw cycle and the determination of
the dimer percentage can be carried out in accordance with Example 16.
The BCMA/CD3 bispecific g molecules (such as dies) of the present invention
preferably show a favorable stability with g temperatures above 60°C.
To determine potential interaction of BCMA/CD3 bispecific binding molecules (such as
antibodies) with human plasma proteins, a plasma interference test can be carried out (see e.g.
Example 18). In a red embodiment, there is no significant reduction of target binding of
the BCMA/CD3 bispecific binding molecules mediated by plasma proteins. The relative plasma
interference value is preferably 52.
It is furthermore envisaged that the BCMA/CD3 bispecific binding molecules of the t
invention are capable of exhibiting therapeutic efficacy or anti-tumor activity. This can be
assessed e.g. in a study as disclosed in Example 19 (advanced stage human tumor xenograft
model). The skilled person knows how to modify or adapt certain parameters of this study, such
as the number of injected tumor cells, the site of injection, the number of transplanted human
T cells, the amount of BCMA/CD3 ific binding molecules to be administered, and the
timelines, while still arriving at a meaningful and reproducible result. Preferably, the tumor
growth inhibition T/C [%] is 70 or 60 or lower, more preferably 50 or 40 or lower, even more
preferably at least 30 or 20 or lower and most preferably 10 or lower, 5 or lower or even 2.5 or
lower.
Preferably, the BCMA/CD3 ific binding les of the present invention do not induce /
mediate lysis or do not ially induce / mediate lysis of BCMA ve cells such as HL60,
MES-SA, and SNU-16. The term “do not induce lysis”, “do not essentially induce lysis”, “do not
mediate lysis” or “do not essentially mediate lysis” means that a binding molecule of the present
invention does not induce or mediate lysis of more than 30%, preferably not more than 20%,
more preferably not more than 10%, particularly ably not more than 9%, 8%, 7%, 6% or
% of BCMA negative cells, whereby lysis of a BCMA positive cell line such as NCl-H929, L-
363 or OPM-2 is set to be 100%. This applies for concentrations of the binding molecule of at
least up to 500 nM. The skilled person knows how to measure cell lysis without further ado.
Moreover, the specification teaches a specific instruction how to measure cell lysis; see e.g.
Example 20 below.
In one embodiment, the first or the second g domain is or is derived from an antibody. In
another embodiment, both binding domains are or are derived from an antibody.
The definition of the term “antibody” includes embodiments such as monoclonal, chimeric,
single chain, humanized and human antibodies. In addition to full-length antibodies, the
definition also includes antibody derivatives and antibody fragments, like, inter alia, Fab
fragments. Antibody fragments or derivatives further comprise F(ab')2, Fv, scFv fragments or
single domain antibodies such as domain antibodies or nanobodies, single variable domain
antibodies or globulin single variable domain comprising merely one variable domain,
which might be VHH, VH or VL, that specifically bind an antigen or epitope independently of
other V regions or domains; see, for example, Harlow and Lane (1988) and , loc. cit.;
Kontermann and DUbel, Antibody Engineering, Springer, 2nd ed. 2010 and Little, Recombinant
Antibodies for lmmunotherapy, Cambridge University Press 2009. Said term also includes
diabodies or Dual-Affinity Re-Targeting (DART) antibodies. Further envisaged are (bispecific)
single chain diabodies, tandem diabodies (Tandab’s), ,,minibodies“ exemplified by a structure
which is as follows: (VH-VL-CH3)2, (scFv-CH3)2 or (scFv-CH3-scFv)2, ,,Fc DART“ antibodies
and ,,lgG DART“ antibodies, and multibodies such as triabodies. lmmunoglobulin single le
3O domains ass not only an isolated antibody single variable domain ptide, but also
larger ptides that comprise one or more monomers of an antibody single variable domain
ptide sequence.
Various procedures are known in the art and may be used for the tion of such antibodies
and/or fragments. Thus, (antibody) derivatives can be produced by peptidomimetics. Further,
techniques described for the production of single chain antibodies (see, inter alia, US Patent
4,946,778, Kontermann and Diibel (2010), loc. cit. and Little (2009), loc. cit.) can be adapted to
produce single chain antibodies specific for elected polypeptide(s). Also, transgenic animals
may be used to express humanized dies specific for polypeptides and fusion proteins of
this invention. For the preparation of monoclonal antibodies, any technique, providing antibodies
produced by continuous cell line cultures can be used. Examples for such techniques include
the hybridoma technique r and Milstein Nature 256 (1975), 495-497), the trioma
technique, the human B cell hybridoma technique (Kozbor, Immunology Today 4 (1983), 72)
and the EBV hybridoma technique to produce human monoclonal antibodies (Cole et al.,
Monoclonal Antibodies and Cancer Therapy, Alan R. Liss, Inc. (1985), . Surface plasmon
resonance as employed in the BlAcore system can be used to increase the efficiency of phage
antibodies which bind to an epitope of a target polypeptide, such as CD3 epsilon (Schier,
Human Antibodies Hybridomas 7 (1996), 97-105; rg, J. lmmunol. Methods 183 (1995),
7-13). It is also envisaged in the t of this ion that the term “antibody” comprises
antibody constructs, which may be expressed in a host as described herein below, e.g. antibody
constructs which may be transfected and/or transduced via, inter alia, viruses or plasmid
vectors.
Furthermore, the term "antibody" as employed herein also relates to derivatives or variants of
the antibodies described herein which display the same specificity as the described antibodies.
Examples of ody variants" include humanized variants of non-human antibodies, "affinity
matured" antibodies (see, e.g. Hawkins et al. J. Mol. Biol. 254, 889-896 (1992) and Lowman et
al., Biochemistry 30, 10832- 10837 (1991)) and antibody mutants with altered effector
on(s) (see, e.g., US Patent 5, 648, 260, Kontermann and DUbel (2010), loc. cit. and
(2009), loc. cit.).
The terms "antigen-binding ", "antigen-binding fragment" and ody binding region”
when used herein refer to a part of an antibody molecule that comprises amino acids
responsible for the specific binding between antibody and n. The part of the antigen that
3O is specifically recognized and bound by the antibody is referred to as the "epitope" as described
herein above. As ned above, an antigen-binding domain may typically comprise an
antibody light chain variable region (VL) and an antibody heavy chain variable region (VH);
however, it does not have to comprise both. Fd nts, for example, have two VH regions
and often retain some antigen-binding function of the intact antigen-binding domain. Examples
of antigen-binding nts of an dy include (1) a Fab fragment, a monovalent fragment
having the VL, VH, CL and CH1 s; (2) a F(ab')2 fragment, a bivalent fragment having
two Fab fragments linked by a disulfide bridge at the hinge region; (3) an Fd nt having
the two VH and CH1 domains; (4) an Fv fragment having the VL and VH s of a single
arm of an antibody, (5) a dAb fragment (Ward et al., (1989) Nature 341 :544-546), which has a
VH domain; (6) an isolated complementarity determining region (CDR), and (7) a single chain
Fv (scFv), the latter being preferred (for example, derived from a scFV-library). Although the two
domains of the Fv fragment, VL and VH are coded for by separate genes, they can be joined,
using recombinant methods, by a synthetic linker that enables them to be made as a single
protein chain in which the VL and VH regions pair to form lent molecules (known as
single chain Fv (scFv); see e.g., Huston et al. (1988) Proc. Natl. Acad. Sci USA 85:5879-5883).
These antibody nts are obtained using tional techniques known to those with skill
in the art, and the fragments are evaluated for function in the same manner as are intact
antibodies.
The term "monoclonal antibody" as used herein refers to an antibody obtained from a population
of substantially homogeneous dies, i.e., the individual antibodies comprising the
population are identical except for le lly occurring ons and/or post- translation
modifications (e.g., isomerizations, amidations) that may be present in minor amounts.
Monoclonal antibodies are highly specific, being directed against a single nic site.
Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically
include different antibodies directed against different determinants (epitopes), each monoclonal
antibody is directed against a single determinant on the antigen. In addition to their specificity,
the monoclonal antibodies are advantageous in that they are synthesized by the hybridoma
culture, uncontaminated by other immunoglobulins. The er "monoclonal" indicates the
character of the antibody as being obtained from a substantially homogeneous population of
antibodies, and is not to be construed as requiring production of the antibody by any particular
method. For example, the monoclonal antibodies to be used in accordance with the present
invention may be made by the hybridoma method first described by Kohler et al., Nature, 256:
495 (1975), or may be made by recombinant DNA methods (see, e.g., U. 8. Patent
3O No. 4,816,567). The "monoclonal antibodies" may also be ed from phage antibody libraries
using the ques described in Clackson et al., Nature, 352: 624-628 (1991) and Marks et
al., J. Mol. Biol., 222: 581-597 (1991), for example.
The monoclonal antibodies of the present invention specifically include "chimeric" antibodies
oglobulins) in which a portion of the heavy and/or light chain is identical with or
homologous to corresponding sequences in antibodies derived from a particular species or
belonging to a particular antibody class or subclass, while the remainder of the chain (s) is (are)
identical with or homologous to corresponding sequences in antibodies derived from another
species or belonging to r antibody class or subclass, as well as fragments of such
antibodies, so long as they exhibit the desired biological activity (U. 8. Patent No. 4,816, 567;
Morrison et al., Proc. Natl. Acad. Sci. USA, 81: 855 (1984)). Chimeric antibodies of
interest herein include tized" antibodies comprising variable domain antigen-binding
sequences derived from a non-human primate (e.g., Old World Monkey, Ape etc.) and human
constant region sequences.
"Humanized" forms of non-human (e.g., murine) antibodies are chimeric immunoglobulins,
immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other antigen-
binding subsequences of antibodies) of mostly human sequences, which contain minimal
sequence derived from non-human immunoglobulin. For the most part, humanized antibodies
are human immunoglobulins (recipient antibody) in which residues from a hypervariable region
(also CDR) of the recipient are replaced by residues from a ariable region of a non-
human species (donor dy) such as mouse, rat or rabbit having the desired specificity,
affinity, and capacity. In some instances, Fv framework region (FR) residues of the human
immunoglobulin are replaced by corresponding non-human residues. Furthermore, "humanized
antibodies" as used herein may also comprise residues which are found neither in the recipient
antibody nor the donor antibody. These modifications are made to further refine and optimize
antibody performance. The humanized antibody optimally also will comprise at least a portion of
an globulin constant region (Fc), typically that of a human immunoglobulin. For further
details, see Jones et al., , 321: 522-525 (1986); Reichmann et al., , 332: 323-329
(1988); and , Curr. Op. Struct. Biol., 2: 593-596 (1992).
The term "human antibody" includes antibodies having variable and constant regions
corresponding ntially to human germline immunoglobulin sequences known in the art,
including, for example, those described by Kabat et al. (See Kabat et al. (1991) loc. cit.). The
3O human antibodies of the invention may include amino acid es not encoded by human
ne immunoglobulin sequences (e.g., mutations introduced by random or pecific
mutagenesis in vitro or by somatic on in vivo), for e in the CDRs, and in particular,
CDR3. The human antibody can have at least one, two, three, four, five, or more ons
replaced with an amino acid residue that is not encoded by the human germline immunoglobulin
sequence.
As used , "in vitro generated antibody" refers to an antibody where all or part of the
variable region (e.g., at least one CDR) is ted in a non-immune cell selection (e.g., an in
vitro phage display, protein chip or any other method in which candidate sequences can be
tested for their ability to bind to an antigen). This term thus preferably excludes sequences
generated by genomic rearrangement in an immune cell.
A "bispecific" or "bifunctional” antibody or immunoglobulin is an artificial hybrid antibody or
globulin having two different heavy/light chain pairs and two different binding sites.
Bispecific antibodies can be produced by a variety of methods including fusion of hybridomas or
linking of Fab' fragments. See, e.g., Songsivilai & Lachmann, Clin. Exp. lmmunol. 79:315-321
(1990). Numerous methods known to those skilled in the art are available for obtaining
antibodies or n-binding fragments thereof. For example, dies can be produced
using recombinant DNA methods (US. Patent No. 4,816,567). Monoclonal antibodies may also
be ed by generation of hybridomas (see e.g., Kohler and Milstein (1975) Nature, 256:
9) in accordance with known methods. Hybridomas formed in this manner are then
screened using standard methods, such as enzyme-linked immunosorbent assay (ELISA) and
e plasmon resonance (BIACORETM) analysis, to fy one or more hybridomas that
produce an antibody that specifically binds with a specified n. Any form of the ied
antigen may be used as the immunogen, e.g., recombinant antigen, lly occurring forms,
any variants or fragments thereof, as well as antigenic peptide thereof.”
One exemplary method of making antibodies includes screening protein expression libraries,
e.g., phage or ribosome display libraries. Phage display is described, for example, in Ladner et
al., US. Patent No. 5,223,409; Smith (1985) Science 228:1315-1317; Clackson et al. (1991)
Nature, 352: 8.
In addition to the use of display libraries, the specified antigen can be used to immunize a non-
human animal, e.g., a rodent, e.g., a mouse, hamster, or rat. In one embodiment, the non-
human animal includes at least a part of a human immunoglobulin gene. For example, it is
3O le to engineer mouse strains deficient in mouse antibody production with large fragments
of the human lg loci. Using the hybridoma technology, antigen-specific monoclonal antibodies
derived from the genes with the desired specificity may be produced and selected. See, e.g.,
XENOMOUSETM, Green et al. (1994) Nature Genetics 7:13-21, US 2003- 0070185, WO
96/34096, and WO96/33735.
A onal antibody can be obtained from a non-human animal, and then modified, e.g.,
humanized, deimmunized, chimeric, may be produced using recombinant DNA ques
known in the art. A variety of approaches for making chimeric antibodies have been bed.
See e.g., Morrison et al., Proc. Natl. Acad. ScL U.S.A. 81:6851
, 1985; Takeda et al., Nature
314:452, 1985, y et al., US. Patent No. 4,816,567; Boss et al., US. Patent No. 397;
Tanaguchi et al., EP 0171496; EP 0173494, GB 2177096. Humanized antibodies may also be
produced, for example, using transgenic mice that express human heavy and light chain genes,
but are incapable of expressing the endogenous mouse immunoglobulin heavy and light chain
genes. Winter describes an exemplary afting method that may be used to prepare the
humanized antibodies described herein (US. Patent No. 5,225,539). All of the CDRs of a
particular human antibody may be replaced with at least a n of a man CDR, or only
some of the CDRs may be replaced with non-human CDRs. It is only necessary to replace the
number of CDRs required for binding of the humanized antibody to a predetermined antigen.
Humanized dies or fragments thereof can be generated by replacing sequences of the Fv
variable domain that are not directly involved in antigen binding with equivalent sequences from
human Fv variable domains. Exemplary methods for ting humanized antibodies or
fragments thereof are provided by Morrison (1985) Science 229:1202-1207; by Oi et al. (1986)
hniques 4:214; and by US 5,585,089; US 5,693,761; US 5,693,762; US 5,859,205; and
US 6,407,213. Those methods include isolating, manipulating, and expressing the nucleic acid
sequences that encode all or part of immunoglobulin Fv variable domains from at least one of a
heavy or light chain. Such nucleic acids may be obtained from a hybridoma producing an
antibody against a predetermined target, as described above, as well as from other sources.
The recombinant DNA encoding the humanized dy molecule can then be cloned into an
appropriate expression vector.
A humanized antibody can be optimized by the uction of conservative substitutions,
consensus sequence substitutions, germline substitutions and/or back mutations. Such altered
immunoglobulin les can be made by any of several techniques known in the art, (e.g.,
3O Teng et al., Proc. Natl. Acad. Sci. USA, 80: 7308-7312, 1983; Kozbor et al., Immunology
Today, 4: 7279, 1983; Olsson et al., Meth. Enzymol., 92: 3-16, 1982), and may be made
according to the teachings of EP 239 400.
An antibody or fragment thereof may also be modified by specific deletion of human T cell
epitopes or unization" by the methods disclosed in WO 98/52976 and WO 00/34317.
Briefly, the heavy and light chain variable domains of an antibody can be analyzed for peptides
that bind to MHC class II; these peptides represent potential Tcell epitopes (as defined in
WO 98/52976 and WO 17). For detection of potential Tcell epitopes, a computer
modeling approach termed "peptide threading" can be applied, and in addition a database of
human MHC class II binding es can be searched for motifs present in the VH and VL
sequences, as described in WO 98/52976 and WO 00/34317. These motifs bind to any of the
18 major MHC class II DR allotypes, and thus constitute potential T cell epitopes. Potential T-
cell epitopes detected can be eliminated by substituting small numbers of amino acid residues
in the variable domains, or preferably, by single amino acid substitutions. Typically,
conservative substitutions are made. Often, but not exclusively, an amino acid common to a
on in human germline antibody sequences may be used. Human germline sequences,
e.g., are disclosed in son, et al. (1992) J. Mol. Biol. 227:776-798; Cook, G.P. et al. (1995)
lmmunol. Today Vol. 16 (5): 237-242; and Tomlinson et al. (1995) EMBO J. 14: 14:4628—4638.
The V BASE directory es a comprehensive directory of human immunoglobulin variable
region sequences (compiled by son, LA. et al. MRC Centre for Protein Engineering,
Cambridge, UK). These sequences can be used as a source of human sequence, e.g., for
framework regions and CDRs. Consensus human framework regions can also be used, e.g., as
described in US Patent No. 6,300,064.
The pairing of a VH and VL together forms a single antigen-binding site. The CH domain most
proximal to VH is ated as CH1. Each L chain is linked to an H chain by one covalent
disulfide bond, while the two H chains are linked to each other by one or more disulfide bonds
depending on the H chain isotype. The VH and VL domains consist of four regions of relatively
conserved sequences called framework regions (FR1, FR2, FR3, and FR4), which form a
scaffold for three regions of hypervariable sequences (complementarity determining s,
CDRs). The CDRs contain most of the residues responsible for specific interactions of the
antibody with the antigen. CDRs are referred to as CDR 1, CDR2, and CDR3. Accordingly, CDR
constituents on the heavy chain are referred to as H1, H2, and H3, while CDR constituents on
the light chain are referred to as L1, L2, and L3.
The term "variable" refers to the portions of the immunoglobulin domains that exhibit ility
3O in their sequence and that are involved in ining the specificity and binding affinity of a
particular antibody (i.e., the ble domain(s)"). ility is not evenly distributed throughout
the variable domains of antibodies; it is concentrated in sub-domains of each of the heavy and
light chain variable regions. These sub-domains are called "hypervariable" regions or
"complementarity determining s" (CDRs). The more conserved (i.e., non-hypervariable)
portions of the le domains are called the work" regions (FRM). The variable
domains of naturally occurring heavy and light chains each comprise four FRM regions, largely
adopting a B-sheet configuration, connected by three hypervariable regions, which form loops
connecting, and in some cases forming part of, the B-sheet structure. The hypervariable regions
in each chain are held together in close proximity by the FRM and, with the hypervariable
s from the other chain, contribute to the formation of the antigen-binding site (see Kabat
et al., loc. cit.). The constant domains are not directly involved in antigen binding, but t
various effector functions, such as, for example, dy-dependent, cell-mediated cytotoxicity
and complement tion.
It is also preferred for the binding le of the invention that first and the second domain
form a molecule that is selected from the group of 2, e domain mAb)2, scFv-single
domain mAb, diabody or oligomeres thereof.
The terms "CDR", and its plural "CDRs", refer to a complementarity determining region (CDR) of
which three make up the binding character of a light chain variable region (CDRL1, CDRL2 and
CDRL3) and three make up the binding character of a heavy chain variable region (CDRH1,
CDRH2 and CDRH3). CDRs contribute to the functional activity of an antibody molecule and
are separated by amino acid sequences that comprise scaffolding or framework regions. The
exact definitional CDR boundaries and lengths are subject to different classification and
numbering systems. CDRs may therefore be referred to by Kabat, Chothia, contact or any other
boundary definitions, including the numbering system described herein. Despite differing
boundaries, each of these systems has some degree of p in what constitutes the so
called "hypervariable s" within the variable sequences. CDR definitions according to these
systems may therefore differ in length and boundary areas with respect to the adjacent
framework region. See for example Kabat, Chothia, and/or MacCallum (Kabat et al., loc. cit.;
Chothia eta/., J. Mol. Biol, 1987, 196: 901; and MacCallum eta/., J. Mol. Biol, 1996, 262: 732).
However, the numbering in accordance with the so-called Kabat system is preferred.
The term "amino acid" or "amino acid residue" typically refers to an amino acid having its art
3O recognized definition such as an amino acid selected from the group consisting of: e (Ala
or A); arginine (Arg or R); asparagine (Asn or N); aspartic acid (Asp or D); cysteine (Cys or C);
ine (Gln or Q); glutamic acid (Glu or E); e (Gly or G); histidine (His or H); isoleucine
(He or I): e (Leu or L); lysine (Lys or K); methionine (Met or M); alanine (Phe or F);
pro line (Pro or P); serine (Ser or S); threonine (Thr or T); tryptophan (Trp or W); tyrosine (Tyr or
Y); and valine (Val or V), gh modified, synthetic, or rare amino acids may be used as
desired. Generally, amino acids can be grouped as having a nonpolar side chain (e.g., Ala, Cys,
He, Leu, Met, Phe, Pro, Val); a negatively charged side chain (e.g., Asp, Glu); a positively
d sidechain (e.g., Arg, His, Lys); or an uncharged polar side chain (e.g., Asn, Cys, Gln,
Gly, His, Met, Phe, Ser, Thr, Trp, and Tyr).
The term "hypervariable region" (also known as "complementarity determining s" or
CDRs) when used herein refers to the amino acid residues of an antibody which are (usually
three or four short regions of e sequence variability) within the V-region domain of an
immunoglobulin which form the antigen-binding site and are the main determinants of antigen
specificity. There are at least two methods for identifying the CDR es: (1) An approach
based on cross-species sequence variability (i. e., Kabat et al., loc. cit.); and (2) An approach
based on crystallographic studies of antigen-antibody complexes (Chothia, C. et al., J. Mol. Biol.
196: 901-917 (1987)). r, to the extent that two residue identification techniques define
regions of pping, but not identical regions, they can be combined to define a hybrid CDR.
However, in general, the CDR residues are preferably identified in accordance with the so-
called Kabat ring) system.
The term "framework region" refers to the art-recognized portions of an antibody variable region
that exist between the more divergent (i.e., hypervariable) CDRs. Such framework regions are
typically ed to as frameworks1 through 4 (FR1, FR2, FR3, and FR4) and provide a
scaffold for the presentation of the six CDRs (three from the heavy chain and three from the
light chain) in three dimensional space, to form an antigen-binding surface.
Typically, CDRs form a loop structure that can be classified as a canonical structure. The term
"canonical structure" refers to the main chain conformation that is adopted by the antigen
binding (CDR) loops. From comparative structural studies, it has been found that five of the six
n binding loops have only a limited oire of available mations. Each canonical
structure can be characterized by the n angles of the polypeptide backbone.
Correspondent loops between antibodies may, ore, have very similar three dimensional
3O structures, despite high amino acid sequence variability in most parts of the loops (Chothia and
Lesk, J. Mol. Biol., 1987, 196: 901; Chothia et al., Nature, 1989, 342: 877; Martin and Thornton,
J. Mol. Biol, 1996, 263: 800, each of which is incorporated by nce in its entirety).
Furthermore, there is a relationship between the adopted loop structure and the amino acid
sequences surrounding it. The conformation of a particular canonical class is determined by the
length of the loop and the amino acid residues residing at key positions within the loop, as well
as within the conserved framework (i.e., outside of the loop). Assignment to a particular
canonical class can therefore be made based on the presence of these key amino acid
residues. The term ical structure" may also include considerations as to the linear
sequence of the antibody, for example, as catalogued by Kabat (Kabat et al., loc. cit.). The
Kabat numbering scheme (system) is a widely d rd for numbering the amino acid
residues of an antibody variable domain in a consistent manner and is the preferred scheme
applied in the present invention as also mentioned elsewhere herein. Additional structural
considerations can also be used to determine the canonical structure of an antibody. For
example, those differences not fully reflected by Kabat numbering can be described by the
numbering system of Chothia et al and/or revealed by other techniques, for example,
llography and two or three-dimensional computational ng. Accordingly, a given
antibody sequence may be placed into a canonical class which allows for, among other things,
identifying riate chassis sequences (e.g., based on a desire to include a variety of
canonical structures in a y). Kabat numbering of antibody amino acid sequences and
structural considerations as described by Chothia et al., loc. cit. and their implications for
construing canonical s of antibody structure, are described in the literature.
CDR3 is typically the greatest source of molecular ity within the antibody-binding site. H3,
for example, can be as short as two amino acid residues or greater than 26 amino acids. The
subunit ures and three-dimensional configurations of different s of immunoglobulins
are well known in the art. For a review of the antibody structure, see Antibodies: A Laboratory
Manual, Cold Spring Harbor Laboratory, eds. Harlow et al., 1988. One of skill in the art will
recognize that each subunit structure, e.g., a CH, VH, CL, VL, CDR, FR structure, comprises
active fragments, e.g., the portion of the VH, VL, or CDR subunit the binds to the antigen, i.e.,
the n-binding fragment, or, e.g., the portion of the CH subunit that binds to and/or
activates, e.g., an Fc receptor and/or complement. The CDRs typically refer to the Kabat CDRs,
as bed in Sequences of Proteins of immunological lnterest, US Department of Health and
Human Services , eds. Kabat et al. Another standard for characterizing the antigen
binding site is to refer to the hypervariable loops as described by Chothia. See, e.g., Chothia, et
al. (1987; J. Mol. Biol. 227:799-817); and Tomlinson et al. (1995) EMBO J. 14: 4628-4638. Still
another rd is the AbM definition used by Oxford Molecular's AbM antibody modeling
software. See, generally, e.g., Protein Sequence and Structure Analysis of Antibody Variable
Domains. ln: Antibody Engineering Lab Manual (Ed.: Duebel, S. and Kontermann, R., Springer-
Verlag, Heidelberg). Embodiments described with respect to Kabat CDRs can alternatively be
2012/072699
ented using similar described relationships with respect to Chothia hypervariable loops
or to the AbM-defined loops.
The sequence of antibody genes after assembly and somatic mutation is highly varied, and
these varied genes are estimated to encode 1010 different antibody molecules (lmmunoglobulin
Genes, 2nd ed., eds. Jonio et al., ic Press, San Diego, CA, 1995). Accordingly, the
immune system provides a repertoire of immunoglobulins. The term "repertoire" refers to at
least one nucleotide sequence derived wholly or partially from at least one ce encoding
at least one immunoglobulin. The sequence(s) may be generated by rearrangement in vivo of
the V, D, and J segments of heavy chains, and the V and J segments of light chains.
Alternatively, the sequence(s) can be generated from a cell in response to which ngement
occurs, e.g., in vitro stimulation. Alternatively, part or all of the sequence(s) may be obtained by
DNA splicing, nucleotide synthesis, mutagenesis, and other methods, see, e.g., US. Patent
,565,332. A repertoire may e only one sequence or may include a plurality of ces,
including ones in a genetically diverse collection.
In one embodiment, the first binding domain of the binding molecule of the invention comprises
a VH region comprising , CDR-H2 and CDR-H3 and a VL region comprising CDR-L1,
CDR-L2 and CDR-L3 selected from the group consisting of:
(1) CDR-H1 as depicted in SEQ ID NO: 1, CDR-H2 as depicted in SEQ ID NO: 2, CDR-H3
as depicted in SEQ ID NO: 3, CDR-L1 as ed in SEQ ID NO: 4, CDR-L2 as
depicted in SEQ ID NO: 5 and CDR-L3 as depicted in SEQ ID NO: 6;
(2) CDR-H1 as depicted in SEQ ID NO: 11, CDR-H2 as depicted in SEQ ID NO: 12, CDR-
H3 as depicted in SEQ ID NO: 13, CDR-L1 as depicted in SEQ ID NO: 14, CDR-L2 as
depicted in SEQ ID NO: 15 and CDR-L3 as depicted in SEQ ID NO: 16;
(3) CDR-H1 as depicted in SEQ ID NO: 21, CDR-H2 as depicted in SEQ ID NO: 22, CDR-
H3 as depicted in SEQ ID NO: 23, CDR-L1 as depicted in SEQ ID NO: 24, CDR-L2 as
depicted in SEQ ID NO: 25 and CDR-L3 as depicted in SEQ ID NO: 26;
(4) CDR-H1 as depicted in SEQ ID NO: 31, CDR-H2 as depicted in SEQ ID NO: 32, CDR-
H3 as depicted in SEQ ID NO: 33, CDR-L1 as depicted in SEQ ID NO: 34, CDR-L2 as
depicted in SEQ ID NO: 35 and CDR-L3 as ed in SEQ ID NO: 36;
(5) CDR-H1 as depicted in SEQ ID NO: 41, CDR-H2 as depicted in SEQ ID NO: 42, CDR-
H3 as depicted in SEQ ID NO: 43, CDR-L1 as depicted in SEQ ID NO: 44, CDR-L2 as
depicted in SEQ ID NO: 45 and CDR-L3 as depicted in SEQ ID NO: 46;
(6) CDR-H1 as depicted in SEQ ID NO: 51, CDR-H2 as depicted in SEQ ID NO: 52, CDR-
H3 as depicted in SEQ ID NO: 53, CDR-L1 as depicted in SEQ ID NO: 54, CDR-L2 as
depicted in SEQ ID NO: 55 and CDR-L3 as depicted in SEQ ID NO: 56;
(7) CDR-H1 as depicted in SEQ ID NO: 61, CDR-H2 as depicted in SEQ ID NO: 62, CDR-
H3 as depicted in SEQ ID NO: 63, CDR-L1 as depicted in SEQ ID NO: 64, CDR-L2 as
depicted in SEQ ID NO: 65 and CDR-L3 as depicted in SEQ ID NO: 66;
(8) CDR-H1 as depicted in SEQ ID NO: 71, CDR-H2 as depicted in SEQ ID NO: 72, CDR-
H3 as depicted in SEQ ID NO: 73, CDR-L1 as depicted in SEQ ID NO: 74, CDR-L2 as
depicted in SEQ ID NO: 75 and CDR-L3 as depicted in SEQ ID NO: 76;
(9) CDR-H1 as depicted in SEQ ID NO: 161, CDR-H2 as depicted in SEQ ID NO: 162,
CDR-H3 as depicted in SEQ ID NO: 163, CDR-L1 as depicted in SEQ ID NO: 164, CDR-
L2 as depicted in SEQ ID NO: 165 and CDR-L3 as depicted in SEQ ID NO: 166;
(10) CDR-H1 as depicted in SEQ ID NO: 171, CDR-H2 as depicted in SEQ ID NO: 172,
CDR-H3 as depicted in SEQ ID NO: 173, CDR-L1 as depicted in SEQ ID NO: 174, CDR-
L2 as depicted in SEQ ID NO: 175 and CDR-L3 as depicted in SEQ ID NO: 176;
(11) CDR-H1 as depicted in SEQ ID NO: 181, CDR-H2 as depicted in SEQ ID NO: 182,
CDR-H3 as depicted in SEQ ID NO: 183, CDR-L1 as depicted in SEQ ID NO: 184, CDR-
L2 as depicted in SEQ ID NO: 185 and CDR-L3 as depicted in SEQ ID NO: 186;
(12) CDR-H1 as depicted in SEQ ID NO: 191, CDR-H2 as depicted in SEQ ID NO: 192,
CDR-H3 as depicted in SEQ ID NO: 193, CDR-L1 as depicted in SEQ ID NO: 194, CDR-
L2 as depicted in SEQ ID NO: 195 and CDR-L3 as ed in SEQ ID NO: 196;
(13) CDR-H1 as depicted in SEQ ID NO: 201, CDR-H2 as depicted in SEQ ID NO: 202,
CDR-H3 as depicted in SEQ ID NO: 203, CDR-L1 as depicted in SEQ ID NO: 204, CDR-
L2 as depicted in SEQ ID NO: 205 and CDR-L3 as ed in SEQ ID NO: 206;
(14) CDR-H1 as depicted in SEQ ID NO: 211, CDR-H2 as depicted in SEQ ID NO: 212,
CDR-H3 as depicted in SEQ ID NO: 213, CDR-L1 as ed in SEQ ID NO:214 CDR-
L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216;
(15) CDR-H1 as depicted in SEQ ID NO: 221, CDR-H2 as depicted in SEQ ID NO: 222,
CDR-H3 as ed in SEQ ID NO: 223, CDR-L1 as depicted in SEQ ID NO: 224, CDR-
L2 as depicted in SEQ ID NO: 225 and CDR-L3 as depicted in SEQ ID NO: 226;
(16) CDR-H1 as depicted in SEQ ID NO: 311, CDR-H2 as ed in SEQ ID NO: 312,
CDR-H3 as depicted in SEQ ID NO: 313, CDR-L1 as depicted in SEQ ID NO: 314, CDR-
L2 as ed in SEQ ID NO: 315 and CDR-L3 as depicted in SEQ ID NO: 316;
2012/072699
(17) CDR-H1 as depicted in SEQ ID NO: 321, CDR-H2 as ed in SEQ ID NO: 322,
CDR-H3 as depicted in SEQ ID NO: 323, CDR-L1 as depicted in SEQ ID NO: 324, CDR-
L2 as depicted in SEQ ID NO: 325 and CDR-L3 as depicted in SEQ ID NO: 326;
(18) CDR-H1 as depicted in SEQ ID NO: 331, CDR-H2 as depicted in SEQ ID NO: 332,
CDR-H3 as depicted in SEQ ID NO: 333, CDR-L1 as depicted in SEQ ID NO: 334, CDR-
L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 336;
(19) CDR-H1 as depicted in SEQ ID NO: 341, CDR-H2 as depicted in SEQ ID NO: 342,
CDR-H3 as depicted in SEQ ID NO: 343, CDR-L1 as depicted in SEQ ID NO: 344, CDR-
L2 as depicted in SEQ ID NO: 345 and CDR-L3 as depicted in SEQ ID NO: 346;
(20) CDR-H1 as depicted in SEQ ID NO: 351, CDR-H2 as depicted in SEQ ID NO: 352,
CDR-H3 as ed in SEQ ID NO: 353, CDR-L1 as depicted in SEQ ID NO: 354, CDR-
L2 as depicted in SEQ ID NO: 355 and CDR-L3 as depicted in SEQ ID NO: 356;
(21) CDR-H1 as depicted in SEQ ID NO: 361, CDR-H2 as depicted in SEQ ID NO: 362,
CDR-H3 as depicted in SEQ ID NO: 363, CDR-L1 as depicted in SEQ ID NO: 364, CDR-
L2 as depicted in SEQ ID NO: 365 and CDR-L3 as depicted in SEQ ID NO: 366;
(22) CDR-H1 as depicted in SEQ ID NO: 371, CDR-H2 as depicted in SEQ ID NO: 372,
CDR-H3 as depicted in SEQ ID NO: 373, CDR-L1 as depicted in SEQ ID NO: 374, CDR-
L2 as depicted in SEQ ID NO: 375 and CDR-L3 as depicted in SEQ ID NO: 376;
(23) CDR-H1 as depicted in SEQ ID NO: 381, CDR-H2 as depicted in SEQ ID NO: 382,
CDR-H3 as depicted in SEQ ID NO: 383, CDR-L1 as depicted in SEQ ID NO: 384, CDR-
L2 as depicted in SEQ ID NO: 385 and CDR-L3 as depicted in SEQ ID NO: 386;
(24) CDR-H1 as depicted in SEQ ID NO: 581, CDR-H2 as depicted in SEQ ID NO: 582,
CDR-H3 as depicted in SEQ ID NO: 583, CDR-L1 as depicted in SEQ ID NO: 584, CDR-
L2 as depicted in SEQ ID NO: 585 and CDR-L3 as depicted in SEQ ID NO: 586;
(25) CDR-H1 as depicted in SEQ ID NO: 591, CDR-H2 as ed in SEQ ID NO: 592,
CDR-H3 as depicted in SEQ ID NO: 593, CDR-L1 as depicted in SEQ ID NO: 594, CDR-
L2 as depicted in SEQ ID NO: 595 and CDR-L3 as depicted in SEQ ID NO: 596;
(26) CDR-H1 as depicted in SEQ ID NO: 601, CDR-H2 as depicted in SEQ ID NO: 602,
CDR-H3 as depicted in SEQ ID NO: 603, CDR-L1 as depicted in SEQ ID NO: 604, CDR-
L2 as depicted in SEQ ID NO: 605 and CDR-L3 as depicted in SEQ ID NO: 606;
(27) CDR-H1 as depicted in SEQ ID NO: 611, CDR-H2 as depicted in SEQ ID NO: 612,
CDR-H3 as depicted in SEQ ID NO: 613, CDR-L1 as depicted in SEQ ID NO: 614, CDR-
L2 as ed in SEQ ID NO: 615 and CDR-L3 as depicted in SEQ ID NO: 616;
(28) CDR-H1 as depicted in SEQ ID NO: 621, CDR-H2 as depicted in SEQ ID NO: 622,
CDR-H3 as depicted in SEQ ID NO: 623, CDR-L1 as depicted in SEQ ID NO: 624, CDR-
L2 as depicted in SEQ ID NO: 625 and CDR-L3 as depicted in SEQ ID NO: 626;
(29) CDR-H1 as depicted in SEQ ID NO: 631, CDR-H2 as ed in SEQ ID NO: 632,
CDR-H3 as depicted in SEQ ID NO: 633, CDR-L1 as depicted in SEQ ID NO: 634, CDR-
L2 as depicted in SEQ ID NO: 635 and CDR-L3 as depicted in SEQ ID NO: 636;
(30) CDR-H1 as depicted in SEQ ID NO: 641, CDR-H2 as depicted in SEQ ID NO: 642,
CDR-H3 as ed in SEQ ID NO: 643, CDR-L1 as ed in SEQ ID NO: 644, CDR-
L2 as depicted in SEQ ID NO: 645 and CDR-L3 as depicted in SEQ ID NO: 646;
(31) CDR-H1 as depicted in SEQ ID NO: 651, CDR-H2 as depicted in SEQ ID NO: 652,
CDR-H3 as depicted in SEQ ID NO: 653, CDR-L1 as depicted in SEQ ID NO: 654, CDR-
L2 as depicted in SEQ ID NO: 655 and CDR-L3 as depicted in SEQ ID NO: 656;
(32) CDR-H1 as depicted in SEQ ID NO: 661, CDR-H2 as depicted in SEQ ID NO: 662,
CDR-H3 as depicted in SEQ ID NO: 663, CDR-L1 as depicted in SEQ ID NO: 664, CDR-
L2 as depicted in SEQ ID NO: 665 and CDR-L3 as depicted in SEQ ID NO: 666;
(33) CDR-H1 as depicted in SEQ ID NO: 671, CDR-H2 as depicted in SEQ ID NO: 672,
CDR-H3 as ed in SEQ ID NO: 673, CDR-L1 as depicted in SEQ ID NO: 674, CDR-
L2 as depicted in SEQ ID NO: 675 and CDR-L3 as depicted in SEQ ID NO: 676;
(34) CDR-H1 as depicted in SEQ ID NO: 681, CDR-H2 as depicted in SEQ ID NO: 682,
CDR-H3 as depicted in SEQ ID NO: 683, CDR-L1 as depicted in SEQ ID NO: 684, CDR-
L2 as ed in SEQ ID NO: 685 and CDR-L3 as depicted in SEQ ID NO: 686;
(35) CDR-H1 as depicted in SEQ ID NO: 691, CDR-H2 as ed in SEQ ID NO: 692,
CDR-H3 as depicted in SEQ ID NO: 693, CDR-L1 as depicted in SEQ ID NO: 694, CDR-
L2 as depicted in SEQ ID NO: 695 and CDR-L3 as depicted in SEQ ID NO: 696;
(33) CDR-H1 as depicted in SEQ ID NO: 701, CDR-H2 as depicted in SEQ ID NO: 702,
CDR-H3 as depicted in SEQ ID NO: 703, CDR-L1 as depicted in SEQ ID NO: 704, CDR-
L2 as depicted in SEQ ID NO: 705 and CDR-L3 as depicted in SEQ ID NO: 706;
(37) CDR-H1 as depicted in SEQ ID NO: 711, CDR-H2 as depicted in SEQ ID NO: 712,
CDR-H3 as depicted in SEQ ID NO: 713, CDR-L1 as depicted in SEQ ID NO: 714,
CDR-L2 as depicted in SEQ ID NO: 715 and CDR-L3 as depicted in SEQ ID
NO: 716;
(38) CDR-H1 as depicted in SEQ ID NO: 721, CDR-H2 as depicted in SEQ ID NO: 722,
CDR-H3 as depicted in SEQ ID NO: 723, CDR-L1 as depicted in SEQ ID NO: 724, CDR-
L2 as depicted in SEQ ID NO: 725 and CDR-L3 as depicted in SEQ ID NO: 726;
(39) CDR-H1 as depicted in SEQ ID NO: 731, CDR-H2 as ed in SEQ ID NO: 732,
CDR-H3 as depicted in SEQ ID NO: 733, CDR-L1 as depicted in SEQ ID NO: 734, CDR-
L2 as depicted in SEQ ID NO: 735 and CDR-L3 as depicted in SEQ ID NO: 736;
(40) CDR-H1 as depicted in SEQ ID NO: 741, CDR-H2 as depicted in SEQ ID NO: 742,
CDR-H3 as depicted in SEQ ID NO: 743, CDR-L1 as depicted in SEQ ID NO: 744, CDR-
L2 as depicted in SEQ ID NO: 745 and CDR-L3 as depicted in SEQ ID NO: 746;
(41) CDR-H1 as depicted in SEQ ID NO: 751, CDR-H2 as depicted in SEQ ID NO: 752,
CDR-H3 as depicted in SEQ ID NO: 753, CDR-L1 as depicted in SEQ ID NO: 754, CDR-
L2 as depicted in SEQ ID NO: 755 and CDR-L3 as ed in SEQ ID NO: 756;
(42) CDR-H1 as depicted in SEQ ID NO: 761, CDR-H2 as depicted in SEQ ID NO: 762,
CDR-H3 as depicted in SEQ ID NO: 763, CDR-L1 as depicted in SEQ ID NO: 764, CDR-
L2 as ed in SEQ ID NO: 765 and CDR-L3 as depicted in SEQ ID NO: 766;
(43) CDR-H1 as depicted in SEQ ID NO: 771, CDR-H2 as depicted in SEQ ID NO: 772,
CDR-H3 as depicted in SEQ ID NO: 773, CDR-L1 as depicted in SEQ ID NO: 774, CDR-
L2 as depicted in SEQ ID NO: 775 and CDR-L3 as depicted in SEQ ID NO: 776;
(44) CDR-H1 as depicted in SEQ ID NO: 781, CDR-H2 as depicted in SEQ ID NO: 782,
CDR-H3 as depicted in SEQ ID NO: 783, CDR-L1 as depicted in SEQ ID NO: 784, CDR-
L2 as depicted in SEQ ID NO: 785 and CDR-L3 as depicted in SEQ ID NO: 786;
(45) CDR-H1 as ed in SEQ ID NO: 791, CDR-H2 as depicted in SEQ ID NO: 792,
CDR-H3 as depicted in SEQ ID NO: 793, CDR-L1 as depicted in SEQ ID NO: 794, CDR-
L2 as depicted in SEQ ID NO: 795 and CDR-L3 as depicted in SEQ ID NO: 796;
(46) CDR-H1 as depicted in SEQ ID NO: 801, CDR-H2 as ed in SEQ ID NO: 802,
CDR-H3 as depicted in SEQ ID NO: 803, CDR-L1 as ed in SEQ ID NO: 804, CDR-
L2 as depicted in SEQ ID NO: 805 and CDR-L3 as depicted in SEQ ID NO: 806;
(47) CDR-H1 as depicted in SEQ ID NO: 811, CDR-H2 as depicted in SEQ ID NO: 812,
CDR-H3 as depicted in SEQ ID NO: 813, CDR-L1 as depicted in SEQ ID NO: 814, CDR-
L2 as depicted in SEQ ID NO: 815 and CDR-L3 as depicted in SEQ ID NO: 816;
(48) CDR-H1 as depicted in SEQ ID NO: 821, CDR-H2 as depicted in SEQ ID NO: 822,
CDR-H3 as depicted in SEQ ID NO: 823, CDR-L1 as depicted in SEQ ID NO: 824, CDR-
L2 as depicted in SEQ ID NO: 825 and CDR-L3 as depicted in SEQ ID NO: 826;
(49) CDR-H1 as depicted in SEQ ID NO: 831, CDR-H2 as depicted in SEQ ID NO: 832,
CDR-H3 as depicted in SEQ ID NO: 833, CDR-L1 as depicted in SEQ ID NO: 834, CDR-
L2 as depicted in SEQ ID NO: 835 and CDR-L3 as depicted in SEQ ID NO: 836;
(50) CDR-H1 as depicted in SEQ ID NO: 961, CDR-H2 as depicted in SEQ ID NO: 962,
CDR-H3 as depicted in SEQ ID NO: 963, CDR-L1 as depicted in SEQ ID NO: 964, CDR-
L2 as depicted in SEQ ID NO: 965 and CDR-L3 as depicted in SEQ ID NO: 966;
(51) CDR-H1 as ed in SEQ ID NO: 971, CDR-H2 as depicted in SEQ ID NO: 972,
CDR-H3 as depicted in SEQ ID NO: 973, CDR-L1 as depicted in SEQ ID NO: 974, CDR-
L2 as depicted in SEQ ID NO: 975 and CDR-L3 as depicted in SEQ ID NO: 976;
(52) CDR-H1 as depicted in SEQ ID NO: 981, CDR-H2 as depicted in SEQ ID NO: 982,
CDR-H3 as depicted in SEQ ID NO: 983, CDR-L1 as depicted in SEQ ID NO: 984, CDR-
L2 as depicted in SEQ ID NO: 985 and CDR-L3 as ed in SEQ ID NO: 986; and
(53) CDR-H1 as depicted in SEQ ID NO: 991, CDR-H2 as depicted in SEQ ID NO: 992,
CDR-H3 as depicted in SEQ ID NO: 993, CDR-L1 as depicted in SEQ ID NO: 994, CDR-
L2 as ed in SEQ ID NO: 995 and CDR-L3 as depicted in SEQ ID NO: 996.
In yet another embodiment, the first binding domain of the binding molecule comprises a
VH region selected from the group ting of a VH region as depicted in SEQ ID NO: 7,
SEQ ID NO: 17, SEQ ID NO: 27, SEQ ID NO: 37, SEQ ID NO: 47, SEQ ID NO: 57, SEQ ID
NO: 67, SEQ ID NO: 77, SEQ ID NO: 167, SEQ ID NO: 177, SEQ ID NO: 187, SEQ ID
NO: 197, SEQID NO: 207, SEQID NO: 217, SEQID NO: 227, SEQID NO: 317, SEQID
NO: 327, SEQ ID NO: 337, SEQ ID NO: 347, SEQ ID NO: 357, SEQ ID NO: 367, SEQ ID
NO: 377, SEQ ID NO: 387, SEQ ID NO: 587, SEQ ID NO: 597, SEQ ID NO: 607, SEQ ID
NO: 617, SEQID NO: 627, SEQID NO: 637, SEQID NO: 647, SEQID NO: 657, SEQID
NO: 667, SEQID NO: 677, SEQID NO: 687, SEQID NO: 697, SEQID NO: 707, SEQID
NO: 717, SEQ ID NO: 727, SEQ ID NO: 737, SEQ ID NO: 747, SEQ ID NO: 757, SEQ ID
NO: 767, SEQ ID NO: 777, SEQ ID NO: 787, SEQ ID NO: 797, SEQ ID NO: 807, SEQ ID
NO: 817, SEQ ID NO: 827, SEQ ID NO: 837, SEQ ID NO: 967, SEQ ID NO: 977, SEQ ID
NO: 987, and SEQ ID NO: 997.
In another embodiment, the first binding domain of the binding molecule comprises a VL region
selected from the group consisting of a VL region as depicted in SEQ ID in SEQ ID NO: 8,
SEQ ID NO: 18, SEQ ID NO: 28, SEQ ID NO: 38, SEQ ID NO: 48, SEQ ID NO: 58, SEQ ID
NO: 68, SEQ ID NO: 78, SEQ ID NO: 168, SEQ ID NO: 178, SEQ ID NO: 188, SEQ ID
NO: 198, SEQID NO: 208, SEQID NO:218, SEQID NO: 228, SEQID NO: 318, SEQID
NO: 328, SEQ ID NO: 338, SEQ ID NO: 348, SEQ ID NO: 358, SEQ ID NO: 368, SEQ ID
NO: 378, SEQ ID NO: 388, SEQ ID NO: 588, SEQ ID NO: 598, SEQ ID NO: 608, SEQ ID
NO: 618, SEQID NO: 628, SEQID NO: 638, SEQID NO: 648, SEQID NO: 658, SEQID
NO: 668, SEQ ID NO: 678, SEQ ID NO: 688, SEQ ID NO: 698, SEQ ID NO: 708, SEQ ID
NO: 718, SEQ ID NO: 728, SEQ ID NO: 738, SEQ ID NO: 748, SEQ ID NO: 758, SEQ ID
NO: 768, SEQ ID NO: 778, SEQ ID NO: 788, SEQ ID NO: 798, SEQ ID NO: 808, SEQ ID
NO: 818, SEQ ID NO: 828, SEQ ID NO: 838, SEQ ID NO: 968, SEQ ID NO: 978, SEQ ID
NO: 988, and SEQ ID NO: 998.
In one embodiment, the first binding domain of the binding molecule comprises a VH region and
a VL region selected from the group consisting of:
(1) a VH region as depicted in SEQ ID NO: 7, and a VL region as depicted in SEQ ID
NO: 8;
(2) a VH region as depicted in SEQ ID NO: 17, and a VL region as depicted in SEQ ID
NO: 18;
(3) a VH region as depicted in SEQ ID NO: 27, and a VL region as ed in SEQ ID
NO: 28;
(4) a VH region as depicted in SEQ ID NO: 37, and a VL region as depicted in SEQ ID
NO: 38;
(5) a VH region as depicted in SEQ ID NO: 47, and a VL region as depicted in SEQ ID
NO: 48;
(6) a VH region as depicted in SEQ ID NO: 57, and a VL region as depicted in SEQ ID
NO: 58;
(7) a VH region as depicted in SEQ ID NO: 67, and a VL region as depicted in SEQ ID
NO: 68;
(8) a VH region as depicted in SEQ ID NO: 77, and a VL region as depicted in SEQ ID
NO: 78;
(9) a VH region as depicted in SEQ ID NO: 167, and a VL region as depicted in
SEQ ID NO: 168;
(10) a VH region as depicted in SEQ ID NO: 177, and a VL region as depicted in
SEQ ID NO: 178;
(11) a VH region as depicted in SEQ ID NO: 187, and a VL region as depicted in
SEQ ID NO: 188;
(12) a VH region as ed in SEQ ID NO: 197, and a VL region as depicted in
SEQ ID NO: 198;
(13) a VH region as ed in SEQ ID NO: 207, and a VL region as depicted in
SEQ ID NO: 208;
(14) a VH region as depicted in SEQ ID NO: 217, and VL region as depicted in
SEQ ID NO: 218;
(15) a VH region as depicted in SEQ ID NO: 227, and VL region as depicted in
SEQ ID NO: 228;
(16) a VH region as depicted in SEQ ID NO: 317, and VL region as depicted in
SEQ ID NO: 318;
(17) a VH region as depicted in SEQ ID NO: 327, and VL region as depicted in
SEQ ID NO: 328;
(18) a VH region as depicted in SEQ ID NO: 337, and VL region as depicted in
SEQ ID NO: 338;
(19) a VH region as depicted in SEQ ID NO: 347, and VL region as depicted in
SEQ ID NO: 348;
(20) a VH region as ed in SEQ ID NO: 357, and VL region as depicted in
SEQ ID NO: 358;
(21) a VH region as depicted in SEQ ID NO: 367, and VL region as depicted in
SEQ ID NO: 368;
(22) a VH region as depicted in SEQ ID NO: 377, and VL region as depicted in
SEQ ID NO: 378;
(23) a VH region as depicted in SEQ ID NO: 387, and VL region as depicted in
SEQ ID NO: 388;
(24) a VH region as depicted in SEQ ID NO: 587, and VL region as depicted in
SEQ ID NO: 588;
(25) a VH region as ed in SEQ ID NO: 597, and VL region as depicted in
SEQ ID NO: 598;
(26) a VH region as depicted in SEQ ID NO: 607, and VL region as depicted in
SEQ ID NO: 608;
(27) a VH region as depicted in SEQ ID NO: 617, and VL region as ed in
SEQ ID NO: 618;
(28) a VH region as depicted in SEQ ID NO: 627, and VL region as depicted in
SEQ ID NO: 628;
(29) a VH region as depicted in SEQ ID NO: 637, and VL region as depicted in
SEQ ID NO: 638;
(30) a VH region as depicted in SEQ ID NO: 647, and VL region as depicted in
SEQ ID NO: 648;
(31) a VH region as depicted in SEQ ID NO: 657, and VL region as depicted in
SEQ ID NO: 658;
(32) a VH region as depicted in SEQ ID NO: 667, and VL region as depicted in
SEQ ID NO: 668;
(33) a VH region as depicted in SEQ ID NO: 677, and VL region as depicted in
SEQ ID NO: 678;
(34) a VH region as depicted in SEQ ID NO: 687, and VL region as depicted in
SEQ ID NO: 688;
(35) a VH region as depicted in SEQ ID NO: 697, and VL region as depicted in
SEQ ID NO: 698;
(33) a VH region as depicted in SEQ ID NO: 707, and VL region as depicted in
SEQ ID NO: 708;
(37) a VH region as depicted in SEQ ID NO: 717, and VL region as depicted in
SEQ ID NO: 718;
(38) a VH region as depicted in SEQ ID NO: 727, and VL region as depicted in
SEQ ID NO: 728;
(39) a VH region as depicted in SEQ ID NO: 737, and VL region as depicted in
SEQ ID NO: 738;
(40) a VH region as depicted in SEQ ID NO: 747, and VL region as depicted in
SEQ ID NO: 748;
(41) a VH region as depicted in SEQ ID NO: 757, and VL region as depicted in
SEQ ID NO: 758;
(42) a VH region as depicted in SEQ ID NO: 767, and VL region as ed in
SEQ ID NO: 768;
(43) a VH region as depicted in SEQ ID NO: 777, and VL region as depicted in
SEQ ID NO: 778;
(44) a VH region as depicted in SEQ ID NO: 787, and VL region as depicted in
SEQ ID NO: 788;
(45) a VH region as ed in SEQ ID NO: 797, and VL region as depicted in
SEQ ID NO: 798;
(43) a VH region as depicted in SEQ ID NO: 807, and VL region as depicted in
SEQ ID NO: 808;
(47) a VH region as depicted in SEQ ID NO: 817, and VL region as depicted in
SEQ ID NO: 818;
(48) a VH region as depicted in SEQ ID NO: 827, and VL region as ed in
SEQ ID NO: 828;
(49) a VH region as depicted in SEQ ID NO: 837, and VL region as depicted in
SEQ ID NO: 838;
(50) a VH region as depicted in SEQ ID NO: 967, and VL region as depicted in
SEQ ID NO: 968;
(51) a VH region as depicted in SEQ ID NO: 977, and VL region as depicted in
SEQ ID NO: 978;
(52) a VH region as depicted in SEQ ID NO: 987, and VL region as depicted in
SEQ ID NO: 988; and
(53) a VH region as depicted in SEQ ID NO: 997, and VL region as depicted in
SEQ ID NO: 998.
In one example, the first binding domain ses an amino acid sequence selected from the
group consisting of SEQ ID NO: 9, SEQ ID NO: 19, SEQ ID NO: 29, SEQ ID NO: 39, SEQ ID
NO: 49, SEQ ID NO: 59, SEQ ID NO: 69, SEQ ID NO: 79, SEQ ID NO: 169, SEQ ID NO: 179,
SEQ ID NO: 189, SEQ ID NO: 199, SEQ ID NO: 209, SEQ ID NO: 219, SEQ ID NO: 229,
SEQ ID NO: 319, SEQ ID NO: 329, SEQ ID NO: 339, SEQ ID NO: 349, SEQ ID NO: 359,
SEQ ID NO: 369, SEQ ID NO: 379, SEQ ID NO: 389, SEQ ID NO: 589, SEQ ID NO: 599,
SEQ ID NO: 609, SEQ ID NO: 619, SEQ ID NO: 629, SEQ ID NO: 639, SEQ ID NO: 649,
SEQ ID NO: 659, SEQ ID NO: 669, SEQ ID NO: 679, SEQ ID NO: 689, SEQ ID NO: 699,
SEQ ID NO: 709, SEQ ID NO: 719, SEQ ID NO: 729, SEQ ID NO: 739, SEQ ID NO: 749,
SEQ ID NO: 759, SEQ ID NO: 769, SEQ ID NO: 779, SEQ ID NO: 789, SEQ ID NO: 799,
SEQ ID NO: 809, SEQ ID NO: 819, SEQ ID NO: 829, SEQ ID NO: 839, SEQ ID NO: 969,
SEQ ID NO: 979, SEQ ID NO: 989, and SEQ ID NO: 999.
It is preferred that a binding molecule of the present invention has a CDR-H3 region of 12 amino
acids in length, wherein a tyrosine (Y) residue is present at position 3, 4 and 12. A preferred
CDR-H3 is shown in SEQ ID NOs: 43, 193, 333, 613, 703, 733, 823, or 973. Accordingly, a
3O binding molecule of the present invention has in a red ment a CDR-H3 shown in of
SEQ ID NOs: 43, 193, 333,613, 703, 733, 823, or 973.
Preferred is a binding molecule having the amino acid sequence shown in SEQ ID NO: 340.
Also preferred is a binding molecule having the amino acid sequence shown in or SEQ ID NO:
980.
The binding molecule of the present invention is ably an “isolated” binding molecule.
"Isolated" when used to describe the binding molecule disclosed herein, means a binding
le that has been identified, separated and/or red from a component of its
production environment. Preferably, the isolated binding molecule is free of association with all
other components from its tion environment. inant components of its tion
environment, such as that resulting from recombinant transfected cells, are materials that would
typically ere with diagnostic or eutic uses for the polypeptide, and may include
enzymes, es, and other proteinaceous or oteinaceous solutes. In preferred
embodiments, the binding molecule will be purified (1) to a degree sufficient to obtain at least 15
residues of N-terminal or internal amino acid sequence by use of a spinning cup sequenator, or
(2) to homogeneity by SDS-PAGE under non-reducing or reducing conditions using Coomassie
blue or, preferably, silver stain. Ordinarily, however, an isolated antibody will be prepared by at
least one purification step.
Amino acid sequence modifications of the binding molecules described herein are
contemplated. For example, it may be desirable to improve the binding affinity and/or other
biological properties of the antibody. Amino acid sequence variants of the binding molecules are
prepared by introducing appropriate nucleotide changes into the binding molecules nucleic acid,
or by peptide synthesis.
Such modifications e, for example, deletions from, and/or insertions into, and/or
tutions of, residues within the amino acid sequences of the binding molecules. Any
combination of deletion, insertion, and substitution is made to arrive at the final construct,
provided that the final construct possesses the desired characteristics. The amino acid changes
also may alter post-translational processes of the binding molecules, such as changing the
number or position of glycosylation sites. Preferably, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10 amino acids
may be substituted in a CDR, while 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
, or 25 amino acids may be substituted in the framework s (FRs). The substitutions are
preferably conservative substitutions as described herein. Additionally or atively, 1, 2, 3, 4,
3O 5, or 6 amino acids may be inserted or deleted in each of the CDRs (of course, dependent on
their length), while 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or 25 amino
acids may be inserted or deleted in each of the FRs.
A useful method for identification of certain residues or regions of the binding les that are
preferred locations for nesis is called "alanine scanning mutagenesis" as described by
gham and Wells in Science, 244: 1081-1085 (1989). Here, a residue or group of target
residues within the binding molecule is/are fied (e.g. charged es such as arg, asp,
his, lys, and glu) and replaced by a neutral or negatively charged amino acid (most preferably
alanine or polyalanine) to affect the interaction of the amino acids with the epitope.
Those amino acid locations demonstrating functional sensitivity to the substitutions then are
refined by introducing further or other variants at, or for, the sites of substitution. Thus, while the
site for introducing an amino acid sequence variation is predetermined, the nature of the
mutation per se needs not to be predetermined. For example, to analyze the mance of a
mutation at a given site, ala scanning or random mutagenesis is conducted at a target codon or
region and the expressed binding molecule variants are screened for the desired activity.
Preferably, amino acid sequence insertions include amino- and/or carboxyl-terminal fusions
ranging in length from 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 residues to polypeptides containing a
hundred or more residues, as well as intrasequence insertions of single or multiple amino acid
residues. An insertional variant of the binding le includes the fusion to the N-or C-
terminus of the dy to an enzyme or a fusion to a polypeptide which increases the serum
half-life of the antibody.
Another type of variant is an amino acid substitution variant. These variants have preferably at
least 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10 amino acid residues in the binding le replaced by a
different e. The sites of greatest interest for substitutional mutagenesis include the CDRs
of the heavy and/or light chain, in particular the hypervariable s, but FR alterations in the
heavy and/or light chain are also contemplated.
For example, if a CDR sequence encompasses 6 amino acids, it is ged that one, two or
three of these amino acids are substituted. Similarly, if a CDR sequence encompasses 15
amino acids it is envisaged that one, two, three, four, five or six of these amino acids are
substituted.
Generally, if amino acids are substituted in one or more or all of the CDRs of the heavy and/or
light chain, it is preferred that the then-obtained “substituted” sequence is at least 60%, more
preferably 65%, even more preferably 70%, ularly ably 75%, more particularly
preferably 80% cal to the “original” CDR sequence. This means that it is dependent of the
length of the CDR to which degree it is identical to the “substituted” sequence. For example, a
CDR having 5 amino acids is preferably 80% identical to its substituted sequence in order to
have at least one amino acid substituted. Accordingly, the CDRs of the g le may
have different degrees of identity to their substituted sequences, e.g., CDRL1 may have 80%,
while CDRL3 may have 90%.
Preferred substitutions (or replacements) are conservative substitutions. However, any
substitution (including non-conservative substitution or one or more from the “exemplary
substitutions” listed in Table 1, below) is envisaged as long as the binding le retains its
capability to bind to BCMA via the first binding domain and to CD3 epsilon via the second
binding domain and/or its CDRs have an identity to the then substituted sequence (at least
60%, more preferably 65%, even more ably 70%, particularly preferably 75%, more
particularly preferably 80% identical to the “original” CDR sequence).
Conservative substitutions are shown in Table 1under the g of "preferred substitutions". If
such substitutions result in a change in biological activity, then more substantial changes,
denominated "exemplary substitutions" in Table 1, or as further described below in nce to
amino acid classes, may be introduced and the products screened for a d characteristic.
Table 1: Amino Acid Substitutions
tyr, phe tyr
trp, phe, thr, ser phe
Val (V) ile, leu, met, phe, ala leu
Substantial modifications in the biological properties of the binding molecule of the present
invention are accomplished by selecting tutions that differ significantly in their effect on
maintaining (a) the structure of the polypeptide backbone in the area of the substitution, for
example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at
the target site, or (c) the bulk of the side chain. Naturally occurring residues are divided into
groups based on common side-chain ties: (1) hydrophobic: norleucine, met, ala, val, leu,
lie; (2) neutral hydrophilic: cys, ser, thr; (3) acidic: asp, glu; (4) basic: asn, gin, his, lys, arg; (5)
residues that influence chain orientation: gly, pro; and (6) aromatic : trp, tyr, phe.
Non-conservative tutions will entail exchanging a member of one of these classes for
another class. Any cysteine residue not involved in maintaining the proper conformation of the
binding molecule may be substituted, generally with serine, to e the oxidative stability of
the le and prevent nt inking. Conversely, ne bond(s) may be added to
the antibody to improve its stability (particularly where the antibody is an antibody fragment
such as an Fv fragment).
A particularly preferred type of substitutional variant involves substituting one or more
hypervariable region residues of a parent antibody (e. g. a humanized or human antibody).
Generally, the resulting variant(s) ed for r development will have improved biological
ties relative to the parent antibody from which they are generated. A convenient way for
generating such substitutional variants involves affinity maturation using phage display. Briefly,
several hypervariable region sites (e. g. 6-7 sites) are mutated to generate all possible amino
acid substitutions at each site. The antibody variants thus generated are displayed in a
monovalent fashion from filamentous phage particles as fusions to the gene lll product of M13
packaged within each particle. The phage-displayed variants are then screened for their
biological activity (e. g. binding ty) as herein disclosed. In order to identify candidate
hypervariable region sites for modification, alanine scanning mutagenesis can be performed to
identify hypervariable region residues contributing icantly to antigen binding. Alternatively,
or additionally, it may be beneficial to analyze a crystal structure of the antigen-antibody
complex to identify contact points between the binding domain and, e.g., human BCMA. Such
contact residues and neighbouring residues are candidates for tution according to the
techniques elaborated herein. Once such variants are generated, the panel of variants is
subjected to screening as described herein and antibodies with or ties in one or
more relevant assays may be selected for further development.
Other modifications of the g molecule are contemplated herein. For example, the binding
molecule may be linked to one of a variety of non-proteinaceous polymers, e.g., polyethylene
glycol, polypropylene glycol, polyoxyalkylenes, or copolymers of hylene glycol and
polypropylene glycol. The binding molecule may also be entrapped in microcapsules prepared,
for example, by coacervation ques or by interfacial polymerization (for example,
hydroxymethylcellulose or gelatine-microcapsules and poly (methylmethacylate) microcapsules,
respectively), in colloidal drug ry systems (for example, liposomes, albumin microspheres,
microemulsions, nanoparticles and nanocapsules), or in macroemulsions. Such techniques are
disclosed in Remington's Pharmaceutical Sciences, 16th edition, Oslo, A., Ed., (1980).
The binding molecules disclosed herein may also be formulated as immuno-liposomes. A
"liposome" is a small vesicle composed of various types of lipids, phospholipids and/or
surfactant which is useful for delivery of a drug to a . The ents of the liposome
are commonly ed in a bilayer formation, similar to the lipid arrangement of ical
membranes. Liposomes containing the antibody are prepared by methods known in the art,
such as described in Epstein et al., Proc. Natl. Acad. Sci. USA, 82: 3688 (1985); Hwang et al.
Proc. Natl Acad. Sci. USA, 77: 4030 (1980); US Pat. Nos. 045 and 4,544,545; and
W0 97/38731 published October 23, 1997. Liposomes with enhanced circulation time are
disclosed in US Patent No. 5,013, 556. Particularly useful liposomes can be generated by the
reverse phase evaporation method with a lipid composition comprising phosphatidylcholine,
cholesterol and PEG-derivatized phosphatidylethanolamine (PEG-PE). mes are extruded
3O through s of defined pore size to yield liposomes with the desired diameter. Fab' fragments
of the antibody of the present invention can be conjugated to the liposomes as described in
Martin et al. J. Biol. Chem. 257: 286-288 (1982) via a disulfide hange reaction. A
chemotherapeutic agent is optionally contained within the liposome. See Gabizon et al. J.
National Cancer Inst. 81 (19) 1484 (1989).
When using recombinant techniques, the binding molecule can be produced intracellularly, in
the periplasmic space, or directly secreted into the medium. If the binding molecule is produced
intracellularly, as a first step, the particulate debris, either host cells or lysed fragments, are
removed, for example, by centrifugation or ultrafiltration. Carter et a/., Bio/Technology 10: 163-
167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic
space of E. coli.
The binding molecule composition prepared from the cells can be purified using, for example,
hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity chromatography, with
affinity chromatography being the preferred purification technique.
In a further aspect, the t ion relates to a nucleic acid sequence encoding a binding
molecule of the invention. The term “nucleic acid” is well known to the skilled person and
encompasses DNA (such as cDNA) and RNA (such as mRNA). The nucleic acid can be double
stranded and single stranded, linear and circular. Said nucleic acid le is preferably
comprised in a vector which is preferably comprised in a host cell. Said host cell is, e.g. after
transformation or ection with the nucleic acid ce of the invention, e of
expressing the binding molecule. For that purpose the nucleic acid molecule is operatively
linked with control sequences.
A vector is a nucleic acid molecule used as a vehicle to er (foreign) genetic al into a
cell. The term r” encompasses — but is not restricted to — plasmids, viruses, cosmids and
artificial chromosomes. In general, engineered vectors comprise an origin of replication, a
multicloning site and a selectable marker. The vector itself is generally a tide sequence,
commonly a DNA sequence, that comprises an insert (transgene) and a larger ce that
serves as the "backbone" of the vector. Modern vectors may encompass additional features
besides the transgene insert and a backbone: er, genetic marker, antibiotic resistance,
reporter gene, targeting sequence, protein purification tag. Vectors called expression vectors
(expression constructs) specifically are for the expression of the ene in the target cell, and
generally have control sequences such as a promoter sequence that drives expression of the
transgene. Insertion of a vector into the target cell is usually called “transformation” for ial
cells, “transfection” for eukaryotic cells, gh insertion of a viral vector is also called
“transduction”.
As used herein, the term "host cell" is ed to refer to a cell into which a c acid
encoding the binding molecule of the invention is uced by way of transformation,
ection and the like. It should be understood that such terms refer not only to the particular
subject cell but to the progeny or potential y of such a cell. Because certain modifications
may occur in succeeding generations due to either mutation or environmental influences, such
progeny may not, in fact, be identical to the parent cell, but are still included within the scope of
the term as used herein.
As used herein, the term "expression" includes any step involved in the production of a binding
molecule of the invention including, but not limited to, transcription, post-transcriptional
modification, translation, post-translational modification, and secretion.
The term "control sequences" refers to DNA ces necessary for the expression of an
operably linked coding sequence in a particular host organism. The control sequences that are
suitable for prokaryotes, for example, e a promoter, optionally an operator sequence, and
a ribosome binding site. Eukaryotic cells are known to utilize promoters, polyadenylation
signals, and ers.
A nucleic acid is "operably linked" when it is placed into a functional relationship with another
nucleic acid sequence. For example, DNA for a presequence or secretory leader is operably
linked to DNA for a polypeptide if it is expressed as a preprotein that participates in the
secretion of the polypeptide; a promoter or enhancer is operably linked to a coding sequence if
it affects the ription of the sequence; or a me binding site is operably linked to a
coding sequence if it is positioned so as to facilitate translation. Generally, "operably linked"
means that the DNA sequences being linked are contiguous, and, in the case of a secretory
leader, contiguous and in reading phase. However, ers do not have to be contiguous.
Linking is accomplished by ligation at convenient ction sites. If such sites do not exist, the
synthetic oligonucleotide rs or linkers are used in accordance with conventional practice.
3O The terms "host cell," "target cell" or "recipient cell" are intended to include any individual cell or
cell culture that can be or has/have been recipients for vectors or the incorporation of
exogenous c acid molecules, polynucleotides and/or ns. It also is intended to include
progeny of a single cell, and the progeny may not necessarily be completely cal (in
morphology or in genomic or total DNA complement) to the original parent cell due to natural,
accidental, or deliberate mutation. The cells may be prokaryotic or eukaryotic, and include but
are not limited to bacterial cells, yeast cells, animal cells, and mammalian cells, e.g., , rat,
macaque or human.
le host cells include prokaryotes and eukaryotic host cells including yeasts, fungi, insect
cells and mammalian cells.
The binding molecule of the invention can be produced in bacteria. After sion, the binding
molecule of the invention, preferably the binding molecule is ed from the E. coli cell paste
in a soluble fraction and can be purified through, e.g., affinity chromatography and/or size
exclusion. Final purification can be carried out similar to the process for purifying antibody
expressed e. g, in CHO cells.
In on to yotes, eukaryotic microbes such as filamentous fungi or yeast are suitable
cloning or expression hosts for the binding le of the ion. Saccharomyces
cerevisiae, or common baker's yeast, is the most commonly used among lower eukaryotic host
rganisms. However, a number of other genera, species, and strains are commonly
available and useful herein, such as Schizosaccharomyces pombe, Kluyveromyces hosts such
as, e.g., K. lactis, K. fragilis (ATCC 12424), K. bulgaricus (ATCC 16045), K. wickeramii (ATCC
24178), K. wa/tii (ATCC 56500), K. drosophilarum (ATCC 36906), K. thermoto/erans, and
K. marxianus; yarrowia (EP 402 226); Pichia pastoris (EP 183 070); Candida; Trichoderma
reesia (EP 244 234); Neurospora crassa; Schwanniomyces such as Schwanniomyces
occidental/s; and filamentous fungi such as, e.g., Neurospora, Penicillium, Tolypocladium, and
Aspergillus hosts such as A. nidulans and A. niger.
Suitable host cells for the expression of glycosylated binding molecule of the invention,
preferably antibody derived binding molecules are derived from multicellular organisms.
Examples of invertebrate cells include plant and insect cells. Numerous viral strains and
variants and corresponding permissive insect host cells from hosts such as Spodoptera
frugiperda pillar), Aedes aegypti (mosquito), Aedes ctus (mosquito), Drosophi/a
melanogaster (fruit fly), and Bombyx mori have been identified. A variety of viral strains for
transfection are publicly available, e. g. the L-1 variant of Autographa californica NPV and the
Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein ing
to the present invention, particularly for transfection of Spodoptera frugiperda cells.
WO 72406
Plant cell es of cotton, corn, potato, soybean, petunia, tomato, Arabidopsis and tobacco
can also be utilized as hosts. Cloning and expression vectors useful in the production of
proteins in plant cell culture are known to those of skill in the art. See e.g. Hiatt et al., Nature
(1989) 342: 76-78, Owen et al. (1992) Bio/Technology 10: 4, Artsaenko et al. (1995) The
Plant J 8: 745-750, and Fecker etal. (1996) Plant Mol Biol 32: 979-986.
However, interest has been st in vertebrate cells, and ation of vertebrate cells in
culture (tissue culture) has become a routine procedure. Examples of useful mammalian host
cell lines are monkey kidney CV1 line transformed by SV40 (COS-7, ATCC CRL 1651); human
embryonic kidney line (293 or 293 cells subcloned for growth in sion culture, Graham et
al. J. Gen Virol. 36 : 59 (1977)); baby hamster kidney cells (BHK, ATCC CCL
, 10); Chinese
hamster ovary cells/-DHFR (CHO, Urlaub et al. Proc. Natl. Acad. Sci. USA 77: 4216 (1980));
mouse sertoli cells (TM4, Mather, Biol. Reprod. 23: 243-251 (1980)); monkey kidney cells (CVl
ATCC CCL 70); African green monkey kidney cells (VERO-76, ATCC CRL1587) ; human
cervical carcinoma cells (HELA, ATCC CCL 2); canine kidney cells (MDCK, ATCC CCL 34);
o rat liver cells (BRL 3A, ATCC CRL 1442); human lung cells (W138, ATCC CCL 75);
human liver cells (Hep G2,1413 8065); mouse mammary tumor (MMT 060562, ATCC CCL5 1);
TRI cells (Mather et al., Annals N. Y Acad. Sci. 383 : 44-68 (1982) ) ; MRC 5 cells; F84 cells;
and a human hepatoma line (Hep G2).
When using recombinant techniques, the binding molecule of the invention can be produced
intracellularly, in the asmic space, or directly secreted into the medium. If the binding
molecule is produced intracellularly, as a first step, the particulate debris, either host cells or
lysed fragments, are removed, for example, by centrifugation or ultrafiltration. Carter et al.,
chnology 10: 163-167 (1992) describe a procedure for isolating antibodies which are
secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of
sodium acetate (pH 3.5), EDTA, and methylsulfonylfluoride (PMSF) over about 30 min.
Cell debris can be removed by centrifugation. Where the dy is secreted into the medium,
supernatants from such expression systems are generally first concentrated using a
commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon
ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing
steps to inhibit proteolysis and antibiotics may be included to prevent the growth of itious
contaminants.
WO 72406
The binding molecule of the invention prepared from the host cells can be purified using, for
example, hydroxylapatite chromatography, gel electrophoresis, dialysis, and affinity
chromatography, with ty chromatography being the preferred purification que.
The matrix to which the affinity ligand is attached is most often e, but other matrices are
available. ically stable matrices such as controlled pore glass or poly (styrenedivinyl)
benzene allow for faster flow rates and r processing times than can be achieved with
agarose. Where the binding molecule of the ion comprises a CH3 domain, the Bakerbond
ABXMresin (J. T. Baker, Phillipsburg, NJ) is useful for purification. Other techniques for protein
cation such as fractionation on an ion-exchange column, ethanol precipitation, Reverse
Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSETM
chromatography on an anion or cation exchange resin (such as a polyaspartic acid column),
chromato-focusing, SDS-PAGE, and ammonium sulfate precipitation are also available
depending on the antibody to be recovered.
In another , processes are provided for producing binding molecules of the invention,
said processes comprising culturing a host cell defined herein under conditions allowing the
expression of the g molecule and ring the produced binding molecule from the
culture.
The term "culturing" refers to the in vitro maintenance, differentiation, growth, eration
and/or propagation of cells under suitable conditions in a medium.
In an alternative embodiment, compositions are provided comprising a binding molecule of the
invention, or produced according to the process of the invention. Preferably, said composition is
a pharmaceutical composition.
As used herein, the term “pharmaceutical composition” relates to a composition for
administration to a patient, preferably a human patient. The particular preferred pharmaceutical
3O composition of this invention comprises the binding molecule of the invention. Preferably, the
pharmaceutical ition comprises suitable formulations of carriers, stabilizers and/or
excipients. In a red embodiment, the pharmaceutical composition comprises a
composition for parenteral, transdermal, intraluminal, rterial, intrathecal and/or intranasal
administration or by direct injection into tissue. It is in particular envisaged that said composition
is administered to a patient via on or injection. Administration of the suitable compositions
may be effected by different ways, e.g., by intravenous, intraperitoneal, subcutaneous,
intramuscular, topical or intradermal administration. In particular, the present invention provides
for an uninterrupted administration of the suitable composition. As a non-limiting example,
uninterrupted, i.e. continuous administration may be realized by a small pump system worn by
the patient for metering the influx of therapeutic agent into the body of the patient. The
pharmaceutical composition sing the binding molecule of the invention can be
administered by using said pump systems. Such pump systems are generally known in the art,
and commonly rely on periodic exchange of cartridges containing the therapeutic agent to be
infused. When ging the cartridge in such a pump system, a temporary interruption of the
othenNise uninterrupted flow of therapeutic agent into the body of the patient may ensue. In
such a case, the phase of stration prior to cartridge replacement and the phase of
administration following cartridge replacement would still be considered within the meaning of
the pharmaceutical means and methods of the invention together make up one “uninterrupted
administration” of such therapeutic agent.
The continuous or uninterrupted stration of these binding molecules of the invention may
be intravenous or subcutaneous by way of a fluid delivery device or small pump system
including a fluid driving ism for driving fluid out of a reservoir and an actuating
mechanism for actuating the driving ism. Pump systems for subcutaneous
administration may include a needle or a cannula for penetrating the skin of a patient and
ring the le composition into the patient’s body. Said pump s may be directly
fixed or attached to the skin of the patient independently of a vein, artery or blood vessel,
thereby allowing a direct contact between the pump system and the skin of the patient. The
pump system can be attached to the skin of the patient for 24 hours up to several days. The
pump system may be of small size with a oir for small volumes. As a non-limiting
example, the volume of the oir for the le pharmaceutical composition to be
stered can be between 0.1 and 50 ml.
The continuous administration may be transdermal by way of a patch worn on the skin and
3O replaced at intervals. One of skill in the art is aware of patch systems for drug delivery suitable
for this purpose. It is of note that transdermal administration is especially amenable to
uninterrupted administration, as exchange of a first exhausted patch can advantageously be
lished simultaneously with the placement of a new, second patch, for example on the
surface of the skin immediately adjacent to the first exhausted patch and immediately prior to
removal of the first exhausted patch. Issues of flow interruption or power cell failure do not arise.
The inventive compositions may r comprise a pharmaceutically acceptable carrier.
Examples of suitable pharmaceutical carriers are well known in the art and e solutions,
e.g. phosphate buffered saline solutions, water, emulsions, such as oil/water emulsions, various
types of wetting agents, sterile solutions, liposomes, etc. Compositions comprising such carriers
can be formulated by well known conventional methods. Formulations can se
carbohydrates, buffer solutions, amino acids and/or tants. Carbohydrates may be non-
reducing sugars, preferably trehalose, sucrose, octasulfate, sorbitol or xylitol. In general, as
used herein, "pharmaceutically acceptable carrier" means any and all solvents, dispersion
media, coatings, antibacterial and antifungal agents, isotonic and absorption delaying agents,
ible with pharmaceutical administration. The use of such media and agents for
pharmaceutically active substances is well known in the art. Acceptable carriers, excipients, or
stabilizers are nontoxic to recipients at the dosages and concentrations ed and include:
additional buffering agents; preservatives; vents; idants, including ascorbic acid and
methionine; ing agents such as EDTA; metal complexes (e.g., Zn-protein complexes);
biodegradable polymers, such as polyesters; salt-forming r-ions, such as sodium,
polyhydric sugar alcohols; amino acids, such as alanine, glycine, asparagine, 2—phenylalanine,
and threonine; sugars or sugar alcohols, such as trehalose, sucrose, octasulfate, sorbitol or
xylitol stachyose, e, sorbose, xylose, ribose, myoinisitose, galactose, lactitol, ribitol,
myoinisitol, galactitol, glycerol, cyclitols (e.g., ol), polyethylene glycol; sulfur containing
reducing agents, such as glutathione, thioctic acid, sodium thioglycolate, ycerol, [alpha]-
monothioglycerol, and sodium thio e; low molecular weight ns, such as human serum
albumin, bovine serum n, gelatin, or other immunoglobulins; and hydrophilic polymers,
such as polyvinylpyrrolidone. Such formulations may be used for continuous administrations
which may be intravenuous or subcutaneous with and/or without pump systems. Amino acids
may be d amino acids, preferably lysine, lysine acetate, arginine, glutamate and/or
histidine. Surfactants may be detergents, preferably with a molecular weight of >1.2 KD and/or a
polyether, preferably with a molecular weight of >3 KD. Non-limiting examples for preferred
detergents are Tween 20, Tween 40, Tween 60, Tween 80 or Tween 85. Non-limiting es
3O for preferred polyethers are PEG 3000, PEG 3350, PEG 4000 or PEG 5000. Buffer systems
used in the present invention can have a preferred pH of 5-9 and may comprise citrate,
succinate, phosphate, histidine and acetate.
The compositions of the present invention can be administered to the t at a suitable dose
which can be determined e.g. by dose escalating studies by administration of increasing doses
of the polypeptide of the invention ting species specificity described herein to non-
chimpanzee primates, for instance macaques. As set forth above, the binding molecule of the
invention exhibiting cross-species specificity described herein can be ageously used in
identical form in preclinical testing in non-chimpanzee primates and as drug in humans. These
compositions can also be administered in combination with other proteinaceous and non-
proteinaceous drugs. These drugs may be administered simultaneously with the composition
comprising the polypeptide of the invention as defined herein or separately before or after
administration of said polypeptide in timely defined intervals and doses. The dosage regimen
will be determined by the attending ian and clinical factors. As is well known in the
medical arts, dosages for any one patient depend upon many factors, including the patient's
size, body surface area, age, the particular compound to be administered, sex, time and route
of administration, general health, and other drugs being administered concurrently.
Preparations for parenteral administration include e aqueous or non-aqueous ons,
suspensions, and emulsions. Examples of ueous solvents are propylene glycol,
polyethylene glycol, vegetable oils such as olive oil, and injectable organic esters such as ethyl
oleate. s carriers include water, alcoholic/aqueous solutions, emulsions or suspensions,
including saline and buffered media. Parenteral vehicles include sodium chloride on,
Ringer's se, dextrose and sodium chloride, ed Ringer's, or fixed oils. Intravenous
vehicles include fluid and nutrient replenishers, electrolyte replenishers (such as those based on
Ringer's dextrose), and the like. Preservatives and other additives may also be present such as,
for example, antimicrobials, anti-oxidants, chelating agents, inert gases and the like. In addition,
the composition of the present invention might comprise proteinaceous carriers, like, e.g.,
serum albumin or immunoglobulin, preferably of human origin. It is envisaged that the
composition of the invention might comprise, in addition to the polypeptide of the ion
defined herein, further biologically active agents, depending on the ed use of the
composition. Such agents might be drugs acting on the gastro-intestinal system, drugs acting as
cytostatica, drugs preventing hyperurikemia, drugs inhibiting immunoreactions (e.g.
corticosteroids), drugs ting the inflammatory response, drugs acting on the circulatory
system and/or agents such as nes known in the art. It is also envisaged that the binding
3O molecule of the present invention is applied in a co-therapy, i.e., in combination with another
anti-cancer medicament.
The biological activity of the pharmaceutical composition defined herein can be determined for
instance by cytotoxicity assays, as described in the following es, in WO 99/54440 or by
Schlereth et al. (Cancer l. ther. 20 , 1-12). “Efficacy” or “in vivo efficacy“
WO 72406
as used herein refers to the response to therapy by the pharmaceutical composition of the
ion, using e.g. standardized NCI response criteria. The success or in vivo efficacy of the
therapy using a pharmaceutical composition of the invention refers to the effectiveness of the
composition for its intended purpose, i.e. the ability of the composition to cause its desired
effect, i.e. depletion of pathologic cells, e.g. tumor cells. The in vivo efficacy may be monitored
by established standard methods for the respective disease entities including, but not limited to
white blood cell counts, differentials, scence ted Cell g, bone marrow
aspiration. In addition, various disease specific clinical chemistry parameters and other
established standard methods may be used. Furthermore, computer-aided tomography, X—ray,
nuclear magnetic resonance tomography (e.g. for National Cancer Institute-criteria based
se assessment [Cheson BD, Horning SJ, Coiffier B, Shipp MA, Fisher Rl, Connors JM,
Lister TA, Vose J, Grillo-Lopez A, Hagenbeek A, Cabanillas F, nsten D, ann W,
Castellino R, Harris NL, Armitage JO, Carter W, Hoppe R, Canellos GP. Report of an
international workshop to standardize response criteria for dgkin's lymphomas. NCI
Sponsored International Working Group. J Clin Oncol. 1999 Apr;17(4):1244]), positron-emission
tomography ng, white blood cell counts, differentials, Fluorescence Activated Cell
Sorting, bone marrow aspiration, lymph node biopsies/histologies, and various lymphoma
ic clinical chemistry parameters (e.g. lactate dehydrogenase) and other established
rd methods may be used.
Another major challenge in the development of drugs such as the ceutical composition
of the invention is the predictable modulation of pharmacokinetic properties. To this end, a
pharmacokinetic profile of the drug candidate, Le. a profile of the pharmacokinetic parameters
that affect the ability of a particular drug to treat a given condition, can be ished.
Pharmacokinetic parameters of the drug influencing the ability of a drug for treating a certain
disease entity include, but are not limited to: half-life, volume of distribution, hepatic pass
metabolism and the degree of blood serum binding. The efficacy of a given drug agent can be
influenced by each of the parameters mentioned above.
3O “Half-life" means the time where 50% of an administered drug are eliminated through biological
processes, e.g. metabolism, excretion, etc.
By "hepatic first-pass metabolism" is meant the propensity of a drug to be metabolized upon first
contact with the liver, i.e. during its first pass through the liver.
“Volume of distribution" means the degree of retention of a drug hout the various
compartments of the body, like e.g. intracellular and extracellular spaces, tissues and organs,
etc. and the distribution of the drug within these compartments.
“Degree of blood serum binding" means the propensity of a drug to interact with and bind to
blood serum proteins, such as albumin, leading to a ion or loss of biological activity of the
drug.
Pharmacokinetic parameters also include bioavailability, lag time (Tlag), Tmax, absorption
rates, more onset and/or Cmax for a given amount of drug administered. “Bioavailability” means
the amount of a drug in the blood compartment. “Lag time" means the time delay between the
administration of the drug and its ion and measurability in blood or .
“Tmax” is the time after which maximal blood tration of the drug is reached, and “Cmax”
is the blood concentration maximally obtained with a given drug. The time to reach a blood or
tissue concentration of the drug which is required for its biological effect is influenced by all
parameters. Pharmacokinetic parameters of bispecific single chain antibodies exhibiting cross-
species specificity, which may be determined in preclinical animal g in non-chimpanzee
primates as ed above, are also set forth e.g. in the publication by Schlereth et al. (Cancer
lmmunol. lmmunother. 20 (2005), 1-12).
The term “toxicity” as used herein refers to the toxic effects of a drug sted in adverse
events or severe adverse . These side events might refer to a lack of tolerability of the
drug in general and/or a lack of local tolerance after administration. Toxicity could also include
teratogenic or carcinogenic effects caused by the drug.
The term “safety” uin vivo safety” or “tolerability” as used herein defines the administration of a
drug without inducing severe e events directly after administration (local tolerance) and
during a longer period of application of the drug. y”, “in vivo safety” or “tolerability” can be
3O evaluated e.g. at regular intervals during the treatment and follow-up period. Measurements
include clinical evaluation, e.g. organ manifestations, and screening of laboratory abnormalities.
Clinical evaluation may be carried out and ions to normal findings recorded/coded
according to NCl-CTC and/or MedDRA standards. Organ manifestations may include criteria
such as allergy/immunology, blood/bone marrow, cardiac arrhythmia, coagulation and the like,
as set forth e.g. in the Common Terminology Criteria for adverse events v3.0 (CTCAE).
Laboratory parameters which may be tested include for instance hematology, clinical chemistry,
coagulation profile and urine analysis and examination of other body fluids such as serum,
plasma, lymphoid or spinal fluid, liquor and the like. Safety can thus be assessed e.g. by
physical examination, imaging techniques (i.e. ultrasound, x-ray, CT scans, Magnetic
Resonance Imaging (MRI), other measures with technical devices (i.e. electrocardiogram), vital
signs, by measuring tory parameters and recording adverse events. For e,
adverse events in non-chimpanzee primates in the uses and methods according to the invention
may be examined by histopathological and/or histochemical s.
The term "effective dose" or "effective dosage" is defined as an amount sufficient to achieve or
at least lly achieve the desired effect. The term "therapeutically effective dose" is defined
as an amount sufficient to cure or at least partially arrest the disease and its complications in a
patient already suffering from the disease. Amounts effective for this use will depend upon the
severity of the infection and the general state of the subject's own immune . The term
"patient" includes human and other mammalian subjects that receive either lactic or
therapeutic treatment.
The term “effective and non-toxic dose” as used herein refers to a tolerable dose of an inventive
binding molecule which is high enough to cause ion of ogic cells, tumor elimination,
tumor shrinkage or stabilization of disease t or essentially without major toxic effects.
Such effective and non-toxic doses may be determined e.g. by dose escalation studies
described in the art and should be below the dose inducing severe adverse side events (dose
limiting ty, DLT).
The above terms are also ed to e.g. in the Preclinical safety evaluation of biotechnology-
derived pharmaceuticals 86; ICH Harmonised Tripartite ine; ICH Steering Committee
meeting on July 16, 1997.
The appropriate dosage, or therapeutically effective amount, of the binding molecule of the
3O invention will depend on the condition to be treated, the ty of the condition, prior therapy,
and the patients clinical history and response to the therapeutic agent. The proper dose can be
adjusted according to the judgment of the attending physician such that it can be administered
to the t one time or over a series of administrations. The pharmaceutical composition can
be stered as a sole therapeutic or in combination with additional therapies such as anti-
cancer therapies as needed.
The pharmaceutical compositions of this invention are particularly useful for parenteral
stration, i.e., subcutaneously, intramuscularly, enously, intra-articular and/or intra-
synovial. Parenteral administration can be by bolus injection or continuous infusion.
If the pharmaceutical composition has been lyophilized, the lyophilized material is first
reconstituted in an appropriate liquid prior to administration. The lyophilized material may be
reconstituted in, e.g., iostatic water for ion (BWFI), physiological saline, phosphate
buffered saline (PBS), or the same ation the protein had been in prior to lyophilization.
Preferably, the binding molecule of the invention or produced by a process of the invention is
used in the prevention, treatment or amelioration of a disease selected from a proliferative
disease, a tumorous disease, or an immunological disorder.
An alternative embodiment of the invention provides a method for the prevention, treatment or
amelioration of a disease selected from a proliferative disease, a tumorous disease, or an
immunological disorder comprising the step of administering to a patient in the need f the
binding molecule of the invention or produced by a process of the invention.
The formulations described herein are useful as pharmaceutical compositions in the treatment,
amelioration and/or prevention of the pathological medical condition as bed herein in a
patient in need f. The term "treatment" refers to both therapeutic treatment and
prophylactic or tative measures. Treatment includes the application or administration of
the formulation to the body, an isolated tissue, or cell from a t who has a disease/disorder,
a symptom of a disease/disorder, or a predisposition toward a disease/disorder, with the
e to cure, heal, alleviate, relieve, alter, remedy, ameliorate, improve, or affect the
disease, the symptom of the disease, or the predisposition toward the disease.
Those "in need of treatment" include those already with the disorder, as well as those in which
the disorder is to be prevented. The term "disease" is any condition that would benefit from
treatment with the protein formulation described herein. This includes chronic and acute
disorders or diseases including those pathological conditions that predispose the mammal to
the disease in question. Non-limiting examples of diseases/disorders to be treated herein
include proliferative e, a tumorous e, or an immunological disorder.
Preferably, the binding molecule of the invention is for use in the prevention, treatment or
amelioration of B cell disorders that correlate with BCMA (over)expression such as plasma cell
disorders, and/or autoimmune diseases. The mune disease is, for e, systemic
lupus erythematodes or rheumatoid arthritis.
Also provided by the t invention is a method for the ent or ration of B cell
disorders that correlate with BCMA (over)expression such as plasma cell disorders, and/or
autoimmune diseases, comprising the step of administering to a subject in need thereof the
binding molecule of the ion. The autoimmune disease is, for example, systemic lupus
erythematodes or rheumatoid arthritis.
ln plasma cell disorders, one clone of plasma cells multiplies uncontrollably. As a result, this
clone produces vast amounts of a single (monoclonal) antibody known as the M-protein. In
some cases, such as with monoclonal gammopathies, the antibody produced is incomplete,
consisting of only light chains or heavy chains. These abnormal plasma cells and the antibodies
they produce are usually limited to one type. Preferably, the plasma cell disorder is ed
from the group consisting of multiple myeloma, plasmacytoma, plasma cell leukemia,
macroglobulinemia, dosis, Waldenstrom's macroglobulinemia, solitary bone
plasmacytoma, extramedullary plasmacytoma, osteosclerotic myeloma, heavy chain diseases,
monoclonal gammopathy of undetermined significance, and smoldering multiple myeloma.
In another aspect, kits are provided comprising a binding molecule of the invention, a nucleic
acid molecule of the invention, a vector of the invention, or a host cell of the invention. The kit
may comprise one or more vials containing the binding le and instructions for use. The
kit may also contain means for administering the binding molecule of the present invention such
as a syringe, pump, infuser or the like, means for reconstituting the binding molecule of the
invention and/or means for diluting the binding molecule of the invention.
Furthermore, the present invention relates to the use of epitope cluster 3 of BCMA, preferably
human BCMA, for the generation of a g molecule, preferably an dy, which is
capable of binding to BCMA, preferably human BCMA. The epitope r3 of BCMA
preferably corresponds to amino acid residues 24 to 41 of the sequence as depicted in SEQ ID
NO: 1002.
In addition, the t invention es a method for the generation of an antibody,
preferably a bispecific binding molecule, which is capable of binding to BCMA, preferably
human BCMA, comprising
(a) zing an animal with a polypeptide comprising epitope cluster 3 of BCMA,
preferably human BCMA, wherein epitope cluster 3 of BCMA corresponds to amino acid
residues 24 to 41 of the sequence as depicted in SEQ ID NO: 1002,
(b) obtaining said antibody, and
(c) ally converting said dy into a bispecific g molecule which is e of
binding to human BCMA and preferably to the T cell CD3 receptor complex.
ably, step (b) includes that the obtained antibody is tested as follows:
when the respective epitope cluster in the human BCMA protein is exchanged with the
respective epitope cluster of a murine BCMA antigen (resulting in a construct comprising human
BCMA, wherein human epitope r 3 is replaced with murine epitope cluster 3; see SEQ ID
NO: 1011), a decrease in the binding of the antibody will occur. Said decrease is preferably at
least 10%, 20%, 30%, 40%, 50%; more preferably at least 60%, 70%, 80%, 90%, 95% or even
100% in comparison to the respective epitope cluster in the human BCMA protein, whereby
g to the respective epitope cluster in the human BCMA protein is set to be 100%. It is
ged that the aforementioned human BCMA/murine BCMA chimeras are expressed in
CHO cells. It is also envisaged that the human BCMA/murine BCMA chimeras are fused with a
transmembrane domain and/or cytoplasmic domain of a different membrane-bound protein such
as EpCAM; see Figure 2a.
A method to test this loss of binding due to exchange with the respective epitope cluster of a
non-human (e.g. murine) BCMA antigen is described in the appended Examples, in particular in
Examples 1-3.
The method may further include testing as to whether the antibody binds to epitope cluster 3 of
human BCMA and is further capable of binding to epitope cluster 3 of macaque BCMA such as
BCMA from Macaca mulatta (SEQ ID 7) or Macaca fascicularis (SEQ ID NO:1017).
The present invention also provides binding molecules comprising any one of the amino acid
sequences shown in SEQ ID NOs: 1-1000 and 1022-1093.
Preferably, a binding molecule comprises three VH CDR sequences (named “VH CDR1”, “VH
CDR2”, “VH CDR3”, see 4th column of the appended Sequence Table) from a binding molecule
termed “BCMA-(X)”, wherein X is 1-100 (see 2nd column of the ed Sequence Table)
and/or three VL CDR sequences (named “VL CDR1”, “VH CDR2”, “VH CDR3”, see 4th column
of the appended Sequence Table) from a binding molecule term BCMA-X, wherein X is 1-100
(see 2nd column of the appended Sequence Table).
Preferably, a binding molecule comprises a VH and/or VL sequence as is given in the appended
Sequence Table (see 4‘“ column of the appended Sequence Table: “VH” and “VL”).
Preferably, a binding molecule comprises a scFV sequence as is given in the appended
Sequence Table (see 4‘“ column of the appended Sequence Table: “scFv”).
Preferably, a binding molecule comprises a bispecific molecule sequence as is given in the
appended ce Table (see 4‘“ column of the ed ce Table: “bispecific
molecule”).
The present invention also relates to a bispecific binding agent comprising at least two binding
domains, comprising a first binding domain and a second binding domain, wherein said first
binding domain binds to the B cell tion antigen BCMA and wherein said second binding
domain binds to CD3 (item 1) also including the following items:
Item 2. The bispecific binding agent of item 1, wherein said first binding domain binds to the
extracellular domain of BCMA and said second binding domain binds to the 8 chain of
CD3.
Item 3. A bispecific binding agent of item 1 or 2 which is in the format of a full-length antibody or
an antibody nt.
Item 4. A bispecific binding agent of item 3 in the format of a ength antibody, wherein said
first inding domain is derived from mouse said and wherein said second CD3-
binding domain is derived from rat.
Item 5. A bispecific g agent of item 3, which is in the format of an dy fragment in the
form of a diabody that comprises a heavy chain le domain connected to a light
chain variable domain on the same polypeptide chain such that the two domains do not
pair.
Item 6. A bispecific binding agent of item 1 or 2 which is in the format of a bispecific single chain
antibody that consists of two scFv molecules connected via a linker peptide or by a
human serum albumin molecule.
Item 7. The ific binding agent of item 6, heavy chain regions (VH) and the corresponding
variable light chain regions (VL) are arranged, from N-terminus to inus, in the
order
VH(BCMA)-VL(BCMA) -VH(CD3)-VL(CD3),
VH(CD3)-VL(CD3) -VH(BCMA)-VL(BCMA) or
VH L(CD3)-VL(BCMA)-VH(BCMA).
Item 8. A bispecific binding agent of item 1 or 2, which is in the format of a single domain
immunogIobuIin domain selected from VHHs or VHs.
Item 9. The bispecific binding agent of item 1 or 2, which is in the format of an Fv molecule that
has four antibody variable domains with at least two binding domains, wherein at least
one binding domain is specific to human BCMA and at least one g domain is
specific to human CD3.
Item 10. A ific binding agent of item 1 or 2, which is in the format of a single-chain
binding molecule consisting of a first binding domain specific for BCMA, a constant sub-
region that is located C-terminal to said first binding domain, a scorpion linker located C-
al to the nt sub-region, and a second g domain specific for CD3,
which is located C-terminal to said constant sub-region.
Item 11. The bispecific binding agent of item 1 or 2, which is in the format of an antibody-
Iike molecule that binds to BCMA via the two heavy chain/light chain Fv of an antibody or
an antibody fragment and which binds to CD3 via a binding domain that has been
engineered into non-CDR loops of the heavy chain or the light chain of said antibody or
antibody fragment.
Item 12. A bispecific binding agent of item 1 which is in the format of a bispecific ankyrin
repeat molecule.
Item 13. A bispecific binding agent of item 1, wherein said first binding domain has a
format selected from the formats defined in any one of items 3 to 12 and wherein said
second binding domain has a different format selected from the formats defined in any
one of items 3 to 12.
Item 14. A bispecific binding agent of item 1 which is a bicyclic peptide.
Item 15. A pharmaceutical composition containing at least one bispecific binding agent of
any one of items 1 to 14.
Item 16. A bispecific binding agent of any one of items 1 to 14 or a pharmaceutical
composition of item 14 for the treatment of plasma cell disorders or other B cell disorders
that correlate with BCMA expression and for the treatment of autoimmune diseases.
Item 17. A bispecific binding agent of any one of items 1 to 14 or a pharmaceutical
composition of item 15 for the treatment of plasma cell disorders selected from
plasmacytoma, plasma cell leukemia, multiple myeloma, macroglobulinemia,
amyloidosis, Waldenstrom's macroglobulinemia solitary bone
, plasmacytoma,
extramedullary plasmacytoma, osteosclerotic myeloma, heavy chain diseases,
monoclonal gammopathy of undetermined significance, smoldering multiple a.
Variations of the above items are derivable from EP 10 191 418.2 which are also ed
herein.
It should be understood that the inventions herein are not limited to particular methodology,
protocols, or reagents, as such can vary. The discussion and examples provided herein are
ted for the purpose of describing particular embodiments only and are not intended to
limit the scope of the present invention, which is defined solely by the claims.
All publications and patents cited throughout the text of this specification (including all patents,
patent applications, scientific publications, cturer’s specifications, instructions, etc.),
r supra or infra, are hereby incorporated by nce in their entirety. Nothing herein is
to be construed as an admission that the invention is not ed to antedate such sure by
virtue of prior invention. To the extent the material incorporated by reference dicts or is
inconsistent with this specification, the specification will supersede any such material.
The Figures show:
Figure 1:
Sequence alignment of the extracellular domain (ECD) of human BCMA (amino acid residues 1-
54 of the ength protein) and murine BCMA (amino acid residues 1-49 of the full-length
protein). Highlighted are the s (domains or amino acid residues) which were exchanged in
the chimeric constructs, as designated for the epitope clustering. Cysteines are depicted by
black boxes. Disulfide bonds are ted.
Figure 2:
e mapping of the BCMA constructs. Human and murine BCMA (figure 2a) as well as
seven chimeric human-murine BCMA constructs (figure 2b) expressed on the surface of CHO
cells as shown by flow cytometry. The expression of human BCMA on CHO was detected with a
monoclonal uman BCMA antibody. Murine BCMA expression was detected with a
monoclonal urine BCMA-antibody. Bound monoclonal antibody was ed with an anti-
rat —gamma-specific antibody conjugated to phycoerythrin.
Figure 3:
Examples of binding molecules specific for epitope r E3, as detected by epitope mapping
of the chimeric BCMA constructs (see example 3).
Figure 4:
Determination of binding constants of ific binding molecules (anti BCMA x anti CD3) on
human and macaque BCMA using the Biacore system. Antigen was immobilized in low to
intermediate density (100 RU) on CM5 chip. Dilutions of binders were floated over the chip
surface and binding determined using l Software. Respective off-rates and the binding
constant (KD) of the respective binders are depicted below every graph.
Figure 5:
Cytotoxic activity of BCMA bispecific antibodies as measured in an 18-hour 51chromium release
assay. Effector cells: stimulated enriched human CD8Tcells. Target cells: Human BCMA
transfected CHO cells (left figure) and macaque BCMA transfected CHO cells (right figure).
Effector to target cell (E:T) ratio: 10:1.
Figure 6:
Determination of binding constants of BCMA/CD3 bispecific antibodies of epitope cluster E3 on
human and macaque BCMA and on human and macaque CD3 using the Biacore .
Antigen was immobilized in low to intermediate density (100-200 RU) on CM5 chip. Dilutions of
bispecific antibodies were d over the chip surface and g determined using BiaEval
Software. Respective on- and off-rates and the resulting binding constant (KD) of the respective
bispecific antibodies are depicted below every graph.
Figure 7:
FACS analysis of BCMA/CD3 bispecific antibodies of epitope cluster E3 on indicated cell lines:
1) human BCMA transfected CHO cells, 2) human CD3 positive human T cell line HBP-ALL, 3)
e BCMA transfected CHO cells, 4) macaque T cell line 4119 Lan , 5) BCMA-positive
human le myeloma cell line NCl-H929 and 6) untransfected CHO cells. Negative controls
[1) to 6)]: detection antibodies without prior BCMA/CD3 bispecific antibody.
Figure 8:
Scatchard analysis of BCMA/CD3 bispecific antibodies on BCMA-expressing cells. Cells were
incubated with increasing concentrations of monomeric antibody until saturation. Antibodies
were detected by flow cytometry. Values of triplicate measurements were plotted as hyperbolic
curves and as d curves to demonstrate a valid concentration range used. l
binding was determined using Scatchard evaluation, and the respective KD values were
ated.
Figure 9:
Cytotoxic activity of BCMA/CD3 bispecific antibodies of epitope cluster E3, as measured in an
r omium release assay t CHO cells transfected with human BCMA. Effector
cells: stimulated ed human CD8 T cells. Effector to target cell (E:T) ratio: 10:1.
Figure 10:
Cytotoxic activity of BCMA/CD3 bispecific antibodies of epitope cluster E3 as measured in a 48-
hour FACS-based cytotoxicity assay. Effector cells: unstimulated human PBMC. Target cells:
CHO cells transfected with human BCMA. Effector to target cell (E:T)-ratio: 10:1.
Figure 11:
FACS analysis of BCMA/CD3 bispecific antibodies of epitope cluster E3 on BAFF-R and TACI
transfected CHO cells. Cell lines: 1) human BAFF-R transfected CHO cells, 2) human TACI
transfected CHO cells 3) le a cell line L363; negative controls: detection
antibodies without prior D3 bispecific antibody. Positive contols: BAFF-R detection:
goat anti hu BAFF-R (R&D ; 1:20) detected by anti-goat antibody-PE (Jackson 705
147; 1:50) TACI-detection: rabbit anti TACI antibody (abcam AB 79023; 1:100) detected by goat
anti rabbit-antibody PE (Sigma P9757; 1:20).
Figure 12:
Cytotoxic activity of BCMA/CD3 bispecific antibodies as measured in an r 51-chromium
release assay. Effector cells: stimulated enriched human CD8 Tcells. Target cells: BCMA-
positive human multiple myeloma cell line L363 (i.e. natural expresser). or to target cell
(E:T) ratio: 10:1.
Figure 13:
Cytotoxic activity of BCMA/CD3 bispecific antibodies as ed in a 48-hour FACS-based
cytotoxicity assay. or cells: unstimulated human PBMC. Target cells: human multiple
myeloma cell line L363 al BCMA expresser). Effector to target cell (E:T)-ratio: 10:1.
Figure 14:
xic activity of BCMA/CD3 bispecific antibodies as measured in a 48-hour FACS-based
cytotoxicity assay. Effector cells: unstimulated human PBMC. Target cells: BCMA-positive
human multiple myeloma cell line NCl-H929. Effector to target cell (E:T)-ratio: 10:1.
Figure 15:
Cytotoxic activity of BCMA/CD3 bispecific antibodies as measured in a 48-hour ased
cytotoxicity assay. Effector cells: macaque Tcell line 4119Lan. Target cells: CHO cells
transfected with macaque BCMA. Effector to target cell (E:T) ratio: 10:1.
Figure 16:
Anti-tumor activity of BCMA/CD3 bispecific antibodies of epitope cluster E3 in an advanced-
stage NCl-H929 xenograft model (see Example 16).
Figure 17:
FACS—based cytotoxicity assay using human multiple a cell lines NCl-H929, L-363 and
OPM-2 as target cells and human PBMC as effector cells (48h; E:T = 10:1). The figure depicts
the cytokine levels [pg/ml] which were determined for ”-2, lL-6, lL-10, TNF and lFN-gamma at
increasing trations of the BCMA/CD3 bispecific antibodies of epitope cluster E3 (see
Example 22).
WO 72406
Examples:
The following examples illustrate the invention. These es should not be construed as to
limit the scope of this invention. The examples are included for purposes of illustration, and the
present invention is limited only by the claims.
Example 1
Generation of CHO cells expressing chimeric BCMA
For the construction of the chimeric epitope mapping molecules, the amino acid sequence of
the respective e domains or the single amino acid residue of human BCMA was changed
to the murine sequence. The following molecules were ucted:
. Human BCMA ECD / E1 murine (SEQ ID NO: 1009)
Chimeric extracellular BCMA domain: Human ellular BCMA domain n epitope
cluster1 (amino acid residues 1-7 of SEQ ID NO: 1002 or 1007) is replaced by the respective
murine cluster (amino acid residues 1-4 of SEQ ID NO: 1004 or 1008)
9 on of amino acid residues 1-3 and GSQ on in SEQ ID NO: 1002 or 1007
. Human BCMA ECD / E2 murine (SEQ ID NO: 1010)
Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein epitope
cluster2 (amino acid residues 8-21 of SEQ ID NO: 1002 or 1007) is replaced by the respective
murine cluster (amino acid residues 5-18 of SEQ ID NO: 1004 or 1008)
9 89F, Q10H, and N118 mutations in SEQ ID NO: 1002 or 1007
. Human BCMA ECD / E3 murine (SEQ ID NO: 1011)
Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein epitope
cluster 3 (amino acid residues 24-41 of SEQ ID NO: 1002 or 1007) is replaced by the respective
murine cluster (amino acid residues 21-36 of SEQ ID NO: 1004 or 1008)
9 deletion of amino acid residues 31 and 32 and Q25H, S30N, L35A, and R39P mutation in
SEQ ID NO: 1002 or 1007
. Human BCMA ECD / E4 murine (SEQ ID NO: 1012)
Chimeric ellular BCMA domain: Human extracellular BCMA domain wherein epitope
cluster 4 (amino acid residues 42-54 of SEQ ID NO: 1002 or 1007) is replaced by the respective
murine cluster (amino acid residues 37-49 of SEQ ID NO: 1004 or 1008)
9 N42D, A43P, N47S, N53Y and A54T mutations in SEQ ID NO: 1002 or 1007
. Human BCMA ECD / E5 murine (SEQ ID NO: 1013)
Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein the amino
acid residue at position 22 of SEQ ID NO: 1002 or 1007 (isoleucine) is replaced by its
respective murine amino acid residue of SEQ ID NO: 1004 or 1008 e, position 19)
9 I22K mutation in SEQ ID NO: 1002 or 1007
. Human BCMA ECD / E6 murine (SEQ ID NO: 1014)
Chimeric extracellular BCMA domain: Human ellular BCMA domain wherein the amino
acid residue at position 25 of SEQ ID NO: 1002 or 1007 (glutamine) is replaced by its respective
murine amino acid residue of SEQ ID NO: 1004 or 1008 (histidine, position 22)
9 Q25H mutation in SEQ ID NO: 1002 or 1007
. Human BCMA ECD / E7 murine (SEQ ID NO: 1015)
Chimeric extracellular BCMA domain: Human extracellular BCMA domain wherein the amino
acid residue at on 39 of SEQ ID NO: 1002 or 1007 (arginine) is replaced by its respective
murine amino acid residue of SEQ ID NO: 1004 or 1008 (proline, position 34)
9 R39P mutation in SEQ ID NO: 1002 or 1007
A) The cDNA constructs were cloned into the mammalian expression vector pEF-DHFR and
stably transfected into CHO cells. The expression of human BCMA on CHO cells was verified in
a FACS assay using a monoclonal anti-human BCMA antibody. Murine BCMA expression was
demonstrated with a monoclonal anti-mouse BCMA-antibody. The used concentration of the
BCMA antibodies was 10 ug/ml inPBS/2%FCS. Bound monoclonal antibodies were detected
with an anti-rat-IgG-Fcy-PE (1:100 in PBS/2%FCS; Jackson-Immuno-Research #112071).
As negative control, cells were incubated with PBS/2% FCS instead of the first antibody. The
s were measured by flow cytometry on a FACSCanto II ment (Becton Dickinson)
and ed by FlowJo software (Version 7.6). The surface sion of human-murine
BCMA chimeras, transfected CHO cells were analyzed and confirmed in a flow try assay
3O with different anti-BCMA antibodies (Figure 2).
B) For the generation of CHO cells expressing human, macaque, mouse and human/mouse
chimeric transmembrane BCMA, the coding sequences of human, macaque, mouse BCMA and
the human-mouse BCMA chimeras (BCMA ces as published in GenBank, accession
numbers NM_001192 [human]; NM_011608 [mouse] and XM_001106892 [macaque]) were
obtained by gene synthesis according to standard ols. The gene synthesis nts
were designed as to contain first a Kozak site for eukaryotic expression of the constructs and
the coding sequence of a 19 amino acid immunoglobulin leader peptide, followed in frame by
the coding sequence of the BCMA proteins respectively in case of the chimeras with the
respective epitope domains of the human sequence exchanged for the murine sequence.
Except for the human BCMA ECD / E4 murine and human BCMA constructs the coding
sequence of the extracellular domain of the BCMA proteins was followed in frame by the coding
sequence of an artificial Ser1-Gly4-Ser1-linker followed by the intracellular domain of human
EpCAM (amino acids 4; sequence as published in GenBank accession number
354).
All coding sequences were followed by a stop codon. The gene synthesis fragments were also
designed as to introduce suitable restriction sites. The gene synthesis fragments were cloned
into a plasmid designated pEF-DHFR HFR is described in Raum et al. Cancer lmmunol
lmmunother 50 (2001) 141-150). All aforementioned procedures were carried out according to
standard protocols (Sambrook, Molecular Cloning; A tory Manual, 3rd edition, Cold
Spring r tory Press, Cold Spring Harbour, New York (2001)). For each antigen a
clone with sequence-verified nucleotide sequence was transfected into DHFR deficient CHO
cells for eukaryotic expression of the constructs. otic protein expression in DHFR
deficient CHO cells was performed as described by Kaufman R.J. (1990) Methods Enzymol.
185, 537-566. Gene amplification of the ucts was d by increasing concentrations of
methotrexate (MTX) to a final concentration of up to 20 nM MTX.
Example 2
2.1 Transient expression in HEK 293 cells
Clones of the expression plasmids with sequence-verified nucleotide sequences were used for
transfection and protein expression in the FreeStyle 293 Expression System (lnvitrogen GmbH,
uhe, Germany) according to the manufacturer’s protocol. Supernatants containing the
expressed proteins were obtained, cells were removed by centrifugation and the atants
were stored at -20 C.
2.2 Stable expression in CHO cells
Clones of the expression plasmids with sequence-verified tide sequences were
transfected into DHFR ent CHO cells for eukaryotic expression of the constructs.
Eukaryotic n expression in DHFR deficient CHO cells was performed as described by
Kaufman R.J. (1990) Methods Enzymol. 185, 537-566. Gene amplification of the ucts was
induced by increasing concentrations of methotrexate (MTX) to a final concentration of 20 nM
MTX. After two passages of stationary culture the cells were grown in roller bottles with
nucleoside-free HyQ PF CHO liquid soy medium (with 4.0 mM L-Glutamine with 0.1 % Pluronic
F — 68; HyClone) for 7 days before t. The cells were removed by centrifugation and the
supernatant ning the expressed protein was stored at -20 C.
2.3 Protein cation
Purification of soluble BCMA proteins was performed as follows: Akta® Explorer System (GE
Healthcare) and Unicorn® Software were used for chromatography. Immobilized metal affinity
chromatography (“IMAC”) was med using a Fractogel EMD chelate® (Merck) which was
loaded with ZnCl2 according to the protocol provided by the manufacturer. The column was
equilibrated with bufferA (20 mM sodium phosphate buffer pH 7.2, 0.1 M NaCl) and the filtrated
(0.2 pm) cell culture supernatant was applied to the column (10 ml) at a flow rate of 3 ml/min.
The column was washed with bufferA to remove unbound sample. Bound protein was eluted
using a two-step gradient of buffer B (20 mM sodium phosphate buffer pH 7.2, 0.1 M NaCl, 0.5
M imidazole) according to the following procedure:
Step 1: 10 % buffer B in 6 column volumes
Step 2: 100 % buffer B in 6 column volumes
Eluted protein fractions from step 2 were pooled for further cation. All chemicals were of
research grade and purchased from Sigma (Deisenhofen) or Merck (Darmstadt).
Gel filtration chromatography was performed on a HiLoad 16/60 Superdex 200 prep grade
column (GE/Amersham) equilibrated with Equi-buffer (10 mM citrate, 25 mM lysine-HCI, pH 7.2
for proteins expressed in HEK cells and PBS pH 7.4 for proteins expressed in CHO cells).
Eluted n s (flow rate 1 ml/min) were subjected to rd SDS-PAGE and
Western Blot for detection. Protein concentrations were determined using OD280 nm.
3O Proteins obtained via transient expression in HEK 293 cells were used for immunizations.
Proteins obtained via stable expression in CHO cells were used for selection of binders and for
measurement of g.
Example 3
Epitope clustering of murine scFv-fragments
Cells transfected with human or murine BCMA, or with chimeric BCMA molecules were stained
with crude, undiluted asmic extract containing scFv binding to human/macaque BCMA.
Bound scFv were detected with 1 ug/ml of an anti-FLAG antibody (Sigma F1804) and a R-PE-
labeled anti-mouse Fc gamma-specific antibody (1:100; Dianova #115071). All antibodies
were diluted in PBS with 2% FCS. As negative control, cells were incubated with PBS/2% FCS
instead of the periplasmic extract. The samples were measured by flow cytometry on a
FACSCanto ll instrument (Becton Dickinson) and analyzed by FlowJo software (Version 7.6);
see Figure 3.
Example 4
Procurement of different recombinant forms of soluble human and macaque BCMA
A) The coding sequences of human and rhesus BCMA (as published in GenBank, accession
numbers NM_001192 [human], XM_001106892 s]) coding sequences of human albumin,
human ch1 and murine albumin were used for the construction of artificial cDNA sequences
encoding soluble fusion proteins of human and macaque BCMA respectively and human
albumin, human lgG1 Fc and murine albumin respectively as well as soluble proteins
comprising only the ellular domains of BCMA. To te the constructs for sion
of the soluble human and e BCMA proteins, cDNA fragments were obtained by PCR
mutagenesis of the full-length BCMA cDNAs described above and molecular cloning according
to standard ols.
For the s with human albumin, the modified cDNA fragments were designed as to contain
first a Kozak site for eukaryotic expression of the constructs ed by the coding sequence of
the human and rhesus (or Macaca mulatta) BCMA proteins respectively, sing amino
acids 1 to 54 and 1 to 53 corresponding to the extracellular domain of human and rhesus
BCMA, respectively, followed in frame by the coding sequence of an artificial Ser1-Gly4-Ser1-
, followed in frame by the coding sequence of human serum albumin, followed in frame by
the coding sequence of a Flag tag, followed in frame by the coding sequence of a modified
histidine tag (SGHHGGHHGGHH) and a stop codon.
For the fusions with murine lgG1, the modified cDNA fragments were designed as to contain
3O first a Kozak site for eukaryotic expression of the constructs ed by the coding sequence of
the human and macaque BCMA proteins respectively, comprising amino acids 1 to 54 and 1 to
53 corresponding to the extracellular domain of human and rhesus BCMA, respectively,
followed in frame by the coding sequence of an artificial Ser1-Gly4-Ser1-linker, followed in
frame by the coding sequence of the hinge and Fc gamma portion of human lgG1, ed in
frame by the coding sequence of a hexahistidine tag and a stop codon.
For the fusions with murine albumin, the ed cDNA nts were designed as to contain
first a Kozak site for eukaryotic expression of the constructs followed by the coding sequence of
the human and macaque BCMA proteins respectively, comprising amino acids 1 to 54 and 1 to
53 corresponding to the extracellular domain of human and rhesus BCMA, respectively,
followed in frame by the coding ce of an artificial Ser1-Gly4-Ser1-linker, ed in
frame by the coding sequence of murine serum albumin, followed in frame by the coding
sequence of a Flag tag, followed in frame by the coding sequence of a modified histidine tag
(SGHHGGHHGGHH) and a stop codon.
For the soluble extracellular domain constructs, the modified cDNA fragments were ed as
to contain first a Kozak site for eukaryotic expression of the constructs followed by the coding
sequence of the human and macaque BCMA proteins tively, comprising amino acids 1 to
54 and 1 to 53 corresponding to the extracellular domain of human and rhesus BCMA,
respectively, followed in frame by the coding sequence of an cial Ser1-Gly1-linker, followed
in frame by the coding sequence of a Flag tag, followed in frame by the coding sequence of a
ed histidine tag (SGHHGGHHGGHH) and a stop codon.
The cDNA fragments were also ed to introduce restriction sites at the beginning and at
the end of the fragments. The introduced restriction sites, EcoRl at the 5’ end and Sall at the 3’
end, were utilized in the following cloning procedures. The cDNA fragments were cloned via
EcoRI and Sall into a plasmid designated pEF-DHFR (pEF-DHFR is described in Raum et al.
Cancer lmmunol lmmunother 50 (2001) 141-150). The aforementioned procedures were all
carried out according to rd protocols (Sambrook, Molecular Cloning; A Laboratory
Manual, 3rd edition, Cold Spring Harbour Laboratory Press, Cold Spring Harbour, New York
(2001)).
B) The coding sequences of human and macaque BCMA as bed above and coding
sequences of human albumin, human ch1, murine ch1, murine ch2a, murine albumin, rat
albumin, rat ch1 and rat Fcy2b were used for the construction of artificial cDNA sequences
encoding soluble fusion proteins of human and macaque BCMA respectively and human
albumin, human lgG1 Fc, murine lgG1 Fc, murine lgGZa Fc, murine albumin, rat lgG1 Fc, rat
3O lgGZb and rat albumin respectively as well as soluble proteins comprising only the extracellular
domains of BCMA. To generate the constructs for expression of the soluble human and
macaque BCMA proteins cDNA fragments were obtained by PCR mutagenesis of the full-length
BCMA cDNAs described above and molecular cloning according to rd protocols.
For the fusions with albumins the modified cDNA fragments were designed as to contain first a
Kozak site for eukaryotic expression of the constructs and the coding sequence of a 19 amino
acid immunoglobulin leader peptide, ed in frame by the coding sequence of the
extracellular domain of the respective BCMA protein followed in frame by the coding ce
of an artificial Ser1-Gly4-Ser1-linker, followed in frame by the coding sequence of the respective
serum albumin, followed in frame by the coding sequence of a Flag tag, followed in frame by the
coding sequence of a modified histidine tag (SGHHGGHHGGHH) and a stop codon.
For the fusions with lgG ch the modified cDNA fragments were designed as to contain first a
Kozak site for eukaryotic expression of the constructs and the coding sequence of a 19 amino
acid immunoglobulin leader peptide, followed in frame by the coding sequence of the
ellular domain of the respective BCMA protein followed in frame by the coding sequence
of an artificial Ser1-Gly4-Ser1-linker, except for human lgG1 Fc where an artificial Ser1-Gly1-
linker was used, followed in frame by the coding sequence of the hinge and Fc gamma portion
of the respective lgG, ed in frame by the coding sequence of a Flag tag, followed in frame
by the coding sequence of a modified histidine tag (SGHHGGHHGGHH) and a stop codon.
For the soluble ellular domain constructs the modified cDNA fragments were designed as
to contain first a Kozak site for eukaryotic expression of the constructs and the coding sequence
of a 19 amino acid immunoglobulin leader peptide, followed in frame by the coding sequence of
the extracellular domain of the tive BCMA protein ed in frame by the coding
sequence of an artificial Ser1-Gly1-linker, followed in frame by the coding sequence of a Flag
tag, followed in frame by the coding sequence of a modified histidine tag (SGHHGGHHGGHH)
and a stop codon.
For cloning of the constructs suitable restriction sites were introduced. The cDNA fragments
were all cloned into a plasmid designated pEF-DHFR HFR is described in Raum et al.
2001). The aforementioned procedures were all carried out according to standard protocols
(Sambrook, 2001).
The ing constructs were designed to enable directed panning on distinct epitopes. The
coding sequence of murine-human BCMA chimeras and -macaque BCMA chimeras
(mouse, human and macaque BCMA ces as described above) and coding sequences of
murine albumin and murine ch1 were used for the construction of artificial cDNA sequences
encoding soluble fusion proteins of -human and murine-macaque BCMA chimeras
respectively and murine lgG1 Fc and murine albumin, respectively. To generate the constructs
3O for expression of the soluble murine-human and murine-macaque BCMA chimeras cDNA
fragments of murine BCMA (amino acid 1-49) with the respective e domains d to
the human and macaque ce respectively were ed by gene synthesis according to
standard protocols. Cloning of constructs was carried out as described above and according to
standard protocols (Sambrook, 2001).
The following molecules were constructed:
. amino acid 1-4 human, murine lgG‘l Fc
. amino acid 1-4 human, murine n
. amino acid 1-4 rhesus, murine lgG‘l Fc
. amino acid 1-4 rhesus, murine albumin
. amino acid 5-18 human, murine lgG‘l Fc
. amino acid 5-18 human, murine albumin
. amino acid 5-18 rhesus, murine lgG‘l Fc
. amino acid 5-18 rhesus, murine albumin
. amino acid 37-49 human, murine lgG‘l Fc
. amino acid 37-49 human, murine albumin
. amino acid 37-49 rhesus, murine lgG‘l Fc
. amino acid 37-49 , murine n
Example 5
.1 Biacore-based determination of bispecific antibody affinity to human and macaque
BCMA and CD3
Biacore analysis experiments were med using recombinant BCMA fusion proteins with
human serum albumin (ALB) to determine BCMA target binding. For CD3 affinity
measurements, recombinant fusion proteins having the N-terminal 27 amino acids of the CD3
n (CD3e) fused to human antibody Fc portion were used. This recombinant protein exists
in a human CD3e1-27 version and in a cynomolgous CD3e version, both bearing the epitope of
the CD3 binder in the ific antibodies.
In detail, CM5 Sensor Chips (GE Healthcare) were immobilized with approximately 100 to
150 RU of the respective recombinant antigen using acetate buffer pH4.5 according to the
manufacturer’s manual. The bispecific dy samples were loaded in five concentrations:
50 nM, 25 nM, 12.5 nM, 6.25 nM and 3.13 nM diluted in HBS—EP running buffer (GE
Healthcare). Flow rate was 30 to 35 ul/min for 3 min, then HBS—EP g buffer was applied
for 8 min again at a flow rate of 30 to 35 ul/ml. Regeneration of the chip was performed using
10 mM glycine 0.5 M NaCl pH 2.45. Data sets were analyzed using BiaEval Software (see
Figure 4). In general two independent experiments were performed.
.2 Binding affinity to human and macaque BCMA
Binding affinities of BCMA/CD3 bispecific antibodies to human and macaque BCMA were
determined by Biacore analysis using recombinant BCMA fusion proteins with mouse albumin
(ALB).
In detail, CM5 Sensor Chips (GE Healthcare) were lized with approximately 150 to 200
RU of the respective recombinant antigen using e buffer pH4.5 according to the
manufacturer’s manual. The bispecific antibody samples were loaded in five concentrations: 50
nM, 25 nM, 12.5 nM, 6.25 nM and 3.13 nM diluted in HBS—EP running buffer (GE Healthcare).
For BCMA affinity determinations the flow rate was 35 ul/min for 3 min, then HBS-EP g
buffer was applied for 10, 30 or 60 min again at a flow rate of 35 ul/ml. Regeneration of the chip
was performed using a buffer consisting of a 1:1 mixture of 10 mM glycine 0.5 M NaCl pH 1.5
and 6 M guanidine chloride solution. Data sets were analyzed using l Software (see
Figure 6). In general two independent experiments were performed.
Confirmative human and macaque CD3 epsilon binding was performed in single experiments
using the same trations as applied for BCMA g; off-rate ination was done
for 10 min dissociation time.
All BCMA/CD3 bispecific antibodies of e cluster E3 showed high affinities to human
BCMA in the sub-nanomolar range down to 1-digit picomolar range. Binding to macaque BCMA
was balanced, also showing affinities in the 1-digit nanomolar down to subnanomolar range.
Affinities and affinity gaps of BCMA/CD3 bispecific antibodies are shown in Table 2.
Table 2: Affinities of BCMA/CD3 bispecific antibodies of the epitope cluster E3 to human and
e BCMA as determined by Biacore analysis, and calculated affinity gaps
(ma BCMA : hu BCMA).
BCMA/CD3 ific hu BCMA ma BCMA Affinity gap
—BCMA-34 0.051 0.047 1 ; 1_1
.3 Biacore-based determination of the bispecific antibody affinity to human and
macaque BCMA
The affinities of BCMA/CD3 bispecific dies to recombinant soluble BCMA on CM5 chips in
Biacore measurements were repeated to reconfirm KDs and especially off-rates using longer
dissociation periods (60 min instead of 10 min as used in the previous experiment). All of the
tested BCMA/CD3 bispecific antibodies underwent two independent affinity ements with
five different concentrations each.
The affinities of the BCMA/CD3 bispecific antibodies of the epitope r E3 were clearly
subnanomolar down to t picomolar, see examples in Table 3.
Table 3: Affinities (KD) of BCMA/CD3 bispecific antibodies of the epitope cluster E3 from
e experiments using extended dissociation times (two independent experiments each).
BCMA/CD3 ific antibody KD [nM] human BCMA KD [nM] macaque BCMA
BCMA-83 0.053 i 0.017 0.062 i 0.011
BCMA-98 0.025 i 0.003 0.060 i 0.001
BCMA-71 0.242 i 0.007 0.720 i 0.028
4 0.089 i 0.019 0.056 i 0.003
BCMA_74 0.076 i 0.002 0134 i 0.010
BCMA_20 00095 i 0.0050 0.0060 i 0.0038
Example 6
Bispecific binding and interspecies cross-reactivity
For confirmation of binding to human and macaque BCMA and CD3, bispecific antibodies were
tested by flow cytometry using CHO cells transfected with human and e BCMA,
respectively, the human multiple myeloma cell line NCl-H929 expressing native human BCMA,
CD3-expressing human T cell ia cell line HPB-ALL (DSMZ, Braunschweig, ACC483) and
the CD3-expressing e T cell line 4119Lan (Knappe A, et al., Blood, 2000, 95, 3256-
3261). Moreover, untransfected CHO cells were used as negative control.
For flow cytometry 200,000 cells of the respective cell lines were incubated for 30 min on ice
with 50 pl of purified bispecific antibody at a concentration of 5 ug/ml. The cells were washed
twice in PBS/2% FCS and binding of the constructs was detected with a murine PentaHis
antibody (Qiagen; diluted 1:20 in 50 pl PBS/2% FCS). After washing, bound is
antibodies were detected with an Fc gamma-specific antibody va) conjugated to
phycoerythrin, diluted 1:100 in PBS/2% FCS. Samples were measured by flow cytometry on a
FACSCanto ll instrument and analyzed by va re (both from Becton Dickinson).
The BCMA/CD3 bispecific antibodies of epitope cluster E3 stained CHO cells transfected with
human and macaque BCMA, the human BCMA-expressing le myeloma cell line NCI-
H929 as well as human and macaque T cells. Moreover, there was no staining of untransfected
CHO cells (see Figure 7).
Example 7
Scatchard-based determination of bispecific-antibody affinity to human and macaque
BCMA
For Scatchard analysis, saturation g experiments are performed using a monovalent
detection system developed at Micromet His Fab/Alexa 488) to precisely determine
monovalent g of the bispecific antibodies to the respective cell line.
2 x104 cells of the respective cell line (recombinantly human BCMA-expressing CHO cell line,
recombinantly e BCMA-expressing CHO cell line) are incubated with each 50 ul of a
triplet on series (eight dilutions at 1:2) of the respective BCMA bispecific antibody starting
at 100 nM followed by 16 h incubation at 4°C under ion and one residual washing step.
Then, the cells are ted for further 30 min with 30 ul of an anti-His Fab/Alexa488 solution
(Micromet; 30 ug/ml). After one washing step, the cells are resuspended in 150 pl FACS buffer
containing 3.5 % formaldehyde, incubated for further 15 min, centrifuged, resuspended in FACS
buffer and analyzed using a FACS Cantoll machine and FACS Diva software. Data are
generated from two independent sets of experiments. Values are plotted as hyperbole binding
curves. Respective Scatchard analysis is calculated to extrapolate maximal binding (Bmax).
The concentrations of bispecific antibodies at half-maximal binding are determined reflecting the
WO 72406
respective KDs. Values of triplicate measurements are plotted as hyperbolic curves. Maximal
binding is determined using Scatchard evaluation and the respective KDs are calculated.
The affinities of D3 ific antibodies to CHO cells transfected with human or
e BCMA were determined by Scatchard analysis as the most reliable method for
measuring potential affinity gaps between human and macaque BCMA.
Cells expressing the BCMA antigen were ted with increasing concentrations of the
respective monomeric BCMA/CD3 bispecific antibody until tion was reached (16h).
Bound bispecific antibody was detected by flow cytometry. The concentrations of BCMA/CD3
bispecific antibodies at half-maximal binding were determined reflecting the respective KDs.
Values of triplicate measurements were plotted as hyperbolic curves and as S-shaped curves to
trate proper concentration ranges from minimal to optimal binding. Maximal binding
(Bmax) was determined (Figure 8) using Scatchard evaluation and the respective KDs were
calculated. Values depicted in Table 4 were derived from two independent experiments per
BCMA/CD3 bispecific antibody.
Cell based Scatchard analysis confirmed that the BCMA/CD3 bispecific antibodies of the
epitope cluster E3 are omolar in affinity to human BCMA and present with a small
interspecies BCMA affinity gap of below five.
Table 4: Affinities (KD) of BCMA/CD3 bispecific antibodies of the e cluster E3 from cell
based Scatchard analysis (two independent ments each) with the calculated affinity gap
KD macaque BCMA / KD human BCMA.
BCMA/CD3 KD [nM] KD [nM] x-fold KD difference
1 0.78 i 0.07 3.12 i 0.26
BCMA-34 0.77 i 0.11 0.97 i 0.33
BCMA-74 0.67 i 0.03 0.95 i 0.06
BCMA-20 0.78 i 0.10 0.85 i 0.01
Cytotoxic activity
8.1 Chromium e assay with stimulated human T cells
Stimulated T cells enriched for CD8+ T cells were obtained as described below.
A petri dish (145 mm diameter, Greiner bio-one GmbH, Kremsmiinster) was coated with a
commercially ble anti-CD3 specific antibody (OKT3, Orthoclone) in a final concentration of
1 ug/ml for 1 hour at 37°C. Unbound protein was removed by one washing step with PBS. 3 — 5
x107 human PBMC were added to the precoated petri dish in 120 ml of RPM|1640 with
stabilized ine / 10% FCS / lL-2 20 U/ml (Proleukin®, Chiron) and stimulated for 2 days.
On the third day, the cells were ted and washed once with RPMI 1640. lL-2 was added to
a final concentration of 20 U/ml and the cells were cultured again for one day in the same cell
culture medium as above.
CD8+ cytotoxic T lymphocytes (CTLs) were enriched by depletion of CD4+ T cells and
CD56+ NK cells using Dynal-Beads according to the cturer‘s protocol.
Macaque or human BCMA-transfected CHO target cells were washed twice with PBS and
labeled with 11.1 MBq 51Cr in a final volume of 100 pl RPMI with 50% FCS for 60 minutes at
37°C. Subsequently, the d target cells were washed 3times with 5 ml RPMI and then
used in the cytotoxicity assay. The assay was performed in a 96-well plate in a total volume of
200 pl supplemented RPMI with an E:T ratio of 10:1. A starting concentration of 0.01 —1 ug/ml
of purified bispecific antibody and threefold dilutions thereof were used. Incubation time for the
assay was 18 hours. Cytotoxicity was determined as relative values of released um in the
supernatant relative to the difference of maximum lysis (addition of Triton-X) and spontaneous
lysis (without effector cells). All measurements were d out in quadruplicates. Measurement
of chromium activity in the supernatants was performed in a Wizard 3” gamma counter (Perkin
Elmer Life Sciences GmbH, Koln, Germany). Analysis of the s was d out with
Prism 5 for Windows (version 5.0, GraphPad Software Inc., San Diego, California, USA). EC50
values calculated by the analysis program from the sigmoidal dose response curves were used
for comparison of cytotoxic activity (see Figure 5).
8.2 Potency of redirecting stimulated human effector Tcells against human BCMA-
transfected CHO cells
The cytotoxic activity of BCMA/CD3 bispecific antibodies was analyzed in a 51-chromium (“CD
release cytotoxicity assay using CHO cells transfected with human BCMA as target cells, and
stimulated enriched human CD8 T cells as effector cells. The experiment was carried out as
described in Example 8.1.
All BCMA/CD3 bispecific antibodies of epitope cluster E3 showed very potent cytotoxic activity
against human BCMA transfected CHO cells with alues in the 1-digit pg/ml range or
even below (Figure 9 and Table 5). So the epitope cluster E3 presents with a very favorable
epitope-activity relationship supporting very potent bispecific antibody mediated xic
activity.
Table 5: EC50 values ] of BCMA/CD3 bispecific antibodies of the epitope cluster E3
ed in a omium (“CD release cytotoxicity assay using CHO cells transfected with
human BCMA as target cells, and stimulated enriched human CD8 T cells as effector cells.
BCMA/CD3 ific antibody EC50 [pg/ml]
8.3 FACS—based cytotoxicity assay with unstimulated human PBMC
Isolation of effector cells
Human peripheral blood mononuclear cells (PBMC) were prepared by Ficoll density gradient
centrifugation from enriched lymphocyte preparations (buffy coats), a side product of blood
banks collecting blood for transfusions. Buffy coats were ed by a local blood bank and
PBMC were prepared on the same day of blood collection. After Ficoll density centrifugation
and extensive washes with Dulbecco’s PBS (Gibco), remaining erythrocytes were removed from
PBMC via incubation with erythrocyte lysis buffer (155 mM NH4CI, 10 mM KHCOs, 100 uM
EDTA). Platelets were removed via the supernatant upon centrifugation of PBMC at 100 xg.
Remaining lymphocytes mainly encompass B and T lymphocytes, NK cells and tes.
PBMC were kept in culture at 37°C/5% COZ in RPMI medium (Gibco) with 10% FCS (Gibco).
Depletion of CD14+ and CD56+ cells
2012/072699
For ion of CD14+ cells, human CD14 MicroBeads ny Biotec, MACS, #130201)
were used, for depletion of NK cells human CD56 MicroBeads (MACS, #130401). PBMC
were counted and fuged for 10 min at room temperature with 300 x g. The atant
was discarded and the cell pellet resuspended in MACS isolation buffer [80 uL/ 107 cells; PBS
(lnvitrogen, #20012-043), 0.5% (v/v) FBS (Gibco, #10270-106), 2 mM EDTA (Sigma-Aldrich,
#E-6511)]. CD14 MicroBeads and CD56 MicroBeads (20 uL/107 cells) were added and
incubated for 15 min at 4 - 8°C. The cells were washed with MACS isolation buffer (1 - 2 mL/107
cells). After centrifugation (see above), supernatant was discarded and cells resuspended in
MACS isolation buffer (500 uL/108 cells). CD14/CD56 negative cells were then isolated using
LS Columns (Miltenyi Biotec, #130401). PBMC w/o CD56+ cells were cultured in
RPMI complete medium i.e. 40 (Biochrom AG, #FG1215) supplemented with 10% FBS
rom AG, ), 1x non-essential amino acids (Biochrom AG, #K0293), 10 mM Hepes
buffer (Biochrom AG, #L1613), 1 mM sodium pyruvate (Biochrom AG, #L0473) and 100 U/mL
penicillin/streptomycin (Biochrom AG, #A2213) at 37°C in an incubator until needed.
Target cell labeling
For the analysis of cell lysis in flow try assays, the fluorescent membrane dye DiOC18
(DiO) (Molecular Probes, #V22886) was used to label human BCMA- or macaque BCMA-
transfected CHO cells as target cells and distinguish them from effector cells. Briefly, cells were
harvested, washed once with PBS and adjusted to 106 cell/mL in PBS containing 2 % (v/v) FBS
and the membrane dye DiO (5 uL/106 cells). After incubation for 3 min at 37°C, cells were
washed twice in complete RPMI medium and the cell number adjusted to 1.25 x 105 mL.
The vitality of cells was determined using 0.5 % (v/v) isotonic EosinG solution (Roth, #45380).
Flow cytometry based analysis
This assay was designed to fy the lysis of macaque or human BCMA-transfected CHO
cells in the presence of serial dilutions of BCMA bispecific antibodies.
Equal volumes of DiO-labeled target cells and effector cells (i.e., PBMC w/o CD14+ cells) were
mixed, resulting in an E:T cell ratio of 10:1. 160 uL of this suspension were transferred to each
well of a 96-well plate. 40 uL of serial dilutions of the BCMA bispecific antibodies and a negative
control bispecific (an CD3-based bispecific dy recognizing an irrelevant target antigen) or
3O RPMI complete medium as an additional negative control were added. The bispecific antibody-
mediated cytotoxic reaction proceeded for 48 hours in a 7% C02 humidified incubator. Then
cells were transferred to a new 96-well plate and loss of target cell ne integrity was
monitored by adding propidium iodide (PI) at a final concentration of 1 ug/mL. PI is a membrane
impermeable dye that normally is excluded from viable cells, whereas dead cells take it up and
become identifiable by fluorescent emission.
Samples were measured by flow cytometry on a FACSCanto ll instrument and analyzed by
FACSDiva software (both from Becton Dickinson).
Target cells were identified as DiO-positive cells. Pl-negative target cells were classified as
living target cells. Percentage of cytotoxicity was calculated according to the following formula:
Cytotoxicity [%] :M x 100
target cells
n = number of events
Using GraphPad Prism 5 software (Graph Pad Software, San Diego), the percentage of
cytotoxicity was plotted against the corresponding bispecific antibody concentrations. Dose
response curves were analyzed with the four parametric logistic regression models for
evaluation of sigmoid dose response curves with fixed hill slope and EC50 values were
calculated.
8.4 Unstimulated human PBMC against human BCMA-transfected target cells
The cytotoxic activity of BCMA/CD3 bispecific antibodies was ed in a FACS-based
cytotoxicity assay using CHO cells transfected with human BCMA as target cells, and
unstimulated human PBMC as effector cells. The assay was carried out as described above
le 8.3).
The results of the FACS—based cytotoxicity assays with unstimulated human PBMC as effector
cells and human ransfected CHO cells as targets are shown in Figure 10 and Table 6.
Table 6: EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies of epitope cluster E3 as
ed in a r FACS—based cytotoxicity assay with ulated human PBMC as
effector cells and CHO cells transfected with human BCMA as target cells.
BCMA/CD3 bispecific antibody EC50 [pg/ml]
BCMA-34
BCMA-74
BCMA-20
Example 9
9.1 Exclusion of cross-reactivity with BAFF-receptor
For flow cytometry, 200,000 cells of the tive cell lines were incubated for 30 min on ice
with 50 pl of purified bispecific molecules at a concentration of 5 ug/ml. The cells were washed
twice in PBS with 2% FCS and binding of the constructs was detected with a murine PentaHis
antibody (Qiagen; diluted 1:20 in 50 pl PBS with 2% FCS). After washing, bound PentaHis
antibodies were detected with an Fc gamma-specific antibody (Dianova) conjugated to
phycoerythrin, diluted 1:100 in PBS with 2% FCS. Samples were measured by flow cytometry
on a FACSCanto || instrument and analyzed by va software (both from Becton
son). The bispecific binders were shown to not be cross-reactive with BAFF receptor.
9.2 Exclusion of D3 ific antibody reactivity with human BAFF-
receptor (BAFF-R) and TACI
For exclusion of binding to human BAFF-R and TACI, BCMA/CD3 bispecific antibodies were
tested by flow cytometry using CHO cells ected with human BAFF-R and TACI,
respectively. er, L363 multiple myeloma cells were used as positive control for binding to
human BCMA. Expression of BAFF-R and TACI antigen on CHO cells was confirmed by two
positive control antibodies. Flow cytometry was performed as bed in the previous
example.
Flow cytometric analysis confirmed that none of the BCMA/CD3 bispecific antibodies of the
epitope cluster E3 cross-reacts with human BAFF-R or human TACI (see Figure 11).
Example 10
Cytotoxic activity
The potency of human-like BCMA bispecific antibodies in redirecting effector T cells against
BCMA-expressing target cells is analyzed in five additional in vitro cytotoxicity assays:
1. The potency of BCMA ific antibodies in redirecting stimulated human effector
T cells against a BCMA-positive (human) tumor cell line is ed in a 51-chromium e
assay.
2. The potency of BCMA bispecific antibodies in redirecting the Tcells in ulated
human PBMC against human BCMA-transfected CHO cells is measured in a FACS-based
cytotoxicity assay.
3. The potency of BCMA ific dies in redirecting the Tcells in unstimulated
human PBMC against a BCMA-positive (human) tumor cell line is measured in a FACS-based
cytotoxicity assay.
4. For confirmation that the cross-reactive BCMA bispecific antibodies are capable of
redirecting macaque Tcells against macaque BCMA-transfected CHO cells, a FACS-based
xicity assay is med with a macaque T cell line as effector T cells.
. The potency gap between monomeric and dimeric forms of BCMA bispecific antibodies
is determined in a 51-chromium release assay using human BCMA-transfected CHO cells as
target cells and stimulated human T cells as effector cells.
Example 11
ated human T cells against the BCMA-positive human multiple myeloma cell line
L363
The xic activity of BCMA/CD3 ific antibodies was analyzed in a 51-chromium (“CD
release cytotoxicity assay using the BCMA-positive human multiple myeloma cell line L363
(DSMZ No. ACC49) as source of target cells, and stimulated enriched human CD8 T cells as
effector cells. The assay was carried out as described in Example 8.1.
In accordance with the results of the 51-chromium release assays with stimulated enriched
human CD8 T lymphocytes as effector cells and human BCMA-transfected CHO cells as
targets, D3 bispecific antibodies of epitope cluster E3 are very potent in cytotoxic
activity (Figure 12 and Table 7).
Another group of antibodies was identified during epitope clustering (see Examples 1 and 3),
which is capable of binding to epitope clusters 1 and 4 of BCMA 4”). Unexpectedly,
BCMA/CD3 bispecific antibodies of epitope cluster E1/E4 — although potent in cytotoxic activity
against CHO cell transfected with human BCMA — proved to be rather weakly cytotoxic against
the human multiple myeloma cell line L363 expressing native BCMA at low density on the cell
surface (Figure 12 and Table 7). Without wishing to be bound by , the inventors e
that the E1/E4 e of human BCMA might be less well accessible on natural BCMA
expressers than on BCMA-transfected cells.
Table 7: EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies of epitope clusters E1/E4
(rows 1 and 2) and E3 (rows 3 to 8) analyzed in an 18-hour 51-chromium (“CD release
cytotoxicity assay with the BCMA-positive human multiple myeloma cell line L363 as source of
target cells, and ated enriched human CD8 T cells as effector cells.
Example 12
Unstimulated human PBMC against the BCMA-positive human multiple myeloma cell line
L363
The cytotoxic activity of BCMA/CD3 bispecific antibodies was furthermore analyzed in a FACS-
based cytotoxicity assay using the BCMA-positive human multiple myeloma cell line L363
(DSMZ, ACC49) - showing the weakest surface expression of native BCMA of all tested target
T cell lines - as source of target cells and unstimulated human PBMC as effector cells. The
assay was carried out as described above (Example 8.3).
As observed in the 51-chromium release assay with stimulated ed human CD8
T lymphocytes against the human multiple myeloma cell line L363, the BCMA/CD3 bispecific
antibodies of epitope cluster E1/E4 — in contrast to their potent cytotoxic activity against CHO
cell transfected with human BCMA — proved to be again less potent in cting the xic
activity of unstimulated PBMC against the human multiple myeloma cell line L363 expressing
native BCMA at low density on the cell surface. This is in line with the theory provided
above, i.e., the E1/E4 epitope of human BCMA may be less well accessible on natural
BCMA expressers than on BCMA-transfected cells. D3 bispecific antibodies of the
epitope cluster E3 presented with 3-digit pg/ml EC50-values in this assay (see Figure 13 and
Table 8).
Table 8: EC50 values [pg/ml] of BCMA/CD3 bispecific antibodies of epitope rs E1/E4
(rows 1 and 2) and E3 (rows 3 to 8) as measured in a 48-hour FACS—based cytotoxicity assay
with unstimulated human PBMC as effector cells and the human multiple myeloma cell line
L363 as source of target cells.
-1——n~_
_—E_
Expectedly, EC50-values were higher in cytotoxicity assays with unstimulated PBMC as effector
cells than in cytotoxicity assays using enriched stimulated human CD8 T cells.
Example 13
Unstimulated human PBMC against the ositive human multiple myeloma cell line
NCI-H929
The cytotoxic activity of BCMA/CD3 bispecific antibodies was analyzed in a FACS-based
cytotoxicity assay using the BCMA-positive human multiple myeloma cell line NCl-H929 (ATCC
68) as source of target cells and unstimulated human PBMC as or cells. The
assay was carried out as described above (Example 8.3).
The results of this assay with another human multiple myeloma cell line (i.e. NCl-H929)
expressing native BCMA on the cell surface confirm those obtained with human le
myeloma cell line L363. Again, BCMA/CD3 bispecific antibodies of epitope cluster E1/E4 — in
contrast to their potent cytotoxic activity against CHO cell ected with human BCMA —
proved to be less potent in redirecting the cytotoxic activity of unstimulated PBMC against
human multiple a cells confirming the theory that the E1/E4 epitope of human BCMA
may be less well accessible on l BCMA expressers than on BCMA-transfected cells.
Such an activity gap between BCMA-transfected target cells and natural expressers as seen for
the E1/E4 binders was not found for the E3. BCMA/CD3 bispecific antibodies of the epitope
cluster E3 presented with 2- to t pg/ml EC50-values and hence redirected unstimulated
PBMC against NCl-H929 target cells with very good EC50-values (see Figure 14 and Table 9).
Table 9: EC50 values [pg/ml] of BCMA/CD3 bispecific dies of e clusters E1/E4
(rows 1 and 2) and E3 (rows 3 to 8) as measured in a 48-hour FACS—based cytotoxicity assay
with unstimulated human PBMC as effector cells and the human multiple myeloma cell line NCI-
H929 as source of target cells.
As expected, EC50-values were lower with the human multiple myeloma cell line NCl-H929,
which expresses higher levels of BCMA on the cell surface compared to L363.
Example 14
Macaque T cells against macaque BCMA-expressing target cells
Finally, the xic activity of BCMA/CD3 bispecific antibodies was analyzed in a FACS—based
cytotoxicity assay using CHO cells ected with macaque BCMA as target cells, and a
macaque T cell line as source of effector cells.
The macaque T cell line 4119Lan (Knappe et al. Blood 95:3256-61 (2000)) was used as
source of effector cells. Target cell labeling of macaque BCMA-transfected CHO cells and flow
cytometry based analysis of cytotoxic activity was med as described above.
Macaque Tcells from cell line 4119Lan were induced to efficiently kill macaque BCMA-
transfected CHO cells by BCMA/CD3 ific antibodies of the E3 e cluster. The
antibodies presented very potently with t to low 2—digit pg/ml EC50-values in this assay,
confirming that these antibodies are very active in the macaque system. On the other hand,
BCMA/CD3 bispecific antibodies of the epitope cluster E1/E4 showed a significantly weaker
potency with EC50-values in the 2—digit to 3-digit pg/ml range (see Figure 15 and Table 10). The
E3 specific antibodies are hence about 3 to almost 100 times more potent in the macaque
system.
Table 10: EC50 values [pg/ml] of BCMA/CD3 bispecific dies of epitope clusters E1/E4
(rows 1 and 2) and E3 (rows 3 to 8) as measured in a 48-hour FACS—based cytotoxicity assay
with macaque T cell line 4119Lan as effector cells and CHO cells transfected with macaque
BCMA as target cells.
_—n~_
Example 15
Potency gap between BCMA/CD3 bispecific antibody monomer and dimer
WO 72406
In order to determine the difference in cytotoxic activity between the monomeric and the dimeric
isoform of individual BCMA/CD3 bispecific antibodies (referred to as potency gap), a 51-
chromium release cytotoxicity assay as described hereinabove (Example 8.1) was carried out
with purified BCMA/CD3 ific antibody r and dimer. The potency gap was
calculated as ratio between EC50 values of the bispecific antibody’s monomer and dimer.
y gaps of the tested BCMA/CD3 bispecific antibodies of the epitope cluster E3 were
between 0.03 and 1.2. There is hence no substantially more active dimer compared to its
respective monomer.
Example 16
Monomer to dimer conversion after three freeze/thaw cycles
Bispecific BCMA/CD3 antibody monomer were subjected to three freeze/thaw cycles followed
by high performance SEC to determine the percentage of initially monomeric dy, which
had been converted into antibody dimer.
pg of monomeric antibody were adjusted to a concentration of 250 pg/ml with generic buffer
and then frozen at -80°C for 30 min followed by thawing for 30 min at room ature. After
three freeze/thaw cycles the dimer t was determined by HP-SEC. To this end, 15 pg
aliquots of the monomeric isoforms of the antibodies were thawed and zed to a
concentration of 250 pg/ml in the original SEC buffer (10 mM citric acid — 75 mM lysine HCl —
4% trehalose - pH 7.2) followed by incubation at 37°C for 7 days. A high resolution SEC Column
TSK Gel G3000 SWXL (Tosoh, Japan) was connected to an Akta Purifier 10 FPLC (GE
Lifesciences) equipped with an A905 Autosampler. Column equilibration and running buffer
consisted of 100 mM KH2PO4 — 200 mM NaZSO4 adjusted to pH 6.6. After 7 days of
incubation, the antibody solution (15 pg protein) was applied to the equilibrated column and
elution was carried out at a flow rate of 0.75 ml/min at a maximum pressure of 7 MPa. The
whole run was monitored at 280, 254 and 210 nm optical absorbance. Analysis was done by
3O peak integration of the 210 nm signal recorded in the Akta Unicorn software run tion
sheet. Dimer t was calculated by dividing the area of the dimer peak by the total area of
monomer plus dimer peak.
The BCMA/CD3 bispecific antibodies of the epitope r E3 presented with dimer
percentages of 0.7 to 1.1% after three freeze/thaw cycles, which is considered good. However,
the dimer conversion rates of BCMA/CD3 bispecific antibodies of the e cluster E1/E4
reached unfavorably high values, ing the threshold to disadvantageous dimer values of
22.5% (4.7% and 3.8%, tively), see Table 11.
Table 11: Percentage of monomeric versus dimeric BCMA/CD3 bispecific antibodies of epitope
clusters E1/E4 (rows 1 and 2) and E3 (rows 3 to 8) after three freeze/thaw cycles as determined
by High Performance Size Exclusion Chromatography (HP-SEC).
Example 17
Thermostability
Temperature melting curves were determined by Differential Scanning Calorimetry (DSC) to
determine intrinsic biophysical protein stabilities of the BCMA/CD3 bispecific antibodies. These
experiments were performed using a MicroCal LLC (Northampton, MA, USA) VP-DSC device.
The energy uptake of a sample containing BCMA/CD3 bispecific antibody was recorded from 20
to 90°C compared to a sample which just contained the antibody’s formulation buffer.
In detail, D3 bispecific antibodies were adjusted to a final concentration of 250 ug/ml in
storage buffer. 300 pl of the prepared n solutions were transferred into a deep well plate
and placed into the cooled autosampler rack position of the DSC device. Additional wells were
filled with the SEC running buffer as reference material for the ement. For the
measurement process the protein on was transferred by the mpler into a capillary.
An additional capillary was filled with the SEC g buffer as reference. Heating and
recording of required heating energy to heat up both capillaries at equal temperature ranging
from 20 to 90°C was done for all samples.
For recording of the respective melting curve, the overall sample temperature was increased
se. At each ature Tenergy uptake of the sample and the formulation buffer
reference was recorded. The difference in energy uptake Cp (kcal/mole/°C) of the sample minus
the nce was d against the respective ature. The melting temperature is
d as the temperature at the first maximum of energy uptake.
All tested BCMA/CD3 bispecific antibodies of the e cluster E3 showed favorable
thermostability with melting temperatures above 60°C, more precisely between 61.62°C and
Example 18
Exclusion of plasma interference by flow cytometry
To determine potential ction of BCMA/CD3 bispecific antibodies with human plasma
proteins, a plasma interference test was established. To this end, 10 ug/ml of the respective
BCMA/CD3 bispecific antibodies were incubated for one hour at 37°C in 90 % human plasma.
Subsequently, the binding to human BCMA sing CHO cells was determined by flow
cytometry.
For flow cytometry, 200,000 cells of the respective cell lines were incubated for 30 min on ice
with 50 pl of purified antibody at a concentration of 5 ug/ml. The cells were washed twice in
PBS/2% FCS and binding of the constructs was detected with a murine PentaHis antibody
(Qiagen; diluted 1:20 in 50 pl PBS/2% FCS). After washing, bound PentaHis antibodies were
ed with an Fc gamma-specific antibody (Dianova) conjugated to phycoerythrin, diluted
1:100 in PBS/2% FCS. Samples were measured by flow cytometry on a FACSCanto ll
instrument and analyzed by FACSDiva software (both from Becton Dickinson).
The obtained data were compared with a control assay using PBS instead of human plasma.
Relative binding was calculated as follows:
(signal PBS sample / signal w/o detection agent) / (signal plasma sample / signal w/o detection
agenb.
In this experiment it became obvious that there was no significant reduction of target g of
the respective D3 bispecific antibodies of the epitope cluster E3 ed by plasma
proteins. The relative plasma interference value was below a value of 2 in all cases, more
precisely between 1.29 1r 0.25 and 1.70 1r 0.26 (with a value of “2” being considered as lower
threshold for interference signals).
Example 19
Therapeutic efficacy of BCMAICD3 bispecific antibodies in human tumor xenograft
models
On day 1 of the study, 5x106 cells of the human cancer cell line NCl-H929 were subcutaneously
injected in the right dorsal flank of female NOD/SCID mice.
On day 9, when the mean tumor volume had reached about 100 mm3, in vitro expanded human
CD3+ T cells were transplanted into the mice by injection of about 2x107 cells into the peritoneal
cavity of the animals. Mice of vehicle control group 1 (n=5) did not receive effector cells and
were used as an untransplanted control for comparison with vehicle control group2 (n=10,
ing effector cells) to monitor the impact of T cells alone on tumor .
The antibody treatment started on day 13, when the mean tumor volume had reached about
200 mm3. The mean tumor size of each treatment group on the day of ent start was not
statistically different from any other group (analysis of variance). Mice were treated with
0.5 mg/kg/day of the BCMA/CD3 bispecific antibodies BCMA-98xCD3 (group 3, n=7) or
BCMA-34 x CD3 (group 4, n=6) by intravenous bolus injection for 17 days.
Tumors were measured by caliper during the study and progress ted by intergroup
comparison of tumor volumes (TV). The tumor growth inhibition T/C [%] was determined by
ating TV as T/C% = 100 x (median TV of analyzed group)/(median TV of control
group 2). The results are shown in Table 12 and Figure 16.
Table 12: Median tumor volume (TV) and tumor growth inhibition (T/C) at days 13 to 30.
Dose
group
1Vehi. med.TV
238 288 395 425 543 632 863 1067 1116 1396 2023
control [mm]
T/C[%]120 123 127 118 104 114 122 113 87 85 110
Tcells
med.TV
198 235 310 361 525 553 706 942 1290 1636 1839
[mm]
med.TV
a 207 243 248 235 164 137 93.5 46.2 21.2
[mm]
BCMA-
med.TV
A 206 233 212 189 154 119 56.5 17.4
[mm]
BCMA-
e 20
Exclusion of lysis of target negative cells
An in vitro lysis assay was carried out using the BCMA-positive human multiple myeloma cell
line NCl-H929 and purified T cells at an effector to target cell ratio of 5:1 and with an incubation
time of 24 hours. BCMA/CD3 bispecific dies of epitope cluster E3 (BCMA-34 and BCMA-
98) showed high y and efficacy in the lysis of NCl-H929. However, no lysis was detected
in the BCMA ve cell lines HL60 (AML / myeloblast morphology), MES-SA s
sarcoma, fibroblast morphology), and SNU-16 (stomach carcinoma, epithelial morphology) for
up to 500 nM of the respective antibody.
Example 21
Induction of T cell activation of different PBMC subsets
A FACS—based cytotoxicity assay (48h; E:T = 10:1) was carried out using human multiple
myeloma cell lines NCl-H929, L-363 and OPM-2 as target cells and different subsets of human
PBMC (CD4+ / CD8+ / CD25+ / CD69+) as effector cells. The results (see Table 13) show that
the degree of activation, as measured by the EC50 value, is essentially in the same range for the
different analyzed PBMC subsets.
Table 13: EC50 values ] of BCMA/CD3 bispecific antibodies of epitope cluster E3 as
measured in a 48-hour FACS—based cytotoxicity assay with different subsets of human PBMC
as effector cells and different human multiple myeloma cell lines as target cells.
Cell line PBMC BCMA-98 x CD3 BCMA-34 x CD3
NCI-H929
e 22
Induction of cytokine release
A FACS—based cytotoxicity assay (48h; E:T = 10:1) was carried out using human multiple
myeloma cell lines NCl-H929, L-363 and OPM-2 as target cells and human PBMC as effector
cells. The levels of cytokine release ] were determined at increasing trations of
BCMA/CD3 bispecific antibodies of epitope cluster E3. The following cytokines were analyzed:
”-2, lL-6, lL-10, TNF and IFN-gamma. The results are shown in Table 14 and Figure 17.
Table 14: Release of |L-2, |L-6, |L-10, TNF and IFN-gamma [pg/ml] induced by 2.5 ug/ml of
BCMA/CD3 bispecific antibodies of epitope r E3 (BCMA-98 and 4) in a 48-hour
FACS—based cytotoxicity assay with human PBMC as effector cells and different human multiple
myeloma cell lines as target cells (E:T = 10:1).
————M
—————m
!fll lflllfll!flllfll MMMB<QDWB >UméBéflflMwwéémwmhm<mBDm<QLMBDU MUM>WQMMMB<QUWB mwM>QOwa<QUmB
m<>EV90M0m<0m>3<7QMZmLBLUWflflOWQMémmme>>DDUmE>QO>O BUOUEMQhDMWUQMMQEM>OMM><BQEflMfiWZZOQMQBZMmZQMWABL mwmwmhmmmAUBEMZWflUMH##MmmmeMOOMEfl>ZHU>w0m£¥0méB>MEwmm>méB<mmOBE> MHD>MBUmULBLm MHQ>VBUmULBLm Mfimwwm0>éwwwmv>90>rWUDUUWMHQ>VBUmULBLm ZEOQMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMWM
mDMOQOMM><LQVmOémm WUMOQOMM><LflflmOémm WUMOQOMM><LflrmOémm
wucwscww UM>WQMMMB¢QUWB mwmhmmmAUBEMZWflUMH##MmmmeMOOMEQ>7HD>WOW£MOWQB>MEDmm>mfi9<mm092> mwmhmmmAUBEMZWQUMH##MmmmeMOOMEQ>7HU>w0m¢MOWQB>MEDmm>mfiB<mWOBE>
m ” BQBLVMU 0M0m<0M>E<7QMZmLBLUWflflOWQMémMUmO>>UDDmE>QO>O wwwmwwwwmwwwwmm>B>HBUOUEMflhUMWDQMMQEM>OMM><BQEQMQW7FOQMQBZMWZQMmth wwwmwwwwmwwwwmm>B>HBUOUEM<hUMWUQMMQEM>OMM><BQEflMém7FOQMQBZMmZQMmth me BéBhrmwmw m<>ET90M0m<0M>E<7QMZmLBLUWflflOWQMémMUmO>>UDUmE>QO>O rmw BéBhrmwmw m<>3réwammOm>E7E<MMZLBhwmflflomfi m>BémmEOB>>BOWDUDUmUUUDmDUQDmm>B>HBUOUEM£EMmAMmZUL7DEM>OMM>QBQEBV#Z QUMmmOUmMOO>EZmMZUWB><UBWWUOBQB>BUDm Q>BQMBUUUM>EM7mMEé>OMMV<VQVm0 In‘
>._. ma
39:3". wuhsom BE ocfiwqflp wEoEoE
:oamcmzmwo. -wm -VQQOmOm -wmmOmOm -wmmOmOm -5 :_I
. QOmWWIWHmu owmflo owmflo owmflo mmvm
Om. owmflo «00
x wDKO
.8329me llllll x:_I
T<_>_Om_ :_I
m m «DO
'5' mwvfiwmmmwazmme mmm mwvfiwmQMMMBv/HQUWB mwvfiwmQMMMBv/HQUWB
magi/ET MfimwmexwéwwwmvxwéOxwvWUUUUWMHQ>VBUmU_n—B_um ZEOHMflHZMmQQMWABLMflwawmflmwmewh/ZMMmm >0m.EH.fingwmvH_Hmwmhm<m90m<_buMBUU
MHD>MBDmULBLm MHQ>VBUmULEum
UM>WQMMMBEQUWB lfll!fll momNVhsmv/szmuEuwmflflomQMQmmmexfiwwwwmE>QO>O mm>B>QBwowgwmhwmeQMMQEMNVOMMCVmBQEflMfiWZZOQMQE/EWZQMmAEu AUBEMZmQUM._._hHMmmOUmMOOMEflKfi/HHU>w0m§0m99>mflmwm mDMOéowwxwfln—QV wwxfifiuflfl Q>BQMBDUUh>EM
m>mEH<mmOBE> mOémm mmxfisr#DMUmQOMxfismv/QMZWLEuwmflflomégkmwDm0>>UUUmE>QO>O wwwmwwwwmwwwwmm>B>HBUOUEMflhUMWUQMMQEMNVOMMNVQBQEflMfiWH/FOQMQBZMWZQM mwmhmmmAUBEMZWflDM._._hHMmmOUmMOOMEQNfi/HU>w0m§0m99>mflmwmm>mfiB<mWOBE> mOémm wwwmwwwwmwwwwmm>B>HBUOUEMQMUMWUQMMQEM>OMM>¢BQEQMémH/FOQMQBZMmZQM mwmhmmmAUBEMZmQUM._._hHMmmOUmMOOMEQNfi/HU>w0m§0méB>mflmwmm>wfiB<mmOBE> wwwOéowwxwmhflvaémm
999.“:me UM>WQMMMB¢QUWB
m._. m>BémmEOB>>BOmUUDUmUUDUWUUDDmm>B>HBDOUEM£EMmaMmZU_u7DEm>OMM>mBQEBV m._.
B.“— mmxfis?éwvmwmmmuwxwgmv/szmuEuwmflflomémémwUm0>>UUUmE>QO>O _ ”7mm Ebbuvmwmw B.“— ”7mm Ebbuvmwmw mmxfisvQUMUmQOMNVEH/EMMZLBhwmgomfi #Z _HDMmmODmMOOxfi/E/EMZDWB><DBmmUOBHB>BUUm 7mMEé>OMMHT<VQVmO I m
NN—Do
I> fl!I oEomqu 2:029: IElflllfll
-wm -5 -
rm -5 -wm
:_I |_I
amum mmvm mmvm mmvm MOO Om wDKO wDKO 0m wDKO www.mm Om. wDKO Om. wDKO x QOmWWIWM
N-<_>_Om_ :_I
mwM>QOwa<QOmB mwmwmhmmmAOBEMZWflOMH##MmflOOmMOOMEfl>ZHU>m0m£¥0méB>MEwmm>méB<mmOBE>_ mwM>QOwa<QOmB wwmwwwwmm>B>QBOOGEMflhOMWOQMMQEM>OMM><BQEWMQW7FOQMQBZMWZQMmth mwmhmmmAOBEMZWflOMH##MmmmeMOOMEQ>7HO>m0mmMOmQB>MEOmm>mfiB<mWOBE> mwM>QOwa<QOmB >OméBéflflMwwéémwmhm<mBOm<QLMBOO mwvfiymmmwwéfiwme
m-EE:
MHD>MBOmDLBLm MHQ>VBOmOLBLm Mfimwwm0>éwwwmv>90>vWUOOOWMHQ>VBUmOLBLm ZEOQMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMWM gwmwmmoggmzm
wzmu
mOMOQOMM><LQVmOémm mOMOQOMM><LDHmOémm WOMOQOMM><LflVmOémm
Ham wwwmwwwwmwwwwmm>B>QBOOOEMQMOMWUQMMQEM>OMM><BQEWMQW7FOQMQBZMWZQMmth mAOBEMZWflOMH##MmmOOmMOOMEQ>7HU>m0m£¥0méB>MEwmm>mHB<mmOBE>
WOMOQ m<>EV90M0m<0m>3<7QMZmLBLOWflflOWQMémmme>>OOOmE>QO>O mm>B>HBOOOEMQhOMWOQMMQEM>OMM><BQEWMQWZEOQMQBZMWZQMWABL BQBLVBO m<>3r90M0m<0M>E<7QMZmLBLOWflflOWQMémMOm0>>OOOmE>QO>O UM>mQMWMBEQUmB
rmw BQBLVBOWO m<>3v90M0m<0M>E<7QMZmLBLOWflflOWQMQmMUmO>>UOOmE>QO>O 7mm BéBLvBOmO m<>3v90M0m<0m>E7EQMMZLBhwmflflomfi m>BémmEOB>>BOmOUOOmUOOOmUOOUmm>B>HBUOOEM£EMmaMWZOL7UEM>OMM><BQEBV#Z #OMmmOUmMOO>EZmMZOWB><OBmmOOBQB>BOUm Q>BQMBOOOM>EM7mMEé>Owwv<7Qvm0 m momgmgmmwmogwwwm$.65 BOOGEMflhOMWOQMMQEM>OMM><BQEWMQWZEOQMQBZMWZQMWABL
«KOO-5 ! oEomqu 2:029: E a!
-5 -5 -5 -5 -5 -5 -_I -5 -5 -5 -5 -5 -5 -5
mOm owm-vm. mOm owm-vm. mOm owm-vm. mOm owm-vm. mOm owm-vm. mmvm owm-vm. «DO mmvm wD-vm. mmvm wD-vm. mmvm wD-vm. mmvm wD-vm. mmvm mOm mmvm
Om Om Om Om Om Om x Om Om Om Om Om wD-vm. Om wD-vm. Om wD-vm.
m-<_>_Om -_I
«DO Iv-<_>_O
N m mm fin mm mm hm
mwmwmhmmmAUBEMZWQUMH##MmmmeMOOMEQ>ZHU>w0m£¥0méB>MEwmm>méB<mmOBE>_ MUM>WQMMMBEQDWB wwwmwwwwmwwwwmm>B>QBDODEM<hUMWUQMMQEM>OMM><BQEmMQW7FOQMQBZMmZQMmth mwmhmmmAUBEMZWflDMH##MmmmeMOOMEQ>ZHU>w0m£¥0méB>MEwmm>mHB<mmOBE> MMMBEQDWB MUM>WQMMMB<QDWB mwM>QOwa<QDmB
MHD>MBUmDLBLm m<>EV90M0m<0M>E<EQMZmLBLU@¢¢OWQMQWMDm0>>UUUmE>QO>O MHQ>VBUmULBLm 0M0m<0M>E<EQMZmLBLDWflflOWQMémM wwwmwwwwmwwwwmm>B>QBDODEM<hUMWUQMMQEM>OMM><BQEmMQW7FOQMQBZMmZQMmth mwmhmmmAUBEMZWflDMH##MmmmeMOOMEQ>ZHU>w0m£¥0méB>MEwmm>mHB<mmOBE> Mfimwwm0>éwwwmv>90>rWUUUUWMHQ>VBDmULBLm ZEOHMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMWM >UméBéflflmwwéémwmhm<mBDm<QLMBUU
MHQ>MBUmULBLm
mDMOQOMM><LflVmOémm QUMmmODmMOO>EZmMZUWB><UBWWUOBHB>BUUm MHQ>MBUmDLBLm
mUMOQOMM><LQVmOémm mDMOQOMM><LflV MM><LQVWOQWW WUMOQOMM><LQrmOémm
BQBLVBU BQBLVBDWU m<>ET90M0m<0m>E7E<MMZLBhwmflflomfi m>BémmEOB>>BOWUUUDWUDUUWDUGDWm>B>HBUODEM£EMmAMWZDL7UEM>OMM><BQEBV#Z Q>BQMBUUDh>EM7mMEé>OMMV<VQTm0 UV>WQMMMB<D
QEDMZ m9
mwmhmmmAUBEMZmQUMH##MmmmeMOOMEQ>ZHU>w0m£MOWQB<MEUmm>w2m<mmOBE>
rmw rmw m<>EVéwammOm>E<EQMZmLBLUWflflOWQMémmme>>DDUmE>QO>O mm>B>HBUOUEMQhDMWUQMMQEM>OMM><BQEflMfiWZEOQMQBZMflZQMWABL mwmwmhmmmAUBEMZWflUMH##MmmmeMOOMEQ>ZHU>w0m£¥0méB<MEwmm>w2m<mm092>_ BéBLvBU m<>EVéwammOm>E<EQMZmLBLUWflflOWQMémMUmO>>UUUmE>QO>O wwwmwwwwmwwwwmm>B>HBUOUEMflhUMWUQMMQEM>OMM><BQEflMémZFOQMQBZMQZQMmaBL rmw BQBLVBDWU
oEomqu 2:029: $50 NKDO «moo
I> I> I> lflEEEElflEE!“I“a
rm -5 -5 -5 -5 -5 -5 -5 -5 -5 -5
-_I -_I
mOm mmvm mOm «00 mOm mOm mOm mOm mOm mOm mOm mOm mOm
Um. Om. wD-vm. Om. wD-vm. x Um. owm-ND Om. owm-ND Om. owm-ND Om. owm-ND Om. owm-ND Om. owm-ND Om. owm-ND Om. owm-ND Om. owm-ND
x-__._v
<_>_Om_ moo
co O)
m m
mwM>QOwa<QOmB mwM>QOwaEQOmB MOM>WQMMMBEQUWB
0M0m<0m>E<EQMZmLBLOWflflOWQMémMUmO>>OOUmE>QO>O wwwmwwwwmwwwwmm>B>QBOOOEM<hUMWUQMMQEM>OMM><BQEflMémZFOQMQBZMQZQMmth mwmhmmmAOBEMZWQUMH##MmmmeMOOMEQ>ZHU>m0m¢¥0méBflMEwmm>m2m<mmOBE> Mfimwwm0>éwwwmv>90>rWUOOUWMHQ>MBOmOLBLm ZEOQMflHZMmQQMWABLMDM>WQ<MMH<MZZMMWM >OméBéflflMwwéémwmhm<mBOm<QLMBOU
MHQ>VBOmOLBLm Mfimwwm0>éwwwmr>90>rWOUOUWMHQ>VBOmDLBLm ZEOQMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMmm
WUMOQOMM><LQrmOémm
MHD>MBOmDLBLm
MMBEQOWB WOMOQOMM><LQVWOQWW mwmhmmmAOBEMZWQOMH##MmmmeMOOMEQ>7HO>m0m£MOWQB<MEUmm>m2m<mm092> mwmhmmmAOBEMZWQUMH##MmflOOmMOOMEQ>7HO>m0mmMOmQB<MEOmm>m2m<mmOBE> WOMOéowwxwfln—vamvémm WOMOQOMM><LQTWOQWW
rmw BQBLVBOWO m<>3r90M0m<0m>E7E<MMZLBhwmflflomfi m>BémmEOB>>BOWOOUUWUUOOWDOODmm>B>HBUOUEM£EMmAMmzwhzwmm>oww>mBQEBV#Z #OMmmOOmMOO>EZmMZUWB><UBWWUOBQB>BOOm Q>BQMBUOUM>EM7WMEQ>OMMVm:Drm0 In ‘ mwmwmhmmmAOBEMmewwH##MmflOOmMOOMEfl>ZHO>m0m£MOmQB<MEOmm>m2m<mm092>_ m<>EV90M0m<0m>3<7QMZmLBLOWflflOWQMémmme>>DOOmE>QO>O mm>B>HBOODEM<hOMWOQMMQEM>OMM>¢BQEflMfiWZZOQMQBZMflZQMmABL m<>EV90M0m<0M>E<7QMZmLBLOWflflOWQMQmMUmO>>OUOmE>QO>O wwwmwwwwmwwwwmm>B>HBOOOEMQhOMWOQMMQEM>OMM><BQEflMémZFOQMQBZM<ZQMmth O m<>3r90M0m<0M>E<7QMZmLBLOWflflOWQMémMUm0>>UUUmE>QO>O wwmwwwwmm>B>fiBUOUEMQMOMWUQMMQEM>OMM>¢BQEQMQWZFOQMQBZMflZQMmth rmw BQBLVBOWU m<>3r90M0m<0m>E7EQMMZLBhwmflflomfi
fl BEEN—SHOWE—2mm
ocfiwQflQ wEoEoE NN—Do
I> lfll!fl!lfll MUM>WQMMMBEQOmB oEomqu 2:029:
-5 -wm - -
:_I rm rm -5
:_I :_I :_I
mmvm owm-Nn_ «05 wD-Nn_ mmvm wD-Nn_ -w®®0m0m wD&D mmvm wD-Nn_ mmvm wD-Nn_ mOm
x Om Om Om wD-Nn_ Om x
x II IIII x
:_I :_I
m-<_>_Om :_I @-<_>_Om :_I
«05 «05
2012/072699
m>BémmEOB>>BOWUUUDWDUDUWUUDUWm>B>QBUOUEM£EMmaMWZULZUEM>OMM><BQEBV >UméBéflflMwwéémwmhm<mmeméhMwa MUM>WQMMMB¢QUWB mmmAUBEMZWflUMHQQMmmOUmMOOMEfl MUM>WQMMMB¢QUWB MUM>WQMMMB¢QUWB Mfimwwm0>éwwwmv>90>v ZEOHMflHZMmQQMmaBLMD
m<>EV m<>EV m<>EV
#UMUmmOM MHQ>V #UMUmmOM WUUUUWMHQ>V >UméBéflflMwwéémwmhm<mmeméhMwa
>E<7QMZW M>wQ<MMH<M7ZMMmm
QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm MHD>MBUmULBLm >E¢7QMZW BDmDLBLm BDmDLBLm
Q>BQMBUUUM>EMZmMEQ>OMMV LBLUm¢¢OWQMQWM m<>EV
WUMOQOMM><LDHQOQWW mDMOQOMM>¢LflVmOQWW MM>¢LQVmOQWW
B Q>BQMBUUUh>EM7WMEQ>OMMV
fl? wwwmwwwwmwwwwmm>B>HBUOUEMflhDMmDQMMQEm>OMM><BQEQMém7FOQMQBZMmZQM mwmhmmmADBEMZWQUMH##MmflODmMOOMEQ>7HU>WOWQMOWQB<M50mm>mHB<mmOBE> BQBLV wwwmwwwwmwwwwmm>B>fiBUOUEMflhDMmDQMMQEm>OMM><BQEQMQW7FOQMQBZMWZQM mwmhmmmAUBEMmewwH##MmflOUmMOOMEQ>7HU>w0m£¥0méB<MEwmm>mfi9<mm092> BQBLV fl?
Q? UM>mewa<QUmB BEMZWQU 90M0m<0m>E<FQMZmLBLUWflflOWQMémmme>>UUUmE>QO>O mm>B>QBUOUEM<hUMWUQMMQEM>OMM><BQEflMémZEOQMQBZMmZQMm>Bh >ZHU>mOm£MOméB<MEUmm>méB<mmOBE> m>BémmEOB>>BOWUDUUWUUUUWUUGUWm>B>QBDOUEM¢EMmAMWZUL7DEM>OMM>QBQEBV #BLV m> BU m> 7 BU Q?
#Z m0 B
m Um0>>UUUmE>QO>O Eh m0 m0 uBLUm¢<OWQMQmMUmO>>UUUmE>QO>O Eh m0 m0 0m>E7E<MMZLBhwmmmomfi #Z QUMmmODmMOO>EZmMZDWB><UBWWDOBHB>BDUm m0
NKDO Nmoo
I> :_> oEomqu 2:029:
-Nm -Nm -Nm -Nm -Nm -Nm -Nm -Nm -Nm -Nm :_I -Nm
o_‘m_-o_‘m_ o_‘m_-o_‘m_ o_‘m_-o_‘m_ o_‘m_ o_‘m_-o_‘m_ o_‘m_-o_‘m_ o_‘m_-o_‘m_ o_‘m_-o_‘m_ o_‘m_-o_‘m_ :_I
mOm mOm mOm mOm mOm mOm mOm mOm mOm mOm owmowm. «00 mOm
Um. Om. Om. Om. Om. Om. Om. Om. Om. Om. x Um. mod—m.
n-<_>_0m_ :_I
lflllfll!flllfll mwvfiwmQMMMBEQUmB MUMNVWQMMMBEQUWB MUMNVWQMMMBEQUWB $9.me
mmxfisv mmxfisr mmxfisv
éwvmwmmmvawgmv/Q #DMUmQOM zzmfiwmezvammmmaBumgxymmmmeE/zmmmm maggomwwwwmwwwwmwwwwm >0m.EH.finflvmwwéémwmhmmmmeméuMBUU
MZWL BUOUEM§mDMmUQMMQEM>OMM>¢BQEflMfiWZZOQMQBH/HMWZQMmeBh mmmAUBEMZWflUM._._hHMmmODmMOOMEflKfi/HHU>w0m§0m99<mflmwmm>mEH<mmOBE> MHD>MBUmULBLm éwvmwmmmvwxwgmv/QMZWLEuwmflflomémémwUmO>>UUDmE>QO>O wmwwwwmm>B>HBUODEM§mUMmDQMMQEm>OMM><BQEflMémH/FOQMQBZMWZQM mwmhmmmADBEMZWQDMH_hHMmmOUmMOOMEQNfi/HU>w0m§0m.HBmmflmwm DmDLBLm >E<7QMZmL mqmwwmo>_50wmv>_6>__,m88m§g>§0mfl§$
mDMOéowwxfifin—QQOQWW Euwmflflomégkmw
m>9>qewowz§§m _H>_H_
UM>WQMMMBEQUWB EuUmflflOméMémmmexfiwwwwmE>QO>O mDMOéowwxfifin—QVQOQWW BUDDh>EM
m>mHB<mmOBE>
wwwogowgfimvmogmm 7m
BQBLHTBDmD Um0>>UDDmE>QO>O wwwmwwwwmwwwwmBEE98055wwmwmmwmmmxyowfiaemm<m_57So_;_E§mzmw mwmummm395223FeEmmowmmoowEQE/Hw>mom§om5<mmwm$395895 5.53:gwmwmmoEyE/zmwmzhE53433 mmzwéwmgowgmemmfi #UmnmmmeMOONK/E/EMZUWB><UBmmUOBQB>BUUm EVOMMV
__ BEEN—”THU m>Em m0 m>E ”,mw Egaéwmw gz UOhMOZMEBQmZUmMHm wmhfimwflwwwmm MQMBZUZWENVHWOWWM
BE EEE
0.28ng 2:029: wmoo NN—Do MED—O meO
I> I> I> :5
-Nm -Nm -Nm -Nm
.__._ -wm -wm -wm -wm
mwmmmonww mOm wDé mmvm mod—m— mOm wDé -mnwwmonwm«flux VI v<-Nn_ VI v<-Nn_ VI VI
Om rm— Om Om rm— Om. Om Om v<-Nn_ Om v<-Nn_
x.__._
w-<_>_0m_ .__._ m m a m
- - - -
moo <_>_Om_ <_>_Om £20m <_>_Om
N mm
MDOhMOZMEBQmZUmM hMQm>UmhMZm>mwk##OmmmeMOQMEMQMB/UZWE>HmOmmmomHmflm00mm>w9mémBOBE>HQ MUOhMO7WEBQWZUMW 7MwBQmZUmM mwommozmmemmzwmw
m0 m0 UUUWUUUUWUUUUWW>B>QBUOUEw<hQWUQMWWWWMBOWM>QBQEWBQWWQEEWQBWQWBQMBHB> Qm>wmhMZm>mwhééOmmmevOéMEMéMBZU/mm>HmOmmmomHmflm00mm>w9mémBOBE>HQmw <0 mm
M UUWUUUUWW>B>QBUOUEw<hQWUQMWWWWMBOWM>QBQEWBQWWQEEWQBWQWBQMBHB> QM>UWhMZW>MWHQQOMhOUMVOQWEWQWBZU/WE>HWOWWMOWHwmm00mm>WQWQMBOBE>HQWU $258926?$8me
M meémmmmmEhmmmimmwmgmzzwmg 62mg:gmwmmmmmegmimeww
Erém00m<0M>ElAEMZBLwamflmom>x>m<DmMM>m<DmO>QO>O mm>B>QBUOUEm<hHmUQMMMWmMBOMM><BQEmBémméizwflBmflmBQMBHB> T#MBDOULBL&QBWUO@OMM>D>QVm?>MW r#MBUODLBL&QBWUOMOMM>U>QVQT>MW __,éewowh539883565:m:Em
mhm2m>m MQBLQBUmUmwm MQOM>EIAEWZBLBWUWQMOW>V>WQUMMM>MQUWO>QO>O mafiBmth MQBLQBUWUWUWMM 379m00m<0M>EIAEMZBLwammmom>v>w<®mMM>E<UmO>QO>O MEEmewmwmmm M25?gwmwmmomNVE/zmwmzhEuwmdnmomégmww muoe>>aomwwwwmwwwwmwwwwmmEEBwowgmemEmzwuzwmfiwomgmemmfi2220.; gwmmmowmmoggznmwzwmfiymwemmwoeqfiéwwmmgqm g>EEewwwm>§7mEéowwvm:9,35mg wommozwgmmzwmim mmmqmwmwwwmm mqweszmmimommm mhm2m>m qummwom a”,gmowmmomxémgmzaEwmmmomixymmwmmmimwm9:96
u EEflaE
NKDO «moo «moo «moo E00 NN—Do «moo
._> :_> I
> 4> $8 0.28ng 2:029: _._> _._> .5 |_> ._> a!
-wm -wm -wm -wmwT+Om :meT*Om .mm .__._ .__._ .mm .mm -wm -wm .mm
VI v<-Nn_ VI v<-Nn_ VI V<&D V<&D $30 2.. Erma 80x quTND 2.. quTND 2.. VI VI 2..
Om. om. quTND 0m. Om. 0m. 0m. Om NWTNQ Om quTND om quTND -wmmwmwm
x.__._
m m or 8
- - - -
<_>_Om_ <_>_Om_ m-<_>_0m_ q<§0m m-<_>_om 0m_ .__._
moo oT<_>_0m_ <_>_Om £28 oT<_>_0m_
N co
G) co hm
WO 72406
hMQm>UmhMZm>mwh:HHOmmOUmMOHMEMHMB/UZWE>HmOmmm0mHwmmODmm>mémémBOBE>HQ MUOhMO7MEBQmZUmM MUOhMO7MwBQmZUmM mwommozmmemmzwmw
M m0>éwwwmr>90>rmwwwme
__ __
M M
x#MBUOU_AB_quEmUOhOMM>U>QT<V>MW #MOmemOvfiwE wwwmwwwwmwwwwmm>B>QBUOUEm<thDQMMMWmMBOMM><BQEmBémméizmemmmBQMBHB> Qm>wmhMZm>mwhééOmmmevO_H%E%_H%BZD/WE>HmOmmmomHmflm00mm>w9mémBOBE>HQmw U_AB_umfimm00h0%%>w>flvm?>MW
meémmnmmEamnmimmwmgmzzwmg
(#MBUOUuBumHEmUOhOMM>U>QTQV>MW
Q¢<M00_.émwmhm<m90m<fi_uMwa
MQBLQBUmDmUmhm 379m00m<0M>EIAEMZBLwammmom>v>w<®mMM>m<UmO>QO>O wwwmwwwwmwwwwmm>B>HBUOUEm<hHmUQMMMWmMBOMM><BQEmBémméizmemmmBQMBHB> Qm>wmhMZm>mwkééOmmmevO_H%E%_H%BZU/WE>HmOmmmomHmmmOUmm>mémémBOBE>HQmw :gmewowueumqemwomomw>w>mT<T>mm
MQBLQBUmUmUm AEMZBLBMUWEOWNVV>w<®mMM>m<UmO>HO>O MQBLQBUmUmUmhm MES?gwmwmmomNVE/zmwmzhEuwmdnmomégmww mflOB>>_aOmwwwwmwwwwmwwwwmm>H>QBUOUEMQEMWAMmZU_uZUEM>OMM>¢BQEBV#ZZEO_H% QUMmmOUmMOO>EZmMzwmB>¢UBWWUOBHB>BUUmm>Bfim mozwmemmzwm: vgmowmmom>gmazwze_uwammMom>M>m<wmmm>m<wmo>qo>oEmm>e>wewowgm<mqmwmmwwmmmeowm><emmmHgmmgmzwmemmmemmeHB> mmmm>wmmm2m>mwFggommowmmo_kwgw_kwezw2mm>HmommmomHmmoowme>mgmgmeoez>Hm Q>B;MBUUUh>Em7WMEH>OMMT In m0>0mfi9 3552 thMOZMEBQmZUmMHm wqweszmmimommm m_ke_umewmwmwm _Eowm<om>z:§wze_u5632096>m<wmmm>m<wmo>qo>o
EE E
ocfiwqfln 2:029: wmoo Nmoo :: E00
I> I> ._> 4> a!
-wmwT+Om :_I -wm -wm -wm .mm .3
NwWfifl Om NF*ND -wmwT+Om .__._
NWTND «00 VI VI VI 2.. .v<- .v<-
X Om. v<é0 Om. v<é0 Om 0m. Yer—‘0 wO wO -wmrT*om v<-ro -wmrT*om v<éo fiWm
or OVLEZOm XJIA=H<§Om : : 3
-<_>_Om_ .__._ - - - -
80 <_>_Om_ <_>_Om_ £28 VT<§om :-<_>_0m_ r7<§om
E :5 a For a
2012/072699
wwwmwwwwmwwwwmm>B>HBOODEm<thDQMMMWmMBOMM><BQEmBémméizmemmmBQMBHB> Qm>wmhm2m>mwkééOmmmev MOOMMOZMw m0>éwwwmr
BQmZUmM >99? QBZMWQQMmaBLMQ MUOhMOZMEBQmZDmM MUOhMOZMEBQmZOmM MUOhMOZMEBQmZOmM
£0 £0 £0 £0
M WOUUUWM
E? Qm>wmhm2m>mwkééOmmmev
HM>WQ<MMB<MZZMMmm #flmmwwéémwmhmmmmeflfihMwa E? E? Qm>wmhm2m>mwkééOmmmev M E?
OQMEMQMBZUZWE>HmOmmMOmHm<000m9>mémémBOBE>HQmw V#MBOOOLBL&HBWOOMOMM>D>QV 9m00m<0M>EEAEMZBLwammmom M
#OMmflOUmMOO>EZmMZOmB> VQMBOODLBLmHEmOOhOMM>O> 9m00m<0M>EIAEMZBLBMDWQMOW V#MBOOOLBL&HBWOOMOMM>D>QV V#MBOOOLBL&HEWOOMOMM>D>QV 9m00m<0M>EIAEMZBLBMDWQMOW
m? wwwmwwwwmwwwwmm>B>HBUOUEm<hHmOQMMMmmMBOMM>¢BQEmBémméizwflBmflmBQMBHB> OQMEMQMBZUZWE>HmOmmMOmHm<000m9>mémémBOBE>HQmw >v m? mflOB>>HOmUUDUmUDDOmDDOOmm>H>HBOOOEM<EMWAwmzwhzwmw Q? >v m? >v
>MW >MW Q>BQMBUOOh>Em7mMEQ>OMMVmVQ? <?>MW >MW
MQBLQBOmUmUmhm >m<®mMM>mmme>HO>O MQBLQBOmUmUmhm 0M0m<0m>E7EQMMZLBhwmflfloméMémww >OMM><BQEBV mmemOOBHB>BU
gzzzogm Umm>9fim mO>UmQB EHEMZ OOhMOZMEBQmZOmMHm wflhfimwflwwwmm MQMBZUZWE>HmOmmM m mafiEmOOh 9m00m<0M>EIAEMZBLBMOWflMOW>M>m<OmMM>E<DmO>QO>O mm>B>HBOODEm<hfimOQMMMmmMBOMM><BQEmBQWWQEEMQBmmmBQMBHB> hmmm>wmhm2m>mwh##OmmmeMOQMEMQMB/OZmE>HmOmmMOmHm<000m9>mémémBOBE>HQ MQBLQBOWOWOW >m<®mMM>mmme>HO>O wwwmwwwwmwwwwmm>B>HBUOUEm<hHmOQMMMmmMBOMM>¢BQEmBémméizwflBmflmBQMBHB> OéMEMQMBZU/WE>HmOmmMOmHm<000m9>mémémBOBE>HQmw OmUmUmhm >m<®mMM>mmme>HO>O wwwmwwwwmwwwwmm>B>HBUOUEm<hHmOQMMMmmMBOMM>¢BQEmBémméizwflBmflmBQMBHB>
oEomqfln . wmmO NN—Do mmmO $55 NmmO mmmO
I> I> I> :_> :_> :_> I> oEomqfln 25020:.
-wm :_I :_I -wm -wm -wm -wm -wm -wm -wm -wm -wm -wm :_I :_I
VI Om v<-_‘O «00 VI NWT—O VI NWT—O VI NWT—O VI NWT—O VI NWT—O VI NWT—O VI VI VI
Om NWT—O «05
x Om Om Om Om Om Om Om NWT—O VI NWT—O
Om Om NWT—O x
x x
._I ._I
ww-<<,_Om :_I :_I
«05 NT<_>_Om O NT<_>_Om NT<_>_Om NT<_>_Om NT<_>_Om NT<_>_Om NT<_>_Om NT<_>_Om NT<_>_Om «05
2012/072699
Qm>wmhm2m>mwk##OmmmeMOQMEMQMBZUZmE>HmOmWMOmHm<000m9>mémémBOBE>HQmw m0>éwwwmv>90>7mwwwme mBZMmQQMmABLMDE>WQ<MMB<MZZMMWM mMOB>>BOmUUwUmUUUUmUUUUmm>H>HBUOUEMQEMWAmeULZUEM>OMM><BQEBV#ZZEOQM #flmmwwéémwmhmmmmemfihMwa mwommozmmemmzwmw mthMO7MEBQmZUmM mthMO7MwBQmZUmM
M m0>éwwwmr>éO>TmDDUDWM
m QBZMWQDMWthm0M>WQQMMBQMZZMMmm #flflxwwrémwmhmmmbmmfihMwa
DLBL&HEWUOMOMM>U>Q7mv>Mm T#MBGOULBL&HBWUO@OMM>U>QT<v>MW V#MBGOULBL&HBWUO@OMM>U>QVmr>MW
MQBLQBUWUWUWMM m<>3790M0m<0m>E7EQMMZLBhwmflfloméMémww QUMmmOUmMOO>EZmMZUmB>¢UBWWUOBQB>BUUmm>BQm Q>BQMBUUUM>EM7WMEQ>OMMv<VQ?m0>wmfi9 UOhMOZMEBQmZUmMHm la mqweszmmimommm !fl mwzzflémowmmomxé-:52?emwm§om>m>m<w§<>><wm9396 mm>B>QBDOUEm<hHmUQMMMmmmBOMM><BQEZMQWWQEEMQBmmmBQBBHB> mngmfie6mmogmMoiEie/QZmEHmommmomHmmoowmgmgmgmeoezim __,éewowfiiqemwom0:55;:Em
Mgehmewmwmwm QUEETQMOUmmOM>EIAEMZBLwammmom>v>w<®mM<>><UmO>HO>O wwwmwwwwmwwwwmm>B>QBUOUEm<thUQMMMWmmBOMM><BQE7MémeEEM<Bm<mBQBBHB> Qm>0mhMZm>mwhééOmmmevOéMEMQMBZD/WE>HmOmmMOmHmmOOUmB>WQWQmBOBE>HQmD MQBLQBUmUmUmhm <UEETQMODmQOM>EIAEMZBLwammmom>v>w<®m¥<>><®m0>fi0>0 wwwmwwwwmwwwwmm>B>HBDOUEm<thUQMMMWmmBOMM><BQE7MQWm952M<Bm<mBQBBQB> Qm>wmhMZm>mwhééOmmmevOéMEMéMBZU/WE>HWOWWMOWHmmOOUmB>WQWQmBOBE>HQmD DmDmUmhm m<>EV90M0m<0m>E7E<MMZLBhwmflfloméMémww mEOB>>HOmUUDUmUUUDmUDUUmm>H>QBUOUEM<EMWAwmzwhzwmw>OMM><BQEBMQZZEOQM #DMmmODmMOO>EZmMzwmB><DBWWUOBHB>BUDmm>Bfim
NN—Do E00 o.
I> .089
.5 2 _._> .9 2:029:
-mm -mm -mm -mm -mm ”nu
v<-Nm_ VI v<-Nm_ .v<-Nm VI Ermm. .v<-Nm .v<-Nm 2.. 2.. 2..
Om Om 0m. jam. 0m. Ermm. -mmwT+Om v<&m Um. wmmumm.x
Mr 2%! «Ti/Gm. 2 m 2
- - - - - -
<_>_Om 7328 2-<_>_om mw<§0m .__._
«Sum moo
a aE _
m0OhMOZMEBQmZ0mM hmmm>0mhm2m>mwh##Omm00mMOQM3MQMB/0ZmE>HmOmmMOmHm£OO0mB>mémémBOB2>HQ m0OhMO7MEBQmZ0mM 00m0000mm>B>HBOO03m£hfim0QMMMWmMBOMM>£BQE7Mémméi2w£9m£mBQBBfiB> Qm>0mhM m0OhMO7M? Qm>0mhM m0>§000m?>90>? £BZMmQfl Q££M00r
BQmZ0mM
£023? £023? M £023? Zm>mwkééOmmO0mv m0000mM
gmo mm>B>fiB0O03m£hHm0QMMMmmmBOMM>£BQEZMQWWQE2M£BW£WBQBBHB> M
? gmo Zm>mwhééOmmO0mVOéw ”TQM #MO ?#M “MmaBLMDM>mQ£MMB£MZ £mB0m£fihMB00
ZMMmm
3>BQMB0003>3MZWM 0m£OM>3la3MZBLBMOm£MOm>M #MBOO0LBLmHEm0OhOMM>0>Q? 0m£OM>3la3MZBLBMOm£MOm>V 3%3MBZO/WE>HmOmmMOmHm£OO B0O0LBLmHEm0OhOMM>0>Q?£? 0m£OM>3la3MZBLBMOm£MOm>V B0O0LBLmHEm0OhOMM>0>Q?£? M£>3? mflOB>>HOm0000m0000m0000mm>H>HBOO03M£3wmAme0LZOEM 30Mm£00m300>32mwz0m9>£0 3>BQMB0003>3M7WM
3Q>0%%?£?Q? 0OhMOZMEBsz0mMH£ MQMBZOZWE>H >m£0mM£>>£0mO>fiO>O £?>MW >MW >MW
Saws 000
mM MQBLQBOm0m0m >m£0mM£>>£0mO>fiO>O 0mB>mémémBOB2>HQm0 MQBLQBOm0m0mhm £>>£0mO>fiO>O 000m0000m0000mm>B>HBOO03m£hfim0QMMMWmMBOMM>£BQE7Mémméi2w£9m£mBQBBfiB> OéM3M3MBZO/WE>HmOmmMOmHm£OO0mB>mémémBOB2>HQm0 MQBLQBOm0m0mhm #0M0m£0m>372£%MZLBh0m¢£0méMém00 >OMM>£BQEBVQZZ2OQM Bmm0OBQB>B00mm>Bfim 33>O%%?£?Q?m0>0mfi9
IIIII wmmO NmmO wmmO NmmO
I> I> BE oEomqu 2:029: I> I>
-mm -mm -mm -mm -mm -mm -mm -mm -mm -mm :_I :_I -mm -mm
VI NE-Nm VI VI VI VI VI
Om Om NE-Nm Om NE-Nm Om NE-Nm VI NE-Nm VI NE-Nm VI NE-Nm VI NE-Nm VI NE-Nm VI NE-Nm «05
Om Om Om Om Om Om x Om Om
:-<_>_Om :-<_>_Om :-<_>_Om :-<_>_O I:-<_>_O O :_I
m m :-<_>_Om :-<_>_Om :-<_>_Om :-<_>_Om «05 mT<_>_Om mT<_>_Om
E mar ¢ u) o
0303!“)
x—x—x—
MUOhMOZWEBQWZUMW mthMO7MEBQmZUmM mthMOH/E.
BQmZUmM
m0 <0 <0
E.....HMOU&<OM>EI
Qm>wmhMZm>mwhééOmmmev M 2m>mfieammowmv $258926?$8me
__T#MBUOULBLmHBWUOhOMM>U>QV<V>MW
meémmmmmEhmmmimmwmgézwmg 62mg:gmwmmmmmegmimeww
OULBLmHBmUOhOMMNVUNVQVmr>MW Ev$8:539883565:m:Em
thfimwflwwwmm mqweszmmimommm mhm2m>m maHBmth .fiEWWEMBWUWQMOWNVMNVWBUMMMNVMQUWONKHONVO mm>B>HBUODEfl<hHmUQMMMWmmBOMM><WQEmMQmméEEaflBmmmBQMEHBNV .mMmewwmhmH/mewmwh_hHOmmOUmMQHMEMQMB/UZWENVHmOmmMOmHwmmmewamémémBOBv/SHQ MQBLQBUWDWUW EVQMOmUnmevfiVE-AEMmBuwamgomxwv>mBUmMM>E<UmO>QO>O wwwmwwwwmwwwwmm>B>HBUOUEfl<hHmUQMMMWmmBowwxfiflmmimm.HmméizmemmmBQMBHBNV wwwmwwwwmwwwwmmEEBwowgmgqmwQMEmmm5&9meEmmgmezwmemmmEmSE aomwwwwmwwwwmwwwwmmEEBwowgmemEmzwuzwmfiwomgmemmfi2220.; OQMEMQMBZU/WENVHmOmmMOmHmmmmewamémémBOBv/EVHQWU MQBLQBUmUmUmhm EVQMOUmQOVKVEIAEMmBLwamgomxwv>mBDmMM>E<UmO>QO>O QEESBzw/mmimommmomH238599309538 mwmmm M25?gwmwmmomNVE/zmwmzhEuwmdnmomégmww gwmmmowmmoggznmwzwmfiymwemmwoeqfiéwwmmgqm g>EEewwwm>§7mEéowwvm:9,35mg onozmmemmzmem mqweszmmimommm
MKDO E00 NN—Do MKDO
I> .5 :5 :5 ! |_> >u_ow 0.28ng 2:029: lfllBE BE
-mm -mm -mm -mm lam -mm -mm mm. .__._
VI .v<-®0 VI Ermo VI .v<-®0 VI .v<-®0 wI $16 VI VI
Om Om Om Om 0m Om .v<-m0 Om .v<-®0 fiwm8.0x -mmmwmwm -mmmwmwm
mw m7<_>_0m_ mw mw 2 mw
- - - I .__._
<_>_Om <_>_Om <_>_Om £28 mw-<_>_0m <_>_Om x.__._3-<_>_0m_ moo
E N
la mthMOZMEBQmH/mewm .mMmewwmhmH/mewmwfi mthMO7MEBQmZUmM wwwmwwwwmwwwwmm>B>QBUOUEfl<thDQMMMWmmBOMMNVQWQEmMQWWQEHZMmBmmmBQMBQBNV Qm>wmhMZm>mwfihkOmmmevQE mthMOH/E.
BQmZUmM wwwmwwwwmwwwwmm>B>HBUOUEfl<hfimUQMMMWmMBowwxfiflmQEmMQWWQEEMQBmmmBQMBHBNV Qm>wmhMZm>mwhééOmmmev m0>fi©0®mr>90>r
HOmmOUmMOQMEW <0 <0 wwwwwmvm M
M #flmvmwwrémwmhmmmbmmfin—MBUU
:HMOUmmOMNVE BUOUEfl<hfimUQMMMWmMBowwxfiflmQEWMémeEv/meBmmmBQMBHBNV __T O. __T
__T_HM_HUOU__H__HumHEmUOhOMM>U>QflT<V>Mm EVQMOmUnmevfiVE- #v #v
9000. HMEW mBZMmQflHMW._.BLMHHvfiwQOMMBmMH/ZMMWM
“TH.
._.EMWBLwamgomxwvfiwmBUmMM>m¢UmO>QO>O HMB/DZWENVHWOWWMOWHwmmODmewmémémBOBv/SHQ ._.EMWBLBMUWQMOWNVV mEOB>>HOWwwwwmwwwwmwwwwmm>H>QBUOUEM<EMW._.MmZmyn—ZUEM
>mBDmMM>m<UmO>HO>O HMBZU/WENVHmOmmMOmHmmmOUmewmémémBOBv/EVHQWU umHEmDOhOMMNVUNVQVmVNVMm BUOULB_umfimm00h0%%>w>flvm?>MW
UWUWUW MQBLQBUmDmUmhm EVQMOmUnmevfiVE-._.EMmBLwamgomxwv>mBUmMM>E<UmO>QO>O HMBZD/mENVHmOmmMOmHmmmmewamémémBOBv/EVHQWU MQBLQBUmUmUmhm mmxfisvQUMUmQOmefi/fi/EMMZLBhwmflflomévwkmww >OMM><BQEBV
#ZZEOQM #UmnmmmeMOOxVEH/EMzwmB>¢UBWWUOBHBVBUUAMW>BQW_H>_H_PMBUUUhNVEmH/WMSEVOMM”Tm”mOxfiwmfiBla MH¢EQ¢UBBHW la
_ !m mwvfiwQOMHmEQmwBBHmm>3>fiwvmwm<0m>3¢29u2mhEuUmflflOméMfimwmePHUUUm__T mm>B>QBUOUEMQhHEMUDMMUEM>OMM>¢BQEQMQWQEOQM.bHvamZfl
__ fl la mwmwmhMWm>UmOfiZmBMMHémMmgmeOOMEH/HQMZW._.UOmQMOBHB>MQU>mmmfimmmmOBEOHfl
-2: oEomeE 2:029: :2: NN—Do
I> |_> I> :2: 2; 2: H!
-mm -mm -mm -mm |_I ._I -mm -mm -mm -mm
N 2 NWTmO VI VI VI «00 m0 m0 VI m0 «0
2 Om wu_-®0 mm- Om quTmo Om quTmO Om. quTmO x 222 #0 Om @MKD Om. 222 @MKD 222 @MKD @MKD Om ©MIND Om
2 NV 2 t
- ®_‘I<_>_Om ®_‘-<_>_Om 0—2-<_>_Om ©_‘I<_>_Om |_I t - - - -
MOO <_>_Om Nw-<_>_0m Nw-<_>_0m
hwr a
ggwwwmvigv $9.me
M $8me M
Ev zzmfiwmezvammmmaBumgxymmmmeE/zmmmm maggomwwwwmwwwwmwwwwm 5m.E.E/Eww.Emwmmmmmewmméumeww M
n#MBDOULBMWWAQMOOOMMBQLQ? MUM>WQ<MH<EQ<UBBHmm>E>QUMUm<OM>E<EQLZmLBhwmflflomQMQmwme>éwwwmr wwwmwwwwmwwwwmm>B>QBUOUEMQhHEMUDMMDEM>OMM>¢BQEQMQWDFOQMQBZMflZflMWABL mwmhMmm>DmOQZmBMMHQmMmmMUmMOOMEZQMZmHUOWQMOBHB>MQD>m<mfimmmmOBFOHQmU VévBUOULBMmmAQMOOOMMBQLfl”mOémmHBQBMQBDmU MUM>WQ<MH¢EQ<UBBHmm>E>HUMUm<OM>E¢EQLZmLBLUWflflOWQMQWUUmO>QUUDmv>éO>T wwwmwwwwmwwwwm$959085ana:wwmwwwmmxwowgmemmmm.meaifiszmzmmmaE m>wmoq2mBEhEMmmmmeoomEZEZmSommmofiB>mmw>m<mqmmmmoe$gmmw Bwowuewmmanflwooowwefifi,mo_5mE_EEmew 5.53:gwmwmmomxéh/zmwmzhE53433 mESBwowEEEm
a éaEewwwEEM
mmzwfi/wmgowgmemmfi _memmowmmogzzazwmEmwemmwoSBEwwm 7mwgg>owwvmvmvmo MUM>WQ<MH<EQ<UBBHmm>E>QDMUm<Om>E<EQLZmLBLUm¢<OWQMQWUDmO>QUDUmV mm>B>HBUOUEMQhQ:MUDMMDEM>OMM>¢BQEflMémQEOQMQBZM<Zfl
mzflhz‘ gz mmmwefim lflllflEEEElflE _
” mwmwmhMWm>mefiZmBMMHQmMmQMUmMOOMEZQMZmHUOm<MOBHB>mmw>m<mfimmmmOBEOHfl r#MBUOULBMWmaBOUEOMMBflhflrmOémmHBQBMQBD MUM>WQ<MH<EQ<UBBHmm>E>HUMUm<OM>E<EQLZmLBLDWflflOWQMémUUmO>QUDUmV>QO>V wwwmwwwwmwwwwmm>B>HBUOUEMQhQ:MDQMMDEM>OMM>¢BQEflMfiWQFOQMQBZMQZDMWABL WUWMMWm>UmOQZmBMMHQmMmmMDmMOOMEZQMZmHDOWflMOBHB>MQU>m<mfimmmmOBFOHQmU VévBDOULmemaBOUEOMMBQLQVmOémmHBQBMQBUmU
0.28ng 2:029: $50 «moo
I> _._>
-mmmouum mm. .__._ -mm .8
mmKD mm.8.0 «0
mm x Om. wmwmflo 80m. wmwmflo -mmmouum wmwmflfl -mmmouum wmwmflfl -mmmouum wmwmflfl
.__._
t-<_>_0m_ t-<_>_0m_ .__._ ll3 M: - -
moo £20 £20 IIIIm wT<_>_Om_ wT<_>_Om_ wT<_>_Om_
ht‘ wt‘ mt‘
MUM>WQ<MH<EQ<DBBHmm>E>QDMDm<Om>E<EQLZmLBLUWflflOWQMQmUDmO> Mfimwwm0>éwwwmr>90>vWUUUDWM ZEOQMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMmm Mfimwwm0>éwwwmr>90>rmUDUUWM ZEOHMflHZMmQQMWABLMDM>WQ<MMH<MZZMMmm >UméBéflflMwwéémwmhm<mmeméhMwa M
wawmv wwwmwwwwmwwwwmm>B>HBDODEMQhHEMUDMMDEM>0MM>¢BQEflMfiWQFOQMQBZMflZfl m>UmOfiZmBMMHQmMmmMUmMOOMEZQMZmHDOWflMOBHB>m00>m<mfimmmmOBFOHflmw v#MBUOULmemaBOUEOMMBmhflrmOémmHBQBMQBUmU m<>EV90M0m<0m>37EQMMZLBhwmflflomfi m>BémmEOB>>BOWUUUDWDUUUWDUGDWm>B>HBDOUEM£EMmaMWZULZUEM>OMM>QBH QUMmmOUmMOO>EZmMZDWB><DBmmUOBQB>BUUm Q>BQMBUUUM>EM7mMEQ>OMMV MUM>WQ<MH<EQ<UBBHmm>E>QUMUm<Om>E<EQLZmLBLUWflflOWQMémUUmO>QUUDmr mm>B>HBUOUEMQhHEMUDMMUEM>0MM>¢BQEflMfiWZZOQMQBZMflZfl MUM>WQ<MH<EQ<UBBHmm>E>QUMUm<OM>E<EQLZmLBLUWflflOWQMémUUmO>QUUDmr wwwmwwwwmwwwwmm>B>HBUODEMQhHEMUQMMUEM>OMM>¢BQEQMQWZFOQMQBZM<ZO
>90?- HMWABL HEBVQZ QVQV UM>WQ¢MH¢EQ<®BBHm MQMQEMUQMMUE ZéMZmHDOmmm mOfiZmBM BMWWHQMOO Mmm>UmOHZmBMMHQmMmmMDmMOOMEZQMZmHUOm<MOBHB>m00>m<mfimmmmOBEOHfl fl#MBUOULBMWmAQMOOOMMBQLQVmOémmHBQBMQBU MUM>WQ<MH¢EQ<UBBHmm>E>HUMUm<OM>E¢EQLZmLBLUWflflOWQMQWUUmO>QUUDmv>éO>T wwwmwwwwmwwwwmm>B>HBUOUEMQhQ:MUDMMDEM>0MM>¢BQEflMémZFOQMQBZMQZDMWABL mwmhMWm>UmOHZmBMMHQmMmmMDmMOOMEZQMZmHUOWQMOBHB>MQU>m<mHmmmmOBFOHQmU vévBDOULBMWWAQMOOOMMBQLQTmOémmHBQBMQBUmU >90?- HMWABL m>DmOQZmBMMHQmMmmMUmMOOMEZQMZmHUOWQMOBHB>m00>m<mfimmmmOBFOHQmw VévBUOULBMWWADMOOOMMBQLQVmOémmHBQBMQBUmU 0M0m<0m>E7E<MMZLBhwmflflomfi
oEoQOE 2:029: wmoo Nmoo mmoo $50 Nmoo mmoo
I> I> I> -_> -_> -_> I
> I> oEomqu 2329:
-mm «00 -mm -mm -mm -mm -mm -mm -mm -mm -mm -mm -_I -_I «0 wmmw-NQ x «0 @M-wm «0 @M-wm «0 @M-wm «0 @M-wm «0 «0 «0 «0 «0 «0
0m. -__-_ .__._ 0m. 0m. 0m. 0m. 0m. @M-wm «00
0m. @M-wm 0m. @M-wm 0m. @M-wm 0m. @M-wm 0m. wm-wm x
x x
-_I II |I!|||||||||||| -_I
w a
T320m_ -_I -_I
«00 m7320m. 2-320 m7320m. 2-320 2-320
m m7320m. m7320m. m7320m. m7320m. T320m_ «00
mww B co
Q co
P ‘—
m>BémmEOB>>BOWUDUUWUUUDWUDGDWm>B>fiBUOUEM£EMmaMWZDLZ >UméBéflflMwwéémwmhm<mmeméhMwa Mfimwwm0>éwwwmr>90>vmUUUUWM
” >0méBé¢<Mwwéémwmhm<mmeméhMwa
DmMOO>EZmMZUmB
ZEOQMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMWM
Q>BQMBDUDh>EM MUM>mQ<MH<EQ<UBBHmm>E>HUMUm<Om>E<EQLZmLBLUWflflOWQMQm mm>B>QBUOUEMQhHEMDQMMUEM>OMM>¢BQE<MQmZ mwmwmhMWm>meHZmBMMHQmMmmMUmMOOMEZQMZmHUGWflMOBHB>MQ #MBUODLBMmmaBOUEOMMBm <MH<EQ<DBBHmm>E>HDMUm<OM>E<EQLZmLBLDWflflOWQMém mwmhMWm>meHZmBMMHQmMmQMUmMOOMEZQMZmHUOm<MOBHB>MQU> M mwM>mQ<MH<EQ<DBBHmm>E>HDMUm<OM>E<EQLZmLBLDWflflOWQMém mwmhMWm>meHZmBMMHQmMmQMUmMOOMEZQMZmHUOm<MOBHB>MQU> m<>EVQUMUm<Om>E m>BémmEOB>>BOmwwwwmwwwwmwwwwmm>B>fiBUOUEM¢EMmAMmzwh7 (#vBUOULBMWWABOUEOMMBQLDH JQVBUODLBMWmaBOUEOMMBmhfl Q>BQMBUUUh>EM
UEM>OMM><BQEBVQZ ><UBWWUOBHB>BUUm ZmMEé>Owwv<ermO UM>WQ<MH<EQ<UBBH UUmO>QDUDmv ZMflZfl
wOfiZmBM memHBOUF w>mmmqmmmmoezgm Marmogmmggemmew UUmO>éwwwmr>éO>v wwwmwwwwmwwwwmm>B>HBUOUEMQhHEMUDMMDEM>OMM>¢BQEflMém7FOQMQBZM<ZDMWABL mmmfimmmmOBFOHQmw mOémmHBQBMQBUmU UUmO>éwwwmr>éO>v wwwmwwwwmwwwwmm>B>HBUOUEMQhHEMUDMMDEM>OMM>¢BQEflMém7FOQMQBZM<ZDMWABL mmOBFOHflmw vaémmHBéBMQmew 7E<MMZLBLUW¢¢OWQ UEM>OMM><BDEBVQZ QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm 7mMEé>OMMV¢VQVmO In‘ m
“E E
Nmoo «moo
:_> ._> :_ “a oEomqu 2:029:
-mm -mm -mm -mm -mm -mm -mm -mm -mm -8 80 «0 wmwmém «0 wmwmém «0 «0 «0 «0 «0 «0 «0 mo x
Om. Om. Om. wmwmém Om. wmwmém Om. wmwmém Om. wmwmém Om. wmwmém Om. wmwmém Om. wmwmém om. 58$ .__._ .__._ @m.-mu_
ON-<_>_Om_ ON-<_>_Om_ ON-<_>_Om_ ON-<_>_Om_ ON-<_>_Om_ ON-<_>_0 ON-<_>_Om_ ON-<_>_Om_ _Om_ ON-<_>_Om_ NEH- O5
$9.me
M mqmwwmo>_50wmv>_6>__,$8me
M zzmfiwmezvammmmaBumgxymmmmeE/zmmmm maggomwwwwmwwwwmwwwwm 5m.E.E/Eww.Emwmmmmmewmméumeww
m>9>qewowz§§m
UM>WQ¢MH¢EQ<®BBHm MQMQEMUQMMUE ZéMZmHDOmmm MUM>WQQMH<EQ<UBBHmm>E>QUMUm<Om>E<EQLZmLBLUWflflOWQMémUDmO>QUDUmr mm>B>QBDOUEMQhQEMDQMMUEM>OMM><BQEWMQWQEOQMQBZMflZfl mw
mOfiZmBM BMWWHQMOO MWm>UmOHZmBMMHQmMmmemMOOMEZQMZmHUOmmmomHB>MQU>m<mfimmmmOBEOHfl ULBMWWAQMOOOMMBQLQVmOémmHBQBMQBU MUM>WQ<MH<EQ<DBBHmm>E>QDMDm<OM>E<EQLZmLBLUWflflOWQMémDUmO>QUDUmV>QO>V wwwmwwwwmwwwwmm>B>HBUOUEMQhHEMUDMMDEM>OMM>¢BQEWMQWDFOQMQBZMflZflMWABL WUWMMWm>UmOHZmBMMHQmMmmMUmMOOMEZQMZmHDOmmmomHB>MQU>m<mHmmmmOBFOHQmU {#vBUOULBMWWAQMOOOMMBQLDHmOémmHBQBMQBUmU <MH<EQ<UBBHmm>E>HUMUm<OM>E<EQLZmLBhwmflflomQMQmwme>éwwwmT>QO>V wwwmwwwwmwwwwmm>B>HBUOUEMQhHEMDQMMUEM>OMM>¢BQEWMQWDFOQMQBZMQZDMWABL mwmhMWm>UmOfiZmBMMH#mMmflMUmMOOMEH/HQMZWHUOmmmomHB>MQw>m<mfimmmmOBFOHflmw .25900m:9339003350,mo_5mE_EEmew 5.53:gwmwmmoEyE/zmwmzhE53433 mmzwfi/wmgowgmemmfi
gz _memmowmmogzzazwmEmwemmwoquemuwm éaEewwwEEM7mwzg>o§vmvmvmo ! mmflmwBBHm
_____—m— 0.28ng 2:029: IE'5'lfll
-mm -mm .__._
@m.-mu_ «0 «0
Om. @m.-mu_ Om. @m.-mu_ -Mmrwwwm.mowx wWWmWHW—wm— fig“ fig“
rm rm
<_>_Om_ <_>_Om_ x.__.:m-<_>_0m_ .__._
InIn mw mwm>mmmfimmmmwee mwvfiwmvmw <M
flmflmwBBHmm>E>QUMUm¢OM>E¢EQLthBhwmflflom.Smémwmexwéwwwm__T mm>B>QBUOUEMQhQEMUQMMUEMNVOMMNVQBQEmMQWQEOQMQBZVfiE/Hfl mwmwmhMWm>UmOfiZmBMMHémMmgmeOOMEH/HQMZWHUOmmmomHB>MQU>mmmfimmmmOBEOHfl M Mfimwwm0>éwwwmr>90>rWUUDDWM
__ mmflflwBBHmm>E>QUMUm<OM>E<EQLthB.“—UmflflOméMfimwmePHUUUm07>QO>7 wwwmwwwwmwwwwmm>B>QBUOUEMQh.HEMUDMMUEM>OMM>¢BQEmMHHmflv/O.HMEHZMQZOMW._.Eu www.mMWm>UmOfiZmBMMHHmMmgUmMOOMEH/HQMH/HmHUOmmmomHB>MQU>mmmfimmmmOBFOHQmw mmflmwBBHmm>E>HDMUm<OM>E<EQLZmLBLUWflflOWQMémUUmO>QDUUmr>éO>r wwwmwwwwmwwwwmm>B>HBDODEMQhQ:MDQMMUEM>OMM>¢BQEmMQWDFOQMQBZM<ZOMWABL mmeMWm>UmOHZmBMMHémMmmMUmMOOMEZQMZmHUOmmmomHB>MQU>m<mHmmmmOBFOHflmU ZEOQMflHZMmQQMmABLMOM>WQ<MMH<M7ZMMmm m>BémmEOB>>BOWUUDUmUUDUmUDwUmm>B>HBUOUEM¢EMmaMWZUL7UEM>OMM><BDEBV#Z >0m.EH.finflvmwmvH_Hmwmhm<m90m<_buvwwww
#MBUOULBMWWABOUEOMMBflLQVmOémmHBEHMQBU ”79v900m:BMWWABOUEOMMBflLQ ULmemaBODEOMMBmhflrmOémmHBQBMQBUmU Emmmmomxémzmazmu
m<>EV90M0m<0m>E7E<MMZLBhwmflmomfi _HUMmmOUmMOONK/E/EMZUWBNVQUBWWUOBHBNVBUUAM UUUh>EM
7m Euwmdnmomgmgmmwmggwwwm__,
WOQZWBM BMWWHBOUF mOémmHBQBMQBUmU MEQNVOMMHZET
Q? UM>WQ¢MH¢EQ¢UBB
m0 H
N; S I> |_> >u_om 058ng 2829: BEBEIflllflEEEEIEEa!
m_-wm@m_-mu_ m_-mu_ -mm m-wm®m-mu_ -mm -mm -8 80
8 8 m0 m0 m0 mo x
g g Om Om m-wm®m-mu_ Om m_-wm©m_-®u_ om. $58-9. .__._ .__._ -_mewmm—nwonwm— -wmmmwomm.
.__._
a a
- - NN-<_>_Om NN-<_>_Om NN-<_>_Om NN-<_>_om_ .__._
80 EEEImm-<_>_0m_
N Hm
m0m0mmem>mefiZmB%%H_HmMmmemMOOMEZ_HMZmHUGWflMOBHB>MQU>W¢mHmmmmOBEOHfl MUM>WQ<MH<EQ<UBB MUM>WQ<MH<EQ<UBB mumzwmfl; MUHAMOZMEWZUWQLM
M Mfimwwm0>:wwwm->HO>-WUUUUWM
mm>B>HBUOUEMQhQ:MDQMMUEM>OMM>¢BQEQMQWZEOQ M >UméBéflflMwwéémwmhm<mmeméhMwa
_#MBUOUABMmmaBOUEOMMBmuQ- mm>Ev90M<m<0M>E<EQLZmLBLUWflflOWQMQmMUm ZEOQMQHZMWQQMmAB_um0M>mQ<%%H<%7ZMMmm
(#vBUOD_ABMWWABOUEOMMB¢_ADHmQ {#vBUOD_AB%mmaBOUEOMMB<_uflvmQ {#MBUOUhBEm>EmBm<OMM>U>Q-<->mz
MQBZM<ZQM mO_Hmm Hmm Hmm
B_HB_AQBU O>_wam__->_B>__- wwwmwwwwmwwwwmm>B>HBDODEMQhQ:MUDMMDEM>OMM>¢BQE<m_km7FOQMQBZM<ZDMWABL WUWMMWm>meHZmB%%H_HmMmmMUmMOOMEZ_HMZmHUGWflMOBHB>MQU>W¢mHmmmmOBFOHQmU BQBLQBDWD mm>3790M<m¢0M>E¢EQLZmLBLUWflflOWQMémMUm0>éwwwmr>90>r wwwmwwwwmwwwwmm>B>HBDODEMQhQ:MUDMMDEM>OMM>¢BQE<m_km7FOQMQBZM<ZDMWABL m>meHZmBMMH_HmMm¢MUmMOOMEZ_HMZmHUOWQMOBHB>MQU>m<mfimmmmOB70Hflmw BQBLQBDWD m<>ExéwammOm>E7E<MMZLBhwmflflomfi m>BémmEOB>>BOWUUUUWUUUDWUUGUWm>B>HBUODEM¢EMmaMWZUL7UEM>OMM>QBDEBV#Z UmMOO>EZmMZUWB><UBmmUOBHB>BUUm Q>BQMBUDDh>EM7mMEé>OMMT<VQVm0 GEN—Mozwumzwmmhwaz la EQMBZUZWEEHWOWWM whngg 3023?#000mfl0M>EZa%MQmLmMUmflMOm>M>m<UmMM>m<UmO>QO>OflBEm>EmBm<E BDOUE>QhMEDMQMQmflOhM><BQEWMQmeEEMQBmmmBQMBEB> hMQm>DmhMZm>MMH##Omm00mM0.HMEE_H%BZUZWE>QWOWWMOWHm<m00m9>mémémBOBE>HQ M_HB_AQBUmUmUm gwowmmomNEZEEmh$632096>m<wmmm>m<wmo>qo>o
Efl Ea
oEoQOE 2:029: wmoo NmDO meO NmDO mmoo
I> I> :5 -_> .5 a!
-mm wmwm-o -mm wmwm-o .3 53.0 «00 wa wa tvw #5 LE #5 we
«0 «0 «0 x mm. mm. mm mm. v<- mm. v<- mm. v<-
Um. E Om. E 0m. E -__-_ -__-_ Om. v<-mI Om. v<-mI 2- v<-mI Om v<-mI 0m. mI Om. mI Om. mI v<-mI “WWW.
MN- MN- VN .vN VN
-_I - - - - VN- VN-
<_>_Om_ <_>_Om_ MN-<_>_Om_ «00 <_>_Om_ <_>_Om <_>_0m_ <_>_Om_ <_>_Om_ “_ aI a“INN Ea
wwwwwmwwwwmwwwwmm>B>EBDODE>QhMEDMQMHWflOhM>¢BQEmM9mm_HEE%<BmmmBQMBEB> hMQm>UmhMZm>MMHZHHOmmODmMOHMEE_H%BZUZWE>HWOWWMOmHm<m00m9>m:kmHmBOBE>HQ ZMEW7UWQLM wwwwwmwwwwmwwwwm$530858 mmmm>wmmm2m§wh @982 E.
50me Riga.
,>_ 343728539.
a V 503mg MUHAMOZMEWZUWQLM MUHAMOZMEWZUWQLM mwamozwumzwmfl;
M R5883 38me
SEE. umnmimmwmgmzzwmg _Hmmmoe>>eomwwwwmwwwwmwwwwmmEEBwowgmem3949;?“ memimeww la MMQm>UmhMZm>MMH:HHOmmOUmMOHMEEHMB/Ume>fimOmmMOmHwmmmeB>mémémBOBE>HQ M wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMQWQOhM>¢BQEmM hMQm>UmhMZm>MMH:HHOmmOUmMOHMEEHMB/UZmV>fimOmWMOme¢ M wwwwwmwwwwmwwwwmm>e>zewow3>mm
V#MBUOUhBEm>EmBm<OMM>U>flV<V>mz £55328 59.
BEE gwmmmowmmogzznm
may Eezwzgamommmog
gmezwmemm mmmowm __,.5?onEgmmewmowggnvm:>mz Eewwwméfi/ VQMBUOUhBEm>VWEBQOMM>U>0_ EUEEVéwmemOm>E/awwflmhwwwmflmom>v VQMBUOUhBEm>VmBBQOMM>U>flV 2623:gwowmmogg/Ewmmh$86596
2%. _ ”>M/
M_HB_AQBUmDmUm 000mfl0M>EZa%MQmLwwwmflmom>v>w<®mMM>m<UmO>QO>O Tm
mi? BENEEEV
925 95.553953 mwmmomNVE/zmwmzuEuwmdnmomégm wzwmgmwemmwoqumwwmmg$89.. EBEmewmwm gzzzo ”mafia 235 Biozwumzwmfiiz EQMBZUZmEEmOmmM EUEEVQUOUmflOm>E/awwflmhmMUmflMOm>M>WQUmMM>E¢UmO>QO>O BUOUE>QhMEDMQMQWflOhM>¢BQEmMQWWQE>M<BmWWBQMBEB> MQBLQBUWUWUW MM>M<UWO>QO>O _>%<BmmmBQMBEB> B>mémémBOBE>HQ MQBLQBUWUWUW mm>m<wm0>qo>o EmmqummohgmemmmwgmeimemmmEmezg
afl a
0.28ng 2:029: Ego «moo
I> I> 5: $5015 2:8ng 2:029:
Hm.__._ -5 -5 Hm.__._
Wm8.0 mm. -vwwm mm.
mm. x om 2.7m: om 2.7m: -Zm m:-m_._ Om. mI-mI m:-m_._ _ -vwwmuum mIbI -vwwmuum mIbI -vwwmuum mIbI mMWM 80x
.__._ x.__._
vm-<_>_0m_ mm mm
.__._ - - :8- mN<_>_Om_- - - mq<§0m mq<§0m mm-<_>_0m_ .__._
80 <28 <_>_om mq<§0m moo
MMQm>Umhm2m>MMH##OmmOUmMOQMEEQMBZUZmE>QmOmmMOmHmmmmeB>mémémBOBE>HQ UUmO>éwwwmv>éO>rmwwwme fiMflBZMmQQMmthm0M>mQ<MMB<MZZMMmm 9mmEOB>>BOmeUUmUUUUmUUUUmm>B>fiBUOUEM<§MmAmeULZUEM>OMM><BQEBV#ZZEO #BéflmxwwéémwmhmmmmemfihMwa la !fl MUBLMOZWEWZUWQLW hMQm>UWhMZW>MWH##OMWOUMMOPMEEPWB/Uzmv>HWOWWMOWHWQMOUMB>WPWPMBOBE>HQ ZMEWZUmmhw MDBLMOZMEW7DW<LM
M mhm2m>kaééOmmmeMOQMEEQMB/Ume>fim0mwMOmHm<m00m9>mémémBOBE>HQ M wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMHWflOhM>¢BQEmMQWWQEEM<BWWWBQMBEB> hMQm>UmhMZm>MMH##OmmmeMOQMEEQMB/Ume>fim0mwMOmHwmmOUmB>mémémBOBE>HQ DUmO>QUUUmT>QO>vaDUDmM
mm>B>EBUOUE>QhMEDMQMQWflOhM>¢BQEmM#mwQEEMQBWWWBQMBEB> wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMQWflOhM>¢BQEmMQWWQEEM<BmmmBQMBEB> HMflBZMmQQMmthm0M>mQ<MMB<MZZMMmm #BéflmmwwéémwmhmmmmemfihMwa
T#MBUOUMBEm>EmBBQOMM>U>Qv<T>mz m<>3v90M0m<0m>E7EQMMZLBhwmflfloméMém QUMmmOUmMOO>EZmMZUWB><UBWWUOBQB>BUUmm>B Q>BQMwawh>3m7mwgé>owwr<rDrm0>0m 3023?PUGUMQOM>E/%%WflmhmWUWQMOW>M>W¢UMMM>EQUWO>PO>O VPMBUOUhBEm>$WBMQOWW>U>Q?Q?>MW VQMBDOUhBEm>wmBm<OMM>U>flv¢V>Mm UhBEm>wmBm<OMM>U>flr<V>MW
MQBLQBUWUWUW >QhMEQMQMQ EQMBZUZmEEmOmmM UWUWUW 3023?éwmemOm>E/aw%flmhwwwmflmom>v>w<®va>m<DmO>HO>O VQBLQBUmUmDm 3023:#DODmmOm>E/aw%flmhwwwmmmom>v>w<UmMV>M<DmO>HO>O VQBLQBUWUWUW m<>EVéwammOm>E7EQMMZLBhwmflfloméMém 9mmEOB>>BOmDUDUmUDUDmDUDUmm>B>fiBUOUEM<§MmAwmzwh7wmw>OMM><BQEBMQZZEO QUMmmOUmVOO>EZmMZUmB>QDBmmDOBQB>BUDmm>B
MED—O $50 o.
I> :_> _._> .089 .9 2:029:
-mw .m@ .3 #H
v<-mm_ v<-mm_ mm mm. Om v<-mm_ mm.
0m. v<-mm_ 0:: film. film. IMQQmAUm 33%. IMQQmAUm V<6m -mwwmuum v<fim Um. Wmex
:85 0N @N 8
- - - - - - -
<_>_Om <_>_0m_ om-<_>_om_ ©q<§om ©N<§Om ._I
«Sum moo
a E
la lallll lallllalll MUBLMOZWflWZUWQLW hMQm>UmhMZm>MMHiHHOmmOUmMOHMEE_H%B/Ume>fimOmmMOmHw<m00m9>m:kmHmBOBE>HQ ZMEWZUmmhw wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMHWflOhM>¢BQEmMQWWQEEMQBmmmBQMBEB> hMQm>UmhMZm>MMH:HHOmmODmMOHMEEHMB/UZmV>fimOmmMOmHm<m00m9>mémémBOBE>HQ MUHAMOZMEW7UWQLM wwwwmwwwwm$530858 585356555. @982
50me
,>_ 3437289539.
mm>B>EBUOUE>QhMEDMQMQWflOhM>¢BQEmM#mwQEEMQBWWWBQMBEB> 5. V
EUEEVPUOUMQOM>E/ M M R5883 38me Simmwwémwmmmmmmemimeww
VQMBUOUhBEm>VmBBHOMM>U>flV<V>MW SEE. umn‘mxymmmwmemmzzwvwmm
E. VQMBDOUhBEm>VmBBQOMM>U>flV<_V>MW £55328 EB/wzgxfimommmog 8925?
55555555522355? %%%flmhmWUWQMOW>M>W¢UMMM>MQUWO>HO>O 5293?
mmmowm meeqoww>w>mvmv>mm _Hmmmoe>>eomwwwwmwwwwmwwwwmmEEBwowgmem5329579? 59.538835
gmezwmemm
”55555 VQB_AQBUmUmDm EDEEVéwmemOm>E/aw%flmhwwwmflmom>v>w<®va>m<UmO>fiO>O VQBLQBUmUmDm EUEEV#DOUmmOm>E/aw%flmhwwwmflmom>v>w<®m¥v>m<®m0>fi0>0 mi?
925 95.553953 YEEEmwmwm $53.,gwmwmmomxéh/zmwmzuEuwmdnmomégm BENEEEYEZEO gwmnmmowmv0932328EmwemmwoSBEwwmmE o§flémvmo>wm wfiumozwumzwmmhig
IIIII EIIIH EIIIE 25:8ng 2:029: $50 $50
_._> _._>
IMQQmAUm -mwwmuum -mw mm.“ .__._ .3 .3
mI-mm_ 2..- mIfim mm. mm.8w mm. om.
mm. Om. mIfim Wm x om 35;... 0m. 35;...
.__._
2285- R- KN- mm mm
- -
<_>_om NN-<§Om <_>_Om_ R-<_>_0m_ .__._
80 <_>_0m_ <_>_0m_
EN NNN
MUBn—MOZWEWZUWQL MUBLMOZMEWZDmmhw wwwwwmwwwwmwwwwmm>B>EBUOUE>Qh mwB_uMOZ%flm7wm<_u
W m M
3023.... m>B>EBUOUE>Qh 3023?
M M wwwwwmwwwwmwwwwm$530858 wwmo>gwwwmv>go>v$8me Simmwwémwmmmmm98quwa
_HUOUmmOm>E/.fi%%flflm_u MEDMQMQmflOh ”ZHMBDOUMBEmNfi. MEDMQMQmflOh ODhBEmNS. éwmemOMNVE/awwflmh qwmezvmmmmmmEhmmmimmwmgmzzwmg
£55328
M><BQ
EmM M><BQEWM wwwmgomxwv 5293? éfiEewwmefi
#m mBm<OMM>U>flV<V>MW iEewomeszmemmomgwgvmémm _Hmmmoe>>eomwwwwmwwwwmwwwwmmEEBwowgmem3949;?“ m mBm<OMM>U>flV¢T>MW
:qweszmEfimommm mWUWQMOWNVMNVWQUMMMNVMQUWO>HO>O _
HEEMQBm
m gmezwmemm
ROM mi?
BEB> .mMmewwmhmH/HWNVMMH##OmmmeMOQMEEQMB/UZQ.>fim0mmMOmHwmmmemxwmémémBOBv/SHQ VQBLQBUWUWDW wmemOmNVE/awwflmhwwwmgomxwv>w<®va>E<UmO>QO>O QWWQEEM<BmmmBQMBEB> hmmm>wmhm2m>vmwh##OmmmeMOQMEEQMB/Ume>fim0mwMOmHmmmmemxwmémémBOBv/EVHQ UmUmUm >w<®va>E<UmO>QO>O 925 mmmm>wmmm2m§566mmomeQEEEEB/wzgEmommmomHmmmowmmigmgmeoezim vgamewmwmwm $53:gwmwmmomNVE/zmwmzuEuwmdnmomégm BENEEEYEZEO gwmnmmowmv0932328EmwemmwoSBEwwmmE 7mwzg>o§flTmfléva>wm
BEE !|_> >u_ow 0.28ng 2:029:
IMQ -mw -mw mm.“ .__._
0m 33... mm .v<-NI mm .vdrwI mm8.0
0m Om Om mm. x
x.__._
ww-<_>_0m_ mm wN
I .__._
<_>_om wN-<_>_Om <_>_Om _0m_ moo
EN RN wNN lalllfiEIIIElallllEIIIElalllfi
MUBLMOZMEWZUmmhw hMQm>UmhMZm>MMH:HHOmmOUmMOHMEEHMB/Ume MUBLMOZMEWZUmmhw MUBLMOZMEW7UW<LM UUmO>QUUUmv>QO>v ZMEWZUmmhw
3023? 3023? 3023? mDUUUWM QB;H¢<MUUHHmwmhmmmbmmfihMwa 3023?
0m>E/awwfl mm>B>EBUOUE>QhMEQMQMQW MT MT
#MBUOUhBEm>w QUOUm<0m>E/awwfl wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEQMQMHm MMQm>UmhMZm>MMH:HHOmmOUmMOHMEEHMB/Ume #MBUOUhBEm>w QUOUm<0m>E/awwfl wwwwwmwwwwmwwwwmm>B>EBUODE>QhMEQMQMHW hMQm>UmhMZm>MMH:HHOmmODmMOHMEEHMB/Ume ;#MBUOUhBEm>w fiMflBZMmQQMmaB_um0M>mQ<%%B<%ZZMMmm
m<>3 DmV
<Ohw><BQEmM >>BOWUDUUmDUUUmUUUDmm>B>HBUODEM<§MmAwmzwh7wmw hmmm>wmhm2m>MMH##OmmmeMOQMEEQMBZDZmE>HmOmmMOm mBBHOMM>U>fl_ mhmwwmmmom> <Ohw><BQEmM >fim0mwMOmHm mBBQOMM>U>Q mhmwwmmmom> <Ohw><BQEmM mBBQOMM>D>O
7 v m 7 v # 7 Q>B:MBUUUM>EM
m? >w mm fl? fl? >w 0 __
>MW >MW >MW
BEm>EmBBH mamMDmflMOm>M>m<UmMM>m<UmO>HO>O QWWQEEM<BWWWBQMBEB> >HmOmWMOmHmmmmem>m_Hm_HmBOBE>HQ VQB_AQBUmUmUm VQBLQBUWUWUW >fim0mwMOmHwmmmem>mémémBOBE>HQ m00mm>w9mémBOBE>HQ <0va>m<DmO>fiO>O #mméizmemmmBQMBEB> <0va>E<UmO>QO>O #EEMflBmmmBQMBEB> VQBLQBUWUWUW v90M0m¢0m>E7EQMMZLBhwmflfloméMém OO>EZmMZUWB>¢UBmmUOBHB>BUUmm>B m%3;>0%%7 >OMM><BQEBVQZZEO >Qh
m0>0m ZHMMQ BLMOZMEWZUWQLMAE MEQMQMQ EQMBZUZmEEmOmmM #000mfl0M>EZa%MQmLmMUmflMOm>M>mmmeM>mmwmO>HO>O mm>B>EBUOUE>QhMEDMQMQWflOhM><BQEWMQmeEEMQBmmmBQMBEB> Um9>w9mémBOBE>HQ
aEfla!m
«N50 $50 Nmoo MED—O $50 «N50
:_> 4> oEomqfln 25020:. I> I> I> :_> ._> BITS
.m@ -mw :_I -mm -mm -mw .m@ .m@ -mw
mm. mIKI mzsz m mzsz ammmom JImIsI mzsz mm. «00 mm. v<- mm. v<-wI mm v<-wI mm. v<-wI 0:: v<-wI mm. v<-wI mm
Om. Om. x Om. wI 0m. Om Om. Om. v<-wI Om
mm om om om om
- - mm<20m mm<20m XJI®W<§Om om- - - 4T_moo - - - - -
<_>_0m_ 2g- <_>_Om_ _ <_>_Om_ <_>_Om <_>_Om_ om-<_>_0m_
ma a
OZ%flmZUm<_n—M wwwwwmwwwwmwwwwmm>B>EBUOUE>Qh .mMmewwmhmH/HWNVMMH. mwB_uMOZ%flm7wm<_u wwwwwmwwwwmwwwwm$530858 mmmm>wmmm2m§wh @982 E.
50me Riga.
T>_ qwmeszmmmmmafi
a? .mMmewmumhmzmwaWH. .mMmewwmhmH/HWNVMMH.
h M a T 503mg MUEn—MOZWEWZUmmm—W ._.. m0B_uMOZ%flmZUm<_n—M h
3023?
M 38me M M
__ mMQ Fommowmmq wmgmzzwmg memimeww WW>B>EBUOUE>Qh MMO.
QM ”TQMBDOUMBEmNfi. MNVEH/waflmh
HOmmOUmMQ
BUOUh HMS: SEE. HWEE. HESS.
BEEN? MEGMQMHWflOh £55328 ”Tiewowmgmi gammmowmv
Emmoww>w>flu 3023?éwmemOMNK/E/waflmhwwwmgomxwv>w<®mMV>E<UmO>QO>O HMBZUZWHLKHWOWWMOW wwwmgomxwv _Hmmmoe>>eomwwwwmwwwwmwwwwmmEEBwowgmem3949;?“ 093E
M><BQEWM 5293? Eezwzgimommmom g>EEwawm>57 ._..NBZUZWENKHWOWWMOW ._..._.MBmUOthBEMNVEWBBHOWWNVUNVQ? 3023?éwmemOMNVEH/iwwflmhwwwmgomxwv HMBZUZmEEHmOmmMOm
QWWQEEMQBWW mBm<OMM>U>QT<T>MW gmezwmemm memmowggmvmvim
wmmrmexwmémémBOBv/SHQ >w<®va>E<UmO>QO>O mmmvwmgmgmgmeoezim $53:gwmwmmomNVE/zmwmzuEumen/HTomégm wzwmgmwemmwoeqegwwmmg ESEOMMHTm la 3023...._HUOUmmOm>EZ%WWQm_umWUWQMOWNVMNVWQUMMMNVMQUWO>HO>O WEQWQWHWQOFAW>¢BQEWMPWWPEEWQBWWWBQMBEBNV __ __
BENEEEYEZEO ZWEEHWOWWM UMBNVWPWPMBOBEHQ >mm __T#MBUODhBEm>EmBBHOMM>D>QV<V>MW
WHOM mi? __T
BEB> VéBhflmwmwmwm 925 vgfiummwmwmwm mo>wm ZECE >QhMEQMQMQ mhm2m>m MPEMQQUWUWUW >w<UmMM>m<UmO>QO>O wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMQWflOhM><BQEmMQWWQEEM<BmmmBQMBEB> mmmrmexwmémémBOBv/SHQ Méfiuflmwmwmwm
E flE
0.28ng 2:029: Ego MED—O meO
_._> I> :5 Nm004>
mm.“ .__._ .3 -mw -mw émmmom IMQ IMQ
Wm8.0 mm. mm mm 0m 0m
mm. x 0m. mI-wI mI-wI Om mzfiz Om mzfiz mzéz mzfiz 0m quwI 0m
.__._
om-<_>_0m_ 5 rm rm
.__._ - - - - -
80 <_>_om <_>_Om <_>_Om r¢<20m wMI<_>_Om rMI<_>_Om rm-<_>_0m
Pom mom 25TH aa NON won mom
m0BLMOZMEm70m<LM 00m0>é000mr>90>rm0000mM HMflBZMmQQMmthm0M>WQQMMBQMZZMMmm #9944M00éém0mhmmmB0m<fiLMB00 m0OLMEZMQEMOmMmZ m0OLMEZMQEMOmMmZ m0OLMEZM<EMOmMmZ Mfim00m0>é000mv>90>vm0000mM
E0237#0O0mmOm>EZAMMQmLmM0m4MOm>V>w<0mMM>m<0mO>HO>O m0000m0000m0000mm>B>EBOO0E>QhMEQMQMHWQOhM><BQEWMémeEEMQBmmmBQMBEB> hMQm>0mhMZm>MM5##OmmO0mMOQMEEQMBZOZmE>HmOmmMOm V#MBOO0hBEm>EmBBQOMM>0>QVm?>MW 9mmEOB>>BOm0000m0000m0000mm>B>HBOO0EM<§MmAwmz0hz0mw>oww><BQEBv#ZZEO OO0m<Om>EE MOEEVQOO0m<OM>EE M
M MOEETQOO0m<OM>EE ZEOQMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMWM
wmmr0m9>mémémBOBE>HQ
0hBEmHBZOOOOMMBm r>VBOO0hBEmHBz0OOOMMB< 0hBEmQB7000OMMB<
MQBLQ<0m0m0m m<>EV#0M0mfl0m>E7E<MMZLBh0m440méMém 0mMOO>EZmMZOmB><0Bmm0OBHB>B00mm>B Q>BQMB000h>3m7mwgé>owwr<7DrmO>0m 0OLMEZM<EMOmMmZHM MDH>QBQMWMOQ ZQMZW5QOm<O
QVOOQWW W QVOOémm
BEQMWBM BEmHBz0OO EZRABMOm4MOm>M>m<0mMM>m<0mO>HO>O mm>B>HBOO0EMQQ>QBOMWMOQM<OMM>¢BQEmMQWWQEFM>BmBmBQmBEBQ m0m0mhMmm>0BEfimmBMM5QQMm4M0mMOOMEZQMZm5QOW<OOBHB>MQOém<mémmmmOBEOHQ EZRABMOm4MOm>M>m<0mMM>E<0mO>QO>O 000m0000m0000mm>B>QBOO0EMQQ>QBOMWMOQM<OMM>¢BQEmMQWWQEFM>BmBmBQmBEBQ m0mhMmm>0BEHmmBMM5QQMm4M0mMOOMEZQMZm5QOW<OOBHB>MQOém<mémmmmOBEOHQm0 EZRABMOm4MOm>M>m<0mMM>m<0mO>QO>O 000m0000m0000mm>B>QBOO0EMQQ>QBOMWMOQM<OMM>¢BQEmMQmm#EE%>BmBmBQmBEB< m0mhMmm>0BEHmmBMM5QQMm4M0mMOOMEZQMZm5QOW<OOBHB>MQOém<mémmmmOBEOHQm0 BLBLQBO BLBLQBOm0 BLBLQBOW0 m<>3r#0M0mmOm>E7E<%MZLBh0mflflomfi
oEomqu 2329: wmoo Nmoo mmoo $50 Nmoo mmoo
I> I> I> -_> -_> -_> I
> I> oEomqu 2:o2oE
-3 -__._ eroox -5N -5N -5N -5N -5N -5N -5N -5N -5N -5N -_I -_I
mm. 2.3: 54 50-©4 54 50-©4 54 50-©4 54 50-©4 54 54 54 54 «00 54 54
om. Om. Om. Om. Om. 50-©4 Om. 50-94 Om. Om. 50-©4 Om. 50-©4 Om. 50-©4 Om. 50-©4 x
x x
-_I -_I
wm-4_20m_ -_I -_I
«00 IINm-4_>_0 _0 Nm-4_>_Om_ |I!|||||||||||| Nm-4_>_0 Nm-4_>_0
m Nm-4_>_Om_ Nm-4_>_Om_ Nm-4_>_Om_ Nm-4_>_Om_ Nm-4_>_Om_ «00
m>BémmEOB>>BOWUDDUWUUDUmUUwUmm>B>HBUODEM£EMmaMWZULZUEM>OMM><BQEBV#Z flmewéémwmhm<mmeméhMwa In m00_uMflZ%QUEUfl% mwmwmhMWm>wBVHMmBMMHZHHMmmemMOOMEZ_HMZmHQOmflOOBHB>MQU:Hm¢mHmmmmOBEOHQ MUOLMEZMQDEUDMmZ mwoufizwmwgwgmz mwmmmmgwemfl mqmwwmoiwwwmvk 2209m<52mmmw $9.me
MDEE_V#UOUm<Om>EEmM>B>HBUOUEMQQ>Q<QMMMUQM<OMM><BQEWMémWQEFM>BmBmBQmBEBQ M $08me
M MUEEVQUOUm<0M>EE mwzggwowmmogz: maggomwwwwmwwwwmwwwwm
_>MBUOUMBEmHBZUOOOMMBfl V>VBUOUhBEmHBZUOOOMMB< wwwmwwwwmwwwwmSEE980nggammmmwwmmmowfiaemmam. mmmwmmoomgz. :5 maehmmmxymmmmEmE/zmmmm 5m.E.E/Eww.Emwmmmmmewmméumeww
#DMmmOUmMOO>EZmMZUWB><UBWWDOBHB>BDDm 52382003?me $me
SEEP/0000?? m>9>qewowz§§m
Q>BQMBDUDh>EMZmMEQ>OMMV<VQVm0 a
wOuMquwzmez: Q. 5%. 60.
Efimmmmmmwm QVOOémm QVOO_Hmm 5m M25?gwmwmmomNEH/zmmmz;
2.523820 gamma 9339sz0 EZB_uBMUWQMOW>M>m<DmMM>E<UmO>_HO>O BLBLQBU EZRAwamflmom>M>m<DmMM>m<UmO>HO>O wwmwwwwmm>B>HBUOUEMQd>Q<QMMMUQM<OMM><BQEWMQWWQEFM>BWBWBQWBEBQ mwmhMWm>wBEfiMmBMMHZHPMmmMUmMOOMEZ_HMZmHQOmmOOBHB>MQU:Hm<mHmmmmOBEOHQmD B_uB_uQBUmD mmomiimwmmmfimwm9596 EzgememEmE/E memmoezgmmw E“E.Sewmw uwmgomq mmzwuzwmgowgmemmfi
gz _memmowmmogzzazwmEmwemmwoquemuwm g>EEwawm>§7mEéomaé,Q,mo
aaaEE In
«moo «moo Ego $50 «moo
_._> _._> .5 ._> ._> 0.28ng 2:029:
-R -R -NN .5 .5 .__._
:I-@< E :I-@< E Ex n< Ex
om :I-@< 0m. $1.? om om :I-@< om :I-@< m w3+©< -NNE<Om w3+©< -NNE<Om w3+©< SKEW“ 80x NOéO
.__._
25ml- mm- mm- 8. mm
- mm-
£28 <_>_om £28 <_>_om <_>_om mm-<_>_0m_ mm-<_>_0m_ mm-<_>_0m_ mm-<_>_0m_ .__._
I mwm mwm th wNm MEI- wmm
la MOOLMEZMQEMOmMmZ MOOLMEZMQEMOmMmZ mthMflzwmmwmemZ
MOEETQOOOm<0m>EE BUOUEMQQ>QBOMWMOQMflOMM>¢BQEmMQmm957w>BmBmBQmBEBQ mwmwmhMmm>wBEQMWwakHHMmmMOmMOOMEZHMZWHQOWQOOBHB>MQO>m<mfimmmmOBEOHQ M 0>:wwwmT>HO>TmOUOOmM
M MOEETQOOOm<0M>EE MOEEVQOOOm<0M>EE ZEOHMflHZMmQQMWAB_um0M>mQ<%%H<%7ZMMmm >UméBéflflMwwéémwmhm<mmeméhMwa
(>VBOOOhBEmHBZUOOOMMBm (>VBOOOhBEmQB7000OMMBm
UOLMEZMflEMOmMmZHM
_>MBUOUhBEmHBZOOOOMMB<
ZQMZWHQOWQO
Qvaémm vavémm vavémm
BEQMWBM BEmQBZOOO EZRABMOmflMOm>M>m<OmMM>m<OmO>HO>O B_uB_uQBO EZRABMOmflMUm>M>m<OmMV>E<Om0>90>0 wwwmwwwwmwwwwmm>B>QBOOOEMQQ>QBOMWMOQMflOMM>¢BQEWMémmQEFM>BmBmBQmBEB< m>wBEHMWBMMHHHMmmMOmMOOMEZHMZWHQOmmOOBHB>MQO>m<mHmmmmOBEOHQmU B_uB_uQBOmU EZRAwammmom>M>m<OmMM>E<OmO>QO>O wwwmwwwwmwwwwmm>B>HBOODEMQQ>QBOMWMOQMQOMM><BQEWMémeEFM>BmBmBQmBFBfl mwmhMmm>OBEQMWBMMHHHMmmMOmMOOMEZHMZmHQOmmOOBHB>MQO>m<mfimmmmOBEOHflmw B_uB_uQBDmO m<>EVéwammOm>E7EQMMZLBhwmflflomfi m>BémmEOB>>BOmOODOmOOOUmOOOOmm>B>HBUOOEM£EMmaMmZDLZOEM>OMM>mBQEBV#Z #OMmmOOmMOO>EZmMZDWB><DBmmUOBQB>BOOm Q>BQMBDOOh>Em7mMEQ>OMMT<VQ? OO_uMflZ%QUEOQMmZHM ZQMZWHQOWQO
NmDO $55 NmDO mmmO wmmO NmDO $55
I> :_> :_> :_> _._> ._> oEomqu 2:029: I> I> :_>
KN KN KN -NN -R -R KN -NN :_I :_I KN KN KN KN
w< NOLwO NOéO N< N< N< E 5-5 E 5-5 w< NOLwO N< NOLwO «DO w< w< w< w<
Om Om Om Om om om Om Om x Om :IéO Om :IéO Om :IéO Om :IéO
vm- a; vm- vm- vm- vm- vm- vm- :_I
<_>_Om <_>_Om <_>_Om <_>_Om <_>_Om <_>_Om <_>_Om vm-<_>_Om «DO
N mam V m w
mm mm mm mm ham wan Sum
MUG.
uZflZMQUZDflM mwmwmhmwflwwfi. MUOLZEZMQUZUDMmZ wwwmwwwwmwwwwmm>B>fiBUOUZMQQNVQQQMMMUQMflOMMNVQBQEmm. www.mMmewaEHM MDOLZEZMQDZDDMmZ wwwmwwwwmwwwwmm>B>fiBDOUZMQQ>Q<QMMMUQM<OMM><BQEmm. www.mMmewaEHM Mfimwmexwéwwwmv? ZZOHMQHZZmQQM MUOZMOZaflEMUmMmZ
BUOUZMQQNVQflflmwaQmmOMM>¢BQEWMémméiv/MNKHmBmBQmBZB< HMmBMMH. mBMMH. mBMMH. m._.
HO? B.
M023” h H. 7
.HUOUmmOMNK/EZ ZOOMZZ. Z. MUZZVQUOmUnmflmUMNVZE HZmEUmZOOMZZ. Z..T>v MUZZVQDOmUnmeMNVZE PMmmZUmMOOMZZ. vw
07>v >Um.EH.ZRQZUUEHmwmhmmmbmméhMwa
BUOUZ uMflHMNVQOMMHmMH/ZMMWM .HUOUmMOMNK/EZ
EZB.
“— HMZWHQOmmOOBHB>mmw>m<mfimmmmOBZOHQ .>ZBUOUZBZ&HBZUOOOMMB¢ EZBLwamgomxwvfiwmmwmvmv>mmwm0>fi0>0 HMZWHQOWQOOBHB>MQU>W¢mfimmmmOBZOHQmU BUOUZBZmHBZUOOOMMBm BZmQBZQOOOMMBm mmxfisv m>BémmEOB>>BOWUUUDmUUUUmDDUUmm>B>HBUOUZM£ZMma
wam§Om>M>m<DmMM>m<UmO>QO>O Hmm. Q” Hmm. Q”
Tm” T
Q” m” .KVBQMBUUUZNVZMZW
Tm” 79mm 7 MmZDm—ZUEM
#mm .HUMUmmOMNVZH/EMZZ.
79mm “TH. .H.
gamma 9339sz0 .H. “TH.
“TH. MEQ>OMMV<V
“5B0 HEFMNKHWBWBQWBZBfl BLBLQBUWU EZRABMUW§OW>M>m<DmMM>E<UmO>QO>O HEFMNVBWBWBQva/Bm HMZmHQOmmOOBHB>MQU>m<mHmmmmOBZOHflmU “590mm uwmgomfi BQEBV .HUMmmOUmMOONVZZmMZUmB><UBmmUOEHB>BUUm Q?
.HZ UOZMOZMQEMUmMmZHM EZRAwamgomxwvfiwmmwmvmH>M<UWO>QO>O
$50 «moo
._> ._> >u_om 0.5500ng 2:029:
-R -R -NN -NN KN |_I |_I
S. S. N< om SIéo om SIéo N< N<
- Om :I-.v0 MOO Om :I-.v0 Om. :I-.v0 x
mm mm
- -
<_>_om <_>_om mm-<_>_0m mm-<_>_0m mm-<_>_0m |_I
MOO Nlalll
mwm own Q?” Nmm lalllllalllllallllmwN<Om. EEEEE
MUOMMOzwflmwwm
m Mmz mthMOzwmmwwmme mthMOZMQUEUQMmZ mthMOZMQUEUQMmZ
m>B>Q
BUOUEMQ MUSE? Mfimwwm0>éwwwmv>90>rmUUUUmM M023?
Q>Q éwmev M
BOMWMUQMflOMMxfiflBQ
>UméBéflflMwwéémwmhm<mmeméhMwa __ QUOUmMOM
>3: MUEETQUOUmVOM>EE HZMmQQMWABLMDM>WQ<MMH<M7ZMMmm QUOUmMOMNVEE
EZRA
B. mUmUWMMWmNVUBEQMWBMMHQQMmEUmMOOMEH/HQMZWHQOmmOOBHB>MQU>W¢mfimmmmOBEOHQ v UMBEmHBZUOOOMMBQ wamgomxwvfiwmflwmvm wwwmwwwwmwwwwmm>B>HBUOUEMQQ>QBOMWMUQmmowwxmeQEmBémméiv/MNVBWBWMQMBEBNV mwmhMWm>wBEHmmBMMHHQMmEUmMOOMEH/HQMZWHQOmmOOBHB>MQU>m<mfimmmmOBEOHQmU M w>VBDODhBEmHBZUOOOMMB<
r>VBUOUhBEmQB7UOOOMMB<
m >MBUOUhBEmQBZUOOOMMB<
HEFMNVBm vaOémm QHTmOémm EZRAwammmom>M>m<UmMH>M<UWO>HO>O wwwmwwwwmwwwwmm>B>HBDODEMQQ>QBOMWMUQMQOMM><BQEmBQWmQEEM>BmBmMQMBFB> mwmhMWm>UBEfimmBMMHQQMmmmUmMOOMEZQMZmHQOWQOOBHB>MQU>m<mfimmmmOBEOHflmw QrmOémm
H>M¢Um vaOémm
BWMQM
BEB> BLWMQBU O>HO>O BLWMQBUWD BLWMQBDWU m<>EVéwammOm>E7EQMMZLBhwmflflomfi m>BémmEOB>>BOmUDDUmUUUUmUUwUmm>B>HBUOUEM£EMmaMmzwhzwmm>oww>mBQEBV#Z QUMmmOUmMOO>EZmMZDWB><DBmmUOBQB>BUUm Q>BQMBUUDh>EM7mMEQ>OMMT<VQ? UOhMOZMQUEUQMmZHM EZRAwamgomxwvfiwmflwmvwH>M<UWO>QO>O mm>B>fiBUOUEMQQ>Q¢Qmwwwflm¢oww>§wflEmBQWWQEFMNKHWBWMQMBEBNV mwmwmhMWm>wBEQMWBMMHHQMmEUmMOOMEH/HQMZWHQOWQOOBHB>MQU>mflmfimmmmOBEOHQ BLmMQBU EZRAwammvmomxwvfiwmflwmvmH>M<Um0>fi0>0
ocfiwqfln mEOQOE EE !fll I> |_> a!
-mw -mw -mw :_I :_I -mw -mw -m
N< NO-NI N< N< N< N<
Om. RYNI «00
Om Om NO-NI x -efiwm -mwwMHIWM gnaw“ :I-NI Om :I-NI Om :I-NI “MGM—m
_0m_ @m-<_>_0m_ ©m-<_>_0m_ :_I
«00 Fm-<_>_0 Fm-<_>_0 Fm-<_>_0 Fm-<_>_0 Fm-<_>_0
m m m _0m_ Fm-<_>_0m_ Fm-<_>_0m_ Fm-<_>_0m_
5m Nwm awn wwm mwm wwm hwm awn awn
wwwmwwwwmwwwwmm>B>fiBUOUEMQQ>Q<QMMMUQM<OMM><BQEmBémeEEM>BmBmMQMBEB> mwmhMWm>wBEfimmBMMHQQMmmmUmMOOMEZQMZmHQOmmOOBHB>MQD>m<mfimmmmOBEOHQmU mthMOZMQUEUQMmZ MDOhMOZMflEMUmMmZ MUOhMOZMQEMUmMmZ MDOhMOZMflEMDmMmZ
MD MD MD
M UOUmVOm>EE Mfimwwm0>éwwwmv>90>rmUUUUmM M
”>MBUOUhBEmHBZUOOOMMBm
ZEOHMflHZMmQQMWABLMDM>WQ<MMH<MZZMMmm >UméBéflflMwwéémwmhm<mmeméhMwa EVQUOUmMOm>EE EVQUOUvaM>EE EVQDODvaM>EE
”>MBUOUhBEmQB7UOOOMMBm v r>VBUOUhBEmHBZDOOOMMB<
QrmOémm EZRAwammmom>M>m<UmMH>M<UWO>HO>O wwmwwwwmm>B>HBDODEMQQ>QQQMMMUQMQOMM><BQEmBQWmQEEM>BmBmMQMBFB> mwmhMWm>UBEfimmBMMHQQMmmmUmMOOMEZQMZmHQOWQOOBHB>MQU>m<mfimmmmOBEOHflmw ”>MBUOUhBEmHBZUOOOMMBm
m EZBLBMUWQMOW>M>m<UmM EZBLBMUWQMOW>M>m<UmM QTOOQWW EZBLBMUm£MOm>M>m<UmM
BLWMQBUWU BLWMQBDWU m<>EVéwammOm>E7EQMMZLBhwmflflomfi m>BémmEOB>>BOmUDDUmUUUUmUUwUmm>B>HBUOUEM£EMmaMmzwhzwmm>oww>mBQEBV#Z QUMmmOUmMOO>EZmMZDWB><DBmmUOBQB>BUUm Q>BQMBUUDh>EM7mMEQ>OMMT<VQ? UOhMOZMflEMUmMmZHM MDH>QBQMWMUQ QVOOQWW
ZQMZWHQOWQO BEQMWBM UOO >V<UWO>QO>O mm>B>QBDOUEMQQ>QBOMWMDQMflOMM>¢BQEmBQWWQEFM>BWBWBQMBEB> mwmwmhMmm>wBEfimmBMMHQQMmQMGmMOOMEZQMZmHQOmmOOBHB>MQwém<mémmmmOBEOHQ BLBLQBU >HO>O wwwmwwwwmwwwwmm>B>QBUOUEMQQ>QBQMMMUQMQOMM><BQEmBémeEFM>BmBmBQMBEB> m>UBEHmmBMMHQQMmQMDmMOOMEZQMZmHQOmmOOBHB>MQDém<mémmmmOBEOHQmw BLBLQBUmD >T<UWO>QO>O wwwmwwwwmwwwwmm>B>QBDOUEMQQ>QBOMWMUQMflOMM>flBQEmBémWQEEM>BmBmBQMBEB>
oEomqu 2:o2oE wmoo Nmoo mmoo $50 Nmoo mmoo
I> I> I> :_> :_> :_> I
> > oEomqu 2:o2oE
-mw :_I
:_I -mw -mw -mw -mw -mw -mw -mw -mw -mw -mw :_I :_I
N< w< N<
Om. :I-NI «00 w< RYwI w< RYwI w< RYwI w< RYwI w< RYwI w< RYwI w< RYwI w< RYwI
Um. Om. Om. Om. Om. Om. RYwI «00
x Om. Om. Om. Om. RYwI x
x x
._I :_I
Fm-<_>_0m_ :_I :_I
«00 mm-<_>_0m_ llllllllllllmm-<_>_0 mm-<_>_0 mm-<_>_0 mm-<_>_0m_ mm-<_>_0m_ mm-<_>_0m_ mm-<_>_0m_ mm-<_>_0m_ ww-<_>_0m_ m «00
_‘ th mnm whm m w
hm hm hm hhm whm
mwmhMWm>UBEfimmBMMHQQMmmMDmMOOMEZQMZmHQOmmOOBHB>MQUQm<mémmmmOBEOHflmw Mfimwwm0>éwwwmr>90>rWUUUDWM ZEOHMflHZMmQQMWABLMDM>WQ<MMH<MZZMMmm m>BémmrOB>>HOWDUUDWUUUUWDU®DWm>B>HBUODEM£EMmAMWZDLZUEM>OMM>QBQEBV#Z >UméBéflflMwwéémwmhm<mBDm<QLMBUU In In MDOhMOZMQUEUflMmZ Mmm>wagmmBMMHQQMmQMGmMOOMEZQMZmHQOmmOOBHB>MQwém<mémmmmOBEOHQ MUOhMOZMQDEUDMmZ MUOhMOZMQUEUDMmZ
MD MD MD
EVQUOUmMOm>EE ETQUODvaM>EE M vaM>EE
Mfimwwm0>éwwwmv>90>vmDUUDWM
”>MBDODMBEmQB7UOOOMMBm v r>VBUODhBEmQBZUOOOMMB<
ZEOQMflHZMmQQMmthm0M>WQQMMH<M7ZMMmm
r>VBDOUhBEmQB7UOOOMMB<
>UméBéflflMwwéémwmhm<mmefléhMwa
QVOOémm EZBLBMUWQMOW>M>W<UmM ”>MBUOUhBEmHBZUOOOMMBm EZBLBMDm£MOm>M>m<UmM QVOOémm EZBLBMUmmMOm>M>m<UmM QVOOémm
BLBLQBDWU m<>ET90M0m<0m>E7E<MMZLBhwmflflomfi QUMmmOUmMOO>EZmMZUWB><UBWWUOBQB>BDUm UUDh>EM7WMEQ>OMMVm:Drm0 UOhMOZMQUEUQMmZHM QVOOQWW
>V<UWO>QO>O mm>B>fiBUOUEMQQ>Q<QMMMUQM<OMM><BQEmBQWWQEFM>BmBmBQMBEB> BLBLQBU >V<UWO>QO>O wwwmwwwwmwwwwmm>B>HBUOUEMQQ>Q<QMMMUQM<OMM>¢BQEmBémm957w>BmBmBQMBEB> mwmhMWm>wBEHMmBMMHQQMmmMUmMOOMEZQMZmHQOmmOOBHB>MQwém<mémmmmOBEOHQmw BLBLQBDWU >V<DWO>QO>O wwwmwwwwmwwwwmm>B>fiBUOUEMQQ>QQQMMMUQMQOMM><BQEmBQWWQEEM>BmBmBQMBEB> mwmhMWm>wBEQMmBMMHQQMmmMUmMOOMEZQMZmHQOmmOOBHB>MQwém<mémmmmOBEOHQmw BLBLQBDWU m>BémmEOB>>BOmDUUUmDUUUWDDwUmm>B>HBUOUEM¢EMmaMWZULZUEM>OMM><BQEBMQZ m<>ETéwammOm>E7EQMMZLBhwmflflomfi #DMmmODmMOO>EZmMZDWB><DBmmUOBHB>BUUm
NN—Do E: Nmoo «moo o.
I> .089
:5 :5 I> .n 2829:
-mw .mV .mV -mw -mw -3
:I-wI N< Om :I-wI 5m :I-wI :I-wI N< :I-wI N< N< w< w<
Om. Om. :I-wI Om. :I-wI Om. :I-wI -meflom w3+wI 0m. JDIrwmex
.__._
25ml mm 8 mm mm mm mm
- - - - - - - .__._
<_>_Om <_>_O <_>_O
m m <_>_0m_ _0m_ mm-<_>_0m_ <_>_0m_ 80
a wan mwm mam hwm wwm
MUBLMOZMEWZOmmhw MUBLMOZMEWZOmmhw hMQm>Omhm2m>kaé MUBLMOZMEW7OW<LM hMQm>Omhm2m>kaé OOmO>QOOOmv>QO>v HMQBZMWQQMmABLMO
EOEEVQUOOm<0m>E mm>B>EBUOOE>QhMEQMQMQW hMQm>Omhm2m>MMH##OmmmeMOQMEEQMB/Ova M UOOm<0m>E wwwwwmwwwwmwwwwmm>B>EBOOUE>QhMEQMQMQW #OmWOOmMOQMEEQMB M EOEEVQUOOm<0m>E wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMHmflOhM><BQEmM#mméizmemHmBQMBEB> #OmWOOmMOQMEEQMB WOOOOWM M>WQ<MMB<MZZMMWM #BéflflMDOéémwmhmmmmemfihMwa
/A%%fl /A%%fl /Ova /A%%fl /Ova
Q>BQMBOOUM>EMZmMEQ>OMMV UBLMOZMEWZOWflLMAE EQMBZOZmEQHmOm
r#MBOOOhBEm<BmmOmOMM>O>flimr>Mm r#MBOOOMBEmQBmmOmOMM>O>DV<V>MW r#MBOOOMBE&<BW@OWOMM>O>DVm?>Mm
:6 WM mmmMUmflMOm>E>mmmeM>m<OmO>QO>O <Ohw><BQEmM#mméizmemHmBQMBEB> >Hm0mmMOmHm<m0099>mémémBOBE>HQ VQBLQBOmOmOm mmwwwmflmom>v>m<®va>m<OmO>HO>O <Ohw><BQEmMQWWQEEMQBmHmBQMBEB> >fim0mmMOmHm<m0099>mémémBOBE>HQ VQBLQBOWOWOW mmwwwmflmom>v>m<®m¥v>m<®m0>fi0>0 >Hm0mmMOmHm<m0099>mémémBOBE>HQ VQBLQBOmOmOm 0M0m<0m>E7EQMMZLBhwmflfloméMém 9mmEOB>>BOmOOOOmOUUDmOUUOmm>B>fiBOOOEM<§MmAmeOL7UEM>OMM><BQEBV#2220 #OMmmOOmMOO>EZmMZUmB>¢UBmmOOBHB>BUOmm>B Q>BQMBOOOM>EM7mMEé>Owwvmvflva>wm MEWZOWflLMAE
IIIII wmmO NmDO BE oEomqu 2:029: wmmO NmDO
I> I> I> I>
.mm .mm .mm .mm .mm .mm .mm .mm .mm .mm :_I .mm .mm
3; N 3; N N 3; N
glam glam 3; N 3; 3; N 3; N 3; N 3; N .3; «DO 3; 3;
Om Om Om glam Om glam Om glam Om glam Om glam Om glam Om glam Om Nw<-vm x Om #035 Om #035
ov-<_>_Om _Om ov-<_>_Om ov-<_>_O ov-<_>_O ov-<_>_O :_I
m I m ov-<_>_Om ov-<_>_Om ov-<_>_Om ov-<_>_Om «DO
mmm wan mmm mmm h- oo O7
07 07 O)
0‘) m to
MUBLMOZMEWZ hMQm>Omhm2m>MMH##OmmmeMOQMEEQMB/Ova MUBLMOZMEWZ MUBLMOZMEW7 UOmO>QOOUmV HMQBZMWQQMW _HB#¢<MUDQQW
Ommhw Ommhw Ommhw
EOEETQUOOm<0m>E M >QO>VWOOOOWM
UOOm<0m>E M EOEETQUOOm<0m>E thm0M>mQ<MMB<MZZMMmm OmhmmmbmmfihMwa
/A%%fl BOOOE>QhMEDMQMHWflOhM>¢BQEmM r#MBOOOLBEmwammOmOMM>O>fl; /A%%fl wwwwwmwwwwmwwwwmm>B>EBUOOE>QhMEQMQMQWQOhM>¢BQEmM hMQm>Omhm2m>MMH##OmmmeMOQMEEQMB/Ova /A%%fl hmmm>wmhm2m>ka##OmmmeMOQMEEQMB/Ome V#MBOOULBE&M%WWOWOMM>O>DV m¢>EV
Hmhmwwmmmom>v r#MBOOOLBE&M%WWOWOMM>O>DV Hmhmwwmmmom>v 9mmEOB>>BOmOOOOmOOOOmOOOOmm>B>QBOOOEM<§MmAwmzwh7w Q>BQMBOOOh>EM
EQMBZUZWE>QWOWWM mr>MW >mmmev mr>MW >mmmev mr>MW
v v v
>QMMEQMQMH M BEmMHmmOm mmmMOWQMOW>M>W<OmMM>m<OmO>HO>O #mméizmemHmBQMBEB> >Hm0mmMOmHm<m0099>mémémBOBE>HQ #BLQBOWOWOW >E<UmO>QO>O #mméizmemHmBQMBEB> >Hm0mmMOmHw<m0099>mémémBOBE>HQ #BLQBOWOWOW >E<UmO>QO>O wwwwmwwwwmm>B>EBOOOE>QhMEDMQMHWQOhM>¢BQEmM#mméizmemHmBQMBEB> >fim0mmMOmHm<m0099>mémémBOBE>HQ WOWOW 90M0m<0m>E7EQMMZLBhwmflfloméMém EM>OMM><BQEBVQZZEO #OMmmOOmMOO>EZmMZOWB><OBWWOOBQB>BOOmm>B 7mMEé>OMMV<VQVmO>Om In UBLMOZMEWZOWflLMAE EQMBZUZWE>QWOWWM mhm2m>M
oEomqu 2:029: E: NmDO $55 NmDO
I> :_> :_>
.mm .mm .mm .@m .mm .mm .mm .mm :_I .mm .mm .mm .mm .mm
3; #035 3; 3; 3; 3; 3; 3; .3; «DO 3; 3; 3; 3; 3;
Om Om #035 Om #035 Om Nmém Om #035 Om #035 Om #035 Om #035 x Om wmém Om wmém Om wmém Om wmém Om wmém
:-<_>_Om :-<_>_Om 3 :-<_>_Om :_I
<_>_Om «DO
2012/072699
mwB_uMOZ%flmZUm<_u% wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMHWQOhM>¢BQEmMQWWQEEMQBWHWBQMBEB> MMQm>DmhMZm>MMHQQOmmODmMO_H%EE_HMB/UZWV>fim0mwMOmHw<m0099>mémémBOBE>HQ M WUUUUWUUUUWUUUUWW>B>EBUOUE>QhWEDWQWHWQOhW>¢BQEmMPWWPEEWQBWHWBQMBEB> hMQm>UWhMZW>MWH:HHOMWOUMMOHMEEHWB/UZWV>HWOWWMOWHWQMOUPB>MPWPMBOBE>HQ 0802589502,$8me MUHAMOZMEWZUWQLM ZMEW7UW<LM
EUEEVQDOUm<0m>E/ mm>B>EBUOUE>QhMEDMQMHmflOhM><BQEmMQWWQEEM<BWHWBQMBEB> hMQm>0mhMZm>MMH:HOmmOUmMOHMS:HMB/Ume>fimOmmMOme<mOwHB>mHmHmBOBE>HQ M qwmezvmmmmmmEamnmimmwmgmzzwmg QB;H¢<MDDHHmwmhmmmbmmfihMwa
AwwflmumMDmflMOm>M>m<DmMM>m<DmO>HO>O V#MBUOU_AB_uflm%BmOmO%%>w>flV<V>MW EUEEV#DOUmmOm>E/aw%flmhwwwmflmom>v>w<®m¥v>m<®m0>fi0>0 V#MBUOU_AB_uflm%BmOmO%%>w>flV<V>MW EUEEVéwmemOm>E/aw%flmhwwwmmmom>v>w<®va>E<UmO>QO>O __,£982BimfimomowfignvmvEm UDDh>EM
VQB_AQBUmDm0m VQBLQBUWUWUW YESEmwmwm $53:VwmwmmomNVE/zmwmzuEuwmdnmomégm 9mmEOB>>BOmDUUUmUUUUmUDDUmm>B>HBDOUEM<§MmAmeDL7DEM>OMM><BQEBV#ZZEO QUMmmOUmMOO>EZmMZDWB><UBmmUOBHB>BDUmm>B m%3;>0%%7
Vm0>0m la !mmweamozwumzwmmhm :qweszmm>qmommm szzvVwowm<0m>32awwmmhmwwmmMom>m>m<wmmm>m<wmo>qo>o mm>e>zewowz>mmwgmwqummomw><emmmmgmmgmzwmemHmemmeze> mmmm>wmmm2m§566mmagma.EgmiezwzgamommmomHmmmowmgmgmgmeoezim
058ng 2:029: 8; Fmo04> a!
-mm -mm .8
.__._
Nméo -©®v<wom NMéD -wmv<wom NMéD -®®v<wom NMéD -mMIv/wwwm «00 .vdfi .vdfi 3;
X Niall Niall Om Om Nr<ém :2: u_ Nw<-.vu_ -mmv<~om Nr<ém 0m.
x.__._
- Nfi<§0m Nfi<§0m Nfi<§0m Nv-<_>_om_ .__._ - - -
moo m?<§om :- mfi<§om mv-<_>_0m_
E I E nmw a
MUHAMOZMEWZUWQLM MUHAMOZMEW7UW<LM MDBLMOZMEWZDmmhw MUBLMOZMEWZDmmhw
M 80885290858 w80>508.->.6>__-888va gag-972888Ehmmmimmwmgmzzwmg _E_E§8_Em8mm<m98quwa M M
n#MBUOUMBE&<BWWOWOMM>U>DH 3023?éwmemOm>EZAMMQmLwwwmflmom>v>w<®va>E<UmO>QO>O wwwwwmwwwwmwwwwmm>B>EBDOUE>QhMEDMQMQWflOhM>¢BQEmM#mwQEEMQBmHmBQMBEB> mhMZm>MMH##OmmODmMOQMEEQMBZUZmE>QmOmmMOmHwmmODmB>WQQOBOBE>HQ T#MBUOUhBEmQBmmOmOMM>U>flT<V>MW 3023?QUODmmOm>EZAMMQmLwwwmmmom>v>w<®va>E<UmO>QO>O £55328
52998“
885288 mmmm>wmmm28§566m80988.585928858888H880898ng909259 8Emmemmomomggmvm:>8 man->3.-gwmwmmomNVE/zmwmzu588.ng _8305588080888888559803838Emzw_n_7w$>o§><emmevgzzzo gwmmmowmmogzzazwm55988395885 éEEwamefi7855385898 3023?#DOUmmOm>EZAMMQmLmMDmflMOm>M>m<DmMM>m<UmO>QO>O mm>B>EBUOUE>QhMEDMQMHmflOhM><BQEmMQmWQEEM<BmHmBQMBEB> MMQm>DmhMZm>MMHQQOmmODmMOQMEEQMBZUZmE>QmOmmMOmHw<m00m9>mémémBOBE>HQ V#MBUOULBEmwammOmOMM>D>Qv<v>MW ULBEmwammOmOMM>U>QVmV>Mm
VQBLQBUmUmDm H
925 v.539888 ZECE wfiumozwumzwmmhig 5325me :qweszmEfimommm mmm2m>M BEmMHmmOm MQBLQBUWUWUW 3023:#000mfl0M>EZa%MQmLwwwmflmom>v>w<®mMM>m<UmO>QO>O wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMQWflOhM><BQEWMQWWQEEM<BWHmBQMBEB> hMQm>UmhMZm>MMH##OmmOUmMOQMEEQMBZUZmE>QmOmmMOmHmmmmeB>WQQOBOBE>HQ MQBLQBUmUmUm
EaEEfla
05885 2:029: Ego $50 «moo E00 NKDO «N50
_-_> _._> _-_> .5 -_> -_>
-mmv<wom -mmwmwnwm -8 -8 -8 -8 -@m -@m
-__-_
Nw<ém mowx 3; 3; RTE .3; 8. #0.: 3; 3; .3;
0m. wQ-E 8. RE; 0m. 0m. ND-vm 0m. ND-vm -©®V<N0m Nflém -©®v<wom Nflém -mmv<wom NDéL
mv-<_>_Om_ 318-328 g 3 g g 3» 3»
-__-_ - - - - - -
moo <28. <20 <28. IIII<56 £20 £20
m vv-<_>_Om_ vv-<_>_Om_ vv-<_>_Om_
3% N9 8“ #9 mmw wmw haw wmw an?
MUHAMOZMEW7UWQLM wwwwwmwwwwmwwwwm$530858£53328EmemmmmgmmézwmemH39325 mmmm>wmmm2m§566mmagma.EgmiezwzgamommmomHmmmowmgmgmgmeoezim wwmo>gwwwmv>go>v$8me qwmezvmmmmmmEhmmmimmwmgmzzwmg _Hmmmoe>>eomwwwwmwwwwmwwwwmmEEBwowEmEmEmzwuzwmfiyowgmemmfigzzzo Simmwwémwmmmmm98quwa EEE MUHAMOZMEmZUmQLM MDBLMOZMEW7Dm<LM ZMEWZUmmhw
3023?#000mfl0M>EZa%MQmLwwwmflmom>v>w<®mMM>m<UmO>QO>O
UUmO>QUDUmr>QO>rmDUUUWM M
gwmmmowmmogzzazwmEmwemmwoSBEwwmmE
HMQBZMWQQMWthm0M>mQ<MMB<MZZMMmm
_EB.Ewawmémiwgéofivm:9,mo>wm wimozwumzwmfig lflE
__,£9893szmmomomgwgvmflémm r#MBUODLBLEmMBmOmOMM>U>flv<V>Mm V#MBUODLBLEmMBmOmOMM>U>flVm?>MW r#MBUOULBLEmMBmOmOMM>U>DV<V>Mm
EBEmewmwm EQWBZUZWENKHWOWWM EH $53:gwmwmmomNVE/zmwmzuEuwmdnmomégm wmeflOm>E/aw%flmhmMUmflMOm>M>m<UmMM>m<UmO>HO>O mm>B>EBUOUE>QhMEQMQMHmQOhM>¢BQEmM#mméizmemHmBQMBEB> hMQm>UmhMZm>MMHQQOmmmeMOQMEEQMB/Ume>Hm0mwMOmHw<m00m9>mémémBOBE>HQ M VQBLQBUmUmUm 3023:éwmemOm>E/aw%flmhwwwmmmom>v>w<®va>E<UmO>QO>O wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMHWQOMM>¢BQEmM9mméizwflBmHmBQMBEB> MMQm>UmhMZm>MMH##OmmmeMOQMEEQMB/Ume>fim0mwMOmHmflm00m9>w9mémBOBE>HQ VQBLQBUmUmUm 3023:#DOUmmOm>E/aw%flmhwwwmmmom>v>w<®m¥v>m<®m0>fi0>0 wwwwwmwwwwmwwwwmm>B>EBUODE>QhMEDMQMQWQOhM>¢BQEmMQWWQEEMQBmHmBQMBEB> hMQm>UmhMZm>MMH##OmmmeMOQMEEQMB/Ume>fim0mwMOmHm<m00m9>mémémBOBE>HQ VQBLQBDWUWDW m<>3réwammOm>E7E<MMZLBhwmflfloméMém
0.28ng 2:029: BE BE 2; «moo O.
:_> W.
8 >
-mwTh/wmnwm -8 u©® .@m .mm -8
.__._ __
mowx vmwwm. VQWNM 3w“ Nmém .3; 3; 3;
Om. wwém Om. Nmém -mmv<w0m NMém om mmwiX
x.__._ X
.__._
$-<_>_0m_ .__._
mv me
- I .__._
moo IIII 3-320 mVI<_>_O
m mv-<_>_0m_ <_>_Om_ mv-<_>_0m_ mv-<_>_0m_ <_>_om 80
h 00
fi' fi'
fi' fi'
9mmEOB>>BOmDDUUmUUUDmUUUUmm>B>fiBDOUEM<§MmAwmzwhzwmm>oww><BQEBv#2220 QB;H¢¢MGUHHmwmhMQmbmmfihMwa In la la hMQm>UmhM MDBLMVZMV
szwm<_u%
hMQm>UmhM MDBLMVZMV hMQm>UmhM fiMflBZMmQfl
w m7wmmhw DUmO>£HUUUmV>HO>V Zm>MMHQ MmAB_um0
EUEEV mm>B>EBUOUE>QhMEQMQMQW EUEEV EUEEV
M wwwwwmwwwwmwwwwmm>B>EBDOUE>QhMEQMQMQW Zm>M%H:HHOmmOUmMOHMEEHMB/UZWV Zm>M%H:HHOmmOUmMOHMEEHMB/UZWV M wwwwwmwwwwmwwwwmm>B>EBDODE>QhMEQMQMHW #OmWOUmMO_HMEE_HMB/UZWV WUUUUWM
m>E/ QUOUm<0m>E/awwfl MB<MZZMMWM QB;H¢<MDDHHmwmhmmmbmmfihMwa
UmMOO>EZmMZUWB><UBmmDOBHB>BUUmm>B Awwfl VQMBUOUhBEmmB DhBEmmBmmOmOMM>U>flV QUOUm<0m>E/awwfl m<>3
Q>B;MBUUUh>EMZmMEH>OMMV m_umMUmflMOm>M>m<UmMM>E<UmO>_HO>O <Ohw><BQEmMQ >fimOmWMOme<mOUHm>WHmHmBOBE>HQ M>U>flV mhmwwmmmom>v <0hM><BQEmMQ mhmwwmmmom>v V#MBUOUhBEmmBmmOmOMM>U>flV Q>B:MBUDDh>EM
EQMBZDZmEPHmOmmM mméizmemmmBQMBEB> ¢V>MW ¢V>MW ¢V>MW
v >w¢0m¥v v >w¢0m¥v v m%3;>0%%7
Vm0>0m __mzwmmhwds #BLQBUWUWUW >m<wm0>fi0>0 mméizmemmmBQMBEB> >Hm0mwMOmHm<m009m>mémémBOBE>HQ #BLQBUWUWUW >m<wm0>fi0>0 <Ohw><BQEmMQWWQEEMQBWWWBQMBEB> >Hm0mwMOmHm<m009m>mémémBOBE>HQ #BLQBUWUWUW VéwammOm>E7EQMMZLBhwmflfloméMém 9mmEOB>>BOmDUUUmUUUUmUDDUmm>B>HBDOUEM<§MmAmeDL7DEM>OMM><BQEBV#ZZEO QUMmmOUmMOO>EZmMZDWB><UBmmUOBHB>BDUmm>B Vm0>0m
a fl In
mafia _‘N—DO Nmoo
g I> g |_> :_> oEomqu 2:029: E:
.mm .mm .mm .mm .mm .mm .mm .mm .mm .mm :_I .mm
3; 86?va 3; 86?va 3; 86?va 3; 86?va 3; 86?va 3; 86?va 3; 3; .3; 3;
Um. Om. Om. Om. Om. Om. Om. 86?va 3; 86?va
Om. 86?va Om. $6?va «00
Om. x Om. 507va
©¢-<_>_Om_ !lwv- wv- wv- wv- wv-
<_>_Om_ <_>_Om_ <_>_O ©¢-<_>_Om_ <_>_o @v-<_>_0m_ @v-<_>_0m_ ©¢-<_>_Om_ :_I
<_>_Om_ «00 Nv-<_>_0m_
hMQm>OmhM MDBLMV MDBLMV
2%? hMQm>OmhM 2%? hMQm>OmhM OOmO>_NOUOmHT
Hmzwmmuw Zm>M%N:NNOmmOUmMONMEENMB/Ome mzwmmhw wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEQMQMHm Zm>M%N:NNOmmOOmMONMEENMB/Ume m7wmmhw Pg- HMflBZMmQflMmAB_um0
EOEEH- BUOOE>QhMEQMQMQW 3023? 3023?
M M wwwwme
HQMBOOU_ABEmwa.- QUOUm<0m>E/aw%fl HQMBOOU_ABEmwa.- QUOUm<0m>E/aw%fl wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEQMQMHm Zm>M%N:NNOmmOOmMONMEENMB/Ume Om>E/ HQMBOOU_ABEmwa.- M>mQ<MMB<MZZMMmm QB;N¢<MOONwamhmmmbmmfihMwa
Awwfl m¢>EV
m_umMOWQMOW>M>W<OmMM>m<OmO>HO>O <Ohw><BQEmM >fim0mmMOme<mOUNm>mNmNmBOBE>HQ M>O>flH <Ohw><BQEmM mmOmOMM>O>flH <Ohw><BQEmM mmOmOMM>O>flH 90M0m<0m>3
.- mhmwwmmmom>v mhmwwmmmom>v
#mméizmemmmBQMBEB> # .- # .- 7 Q>B:MBUOUh>EM
m...- fl? fl? Em 9mmEOB>>BOmOODOmOOODmUOOOmm>B>fiBOOOEM<§MmAmeUL7OEM mm mm
>MW >mmmev EQMBZUZWE>QWOWWM >MW >MW
v v >mmmev v WME;>O%%-
MHmZOmmhwag >QMMEQMQMH mhm2m>M BEmMHmmOm #B_AQBOmOmOm >QO>O WWWBQMBEB> >fim0mmMOmNm<m009m>mémémBOBE>HQ #BLQBOWOWOW >E<UmO>QO>O #EEMQBWWWBQMBEB> >fim0mmMOmNm<m009m>mémémBOBE>HQ #BLQBOWOWOW MMZLBLDWflflOméMQm >OMM><BQEBV
#ZZEO #OMmmOUmMOO>EZmMZUWB><OBWWOOBQB>BOOmm>B Hm0>0m !fl Hmzwmmuwag >QMMEQMQMH ZWE>QWOWWM
oEomqu 2:029: E: NmDO mmmO $55
I> I> -_>
-mm -mm -mm -mm -mm -mm -mm -mm -mm -_I -mm -mm -mm -mm
V<N ND-NO V<N ND-NO V<N ND-NO V<N ND-NO V<N ND-NO V<N ND-NO V<N ND-NO V<N V<N V<N V<N V<N V<N
Om Om Om Om Om Om Om Om ND-NO «DO Om ND-NO x Om Nm-NO Om Nm-NO Om Nm-NO Om Nm-NO
NV-<_>_Om NV- NV- NV- NV- -_I
<_>_Om NV-<_>_Om <_>_O NV-<_>_Om <_>_Om <_>_Om NV-<_>_Om NV-<_>_Om «DO
me NV NNV MNV VNV
2012/072699
Zwrmzwmmhw mmmm>wmmwZm>MwFggommowmmongmng/Gme mwehmvzwvmzwmmhw mthMrzwvm7wm<LM MUBLMOZMEWZOmmhw
M wwwwwmwwwwmwwwwmm>e>zewow3>mmwzmwqum mmmm>wmmwZm>MwFggommowmmongmng/Gme M wwwwwmwwwwmwwwwmm>B>EBUOOE>QhMEQMQMQW mhMZm>MMH##OmmmeMOQMEEQMB/Ume OUmO>QOUOmv>QO>rmUUOOmM
szzvgwowmm0m>E/awwfl QMQBZMWQDMWthm0M>mQ<MMB<MZZMMmm #BéflflMDOéémwmhmmmmemfihMwa
3023?#OOOmmOm>E/aw%flmhmMDmflMOm>E>mmmeM>m<UmO>QO>O mm>B>EBOOOE>QhMEQMQMHm wheaumw :gmewowheaumw 3023?#OOOmmOm>E/aw%flmhmMUmflMOm>V>m<®va>E<OmO>QO>O VQMBUODLBLEmM QUmemOmNVEZA
m<>3 é> MMQmL
BQEmM >fim0mmMOme BmOmOMM>O>fl mhmwwmmmom> <Ohw><BQEmM >fim0mmMOme BmOmOMM>O>fl <Ohw><BQEmM >Hm0mmMOme BmOmOMM>U>fl VQOMOm<0m>E BQMBDUDh>EM m
#mméizmemmmBQMBEB> ¢m009m>mémémBOBE>HQ rmr>MW v>m<Ova>m<OmO>fiO>O #mméizmemmmBQMBEB> >mémémBOBE>HQ rmr>MW #mméizmemmmBQMBEB> <m009m>mémémBOBE>HQ vflv>MW
mhm2m>M BLEmMBmOm VQBLQBOWOWUW VQBLQBOWOWUW VQBLQBDmDmOm 7E¢MMZABLOW¢<OmQMQm 9mmEOB>>BOmDDOOmOUUDmOUUOmm>B>fiBOOOEM<§MmAmeOL7UEM>OMM><BQEBV#2220 #OMmmOOmMOO>EZmMZUmB>¢UBmmOOBHB>BUUmm>B Owwv¢vQVmO>wm M0m§0m>M>m<OmMM>E<Om
ZHMMQ OBLMOZMEmZOmQLMAE >QMMEQMQMH EQMBZUZWE>QWOWWM BEm<BmmOm O?
HO>O
NmmO mmmO oEomqfln 25020:. wmmO NN—Do mmmO $55 mmmO
:_> :_> I> I> I> :_> :_> a!
.mm .mm .mm .mm .mm .mm :_I Km Km Km Km Km Km Km
3; um.-va 3; um.-va 3; um.-va 3; um.-va 3; um.-va .3; Fm.-va «05 3; Nw<-m< 3; Nw<-m< 3; Nw<-m< 3; Nw<-m< 3; Nw<-m< 3; 3;
Om Om Om Om Om Om x Om Om Om Om Om Om Nw<-m< Om Nw<-m<
wv-<_>_Om wv-<_>_Om wv-<_>_Om wv-<_>_Om wv-<_>_Om wv-<_>_Om :_I
«05 Imv-<_>_O mv-<_>_Om mv-<_>_Om mv-<_>_Om
m w m m
by by why why ww www ww haw
hMQm>OmhMZm>MMH MUBLMOZMEWZOmmhw wwwwwmwwwwmwwwwmm>B>EBOOOE>QhMEQMQMHW hMQm>OmhMZm>MMH##OmmmeMOQMEEQMB/Ome MUBLMOZMEW7OW<LM UUmO>QUOUmv>QO>v MUBLMOZMEWZOmmhw MUBLMOZMEWZOmmhw
3023? wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEDMQMHmflOhM><BQEmBémeEEM<BZHmBQMBEB> hMQm>OmhMZm>MMH##OmmmeMOQMEEQMB/Ome HéOmmmeMOQMEEQMB/Ome WOOOOWM fiMflBZMmQQMmthm0M>mQ<MMBQMZZMMmm #BéflmmwwéémwmhmmmmemfihMwa 3023?
M M M
TQMBOOOhBEmmB #OOOmmOm>E/awwfl TQMBOOOhBEmmB flOm>E/awwfl VQMBOOOhBEmmB m¢>EV VQMBOOULBEmwa ”#OOOmmOm>EZAMMQ
>fim0mmMOme<mmeB>m mmOmOMM mmom>v <Ohw><BQEmBQWWQEEMQBZHmBQMBEB> MOmHm<m00m9>mémémBOBE>HQ mmOmOMM mhmwwmmmom>v MOme<mmeB>m mmOmOMM mmOmOMM
U>QV U>QV U>QV 9mmEOB>>BOmOOOOmOOOOmOOOOmm>B>fiBOOOEM<§MmAwmzwhzwmw U>QV mhmwwmmmom>v
mr>MW mr>MW mr>MW
v >mmmev v >mmmev v hMQm>OmhMZm>MMHQQOmmmeMOQMEEQMBZUZmE>QmOmmMOmHm<m00m9>m M
#mémBOBE>HQ WOWOW >M<OWO>QO>O #BLQBOWOWOW >M<OWO>QO>O #mémBOBE>HQ #BLQBOWOWOW 90M0m<0m>E7EQMMZLBhwmflfloméMém >OMM><BQEBVQZZEO #OMmmOOmMOO>EZmMZUmB>¢UBmmOOBHB>BUOmm>B Q>BQMwawh>3m7mwgé>owwvmvQ?m0>0m UBLMOZMEWZUmfln—MAE EQMBZOZWEEHmOmmM BEmMHmmOm #000mfl0M>EZa%MQmLmMOmflMOm>M>mmmeM>mmwmO>HO>O mm>B>EBUOOE>QhMEDMQMQWflOhM><BQEmBémeEEMQBZHmBQMBEB> #mémBOBE>HQ #BLQBOWOWOW
oEomqu 2:029: wmmO mmmO
I> BElflEBEEEE :5
Km Km Km :_I Km Km Km Km Km Km Km Km Km
3; Nw<-m< 3; Om Nw<-m< .3; Om Nw<-m< «DO 3; 3; 3; 3; 3;
Om x Om No-94 3; No-94 3; No-94 3; No-94 3; No-94
Om Om No-94 Om Om Om No-94 Om Om No-94 Om No-94
av mv-<_>_Om :_I
<_>_Om mv-<_>_Om «DO llllllllllllllllllllom-<_>_O _O om-<_>_O om-<_>_O om-<_>_O om-<_>_O
m m m m om-<_>_Om om-<_>_Om om-<_>_Om
mmw haw wmw
wwwwwmwwwwmwwwwmm>B>EBUOOE>QhMEDMQMHWflOhM><BQEWBQWWQEEM<BZHmBQMBEB> hMQm>UmhMZm>MMHQQOmmODmMOQMEEQMBZOZmE>HmOmmMOmHw<m00m9>mémémBOBE>HQ MUBLMOZMEW7OW<LM OOmO>QOOOmv>QO>V MOBLMOZMEWZUmmhw MOBLMOZMEWZUmmhw MOBLMOZMEWZUmmhw
3023? WUOOOWM fiMflBZMmQQMmABLMDM>WQ<MMB<MZZMMWM #BéflflMDOéémwmhmmmmemfihMwa mm>B>EBOOUE>QhMEQ hMQm>OmhMZm>MMH##OmmOOmMOQMEEQMB 3023? 3023?
M M hMQm>OmhMZm>MMH##OmmOOmMOQMEEQMB M
VQMBOOOLBEmwammOmOMM #OOOmmOm>EZAMMQmLwwwmflmom>v wwwwwmwwwwmwwwwmm>B>EBOOOE>QhMEDMQMHmflOhM><BQEmBQWWQEEM<BZHmBQMBEB> hMQm>OmhMZm>MMH##OmmmeMOQMEEQMBZOZmE>HmOmmMOmHm<m00m9>mémémBOBE>HQ VQMBOOOLBEmwammOmOMM EOEEVQOOOm<0m>E #000mfl0m>3 #000mfl0m>3
m¢>EV 9mmEOB>>BOWOOUUmOOOOmUDDDmm>B>HBUODEM<§MmAwmzwhzwmw #OMmflOUmMOO>EZmMZOmB> /A%%fl VQMBDOULBLEmMBmOmOMM VQMBDOULBLEmMBmOmOMM
U>QV U>QV U>QV /A%%flmhm%0mmmom>v U>QV /A%%flmhm%0mmmom>v
fl? fl? fl? fl?
>MW >MW >MW >MW
MQBLQBOWOWOW >m<®mMM>m<OmO>HO>O MQBLQBOmOmOm 90M0m<0m>E7EQMMZLBhwmflfloméMém >OMM><BQEBV BHB>BU Q>BQMBUOOh>Em7mMEQ>OMMVmVQ?
#ZZEO Omm>B m0>0m ZHMMQ wflmzwmmhwag >QMMEQMQMH EQMBZUZWE>QWOWWM M mOm mmmMDmflMOm>M>m<OmMM>E<OmO>QO>O MDMQWflOhM><BQEWBQWWQEEM<BZHmBQMBEB> /Ome>fimOmmMOmHw<m00m9>mémémBOBE>HQ MQBLQBUmDmOm >m<®mMM>mmme>HO>O wwwwwmwwwwmwwwwmm>B>EBUOUE>QhMEGMQMQWflOhM>¢BQEmBQWWQEEMQBZHmBQMBEB> /Ome>fimOmmMOmHw<m00m9>mémémBOBE>HQ MQBLQBUmDmOm >m<®mMM>mmme>HO>O wwwwwmwwwwmwwwwmm>B>EBOOUE>QhMEGMQMQWflOhM><BQEmBQWWQEEMQBZHmBQMBEB>
oEomqu 2:o2oE wmmO NN—Do mmmO $55 NmmO mmmO
I> I> I> :_> :_> :_> I> oEomqu 2:o2oE
Km Km Km Km Km Km Km Km Km Km Km
:_I :_I :_I :_I
.3; No-91 «05 3; Fm.-m< 3; Fm.-m< 3; 3; 3; 3; 3; 3; 3; .3; «05
Om x Om Om Om Fm.-m< Om Fm.-m< Om Fm.-m< Om Fm.-m< Om Fm.-m< Om Fm.-m< Om Fm.-m< Om Fm.-m< x
x x
._I ._I
om-<_>_Om :_I :_I
«05 rm-<_>_Om _O rm-<_>_Om _Om rm-<_>_Om rm-<_>_Om rm-<_>_Om rm-<_>_Om rm-<_>_Om rm-<_>_Om «05
new h
MMQm>Umhm2m>MMH##OmmmeMOQMEEQMBZUZmE>QmOmmMOmHwmmmeB>mémémBOBE>HQ UUmO>QUUUmv>QO>rmUUUUWM fiMflBZMmQQMmABLMDM>mQ<MMB<MZZMMmm 9mmEOB>>BOmUUUUmUUUUmUUUUmm>B>QBUOUEM<§MmAmeULZUEM>OMM><BQEBV#ZZEO wwéémwmhmmmmemfihMwa EEE lflE M>mmmwaQMZZmM¢B mwmwmhMWm>meémZ¢ZMHééMmmemMOOMEQQUZM M>mm<MMB<MZZmM<B M>mm<MMB<MZZmM<B
O<>Er#MMwmmOm>EQEE<ZmLBhwmflflomQMQmEUmM>éwwwmr>QO>V mm>B>HBUOUEEMUQQBOMM><BQEBMQWZEOQMQBZMWQQMWAmaw M 20Hmmwwwwmwwwwmwwwwmm>B>QBUOUEEMUDQBOMM><BQEBV#wZEOQMQB7MmQQMWABLm0 LflmewmwmhMWm>meémZ¢7wh##MmflvUmMOOwgméwzm M O<>ET#MvUm<0M>EQFE<ZmLBLUm¢<OWQMQWEUmV>QUUDWV>QO>V 20Hmmwwwwmwwwwmwwwwmm>B>QBUOUEEMUDQBOMM><BQEBV#mZEOQMQB7MmQQMmaBLm0 LflmewmmeMWm>meém7fl7wh##MmflvUmMOOwgméwzm mflflOméMémwme>éwwwmr>QO>VmeUUWM
TQMBUODLBLEmMBmOmOMM O<>Ev#MMUm<0M>EQFE<ZmLBLUm¢<OWQMQWEUmV>éwwwmv>90>r QEBV#ZZEOQMQBZMmQQMmABLMDM>WQ<MMB<MZZMMmm merm0>wméBéflmmwwéémwmhm<m90m<QLMBUU
m<>ET90M0m<0m>E7EQMMZLBhwmflfloméMém QUMmmOUmMOO>EZmMZUWB><UBmmUOBQB>BUUmm>B Q>BQMwawh>3m7mwgé>owwv<rDrm0>wm vaflmom
U>QT<V>MW Qrmmmom m
UM>mmmwa<MZZmM¢BHO v#MBUOUhBMmMMWBQMOMMBQVQVmOémm
Qrmflm Bmfimzmz B>Brw>mmmémmmmOBEOHm MQBLQBUWUWUW VQMBUOUhBMmMVmBQMOMMBmvflvaémm
MQBLVBU B>Brw>mmmfimmmm09 VQMBUOUhBMmMVmBQMOMMerQVmOémm
M99 B>Brw>m<mfimmmmOB MQB m<>3v90M0m<0M>E7E<MMZLBLU B>wamm>BémmEOB>>BOmUUUUmUwUUmUUUUmm>B>QBUOUEM¢EMmaMWZULZUEM>OMM><B evOO>EZmMZUmB><UBmmUOBQ
BE BEBE o.
.089 .n 2829:
0m. ._pzwwmofi.x
EHEH x
.__._
_o Nm-<_>_0 Nm-<_>_0m_ Nm-<_>_0m_ Nm-<_>_0m_ mm
- .__._
m m <_>_0m_ 80
Ea EEE lflElfll M>m§MMBQMZZmM<B mwmwmhMmefime. B<MZZmM<B MB<MZZmM¢B mmmewmwmmMmmxywmmgmH/E/E. m¢<omégmwwmo>gwwwmv>3? Eewwm <5...
mafia.
HmZ¢ZMH Om Om
3.. h
mOMNVEQEEQH/Hmhmmm>B>HBUOUEE M mm Emmwwfimwmhmmmawmmimeww
MUQQBOMMNVmBQ HMmgmeOOE/fifléwzm
Q... ._..HMBDOUhBMmMMmBfl E....HMMUmmOMNVEQv/EmzmuBuwmflflomémémEUmM>éwwwmv>éO>r 20Hmmwwwwmwwwwmwwwwmm>B>HBwODEEMUDDBOMM><BQEVv .mQmewmwmhMmefiwmmémH/tfl/MH##MmflvDmMOOE/fifléwzm M 20HmmwwwwmwwwwmwwwwmmESBwowgmwwnmBowgmemmvv hEmmvwmmoowzmngm 93v.szzoimezvammmmaBumnmimmwweflwzzfiwmm
Buwmflflomémém Ev
.58.552.Ego... MQWZEOQMQBZV mflMOMHB>MQU>m<mfimmmmOBEOH< MOMMBUVQVmOv/mm
.Emmmowmv
#wZEOéMéBp/v Q...mflMOMHBNVMQDNmemHmmmmOB ._..HMBUOUMBMAMMVmBQMOMMBDVQTmOEmm .szzoSEH/v ._..Eewowmemmwvmemmowwew” m5.Fmmmoe>>eomwwwwmwwwwmwwwwmmESBwowgwmgwg .EB.
UM>m§MMB<MZZmM<BHO EUmMPHUUDm wmzw. E98855
mQQMm mQQMmA mammma .nvmozmm Ea.
.92 >QO>V . B.
umw BEEN—QED Bumw HEB E?#MvUm<0M>EQFE<ZmLBLUWflflOWQMémEUmM>éwwwmv>éO>v Ema Q...mmmomHEmmgmmmqmmmmoe B. E M25»....EmwmmomNVE/zmmmzhaw u7wmm>o§>§ oo>zz§zwme><wemmwoeq EBCE szmz wmimfiwngzgzfio
IIIII BE BE E
05835 2:029: Fmoor> «moo
_._>
.:. -Lzrmm. -9
.__._
wu_-m0 Sm.
- - - - - 8.0
WM x érrrmom wu_-Nm_ om w“.-mm_
Ea x
.__._
.2... 8. mm- mm- vm
- mm- .__._ - -
m Im _ <_>_Om_ <_>_Om_ mm-<_>_0m_ moo vm<§om <28
E me «3
M>m<¢MMBQMZZmM<B MBQMZZmM<B M>m<¢MMBQMZZmM<B hQmewmwmhMWm>me mflflOméMémwme>éwwme>é QEBV QVQV
#ZZEOQMQBZMWQQMWABLMD HB_H¢<MOO
mmm>B>HBOOOEEMOQQBOMM>¢BQEVv mwmwmhMWm>wBE;HmZ¢thHHMmmMOmMOOwgméwzm Om Om 9m
E...- EV 7&7
M SOHmmwwwwmwwwwmwwwwmm>B>QBOOUEEMUfl hmmewmwmhmmm>meémZ¢7whééMmmvOmMOOMEQQOZM M...- 20Hmmwwwwmwwwwmwwwwmm>B>QBOOUEEMOfl
V:MMOm<Om>EQEE<ZmuBuOmflflomHmHmEOmM>:OOOmV>HO>V O>VWUUUUWK ##mOmmMflmaOmflHmMwa
Q...- M>mQ<MMB<MZZMMmm
mflmom VQMBDODhBMmMMmBflV QMMOm<0M>EQFE<ZmLBLOWflflOWQMémEOmM>QOUOmV>QO>V QBOMM><BQEVV MHQQMmmvmeOOMEQQOZM
QV #MBUOUhBMmMV QMVOm<0M>EQFE<ZmuBuUmflflomHmHmEDmM>QOOUmV>QO>V QBOMM><BQEVV .9MBOOOhBMmMV #OMmmmev m<>3 é>
EZM HB>MQU>W¢WH omw VmZSQEVE/v m<m0<H9>MQD>m<mfimmmmOB mBQVOMM
mflVQVmOV
mBQVOMM
<VQ VmZSQEVE/v QVm<m0<H9>MQU> QVQ Véwvwm<0m>3 MZUmB UOh>EM
mQQMmABme mmmmOBEOH< mm VmO_Hmm :3.
den-m BQBLQBO _V
B_HB mQQMmthmw mmmfimmmmOB mQQMmABme E E 7E¢MMZ_AB_AD B>wamm>BémmEOB>>BOmDDODmUOUOmOOOOmm>B>fiBUOUEM£EMmaMmZO_u7OEm>OMM>mB ><UBWWOOBQ m:E_H>O%%E QEEflZ OM>m§MMB<MZZmM<BHO BMmMMQBV”
a fl
mmmO meO NmmO wmmO NN—Do
I> -_> -_> oEomqu 2:029: I> I>
-2 -2 -2 -2 -2 -2 -2 -2
-_I -_I -0N-_‘ -0N-_‘ -0N-_‘ -0N-_‘ -0N-_‘ -0N-_‘
:m. wm-Nm :m. wm-Nm :m. wm-Nm :m. wm-Nm :m. wm-Nm :m. wm-Nm :m. :m. «05 rm. rm. rm. rm. rm. rm.
Om Om Om Om Om Om Om wm-Nm Om wL-Nm x Om mm-mI Om mm-mI Om mm-mI Om mm-mI Om mm-mI Om mm-mI
vm-<_>_Om vm-<_>_Om vm-<_>_Om vm-<_>_Om -_I
mam wmm mmm mam ham wmm
M>mgwaQMZZmM¢B M>mgwa<MZvammB B<MZZmM<B B>wam 4.-
m>B_
m M>MH<WWB¢WZZWM¢B
Oflxfisr#MMUmflOMNVEQEEQH/HmhEuUmflflOméMfimwmePHmwwm__->_HO>__- MWm>wBE_kWh/734%H_H_2Mm§DmMOOME<éDZM
mm>B>QBwOUEEMUQQBOMMNVQBQV”-v#mZEOéMQBZMmQQMm-fifiumw O<>EV O<>Er
M #MMUmflOM UmmOM
>3Q73¢th
EOHmmwwwwmwwwwmwwwwmm>B>fiBwOUEE
M >EQFE<ZWL
miomégmwwmoiwwwm:50>..-mwwwwmm EOE>>BOWDUUUWU®UUWUDUDW m0>wm#BéflgwwéémwmhmmmmemfluMBUU mwmwmhmmm>UBE_HWZflZWHPPMMQMDMMOOWEQPUZM M
Q? ”-_HMBUOUhBMmMMéBn-n Eu EOHmmwwwwmwwwwmwwwwmm>B>QBUODEEMUDQBOMMNVQBQV .mQmewmwmhMmewaH-HémH/EH/MH##MmflvUmMOOE/fifléwzm MUDDBOMM><BQV .mQmewmwmhMmmNVUE-Hémh/flH/MH##MmflvUmMOOE/fifléwzm ”-_HMBUOUhBMmMV 35290005va 0.2522229232728me2.3022832223222283
fl..- fl.-
OmH Umflflo (v ._-
v #Dmnmmmvwmv mW>B>QBUOUEEWUQQBOWWNVQBQEBV anmmmom
B>MQU>m<mfimmmmOBEOH< __ Euwmflfloméw .1. 0222?.va m>B>fiBUOUEM£EMm Q>BQM
__ #mwwmvfia __ __ Mmzw_u7wmm>0%%><9 OO>EZmMZUmB><DBmmUOBQ BUDDh>EM
Hmwwm meE/m H__
7m ”-_HMBUOUhBWMWMQ-B?TOWWBQHTQTMOPWW
__- __ EEE gin-222232229223
OQNVETPMMUAMQOMNVEQEEQZWLBumumanflomg-mg-mEUMMNKHUUUW.__-
BEEN—QED >_ -_-
>..- mQQMm-fiEn—mw mflmfimwmmOB >90?- MEQ>OMME PMZEOPWPBZMWQQMWAEMM MPEMT
Eumw _
__ B>BHTU>WQWPWWMWOBEOHQ
0.28ng 2:029: BEIEEBEBEBEfl!!
ION-w -ONé -ONé -ONé .__-_ .__._
rm— rm— rm— rm. umwuwww umwuwww
Om mM-mI Om mM-mI Om mM-mI Om. 8. «00 mwur
X -mr-wwm-me. -mr-wwm-rorm. m-rorm. -mr-wwm-rorm. 0m wu— 0m mwur—‘H—
x.__-_
mm-<_>_0m mm-<_>_0m _0m 8.328. .__._
moo llll8-320 8320 8320 8320
m m m m ©m|<_>_om ©m|<_>_om
M>mm¢MMB<MZZmM<B aQMZZmM¢B M>m§MMB<MZZmM<B M>m§MMB<MZZmM<B
O<>Er 20Hmmwwwwmwwwwmwwwwmm>B>QBwOUEEMUDDBOMMxfiflBQEBV LflmewmwmhMmmxwamémH/cfl/MHQQMmEUmMOOMEdflémfl/Hm Oflxfisr 20Hmmwwwwmwwwwmwwwwm$959803:30335299va.57 gmfimm>gemgm7<7fieEmmmwmmoowzngm mdnmomégmwwmggwwwmv50>:$8me 93vgzzzoimezvammmgBummmimmwwngzfiwmm $9,mafia.Eéiwwémwmhmmmawmmimeww Om
#MMUmflOMNVEQv/EQZWL M
__ #MvmwmmmumeEQEEdE/Hmh mwmwmhMWm>wBE_HmZ¢ZMHQQVHmEUmMOOE/fifléwzm M
Euwmflfloméw Dr .mQBUWUWUWMMmmNVUBmémH/cfl/MH##MmflvUmMOOE/fifléwzm M
Q? #MBUOUhBMmMV ”ZHMBUOUhBMmMMQBVV Q, UMBMmMV mflmomH Er#MMUmQOMNVEQv/EmzmuEuwmflflom. 20Hmmwwwwmwwwwmwwwwmm>B>QBUOUEEMUDQBOMMxfiflBQEVv
__ #MvUmmOm>EQFE¢ZmLBhwmflfloméw iEewomevagfix #25»ng Euwmflflomégkm __
#mEUmv __
_ ”TOMM
__ __
>QUUUWV>QO>V U>w<mfimmmm09 __
mQQMmAEumw Hflvaémm owweflhvmogmm EUmMPHUUUm mnvflrmOémm
__T mrflvaémm
MEH >_HO>__T mammmghmw w>m<mqmmmmoe ME >372<§Z§$ HEREm5.Hmmmoe>>eomwwwwmwwwwmwwwwmmESBwowEEEmammzwéwmgowgme gwmnwmowmvogzzazwmgmwemmwoeq éEEwawEEM7mwzg>om§ EEE §wzz§<93 mm>B>QBUOUEEMUQQBOMMNfiflBQEVv#wZEOQMQBH/EWQQMWAEAM
__ #mEUmMPHUUDWVPHONVV
H B>MQw>mflmfimmmmOBEOHm BEEN—QED OQMQBH/MWQQMWABLMU Q?mmmomHwamqwxwmmmfimmmmOB B9B
0.28ng 2:029: BE“EEEE
-mwé -m -m
.__._ Tr Tr -mwé
mm-:u_ -Mflwwmfim rm— rm— rm— rm—
Om «max -mEWMM -SéwwwM -miwwwM -miwwwM M Om mmTNm Om mmle Om mmTNm
x.__._
@m-<_>_0m_ mm-<_>_0m_ .__._
moo $-<_>_o $320 $-<_>_o o $-<_>_o
m m Fm-<_>_0m Fm-<_>_0m Fm-<_>_0m_
$5 Nwm
M>mgwa<MZZmM¢B Eonmwwwwmwwwwmwwwwm$959083:wwnflmeowfifiemmv52/355559meEma mmewmwmwmmm85959;?gimmmwmmoomgfiwzm 25w§$8$>68$28>:$8me zoimezvammmgBummmimmwwngzfiwmm HEREmigmmmoe>>eomwwwwmwwwwmwwwwmm>e>qewowgwmgwmawmzwazwmgomgme mfié/Eww.Emwmhmmmawmmimeww M>m§MMB<MZZmM<B mwmwmhMmefime.HmZ¢ZMHQéMmmvmmeOOwgmémfl/Hm M>m§MMB<MZZmM<B M>m§MMB<MZZmM<B
Om Om Om
m<0m>EQFE<ZmLBhwmflfloméw#mEmeMPHUUUWHLVQONVV Ev
#MvmwmmmumeEQEEdE/Hmh mm>B>QBUOUEEMUQQBOMMNVQBQEVv M
M 35035080250me50>:$00me
Dr ”ZHMBDOUhBMmMMQBT .mQmewmwmhMmefiwmmémH/tfl/MH##MmflvUmMOOE/fifléwzm mmmewmwmmmmm>wm:_57<75655$wmmoomgmngm mmemgzzzo_;§§mmmm3Bummmimmwwefizzfiam
fliewowhimgfivnbfi
Q,mmmofigmmgmmmqmmmmoe M25?ngwmmomxéh/zmmmzfihw wmmogézazwmEmwemmwoeq EuwmflflomémémEUmMPHUUUmr mmmov Q? Q,
éaEewwwggmiEgg? __7 EV#MMmUmQOMNVEQv/EmzmuEuwmflflom. SOHmmwwwwmwwwwmwwwwmm>B>HBwOUEEMDDQBOMMNVQBQEVv ”TQMBUOUhBMmMV 20Hmmwwwwmwwwwmwwwwmm>e>qewowgmwwmmBowgmemmvv E98858? M25?
wm>m§§§wzz§<93 #wZZOQMQBZv HB>MQO>m<mHmmmmOBEOH< __ EV#Mv0m<OM>EQFE<ZmLEuwmflfloméw __
FOQMEHH/v __ mmmov
#mEmeMPHUUUmVPHOET __
«539% DrmOv/mm HB>MQO>m<mfimmmmOB H__
mQQMmA owwewvnflvmozmm mOEmm
BE 92222 ELM
__ BEEN—QED mQQMmAEumw >_HO>__T mammmghmw >m<mqmmmmoe wmmom>37z§szLw
058ng 2:029: Eco $50 &mn_o
_._> _._> I> 0.28ng 2:029:
-mfimwM .945. .945 -m -m -m -m
.__._ -mEE .2; Tr Tr Tr Tr -mwé -m: .__._ .__._
8m: mm_&0 mm_&0 mm_&0 m. mm.&0 rm. mm.&0 rm. rm— rm— rm— E
0m. 0m. um Om. 0m. 0m. mm.&0 mm—Lmo mm—mev Om Om Om mm—mev 0m. 8&0 80x
x.__._ x
.__._
$-<_>_om_ mm mm mm mm
.__._ - - - - .__._
&n_o ll<_>_om <_>_o <_>_0m_ I<_>_O wm-<_>_0
m wm-<_>_0m_ wm-<_>_0m_ wm-<_>_0m_ wm-<_>_0m_ wm-<_>_0m_ &n_o
Em NE mnm whm mhm whm N
B>wamm>BémmEOB>>BOmUUDUmUDUDmUDUDmm>B>HBDODEM¢EMmaMWZULZDEM>OMM><B QVQVm0>0m999¢<¥0®99m0mhm<mHUmQHLMBDU MUM>WQMMMZQDDWB mwmwmhmmm MUM>WQMMMZQUUWB mwvfiymmmwwzmwwme zzmfiwmezvammmmaBumgxymmmmeE/zmmmm $9.me
maggomwwwwmwwwwmwwwwm 5m.E.E/Eww.Emwmmmmmewmméumeww
#DMmmOUmMOO>EZmMZUWB><UBWWUOBH
MHO>MBUmDLBLm UmULBLm mqmwwmo>_50wmv>_6>__,m88m§g>§0mfl§$ m>9>qewowz§§m
Q>BQMBDUDh>EMZWMEQ>OMME In
wwwmwwwwmwwwwm$95$855wmmwmwwmmmgwfifiem a
UM>WQMMMZQUUWB InIn!E!E m<>EV90M0m<0m>3<7QMZmLBLUWflflOWQMémmme>>DDUmE>QO>O mm>B>HBUOUEMQhDMWUQMMQEM>OMM><BQEflMfiWZEOQMQBZMflZQMWABL WflUM._._hHMmmmeMOOMEflKfi/HHU>w0m§0m99<mflmwm WUMOQOMM><LQVWOQWW mwmhmmmAUBEMmewwH##MmmmeMOOMEQ>7HU>w0m¢MOmQB<MEUmm>w2m<mmOBE> mDMOQOMM><LDHmOémm Egg/3.555229 m395223FeEmmowmmoowEQE/Hw>mom§om5<mmwmm>mzm<mmoez> wwwogowgfimvmogmm
m>w2mflmm092> BQBLVB BQBLVBUWU 93;?gwmwmmoggfiéwzmuEmmdnmomgmgmwwmo>>wwwmm>8>o ma mmzwéwmgowgmemmfi
m m<>EV90M0m<0M>E<7QMZmLBLUWflflOWQMémMUmO>>UUUmE>QO>O wwwmwwwwmwwwwmm>B>QBUOUEMflhUMmUQMMQEM>OMM>¢BQEflMém7FOQMQBZM<ZQMmaBL rmw 5 ”,mw Egaéwmw 5.53:gwmwmmomxéh/zmwmzhE53433 gz _memmowmmogzzazwmEmwemmwoquemuwm éaEewwwEEy7mwzg>o§vmvmvmo In‘
E NN—Do
I> E E E: 0.28ng 2:029:
E -mOm -mmvm dummmwmm .__._
No-5 ND- a
Om 5 Om. a 80x No-5
x.__._
g mm
- - -
<_>_Om E .__._
o _0m_ mm-<_>_0m mm-<§0m mm-<_>_0m_ moo
IaI I
MUMNVWQMWWZQUUWB wwmwmummmAUBEMZWQUW._._._..HmmmOUMMOOWEflKfi/HHU>WOWEOWPB>M~EUMm>m_._._HmmmO_HE MUMNVWQMWWZQUUWB mwvfiwmQMMMZQDUmB MfimwmexwéwwwmrxwéOxwr
T mW>B>HBUOUEWaflhUWWUQWMQEMEVOWWNVQBQEQMPWZEOPWPBZMWZQMW._.Ba..— mmxfi/ET mwmummm._.mUBEMmeUW._._._..HmmmOUMMOOWEQNfi/HUNVWOWQMOWPBNVMEUMW>WHBQMWOBE mmxfisr
MHQ>V WUUUUWMHQ>V >0m.EH.finflvmwmwhkmwmhmmmbmméuMwa
._.mUMmemOMNVEmv/QWZWLB2..—UmflflomrrmrrmmwnwmuxfiwwwwmE>PO>O MHHKVMBUMULEMM PUMUMQOMKVEQFQWZWLBumumanflomgwmémflUMONKVUUUWENKHONVO UUUWUUUUWUUUUWW>B>HBUOUEWQFAUMWUQWWQEMEVOWWNVQBQEQM.HW770§WPBZMWZQM .Hmunwmyufium BUmULEn—m ZEOHMflHZMmQQMmAB_um0M>mQ<%%H¢%H/Z%Mmm
WWNVQLQVWOPWW WWNVQLH; mUMOéowwxfifin—flv Q>BQMBUUUh>EM
wvgmmmmwzmwme 7m
WOPWW mOémm
Mmhwwmwmwwmm Q>sz>mom§ 9523.6 WUWOPE
wwwmwwwwmwwwwmm>B>HBUOUEM§mDMWUQMMQEMNVOMMNVQBQEQMémH/FOQMQBZMWZQM mwmhmmm._.UBEMmeDM._._hHMmmODmMOOMEQNfi/HU>w0m§0m99>mflmwmm>mHB<mmOBE> MEQNVOMMVQV wvgmmmwwzmwme
._.. m._. m>BémmEOB>>BOWUUUUWDDUUWDDUUWm>B>HBUOUEM£EMmaMmZU_u7DEm>OMM>mBQEBV Q?
__ 995%me WAEM m0 B_._._H_uflvmwmmu éwvmwmmmuwxwgmv/QMZWLBhwmflflomégkmwDm0>>UDUmE>QO>O BéBhvmwmw B.“— ._me mmxfis?éwvmwmmmvaVEH/EMMZLBhwmgomfi #Z #UmnmmOmeMOONK/E/EMZUmewmmemUOBQBNVBUUm m0 Mmhwwmwmwwmm Q>ZHU>mOm§
aa maE
NKDO «moo Ego «moo oEowqu 2:029: N50 NmDO «moo meO
I> I> ._> ._> I_> I> I> I> I_>
-mmvm -mmvm -mom -mom I_I I_I
No-5 5-5 B- 5. Immvm
No-5 NOI Immvm Immvm -mmvm MOO -mmvm VM. -mmvm VM. -mmvm VM. Immum
Om. Om. om. om. a a 0m rm 0m NOI—‘O 0m NOI—‘O Om. NOém x Om. 5 Om. 5 Om. 5 Om vmém
ow- ow- 8- 8- O©I O©I O©I rm
I_I rm- rm- rm- -
<_>_Om_ <_>_Om_ £28 £28 <_>_Om <_>_Om <_>_Om _Om MOO <_>_Om_ <_>_Om_ <_>_Om_ <_>_Om_
MUM>WQMMMZQUUWB MUM>WQMMMZQDDWB mwM>mQMMMZQUUmB mwvfiymmmwwzmwwme
DmULBLm Mfimwwm0>éwwwmr>90>rmDUDUWMHQ>VBDmULBLm ZEOHMflHZMmQQMmABLMDM>WQ<MMH<M7ZMMWM 5m.E.E§w©Emwmmmmmewmméumeww
MHQ>VBUmULBLm
WUMOQOMM><LDHWOQWW WUMOQOMM><LDTWOQWW
WUMOQOMM><LQVWOQWW
$223.6 8839 m<>EVéwammOm>E<FQMZmLBLUWflflOWQMémmme>>UUUmE>QO>O BUOUEM¢hUMmUQMMQEm>OMM>flBQEWMQWZEOQMQBZMWZQMWABL mmmAUBEMZWQUWHPPMMQOUMMOOWEQ>ZHU>WOWQMOWPB>MEUMW>WPBQMWOBE> BQBLVBU m<>EVéwammOM>E<7QMZmLBLUWflflOWQMémMDm0>>UDUmE>QO>O wwwmwwwwmwwwwmm>B>fiHwOwgwmhwwWUQMMQEM>OMM><BQEWMQW7FOQMQBZMWZQMmth mwmhmmmADBEMZWQUMHQQMmmOUmMOOMEQ>7HU>WOW£MOWQB>MEUmm>mHB<mmOBE> wwwmwwwwmwwwwmm>B>HBDODEMQhUMWUQMMQEM>OMM><BQEWMQW7FOQMQBZMWZQMmth mwmhmmmAUBEMZWQUMH##MmmmeMOOMEQ>7HU>w0mflmoméB>MEwmm>wHB<mmOBE> m>BémmEOB>>BOWUUUUWUDUUWDDUUWm>B>HBUOUEM£EMmAMWZUL7DEM>OMM>QBQEBV#Z BQBLVBUWD m<>EV90M0m<0M>E<7QMZmLBLUWflflOWQMQmMUm0>>wwwmi>90>0 BéBhvamw m¢>EV90M0m¢0m>E7EQMMZLBhwmmflomfi _memmowmmogzzazwmEmwemmwoquemuwm Q>BQMBUUUh>EM7mMEé>OwwvflVQV wmimmfizmwwme
_ 2mm _
H rmw m wmmwmmwmwwmm LEla gwmwmmogzmzmwzmuBuwm¢<omgmgmmwmo>>wwwm.8596 aa la
«moo «moo meO «moo
.5 ._> ! ._> OEOQWE mEoQoE I> _._> mmo01> 88 88 88: a!
-mom -mom -mmvm -mmvm Immvm -mom Immvm
om. film om. film vwém Imomom E- Om. 5 -mOmOm vwém Om. JIVMém £LMDOX Om owm-Nm om owm-Nm Om Ema». 83- owm-Nm 8 owm-Nm 83- owm-Nm 5&me
-328 E rm 5-328 XJIVQ<§Om N© mm
- I - -
<_>_om <_>_Om_ w9<§0m JIMDO <_>_Om <_>_om N@-<_>_0m_ :8- 888- :8- N@-<_>_0m_
m5 EEEa
MMMZQUUWB
mm>B>QBUOUEM<hUMW mwmwmhmmmADHEMZWflDMHQQMmmmeMO wwwmwwwwmwwwwmm>B>HBDOUEMQhUMW mwmhmmmAUBEMZm<DMHQQMm<OUmMOOM MUM>WQMMMZQUUWB 0>éwwwmr>90>rwwwwmeHQ>v ZEOHMQHZMmQQMWABLMDM>mQ<MMHQM7 >UméBéflflMwwéémwmhm¢mmeméhMwa mwM>QOmeHQUMBm MUM>WQMMWBHQUMBW
MHO>MBDmULBLm MHQ>V wwwmwwwwmwwwwmm>B>HBDODEMQhUMm mwmhmmmAUBEMZWflDMHQQMmmODmMOOM mwmwmhMWm>UQOfimm<U%H_H_HMm£MmeO M
DQMMQEM>OMM><BQEQMQWZEOQMQBZMWZQMW>BM OMEG>ZHD>WOW¢MOmQB<MEDmm>méB<mmOBE> BUmULBLm BUmULBLm ZMMmm ZM
WUMOQOMM><LQV<OQWW mUMOQOMM><Lflanémm WUMOQOMM><LDV<OQWW
BQBLVBU m<>EV90M0m<0M>E<7QMZmLBLUWflflOWQMémMUmO>>UUUmE>QO>O M>OMM><BQEQMém7FOQMQBZMmZQMm>Bh EQ>7HU>mOm£MOmQB<MEUmm>mfi9<mm092> M>OMM><BQEflMém7FOQMQBZMmZQMm>Bh EQ>7HU>mOmmMOméB<MEUmm>mHB<mmOBE> mm>B>QBUOUEM<hUEMQBMWQOMflOMM>¢BQEflMémZFOQMQBZM<Zfl n90M0m<0M>E<EQMZmLBhwmflflomQMQWUUmO>éwwwmr
Vmw m>BémmEOB>>BOWUUUUWUDUUWDDUUWm>B>HBUOUEM£EMmAMWZUL7DEM>OMM>QBQEBV#Z QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm Q>BQMBUUUh>EM7mMEé>OwwvflVQV £20
Vmw BéBLvBUmU m<>EV90M0m<0M>E<7QMZmLBLUWflflOWQMémMUmO>>UUUmE>QO>O BQBLVBUWU m<>3v90M0m<0m>E7E<MMZLBhwmflflomfi UM>WQMWWBHQUMBWHW MthEMQBMMQO !mmm>3v90M0m<0m>E<EQMZmLBhwmflflomQMQWUUmO>éwwwmv ”mg QTmflMOBHB>BQU>m<mfimmmmOBEOH< _>MBDDUhBHmMMMWOOOMMB<_TQ7mOémmHBQBMQBU flflE BHmMMMWOOE
oEomqu 2:029: E00 NN—Do MED—O $50 «moo >
_._> I> I> .5 g ._> El0w
Km- Km- Km-
-mmvm JPIowmmuNm Km-
v<m v<m v<m v<m v<m 3% 3%
Om. w
x 0m. Om mo Om w 0 0m. 0IOm. om w0 om o mo -5458 wO
N@-<_>_Om_ N@-<_>_Om_ N@-<_>_0m_ mm- m0- m0- mm- g $- $- mo
._I - I
«DO «Sum <_>_Om <_>_Om <_>_Om_ <28 <28
54 3285 a
wwwmwwwwmwwwwmm>B>HBDODEMQhUEMQBMWQOMflOMM>¢BQEflMém7FOQMQBZM<ZDMWABL mwmhMmm>DQOHmmmwwkééMmmmmeOOwgméwzw MUM>QOmeHQUMBm mwmhMWm>DQOHmmmwwkééMmmMUmMOOwgméwzw MUM>WQMMWBHQDMBW mwM>QOmeHQUMBm MUM>QOmeHQUMBm
M m0mmem>UQOfimmmwwhééMmmMUmMOOwgméwzw Mfimwwm0>éwwwmv>90>vmUUUUWM ZEOQMflHZMmQQMWABLMDM>WQ<MMH<MZZMMWM >UméBéflflMwwéémwmhm<mmeméhMwa mwmwmhMWm>UQOfimmmwwhééMmmemMOOwgméwzw M
QTmflMOBHB>BQU>m<mHmmmmOBFOH<mU u>MBUUUhBQmMMMWOOOMMB¢VDHmOémmHBQBMQBUmD mm>3v90M0m<0m>E<EQMZmLBLUWflflOWQMémUUmO>QUUUmVQQO>V wwwmwwwwmwwwwmm>B>QBUOUEM<hUEMQBMMQOMQOMM><BQEflMém7FOQMQBZM<ZDMWABL Q?mflMOBHB>BQU>m<mHmmmmOBFOH<mU n>MBUUUhBHmMMMWOOOMMB<70vmOémmHBQBMQBUmU m<>3790M0m<0m>E7EQMMZLBhwmflflomfi m>BémmEOB>>BOmUUUUmUUUUmUUGUmm>B>HBUOUEM£EMmaMWZUL7UEM>OMM><BDEBV#Z QUMmmOUmMOO>EZmMZUWB><UBmmUOBQB>BUUm Q>BQMBUUUM>EM7mMEé>Owwv<7Qvm0 UM>WQMMWBHQUMBmHm Mmhwzwfl mm>3v90M0m<0m>E<EQMZmLBhwmflflomQMQWMUmO>éwwwmv mm>B>QBUOUEM<hUEMQBMWQOMflOMM>¢BQEflMémZFOQMQBZMmZfl n>MBUDUhBQmMMMWOOOMMB¢VQVmOEmm v>vBUDUhBQmMMMWOOOMMBQVQVmOEmm 0M0m<0M>E<EQMZmLBLUWflflOWQMémMUmO>QUUUmV wwwmwwwwmwwwwmm>B>HBUOUEMQhUEMQBMWQOMflOMM>¢BQEQMQWZFOQMQBZMWZD
MMQO Q.mmm QOfimmmw BQmMMMWOO QTmflMOBHB>MQU>m<mHmmmmOBEOH< U mm>ET90M0m<0M>E<EQMZmLBLDWflflOWQMémMDmO>QUUUmrQQO>V wwwmwwwwmwwwwmm>B>HBUOUEM<hUEMQBMMQOMQOMM><BQEflMémZFOQMQBZMmZDMWABL DrmflMOBHB>MQU>m<mfimmmmOBFOH<mw BQBLQBDWU
oEomqu 2:o2oE wmoo Nmoo
I> I> oEomqu 2:o2oE
-Nm-v<m I-Nméd‘mUm. Km
v<m -Nméd‘m :_I
:_I «00 -Nm-v<m :_I
Om. a «00
no m
x 0m. o I-Nméd‘mOm. ‘mUm. I-Nméd‘mUm. I-Nméd‘mUm. mo o 0m. m0 Om. m0 x
x x
._I :_I
M©-<_>_Om_ vw vw
:_I _0m_ - - :_I
«00 <_>_O
m_ <_>_Om_ V©-<_>_Om_ «00
_‘ Nam m V m w
mm mm mm mm mm :6 mam
mwmhMWm>UQOHmmmwwkééMmmMUmMOOwgméwzw Mfimwwm0>éwwwmr>90>rmDUUUWM ZEOQMQHZMWQQMWaBLMH m>BémmrOB>>HOmwwwwmwwwwmwwwwmm>B>HBUOUEM£EMmaMWZULZUEM>OMM><BQEBV#Z >UméBéflflMwwéémwmhm<mmeméhMwa mwM>QOmeHQUMBm m0m0mmem>DQOfimmmwwhééMmmemMOOwgméwzw mwM>QOmeHQDMBm m0mmem>DQOfimmmwwkééMmmfimeOOwgméwzw MUM>WQMMWBHQUM Mfimwwm0>éwwwmv
B mwmhMWm>UQOHmmmwwkééMmQMUmMOOMEQQDZM NV.
mm 5?, ZEOQMflHZMWQQMWABLMfl
MMHQMZZMMmm M WUUUUWM
n>MBUUDhBQmMMMWOOOMMB<rQVmOEmm M M>WQ<MMH<M7ZMMWM >UméBéflflMwwéémwmhm<mmeméhMwa
QTmflMOBHB>MQU>m<mHmmmmOBEOH<mD BQBLQBDWD 0M0m<0m>E7E<MMZLBhwmmflomfi QUMmmODmMOO>EZmMZUWB><DBmmUOBQB>BUUm Q>BQMBUUUM>EM7WMEQ>OMMv<VDrm0 In mm>3v90M0m<0m>E<EQMZmLBhwmflflomQMQWUUmO>éwwwmv mm>B>QBUOUEM<hUEMQBMWQOMflOMM>¢BQEflMémZFOQMQBZMmZfl
s wmimmwmfimwmegm wmmwzwmewwmo mmm BHmMMMWOO DrmflMOBHB>MQU>m<mfimmmmOBEOH< n>MBUUUhBQmMMMWOOOMMB<vQVmOémmHBQBMEBU mm>ET#UMUmmOM>E<EQMZmLBLDWflflOWQMémDDmO>QUUUmTQQO>V wwwmwwwwmwwwwmm>B>QBUODEM<hUEMQBMWQOMflOMM>¢BQEQMQWZFOQMQBZMWZDMWABL Q?mflMOBHB>MQD>m<mfimmmmOBFOH<mw r>vBUDUhBHmMMMWOOOMMBQVQTmOémmHBQBMEBDmD >3?éwammOM>EmEQMZmLBLDm¢¢OWQMQWDDmO>QDDDmvQPO>V wwwmwwwwmwwwwmm>B>HBDODEMQhUEMQBMWQOMflOMM>¢BQEflMémZFOQMQBZMmZDMWABL QTmflMOBHB>MQU>m<mHmmmmOBFOH<mU {>vwathfimwMMWOOOMMBvaVmOémmHBQBMEBUmU m<>3r90M0m<0m>E7E<MMZLBhwmflmomfi m>BémmEOB>>BOWDUUDmUUUUmUUDDmm>B>HBUOUEM£EMmaMmzwhzwmm>oww>mBflEBMéz QUMmmOUmMOO>EZmMZDWB><UBWWDOBQB>BDUm
aEa!E
if «moo «moo $50 «moo
_._> _._> :_> ._> oEomqu 2822:
ii -Ség -Ség -Nméd‘m :i H-543 -543 .__._
:m. :m. :m. :m. _‘ 80
om om Om. _m_ om :m. om :m. -N@&<m0m :m fim X
x.__._
is mm mm mm mo
- - - - is- 3.328. - .__._
£28 £28 <_>_Om_ m. <28 m®<§0m m@-<_>_0m_ 80
lfll lflElfll mwvfiwmflmmeHQUMBm mwmwmhMmmeQOfimmmwwfi MUMNVWQMMWBHQUMBW mwmhMWm>UQOHmmmww._.éévwmmvmmeOOwgmémfl/HM mwvfiwmflmmeHQUM mammmmgwmoqmmmwwhaEmmmwmmoowgfiwzw £889.
50me
mm>B>QBUOUEM§mDEMQBMMQOmmowwxfiflBQEflMémZFOQMQBH/EQZD Hm .>.
éwvmwmmmvm>gmzflwzmuEuUmflflOméMfimwmePHDUUm_.T .
h mmxfis?
HMmgmeOOwgmémfl/HM M $8me
_ _.T>v QUMUmQOM ...>v zzmfiwmezvammmmaBumgxymmmmeE/zmmmm 5m.E.E/Eww.Emwmmmmmewmméumeww
908m
mEgo?
>E<EQMZmL Q.
Q? .>MBUUU.mBHmMMEmU<OMMB<H wwwmwwwwmwwwwmm>B>QBDOwEM<hUEMQBMMQOMflOMMxfiflBQ wwwmwwwwmwwwwmm>e>qewowgw§wzwmwamommowgmem $9.5mmoe>>eomwwwwmwwwwmwwwwmmESBwowgwmgwg 95wa
EflM. QmMMEmDQOMMBQVH.” Em. $5394. wmzw.
A .EEEwawEEM Bhwmflflomém.HmUUmOPHUUUm_.T
u7wmm>o§>§mm5 733503;...9.
$2. wwiamfifimwmegm ”mi . mflMOBHB>BQU>m<mfimmmmOBEOH< TQVmOémWHBQBMQBU mmxfisréwvmwmmwawgmv/EMZWLB.“—UmflflOméMémwmexwéwwwm_.T990?} kWh/FOQMQBZMQZDMmth Q?mflMOBHB>BQU>m<mfimmmmOBFOH<mw mOémmHBQBMQBDmU ##Oxwv 575.5.Eszmznmmfih .mmmofiB>Ew>m<mqmmmmo§9<mw ._.mogmmflgewmewmw 5.53....EmwmmoEVE/Emwmzh9.53.53 .Hz .memmowmmogzzazwmEmwemmwoSBEwwm MMWBHQUMTHWHW
IIIIIa$50 BE BE 0.28ng 2:029: Ego NN—DO
I> _._> I>
-Nméd‘m -Sévwwnmu -SévwwM -Nm-.v<m Ema—slim Ema—ads” -quva .__._ -543
fiYwO Om TmeO 8.0 6; M 6;
Om. TmeO Om Om w0-w0 WM x om m. 0m m.
gum x
.__._
mm .. 8- ..
- .. mm- mm- mm- .__._
<_>_Om_ <_>_o
m I m <_>_Om_ <_>_Om_ <_>_Om_ 8-328 80
EH OmeHQUMBm MUMNVQOmeHQUMBm mwvfiwmflmmeHQUM $9.me
mmxfis?QUMUmQOMNVEQEQMH/HmhBhwmflflomQMQWUUmOPHUUUm__T mm>B>QBUOUEM§mUEMQBMMQOmmowwxfiflBQEQMQWZFOQM.EHZMWZO mwmwmhMWm>UQOfimmmwwHQéMmmvmmeOOwgmémfl/HM mmxfis?
M mqmwwmo>_50wmv>_6>__,$8me
M maggomwwwwmwwwwmwwwwm
__ mmxfisréwvmwmmwafi/fiflzflwzmuB.“—UmflflOméMfimwmePHUUUm__T990?} wwwmwwwwmwwwwmm>B>HBUOUEM§mDEMQBMWQOMflOMMxfiflBQEQMémH/FOQMQBZMmZDMW._.Eu www.mMmmEVUQOfimmmwwHQéMmmMUmMOOE/fifléwzw QUMUmQOM mammmmgwmoqmmmwwthmmmwmmoowgfiwzw zzmfiwmezvammmmaBumgxymmmmeE/zmmmm T>V 5m.E.E/Eww.Emwmmmmmewmméumeww
>MBUUUhBQmMMEmUQOMMQflTQVmOémmHBEHMEBU Q? >E<EQMZmL
Q? mflMOBHB>MQD>m<mHmmmmOBFOH<mD BUUDhBQmMMEmwmowaQVQ mESBwowEEEm
DEMO Bhwmflflomém.HmUUmOPHUUUm__T
_, mmzwfi/wmgowgmemmfi
_ mflMOBHB>MQU>m¢mHmmmmOBEOH¢ 3on mi Smwmmmwm mOémmHBQBMEBDmU ##Oxwv wwwmwwwwmwwwwm$95908szszwamommowgmemmmm.575.;EszmzmmmaE Q,mmmofiB>mmw>m<mqmmmmo§9<mw :5wawmequwmwmowwemvfi,mogmmEQEEmew 5.53:gwmwmmomxéh/zmwmzhE53433 gz _memmowmmogzzazwmEmwemmwoSBEwwm wEEM7mwzg>o§vmvmvmo En‘ wwiamfifimwmegm 92m
a5 a
«moo Eco «moo
_._> ._> 5 ._> 0.28ng 2:029: E: BElfllBEBE
swim -543 -2; wOé swim wOé Ema—Jim TU; Ema—Jim im .__._
Sim. Sim. 764
om. om. rm. om rm. Om rm Om wOéwm Om m— Mmhmmmwm«flux :g wO-wO -SéWWWM -SewwwM
x.__._
-328 Fm : 5 N©
- - - -
£28 N®-<_>_Om _Om .__._
<28 <_>_Om $-<_>_0m_ moo :8 aE 8-328 E
m8 N5 Em
mwvfiwmflmmeHQDMBm mwvfiwmflmmeHQDMBm mwvfiwmflmmeHQUM
Hm MUMNVQOmeHQUMBm
mmxfis” mwmwmhMmmxwwflOfimmmwwfi mwmmmmgwmoqmmmwi. mqmwwmggwwwmfléggv
T wwwmwwwwmwwwwmm>B>QBUOUEM§mUEMQBMWQOMflOMMNVQBQ mwmhMWm>0QOfimmmww._.éévwmmMDmMOOE/fifléwzw mm>B>QBUODEM§mUEMQBMWQOMflOMMNVQBQEflMémZv/OQMQBH/EdE/Hfl mmxfisréwvmwmmmvwxwgmzflwzmuB.“—UmflflOméMfimwmePHDUUm_.T990?} mmxfis?
éwvmwmmmvaVEQEQE/Hm. HMmgmeOOE/fifléwzw M $8me
_ _.T>v QUMUmQOM ...>v >0m.EH.finflvmwmvH_Hmwmhm<m90m<_buvwwww
.>M_Hmuwwh wamym >E<EQMZmL moowgfiwzw 908m zzmfiwmezvammmmaBumgxymmmmeE/zmmmm
BOOMZMWOOOMMBdfl DrmflMOBHB>BQU>m<mfimmmmOBFOH<mw WOOOMMBQH wwwmwwwwmwwwwmm>e>qewowgw§wzwmwamommowgmem Q. mwmwmhMWm>UQOfimmmww._.QQMmQMUmvaOwgmémfl/HM
“TH. .
Q? 39:? magi. _.
uwmflflow $9.5mmoe>>eomwwwwmwwwwmwwwwmmESBwowgwmgwg BUOUEM§mUEMQBMMQOMflOMMxfiflBQ
EflM. wmzw.
Hmwme?
80334.8 Tm? Q>BQMBUUUh>EM
Boomzmmoo H0009
T Bhwmflflomém.HmUUmOPHUUUm_.T MEQNVOMMHZET u7wmm>o§>§mm5 QUMUmQOMNVEQEQMH/HmhBhwmflflomQMQWUUmOPHUUUm_.T EflMfiWZEOQMQBH/HMWZO
Q? _
. mflMOBHB>BQU>m<mfimmmmOBEOH< Em.57?o.§.§§<zmm3E >Ew>m<mqmmmmo§9<mw ..EmwmmomNVE/zmmmzhEuwmgomq kWh/FOQMQBZVfiE/HDMWAEA TQTmOémmHBQBMQBU mOémmHBEHMQBUmU ##Oxwv ._.mogmmflgewmewmw _HUMmmOUmMOONK/E/EMZUWBNVQUBWWUOBHBNVBUUAM m0 mznwz. .Hz UM>WQMWWBHQUMBWHW 2. .
_. mflMOBHB>MQU>m¢mHmmmmOBEOH¢
«moo $50 NN—Do
._> oEomng 2:029: I> I> lfllBElmEM!
-Nmiqm Ema—slim Ema—slim Ema—Jim -quvww .__._
8.0 -Nmé’ofi wOé Ema—$1M wOé Ema—Jim wmvé
0m. w0-wo Om w0-w0 Om w0-w0 Om w0-w0 Mm x 0m. rm. Om rm. ...W...M Om rm—
.__._
- w©-<_>_0m w®-<_>_0m w@-<_>_0m_ .__._ mm- m0-
<_>_om w©-<_>_0m moo <_>_Om_ <_>_Om EEE m®-<_>_0m
m5 th whw m'acoto Elgéa
MUM>WQMMWBHQUMBW MUM>WQMMWBHQOMBW MUM>WQMMWBHQUMBW MUM>WQMMWBHQUMBW
mm>Ev wwwmwwwwmwwwwmm>B>HBDOUEMQhUEMQBMMQOMflOMM>¢BQEflMém7FOQMQBZMmZfl mwmhMWm>DQOHmmmwwkééMmmMDmMOOwgméwzw ZEOQMflHZMWQQMWABLMfl
mm>Ev wwmwwwwmm>B>HBDOUEM<hUEMQBMMQOMQOMM><BQE<M§W77 mwmhMWm>UQOfimmmwwkééMmmMUmMOOwgméwzw Mfimwwm0>éwwwmv>90>v
M M>WQ<MMH<M7ZMMmm flflMwwéémwmhm<mmeméhMwa mwmwmhMWm>UQOfimmmwwhééMmmemMOOwgméwzw mm>Ev mm>Ev
#UMUmmOM M
V #UMUmmOM mwmhMWm>UQOHmmmwwkééMmmMUmMOOwgméwzw M (>V #UMUmmOM (>v (>V
”>MBDDDhBOOMZMmOOOMMBQV >E<EQMZWLBLUWflflOWQMémUUmO>QDUUmV Q? BUUUhBOOMZMWOOOMMBmvfl” Q? m<>EV Q?
mflMOBHB>MQD>m<mfimmmmOBFOH<mw EDUDhBOOMZMWOOOMMerflv Q>BQMBUUUh>EM7 Q?
m0. >MBUDUhBOOMZMWOOOMMB<VQV BUDDMBOOMZMWOOOMMBflrQVmQ
HWWHBQBM >E<EQMZWLBLDWflflOWQMQmUDmO>QUUUmV m>BémmEOB>>BOWUUUUWUDDUWUUGUWm>B>HBDOUEM£EMmaMWZUL7DEM>OMM><BD MQMUEMQ 90M0m<0m>E<EQMZmLBLUWflflOWQMémUUmO>QUUUmv mm>B>fiBUOUEM<hUEMQBMWQOMflOMM>¢BQEflMémZFOQMQBZMmZfl mOémm Hmm
B9 >E<EQMZWLBLUWflflOWQMémUDmO>QUDUmr wwwmwwwwmwwwwmm>B>HBDOUEM<hDEMQBMMQOMQOMM><BQEflMémZFOQMQBZMmZfl BQBL
ggo>v “Mmth EBUWU ggo>v OQMQBZMmZOMmaBL B>MQU>m<mfimmmmOBFOHmmw mOémmHBQBMEBUmU 90M0m<0m>E7EQMMZLBhwmmmomfi QUMmmOUmMOO>EZmMZDWB><UBWWUOBHB>BUDm MMT<H UM>WQMMWBHQUMBmHm EBVQZ vamo B Q BL?
HMZ MMQO BOOMZMmOO mflMOBHB>MQU>m<mfimmmmOBEOH<
gfl BU ggo>v Mmth B>MQU>m<mfimmmmOBFOH<mw VBUWU
oEomqfln 25020:. «$0015
-Nméd‘m -Nméd‘m :_I
wmvé wmvé «00 -Nméd‘m wmvé -Nméd‘m wmvé -Nméd‘m wmvé -Nméd‘m wmvé -Nméd‘m wmvé -Nméd‘m wmvé m wmvé -Nméd‘m wmvé -Nméd‘m wmvé
0m. rm. Om. rm. x Um. w< 0m. w< 0m. w< 0m. w< 0m. w< 0m. w< 0m. w< 0m. w< 0m. w<
m@-<_>_0m_ m©-<_>_0m_ :_I
«00 on-<_>_0m_ on-<_>_0 on-<_>_0m_ IIIIon-<_>_0 on-<_>_0 on-<_>_0
m on-<_>_0m_ on-<_>_0m_ on-<_>_0m_
mam mam haw mam
WO 72406
MUM>WQMMWBHQUMBW mqmwwmo>_50wmv>_6>__,$8me ezvammmmaBummmimmwmngzmmg $9.me
maggomwwwwmwwwwmwwwwm 5m.E.E/Eww.Emwmmmmmewmméumeww mwM>QOmeHQDMBm MUM>WQMMWBHQUMBW MUM>WQMMWBHQUMBm
mm>3r90M0m<0m>E<EQMZmLBLUWflflOWQMémUUmO>QUUUmrQQO>V wwwmwwwwmwwwwmm>e>qewowgw§wzwmwamommowgmem mammmmgwmoqmmmwwthmmmwmmoowgfiwzw M Mfimwwm0>éwwwmr>90>vmUUUUWM
mESBwowEEEm MWm>UQOfimmmwwhééMmmemMOOwgméwzw mwmhMWm>UQOHmmmwwkééMmmMDmMOOwgméwzw mUmMMWm>UQOfimmmwwhééMmmMUmMOOwgméwzw ZEOQMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMWM
mmmgmzaifizvmmzmw Viewwwmeooszmooowweflévmogmm v>vBUUUhBHmMMEmUQOMMerflrmOémm hfimwamwmowamrflrmOémW fl>MBUUUhBQmMMEmU<OMMB<VQVmOémm mm>3véwammOm>E<EQMZmLBhwmflflomQMQmwme>éwwwmv mm>B>QBUODEM<hDEMQBMWQOMflOMM>¢BQEflMémZFOQMQBZMmZfl
ma Q,mmmofiB>mmw>m<mqmmmmo§9<mw 5.53:gwmwmmomxéh/EmwmzhE53433 mmzwhzwmgowgmemmfi _memmowmmogzzazwmEmwemmwoSBEwwm wm>§7mEéomaé,Q,mo 5 wwiamfifimwmegm Egaéwmw gz mewwmo 92m EEE Q?mflMOBHB>MQU>m<mfimmmmOBEOH< BQBLVBU mm>3r90M0m<0M>E<EQMZmLBLUWflflOWQMémUUmO>QUUUmrQQO>V wwwmwwwwmwwwwmm>B>HBUOUEM<hUEMQBMMQOMQOMM><BQEQMQWZFOQMQBZMWZDMmaBL Q?mflMOBHB>MQU>m<mfimmmmOBFOH<mw BQBLVBDWU mm>Ev90M0m<0M>E<EQMZmLBLUWflflOWQMQmUUmO>QUUUmrQQO>V wwwmwwwwmwwwwmm>B>QBUOUEM<hUEMQBMMQOMflOMM>¢BQEflMémZFOQMQBZMmZflMmth DrmflMOBHB>MQU>m<mfimmmmOB70H<mw BQBLVBUmU m<>3r90M0m<0m>E7EQMMZLBhwmflmomfi
0.28ng 2:029: BEBEBE «moo O.
:_> I> .g258%8
“Newmmmwm .__._ -thmwmwm me0& -543 -Nméd‘m
«flux -thmwmwm wOé—uq 642 Twé -543
om 0m. w< -N@&<m0m wOéw< om JLJmmm<X
x.__._ X
.__._
E-<_>_0m_ .__._ E-<_>_o E-<_>_0m_ :-<_>_Om_ E E
- I .__._
moo ll E-<_>_o
m <_>_om :-<_>_Om_ :-<_>_Om_ <_>_om 80
Non non 2K wON Sn MON
m>BémmEOB>>BOWUUUUWUUUDWDDUDWm>B>QBDODEMQEMmaMmzwhzwmm>oww>mBQEBv >UméBéflflMwwéémwmhm¢mmeméhMwa MUM>WQMMWBHQUMBW MUM>WQMMWBHQUMBW MUM>WQMMWBHQOMBW
mm>EV mwmwmhMWm>UQOfimm<U%H_H_HMm£MmeO mm>EV mwmhMWm>UQOfimm<D%H_H_HMmQMUmMOOM mm>EV
M Mfimwwm0>£kwwwmV>HO>VWUUUUWM
M V>v mwmhMmm>UQOfimmmwwkééMmmMUmMOOw V>v ZEOQMflHZMmQQMWAB_um0M>mQ<MMH<M7 >UméBéflflMwwéémwmhm¢mmeméhMwa
QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm OMEQQUZM EQQUZM 90M0m<0M>E<EQMZ EQQUZM ZMMmm
QT QT BUUUMBHmMMV
Q>BQMBUUUM>EMZmMEQ>OMMV 90M0m<0m>E<EQMZmEuBuwmflflomHmHmMUmO>HUUDm mm>B>HBUOUEM<hUEMQBMWQOMflOMM>¢BQEflMémZFOQMQBZMmZ QT _>MBUUUhBfimMMEmU<OMMB<VQVmOEmm 90M0m<0M>E¢EQMZmLBLUWflflOWQMQmMUmO>QUUUm wwwmwwwwmwwwwmm>B>QBDOUEM<hUEMQBMWQOMflOMM>¢BQEQMQW7FOQMQBZMWZ BDUDhBQmMMEmwmowamV ¢fl0mfiMfimM0m0>éwwwm wwwmwwwwmwwwwmm>B>HBDODEM<hUEMQBMWQOMflOMM>¢BQE<M.Hm7FOQMQBZMmZfl m<>3_7
m0<0%%9<_7
flflmOEmm flVmOEmm
B Q>BQMBUUUM>EM7mMEQ>OMMV
flV 7 fl ”TV
m>BémmEOB>>BOWUDUUmUUDUmDUGUmm>B>fiBUOUEM¢EMmaMWZU_A7UEM>OMM>QBD flV
QV REV QV
#Z m0 UM>WQMWWBHQUMBmHm denqm B>MQU>m<mfimmmmOBEOH< #BLQBU ”150?, flMmABL mflMOBHB>MQU>m<mfimmmmOBFOHmmw UWU #9:, MWABL mflMOBHB>MQU>m<mfimmmmOBFOHmmw UWU 90M0m<0m>E7E<MMZLBhwmmmomfi 92 QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm m0
NN—Do Nmoo
I> $5015 :_> oEomqu 2:029:
-Nm-v<m -Nm-v<m -Nm-v<m -Nm-v<m -Nm-v<m -Nm-v<m -Nm-v<m -Nm-v<m -Nm-v<m -nmédfi :_I :_I -Nm-v<m
Um wmvéo 0m wmvéo 0m wmvéo 0m wmvéo 0m wmvéo 0m wmvéo 0m wmvéo 0m wmvéo 0m wmvéo Om TmYmO «00
x Um w0-m0
NF-llllNF- Nn-<_>_0m_ NF- NF-
<_>_Om_ Nn-<_>_0m_ Nn-<_>_0m_ :_I
_ <_>_o <_>_Om_ NN-<_>_Om_ «00
m: w: m o h
P F F
B N B
Ea mwvfiymmmwmfimwmem mwmwmmmmgwmoqmmmwi. MUM>WQMMWBHQUMBW MUM>WQMMWBHQUMBW £889.
50me
mmie
mwmmmmgwmoqmmmwi. a?
H. .
.mewmmogzmzmmzm Emmmwmmoowgfiwzw M mwmhMWm>UQOHmmmwwH_H_HMm£MDmMOOME<QUZM M zzmfiwmezvammmmaBumgxymmmmeE/zmmmm Emmmwmmoowgfiwzw $8me
...5 5m.E.Emmww.Emwmmmmmewmméumeww
908m
E. .
Q..-
“692%. wwwmwwwwmwwwwmm>e>qewowgw§wzwmwamommowgmem 909:? $9.5mmoe>>eomwwwwmwwwwmwwwwmmESBwowgwmgwg
E. 808994. wmzw.
wwiamfifimwmegm 55mg. ...EewwwmBoowzmmooowmemfl-Q.mozmm A .EEEwawEEM
wmmwzwmewwmo
V>vBUUUhBOOMZMmOOOMMB<.-flnmOEmm mm
moo 50me
. 5szEmmommowgmemmmmgmzaifiszmzm
..mfi-m
u7wmm>o§>§mm5
. mmmofiB>mmw>m<mqmmmmoezo§ BEBE mm>EV90M0m<0M>E<EQMZmLBLUWflflOWQMémMUmO>QUUUmVQQO>V wwwmwwwwmwwwwmm>B>HBUOUEM<hUEMQBMMQOMQOMM><BQEflMém7FOQMQBZMmZDMWABL mm>EV90M0m<0M>E<EQMZmLBLUWflflOWQMémMUmO>QUUUmVQQO>V Q.-mflMOBHB>MQU>m<mHmmmmOBFOH<mU BQBLQBUWU mmmgmH/aifiszmzmmgE mmmofiB>mmw>m<mqmmmmo§9<mw .memmowmmogzzazwmEmwemmwoSBEwwm EEEmew 5.53..-.EmwmmoEVE/zmwmzhESQ-<03 .Hz 733503;...930 gimmfiemwwwefim
aa5 ”a
$50 «moo E00 «moo
_._> _._> .5 ...... .5 oEomng 2:029: ElflllflE
#még 326 -wm-v<m 326 $225 $225 flfiww -__._
0m. ww-mo 8-0
0m. ww-mo 0m. ww-mo .2... ww-mo om ww-mo om 8.8 om 8.8 -N@&<m0m wOéO mm x -wm
-__._
mW mW mW ..-. mW mW mW -__._
<_>_om <_>_om <_>_0m_ <_>_om <_>_om <_>_om MN-<§Om mW<_>_0m_ 80
NNN an own Rn awn Esamm«MK EE wmh
MUM>WQ<MMBQUUUBBHmm>E>QUMUm<Om>E<EQLZmLBLUWflflOWQMémUUmO>QUUDmr mm>B>QBDOUEMQhHEMUDMMUEM>OMM>¢BQEflMfiWQEOQMQBZMflZfl M 0>éwwwmr>90>rWUUDDWM
M ZEOHMQHZMWQQMWABLMDM>WQ<MMH<M7ZMMWM >UméBéflflMwwéémwmhm<mmeméhMwa mwm>mmmwwemwwwefimm>3>qwmwm<om>zmzmazmuEmmdnmomEgmwwmgfiwwwm__,
892mb E6298? mwmwmhMWm>mefiZmBMMHQmMmQMUmMOOMEZQMZmHUOWQMOBHB>MQU>m<mfimmmmOBEOHfl n#MBDOULmemaBODEOMMBmhflrmOémmHBQBMQBU mwM>mQ<MMBQUUUBBHmm>E>QUMDm<OM>E<EQLZmLBLUWflflOWQMémDDmO>QDDUmr>éO>v wwwmwwwwmwwwwmm>B>QBUODEMQhQ:MUDMMDEM>OMM>¢BQEflMémDFOQMQBZMQZDMWABL mwmhMWm>UmOHZmBMMHQmMmQMUmMOOMEZQMZmHUOW<MOBHB>MQU>m<mHmmmmOBFOHQmU VévBDOULmemaBODEOMMBmhfl”mOémmHBQBMQBDmU MUM>WQ<MMBQUUUBBHmm>E>QUMUmQOM>E<EQLZmLBLDWflflOWQMémUDmO>QDUUmv>éO>v wwwmwwwwmwwwwmm>B>QBUOUEMQhHEMUDMMUEM>OMM>¢BQEflMfiWflFOQMQBZMflZflMmABL mwmhMWm>DmOHZmBMMHQmMmmMUmMOOMEZQMZmHDOWflMOBHB>MQD>m<mHmmmmOBFOHflmU VévBUOULBMWWABOUEOMMBQLDTmOémmHBQBMQBUmD m<>EV90M0m<0m>E7E<MMZLBhwmflflomfi m>BémmEOB>>BOWUUUUWUDDUWDDUUWm>B>HBDOUEM£EMmaMWZDL7UEM>OMM><BDEBV#Z QUMmmOUmMOO>EZmMZUWB>¢UBWWUOBHB>BUUm UUUh>EM7mMEé>Owwv<VDrm0 gimmfiemwwwefim
$50 «moo o.
>%% .089
._> ._> 4> .9 2:029: HEBElflllflEEEElflEa!
-mm-mo -mm-mo H____H__ -mm-mo
0m. ESQ -MMAHVOm ESQ -
0m. meD éméfivom meD Um. wmwox -mmémwwmn -mm-mmm_.nmuwm__
E E vw<§0m vw<§0m E Ea g - - - ._I
<_>_om <_>_om _ «00 EEEIm~-<_>_0m_
mmn 2K wMN N: ER
WO 72406
mm>B>HBDODEMQhQEMUQMMUEM>OMM><BQEQMQWZ mwmwmhMmm>mefiZmBMMHQmMmmemMOOMEZQMZmHDOWflMOBHB>MQ <MMBQDUUBBHmm>E>HUMUm<OM>E<EQLZmLBhwmflflomQMQm wwwmwwwwmwwwwmm>B>QBDOUEMQhQEMUQMMUEM>OMM><BQE<MQW7 mwmhMWm>meHZmBMMHQmMmQMUmMOOMEZQMZmHUOm<MOBHB>MQU> M Mfimwwm0>éwwwmv>90>vWUUUUWM
”#MBUOULmemaBODEOMMBQ (#vBUOULBMWWABOUEOMMBQLDH MUM>WQ<MMBQDUUBBHmm>E>HUMUm<OM>E<EQLZmLBhwmflflomQMQm wwwmwwwwmwwwwmm>B>QBDOUEMQhQEMUQMMUEM>OMM><BQE<MQW7 mwmhMWm>meHZmBMMHQmMmQMUmMOOMEZQMZmHUOm<MOBHB>MQU> ZEOHMQHZMWQQMWABLMDM>WQ<MMH<M7ZMMmm
(QVBUOULBMWWABOUEOMMBmhfl m>BémmEOB>>BOmwwwwmwwwwmwwwwmm>B>HBUOUEM£EMmaMmzwh7 >UméBéflflMwwéémwmhm<mmeméhMwa
QUMmmOUmMOO>EZmMZUmB Q>BQMBUUUh>EM <MMBQUDUBBHmm>E>HUMUm<Om>E<EQLZmLBLUWflflOWQMQm BUODEMQhQEMUQMMUEM>OMM><BQEmMQmQ mwmwmhMWm>mefiZmBMMHQmMmmemMOOMEZQMZmHDOmmmomHB>MQ M m<>EVQUMUm<Om>E VQMBUOULmemaBOUEOMMBm mwM>mQ<MMBQUUDBBHmm>E>HDMUm<OM>E<EQLZmLBLDWflflOWQMém
ZMflZQm w>mmmqmmmmoeonm mmkegemmew UUmO>éwwwmr>éO>v FOQMQBZM<ZDMWABL mmmfimmmmOBFOHQmw mOémmHBQBMQBUmU UUmO>éwwwmr>éO>v FOQMQBZM<ZDMWABL mflmfimmmmOBFOHflmw VmOémmHBQBMQBUmU 7E¢MMZLBLUW¢¢OmQ UEM>OMM><BDEBVQZ >¢UBmmUOBHB>BUUm 7mMEé>Owwv¢VQr UM>WQ¢MMBQUUUBBHm UUmO>QUUUmr EOQMQBZMQZH
memHBOUF w>mmmqmmmmoeonm amvmogmmkegemmew UUmO>QDUDmv
oEomqfln 25020:. wmoo Nmoo mmoo
I> I> :_> !I
-mm-m0 -mm-mo -mm-m0 :_I :_I -mm-m0 -mm-m0 -mm-m0 -mm-m0 -mm-m0 -mm-m0 -mm-m0 -mm-m0 -mm-m0
Um. rm-wu_ «00
Om. _‘m_-wu_ Om. rm-wu_ x 0m. rm-mu_ 0m. rm-mu_ 0m. rm-mu_ 0m. rm-mu_ 0m. rm-mu_ 0m. rm-mu_ 0m. rm-mu_ 0m. rm-mu_ 0m. rm-mu_
mn-<_>_0m_ mp
<_>_Om_ mw-<_>_0m_ :_I
«00 @n-<_>_0 @n-<_>_0 @w-<_>_o @w-<_>_o @n-<_>_0
m m m @N-<_>_Om_ @N-<_>_Om_ @N-<_>_Om_ @N-<_>_Om_
an th mmh .vmh mmh wmh hmh wmh mmh
wwwmwwwwmwwwwmm>B>QBOOOEMQhQ:MODMMDEM>OMM>¢BQEWMQWDFOQMQBZMflZflMWABL mwmhMWm>OmOfiZmBMMHémMmmMOmMOOMEZQMZmHOOmmmomHB>MQU>m<mfimmmmOBFOHQmO OULBMmmaBOOEOMMBQLfl”mOémmHBQBMQBOmO mwM>mQQMMBQUUOBBHmm>E>QUMOm<Om>E<EQLZmLBhwmflflomQMQWUUmO>éwwwmv wwwmwwwwmwwwwmm>B>QBUOUEMQhQ:MUDMMOEM>OMM>¢BQEWMQWDFOQMQBZMflZfl mwmhMWm>OmOHZmBMMHQmMmmMOmMOOMEZQMZmHUOmmmomHB>MQU>m 0>éwwwmr>90>rwwwwme ZEOQMQHZMWQQMmABLMOM>WQ<MMH<MZZMMWM >OméBéflflMwwéémwmhm<mmeméhMwa MOM>WQ<MMBQOOOBB MOM>WQ<MMBQUUOBB MUM>WQ<MMBQUOUBB
V#MBOOOLmemaBOUEOMMBmhflV M
m<>EVéwammOm>E7E<MMZLBhwmflflomfi m>BémmEOB>>BOWOOUOWDOOOWODOUWm>B>HBOOUEM¢EMmaMWZOL7OEM>OMM>QBDEBV#Z QUMmmOUmMOO>EZmMZUWB><OBmmOOBQB>BUOm Q>BQMBOOUh>EM7mMEé>OMMV<VQT VévBOOULBMWmaBOOEOMMBmhflvmOémm
OM>WQQMMBQUUOBBHm MQMQEMOQMMOE ZéMZmHDOmmm mm>3r90M<m<0m>E<EQLZmLBLOWflflOWQMémmme>QOUDmT mm>B>QBUOUEMQhQ:MUQMMUEM>OMM><BQEflMfiWZZOQMQBZMflZfl v#MBUOULmemaBOOEOMMBmhflrmOémm
mOfiZmBM OO| mwmwmhMWm>meHZmBMMHQmMmmMOmMOOMEZQMZmHUOWQMOBHB>MQD>m<mHmmmmOBEOHfl BQBLQBU mm>Ev90M<m<0M>E<EQLZmLBLOWflflOWQMémMUm0>éwwwmv>90>r wwwmwwwwmwwwwmm>B>QBUOOEMQhHEMUQMMUEM>OMM>¢BQEflMémZFOQMQBZM<ZDMWABL mmeMWm>UmOfiZmBMMHQmMmmMOmMOOMEZQMZmHOOWflMUBHB>MQU>m<mHmmmmOBFOHQmO mm>Er90M<m<0M>E<EQLZmLBLUWflflOWQMémMUmO>QOOUmT wwwmwwwwmwwwwmm>B>HBUOOEMQhHEMODMMUEM>OMM>¢BQEQMQmZFOQMQBZMQZfl
BQBLQBOWO
oEomqu 2:o2oE wmmO NmmO mmmO $55 NmmO mmmO
I> I> I> :_> :_> :_> I
> > oEomqu 2:o2oE
-mm-mO :_I :_I :_I :_I
«05 -mm-mO me -mm-mO me -mm-mO me -mm-mO me -mm-mO
rm-mu_ me -mm-mO me -mm-mO me -mm-mO me -mm-mO me -mm-mO me «05
Om x Om E Om E Om E Om E Om E Om E Om E Om E Om E Om E x
x x
._I :_I
©N-<_>_Om :_I :_I
«05 Nn-<_>_Om llllllllllllNn-<_>_O Nn-<_>_O _O
m Nn-<_>_Om Nn-<_>_Om Nn-<_>_Om Nn-<_>_Om Nn-<_>_Om NN-<_>_Om «05
_‘ Nwh mwh wwh m w
wk wk wk hwh wwh
WO 72406
WUWMMWm>UmOHZmBMMHQmMmmMUmMOOMEZQMZmHUOWQMOBHB>MQU>W¢mHmmmmOBEOHfl Mfimwwm0>éwwwmv>90>vWUUUUWM ZEOHMflHZMmQQMWABLMDM>mQ<MMH<MZZMMmm m>BémmrOB>>HOmwwwwmwwwwmwwwwmm>B>HBDODEM£EMmaMWZULZDEM>OMM><BQEBV >DméBéflflMwwéémwmhm<mmeméhMwa Mfimwwm0>éwwwmr>90>vmUUUUWM
ULBMWWABOUEOMMBflLQVm0
ZEOHMflHZMmQQMWABLMDM>mQ<MMH<M7ZMMmm >UméBéflflMwwéémwmhm<mmefléhMwa
m<>EV m<>EV {>VBUUUhBMmMQhMOOOMMBmhflr
Hmm mOémm
#BLQBU éwammOm>E7E<MMZLBhwmmmomfi QUMmmODmMOO>EZmMZDmB><DBWWDOBHB>BDUm Q>BQMBUUUh>EM7mMEQ>OwwvflrQ? In 5% MUM>WQQMMBQUDDBBHmm>E>HUMDm<Om>E<>QLZmLBLUWflflOWQMémDUmO>QDUUmV mm>B>HBDOUEMQhQ:MDQMMUEM>OMM>¢BQEflMfiWZEOQMQBZMflZfl MUM>WQQMMBQDUDBBHmm>3>fi0¥0m<0w>3fl>fla2mhBLDWflflOWQMémUUmO>QUUUmV wwwmwwwwmwwwwmm>B>QBUOUEMQhQ:MUDMMUEM>OMM>¢BQEQMQWZFOQMQBZMQZDMWA MUM>WQQMMBQDUDBBHmm>3>fi0¥0m<0w>3fl>fla2mhBLDWflflOWQMémUUmO>QUUUmV wwwmwwwwmwwwwmm>B>QBUOUEMQhQ:MUDMMUEM>OMM>¢BQEQMQWZFOQMQBZMQZDMWA
‘ UM>WQ¢MMBQUUUBBHm In 892mb E80 mwmwmhMWm>meHZmbwHémMmmmmeOOhE/QEZWHUOmflmomHB>MQU>m<mHmmmmOBEOHfl Mv>MBUUUhBMmMQMMOOOMMBQLQVmOémm WUWMMWm>meHZmBMMHQmMmmmUmMOOhEZQIZmHUOmmmomHB>MQU>W¢mHmmmmOBFOHQmU M{>VBUUUMBMmMQhMOOOMMBmhflvmOémm UWU WUWMMWm>meHZmBMMHQmMmmmUmMOOhEZQIZmHUOmmmomHB>MQU>W¢mHmmmmOBFOHQmU BQBLQ >99? >99? BQBLQBUWU 90M0m<0m>E7EQMMZLBhwmmmomfi m>BémmEOB>>BOWUDUUWDUUUmUUDDmm>B>fiBUOUEM£EMmaMmzwhzwmm>oww>mBflEBM
m0 m0 #2 m0 BU BL BL #Z QUMmmOUmMOO>EZmMZDWB><UBmmUOBHB>BUUm
a aafl
E: Nmoo E: $50 $50 «moo —-> I> :_> ._> .5 ow 058ng 2829:
E 8<-:< -mm-mm_ o??? Om. w< E 8<-:< -mm-mm_ o_‘<-_‘ -mmbm. or<-:< Exam. o o o 80
:3 :3 -mm-mm_ tor? $6-3 0:: x
0m. w< 0m. om or<-:< E E Om. w< om. E .__._ .__._
.__._
MK ||||llllllll||||||||||||||||||||||| E E MK MK M: MK
- - - - - - - - I
<_>_Om_ <20 <_>_o £20
m m <_>_Om_ $-<_>_om_
EE mhh whh mt whh
MHmOOmOPHOOOWHTPHORT m>Bémm
M M
M __T>V ZEOQMflHZMmQQMWABLMDM>WQ<MMH<M7ZMMWM EOB>>BOWOOOOWOOOOWOOOOW >OWQBQ¢§OQH_Hmwmhm<m90m<_buMBOO
E§§B>§m§_;o:__, mwvfiwQOMMBQOOOBBHmm>E>QOMOm<Om>E<>QLthEuwmflflom#MémOOmOPHOOOm__T mm>B>HBOOOEMQhHEMODMMOEM>OMM>¢BQEQMQWQEOQMQBH/Emzm __T>VBOOOhBMmMQMMOOOMMB<_n—Q BOOOhBMmMQh mmxfisr m>B>HBOOOEM£EMm
MOOOMMBmhflr ._. Q>BQMBOOOM>EM
7mMEé>OMMV<VQV MmZmOLH/OmvfiwowwxmeflEBv
‘mz‘ OM>WQQMMBQOOOBBHW mwmwmhMmefimefiH/HWBMMHémMmQMUmMOOME/QEZWHOOmmmomHB>mmw>m<mfimmmmOBEOHfl mwvfiwQOMMBQOOOBBHmm>E>QOMOm<OM>E<>QLZmLB.“—OmflflOméMfimOOmOPHOOOm__T>_HO>__T OOWOOOOWm>B>QBOOOEMQhHEMODMMOEM>OMM>¢BQEflMémflv/OQMQBZMQZDMW._.Eu www.mMWm>OmOHZmBMMHHmMmmMOmMOOMEH/HéIZmHOOmmmomHB>mmw>m<mfimmmmOBFOHQmO mwvfiwQOMMBQOOOBBHmm>E>QOMOm<OM>E<>QLthB.“—OmflflOméMémOOmOPHOOOm__T>_HO>__T OOOWOOOOWOOOOWm>B>QBOOOEMQhQEMOQMMOEM>OMM>§HQEflMfiWfle/OQMQBZMQZDMW._.B.“— mwmhMWm>OmOfiZmBMMHHmMmgOmMOOMEH/HéIZmHOOmmmomHB>mmw>m<mfimmmmOBFOHflmO 07>MBOOmymBMmMQhMOOOMMBQLQVmOémmHBQBMQBO #OMOmQOMNKE/EQMMZLBhwmgomfi #OmnmmmeMOOxK/E/EMZOWB><OBWWOOEHB>BOOAM _
__ mOémmHBQBMQBOmO mOémmHBQBMQBOmO #Z OM>WQ<MMBQOOOBBHW
$50 wmoo NN—DO
I> BElallaEEEElflE IIIII oEomeE 2:029: I> I>
-mm-mm_ 5 -mWwWWVHWM -mm-mm_ owdrw -mm-mm_ ow<-:m -mm-mm_ ow<-:m -mm-mm_ 0 MOO
To; x -mm-mm_ o??? _ o???
Om. Om rm Om Om Om rm |_I |_I Om. wO Om wO
Ea x
mp mN-<_>_Om_ mN-<_>_Om_ mn-<_>_0m_ ow ow
- mN-<_>_Om |_I - -
<_>_Om_ m m MOO <_>_Om_ <_>_Om
a hwh wwh ka th
mwvfiwQOMMBQUUUBBH MfimwmePHUUDWTPHORT m>Bémm
M mm>E>HUMUm<OM __T>V OWUDDUWUUUUWDDGUW .Hflmvmww.H_Hmwmhm<m90m<_buMBDU
ZWL ZEOQMflHZMmQQMmABLMflwawmflmwmewh/ZMMmm
BUDUhBMmMQh mmxfisr m>B>fiBDOUEM¢EMm
._. Q>BQMBUUUh>EM
wmmqmwwmwww: z MOOOMMBQLQTmOémm
_ _
EZmEommm !flla
mwvfiwQOMMBQUUUBBHmm>3>fiwvmwm<0m>3¢>flhzmuEuUmflflOméMfimwmePHUUUm__T mm>B>QBUOUEMQhHEMUDMMUEM>OMM>¢BQEQMQWQEOQM.bHvamZfl waMBUUmymBMmMQhMOOOMMBQLQVmOémm MmZmULH/DEMNVOMMNVQBDEBV
__ mwmwmhMWm>UmOfiZmBMMHémMmgmeOOhE/QEZWHUOmQMOBHB>MQU>mmmfimmmmOBEOHfl BEEN—QED B.“—UmflflOméMémwmexwéwwwm__T>_HO>__T wwwmwwwwmwwwwmm>B>QBDOUEMQhQ:MDQMMDEM>OMM>¢BQEflMémflv/OQMQBH/Edfl/HDMW._.Eu mwmhMWm>DmOfiZmBMMHHmMmgUmMOOhEH/HéIZmHDOmmmpwHB>MQD>m<mfimmmmOE>OHQmw M__T>vBUDUhBMmMQhMOOOMMBQLQmOémmBQBLQBUmD MUMNVWQQMMBQDUUBBHmm>E>HUMDm<OM>E<>QLZmLEuUmflflOméMfimwmePHUDUm__T>_HO>__T wwwmwwwwmwwwwmm>B>QBDODEMQhQ:MDQMMUEMNVOMMNVQBQEflMfiWflv/OQMQBZMEEAOMW._.B.“— www.mMWm>DmOfiZmBMMHHmMmmMUmMOOMEH/HéIZmHUOmQMOBHB>MQU>m<mHmmmmOBFOHflmU éwvmwmmOMNVEH/EQMMZLBhwmgomfi BQBLQBUWU #Z _HDMmmOUmMOONK/E/EMZUWB><UBmmUOEHB>BUUm 7mMEé>OMMHT<VQVmO ‘hz gimmfiemwwwefim
a5 Inla!fl
«moo E00 wmoo «moo
_._> 2:029: .5 2 2 oEowqu I> |_> I> _._> E
-mmbm. 024 -mmbm. 0:: o??? o??? IMMImm— 0 IMMImm— Dior—90 -mm-mm_ ow<-:0 -mm-mm_ owdrw MOO
To; x -mm-mm_ -mm-mm_
0m. 5 0m. 5 2 wO 2 wO Om me Om Om Om wmv |_I |_I Om. o_‘<-N_‘O 0m. ow<-NwO E ow<-NwO E S<-~5 E: ow<-NwO
ow ow g g _0m ow-<_>_0m ow-<_>_0m ow-<_>_0m rm I5
- - - - |_I - - E- E- E- <_>_om <_>_om MOO <_>_Om_ <_>_o
man SK hmh
2012/072699
MOMNVWQQMMBQOOOBB mwmwmhMWm>OmOHZmBMMHQWMmQMOmMOOME/QEZWHOOWflMOB mwvfiwQOMMBQOOOBB mwvfiwQOMMBQOOOBB MHWOOmOPHOmeVPHONVTWOOOOWM m>Bémm >0m.EH.finflvmwmvH_Hmwmhm<m90m<_buMBOO mwvfiwQOMMBQOOOBBH
mmxfisr90M<m<0m>3<>9u2mhEuOmflflOméMfimmmexwéwwwm__T mm>B>QBOOOEMQhHEMOOMMOEM>OMM>¢BQEflMfiQ/EOQMQBZMflZfl mmxfisr
M #OvfiflmmOM mwmhMWm>OmOQZmBMMHHmMmQMOmMOOMEH/Hé-thOOmflMOB M EOB>>BOWOOOOWOOOOWOOOOW
ZWL ZEOHMflHZMmQQMWAEummvfiwmmmwmewh/ZMMWM mm>E>QOMOm<Om>E¢EQuZmL
Bhwmflfloméw mmxfisvéwvmmmmvaxVEdflx/QLZWLEuwmflfloméw OOOWOOOOWOOOOWm>B>QBOOOEMQhHEMOQMMOEM>OMM>¢BQE<M§ www.mMWm>OmOHZmBMMHHWMmQMOmMOOMEH/Hé-thOOmflMOB
T>MBOOmymBMmMQhMOOOMMBflumrmOémm OOOmOOOOmOOOOmm>B>HBOOOEMQhHEMOQMMOEM>OMM>¢BQEflMémH/FOQMQBZMQZDMW._.Eu 07>VBOOOhBMmMQhMOOOMMBQLQ m>B>fiBOOOEM£EMm
B>m__7 __T>vBOOOhBMmMQMMOOOMMBmh mmxfisr#OMOmQOM>E7EMMZth—Omgomfi
mwmwmhMmefimefiH/HmBMMHémMmEOmMOOhEH/HQEZWHOOmmmomH
#mM _HOMmmOOmMOONK/E/EMZOWBNVQOBWWOOBHBNVBOOAM Q>BQMBOOOh>EM
B>mnTO>m<mémmmmOBEOHfl OmO>QOOOmflT>QO>v B>mnTO>m<mHmmmmOBFOHQmO OmO>QOOOmT>QO>v OéMEHZMflZflMWfiHL mmmfimmmmOBv/OHDWO HrmOémm MmZO_u7OEm>OMM>mBflEBV 7m
mOémm MMHZET om.HMQWOOmOPHOOOm mm>B>QBOOOEMQhQEMOQMMOEMNVOMMNVQBQEQMQWZEOQMQBZMQZH
OWO __T
__ BEEN—QED .HQBLQBOWO #Z m0 mzflmz OM>WQQMMBQOOOBBHW B>mmw>mmmfimmmmOBEOHfl
«N50 meO NN—DO
:_> oEomefi 2:029: I> I> lflEEEElflEH!
-mm-mm_ ow<-NwO -mm-mm_ ow<-NwO -mm-mm_ ow<-NwO -mm-mm_ owdrmwmv -mm-mm_ owdrmwo MDOXJI -mm-mm_ wmé _ wmé IMMImm— mm;
Om. Om Om Om Om |_I Om. w< Om w< Om :1
x|_I
rm Nw Nw
- ww-<_>_Om ww-<_>_Om ww-<_>_Om |_I - -
<_>_Om_ ww-<_>_Om MOO <_>_Om_ <_>_Om
wow Now wow EHEHEHEHElaég
2012/072699
$9.me
M o>_50wmv>_6>__,$8me maggomwwwwmwwwwmwwwwm M
fl>MBUUUhBMmHmeOOOMMB<LQV r>vBUDUhBMmQmeOOOMMBQLfl”mOémm
zzmfiwmezvammmmaBumgxymmmmeE/zmmmm 5m.E.E/Eww.Emwmmmmmewmméumeww
__,>v980m95643003350,mogmm mESBwowEEEm
BF. mwM>mQ<MMBQUUUBBHmm>E>HUMDm<OM>E<EQLZmLBLUWflflOWQMémUDmO>QUUUmT>QO>V wwwmwwwwmwwwwmm>B>QBUOUEMQhHEMUDMMDEM>OMM>¢BQEQMQW7FOQMQBZM<ZDMmABL mwmhMmm>DmOHZmBMMHQmMmmmUmMOOhEZQEZmHUOmmmomHB>MQD>m<mfimmmmOBFOHQmU BQBLQBDWU <MMBQUUUBBHmm>E>HUMUm<OM>E¢EQLZmLBLUWflflOWQMQWUUmO>QUUDmv>éO>T wwwmwwwwmwwwwm$959085ana:wwmwwwmmxwowgmemmmm.575.;EszmzmmmaE m>wmoq2mBEhEMmmmwmmoomngZmSommmomHB>mmw>m<mqmmmmoe$gmmw MUM>WQ<MMBQUUDBBHmm>E>HUMDm<Om>E<EQLZmLBhwmflflomQMQmwme>éwwwmv 5.53:gwmwmmomxéh/zmwmzhE53433 mmzwfi/wmgowgmemmfi mm>B>QBUOUEMQhHEMDQMMDEM>OMM>¢BQEflMfiWQEOQMQBZMflZfl
9.5.5930 ‘
gz _memmowmmogzzazwmEmwemmwoSBEwwm éaEewwwEEM7mwzg>o§vmvmvmo mzflhz gimmwwemwwwefim lflllflEEEE 332280 _ mUmUWMMWm>UmOQZmBMMHQmMmflmmeOOMEZQEZmHUOmmmomHB>MQU>W¢mfimmmmOBEOHfl fl>MBUUUMBMmHmeOOOMMB<LQVmOémmHBQBMQBU mwM>mQQMMBQUUUBBHmm>E>HUMDm<OM>E<EQLZmLBLUWflflOWQMémUDmO>QUUUmT>QO>V wwwmwwwwmwwwwmm>B>QBUOUEMQhHEMUDMMDEM>OMM>¢BQEQMQWQFOQMQBZMflZflMWABL mwmhMmm>DmOQZmBMMHQmMmmMUmMOOMEZQEZmHUOmmmomHB>MQD>m<mfimmmmOBFOHQmU r>vBUUUhBMmHZmMOOOMMBQLQTmOémmHBQBMQBDmU
0.28ng 2:029: $50 «moo
I> _._> “E
-mwéwuum .__._
wméw< Hmmmmwfim‘ -mm-mm_
«flux wmé -mm-mm_ wmé
Om. rm. om rm. -mmmmmmfim -mwéwuum wméwm -mwémuum wméwm -mwéwuum wméwm
x.__._
Nw-<_>_0m_ Nw-<_>_0m_ mm
.__._ llmm- -
moo <_>_Om_ <_>_o IIIISL320 mw-<_>_0m_ mw-<_>_0m_ mw-<_>_0m_
th wNw
mwM>mQQMMBQUUUBBHmm>E>HUMDm<Om>E<EQLZmLBhwmflflomém wwwmwwwwmwwwwmm>B>QBUOUEMQhHEMUDMMUEM>OMM>¢BQEflMémQFOQMQBZMQZDMWABL mwmhMWm>UmOfiZmBMMHQmMmQMUmMOOMEZQEZmHUOmmmomHB>MQU>m<mfimmmmOBFOHflmw Mfimwwm0>éwwwmv>90>v ZEOQMflHZMWQQMWABLMfl MUM>WQQMMBQUUUBB MUM>WQQMMBQUUUBB MUM>WQQMMBQUUUBB
mm mm Mfimwwm0>éwwwmv>90>v ZEOQMflHZMWQQMWABLMfl
m0®0®m¥. MH<MZZMMmm m>BémmEOB>>BOWUUUDmUUUUmDDUUmm>B>HBUOUEM£EMmAMWZULZUEM>OMM>QBDEBV#Z >UméBéflflMwwéémwmhm¢mmeméhMwa mm>Ev
#0Mflmfl0m>3<>QLthBhwmflflomQMQmmme>éwwwmv mm>B>HBUOUEMQhHEMUDMMUEM>OMM>¢BQEflMém7EOQMQBZM<Zfl mwmwmhMWm>meHZmBMMHQmMmQMUmMOOME/QEZmHDOm<MOB M >3?90M<m¢0M>E¢>QLZmLBhwmflfloméw mwmhMWm>mefiZmBMMHQWMmQMUmMOOMEZQ-ZmHUOmQMOB M{>vBUUUhBMmQZmMOOOMMBmhflrmOémm >3?90M<m¢0M>E¢>QLZmLBhwmflfloméw mwmhMWm>mefiZmBMMHQWMmQMUmMOOMEZQ-ZmHUOmQMOB mUDUUWM M>wQ<MMH<M7ZMMmm
>MBUUUhBMmQmeOOOMMB<LQVmOémmHBQBMQBUmD m<>EV UmMOO>EZmMZUWB><UBmmUOBQB>BUUm Q>BQMBUUUM>EM7mMEQ>OMMv<VQT r>MBUUUhBMmQmeOOOMMBmhflrmOémm {>VBUUDhBMmHmeOOOMMBQLQVmOémm m<>EV
90M0m<0m>E7EQMMZLBhwmmmomfi B>MV B>MV éwammOM
émwwm0>éwwwmv>90>r MMBQUUUBBHm MQMQEMUQMMUE ZQEZmHDOmmm mOfiZmBM BMmHmeOO B>Mrw>m<mémmmmOBEOHfl BQBLQBD >#DDDmv>QO>r wwwmwwwwmwwwwmm>B>HBUOUEMQhHEMUDMMDEM>OMM>¢BQEflMémZFOQMQBZM<ZDMWABL U>w<mfimwmmOBFOHQmw BQBLQBUWD #mMDmO>#DDDmv>QO>r wwwmwwwwmwwwwmm>B>HBUOUEMQhHEMUDMMDEM>OMM>¢BQEflMémZFOQMQBZM<ZDMWABL U>w<mfimwmmOBFOHQmw BQBLQBUWU >E7E<MMZLBLUm<¢OmH
oEomqu 2329: wmoo Nmoo mmoo $50 Nmoo mmoo
I> I> I> :_> :_> :_> I
> I> oEomqu 2:o2oE
-mm-mm_ :_I :_I
«00 -mm-mm_ mm.-N -mm-mm_ mm.-N -mm-mm_ mm.-N _ mm.-N -mm-mm_ mm.-N -mm-mm_ -mm-mm_ mm.-N mm.-N _ mm.-N -mm-mm_ mm.-N -mm-mm_ «00
Om. rm. x Um. wO 0m. wO 0m. wO 0m. wO 0m. wO 0m. wO 0m. wO 0m. wO 0m. wO Om. mm.-N_‘O x
x x
:_I l!!|||||||||||||| :_I
mw-<_>_0m_ :_I llllllllvw-<_>_0m_ vw-<_>_o vw-<_>_0m_ vw-<_>_o vw-<_>_0 vw-<_>_0m_ vw-<_>_0m_ vw-<_>_0m_ vw-<_>_0m_ vw-<_>_0m_ :_I
«00 m «00
me wa mmw .vmw mmw wmw hmw wmw
m>Bémm MUM.
EOB>>BOWUDDUWUUUUWUDDUW >0m.EH.Hflmvmww.H_Hmwmhm<m_fiwm<_bu¥900 lulllu lulllllulllulllull “—Qflmw MUMLQQQM £889. @587;
wUBMBZ
m7 www.mMmmewmw mwmmmmgwmw
UBMBZ @7832 50me
3023.. mwmwmhMmmxwmeQMmbwfi 30237 wwmwwwwmm>B>fiBUOUEMQE¢QMDDM>UUM<OMM><BQ QMWBMMH mm>B>fiBDOUEMQE¢QMO0M>UUM<OMM><BQROM.HmZHOémewamBQfimhxru gmmECC. a?
h H.
#DOUnmemeEZv/Hw. HMmmMQmMOOMEH/d M. éwmemOM HMmmMQmMOOMEH/d M 738me
.7>v Emmmmmmoowgz. .75 zzgwmezvanmmgBumgxymmmmeE/zmmmm 5m.E.Emmww.Emwmmmmmewmméumeww
m>B>fiBDOUEM£EMm $me
“—ZB. >EZEULZBL mfiéfl
._. _HDMmmOUmMOOxfi/E/EMZUWBNVQUBWWDOBHBNVBDDAM Q>BQMBDUUh>EMZm quwmmMOmxwvfiwmmmeM. HMZWHQOWQMOBHBNVMQU. .>MBUOU@BE&HBZUOOOMMB< wwmwwwwmm>e>qewow352§wwww>wwm<o§><em oe>>eomwwwwmwwwwmwwwwmm>9>qewowgwmgw3
MWZULZUEmeowwxmeQEBV wamgomxwvfiwmmmeMV HMZWHQOWQMOBHBNVMQU. BUOUhBEmQBZDOOOMMBm 775m. EZmEOmmmoBHEEQw. SEEP/0000?? $20.
Hmmw 0.7m. 575.
wEEM
Q..7m..7émm 5mm. a”7m”
MEQ>OMMH7<H7 Hmmw 79mm 7.5m
“:6?
B. B. éwmwmmomNEH/zmmmz;
HEWUWO?
Q7 53239va 733503;.797
#Z m0 HO>O HmmmmOBEOHQ BEHMQBU #EWUWOEHONVO ROM.Hm7HO_H%<BB>WBQQm.“—>L HmmmmOBEOHQmD HBMQBUWU 26237.Fwowmmoggzzwuziwammmomiimwmmm.£88596 Emegmemqmui memmoezgmmw @5930 uwmgomq .Hz wmmogzzazwmEmwemmwoquemuwm mo !u ulllu 0.28ng 2:029: E:
Km- Km- Km-
@O ©O -SMM .__._ ©O 80
Om Om Om Wm x -2. mo
.__._
.. .. mw-<_>_0m mw-<_>_0m mm- mw-<_>_0m_ .__._ -
<_>_Om 80 E.
www fivw Q?” u
la MUMLQQQM mwmwmhMWm>meHmmBMMHQQMQmMUmMOOMEZQMZmHQOmQMOBHB>MQU>m<mfimmmBOBEOHQ mthflflmw MUMLQQQM 05.me
WVUBMBZ WVDBMBZ
mm>B>fiBUOUEMQE¢QMUDM>UUM¢OhM>flBQE¢M§WZHOQM¢Bm>WBQmmh>u
WVUBMBZ
M fim00m0>g0000__->_B>__-0000000
M >00.E.02000.65005598420900
3023?QUOUmflOm>EZEGLZBLBMUWflMOW>M>W¢UmMMQEmUmO>QO>O 00000000000000
”>MBUOUhBEmHBZDOOOMMBm UODm<0M>EZEULZBLBMUmflMOm>M>m<UmMMQEmUmO>QO>O wwwmwwwwmwwwwmm>B>HBUOUEMQE¢QMUUM>DUM<OhM><BQE<MQm7HOQMQBm>mBQmmh>h mwmhMWm>wmwgmmBMMHQQMémMUmMOOMEZQMZmHQOm<MOBHB>MQU>m<mfimmmBOBEOHQmU {>VBUOUhBEmQBZUOOOMMBm 3023?QUOUmflOM>EZEGLZBLBMUWflMOW>M>W¢UmMMQEmUmO>QO>O wwwmwwwwmwwwwmm>B>QBUOUEMQE¢QMUUM>UUm¢OhM><BQE¢MQW7HOQM¢Bm>mBQmmh>h mwmhMWm>wmwfiMmBMMHQQMQQMUmMOOMEZQMZmHQOWQMOBHB>MQU>mmmfimmmBOBEOHflmw _->v 22000297260963Bummmimmwmgwémxmm
5700003? MESS.-g0m0mm0m>z7zm§zh506-2060 055900030250
a 5550900055
00.59; 00.59; 2
_ _
_ _
05?sz WEQMmBM BEmQBZUOO QrmOQZmHBQWMQBU flVmOQZmHBQWMQBUmU n-fl-mQEmEQmEB0m0 mmZ0a70§>0§>¢Em$ _Emu-8800932320092009000059508 gz 70§0>0wwvmflévm0 09353 062409000900 5765065
a B
$50 $50 NKDO «moo $50 E00
_-_> -_> -_> g I> 0.28ng 2:029: _-_> _-_> .5
6560 60-00 $0.00 -wQénVOm $0-00 6560 -__-_ -560 -560 -560
0m. 60 Om. mo 0m. mo 0- mo wO mo Om. mo 0m. mmww ®< 0m. 6< 0m. 6< 0m. 6<
x-__-_
6w @m-<_>_Om_ 0w 0w g 0w 5 5 5
- - - - - - - - -
<_>_Om_ mII- 6w-<_>_0m_ _ <_>_0 ®Q<§Om -__-_
<_>_Om_ 80 £200 <_>_0m_ <_>_0m_
ammw h
G) mow wow
mthflflmw MUMLQQQM MUMLQQQM mwmhmmmw
”UBMBZ mwmwmhMmm>meQMWwakHHMmmemMOOMEZHMZWHQOmQMOBHB>MQU>m<mfimmmmOBEOHQ mVDBMBZ wwwmwwwwmwwwwmm>B>fiBDOUEMQE¢QMDUM>DUM<OMM><BQEQMHm7HOHM<BB>WBQQmu>u mwmhMWm>DmVgmmBMMHQQMmmMUmMOOMEZ_HMZmHQOWflMOBHB>MQU>m<mfimmmmOBEOHQmD mVUBMBZ m.
M wwwmwwwwmwwwwmm>B>QBUOUEMQE¢QMUDM>UDM<OMM>¢BQEQKHm7HOHM<BB>WBQHmu>u mwmhMWm>meHMWBMMHHPMmQMDmMOOMEZHMZWHQOW<MOBHB>MQD>m<mHmmmmOBEOHflmU Mfimwwm0>£kwwwmV>HO>VWUUDDWM /Eww.Emwmmmmmewmméumeww
EUEEVQDOUm<0m>EZEUuZBuBMDm£MOm>M>m<DmMMHEWUmO>HO>O mm>B>HBUOUEMQE¢QMUDM>UUM<OMM><BQEQMHmZHOHMQBB>WBQQmu>u M zzmfiwmezvanmmmaBumgxymmmmeE/zmmmm
_>MBUOUhBEmHBZUOOO_u%B< V>VBUOUhBEmHB7DOOO_LMB< V>VBUOUhBEmHBZUOOO_u%B< magi. $9memoe>>eomwwwwmwwwwmwwwwmmESBwowgwmgwg
$20. V>EEwawm>5
QVOVémm EDEEVQUOUm<0M>EZEULZBLBMDmflMOm>M>m<UmMV#EmUmO>QO>O flVOVémm m 7m
Ego?” @5993 “:6? :Hwowmmomxézzwuzefimwmmmomiimwmmm
BEmQBZUOO B_HB%QBUmD UOUm<0M>EZEUuZBuBMDm£MOm>M>m<UmMMHEmUmO>_HO>O ,Vwmwmmomxéh/zmmmz;
uwmgomq 532355 wmmogzzazwmEmwemmwoSBEwwm WEQMWBM B_HB%QBU B_HB%QBUmD 2%.
Vz mo ”SEE; E38265
Nmoo «N50 >
:5 :5 ow oEomqu 2:029: E lflEEEElaga!
Km- Km- Em- m.y=m_ -wmwwwnmu -
.__._ mm
@0 @0 @O 80 ©O
Om. Om. Om. mm x Om-33 -wmwwwnmu
Nw-<_>_0m_ Nw-<_>_0m_ Nw-<_>_0m_ I ww-<_>_0m_ .__._
80 HEOMN
wmw hww mm ElElEEEa
mwmwmhMmm>mefiMmBMMHQQMémMUmMOOMEZQMZmHQOm<MOBHB>me>m<mfimmmBOBEOHQ MUMLQQflM wwwmwwwwmwwwwmm>B>fiBUOUEMDE¢QMUDM>DUM<OMM><BQE<MQW7HOQM<Bm>mBQmmh>h mwmhMmm>wmwQMmBMMHQQMQmMUmMOOMEZQMZmHQOWflMOBHB>MQD>m<mfimmmBOBEOHQmU MUMLQQQW flM MUMLQQflM
WVUBMBZ Z WVUBMBZ ”
M Mfimwwm0>éwwwmr>90>rWUDUUWM
mm>B>HBUOUEMQE¢QMUUM>UUM<OMM><BQE<MQWZHOQM<Bm>mBQm M >0méBé¢<MDUéémwmhmmmBUm<QLMBDU M
”>MBDOUMBEmHBmhmOOMMBm T>VBUODMBEmQB<hmOOMMB<
ZEOQMflHZMmflQMmABLMDM>WQ<MMH<M7ZMMWM OM
v>VBDOUMBEmQB<hmOOMMB< ”>MBUOUMBEmHBmhmOOMMBm
QVmOQZmHBQWMQBU 3023?QUOUm<0M>EZEULZBLBMUmflMOm>M>m<UmMMQEmDmO>QO>O mHBémwflmew 3023?QUOUm<0M>EZEULZBLwammMOm>M>m<UmMMQEmwmO>QO>O wwwmwwwwmwwwwmm>B>HBDODEMQE¢QMUDM>DUM<OMM><BQE<MQW7HOQM<BW>WBQWmh>h mDmMMmm>UmwQMmbwhééMémMDmMOOMEZQMZmHQOWflMOBHB>MQD>m<mfimmmBOBEOHflmD DVmOQZmHBémwflBUmU M<>EV90M0m<0M>E7E<MMZLBhwmflflomfi m>BémmEOB>>BOWDDDUWDUUUWDUQUWm>B>HBUODEM<EMmAMmzwh7wmm>oww><BQEBv#Z #UMmmOUmMOO>EZmMZUWB><UBWWDOBQB>BUUm Q>BQMBDUUM>EM7mWEé>OMMV<V UMLQQflM ”
BEmQBmhmO 3023?#DOUmmOM>EZEULZBLwammMOmHM>m<UmMMQEmUmO>QO>O mm>B>fiBUOUEMOE¢QMUDM>UUM<OMM><BQEflMQZZHOéWflBm>mBQmmh>h mwmwmhMmm>mefiMmBMMHQQMmmemMOOMEZQMZmHQOmmmomHB>MQU>m<mfimmmmOBEOHQ _ BLEMDBU
oEomqu 2:029: Nmoo mmoo
I> :_>
-wméo -wméo -wméo :_I :_I
«00 -wméo mm- -wméo mm- -wméo mm- -wméo mm- -wméo mm- -wméo -wméo -wméo -wméo
0m. mm.-w0 0m. mm.-w0 mm- mm- mm- mm-
Om. mm.-w0 x Um. w< 0m. w< 0m. w< 0m. w< 0m. w< 0m. w< 0m. w< 0m. w< 0m. w<
ww-<_>_0m_ ww-<_>_0m_ ww-<_>_0m_ :_I
«00 mm-<_>_0 mm-<_>_0 _0 mm-<_>_0 mm-<_>_0
m m II m aw-<_>_0m_ aw-<_>_0m_ aw-<_>_0m_ aw-<_>_0m_
an man mam www mww mam haw man man
wwwmwwwwmwwwwmm>B>fiBUOUEMQE¢QMUDM>UDM<OMM>¢BQE<M927HOQMQBW>WBQWmh>h mwmhMmm>wmw mthflflmw mthflflmw mthflflmw mthflflmw
m? mwmhMmm>wmw HZMmfl mwmhMmm>wmw m? m?
HQQMmQMUmMOOMEZQMZmHQOmmmomHB>MQD>m<mfimmmmOBEOHQmU UBMBZ ”UBMBZ UBMBZ UBMBZ
M wwwmwwwwmwwwwmm>B>fiBUOUEMQE¢QMUDM>UDM<OMM>¢BQE<M927HOQMQBW>WBQWmh>h gmmBMMHQQMmmMDmMOOMEZQMZmHQOmmmomHB>mmw>m<mfimmmmOBEOHflmw Mfimwwm0>éwwwmv>90>vmDUDUmM M
” >UméBéflflMwwéémwmhm¢mmeméhMwa
”>MBUOUhBEmHBthOOMMBm 3023:éwmemOm>EZEDLZBLwammmomHM>m<UmMMQEmUmO>QO>O M
hBEmHB<hmOOMMB< r>VBUODhBEmQB<hmOOMMB<
flTmOQZm flTmOQZm UMLQQflM Qrmrémm
”>MBUOUhBEmQBflhmOOMMBfl
BLBMQBUmD m>BémmEOB>>BOWUUUUWUUUDWDUUDWm>B>HBUOUEM£EMmaMWZUL7DEM>OMM><BQEBV#Z QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm Q>BQMBUUUh>EM7mMEé>OMMV¢VQVm0 vavémm
BLBMQBUmD HQMmABLMDM>mQQMMH<MZZMMmmHm<>EEQUMUm<Om>E7E<MMZLBhwmflflomfi __
UBMBZHE WEQMmBM BEmfiBflhmO 3023?#DOUmmOm>EZEULZBLBMDWQMOW>M>W<DmMMQEmUmO>QO>O mm>B>fiBUOUEMQE¢QMDUM>UUM<OMM><BQEQMQWZHOQMflBB>mBQHmL>L mwmwmhMWm>DmEfimmBMMHQQMmQMQmMOOMEZQMZmHQOm<MOBHB>mmwém<mémmmmOBEOHQ BQBMQBU 3023:QUODm<0M>EZEDLZBLBMUmflMOm>M>m<UmMV#Emwm0>fi0>0 wwwmwwwwmwwwwmm>B>fiBUOUEMQE¢QMUDM>UDM<OMM>¢BQEQMémZHOQMQBB>mBQQmL>L HQQMmmMQmMOOMEZQMZmHQOWQMOBHB>MQwém<mémmmmOBEOHQmw BQBMQBUWD 3023:QUODm<0M>EZEDLZBLBMUmflMOm>M>m<UmMMQEmUmO>QO>O wwwmwwwwmwwwwmm>B>fiBDOUEMQE¢QMDUM>DUM<OMM><BQEQMQWZHOQMflBB>WBQfimL>L
oEomqu 2:o2oE wmoo NN—Do Nmoo mmoo
I> I> :_> :_> I> oEomqu 2:o2oE
-wméo :_I :_I :_I :_I
«00 -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo
mm.-_‘< mm.-m0 mm.-m0 mm.-m0 mm.-m0 mm.-m0 mm.-m0 mm.-m0 mm.-m0 mm.-m0 mm.-m0 «00
Um. x Um. 0m. 0m. 0m. 0m. 0m. 0m. 0m. 0m. Om. x
x x
._I :_I
aw-<_>_0m_ :_I :_I
«00 om-<_>_0m_ Illom-<_>_0 om-<_>_0 om-<_>_0
m om-<_>_0m_ om-<_>_0m_ om-<_>_0m_ om-<_>_0m_ om-<_>_0m_ om-<_>_0m_ «00
mmw wmw man h oo O7
07 07 07
«3 00 co
mwmhMWm>0mmfimmBMMHQQMmmMQmMOOMEZQMZmHQOWflMOBHB>MQUQm<QOWmWOBEOHflm0 Mfimwwm0>éwwwmv>90>vwwwwwmx ZEOHMQHZMWQQMWABLMDM>WQ<MMH<MZZMMWM m>BémmvOB>>HOWUUUUWUUUUWUUUUWm>B>HBUOUEM¢EMmaMWZULZUEM>OMM><BQEBV#Z >0méBé¢flMwwéémwmhm<mBUm<QLMBUU MUMLQQ<M mthflflmw mthflflmw
”UBMBZ WVUBMBZ WVUBMBZ
M Mfim00m0>éwwwmr>90>rWUUUUWM
M ZEOHMflHZMmflQMWABLMDM>WQ<MMH<M7ZMMWM ¢flMwwéémwmhm<mBDm<QLMBUU
”>MBUOUMBEmQBmhmOOMMBm v>VBDOUhBEmQBflhmOOLMB< r>VBDOthEmQB<LmOOLMB<
vavémm m<>3véwammOm>E7EQMMZLBhwmflflomfi ”>MBwOthEmfiBmhmOOLMBm
UMLQQflM QVOrémm QVOVQWW
UWU QUMmmOUmMOO>EZmMZUWB><UBWWUOBHB>BUUm Q>BQMBUUUM>EM7WMEQ>0MM¢<VQ?m0 !E QVOrémm
UBMBZHE 3023?QDODmmOm>EZEULZBLBMDWQMOW>M>W<DmMMQEm0mO>QO>O mm>B>fiBDOUEMQE¢QMO0M>00M<0MM>¢BQEQMQWZHOQM<99>WBQHWL>L MWm>meHmmBMMHQQMmmMDmMOOMEZQMZmHQOm<MOBHB>MQU>m<mHmmmmOBEOHQ BQBMQBU 3023?QUOUm<0M>EZEULZBLBMUmflMOm>M>m<UmMV#Em0m0>fi0>0 wwwmwwwwmwwwwmm>B>QBUODEMQE¢QMO0M>00M<0MM>¢BQEQMQWZHOQMQBB>mBQfimL>L m>0mwHmmBMMHQQMmmMDmMOOMEZQMZmHQOWQMOBHB>MQU>m<mHmmmmOBEOHQm0 DWU 3023?QUODm<0M>EZEULZBLBMDWQMOW>M>W<DmMMQEm0mO>QO>O wwwmwwwwmwwwwmm>B>QBUOUEMQE¢QMO0M>00M<0MM>¢BQEQMQWZHOQMQBB>WBQQWL>L mwmhMWm>wmwgmmBMMHQQMmmMUmMOOMEZQMZmHQOWflMOBHB>m00>m<mfimmmmOBEOHQmw BQBMQBDWD m<>EVQUMUmmOm>E7E<MMZLBhwmflmomfi m>BémmEOB>>BOWDUUDWDUDUWUDGUWm>B>HBDOUEM£EMmaMWZULZUEM>OMM>QBQEBMQZ QDMmmOUmMOO>EZmMZDWB><UBWWUOBQB>BDUm
E: HE I> oEomqu 2:029:
Km-wO Km-wO Km-wO Km-wO Km-wO Km-wO Km-wO Km-wO Km-wO Km-wo -_I -_I
0m. mm.-@< 0m. mm.-@< 0m. mm.-@< 0m. mm.-@< 0m. mm.-@< 0m. mm.-@< 0m. mm.-@< 0m. mm.-@< 0m. mm.-@< 0m. mm.-©< «00
-320m. 5-320m. 5-320m. 5-320 5-320 5-320 -_I
m m 5-320m. 5-320m. 5-320m. 5-320m_ «00
aamom
MUMLQQQM mthflflmw w
mrUBMBZ Z mrUBMBZ Mfimwwm0>éwwwmr>90>rmDDUDWM M
M _ ZEOQMQHZMWDQMmABLMOM>WQ<MMH<M7ZMMWM >DméBéflflMwwéémwmhm<mmeméhMwa
Q>BQMBUUUM>EMZmMEQ>OMMV 3023?éwmemOm>EZEULZBLBMUWQMOW>M> ”>MBUOUhBEmQBMhEOOMMB mwmhMWm>wmwgmmBMMHQQMmmMQmMOOMEZQMZmHQOWflMOBHB>MQU (>VBUOUMBEmHBMhEOOMMBm {>VBDOUhBEmQBwhEOOMMBm m>BémmEOB>>BOmwwwwmwwwwmwwwwmm>B>fiBDOUEM¢EMmaMmzwh
UMLQQflM m flxmvémm‘_ ‘_
vavémm UMLQQflM flxmvémm Q>BQMBUUUh>EM7mMEé>OMMV<V
:3 7EUMZ ”DBMBZHE mmmeMQEmme>fiO>O mm>B>HBUODEMQE¢QMUDM>UDM<OMM>¢BQEQMQWZHOQMQBB>mBQfimL>L mwmwmhMWm>DmEfimmBMMHQQMmQMQmMOOMEZQMZmHQOm<MOBHB>mmwém<mémmmmOBEOHQ UODm<0M>EZEDLZBLBMUmflMOm>M>m<UmMV#Emwm0>fi0>0 wwwmwwwwmwwwwmm>B>fiBDOUEMQE¢QMDUM>DUM<OMM><BQEQMQW7HOQM<BB>WBQQmL>L BQBMQBU #mflmémmmmOBEOHQmw BQBMQBDWU 3023:QUODm<0M>EZEDLZBLBMUmflMOm>M>m<UmMMQEmUmO>QO>O wwwmwwwwmwwwwmm>B>fiBDOUEMQE¢QMDUM>DUM<OMM><BQEQMQW7HOQM<BB>WBQQmL>L mwmhMWm>wmwgmmBMMHQQMmmMQmMOOMEZQMZmHQOWflMOBHB>MQDém<mémemOBEOHflmw BQBMQBDWU m¢>EV90M0m<0m>E7E<MMZLBhwmmflomfi 7UEM>OMM><BQEBVQZ QUMmmOUmMOO>EZmMZUWB><DBWWDOBQB>BDDm _
IIIII wmoo Nmoo oEomqu 2:029: wmoo Nmoo
I> I> I> I>
-Nméo -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo -Nméo :_I :_I
«00 -wméo -wméo
Um. m0-m0 0m. m0-m0 0m. m0-m0 0m. m0-m0 0m. m0-m0 0m. m0-m0 0m. m0-m0 0m. m0-m0 0m. m0-m0 Om. m0-m0 x Um. m0-w0 0m. m0-w0
Nm-<_>_0m_ Nm-<_>_0m_ Nm-<_>_0m_ Nm-<_>_0 Nm-<_>_0 Nm-<_>_0 :_I
m I m Nm-<_>_0m_ Nm-<_>_0m_ Nm-<_>_0m_ Nm-<_>_0m_ «00
m3 h
lala MUMLQQQM MUMLQQQM mwkuflflmw 65.me
mn-UBMBZ m?
mm>B>QBUOUEMQE¢QMUUMNVUUmmOhM>¢BQEQMQWZHOQMQBmNVWBQmmh>h mwmwmhMWm>UmEQMmBMWHQéMémvmmeOOMEH/HQMZWHQOmQMOBHB>MQU>mmmfimmmBOBEOHQ mn-UBMBZ wwwmwwwwmwwwwmm>B>QBUOUEMQE¢QMUUMNVUUmmOh mwmhMmefiwmw.HMWBMWHQéMémvmmeOOMEH/HQMZmHQOWQMOBHB>MQU>mmmfimmmBOBEOHQmU DBMBZ
3023:
M 66600360500063>3>36000066
#UOUmQOM 55508000380388 >06.E.3-2600.5606559036426wa
3023?#UOUmQOMNVEZEwLZBLwamgomxwvfiwmmwmvvm.HEmUmO>QO>O M
UhBEmQBMMEOOMMBdfl 3023..-#UOUmQOMNVEZEmyn—ZBLwamgomxwvfiwmmwmvvm.HEmUmO>éO>O ”->VBUOUhBEmQBMMEOOMMB< >EZEULZBL 22033372609663Bumnzxymmme-m-E/zmvam
35900053365368me 655900030256
2 06-59;
5230005 Qn-mOQZmL-BQWMQBU flMémH/HOQMQBWNVmBQmmh>h Own-mOQZmL-BQWMQBUmU 00060000600006655900050233300900663306Ememmmm.5755336590663:2 52339000900 _
WEQMWBM BEmQBMMEO wamgomxwvfiwmmmUmMVwHEmUmO>éO>O 6065636563gmmECCgégmmwmmoomgzipéBow-$603B>m00>6<mqmmmeoezgmmw 9369235559060 Mag->3”-gwmwmmoEyE/zmwmz-u506-2069 mmzw-éwmgowgmemmfi _Bmfiowmmogzzazwm92309660059508 wwggy7355333339-mo gz 72062 BEE; zgm7mkmom<m
55 In !fl
«moo E00 E00 «moo
_._> .5 I> |_> >u_om 0.366ng 6:629: _._> _._> :3: rm604> 3;
6660 66-60 3-33 3-33 -wméo -wméo -wméo Mum-mm .__._ -560 -560 -360
0m. @060 0m. @060 @060 @060 Om m0-w0 Om m0-w0 Om mOIwO WM8.0x 0m. 606,4 0m. m0-®< 333 mo6< 06 mo6< 333 mo6<
x.__._
8 mm 5 I5
- - - - - - -
<_>_0m_ <_>_0m_ 33 33 mm-<_>_0m _0m mm-<_>_0m mm-<_>_0m_ .__._
80 <_>_0m_ £20 33 vq<§0m 33-
mwm N
07 me Nam wmm
MUM. MUM.
“—Qflmw mwmmeMmewme-ZQMWBMMH MUMLQQQM mwkuflflmw MQQQW
m: www.mMmmxwwmw m? mwmmmmmxwwmw
”UBMBZ
mW>B>HBUOU3WQ§QWUUWNVUUMQOWWNVQBQEQMPWZHOPWQBBNVWBQHW. UBMBZ DBMBZ 685C? HUBWBZ
3023.. 3023? .HMmBMM-réévaQMUmMOOMEH/d 3023: a
h 3023..
- mqmwwmoiwwwmviok-88me .-
mOMNVEZEU. HMmEGmMOOE/fié M mOM M
._->v .HUOUmmOM Emmmwmmoowgz __->v 8m.E.22M8.58882884288
BDOUZ 808 9000mm0m>322my
“—29. “—ZB.
“— ”>MBUOUMBEmQBm:n—ZOOAMB< >EZEULZBL wwwmwwwwmwwwwmm>B>HBUOUEMQE¢QMUDM>UUZ<OMM>¢BQ >EZEULZBL 88888888$95885ng83882032299 22829280839.2989232;szmeEgg: $9.5m8958888888888895883253 .HEEHBM.
wamgomxwvfiwmmwvaM. HMZWHQOm<MOBHB>MQU>m<mfimmmmOBEOHQ “EGO.
AMBm 938228;? wamgomxwvfiwmmwvav ROM. $28. 59288;?
EEC-O. xwvfiwmmwmvvm.HEmUmO>éO>O Evfimzaimegmemqméh 523888395852888092908 #78:“
Qn-Ofl-émm HMZWHQOW<MOBHB>mmw>m<mfimmmmOBEOHQmw fl-H-Ofl-émm 0-0.1me mewmmomNEH/zmwmz;
VWBQHWLCVL _Emu-288093232892888059588 733503.25va 8.59; MBWUWQMOWHMNVWQUMMM.
HEmDmO>HO>OE .H. _
- mW>B>HBUOU3WQ§QWUUWNVUUMQOWWNVQBQEQM.-_-ZZ-_.OPWQBWNVWBQWw.
“CV.
83228va
“CV.
“— BEHMQBU .HEWUWOEHONVO HBMQBDmD E5688 08 BEE; zip/389$ 8m HEWUWONKHONVO gz ZZUZZ “— mwmwmhmmm>0mmfimmBMWHrfiHMMEUMMOOW3ZPWZWHQOWQMOWHB>MQU>W¢WHWWMWOBEOHQ
! 0:6QO5 2:029: moo «moo Ego
I> _._> ._> EJ
émw -Nméo -Nméo HEM-mm .__._
8w -wméo 8 8 |w®|©o uw®|©o
m0-®< I
mm Om m0-®< Om m0-©< mm x Om. mOé< om mOé< 8-2 om 8.2 Z. 8-2 8.2 moi
CM w< 0m
.__._
- 5.228 - mm- mm- -
<_>_Om .vm-<_>_0m 3-228 .__._
moo <_>_Om_ 228 8.228 .Z- m®|<_>_om mmu<_>_0m
Rm wmm N
07 a
MUMLQQQM MUMLQQQM Mfimwwm0>éwwwmr>90>rWUDUUWM ZEOQMQHZMWDQMWABLMDM>WQ<MMH<M7ZMMWM >DméBéflflMwwéémwmhm<mmeméhMwa MUMLQQQM MUMLQQQM w
WVUBMBZ WVUBMBZ WTUBMBZ WVDBMBZ ”
M M
”>MBDOUhBEmQBMLEOOLMBm r>VBUOUhBEmQBMLEOOLMB< UhBEmQBMLEOOLMB< ”>MBDOUhBEmHBZUOOOMMBm r>VBDOUhBEmHBZUOOOMMB<
m flTmOQZm UMLQQflM QrmOQZm
_ QVmOQZm
E_' U 3023:#DODmmOM>EZEULZBLwammmomHM>W<UmMMQEmDmO>HO>O wwwmwwwwmwwwwmm>B>fiBDODEMQEQQMUDM>UUM<OMM><BQEQMQZ7HOQM<BW>WBQWmh>h mwmhMWm>wmwHmmBMMHQQMmmMDmMOOMEZQMZmHQOmmmomHB>MQU>m<mHmmmmOBEOHQmU BLBMQBDWU 3023:#DODmmOM>EZEULZBLwammmomHM>W<UmMMQEmDmO>HO>O wwwmwwwwmwwwwmm>B>HBDODEMQE¢QMUUM>UUM<OMM><BQEQMQZ7HOQM<BW>WBQWmh>h mwmhMWm>wmwHmmBMMHQQMmmMDmMOOMEZQMZmHQOmmmomHB>MQU>m<mHmmmmOBEOHflmU BLBMQBDWU m<>EVéwammOm>E7E<MMZLBhwmflflomfi m>BémmEOB>>BOWUDUDWDDUUWUUGUWm>B>HBDOUEM¢EMmaMWZUL7UEM>OMM>QBQEBV#Z QUMmmODmMOO>EZmMZDWB><DBWWDOBHB>BDUm Q>BQMBDUDh>EM7mMEé>OMMV<VDrm0 7EUMZ ”UBMBZHE MQEQDMUDM>UU la WEQMWBM BEmQBZUOO 3023?éwmemOm>EZEULZBLwammmomHM>W<UmMMQEmDmO>QO>O mm>B>HBUODEMQE¢QMDUM>DDM<OMM>¢BQEQMQZZHOQMflBm>mBQmmh>h mwmwmhMWm>meHmmBMMHQQMmQMDmMOOMEZQMZmHQOmmmomHB>MQU>m<mfimmmmOBEOHQ BLBMQBU 3023?QUOUm<0M>EZEULZBLwamflmomHM>W<UmMMQEmUmO>HO>O wwmwwwwmm>B>HBUOUEMQE¢QMDUM>DUM<OMM><BQEQMQZZHOQMflBm>mBQmmh>h m>megmmBMMHQQMmQMUmMOOMEZQMZmHQOmmmomHB>MQU>m<mfimmmmOBEOHQmU BLBMQBUmU nQUOUm<0M>EZEULZBLwammmomHM>W<UmMMQEm0mO>QO>O
.089 2:029: wmoo Nmoo «moo Nmoo «N50
I _l
.9 I> I> I> :_> :_> > oEomqu
-wméo -wm-@o ..__H -wm -wm -wm -wm -wm -wm -wm -wm -wm
mmvé< Mwog @0 @0 @0 @O !@O @o @o @o @o
Om. Um. x 0m. w< 0m. w< 0m. w< F< Om. w< Om. Om. F< Om. w< Om. w< Om.
x x
._I :_I
mm ma om om mm mm
.__._
mm mm mm ma
- - :0 - - ©m-<_>_0m_ - - -
<_>_Om_ <_>_0m_ moo <_>_Om_ <_>_Om_ <_>_Om_ <_>_o <_>_Om_ <_>_Om_ <_>_Om_ <_>_o
m_ m_ m_
mmm hmm
wwmwwwwmm>B>HBUOUEMQE¢QMUUM>DUM<OMM><BQE<MQZZH mwmhMWm>wmmfimmBMMHQQMmmMUmMOOMEZQMZmHQOmmmomHB>MQU>m<mHmmmmOBEOHflmU Mfimwwm0>éwwwmv Mfimwwm0>éwwwmv
>99? ZEOQMflBZMmQQMmaBLMO 25>: ZEOQMflHZMWQQMWABLMfl
m000®m¥. HM>mQQMMHQMZZMMmm >UméBéflflMwwéémwmhm¢mmeméhMwa mwmhMWm>meHZmBMMHQWMmQMUmMOOMEZQ/ZmHDOm<MOBHB>MQU>W OUhBMQOBhOOOMMBQLQV WUUUUWM
M <MMBQUUUBBHmm>E>HUMUm¢OM MUM>WQ<MMBQUUUBBHmm>E>HUMUm¢OM
{#vBUOUhBMQOBhOOOMMBQLQV_
M>wQ<MMH<M7ZMMmm >UméBéflflMwwéémwmhm¢mmeméhMwa
>MBUOUMBEmHB7UOOOMMB¢
Q? ”#MBDODhBMQOBhOOOMMBflh
OéMflBm>WBQmmL>L mOQZm
BLBMQBUmU m<>3v90M0m<0m>E7EQMMZLBhwmflflomfi m>BémmEOB>>BOWUDDUWUDUUWDUGUWm>B>HBUODEM¢EMmAMmzwhzwmm>oww>mBQEBV#Z QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm Q>BQMBUUUh>EM7mMEQ>OMMV¢VQ?m0 MUM>WQQMMBQUDDBBHmm>E>HUMDm<Om>E<>QLZmLBLUWflflOWQMémDUmO>QDUUmV mm>B>HBDOUEMQhQ:MDQMMUEM>OMM>¢BQEflMfiWZEOQMQBZMflZfl
mzflhz UM>WQ<MMBQUUUBBHm UQMMUE ZQZZWHDOWE wOfiZmBM mefimBhOO mwmwmhMWm>meHZmBMMHQmMmQMmeOOME/QZZWHDOm<MOBHB>MQU>m<mEmmmmOBEOHfl vaOémmHBéBMQBD >E¢>QLZWLBLUWflflOWQMémUUmO>QUUDmv>90>v wwwmwwwwmwwwwmm>B>HBUOUEMQhHEMUDMMDEM>OMM>¢BQEflMémZFOQMQBZM<ZDMWABL mmzmmmmOBFOHQmw mOémmHBQBMQBUmD >E¢>QLZWLBLUWflflOWQMémUUmO>QUUDmv>90>v wwwmwwwwmwwwwmm>B>HBUOUEMQhHEMUDMMDEM>OMM>¢BQEflMémZFOQMQBZM<ZDMWABL mwmhMWm>DmOfiZmBMMHQWMmQMUmMOOMEZQ/ZmHUOWQMOBHB>MQD>m<mEmmmmOBFOHQmU mOémmHBQBMQBUmU m<>3r90M0m<0m>E7E<MMZLBhwmmflomfi m>BémmEOB>>BOWUUUDmUUUUmDDUUmm>B>HBUOUEM£EMmAMWZULZUEM>OMM>QBDEBMQZ QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm
2329: wmoo NN—Do mmoo $50
I> I> I> :_> oEomqu 2:o2oE
:_I -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N_‘m_ :_I :_I
:_I moo rm. Nm.-NO rm. Nm.-NO rm. Nm.-NO rm. Nm.-NO rm. Nm.-NO rm. Nm.-NO rm. Nm.-NO rm. rm. «00
w< x Um. 0m. 0m. 0m. 0m. 0m. 0m. 0m. Nm.-NO 0m. Nm.-NO Om. Nm.-NO x
:_I Fm-<_>_0m_ Fm-<_>_0m_ _0m_ Fm-<_>_0m_ Fm-<_>_0m_ Fm-<_>_0m_ Fm-<_>_0m_ Fm-<_>_0m_ Fm Na-<_>_0m_ :_I
moo <_>_Om_ «00
QMMBQUUUBBHmm>E>HUMUm¢Om mm>B>HBUOUEMQhHEM Mfimwwm0>éwwwmv>90>rmDUUUWM
M MUM>WQ<MMBQUUUBBHmm>E>QUMUm¢OM wwmwwwwmm>B>HBUOUEMQhHEM mwmhMWm>meHZmBMMHQmMmmMUmMOOM M wwwmwwwwmwwwwmm>B>HBUOUEMQhHEM mwmhMWm>UmOfiZmBMMHQmMmmMDmMOOM vév 79v ZEOHMQHZMmQQMWABLMDM>mQQMMH<M7 >UméBéflflMwwéémwmhm¢mmeméhMwa
ZMMmm
Q>BQMBUUUM>EMZmMEQ>OMMV UM>WQ¢MMBQUUUBBHm >E¢>QLZWLBLDm¢¢OWPMQWDDmO>QDDDmv UQMMUEM>OMM><BQEWMQWQEOQMQBWMflZfl >E¢>QLZWLBLDm¢¢OWPMQWDDmO>QDDDmv BUOUhBMmHmBhOOOMMBflhfl”
m>BémmEOB>>BOWUUUUWUUDDmDDUDmm>B>QBDODEMQEMmaMmzwh7wmm>oww>mBflEBV Q>BQMBUUUh>EM7mMEé>OwwvflVQV
th MWm>meHZmbwk#mMmmemMOOME/QZZmHUGZflMOBHB>MQU>m<mHmmmmOBEOHfl #MBUOUhBMQOBhOOOMMBQLQTmOémmHBQBMQBU >99? UGMMUEM>OMM>¢BQEWMQWDFOQMQBmM<ZDMWABL EZQ/ZmHUOZ¢MOBHB>MQU>m<mfimmmmOBFOHQmU BQBMQBUmU MUM>WQ<MMBQUUUBBHmm>E>HUMUm<OM>E¢>QLZmLBLUWflflOWQMQWUUmO>QUUDmv>éO>T UGMMUEM>OMM>¢BQEWMQWDFOQMQBmMQZDMWABL EZé/ZWHUOZ<MOBHB>MQD>m<mfimmmmOBFOHfl
m0 BUOUhBMQOBhOOOMMBmhflVmOémmHBQBMQBUmU m¢>EV90M0m<0m>E7E<MMZLBhwmmflomfi #Z QUMmflOUmMOO>EZmMZUWB>¢UBmmUOBHB>BUUm m0 th UM>WQ¢MMBQUUUBBHm
IIIII wmoo Nmoo wmoo Nmoo
I> I> !la oEomqu 2:029: I> I>
-mm-N -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N -mm-N_‘m_ :_I :_I -mm-N -mm-N
rm. Nm.-v< rm. Nm.-v< rm. Nm.-v< rm. Nm.-v< rm. Nm.-v< rm. Nm.-v< rm. Nm.-v< rm. Nm.-v< rm. Nm.-v< Nm.-v< «00 rm. rm.
Um. 0m. 0m. 0m. 0m. 0m. 0m. 0m. 0m. Om. x Um. Nm.-m< 0m. Nm.-m<
||||||||l!!|||||||||||||||||||||||| x
wa-<_>_0m_ wa-<_>_0 wa-<_>_o wa-<_>_0 :_I
m m mm-<_>_0m_ mm-<_>_0m_ wa-<_>_0m_ wa-<_>_0m_ «00
hm whm mhm whm hhm whm
!flla mwvfiwQOMMBQUUUBBHmm>3>fiwvmwm<0m>3¢>flhzmuEuUmflflOméMfimwmePHUUUm__T $9.5m
mm>B>QBUOUEMQhQEMUQMMUEMNVOMMNVQBQEmMQWQEOQMQBZVfiE/Hfl mwmwmhMWm>UmOfiZmBMMHHWMmgmeOOME/QZZWHUOmQMOBHB>MQU>mmmzmmmmOBEOHfl M__T#MBUOUhBMQOBhOOOMMBfluflvmOémmHBEHMQBU mwvfiwQOMMBQUUDBBHmm>E>HUMUm<OM>E<>QLZmLB.“—UmflflOméMémwmexwéwwwm__T>_HO>__T wwwmwwwwmwwwwmm>B>HBUOUEMQhQEMUDMMDEM>OMM>¢BQEWMémflv/OQMQBZVfiE/HDMW._.Eu mwmhMWm>meHZmBMMHQmMmQMUmMOOMEH/Hé/ZmHUOmmmpHHB>MQU>m<mEmmmmOE>OHQmU OMMBQUUUBBH
M mm>E>HUMUm<OM mqmwwmgfiwwwmvkafi$8me
”59vBDOUhBMmHmBhOOOMMBfln—Q Ev maggomwwwwmwwwwmwwwwm /Eww.Emwmmmmmewmméumeww
>E<>QLZWL zzmfiwmezvammmmamanzxymmmmeE/zmmmm
m>9>qewowz§§m
wmmqmwwmwww: z
_ _
szgwommm mmzw-fi/wmgowgmemmfi
__ mOémmHBQBMQBDmU B.“—UmflflOméMémwmexwéwwwm__T>_HO>__T wwwmwwwwmwwwwm$959085ana:wwmwwwmmxwowgmemmmm.meaifiszmzmmmaE m>wmoq2mSigmMmmmwmmoomgzg/ZmSommmofiB>mmw>m<mzmmmmoe$gmmw $me955950334550,mo_5mE_EEmew man-$3:gwmwmmoEyE/zmwmz-uE53533 gz _memmowmmogzzazwmEmwemmwoquemuwm éaEewwwggy7mwzg>o§vmvmvmo mzflhz UM>WQ¢MMBQUUUBBHW
a5 lala!fl
«moo E00 wmoo NN—Do
_._> .5 I> |_> >u_om 25:8ng 2:029: I> I> 5:
-mm-mrm_ m_ :5: :5: IMMINwm IMMINwm -mm-Nwm -mmflwmm .__._
8w -mm-Nwm IMMINwm -mm-Nwm
0m. mm.-m< 0m. mm-m< Nm.-m< Nm.-m< Om Nm-m< Om Nm-m< Om Nm-m< mm x Om. 0—50-91 Om 0—50-91 Om. :5: 80-2 :5: 0—50-91
x.__._
8 8 mm 00? oow
- :5- :5- mm-<_>_0m - - - - -
<_>_om <_>_om mm-<_>_0m <_>_Om mm-<_>_0m_ .__._
moo £20 <_>_O
m_ m_
mam gm Nwm
mwvfiwmmmMMBQOOOBBHmm>E>QOMOm<Om>E<> mwmwmhMmmxwmeHZmbwfi mwvfiwQOMMBQOOOBBHmm>E>QOMOm<OM>E<>QLZmLB.“—OmflflOméMfimOOmOPHOOOm__T>_HO>__T UOmOOOOmm>B>QBOOOEMQhHEMOQMMOEMNVOMMNVQBQEWMQWDFOQMQBZMflZDMm._.Eu mwmhMmefimeHH/HWBMMH mwvfiwQOMMBQOOOBBH Owwmwwwwmwwwwmm>B>HBOOOEMQhQEMOQMMOEM>OMM>§HQEWMémflv/OQMQBZMQZDMW._.B.“— WOWMMWmNVOmOQZmBMMH MHmOOmOPHOOUWHLKHONVVWOOOOWM ZEQHMQHZMWQQMWAB m>E
Hmm _
EOB>>BOmOOOOmOOOOmOOUOm >0m.EH.finflvmww.H_HmwmhM<mBOm<_b“—v _
_ mmmmmmmmm) mom)ommmmmgmgoomomn.mm®mmmmw m))04)moommomommmmmmmmm)mJommoooJomooJ) mmmmmmummmmmomgomemmJg)0®)0®moompoomm®mmom)_ 9m.H0.HOBEéifi/BOEVWZBmeafl/OMMOOBQmmBmeOMQOOm._.OmméémmhwrZOWOOOQEOQE OQVOBO__7__T>B%__ZHOM%H mmm mmmgmmngmmoommpmommmoo)
HmMmgmeOOMEH/d ommmm))) 40m04®4®00mmm0®J40®Jm0®)
mm>B>QBOOOEMQhQ:MOQMMOEMNVOMMNVQBQEWMQWQEOQMQBH/Emzm HmMmgmeWOME/QZZW._.OOmmmOBHB>mmw>m<m2mmmmOBEOHfl
moomm®)o) WV?
M JJmmomm) ®0®m0)®) __
_ ”79v mm>E>HOMOm<OM eOOE/fié ”79v upflM>mQ<MMH<M7ZMMmm._.mdflxwgiéwvmwmflOMNVEH/EQMMZLBhwmgomfi ”TAHOBMWVVQQ
Q. H/ZWHOOmQMOBHB>mmw>m<m2mmmmOBFOHQmO BOOOhBMmQEQhOOOMMBflho >E<>QLZWL
“—thEuOmflflOméMémOOmOPHOOOm__T ._HMBOOOhBMmHEQhOOOMMBfln—QTmOémmHBQBMQBO H/kawOmQMOBHB>mmw>mmm2mmmmOB70HflmO BOOOMBMmHEQhOOOMMBmhflvmOémmHBQBMQBOmO m>B>HBOOOEM£EMm _HOMmmOOmMOONK/E/EMZOWB><OBmmOOBQB>BOOm mmmmooo) __
B.“—OmflflOméMémOOmOPHOOOm__T>_HO>__T Q>BQV
._. BOOOMNVEM
9mm.finflmémMOMQZBMBBNVQ
_ _
Emmy?”
_ mmoo)) ZflzwéémeBH/HMLfiwQMQmHTm2
mOémmHBQBMQBOmO MmZOLH/OEMNVOMMNVQBDE MEQNVOMMV _
Ev _
_ #Z J ®®m0)m®®momommmm )mggmm mmmmmoommm moom0p mm04m VMEHLZEKHCVQQ Zflmémhommmmxwvmnmvm mmommggggmgmmmgmmomoo))ngmmommomommpm omJJoommongoommomgoo)ooommongmgmmomg
0.5500qu 2:029: :mEsc :mEsc wccat
-mm-Nwm -mm-Nwm -mm-Nwm |_I
owo-m< owO-m< MOO
Om Om owO-m< Om owO-m< .MM.Mfinmu.WM X
>_Om oow-<_>_Om oow-<_>_Om |_I <_>_Om
- oow-<_>_Om MOO
X <§OmcmEsc :mEsc H<Ommeflc
moor
mom0)JJJom0®®J)JoJoJooJmmJJoommJommmm)JoJJoJmmmJo)omemomompmommmmm ommoHmmmooommmmop0ommmommmmmmpooommmmoooommmw mmommom®)®®JommmmoJmmmm)ommJommmoomommoommmmommmJommo)ommoJmmmomm)J mmmommmmmoJm)m)ommmmm)®)oomomp®m®mm®®)®mom)m)®m®®) moJm)JoJ)moommommmmmmmmmmmpmoommooJ)omoooJ)o)JJmoommJoJJmmmmmmmmooo mmmpmmmmmeo) Bhémémr V
_ __>BMV m0®))®) mmomJ) mmJ)0®m®) mmmmmm)
ma moommm) mm)mm)ommmmommmmmmmmm) ammmmmo)mom)ommmmmJmJoomomn.mm®mm®®p®®omo moJmo)OJ)moommomommmmmmmmmpmoommoooJomooJ) 0pmmm®m®mpm®m®®omJJmemmJJJom)ommoJmJoomm) .0BOV?>BMVQUMmQ> mmm
_ EQ>BMBUM>WWH>mmQOMmOOBmmmZmOMHEOmMOQw MQQUmM BmMmEUE>mOH<Bm>mmMUMQUBMBB>Q _
UHMUVVQQ
memmemmmoooJom) momm)o)oo)oo)om) oommm)oJoJJm®om) mmmmmmmm)om) momm)
0mm) .UQOBEQHQ7EUM>mZB7m¢7OMMOOBHmmBmmOMHOOmMOflEQQWD_ VB>méflflmémZOMQZBMBB>Q WZB>WQZOMMOOBQmmBZmWOMQOOmHOfl:##mfl.
omJJoJ)moJo)m omJommoome)mmmoJmmmommom)om®)mmmommmmmomoo MBQVBQQMQQOmmUQHOUmmOmwHMémrm7ZMMQéhm mmemm)omom0pommoommm® ##mQLM” BMBUM>WWB>meOMmOOBmmmZmOMHEOmMomméémO mzewm>mze>m<zommooeqm32mmomgoofiofifigmm.
mm. __Z¢mémhhmflmfl
JJoJmm “600% .20m00mmEOHE DmDBZMLVQMQm:mmFMmHHuBH>_u>< BflUVVZflméthEQmQ>Mm ”ZOWOOUQEOH> QZBUM>WZB>W<ZOMMOOBHmmBZmWOMQOOmHOflEQQmQLMTWELOOUQEOQ> mzewm>mze>m<zowmooemmmZmomEQmF3:58;:zomoowmzog BMBUM>WWB>meOMMOOBQmmBZmWOMQOOmhomméémQLMVZOWOOUQEOQ>
3me 58:5 E. ocmEEo :E ocmEEo :E ocmEEo :E :E
\ \ \ \
:c :c ocmEEo :c :c
:58 88 20:58 38 ESE mESE ESE mESE
”02 ”02 E Nm. mm. vm.
<_>_0m_ u \ \ \ \
com. Q com. Q oom 00m. oom 00m.
mscmomE <_>_om 395 <_>_om 395 <28 _ <28 <_>_Om_
; Si :6 a: :5 5: :5 5:
h co
o 0
o O
‘— ‘—
MUMNVWQMMMZQUUWB LUWUBLMQmNVUBEmH/HmmwwHQéMmmmeBOOMEQ>ZHU>WOW§OZQB>MVU MUMNVWQMMMZQUUWB
«zewmxyngmmzowmooeqm32mmomqoommommimmivzomoowmzoqz «zewmxyngmmzowmooeqm32mmom_EoEo<:Emm_;__,zomoowmzoqz yngmmzowmooeqm32mmom_aom5<:_5mm_;__,zomoowmzoqz MQEQMBDmULBLm UBhMQmNVUBEmH/Hmmwwh##MmmmeBOOMEQNVZHUNVmOmmMOZEHNVMTD MQEQMBUmULBLm
mDMOéowwxwméflrmrxfi/Hm
82009639me9300 owmooeqmmemmomqoo '5 wvgmmmwwzmwme '5
mUMOéowwxwméflrmrxfi/Hm
mzewmizgmmz mzezmmz Q>ZHw>mOm§ Bum m<>EV#DManmOmNVEdflEQE/HmhBhwmflflom#MémmmePfiwwwm__T mm>B>HBUODEM§mUMWDQMMQEMNVOMMBmBQ5mm.HmflEOéMéBmvfiE/Hfl
wMmew __ mBmEmBmmOBEBm BEEN—DMD mmxfisr_HUMBm<Om>E<EQMZm_uB.“—UmflflOméMémmmePHDUUm__T>_HO>__T Dwmwwwwwmwwwwmm>B>QBUOUEM§mUMWDQMMQEMNVOMMBmBQEmM#mflEOéMéBmEflZflmeth mBmEmBmmOBE>BmmUU Béfiuflmwhwm
55HE HE _EE a aM
mUMQE
hymn” hymn” hymn” E8; mafia $50 NmDO
I> $8; :_> :_> «$0015 |_> >u_om
ESE ESE ESE m v
5520 «$520 $520 5520 mmvm mmvm mmvm mmvm mOm mOm mOm
mm. mm. E 83m 83m Om. Om. Om. Om. Om Om Om
\ \ \
00m. 00m. 00m. 80:8 80:8 8856 80:8
<_>_om <_>_om <_>_om _ <_>_om <_>_om <_>_0m_
:c :c :c :c 22: :c omE wow-<_>_0m_ 5228 wow-<_>_0m_ wow-<_>_0m_ wow-<_>_0m_ wow-<_>_0m wow-<_>_0m wow-<_>_0m
I 5:2ng MNOF EEE NNOF omor
lflllll lfllllllfllllllflllll ZMmZ UMLMrZMvBQQZMmZ
MD UmhMmmxwmeHMWwafi
Etkawmv M mwmwmhMWm>meHmmbwkéévfiwafl EVQDODmV
OM>EE mm>B>BBUODEMQE>QEflmwwwflmmowwxfiflmflimBémméiv/MmBBmmMQmBHBmv mMOOMEZ. M..T#MBDDUhBEmQBZUOOOLMBdfl OM>EE wwmwwwwmwwwwmm>B>BBDODEMQE>QEflmMMUQMQOMMNVQWQEm9. HM>BDQmMOOMEZ
EZRAwamgomzvfiwmmwmvfiwérmDmOV>90>v HMZWHQOmmmomHBNVMQD. DDUhBEmQBZUOOOLMBm
Hmm. HMZWHQOmflmOmHBNVMQU.
Hmmm. QTOVQZW TOTE/Hm
HmmmBOBE. EZRAwamgomzvfiwmmwmvNVérmDmO” B.
B. Hmwfl 9......a5MMw.wmwmwwwm%m...%WmmmmmmmfiwEMMMM?
E HmMQBU >QO>HT ENE/MmBBmmMQmBQBmv HmmmémmmBOBEPHEmww mewm 2..
EIIII M!“I >u_om
N< N<
.vVN EN Durvvm
Om Om Om
Now Now
<_>_Om <_>_Om NOT<_>_Om_
NMOF wmor mmor “Illa“III-
2012/072699
wmimmfifimwmem wwmwwwwmwwwwm UM>me UM>me
MMBQUUUBB mwmwmhMWm>mefiZm MMBQUUUBB wwmwwwwmwwwwm UmhMmmxwmefiZmbw
>....meemmomémzmwzmuBhwgmomgmgmw89.50%......>.8>... m>B>HBUOUEM§m wmwmmmmgwmoqmmmwfi.Eommmwmmoomgmngm la lfllllfilfllllElfllllllfllllE mmxfis” BMM #mM
Tmm>B>m<DOUEMQhQEMUQMMUEM>OMMB<BQEmMfimQFOQMQBmEflZfl. m<>EV m>B>m¢UOUEMQh M
MQOmmowaflBQ _I . .HUMBmmOMNVEg/HQ. BmeMOOMEZ. M BUQmMOOMEZ.
uZmLB. mflmOm
h mwmééewmwm9555800.“.Em...Q...mozmeQmwoewm 9.920... uwmflflom. HMthwOmflmom
. QUMBm<0m>E<EQLZmLBhwmflflomEv.
PM. B>mflv
5055822939... BE...mgmmmgmmmmoezxyéw Hwy
wvfiwmmmwawawBBHm 0&0?
wawm” ..T.HMBUQULBMWWAQMOOOMwaflLfi?mrémz :HMmewqummAQMOOowwxwmuQvaémz
T BémMQBU .HmMUmOxwéwwwm.....T>.HO>..T mEMUQMMUEMNVOMMBQBQEmMfimQFOQMQBmvfifl/HDMmafiuw HmmmzmmmBOBv/xwéimww Bémwflmewm la wvfiwmmmwawawBBHm
a a
> mafia > mafia
u_ “—
ow I> J“! ow I>
v< MOI—RN MD. mO
I I
«mm wNN wNN mmewm
om Om Om— Om Om
m8<_>_0m_I vow-<_>_0m_ vow vow
m_ I
<_>_Om mo_.I<_>_Om_
2‘2. .......E E a hmor a.E
UM>WQM
MMBQUUUBB m mUmUWZMmefimeHZmBMM UM>WQMMMBQUUUBB UM>WQMWMBQUDDBB UM>WQMWMBQUDDBB
m>B>fi UmemmxfimeHZmbw Umemm>DmOHZmBMM
mmxfisr BUOUEMQM mmxfisr Dwmwwwwmwwwwmm>B>QHUOUEMQh.... .Hmvm mmxfis” mwmmeMmmxwmefiZmbw #mM
Bm<0m>3§9u BUOmEOOMEZ. M M
QZMUQ M .HUMBmmOMNVEg/ZQ. BUOEMOOMEZ. M
th H_Zm.
Bhwmfl MMUZMNVOMMBQBQE HEthwOmmmom ..T#MBUWULBfimthMOOOMMFELQVmrémm .HUMBmmOMNVEg/ZQLZWLBhwmflflomév BDQmMOOMEZQZZmHUOmflmOm “TH. BUQmMOOMEZ_HZZmHUOmmmOm
flomévwkmw . uwmflflow Ommmom
/O. PM.
.HmM HmM
PM. ..T.HMBUmw.uB_Hm.n—WQMOOOMMZQ“5.2mvémm Um
O? 0&0? .#MBUQDthmmBQhOOOMMZQ.LQ.Tmvémm
wawm wawm” x#MBDQUZBM&WBQZOOOMMZ¢LQVmrémm
..T.. HBmvfiflZfl B>m0709m<m2mmm9092>95 wwmr UEMNVOMMBQBQhWZéWQZOQMQBWMflZflM T
. mm>B>Z>UOUEMQhQZMUQMMDZM>OMMB<BQEmMfimQZOQMQBmZflZfl.
.HQWMQBU O>..T m4.9.“; B>MVUém<m2mmm9097>éimww BémMflBmem lflllll UM>WQMWMBQUUUBBHW MQZQZMUQMMUZ ZQZZmHDOmg B>mflvwém<m2mmmBOBE>QE BQWMQBU m<>EVQUMBm<0m>E<ZQLZmLBhwmflflomév#mMUmO>QUUUmrv>90>v wwmwwwwmwwwwmm>B>Z>UOUEMQhJ.Z%DQMMUZM>OMMB<BQEmMfimQZOQMQBmZflZflMmaBLM B>Mw0_km<m2mmm9097>éimww ewm mhmwwfl ”memmhwaZ
!! NN—Do
>u_om lfllllllflllllJ“!fl! > wmoo mafia
I> m
ow I> I> ....
mm.-m@N mm.-m@N mm.-m@N Nwm- Nwm v<-
I v<$vm tum
Om. Om. Om. wNNOm wNNOm Om. NwmwNNOm Om. ..-:
mo mo
T<_>_Om_ T<_>_Om_ moT<_>_Om_ Egg wow wow For
-<_>_Om ®0w<5fi¥mI <_>_Om NOT/«20m. -<_>_Om_
”For .VNOF mNOF whor hhor
WO 72406
!flla fmzwmmn; .mMmewwmhMmewafi DEN—Mrzwvmzwmflhw M0m>wmhMZm>Mwfi MDm>OmhMZm>MMH
mm>B>BBOOOE>QhMEDMDMHWflOM wwwwmwwwwmwwwwmm>B>BBOOUE>Qh H. ”7%; .mmwmxwwmhMmewah. UBLMvZMvaOmmm; H.
h h
EU EU wwwwmwwwwmwwwwmm>B>BBOOOE>Qh HMmmOOmMO. M HMmmOOmMO. M HMmmOOmMO. M HMmmOOmMO. M
HMEE. ..7.HMBOOOMBMAEVEBmOmOhMNVO. HMEE. ..7#MBOUOMBEmNVEmOOhOMMNVO. HMEE.
MEDMDMQWflOM mm>B>BBOOOE>QhMEDMQMHWflOM HMEE.
QmflOM
M><BQEWE M><BQEWE
EQMBZOZWEEHWOWWM mMOMNK/MZAMMQmLmMOWNVMOmHM>m<OmM>E7mOmOu7>éO>n7 ..7.HMHOOOLBMmESMBmOmOMM>OQQH7¢H7>Mm ..7.HMHOOOLBEm>EmOOMOMM>OQQH7£07>MZ
M><BQEmBémm902M<B7mmBQ>BQB§ HMBZOZWEEHWOWWMOWHmmOflwémxwmémémBOBv/SQE EH7.HOOOmMOMNK/MZAMMQmLmMOWNVMOmHv>m<OmM>E7mOmOu7>éO>n7 Hm...7<..7>Mm Hm...7<..7>MZ
MEHLQflOWOWOW HmméOzmeh/mmBmSBHBmv HMBZOZWEEHmOmmMOmHmmOflwémxwmémémBOBEPHEW MémammemOmh ETHOOOmMOMNK/MZAMMQmLmM0m>MomHM>m<OmM>HOmOmOH7>QO>H7 mBémWQOEMQBmeBQxVBfiBmv HMBZOZWEEHWOWWMOWHmmOflwémxwmémémBOBw/SQE MQBLQBOWOWOm EH7.HOOOmMOMNK/MZAwwmmhmwwmwaOmHv>m<OmM>HOmOmOH7>QO>H7 HmméOzmeh/MmmBmSBHBmv HMBZOZWEPHmOmmMOmHmmOflwémxwmémémBOBEPHEW MQBLQBOmOmOmh
meO >
:5 “l-.vd? fl! “—
ow fl!H! >u_om
.vdrtum .v< .v< mm
I ©m-
tum tum tum ©VN @VN wmévm
Om Om Om Om EIIIIlflllllEIIIIlfllllllfllllaa Om Om Om.
Now-<_>_Om For For For wow wow
-<_>_Om I
<_>_Om <_>_Om -<_>_Om <_>_Om on<_>_Om_
GNOF 3.7.5.9 ”mo—7 fine—7 aa mac—7
Claims (24)
1. A binding molecule which is at least bispecific comprising a first and a second binding domain, wherein (a) the first binding domain binds to epitope cluster 3 of BCMA (CQLRCSSNTPPLTCQRYC); and (b) the second binding domain binds to the T cell CD3 receptor complex; wherein e cluster 3 of BCMA corresponds to amino acid residues 24 to 41 of the sequence as depicted in SEQ ID NO: 1002.
2. The binding le according to claim 1, wherein the first binding domain is further capable of binding to epitope cluster 3 of macaque BCMA (CQLRCSSTPPLTCQRYC).
3. The binding le according to claim 1 or 2, wherein the second binding domain binds to CD3 epsilon.
4. The binding molecule according to any one of claims 1-3, wherein the second binding domain binds to human CD3 and to macaque CD3.
5. The binding le according to any one of claims 1-4, wherein the first and/or the second binding domain are derived from an antibody.
6. The binding le according to claim 5, which is selected from the group consisting of (scFv)2, e domain mAb)2, scFv-single domain mAb, diabodies and oligomers f.
7. The binding molecule according to any one of claims 1-6, wherein the first binding domain comprises a VH region sing CDR-H1, CDR-H2 and CDR-H3 and a VL region comprising CDR-L1, CDR-L2 and CDR-L3 selected from the group consisting of: (1) CDR-H1 as depicted in SEQ ID NO: 1, CDR-H2 as depicted in SEQ ID NO: 2, CDR-H3 as depicted in SEQ ID NO: 3, CDR-L1 as depicted in SEQ ID NO: 4, CDR-L2 as depicted in SEQ ID NO: 5 and CDR-L3 as depicted in SEQ ID NO: 6; (2) CDR-H1 as depicted in SEQ ID NO: 11, CDR-H2 as depicted in SEQ ID NO: 12, CDR-H3 as depicted in SEQ ID NO: 13, CDR-L1 as depicted in SEQ ID NO: 14, CDR-L2 as depicted in SEQ ID NO: 15 and CDR-L3 as depicted in SEQ ID NO: 16; (3) CDR-H1 as depicted in SEQ ID NO: 21, CDR-H2 as depicted in SEQ ID NO: 22, CDR-H3 as depicted in SEQ ID NO: 23, CDR-L1 as depicted in SEQ ID NO: 24, CDR-L2 as depicted in SEQ ID NO: 25 and CDR-L3 as depicted in SEQ ID NO: 26; (4) CDR-H1 as depicted in SEQ ID NO: 31, CDR-H2 as depicted in SEQ ID NO: 32, CDR-H3 as depicted in SEQ ID NO: 33, CDR-L1 as depicted in SEQ ID NO: 34, CDR-L2 as depicted in SEQ ID NO: 35 and CDR-L3 as depicted in SEQ ID NO: 36; (5) CDR-H1 as depicted in SEQ ID NO: 41, CDR-H2 as depicted in SEQ ID NO: 42, CDR-H3 as depicted in SEQ ID NO: 43, CDR-L1 as depicted in SEQ ID NO: 44, CDR-L2 as ed in SEQ ID NO: 45 and CDR-L3 as depicted in SEQ ID NO: 46; (6) CDR-H1 as depicted in SEQ ID NO: 51, CDR-H2 as ed in SEQ ID NO: 52, CDR-H3 as depicted in SEQ ID NO: 53, CDR-L1 as depicted in SEQ ID NO: 54, CDR-L2 as depicted in SEQ ID NO: 55 and CDR-L3 as ed in SEQ ID NO: 56; (7) CDR-H1 as depicted in SEQ ID NO: 61, CDR-H2 as depicted in SEQ ID NO: 62, CDR-H3 as depicted in SEQ ID NO: 63, CDR-L1 as ed in SEQ ID NO: 64, CDR-L2 as depicted in SEQ ID NO: 65 and CDR-L3 as depicted in SEQ ID NO: 66; (8) CDR-H1 as depicted in SEQ ID NO: 71, CDR-H2 as depicted in SEQ ID NO: 72, CDR-H3 as depicted in SEQ ID NO: 73, CDR-L1 as depicted in SEQ ID NO: 74, CDR-L2 as depicted in SEQ ID NO: 75 and CDR-L3 as depicted in SEQ ID NO: 76; (9) CDR-H1 as ed in SEQ ID NO: 161, CDR-H2 as depicted in SEQ ID NO: 162, CDR-H3 as depicted in SEQ ID NO: 163, CDR-L1 as depicted in SEQ ID NO: 164, CDR-L2 as depicted in SEQ ID NO: 165 and CDR-L3 as depicted in SEQ ID NO: 166; (10) CDR-H1 as depicted in SEQ ID NO: 171, CDR-H2 as depicted in SEQ ID NO: 172, CDR-H3 as depicted in SEQ ID NO: 173, CDR-L1 as depicted in SEQ ID NO: 174, CDR-L2 as depicted in SEQ ID NO: 175 and CDR-L3 as depicted in SEQ ID NO: 176; (11) CDR-H1 as depicted in SEQ ID NO: 181, CDR-H2 as depicted in SEQ ID NO: 182, CDR-H3 as depicted in SEQ ID NO: 183, CDR-L1 as depicted in SEQ ID NO: 184, CDR-L2 as depicted in SEQ ID NO: 185 and CDR-L3 as depicted in SEQ ID NO: 186; (12) CDR-H1 as depicted in SEQ ID NO: 191, CDR-H2 as depicted in SEQ ID NO: 192, CDR-H3 as depicted in SEQ ID NO: 193, CDR-L1 as depicted in SEQ ID NO: 194, CDR-L2 as ed in SEQ ID NO: 195 and CDR-L3 as depicted in SEQ ID NO: 196; (13) CDR-H1 as depicted in SEQ ID NO: 201, CDR-H2 as depicted in SEQ ID NO: 202, CDR-H3 as depicted in SEQ ID NO: 203, CDR-L1 as depicted in SEQ ID NO: 204, CDR-L2 as depicted in SEQ ID NO: 205 and CDR-L3 as depicted in SEQ ID NO: 206; (14) CDR-H1 as depicted in SEQ ID NO: 211, CDR-H2 as ed in SEQ ID NO: 212, CDR-H3 as depicted in SEQ ID NO: 213, CDR-L1 as depicted in SEQ ID NO:214 , CDR-L2 as depicted in SEQ ID NO: 215 and CDR-L3 as depicted in SEQ ID NO: 216; (15) CDR-H1 as depicted in SEQ ID NO: 221, CDR-H2 as depicted in SEQ ID NO: 222, CDR-H3 as depicted in SEQ ID NO: 223, CDR-L1 as depicted in SEQ ID NO: 224, CDR-L2 as depicted in SEQ ID NO: 225 and CDR-L3 as depicted in SEQ ID NO: 226; (16) CDR-H1 as depicted in SEQ ID NO: 311, CDR-H2 as depicted in SEQ ID NO: 312, CDR-H3 as depicted in SEQ ID NO: 313, CDR-L1 as depicted in SEQ ID NO: 314, CDR-L2 as depicted in SEQ ID NO: 315 and CDR-L3 as ed in SEQ ID NO: 316; (17) CDR-H1 as depicted in SEQ ID NO: 321, CDR-H2 as depicted in SEQ ID NO: 322, CDR-H3 as depicted in SEQ ID NO: 323, CDR-L1 as ed in SEQ ID NO: 324, CDR-L2 as depicted in SEQ ID NO: 325 and CDR-L3 as depicted in SEQ ID NO: 326; (18) CDR-H1 as depicted in SEQ ID NO: 331, CDR-H2 as depicted in SEQ ID NO: 332, CDR-H3 as depicted in SEQ ID NO: 333, CDR-L1 as depicted in SEQ ID NO: 334, CDR-L2 as depicted in SEQ ID NO: 335 and CDR-L3 as depicted in SEQ ID NO: 336; (19) CDR-H1 as depicted in SEQ ID NO: 341, CDR-H2 as depicted in SEQ ID NO: 342, CDR-H3 as depicted in SEQ ID NO: 343, CDR-L1 as depicted in SEQ ID NO: 344, CDR-L2 as depicted in SEQ ID NO: 345 and CDR-L3 as depicted in SEQ ID NO: 346; (20) CDR-H1 as depicted in SEQ ID NO: 351, CDR-H2 as depicted in SEQ ID NO: 352, CDR-H3 as depicted in SEQ ID NO: 353, CDR-L1 as ed in SEQ ID NO: 354, CDR-L2 as ed in SEQ ID NO: 355 and CDR-L3 as depicted in SEQ ID NO: 356; (21) CDR-H1 as depicted in SEQ ID NO: 361, CDR-H2 as depicted in SEQ ID NO: 362, CDR-H3 as depicted in SEQ ID NO: 363, CDR-L1 as depicted in SEQ ID NO: 364, CDR-L2 as depicted in SEQ ID NO: 365 and CDR-L3 as depicted in SEQ ID NO: 366; (22) CDR-H1 as depicted in SEQ ID NO: 371, CDR-H2 as depicted in SEQ ID NO: 372, CDR-H3 as depicted in SEQ ID NO: 373, CDR-L1 as depicted in SEQ ID NO: 374, CDR-L2 as depicted in SEQ ID NO: 375 and CDR-L3 as depicted in SEQ ID NO: 376; (23) CDR-H1 as depicted in SEQ ID NO: 381, CDR-H2 as depicted in SEQ ID NO: 382, CDR-H3 as depicted in SEQ ID NO: 383, CDR-L1 as depicted in SEQ ID NO: 384, CDR-L2 as depicted in SEQ ID NO: 385 and CDR-L3 as ed in SEQ ID NO: 386; (24) CDR-H1 as depicted in SEQ ID NO: 581, CDR-H2 as ed in SEQ ID NO: 582, CDR-H3 as depicted in SEQ ID NO: 583, CDR-L1 as depicted in SEQ ID NO: 584, CDR-L2 as depicted in SEQ ID NO: 585 and CDR-L3 as depicted in SEQ ID NO: 586; (25) CDR-H1 as depicted in SEQ ID NO: 591, CDR-H2 as depicted in SEQ ID NO: 592, CDR-H3 as ed in SEQ ID NO: 593, CDR-L1 as depicted in SEQ ID NO: 594, CDR-L2 as depicted in SEQ ID NO: 595 and CDR-L3 as depicted in SEQ ID NO: 596; (26) CDR-H1 as depicted in SEQ ID NO: 601, CDR-H2 as depicted in SEQ ID NO: 602, CDR-H3 as depicted in SEQ ID NO: 603, CDR-L1 as depicted in SEQ ID NO: 604, CDR-L2 as depicted in SEQ ID NO: 605 and CDR-L3 as depicted in SEQ ID NO: 606; (27) CDR-H1 as depicted in SEQ ID NO: 611, CDR-H2 as depicted in SEQ ID NO: 612, CDR-H3 as depicted in SEQ ID NO: 613, CDR-L1 as depicted in SEQ ID NO: 614, CDR-L2 as depicted in SEQ ID NO: 615 and CDR-L3 as depicted in SEQ ID NO: 616; (28) CDR-H1 as depicted in SEQ ID NO: 621, CDR-H2 as depicted in SEQ ID NO: 622, CDR-H3 as depicted in SEQ ID NO: 623, CDR-L1 as depicted in SEQ ID NO: 624, CDR-L2 as depicted in SEQ ID NO: 625 and CDR-L3 as depicted in SEQ ID NO: 626; (29) CDR-H1 as depicted in SEQ ID NO: 631, CDR-H2 as depicted in SEQ ID NO: 632, CDR-H3 as depicted in SEQ ID NO: 633, CDR-L1 as depicted in SEQ ID NO: 634, CDR-L2 as depicted in SEQ ID NO: 635 and CDR-L3 as depicted in SEQ ID NO: 636; (30) CDR-H1 as depicted in SEQ ID NO: 641, CDR-H2 as depicted in SEQ ID NO: 642, CDR-H3 as depicted in SEQ ID NO: 643, CDR-L1 as depicted in SEQ ID NO: 644, CDR-L2 as depicted in SEQ ID NO: 645 and CDR-L3 as depicted in SEQ ID NO: 646; (31) CDR-H1 as ed in SEQ ID NO: 651, CDR-H2 as depicted in SEQ ID NO: 652, CDR-H3 as depicted in SEQ ID NO: 653, CDR-L1 as depicted in SEQ ID NO: 654, CDR-L2 as depicted in SEQ ID NO: 655 and CDR-L3 as depicted in SEQ ID NO: 656; (32) CDR-H1 as depicted in SEQ ID NO: 661, CDR-H2 as depicted in SEQ ID NO: 662, CDR-H3 as depicted in SEQ ID NO: 663, CDR-L1 as depicted in SEQ ID NO: 664, CDR-L2 as depicted in SEQ ID NO: 665 and CDR-L3 as depicted in SEQ ID NO: 666; (33) CDR-H1 as depicted in SEQ ID NO: 671, CDR-H2 as ed in SEQ ID NO: 672, CDR-H3 as depicted in SEQ ID NO: 673, CDR-L1 as ed in SEQ ID NO: 674, CDR-L2 as depicted in SEQ ID NO: 675 and CDR-L3 as depicted in SEQ ID NO: 676; (34) CDR-H1 as depicted in SEQ ID NO: 681, CDR-H2 as depicted in SEQ ID NO: 682, CDR-H3 as depicted in SEQ ID NO: 683, CDR-L1 as depicted in SEQ ID NO: 684, CDR-L2 as depicted in SEQ ID NO: 685 and CDR-L3 as depicted in SEQ ID NO: 686; (35) CDR-H1 as depicted in SEQ ID NO: 691, CDR-H2 as depicted in SEQ ID NO: 692, CDR-H3 as depicted in SEQ ID NO: 693, CDR-L1 as depicted in SEQ ID NO: 694, CDR-L2 as depicted in SEQ ID NO: 695 and CDR-L3 as depicted in SEQ ID NO: 696; (36) CDR-H1 as depicted in SEQ ID NO: 701, CDR-H2 as depicted in SEQ ID NO: 702, CDR-H3 as depicted in SEQ ID NO: 703, CDR-L1 as depicted in SEQ ID NO: 704, CDR-L2 as ed in SEQ ID NO: 705 and CDR-L3 as depicted in SEQ ID NO: 706; (37) CDR-H1 as depicted in SEQ ID NO: 711, CDR-H2 as depicted in SEQ ID NO: 712, CDR-H3 as ed in SEQ ID NO: 713, CDR-L1 as depicted in SEQ ID NO: 714, CDR-L2 as depicted in SEQ ID NO: 715 and CDR-L3 as depicted in SEQ ID NO: 716; (38) CDR-H1 as depicted in SEQ ID NO: 721, CDR-H2 as depicted in SEQ ID NO: 722, CDR-H3 as depicted in SEQ ID NO: 723, CDR-L1 as depicted in SEQ ID NO: 724, CDR-L2 as depicted in SEQ ID NO: 725 and CDR-L3 as depicted in SEQ ID NO: 726; (39) CDR-H1 as depicted in SEQ ID NO: 731, CDR-H2 as depicted in SEQ ID NO: 732, CDR-H3 as depicted in SEQ ID NO: 733, CDR-L1 as depicted in SEQ ID NO: 734, CDR-L2 as depicted in SEQ ID NO: 735 and CDR-L3 as depicted in SEQ ID NO: 736; (40) CDR-H1 as depicted in SEQ ID NO: 741, CDR-H2 as depicted in SEQ ID NO: 742, CDR-H3 as depicted in SEQ ID NO: 743, CDR-L1 as depicted in SEQ ID NO: 744, CDR-L2 as depicted in SEQ ID NO: 745 and CDR-L3 as depicted in SEQ ID NO: 746; (41) CDR-H1 as depicted in SEQ ID NO: 751, CDR-H2 as depicted in SEQ ID NO: 752, CDR-H3 as depicted in SEQ ID NO: 753, CDR-L1 as depicted in SEQ ID NO: 754, CDR-L2 as ed in SEQ ID NO: 755 and CDR-L3 as ed in SEQ ID NO: 756; (42) CDR-H1 as depicted in SEQ ID NO: 761, CDR-H2 as depicted in SEQ ID NO: 762, CDR-H3 as depicted in SEQ ID NO: 763, CDR-L1 as depicted in SEQ ID NO: 764, CDR-L2 as ed in SEQ ID NO: 765 and CDR-L3 as ed in SEQ ID NO: 766; (43) CDR-H1 as depicted in SEQ ID NO: 771, CDR-H2 as ed in SEQ ID NO: 772, CDR-H3 as depicted in SEQ ID NO: 773, CDR-L1 as depicted in SEQ ID NO: 774, CDR-L2 as depicted in SEQ ID NO: 775 and CDR-L3 as depicted in SEQ ID NO: 776; (44) CDR-H1 as depicted in SEQ ID NO: 781, CDR-H2 as depicted in SEQ ID NO: 782, CDR-H3 as depicted in SEQ ID NO: 783, CDR-L1 as depicted in SEQ ID NO: 784, CDR-L2 as depicted in SEQ ID NO: 785 and CDR-L3 as depicted in SEQ ID NO: 786; (45) CDR-H1 as depicted in SEQ ID NO: 791, CDR-H2 as depicted in SEQ ID NO: 792, CDR-H3 as depicted in SEQ ID NO: 793, CDR-L1 as depicted in SEQ ID NO: 794, CDR-L2 as depicted in SEQ ID NO: 795 and CDR-L3 as depicted in SEQ ID NO: 796; (46) CDR-H1 as depicted in SEQ ID NO: 801, CDR-H2 as depicted in SEQ ID NO: 802, CDR-H3 as depicted in SEQ ID NO: 803, CDR-L1 as depicted in SEQ ID NO: 804, CDR-L2 as depicted in SEQ ID NO: 805 and CDR-L3 as depicted in SEQ ID NO: 806; (47) CDR-H1 as depicted in SEQ ID NO: 811, CDR-H2 as depicted in SEQ ID NO: 812, CDR-H3 as depicted in SEQ ID NO: 813, CDR-L1 as depicted in SEQ ID NO: 814, CDR-L2 as depicted in SEQ ID NO: 815 and CDR-L3 as depicted in SEQ ID NO: 816; (48) CDR-H1 as depicted in SEQ ID NO: 821, CDR-H2 as depicted in SEQ ID NO: 822, CDR-H3 as depicted in SEQ ID NO: 823, CDR-L1 as depicted in SEQ ID NO: 824, CDR-L2 as depicted in SEQ ID NO: 825 and CDR-L3 as depicted in SEQ ID NO: 826; (49) CDR-H1 as depicted in SEQ ID NO: 831, CDR-H2 as depicted in SEQ ID NO: 832, CDR-H3 as ed in SEQ ID NO: 833, CDR-L1 as depicted in SEQ ID NO: 834, CDR-L2 as depicted in SEQ ID NO: 835 and CDR-L3 as depicted in SEQ ID NO: 836; (50) CDR-H1 as depicted in SEQ ID NO: 961, CDR-H2 as depicted in SEQ ID NO: 962, CDR-H3 as depicted in SEQ ID NO: 963, CDR-L1 as depicted in SEQ ID NO: 964, CDR-L2 as depicted in SEQ ID NO: 965 and CDR-L3 as depicted in SEQ ID NO: 966; (51) CDR-H1 as ed in SEQ ID NO: 971, CDR-H2 as depicted in SEQ ID NO: 972, CDR-H3 as depicted in SEQ ID NO: 973, CDR-L1 as depicted in SEQ ID NO: 974, CDR-L2 as depicted in SEQ ID NO: 975 and CDR-L3 as depicted in SEQ ID NO: 976; (52) CDR-H1 as depicted in SEQ ID NO: 981, CDR-H2 as depicted in SEQ ID NO: 982, CDR-H3 as depicted in SEQ ID NO: 983, CDR-L1 as ed in SEQ ID NO: 984, CDR-L2 as depicted in SEQ ID NO: 985 and CDR-L3 as depicted in SEQ ID NO: 986; and (53) CDR-H1 as depicted in SEQ ID NO: 991, CDR-H2 as depicted in SEQ ID NO: 992, CDR-H3 as depicted in SEQ ID NO: 993, CDR-L1 as depicted in SEQ ID NO: 994, CDR-L2 as depicted in SEQ ID NO: 995 and CDR-L3 as depicted in SEQ ID NO: 996.
8. The binding molecule according to any one of claims 1-7, wherein the first g domain comprises a VH region selected from the group consisting of VH regions as depicted in SEQ ID NO: 7, SEQ ID NO: 17, SEQ ID NO: 27, SEQ ID NO: 37, SEQ ID NO: 47, SEQ ID NO: 57, SEQ ID NO: 67, SEQ ID NO: 77, SEQ ID NO: 167, SEQ ID NO: 177, SEQ ID NO: 187, SEQ ID NO: 197, SEQ ID NO: 207, SEQ ID NO: 217, SEQ ID NO: 227, SEQ ID NO: 317, SEQ ID NO: 327, SEQ ID NO: 337, SEQ ID NO: 347, SEQ ID NO: 357, SEQ ID NO: 367, SEQ ID NO: 377, SEQ ID NO: 387, SEQ ID NO: 587, SEQ ID NO: 597, SEQ ID NO: 607, SEQ ID NO: 617, SEQ ID NO: 627, SEQ ID NO: 637, SEQ ID NO: 647, SEQ ID NO: 657, SEQ ID NO: 667, SEQ ID NO: 677, SEQ ID NO: 687, SEQ ID NO: 697, SEQ ID NO: 707, SEQ ID NO: 717, SEQ ID NO: 727, SEQ ID NO: 737, SEQ ID NO: 747, SEQ ID NO: 757, SEQ ID NO: 767, SEQ ID NO: 777, SEQ ID NO: 787, SEQ ID NO: 797, SEQ ID NO: 807, SEQ ID NO: 817, SEQ ID NO: 827, SEQ ID NO: 837, SEQ ID NO: 967, SEQ ID NO: 977, SEQ ID NO: 987, and SEQ ID NO: 997.
9. The binding molecule according to any one of claims 1-8, wherein the first binding domain comprises a VL region selected from the group consisting of VL regions as depicted in SEQ ID NO: 8, SEQ ID NO: 18, SEQ ID NO: 28, SEQ ID NO: 38, SEQ ID NO: 48, SEQ ID NO: 58, SEQ ID NO: 68, SEQ ID NO: 78, SEQ ID NO: 168, SEQ ID NO: 178, SEQ ID NO: 188, SEQ ID NO: 198, SEQ ID NO: 208, SEQ ID NO: 218, SEQ ID NO: 228, SEQ ID NO: 318, SEQ ID NO: 328, SEQ ID NO: 338, SEQ ID NO: 348, SEQ ID NO: 358, SEQ ID NO: 368, SEQ ID NO: 378, SEQ ID NO: 388, SEQ ID NO: 588, SEQ ID NO: 598, SEQ ID NO: 608, SEQ ID NO: 618, SEQ ID NO: 628, SEQ ID NO: 638, SEQ ID NO: 648, SEQ ID NO: 658, SEQ ID NO: 668, SEQ ID NO: 678, SEQ ID NO: 688, SEQ ID NO: 698, SEQ ID NO: 708, SEQ ID NO: 718, SEQ ID NO: 728, SEQ ID NO: 738, SEQ ID NO: 748, SEQ ID NO: 758, SEQ ID NO: 768, SEQ ID NO: 778, SEQ ID NO: 788, SEQ ID NO: 798, SEQ ID NO: 808, SEQ ID NO: 818, SEQ ID NO: 828, SEQ ID NO: 838, SEQ ID NO: 968, SEQ ID NO: 978, SEQ ID NO: 988, and SEQ ID NO: 998.
10. The binding molecule according to any one of claims 1-9, n the first binding domain ses a VH region and a VL region selected from the group consisting of: (1) a VH region as depicted in SEQ ID NO: 7, and a VL region as depicted in SEQ ID NO: 8; (2) a VH region as depicted in SEQ ID NO: 17, and a VL region as depicted in SEQ ID NO: 18; (3) a VH region as depicted in SEQ ID NO: 27, and a VL region as depicted in SEQ ID NO: 28; (4) a VH region as depicted in SEQ ID NO: 37, and a VL region as depicted in SEQ ID NO: 38; (5) a VH region as depicted in SEQ ID NO: 47, and a VL region as depicted in SEQ ID NO: 48; (6) a VH region as depicted in SEQ ID NO: 57, and a VL region as depicted in SEQ ID NO: 58; (7) a VH region as depicted in SEQ ID NO: 67, and a VL region as depicted in SEQ ID NO: 68; (8) a VH region as depicted in SEQ ID NO: 77, and a VL region as depicted in SEQ ID NO: 78; (9) a VH region as depicted in SEQ ID NO: 167, and a VL region as depicted in SEQ ID NO: 168; (10) a VH region as depicted in SEQ ID NO: 177, and a VL region as depicted in SEQ ID NO: 178; (11) a VH region as depicted in SEQ ID NO: 187, and a VL region as depicted in SEQ ID NO: 188; (12) a VH region as depicted in SEQ ID NO: 197, and a VL region as depicted in SEQ ID NO: 198; (13) a VH region as depicted in SEQ ID NO: 207, and a VL region as depicted in SEQ ID NO: 208; (14) a VH region as depicted in SEQ ID NO: 217, and a VL region as depicted in SEQ ID NO: 218; (15) a VH region as depicted in SEQ ID NO: 227, and a VL region as ed in SEQ ID NO: 228; (16) a VH region as depicted in SEQ ID NO: 317, and a VL region as depicted in SEQ ID NO: 318; (17) a VH region as depicted in SEQ ID NO: 327, and a VL region as ed in SEQ ID NO: 328; (18) a VH region as depicted in SEQ ID NO: 337, and a VL region as depicted in SEQ ID NO: 338; (19) a VH region as depicted in SEQ ID NO: 347, and a VL region as depicted in SEQ ID NO: 348; (20) a VH region as ed in SEQ ID NO: 357, and a VL region as depicted in SEQ ID NO: 358; (21) a VH region as depicted in SEQ ID NO: 367, and a VL region as depicted in SEQ ID NO: 368; (22) a VH region as depicted in SEQ ID NO: 377, and a VL region as depicted in SEQ ID NO: 378; (23) a VH region as depicted in SEQ ID NO: 387, and a VL region as depicted in SEQ ID NO: 388; (24) a VH region as depicted in SEQ ID NO: 587, and a VL region as depicted in SEQ ID NO: 588; (25) a VH region as depicted in SEQ ID NO: 597, and a VL region as depicted in SEQ ID NO: 598; (26) a VH region as depicted in SEQ ID NO: 607, and a VL region as depicted in SEQ ID NO: 608; (27) a VH region as depicted in SEQ ID NO: 617, and a VL region as depicted in SEQ ID NO: 618; (28) a VH region as ed in SEQ ID NO: 627, and a VL region as depicted in SEQ ID NO: 628; (29) a VH region as depicted in SEQ ID NO: 637, and a VL region as depicted in SEQ ID NO: 638; (30) a VH region as depicted in SEQ ID NO: 647, and a VL region as depicted in SEQ ID NO: 648; (31) a VH region as depicted in SEQ ID NO: 657, and a VL region as ed in SEQ ID NO: 658; (32) a VH region as depicted in SEQ ID NO: 667, and a VL region as depicted in SEQ ID NO: 668; (33) a VH region as depicted in SEQ ID NO: 677, and a VL region as depicted in SEQ ID NO: 678; (34) a VH region as depicted in SEQ ID NO: 687, and a VL region as depicted in SEQ ID NO: 688; (35) a VH region as depicted in SEQ ID NO: 697, and a VL region as depicted in SEQ ID NO: 698; (36) a VH region as depicted in SEQ ID NO: 707, and a VL region as depicted in SEQ ID NO: 708; (37) a VH region as depicted in SEQ ID NO: 717, and a VL region as depicted in SEQ ID NO: 718; (38) a VH region as depicted in SEQ ID NO: 727, and a VL region as depicted in SEQ ID NO: 728; (39) a VH region as ed in SEQ ID NO: 737, and a VL region as depicted in SEQ ID NO: 738; (40) a VH region as depicted in SEQ ID NO: 747, and a VL region as depicted in SEQ ID NO: 748; (41) a VH region as depicted in SEQ ID NO: 757, and a VL region as depicted in SEQ ID NO: 758; (42) a VH region as depicted in SEQ ID NO: 767, and a VL region as depicted in SEQ ID NO: 768; (43) a VH region as depicted in SEQ ID NO: 777, and a VL region as depicted in SEQ ID NO: 778; (44) a VH region as depicted in SEQ ID NO: 787, and a VL region as depicted in SEQ ID NO: 788; (45) a VH region as depicted in SEQ ID NO: 797, and a VL region as depicted in SEQ ID NO: 798; (46) a VH region as depicted in SEQ ID NO: 807, and a VL region as depicted in SEQ ID NO: 808; (47) a VH region as depicted in SEQ ID NO: 817, and a VL region as ed in SEQ ID NO: 818; (48) a VH region as depicted in SEQ ID NO: 827, and a VL region as depicted in SEQ ID NO: 828; (49) a VH region as depicted in SEQ ID NO: 837, and a VL region as depicted in SEQ ID NO: 838; (50) a VH region as depicted in SEQ ID NO: 967, and a VL region as depicted in SEQ ID NO: 968; (51) a VH region as depicted in SEQ ID NO: 977, and a VL region as depicted in SEQ ID NO: 978; (52) a VH region as depicted in SEQ ID NO: 987, and a VL region as depicted in SEQ ID NO: 988; and (53) a VH region as depicted in SEQ ID NO: 997, and a VL region as depicted in SEQ ID NO: 998.
11. The binding le according to claim 10, wherein the first binding domain ses an amino acid sequence selected from the group consisting of SEQ ID NO: 9, SEQ ID NO: 19, SEQ ID NO: 29, SEQ ID NO: 39, SEQ ID NO: 49, SEQ ID NO: 59, SEQ ID NO: 69, SEQ ID NO: 79, SEQ ID NO: 169, SEQ ID NO: 179, SEQ ID NO: 189, SEQ ID NO: 199, SEQ ID NO: 209, SEQ ID NO: 219, SEQ ID NO: 229, SEQ ID NO: 319, SEQ ID NO: 329, SEQ ID NO: 339, SEQ ID NO: 349, SEQ ID NO: 359, SEQ ID NO: 369, SEQ ID NO: 379, SEQ ID NO: 389, SEQ ID NO: 589, SEQ ID NO: 599, SEQ ID NO: 609, SEQ ID NO: 619, SEQ ID NO: 629, SEQ ID NO: 639, SEQ ID NO: 649, SEQ ID NO: 659, SEQ ID NO: 669, SEQ ID NO: 679, SEQ ID NO: 689, SEQ ID NO: 699, SEQ ID NO: 709, SEQ ID NO: 719, SEQ ID NO: 729, SEQ ID NO: 739, SEQ ID NO: 749, SEQ ID NO: 759, SEQ ID NO: 769, SEQ ID NO: 779, SEQ ID NO: 789, SEQ ID NO: 799, SEQ ID NO: 809, SEQ ID NO: 819, SEQ ID NO: 829, SEQ ID NO: 839, SEQ ID NO: 969, SEQ ID NO: 979, SEQ ID NO: 989, and SEQ ID NO: 999.
12. The binding molecule according to any one of claims 1-6 having the amino acid sequence shown in SEQ ID NO:340 or SEQ ID NO: 980.
13. The binding molecule according to any one of claims 1-12, characterized by an EC50 (pg/ml) of 350 or less, preferably 320 or less.
14. The binding molecule according to any one of claims 1-13, characterized by an EC50 (pg/ml) which equates to the EC50 (pg/ml) of any one of BC E5 33- B11-B8, BC 5G9 92-E10, BC 5G9 91-D2-B10, BC B12 B2, BC 3A4 37- A11-G1, BC A7-27 C4-G7, BC C3 B1, BC C3 33-F8-E6 B1.
15. A nucleic acid sequence encoding a binding molecule according to any one of claims 1 to 14
16. A vector sing a nucleic acid sequence according to claim 15.
17. A host cell transformed or transfected with the nucleic acid sequence as defined in claim 15 or with the vector according to claim 16, excluding transformed host cells within a human.
18. A process for the production of a binding molecule according to any one of claims 1 to 14, said process comprising culturing a host cell according to claim 17 under conditions allowing the sion of the binding le according to any one of claims 1 to 14 and recovering the produced binding molecule from the culture.
19. A pharmaceutical composition sing a binding molecule according to any one of claims 1 to 14, or produced according to the process of claim 18.
20. The binding molecule according to any one of claims 1 to 14, or produced ing to the process of claim 18 for use in the prevention, treatment or ration of a disease selected from the group consisting of plasma cell disorders, other B cell disorders that correlate with BCMA expression and autoimmune diseases.
21. Use of the binding molecule according to any one of claims 1 to 14 in the ation of a medicament for the treatment or amelioration of a disease selected from the group consisting of plasma cell disorders, other B cell disorders that correlate with BCMA expression and autoimmune es, in a subject in need f
22. The use according to claim 21, wherein the plasma cell disorder is selected from the group consisting of multiple myeloma, plasmacytoma, plasma cell leukemia, macroglobulinemia, amyloidosis, Waldenstrom's macroglobulinemia , solitary bone plasmacytoma, extramedullary cytoma, osteosclerotic myeloma, heavy chain diseases, monoclonal gammopathy of undetermined significance, and ring multiple myeloma.
23. The use according to claim 21, n the autoimmune disease is systemic lupus erythematodes.
24. A kit comprising a binding molecule according to any one of claims 1 to 14, a nucleic acid molecule according to claim 15, a vector according to claim 16, and/or a host cell according to claim 17.
Applications Claiming Priority (15)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161560149P | 2011-11-15 | 2011-11-15 | |
US201161560144P | 2011-11-15 | 2011-11-15 | |
US201161560162P | 2011-11-15 | 2011-11-15 | |
US201161560178P | 2011-11-15 | 2011-11-15 | |
US201161560183P | 2011-11-15 | 2011-11-15 | |
US61/560,149 | 2011-11-15 | ||
US61/560,162 | 2011-11-15 | ||
US61/560,183 | 2011-11-15 | ||
US61/560,178 | 2011-11-15 | ||
US61/560,144 | 2011-11-15 | ||
US201261651486P | 2012-05-24 | 2012-05-24 | |
US201261651474P | 2012-05-24 | 2012-05-24 | |
US61/651,486 | 2012-05-24 | ||
US61/651,474 | 2012-05-24 | ||
PCT/EP2012/072699 WO2013072406A1 (en) | 2011-11-15 | 2012-11-15 | Binding molecules for bcma and cd3 |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ622087A NZ622087A (en) | 2016-06-24 |
NZ622087B2 true NZ622087B2 (en) | 2016-09-27 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20220251243A1 (en) | Binding molecules for bcma and cd3 | |
JP6543197B2 (en) | Binding molecules for BCMA and CD3 | |
NZ622087B2 (en) | Binding molecules for bcma and cd3 | |
AU2012327200B8 (en) | Binding molecules for BCMA and CD3 |