NZ618793B2 - Composition for treating diabetes comprising long-acting insulin conjugate and long-acting insulinotropic peptide conjugate - Google Patents
Composition for treating diabetes comprising long-acting insulin conjugate and long-acting insulinotropic peptide conjugate Download PDFInfo
- Publication number
- NZ618793B2 NZ618793B2 NZ618793A NZ61879312A NZ618793B2 NZ 618793 B2 NZ618793 B2 NZ 618793B2 NZ 618793 A NZ618793 A NZ 618793A NZ 61879312 A NZ61879312 A NZ 61879312A NZ 618793 B2 NZ618793 B2 NZ 618793B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- long
- insulin
- conjugate
- acting
- exendin
- Prior art date
Links
- 239000000562 conjugate Substances 0.000 title claims abstract description 107
- 230000002473 insulinotropic effect Effects 0.000 title claims abstract description 76
- 108010092217 Long-Acting Insulin Proteins 0.000 title claims abstract description 72
- 102000016261 Long-Acting Insulin Human genes 0.000 title claims abstract description 72
- 229940100066 Long-acting insulin Drugs 0.000 title claims abstract description 72
- 206010012601 diabetes mellitus Diseases 0.000 title claims abstract description 54
- 239000000863 peptide conjugate Substances 0.000 title claims abstract description 38
- 239000000203 mixture Substances 0.000 title claims abstract description 36
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 claims abstract description 184
- 108090001061 Insulin Proteins 0.000 claims abstract description 91
- 102000004877 Insulin Human genes 0.000 claims abstract description 90
- 229940125396 insulin Drugs 0.000 claims abstract description 90
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 65
- 108060003951 Immunoglobulin Proteins 0.000 claims abstract description 57
- 102000018358 immunoglobulin Human genes 0.000 claims abstract description 57
- 229920000642 polymer Polymers 0.000 claims abstract description 40
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 29
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 29
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims abstract description 22
- 230000002265 prevention Effects 0.000 claims abstract description 20
- 229920002988 biodegradable polymer Polymers 0.000 claims abstract description 12
- 239000004621 biodegradable polymer Substances 0.000 claims abstract description 12
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 claims abstract description 11
- 229920002101 Chitin Polymers 0.000 claims abstract description 11
- 229920002307 Dextran Polymers 0.000 claims abstract description 11
- 239000004372 Polyvinyl alcohol Substances 0.000 claims abstract description 11
- 229920001577 copolymer Polymers 0.000 claims abstract description 11
- 150000004676 glycans Chemical class 0.000 claims abstract description 11
- 229920002674 hyaluronan Polymers 0.000 claims abstract description 11
- 229960003160 hyaluronic acid Drugs 0.000 claims abstract description 11
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 claims abstract description 11
- 150000002632 lipids Chemical class 0.000 claims abstract description 11
- 229920001583 poly(oxyethylated polyols) Polymers 0.000 claims abstract description 11
- 229920001451 polypropylene glycol Polymers 0.000 claims abstract description 11
- 229920001282 polysaccharide Polymers 0.000 claims abstract description 11
- 239000005017 polysaccharide Substances 0.000 claims abstract description 11
- 229920002451 polyvinyl alcohol Polymers 0.000 claims abstract description 11
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 11
- 229960001519 exenatide Drugs 0.000 claims description 67
- JUFFVKRROAPVBI-PVOYSMBESA-N chembl1210015 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)N[C@H]1[C@@H]([C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O)[C@@H](O)[C@@H](CO[C@]3(O[C@@H](C[C@H](O)[C@H](O)CO)[C@H](NC(C)=O)[C@@H](O)C3)C(O)=O)O2)O)[C@@H](CO)O1)NC(C)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 JUFFVKRROAPVBI-PVOYSMBESA-N 0.000 claims description 62
- 108010011459 Exenatide Proteins 0.000 claims description 60
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 44
- 210000004369 blood Anatomy 0.000 claims description 44
- 239000008280 blood Substances 0.000 claims description 44
- 239000008103 glucose Substances 0.000 claims description 43
- 150000001413 amino acids Chemical group 0.000 claims description 35
- 239000008194 pharmaceutical composition Substances 0.000 claims description 22
- 125000001151 peptidyl group Chemical group 0.000 claims description 21
- DTHNMHAUYICORS-KTKZVXAJSA-N Glucagon-like peptide 1 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 DTHNMHAUYICORS-KTKZVXAJSA-N 0.000 claims description 17
- 239000012634 fragment Substances 0.000 claims description 17
- 239000003814 drug Substances 0.000 claims description 16
- 125000003277 amino group Chemical group 0.000 claims description 13
- 239000003937 drug carrier Substances 0.000 claims description 10
- -1 dimethyl-histidyl Chemical group 0.000 claims description 9
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 9
- 230000004048 modification Effects 0.000 claims description 9
- 238000012986 modification Methods 0.000 claims description 9
- 239000000556 agonist Substances 0.000 claims description 8
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 7
- 239000000126 substance Substances 0.000 claims description 7
- 230000037430 deletion Effects 0.000 claims description 6
- 238000012217 deletion Methods 0.000 claims description 6
- LMHMJYMCGJNXRS-IOPUOMRJSA-N exendin-3 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@H](C)O)[C@H](C)O)C(C)C)C1=CC=CC=C1 LMHMJYMCGJNXRS-IOPUOMRJSA-N 0.000 claims description 6
- 238000006467 substitution reaction Methods 0.000 claims description 6
- 239000004472 Lysine Substances 0.000 claims description 5
- 229910052799 carbon Inorganic materials 0.000 claims description 5
- 108010015174 exendin 3 Proteins 0.000 claims description 5
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 5
- 239000000539 dimer Substances 0.000 claims description 4
- 238000007792 addition Methods 0.000 claims description 3
- 125000000487 histidyl group Chemical group [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 claims description 3
- 239000004475 Arginine Substances 0.000 claims description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 2
- 229940072221 immunoglobulins Drugs 0.000 claims description 2
- 239000004026 insulin derivative Substances 0.000 claims description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims 1
- 239000005977 Ethylene Substances 0.000 claims 1
- 101710198884 GATA-type zinc finger protein 1 Proteins 0.000 claims 1
- 102100025101 GATA-type zinc finger protein 1 Human genes 0.000 claims 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 claims 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 43
- 238000001727 in vivo Methods 0.000 description 16
- 230000004584 weight gain Effects 0.000 description 16
- 235000019786 weight gain Nutrition 0.000 description 16
- 101800000224 Glucagon-like peptide 1 Proteins 0.000 description 14
- 102100040918 Pro-glucagon Human genes 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 12
- 102000004196 processed proteins & peptides Human genes 0.000 description 12
- 229940079593 drug Drugs 0.000 description 11
- 230000002218 hypoglycaemic effect Effects 0.000 description 11
- 238000002360 preparation method Methods 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 108090000623 proteins and genes Proteins 0.000 description 11
- 241000699670 Mus sp. Species 0.000 description 10
- ZSJLQEPLLKMAKR-UHFFFAOYSA-N Streptozotocin Natural products O=NN(C)C(=O)NC1C(O)OC(CO)C(O)C1O ZSJLQEPLLKMAKR-UHFFFAOYSA-N 0.000 description 9
- ZSJLQEPLLKMAKR-GKHCUFPYSA-N streptozocin Chemical compound O=NN(C)C(=O)N[C@H]1[C@@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O ZSJLQEPLLKMAKR-GKHCUFPYSA-N 0.000 description 9
- 229960001052 streptozocin Drugs 0.000 description 9
- 208000013016 Hypoglycemia Diseases 0.000 description 8
- 238000000746 purification Methods 0.000 description 8
- 206010047700 Vomiting Diseases 0.000 description 7
- 125000000539 amino acid group Chemical group 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 102100033400 4F2 cell-surface antigen heavy chain Human genes 0.000 description 6
- 101000800023 Homo sapiens 4F2 cell-surface antigen heavy chain Proteins 0.000 description 6
- 125000003412 L-alanyl group Chemical group [H]N([H])[C@@](C([H])([H])[H])(C(=O)[*])[H] 0.000 description 6
- 230000028327 secretion Effects 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 238000007069 methylation reaction Methods 0.000 description 5
- 210000000496 pancreas Anatomy 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 208000001072 type 2 diabetes mellitus Diseases 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- HTQBXNHDCUEHJF-XWLPCZSASA-N Exenatide Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(=O)NCC(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CO)C(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 HTQBXNHDCUEHJF-XWLPCZSASA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 4
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 4
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 4
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 4
- 108010089308 Insulin Detemir Proteins 0.000 description 4
- 102000003746 Insulin Receptor Human genes 0.000 description 4
- 108010001127 Insulin Receptor Proteins 0.000 description 4
- 241001465754 Metazoa Species 0.000 description 4
- 108091005804 Peptidases Proteins 0.000 description 4
- 102000035195 Peptidases Human genes 0.000 description 4
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000007983 Tris buffer Substances 0.000 description 4
- 230000009471 action Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 210000000227 basophil cell of anterior lobe of hypophysis Anatomy 0.000 description 4
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N butyric aldehyde Natural products CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 4
- UGOZVNFCFYTPAZ-IOXYNQHNSA-N levemir Chemical compound CCCCCCCCCCCCCC(=O)NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)CNC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)CNC(=O)[C@H]1NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=2C=CC(O)=CC=2)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=2N=CNC=2)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=2N=CNC=2)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=2C=CC=CC=2)C(C)C)CSSC[C@@H]2NC(=O)[C@@H](NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)C(C)C)CSSC[C@H](NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](CO)NC(=O)[C@H]([C@@H](C)O)NC2=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H](CSSC1)C(=O)N[C@@H](CC(N)=O)C(O)=O)CC1=CC=C(O)C=C1 UGOZVNFCFYTPAZ-IOXYNQHNSA-N 0.000 description 4
- 229920001184 polypeptide Polymers 0.000 description 4
- 230000001225 therapeutic effect Effects 0.000 description 4
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 4
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 3
- 102000009027 Albumins Human genes 0.000 description 3
- 108010088751 Albumins Proteins 0.000 description 3
- 241000283690 Bos taurus Species 0.000 description 3
- 108010067722 Dipeptidyl Peptidase 4 Proteins 0.000 description 3
- 102100025012 Dipeptidyl peptidase 4 Human genes 0.000 description 3
- 102000051325 Glucagon Human genes 0.000 description 3
- 108060003199 Glucagon Proteins 0.000 description 3
- 102000007446 Glucagon-Like Peptide-1 Receptor Human genes 0.000 description 3
- 108010086246 Glucagon-Like Peptide-1 Receptor Proteins 0.000 description 3
- 108010088406 Glucagon-Like Peptides Proteins 0.000 description 3
- 125000000570 L-alpha-aspartyl group Chemical group [H]OC(=O)C([H])([H])[C@]([H])(N([H])[H])C(*)=O 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 3
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 3
- 235000011130 ammonium sulphate Nutrition 0.000 description 3
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 230000004540 complement-dependent cytotoxicity Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000002354 daily effect Effects 0.000 description 3
- 230000009615 deamination Effects 0.000 description 3
- 238000006481 deamination reaction Methods 0.000 description 3
- 239000002552 dosage form Substances 0.000 description 3
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 3
- 229960004666 glucagon Drugs 0.000 description 3
- 239000003877 glucagon like peptide 1 receptor agonist Substances 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229940102988 levemir Drugs 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 239000000314 lubricant Substances 0.000 description 3
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 3
- 244000005700 microbiome Species 0.000 description 3
- 239000000546 pharmaceutical excipient Substances 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- GCYXWQUSHADNBF-AAEALURTSA-N preproglucagon 78-108 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1N=CNC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 GCYXWQUSHADNBF-AAEALURTSA-N 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000007929 subcutaneous injection Substances 0.000 description 3
- 238000010254 subcutaneous injection Methods 0.000 description 3
- 230000002459 sustained effect Effects 0.000 description 3
- 229940124597 therapeutic agent Drugs 0.000 description 3
- 241000283707 Capra Species 0.000 description 2
- 241000700198 Cavia Species 0.000 description 2
- 241000699800 Cricetinae Species 0.000 description 2
- 101800004266 Glucagon-like peptide 1(7-37) Proteins 0.000 description 2
- 108010057186 Insulin Glargine Proteins 0.000 description 2
- COCFEDIXXNGUNL-RFKWWTKHSA-N Insulin glargine Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3NC=NC=3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(=O)NCC(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1=CN=CN1 COCFEDIXXNGUNL-RFKWWTKHSA-N 0.000 description 2
- 125000003440 L-leucyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C(C([H])([H])[H])([H])C([H])([H])[H] 0.000 description 2
- 125000002842 L-seryl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])O[H] 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 241000700159 Rattus Species 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 125000003172 aldehyde group Chemical group 0.000 description 2
- 239000000427 antigen Substances 0.000 description 2
- 102000036639 antigens Human genes 0.000 description 2
- 108091007433 antigens Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 208000016097 disease of metabolism Diseases 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 229940088597 hormone Drugs 0.000 description 2
- 239000005556 hormone Substances 0.000 description 2
- 238000005805 hydroxylation reaction Methods 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 238000005342 ion exchange Methods 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 208000030159 metabolic disease Diseases 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N phenylalanine group Chemical group N[C@@H](CC1=CC=CC=C1)C(=O)O COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- 230000001766 physiological effect Effects 0.000 description 2
- 229910000160 potassium phosphate Inorganic materials 0.000 description 2
- 235000011009 potassium phosphates Nutrition 0.000 description 2
- 239000003755 preservative agent Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 210000000813 small intestine Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- KZNICNPSHKQLFF-UHFFFAOYSA-N succinimide Chemical class O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 2
- 125000002730 succinyl group Chemical group C(CCC(=O)*)(=O)* 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 238000002560 therapeutic procedure Methods 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- ZJIFDEVVTPEXDL-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) hydrogen carbonate Chemical compound OC(=O)ON1C(=O)CCC1=O ZJIFDEVVTPEXDL-UHFFFAOYSA-N 0.000 description 1
- AASBXERNXVFUEJ-UHFFFAOYSA-N (2,5-dioxopyrrolidin-1-yl) propanoate Chemical compound CCC(=O)ON1C(=O)CCC1=O AASBXERNXVFUEJ-UHFFFAOYSA-N 0.000 description 1
- FHVDTGUDJYJELY-UHFFFAOYSA-N 6-{[2-carboxy-4,5-dihydroxy-6-(phosphanyloxy)oxan-3-yl]oxy}-4,5-dihydroxy-3-phosphanyloxane-2-carboxylic acid Chemical compound O1C(C(O)=O)C(P)C(O)C(O)C1OC1C(C(O)=O)OC(OP)C(O)C1O FHVDTGUDJYJELY-UHFFFAOYSA-N 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 206010063659 Aversion Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 238000011740 C57BL/6 mouse Methods 0.000 description 1
- 101100337060 Caenorhabditis elegans glp-1 gene Proteins 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 244000265913 Crataegus laevigata Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 102400000322 Glucagon-like peptide 1 Human genes 0.000 description 1
- 229940089838 Glucagon-like peptide 1 receptor agonist Drugs 0.000 description 1
- 102400000326 Glucagon-like peptide 2 Human genes 0.000 description 1
- 101800000221 Glucagon-like peptide 2 Proteins 0.000 description 1
- 229920002527 Glycogen Polymers 0.000 description 1
- 241000270431 Heloderma suspectum Species 0.000 description 1
- 101000886868 Homo sapiens Gastric inhibitory polypeptide Proteins 0.000 description 1
- 206010021518 Impaired gastric emptying Diseases 0.000 description 1
- 206010022489 Insulin Resistance Diseases 0.000 description 1
- 101710092928 Insulin-like peptide-1 Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 125000001176 L-lysyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C([H])([H])C([H])([H])C([H])([H])C(N([H])[H])([H])[H] 0.000 description 1
- 125000000769 L-threonyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])[C@](O[H])(C([H])([H])[H])[H] 0.000 description 1
- 125000003580 L-valyl group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(C([H])([H])[H])(C([H])([H])[H])[H] 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 1
- 240000007472 Leucaena leucocephala Species 0.000 description 1
- YSDQQAXHVYUZIW-QCIJIYAXSA-N Liraglutide Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCNC(=O)CC[C@H](NC(=O)CCCCCCCCCCCCCCC)C(O)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=C(O)C=C1 YSDQQAXHVYUZIW-QCIJIYAXSA-N 0.000 description 1
- 108010019598 Liraglutide Proteins 0.000 description 1
- XVVOERDUTLJJHN-UHFFFAOYSA-N Lixisenatide Chemical compound C=1NC2=CC=CC=C2C=1CC(C(=O)NC(CC(C)C)C(=O)NC(CCCCN)C(=O)NC(CC(N)=O)C(=O)NCC(=O)NCC(=O)N1C(CCC1)C(=O)NC(CO)C(=O)NC(CO)C(=O)NCC(=O)NC(C)C(=O)N1C(CCC1)C(=O)N1C(CCC1)C(=O)NC(CO)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(=O)NC(CCCCN)C(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)CC)NC(=O)C(NC(=O)C(CC(C)C)NC(=O)C(CCCNC(N)=N)NC(=O)C(NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(CCC(O)=O)NC(=O)C(CCC(O)=O)NC(=O)C(CCSC)NC(=O)C(CCC(N)=O)NC(=O)C(CCCCN)NC(=O)C(CO)NC(=O)C(CC(C)C)NC(=O)C(CC(O)=O)NC(=O)C(CO)NC(=O)C(NC(=O)C(CC=1C=CC=CC=1)NC(=O)C(NC(=O)CNC(=O)C(CCC(O)=O)NC(=O)CNC(=O)C(N)CC=1NC=NC=1)C(C)O)C(C)O)C(C)C)CC1=CC=CC=C1 XVVOERDUTLJJHN-UHFFFAOYSA-N 0.000 description 1
- PEEHTFAAVSWFBL-UHFFFAOYSA-N Maleimide Chemical compound O=C1NC(=O)C=C1 PEEHTFAAVSWFBL-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 206010029719 Nonspecific reaction Diseases 0.000 description 1
- 208000008589 Obesity Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 241000009328 Perro Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102000035554 Proglucagon Human genes 0.000 description 1
- 108010058003 Proglucagon Proteins 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 229940072056 alginate Drugs 0.000 description 1
- 235000010443 alginic acid Nutrition 0.000 description 1
- 229920000615 alginic acid Polymers 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001412 amines Chemical group 0.000 description 1
- 239000003708 ampul Substances 0.000 description 1
- 230000000202 analgesic effect Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003146 anticoagulant agent Substances 0.000 description 1
- 235000021407 appetite control Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 229920000249 biocompatible polymer Polymers 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 239000000378 calcium silicate Substances 0.000 description 1
- 229910052918 calcium silicate Inorganic materials 0.000 description 1
- 235000012241 calcium silicate Nutrition 0.000 description 1
- OYACROKNLOSFPA-UHFFFAOYSA-N calcium;dioxido(oxo)silane Chemical compound [Ca+2].[O-][Si]([O-])=O OYACROKNLOSFPA-UHFFFAOYSA-N 0.000 description 1
- LEMUFSYUPGXXCM-JNEQYSBXSA-N caninsulin Chemical compound [Zn].C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]1CSSC[C@H]2C(=O)N[C@H](C(=O)N[C@@H](CO)C(=O)N[C@H](C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=3C=CC(O)=CC=3)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC3N=CN=C3)NC(=O)[C@H](CO)NC(=O)CNC1=O)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)O)C(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O)=O)CSSC[C@@H](C(N2)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](NC(=O)CN)[C@@H](C)CC)[C@@H](C)CC)[C@@H](C)O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CC=1C=CC=CC=1)C(C)C)C1C=NC=N1 LEMUFSYUPGXXCM-JNEQYSBXSA-N 0.000 description 1
- 230000004663 cell proliferation Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- WDRMVIMVHHWVBI-STCSGHEYSA-N chembl1222074 Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(N)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)N[C@@H](CC=1NC=NC=1)C(O)=O)[C@@H](C)O)[C@H](C)O)C(C)C)C1=CC=CC=C1 WDRMVIMVHHWVBI-STCSGHEYSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000022811 deglycosylation Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000006126 farnesylation Effects 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- UKVFVQPAANCXIL-FJVFSOETSA-N glp-1 (1-37) amide Chemical compound C([C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CCC(N)=O)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C(C)C)C1=CC=CC=C1 UKVFVQPAANCXIL-FJVFSOETSA-N 0.000 description 1
- TWSALRJGPBVBQU-PKQQPRCHSA-N glucagon-like peptide 2 Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(O)=O)C(O)=O)[C@@H](C)CC)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)CC)C1=CC=CC=C1 TWSALRJGPBVBQU-PKQQPRCHSA-N 0.000 description 1
- 230000004190 glucose uptake Effects 0.000 description 1
- 229940096919 glycogen Drugs 0.000 description 1
- 229960004275 glycolic acid Drugs 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 239000003906 humectant Substances 0.000 description 1
- 210000003405 ileum Anatomy 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 229960003948 insulin detemir Drugs 0.000 description 1
- 229960002869 insulin glargine Drugs 0.000 description 1
- 230000003914 insulin secretion Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 239000007951 isotonicity adjuster Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229940060975 lantus Drugs 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 229960002701 liraglutide Drugs 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 108010004367 lixisenatide Proteins 0.000 description 1
- 229960001093 lixisenatide Drugs 0.000 description 1
- 239000003509 long acting drug Substances 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000002075 main ingredient Substances 0.000 description 1
- 125000005439 maleimidyl group Chemical group C1(C=CC(N1*)=O)=O 0.000 description 1
- 239000000845 maltitol Substances 0.000 description 1
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 1
- 235000010449 maltitol Nutrition 0.000 description 1
- 229940035436 maltitol Drugs 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 125000001360 methionine group Chemical group N[C@@H](CCSC)C(=O)* 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 235000010981 methylcellulose Nutrition 0.000 description 1
- LXCFILQKKLGQFO-UHFFFAOYSA-N methylparaben Chemical compound COC(=O)C1=CC=C(O)C=C1 LXCFILQKKLGQFO-UHFFFAOYSA-N 0.000 description 1
- 239000008108 microcrystalline cellulose Substances 0.000 description 1
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 1
- 229940016286 microcrystalline cellulose Drugs 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 239000002105 nanoparticle Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100000957 no side effect Toxicity 0.000 description 1
- 235000020824 obesity Nutrition 0.000 description 1
- 239000003538 oral antidiabetic agent Substances 0.000 description 1
- 229940127209 oral hypoglycaemic agent Drugs 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- QELSKZZBTMNZEB-UHFFFAOYSA-N propylparaben Chemical compound CCCOC(=O)C1=CC=C(O)C=C1 QELSKZZBTMNZEB-UHFFFAOYSA-N 0.000 description 1
- 229960003415 propylparaben Drugs 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 239000012521 purified sample Substances 0.000 description 1
- 102000005962 receptors Human genes 0.000 description 1
- 108020003175 receptors Proteins 0.000 description 1
- 238000005932 reductive alkylation reaction Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 210000003079 salivary gland Anatomy 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000019635 sulfation Effects 0.000 description 1
- 238000005670 sulfation reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 239000003981 vehicle Substances 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/26—Glucagons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
- A61K38/16—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- A61K38/17—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- A61K38/22—Hormones
- A61K38/28—Insulins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6801—Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
- A61K47/6803—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
- A61K47/6811—Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/50—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
- A61K47/51—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
- A61K47/68—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
- A61K47/6835—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
- A61K47/6883—Polymer-drug antibody conjugates, e.g. mitomycin-dextran-Ab; DNA-polylysine-antibody complex or conjugate used for therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P3/00—Drugs for disorders of the metabolism
- A61P3/08—Drugs for disorders of the metabolism for glucose homeostasis
- A61P3/10—Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
Abstract
The disclosure relates to a composition comprising a long-acting insulin conjugate and a long-acting insulinotropic peptide conjugate wherein each of the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate is prepared by linking insulin or insulinotropic peptide with an immunoglobulin Fc region via a non-peptidyl linker selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof. The immunoglobulin Fc region may be an Fc region derived from IgG, IgA, IgD, IgE, or IgM. The disclosure also relates to the use of this composition for the prevention or treatment of diabetes. n immunoglobulin Fc region via a non-peptidyl linker selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof. The immunoglobulin Fc region may be an Fc region derived from IgG, IgA, IgD, IgE, or IgM. The disclosure also relates to the use of this composition for the prevention or treatment of diabetes.
Description
Description Title of Invention: COMPOSITION FOR TREATING DIABETES COMPRISING LONG-ACTING INSULIN CONJUGATE AND LONG-ACTING INSULINOTROPIC PEPTIDE CONJUGATE Technical Field [1] The present invention relates to a composition for the prevention or treatment of diabetes comprising a long-acting insulin conjugate and a long-acting insulinotropic peptide conjugate, and a method for treating diabetes comprising the step of admin istering the composition. [2] Background Art [3] Insulin is a peptide secreted by the beta cells of the pancreas, and plays an important role in controlling the blood glucose level in the body. A metabolic disease, diabetes is associated with elevated blood glucose levels caused by an abnormality in the secretion or function of insulin. Type 1 diabetes is caused by elevated blood glucose levels due to failure in insulin production of the pancreas, and type 2 diabetes is caused by elevated blood glucose levels due to an abnormality in the secretion or function of insulin. Patients with type 2 diabetes are usually treated with oral hypoglycemic agents having a chemical substance as a main ingredient, and in some cases, given with insulin, whereas patients with type 1 diabetes require insulin treatment. [4] [5] The most common insulin therapy involves insulin injections before and/or after meals. Currently, injectable insulin is available, and as a general rule, is given in a sub cutaneous injection. The method of administration varies depending on its time course of action. Insulin injection shows a more rapid hypoglycemic effect than oral admin istration, and can be safely used when oral administration is not possible. Also, there is no dose limit for insulin use. However, long-term use of insulin three times a day can lead to disadvantages such as aversion to needles, difficulty in handling the injection device, hypoglycemia, and weight gain. Weight gain due to long-term use of insulin may increase the risk of cardiovascular disease and insulin resistance. Meanwhile, there are many efforts being made to maximize the efficacy by maintaining the long term, elevated levels of insulin peptide drugs after absorption by the body. For example, long- acting insulin formulations such as Lantus (Insulin glargine; Sanofi Aventis) and Levemir (Insulin detemir; Novo Nordisk) have been developed and are commercially available. Unlike insulin NPH (Neutral Protamine Hagedorn), these long- acting drugs reduce the risk of hypoglycemia during sleep, and Levemir in particular was associated with somewhat less weight gain. However, these drug for mulations are also disadvantageous in that they must be given once or twice a day. [7] Meanwhile, one insulinotropic peptide, glucagon like peptide- 1 (GLP-1), is an incretin hormone secreted by L-cells of the ileum and colon. Glucagon like peptide- 1 functions to augment insulin release in a glucose-dependent manner so as to prevent hypoglycemic episodes. Owing to this property, it received attention as a potential treatment for type 2 diabetes. However, the primary obstacle to the use of GLP-1 as a therapeutic agent is its extremely short half-life of less than 2 minutes in plasma.
Currently, exendin-4 is commercially available as a glucagon like peptide- 1 receptor agonist, and it is a glucagon like peptide- 1 analogue purified from the salivary gland of a gila monster. Exendin-4 has resistance to DPP IV (Dipeptidyl peptidase-4), and higher physiological activity than glucagon like peptide- 1. As a result, it had an in-vivo half-life of 2 to 4 hours, which was longer than that of glucagon like peptide- 1 (US ,424,286). However, with the method for increasing the resistance to DPP IV only, the physiological activity is not sufficiently sustained, and for example, in the case of commercially available exendin-4 (exenatide), it needs to be injected to a patient twice a day, and exenatide-treated patients still experience adverse events such as nausea and vomiting. [8] [9] In order to solve the above problems, the present inventors suggested a long-acting peptide conjugate, which was prepared by linking a physiologically active polypeptide and an immunoglobulin Fc region via a non-peptidyl polymer as a linker by a covalent bond, thereby sustaining the activity and improving the stability of the protein drug at the same time (Korean Patent No. 10-0725315). In particular, they found that each of the long-acting insulin conjugate and the long-acting exendin-4 conjugate exerts r e markably increased in-vivo efficacy (Korean Patent Application Nos. 100001479 and 100054068). id="p-10"
id="p-10"
[10] However, there are still the problems of weight gain, or nausea and vomiting, when insulin or exendin-4 is injected in an amount which maintains a stable blood glucose level. Thus, there is an urgent need to develop a therapeutic method showing excellent therapeutic effects on diabetes with lower doses and less frequent use of the drug. id="p-11"
id="p-11"
[11] Disclosure of Invention Technical Problem id="p-12"
id="p-12"
[12] The present inventors have made many efforts to develop a therapeutic agent for diabetes which has the long-lasting therapeutic efficacy and lowers adverse events 3 such as nausea and vomiting at the same time. They attempted to perform concurrent administration of a long-acting exendin-4 conjugate and a long-acting insulin conjugate that stimulate a glucagon like peptide-1 receptor and an insulin receptor at the same time. As a result, they found that concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate improves in-vivo duration of efficacy and stability, and remarkably reduces the doses of the drugs, leading to a stable blood glucose level. In addition, they found that it improves the adverse events such as vomiting and nausea induced by glucagon like peptide-1 agonist and exendin-4 or derivatives thereof, and that the use of long-acting exendin-4 conjugate reduces weight gain caused by the use of insulin, thereby completing the present invention. id="p-13"
id="p-13"
[13] Solution to Problem id="p-14"
id="p-14"
[14] The present invention provides a pharmaceutical composition for the prevention or treatment of diabetes, comprising a long-acting insulin conjugate and a long-acting insulinotropic peptide conjugate. [14A] In one aspect, the present invention provides a pharmaceutical composition for the prevention or treatment of diabetes comprising a long-acting insulin conjugate and a long-acting insulinotropic peptide conjugate, wherein each of the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate is prepared by linking insulin or insulinotropic peptide with an immunoglobulin Fc region via a non-peptidyl linker selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof. id="p-15"
id="p-15"
[15] The present invention also provides a method for preventing or treating diabetes, comprising the step of administering the composition to a subject having diabetes or at risk of having diabetes. [15A] In one aspect, the present invention provides use of composition of the present invention for the manufacture of a medicament for the prevention or treatment of diabetes in a subject having diabetes or at risk of having diabetes. id="p-16"
id="p-16"
[16] The present invention also provides a pharmaceutical composition for the prevention or treatment of diabetes comprising a long-acting insulin conjugate and an insulinotropic peptide. [16A] In one aspect, the present invention provides a pharmaceutical composition for the prevention or treatment of diabetes comprising a long-acting insulin conjugate and an insulinotropic peptide, wherein the long-acting insulin conjugate is prepared by linking insulin with an immunoglobulin Fc region via a non-peptidyl linker selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biogradable polymer, a lipid 4 polymer, chitin, hyaluronic acid, and a combination thereof. id="p-17"
id="p-17"
[17] The present invention further provides a pharmaceutical composition for the prevention or treatment of diabetes comprising insulin and a long-acting insulinotropic peptide conjugate. [17A] In one aspect, the present invention provides a pharmaceutical composition for the prevention or treatment of diabetes comprising insulin and a long-acting insulinotropic peptide conjugate, wherein the long-acting insulinotropic peptide conjugate is prepared by linking insulinotropic peptide with an immunoglobulin Fc region via a non-peptidyl linker selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, lipid polymer chitin, hyaluronic acid, and a combination thereof. id="p-18"
id="p-18"
[18] Advantageous Effects of Invention id="p-19"
id="p-19"
[19] The long-acting insulin conjugate and the long-acting exendin-4 conjugate of the present invention show excellent therapeutic effects on diabetes, and in particular, the concurrent administration thereof stimulates an insulin receptor and a glucagon like peptide-1 receptor at the same time to improve in-vivo duration of the efficacy and stability thereof, and to remarkably reduce the required doses of the drugs and stably control the blood glucose at a stable level, leading to improvements in hypoglycemia and weight gain. In addition, it inhibits nausea and vomiting and has improved drug compliance as a therapeutic agent for diabetes. In particular, it has remarkably improved stability and in-vivo duration of efficacy allowing a reduction in treatment frequency, which contributes to patient convenience. id="p-20"
id="p-20"
[20] Brief Description of Drawing id="p-21"
id="p-21"
[21] FIG. 1 is a graph showing the changes in blood glucose levels for a 7-day period after concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate to STZ (Streptozotocin)-induced diabetic mice; id="p-22"
id="p-22"
[22] FIG. 2 is a graph showing the changes in fasting blood glucose (△FBG) after concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate to db/db mice (* P<0.05, ** P< 0.01, *** P<0.001 by Dunnet's MC test); and id="p-23"
id="p-23"
[23] FIG. 3 is a graph showing the changes in body weight (△BW) after concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate to db/db mice (* P<0.05, ** P< 0.01, *** P<0.001 by Dunnet's MC test). id="p-24"
id="p-24"
[24] Best Mode for Carrying out the Invention id="p-25"
id="p-25"
[25] In one aspect, the present invention provides a pharmaceutical composition for the prevention 4A or treatment of diabetes, comprising a long-acting insulin conjugate and a long-acting insulinotropic peptide conjugate. The composition of the present invention is characterized by concurrent administration of the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate. id="p-26"
id="p-26"
[26] As used herein, the term "long-acting insulin conjugate" means insulin linked with an immunoglobulin Fc region via a non-peptidyl linker. id="p-27"
id="p-27"
[27] id="p-28"
id="p-28"
[28] The long-acting insulin conjugate of the present invention has an improved duration of in-vivo efficacy, compared to native insulin, and the long-acting insulin conjugate may include insulin prepared by modification, substitution, addition, or deletion of the amino acid sequences of the native insulin, insulin conjugated to a biodegradable polymer such as polyethylene glycol (PEG), insulin conjugated to a long-acting protein such as albumin or immunoglobulin, insulin conjugated to a fatty acid having the ability of binding to albumin in the body, or insulin encapsulated in biodegradable nanoparticles, but the type of the long-acting insulin conjugate is not limited thereto. id="p-29"
id="p-29"
[29] id="p-30"
id="p-30"
[30] As used herein, the term "insulin" means a peptide that is secreted by the pancreas in response to elevated glucose levels in the blood to take up glucose in the liver, muscle, or adipose tissue and turn it into glycogen, and to stop the use of fat as an energy source, and thus controls the blood glucose level. This peptide includes the native insulin, basal insulin, insulin agonists, precursors, derivatives, fragments thereof, and variants thereof. id="p-31"
id="p-31"
[31] The term, "Native insulin" is a hormone that is secreted by the pancreas to promote glucose absorption and inhibit fat breakdown, and thus functions to control the blood glucose level. Insulin is formed from a precursor having no function of regulating the blood glucose level, known as proinsulin, through processing. The amino acid sequences of insulin are as follows: id="p-32"
id="p-32"
[32] id="p-33"
id="p-33"
[33] Alpha chain: id="p-34"
id="p-34"
[34] Gly-Ile-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Tyr-Gln-Leu-Glu-Asn-TyrCys-Asn (SEQ ID NO. 1) id="p-35"
id="p-35"
[35] Beta chain: id="p-36"
id="p-36"
[36] Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys -Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Thr (SEQ ID NO. 2) id="p-37"
id="p-37"
[37] id="p-38"
id="p-38"
[38] The term, "basal insulin" means a peptide that manage normal daily blood glucose fluctuations, for example Levemir, Glagine, Deglude etc. id="p-39"
id="p-39"
[39] The term, "insulin agonist" means a compound that binds to the insulin receptor to show the biological activity equal to that of insulin, which is irrelevant to the structure of insulin. id="p-40"
id="p-40"
[40] The term, "insulin variant" is a peptide having one or more amino acid sequences different from those of native insulin, and means a peptide that retains the function of controlling the blood glucose level in the body, and it may be prepared by any one of substitution, addition, deletion, and modification or by a combination thereof in a part of the amino acid sequences of the native insulin. id="p-41"
id="p-41"
[41] The term, "insulin derivative" means a peptide having at least 80% amino acid sequence homology with the native insulin, which may have some groups on the amino acid residue chemically substituted (e.g., alpha-methylation, alpha-hydroxylation), deleted (e.g., deamination), or modified (e.g., N-methylation), and has a function of regulating the blood glucose level in the body. id="p-42"
id="p-42"
[42] The term, "insulin fragment" means a fragment having one or more amino acids added or deleted at the N-terminus or the C-terminus of the native insulin, in which non-naturally occurring amino acids (for example, D-type amino acid) can be added, and has a function of regulating the blood glucose level in the body. id="p-43"
id="p-43"
[43] Each of the preparation methods for the agonists, derivatives, fragments, and variants of insulin can be used individually or in combination. For example, the present invention includes a peptide that has one or more amino acids different from those of the native peptide and deamination of the N-terminal amino acid residue, and has a function of regulating the blood glucose level in the body. id="p-44"
id="p-44"
[44] In a specific embodiment, the insulin used in the present invention may be produced by a recombination technology, and may also be synthesized using a solid phase synthesis method. id="p-45"
id="p-45"
[45] id="p-46"
id="p-46"
[46] Further, the insulin used in the present invention is characterized in that a nonpeptidyl polymer is linked to the amino terminus of the beta chain of insulin. This nonpeptidyl polymer may be used as a linker in the present invention. The non-peptidyl polymer is linked as a linker, thereby maintaining the activity and improving the stability of insulin. id="p-47"
id="p-47"
[47] The term "non-peptidyl polymer", as used herein, refers to a biocompatible polymer including two or more repeating units linked to each other by any covalent bond excluding a peptide bond. In the present invention, the non-peptidyl polymer may be interchangeably used with the non-peptidyl linker. id="p-48"
id="p-48"
[48] The non-peptidyl polymer useful in the present invention may be selected from the group consisting of a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof, and preferably, the biodegradable polymer may be polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, polylactic acid (PLA) or polylactic-gly colic acid (PLGA), and more preferably, is polyethylene glycol (PEG). In addition, derivatives thereof known in the art and derivatives easily prepared by a method known in the art may be included in the scope of the present invention. id="p-49"
id="p-49"
[49] The peptide linker which is used in the fusion protein obtained by a conventional inframe fusion method has drawbacks in that it is easily in-vivo cleaved by a pro teolytic enzyme, and thus a sufficient effect of increasing the serum half-life of the active drug by a carrier cannot be obtained as expected. However, in the present invention, the polymer having resistance to the proteolytic enzyme can be used to maintain the serum half-life of the peptide being similar to that of the carrier.
Therefore, any non-peptidyl polymer can be used without limitation, as long as it is a polymer having the aforementioned function, that is, a polymer having resistance to the in-vivo proteolytic enzyme. The non-peptidyl polymer has a molecular weight in the range of 1 to 100 kDa, and preferably of 1 to 20 kDa. The non-peptidyl polymer of the present invention, linked to the immunoglobulin Fc region, may be one polymer or a combination of different types of polymers. id="p-50"
id="p-50"
[50] The non-peptidyl polymer used in the present invention has a reactive group capable of binding to the immunoglobulin Fc region and protein drug. The non-peptidyl polymer has a reactive group at both ends, which is preferably selected from the group consisting of a reactive aldehyde, a propionaldehyde, a butyraldehyde, a maleimide and a succinimide derivative. The succinimide derivative may be succinimidyl propionate, hydroxy succinimidyl, succinimidyl carboxymethyl, or succinimidyl carbonate. In particular, when the non-peptidyl polymer has a reactive aldehyde group at both ends thereof, it is effective in linking at both ends with a physiologically active polypeptide and an immunoglobulin with minimal non-specific reactions. A final product generated by reductive alkylation by an aldehyde bond is much more stable than that linked by an amide bond. The aldehyde reactive group selectively binds to an N-terminus at a low pH, and binds to a lysine residue to form a covalent bond at a high pH, such as pH 9.0. The reactive groups at both ends of the non-peptidyl polymer may be the same or different. For example, the non-peptidyl polymer may possess a maleimide group at one end, and an aldehyde group, a propionaldehyde group or a butyraldehyde group at the other end. When a polyethylene glycol having a reactive hydroxy group at both ends thereof is used as the non-peptidyl polymer, the hydroxy group may be activated to various reactive groups by known chemical reactions, or a polyethylene glycol having a commercially available modified reactive group may be used so as to prepare the long acting insulin conjugate of the present invention.
Preferably, the non-peptidyl polymer may be linked at the N-terminus of the beta chain of insulin. id="p-51"
id="p-51"
[51] id="p-52"
id="p-52"
[52] The insulin of the present invention may be modified with a non-peptidyl polymer. id="p-53"
id="p-53"
[53] Actually, PEG (polyethylene glycol) modification for preventing hypoglycemia and improving duration of efficacy makes the titer of the physiological active peptide sig nificantly low. However, this disadvantage becomes an advantage in the development of long-acting insulin conjugates using immunoglobulin fragments. Thus, PEGmodified insulin may be linked to the immunoglobulin Fc region via the non-peptidyl polymer. The non-peptidyl polymer used in the insulin modification may be selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof, and preferably, polyethylene glycol. PEG modification in the PEG-modified insulin is characterized in that PEG selectively binds to the N-terminus of the alpha chain or to a particular lysine residue of the beta chain of insulin. The PEG modifying insulin preferably includes reactive aldehyde and succinyl groups at its ends, and more preferably, a reactive succinyl group. id="p-54"
id="p-54"
[54] The preparation method and efficacy of the long-acting insulin conjugate of the present invention is described in detail in Korean Patent Application Nos. 2010-0054068, 2010-0054067, and 2011-0030868. In one Example of the present invention, mono-PEGylation was performed at the N-terminus of immunoglobulin Fc region, and phenylalanine at position 1 of the beta chain of insulin was modified therewith to prepare the long-acting insulin conjugate (Example 1). id="p-55"
id="p-55"
[55] id="p-56"
id="p-56"
[56] As used herein, the term "long-acting insulinotropic peptide conjugate" means an insulinotropic peptide linked with the immunoglobulin Fc region via the non-peptidyl linker. id="p-57"
id="p-57"
[57] In the present invention, "insulinotropic peptide" means a peptide that retains the function of releasing insulin, and stimulates synthesis or expression of insulin in the beta cells of the pancreas. Preferably, the insulinotropic peptide is GLP (Glucagon like peptide)- 1, exendin-3, or exendin-4, but is not limited thereto. The insulinotropic peptide includes native insulinotropic peptides, precursors thereof, agonists thereof, derivatives thereof, fragments thereof, and variants thereof. id="p-58"
id="p-58"
[58] The insulinotropic peptide derivative of the present invention may include a desamino-histidyl derivative where the N-terminal amino group of insulinotropic peptide is deleted, beta-hydroxy imidazopropionyl-derivative where the amino group is substituted with a hydroxyl group, dimethyl-histidyl derivative where the amino group is modified with two methyl groups, beta-carboxyimidazopropionyl-derivative where the N-terminal amino group is substituted with a carboxyl group, or an imidazoacetylderivative where the alpha carbon of the N-terminal histidine residue is deleted to remain only the imidazoacetyl group and thus the positive charge of the amino group is removed, and other N-terminal amino group-modified derivatives are included within the scope of the present invention. id="p-59"
id="p-59"
[59] In the present invention, the insulinotropic peptide derivative is more preferably an exendin-4 derivative having a chemically modified N-terminal amino (or amine) group or amino acid residue, even more preferably an exendin-4 derivative which is prepared by removing or substituting the alpha amino group present in the alpha carbon of the N-terminal Hisl residue of exendin-4 or by removing or substituting the alpha carbon.
Still more preferably, desamino-histidyl-exendin-4 (DA-Exendin-4) with removal of the N-terminal amino group, beta-hydroxy imidazopropyl-exendin-4 (HY-exendin-4) prepared by substitution of the amino group with a hydroxyl group, beta-carboxy imi dazopropyl-exendin-4 (CX-exendin-4) prepared by substitution of the amino group with a carboxyl group, dimethyl-histidyl-exendin-4 (DM-exendin-4) prepared by mod ification of the amino group with two methyl residues, or imidazoacetyl-exendin-4 (CA-exendin-4) with removal of alpha carbon of N-terminal histidine residue. id="p-60"
id="p-60"
[60] GLP- 1 is a hormone secreted by the small intestine, and usually promotes biosynthesis and secretion of insulin, inhibits glucagon secretion, and promotes glucose uptake by the cells. In the small intestine, a glucagon precursor is decomposed into three peptides, that is, glucagon, GLP-1, and GLP-2. Here, the GLP-1 means GLP-1 (1-37), which is originally in the form having no insulinotropic function, but is then processed and converted into one in the activated GLP-1 (7-37) forms. The sequence of the GLP-1 (7-37) amino acid is as follows: id="p-61"
id="p-61"
[61] GLP-1 (7-37) id="p-62"
id="p-62"
[62] HAEGT FTSDV SSYLE GQAAK EFIAW LVKGR G (SEQ ID NO. 3) id="p-63"
id="p-63"
[63] id="p-64"
id="p-64"
[64] The term, "GLP-1 derivative" means a peptide which exhibits an amino acid sequence homology of at least 80% with that of GLP-1, may be in the chemically modified form, and exhibits an insulinotropic function of at least equivalent or more to that of GLP-1. id="p-65"
id="p-65"
[65] The term, "GLP-1 fragment" means one in the form in which one or more amino acids are added or deleted at an N-terminus or a C-terminus of a native GLP-1, in which the added amino acid is possibly a non-naturally occurring amino acid (e.g., Dtype amino acid). id="p-66"
id="p-66"
[66] The term, "GLP-1 variant" means a peptide possessing an insulinotropic function, which has one or more amino acid sequences different from those of a native GLP-1. id="p-67"
id="p-67"
[67] Exendin-3 and the exendin-4 are insulinotropic peptides consisting of 39 amino acids, which have a 53% amino acid sequence homology with GLP-1. The amino acid sequences of the exendin-3 and the exendin-4 are as follows: id="p-68"
id="p-68"
[68] Exendin-3 id="p-69"
id="p-69"
[69] HSDGT FTSDL SKQME EEAVR LFIEW LKNGG PSSGA PPPS (SEQ ID NO. 4) id="p-70"
id="p-70"
[70] Exendin-4 id="p-71"
id="p-71"
[71] HGEGT FTSDL SKQME EEAVR LFIEW LKNGG PSSGA PPPS (SEQ ID NO. 5) id="p-72"
id="p-72"
[72] id="p-73"
id="p-73"
[73] The term, "exendin agonist" means a compound reacting with receptors in-vivo and having biological activity equivalent to that of exendin. id="p-74"
id="p-74"
[74] The term, "exendin derivative" means a peptide having at least 80% amino acid sequence homology with the native exendin, which may have some groups on the amino acid residue chemically substituted (e.g., alpha-methylation, alpha-hydroxylation), deleted (e.g., deamination), or modified (e.g., N-methylation), and has an insulinotropic function. id="p-75"
id="p-75"
[75] The term, "exendin fragment" means a fragment having one or more amino acids added or deleted at the N-terminus or the C-terminus of the native exendin, in which non-naturally occurring amino acids (for example, D-type amino acid) can be added, and has an insulinotropic function. id="p-76"
id="p-76"
[76] The term, "exendin variant" means a peptide having at least one amino acid sequence different from that of the native exendin, which has an insulinotropic function, and the exendin variant includes peptides prepared by substituting lysine at position 12 of exendin-4 with serine or arginine. id="p-77"
id="p-77"
[77] Each of the preparation methods for the exendin agonist, derivative, the fragment, and the variant can be used individually or in combination. For example, the present invention includes an insulinotropic peptide having an amino acid sequence having at least one different amino acid from those of the native insulinotropic peptide, and having the amino acid residue at the N-terminus deaminated. id="p-78"
id="p-78"
[78] In a specific embodiment, the native insulinotropic peptide and the modified in sulinotropic peptide used in the present invention can be synthesized using a solid phase synthesis method, and most of the native peptides including a native in sulinotropic peptide can be produced by a recombination technology. id="p-79"
id="p-79"
[79] The long-acting insulinotropic peptide conjugate used in the present invention means an insulinotropic peptide linked with an immunoglobulin fragment such as im munoglobulin Fc via a non-peptidyl linker. The non-peptidyl linker is the same as described above. The long-acting insulinotropic peptide conjugate is a conjugate using the immunoglobulin fragment as in the long-acting insulin conjugate, and maintains the conventional in-vivo activities of the insulinotropic peptide, such as promotion of synthesis and secretion of insulin, appetite control, weight loss, increase in the beta cell sensitivity to glucose in blood, promotion of beta cell proliferation, delayed gastric emptying, and glucagon suppression, and further remarkably increases the blood halflife of the insulinotropic peptide, and subsequently the in-vivo efficacy sustaining effect of the peptide. Thus, it is useful in the treatment of diabetes and obesity. id="p-80"
id="p-80"
[80] The type and preparation method of the long-acting insulinotropic peptide conjugate are described in detail in Korean Patent Application Nos. 2008-001479, 2008-0069234, and 2010-0047019. id="p-81"
id="p-81"
[81] In one Example of the present invention, lysine (Lys) of imidazo-acetyl exendin-4 (CA exendin-4) was modified with PEG, and the PEG-modified exendin-4 was linked to the immunoglobulin Fc to prepare a long-acting exendin-4 conjugate (Example 2). id="p-82"
id="p-82"
[82] id="p-83"
id="p-83"
[83] The insulin and the insulinotropic peptide used in the present invention are linked with a carrier substance using the non-peptidyl polymer as a linker. The carrier substance useful in the present invention may be selected from the group consisting of an immunoglobulin Fc region, albumin, transferrin, and PEG, and preferably an im munoglobulin Fc region. id="p-84"
id="p-84"
[84] Each of the long-acting insulin conjugate and the insulinotropic peptide conjugate of the present invention is prepared by linking insulin or insulinotropic peptide with the immunoglobulin Fc region via the non-peptidyl linker, thereby showing sustainability and stability. In the present invention, the immunoglobulin Fc may be interchangeably used with immunoglobulin fragment. id="p-85"
id="p-85"
[85] Also, an Fc fragment is beneficial in terms of preparation, purification and yield of a complex with the Fc fragment because it has a small molecular weight relative to whole immunoglobulin molecules. Further, since the Fab region, which displays high non-homogeneity due to the difference in amino acid sequence between antibodies, is removed, the Fc fragment has greatly increased substance homogeneity and a low potential to induce serum antigenicity. id="p-86"
id="p-86"
[86] id="p-87"
id="p-87"
[87] The term "immunoglobulin Fc region" as used herein, refers to a protein that contains the heavy-chain constant region 2 (CH2) and the heavy-chain constant region 3 (CH3) of an immunoglobulin, excluding the variable regions of the heavy and light chains, the heavy-chain constant region 1 (CHI) and the light-chain constant region 1 (CLl) of the immunoglobulin. It may further include a hinge region at the heavy-chain constant region. Also, the immunoglobulin Fc region of the present invention may contain a part or all of the Fc region including the heavy-chain constant region 1 (CHI) and/or the light-chain constant region 1 (CLl), except for the variable regions of the heavy and light chains, as long as it has a physiological function substantially similar to or better than the native protein. Also, the immunoglobulin Fc region may be a fragment having a deletion in a relatively long portion of the amino acid sequence of CH2 and/or CH3. That is, the immunoglobulin Fc region of the present invention may comprise 1) a CHI domain, a CH2 domain, a CH3 domain and a CH4 domain, 2) a CHI domain and a CH2 domain, 3) a CHI domain and a CH3 domain, 4) a CH2 domain and a CH3 domain, 5) a combination of one or more domains and an immunoglobulin hinge region (or a portion of the hinge region), and 6) a dimer of each domain of the heavychain constant regions and the light-chain constant region. id="p-88"
id="p-88"
[88] The immunoglobulin Fc region of the present invention includes a native amino acid sequence, and a sequence derivative (mutant) thereof. An amino acid sequence derivative is a sequence that is different from the native amino acid sequence due to a deletion, an insertion, a non-conservative or conservative substitution or combinations thereof of one or more amino acid residues. For example, in an IgG Fc, amino acid residues known to be important in binding, at positions 214 to 238, 297 to 299, 318 to 322, or 327 to 331, may be used as a suitable target for modification. id="p-89"
id="p-89"
[89] Also, other various derivatives are possible, including one in which a region capable of forming a disulfide bond is deleted, or certain amino acid residues are eliminated at the N-terminal end of a native Fc form or a methionine residue is added thereto.
Further, to remove effector functions, a deletion may occur in a complement-binding site, such as a Clq-binding site and an ADCC (antibody dependent cell mediated cyto toxicity) site. Techniques of preparing such sequence derivatives of the im munoglobulin Fc region are disclosed in WO 97/34631 and WO 96/32478. id="p-90"
id="p-90"
[90] Amino acid exchanges in proteins and peptides, which do not generally alter the 12 activity of the proteins or peptides, are known in the art (H. Neurath, R. L. Hill, The Proteins, Academic Press, New York, 1979). The most commonly occurring exchanges are Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thy/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu and Asp/Gly, in both directions. In addition, the Fc region, if desired, may be modified by phosphorylation, sulfation, acrylation, glycosylation, methylation, farnesylation, acetylation, amidation, and the like. id="p-91"
id="p-91"
[91] The aforementioned Fc derivatives are derivatives that have a biological activity identical to the Fc region of the present invention or improved structural stability, for example, against heat, pH, or the like. id="p-92"
id="p-92"
[92] id="p-93"
id="p-93"
[93] In addition, these Fc regions may be obtained from native forms isolated from humans and other animals including cows, goats, swine, mice, rabbits, hamsters, rats and guinea pigs, or may be recombinants or derivatives thereof, obtained from transformed animal cells or microorganisms. Herein, they may be obtained from a native immunoglobulin by isolating whole immunoglobulins from human or animal organisms and treating them with a proteolytic enzyme. Papain digests the native immunoglobulin into Fab and Fc regions, and pepsin treatment results in the production of pF'c and F(ab)2 fragments. These fragments may be subjected, for example, to size exclusion chromatography to isolate Fc or pF'c. Preferably, a human-derived Fc region is a recombinant immunoglobulin Fc region that is obtained from a microorganism. id="p-94"
id="p-94"
[94] In addition, the immunoglobulin Fc region of the present invention may be in the form of having native sugar chains, increased sugar chains compared to a native form or decreased sugar chains compared to the native form, or may be in a deglycosylated form. The increase, decrease or removal of the immunoglobulin Fc sugar chains may be achieved by methods common in the art, such as a chemical method, an enzymatic method and a genetic engineering method using a microorganism. The removal of sugar chains from an Fc region results in a sharp decrease in binding affinity to the C1q part of the first complement component C1 and a decrease or loss in antibody-dependent cell-mediated cytotoxicity or complement-dependent cytotoxicity, thereby not inducing unnecessary immune responses in-vivo. In this regard, an immunoglobulin Fc region in a deglycosylated or aglycosylated form may be more suitable to the present invention as a drug carrier. id="p-95"
id="p-95"
[95] As used herein, the term "deglycosylation" refers to enzymatically removing sugar moieties from an Fc region, and the term "aglycosylation" means that an Fc region is produced in an unglycosylated form by a prokaryote, preferably E. coli. id="p-96"
id="p-96"
[96] Meanwhile, the immunoglobulin Fc region may be derived from humans or other animals including cows, goats, pigs, mice, rabbits, hamsters, rats and guinea pigs, and preferably from humans. id="p-97"
id="p-97"
[97] In addition, the immunoglobulin Fc region may be an Fc region that is derived from IgG, IgA, IgD, IgE and IgM, or that is made by combinations thereof or hybrids thereof. Preferably, it is derived from IgG or IgM, which are among the most abundant proteins in human blood, and most preferably from IgG, which is known to enhance the half-lives of ligand-binding proteins. id="p-98"
id="p-98"
[98] On the other hand, the term "combination", as used herein, means that polypeptides encoding single-chain immunoglobulin Fc regions of the same origin are linked to a single-chain polypeptide of a different origin to form a dimer or multimer. That is, a dimer or multimer may be formed from two or more fragments selected from the group consisting of IgG Fc, IgA Fc, IgM Fc, IgD Fc, and IgE Fc fragments. id="p-99"
id="p-99"
[99] The term "hybrid", as used herein, means that sequences encoding two or more im munoglobulin Fc regions of different origin are present in a single-chain im munoglobulin Fc region. In the present invention, various types of hybrids are possible. That is, hybrid domains may be composed of one to four domains selected from the group consisting of CHI, CH2, CH3 and CH4 of IgG Fc, IgM Fc, IgA Fc, IgE Fc and IgD Fc, and may include the hinge region. id="p-100"
id="p-100"
[100] On the other hand, IgG is divided into IgGl, IgG2, IgG3 and IgG4 subclasses, and the present invention includes combinations and hybrids thereof. Preferred are the IgG2 and IgG4 subclasses, and most preferred is the Fc region of IgG4 rarely having effector functions such as CDC (complement dependent cytotoxicity). id="p-101"
id="p-101"
[101] That is, as the drug carrier of the present invention, the most preferable im munoglobulin Fc region is a human IgG4-derived non-glycosylated Fc region. The human-derived Fc region is more preferable than a non-human derived Fc region, which may act as an antigen in the human body and cause undesirable immune responses such as the production of a new antibody against the antigen. id="p-102"
id="p-102"
[102] id="p-103"
id="p-103"
[103] The composition of the present invention is characterized by concurrent admin istration of the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate. id="p-104"
id="p-104"
[104] When the concurrent administration of the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate of the present invention is performed, the long-acting insulin conjugate acts on the insulin receptor and the long-acting in sulinotropic peptide conjugate acts on the glucagon like peptide- 1 receptor at the same time, so that the blood glucose level is decreased and a stable blood glucose level is maintained, compared to single administration thereof. The concurrent administration of the conjugates has the effects of reducing the risk of hypoglycemia and weight gain which can be induced by single administration of insulin, and also reduces the dose of the total insulin owing to the action of the insulinotropic peptide. The concurrent ad ministration is also advantageous in that the dose of the insulinotropic peptide such as exendin-4 can also be reduced to prevent adverse effects such as nausea and vomiting caused by single administration of exendin-4. The use of long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate remarkably increases the blood half-life and in-vivo duration of efficacy, so that the treatment frequency is reduced to improve quality of life in chronic patients that suffer from daily injections. Thus, it is very useful for the treatment of diabetes. Further, the pharmaceutical composition of the present invention shows excellent duration of in-vivo efficacy and titers, and the dose can be greatly reduced upon concurrent administration. id="p-105"
id="p-105"
[105] The long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate may be administered simultaneously, sequentially or reversely, and may be administered simultaneously in a proper combination of effective doses. Preferably, the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate can be stored separately in individual containers, and then administered simultaneously, se quentially or reversely. id="p-106"
id="p-106"
[106] Further, the composition for concurrent administration of the present invention may be in a form of a therapeutic kit for diabetes that includes the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate in a single container or separately in individual containers. The kit may include a pharmaceutically acceptable carrier and an instruction manual. id="p-107"
id="p-107"
[107] In one specific Example of the present invention, changes in the blood glucose levels were examined after concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate to STZ (Streptozotocin)-induced diabetic mice. As a result, concurrent administration of the conjugates showed a stable pattern in blood glucose levels, compared to single administrations (FIG. 1). The fasting blood glucose levels were compared before and after concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate in mouse models of type 2 diabetes once a week. As a result, concurrent administration showed excellent im provement in the blood glucose levels, compared to single administrations (FIG. 2). In addition, weight gain caused by insulin treatment was not observed, indicating that concurrent administration reduces the side effect of weight gain due to insulin (FIG. 3). id="p-108"
id="p-108"
[108] id="p-109"
id="p-109"
[109] As used herein, the term "diabetes" means a metabolic disease caused by an ab normality in the secretion or function of insulin. Concurrent administration of the com position of the present invention to a subject is performed to control the blood glucose level, thereby treating diabetes. id="p-110"
id="p-110"
[110] As used herein, the term "prevention" means all of the actions by which the oc- currence of diabetes is restrained or retarded by concurrent administration of the com position of the present invention, and the term "treatment" means all of the actions by which the symptoms of diabetes have taken a turn for the better or been modified favorably by concurrent administration of the composition of the present invention.
The treatment of diabetes can be applied to any mammal that may have diabetes, and examples thereof include humans and primates as well as livestock such as cattle, pig, sheep, horse, dog, and cat without limitation, and preferably human.
[Ill] As used herein, the term "administration" means introduction of a predetermined amount of a substance into a patient by a certain suitable method. The composition may be administered via any of the common routes, as long as it is able to reach a desired tissue. A variety of modes of administration are contemplated, including in traperitoneal, intravenous, intramuscular, subcutaneous, intradermal, oral, topical, in tranasal, intrapulmonary and intrarectal, but the present invention is not limited to these exemplified modes of administration. However, since peptides are digested upon oral administration, active ingredients of a composition for oral administration should be coated or formulated for protection against degradation in the stomach. Preferably, the multimer may be administered in an injectable form. In addition, the pharma ceutical composition may be administered using a certain apparatus capable of transporting the active ingredients into a target cell. id="p-112"
id="p-112"
[112] Further, the pharmaceutical composition of the present invention can be determined by several related factors including the types of diseases to be treated, administration routes, the patient's age, gender, weight and severity of the illness, as well as by the types of the drug used as an active component. id="p-113"
id="p-113"
[113] id="p-114"
id="p-114"
[114] Further, the pharmaceutical composition of the present invention may include a phar maceutically acceptable carrier. As used herein, the term "pharmaceutically acceptable carrier" refers to a carrier or diluent that does not cause significant irritation to an organism and does not abrogate the biological activity and properties of the ad ministered compound. For oral administration, the pharmaceutically acceptable carrier may include a binder, a lubricant, a disintegrant, an excipient, a solubilizer, a dispersing agent, a stabilizer, a suspending agent, a coloring agent, and a flavor. For in jectable preparations, the pharmaceutically acceptable carrier may include a buffering agent, a preserving agent, an analgesic, a solubilizer, an isotonic agent, and a stabilizer.
For preparations for topical administration, the pharmaceutically acceptable carrier may include a base, an excipient, a lubricant, and a preserving agent. The pharma ceutical composition of the present invention may be formulated into a variety of dosage forms in combination with the aforementioned pharmaceutically acceptable carriers. For example, for oral administration, the pharmaceutical composition may be formulated into tablets, troches, capsules, elixirs, suspensions, syrups or wafers. For in jectable preparations, the pharmaceutical composition may be formulated into a unit dosage form, such as a multi-dose container or an ampule as a single-dose dosage form. The pharmaceutical composition may be also formulated into solutions, su s pensions, tablets, pills, capsules and long-acting preparations. id="p-115"
id="p-115"
[115] On the other hand, examples of the carrier, the excipient, and the diluent suitable for the pharmaceutical formulations include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oils. In addition, the pharmaceutical formulations may further include fillers, anti-coagulating agents, lubricants, humectants, flavors, and an tiseptics. id="p-116"
id="p-116"
[116] id="p-117"
id="p-117"
[117] In another aspect, the present invention provides a method for preventing or treating diabetes, comprising the step of administering the composition including the longacting insulin conjugate and the long- acting insulinotropic peptide conjugate to a subject having diabetes or at risk of having diabetes. id="p-118"
id="p-118"
[118] The administration step may be performed by concurrent administration of the longacting insulin conjugate and the long- acting insulinotropic peptide conjugate, but is not limited to, simultaneously, sequentially or reversely, and the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate are administered simul taneously in a proper combination of effective doses. id="p-119"
id="p-119"
[119] Even though administered once a week, the composition including both of the longacting insulin conjugate and the long- acting insulinotropic peptide conjugate of the present invention shows excellent improvement in the blood glucose levels and causes no side effect of weight gain, and thus can be used for the prevention or treatment of diabetes. id="p-120"
id="p-120"
[120] id="p-121"
id="p-121"
[121] In another aspect, the present invention provides a pharmaceutical composition for the prevention or treatment of diabetes comprising a long-acting insulin conjugate and an insulinotropic peptide. id="p-122"
id="p-122"
[122] The long-acting insulin conjugate and the insulintropic peptide is the same as described above. The long-acting insulin conjugate may be administered concurrently with the insulinotropic peptide such as GLP-1 agonists (for example, Exenatide, Liraglutide or Lixisenatide). id="p-123"
id="p-123"
[123] id="p-124"
id="p-124"
[124] In another aspect, the present invention provides a pharmaceutical composition for the prevention or treatment of diabetes comprising insulin and a long-acting insulinotropic peptide conjugate. id="p-125"
id="p-125"
[125] The insulin and the long-acting insulintropic peptide conjugate is the same as described above. The long-acting insulinotropic peptide conjugate may be ad ministered concurrently with the insulin such as the native insulin, the insulin derivatives or the basal insulin. id="p-126"
id="p-126"
[126] Mode for the Invention id="p-127"
id="p-127"
[127] Hereinafter, the present invention will be described in more detail with reference to the following Examples. However, these Examples are for illustrative purposes only, and the invention is not intended to be limited thereby. id="p-128"
id="p-128"
[128] id="p-129"
id="p-129"
[129] Example 1: Preparation of long-acting insulin conjugate id="p-130"
id="p-130"
[130] For PEGylation of the N-terminus of immunoglobulin Fc region with 5K PropionALD(3) PEG (PEG with three propylaldehyde groups, NOF, Japan), the im munoglobulin Fc region and PEG were reacted at a molar ratio of 1 : 2 with the im munoglobulin Fc concentration of 10 mg/mL at 4°C for 4.5 h. At this time, the reaction was conducted in a 100 mM potassium phosphate (pH 6.0), and a reducing agent, 20 mM SCB (NaCNBH3 ) was added thereto. The mono-PEGylated immunoglobulin Fc was purified from the reaction mixture using a SOURCE 15Q (GE Healthcare) pu rification column. id="p-131"
id="p-131"
[131] In order to prepare an insulin-PEG-immunoglobulin Fc conjugate having 90% or more modification of phenylalanine (BIF) at position 1 of the beta chain of insulin, the mono-PEGylated immunoglobulin Fc and insulin were prepared at a molar ratio of 4 : 1 and at the total protein concentration of 20 mg/mL, and reacted with each other at 4°C for 20 h. 100 mM potassium phosphate (pH 6.0) was used as a reaction solution, and 20 mM SCB was added thereto as a reducing agent. After termination of the reaction, primary purification of the reaction mixture was performed using a Source 15Q purification column. Then, second purification was performed using a Source 15ISO purification column to obtain an insulin-PEG-immunoglobulin Fc conjugate. id="p-132"
id="p-132"
[132] id="p-133"
id="p-133"
[133] Example 2 : Preparation of long-acting exendin-4 conjugate id="p-134"
id="p-134"
[134] 3.4k PropionALD (2) PEG was reacted with the lysine (Lys) of CA exendin-4 using imidazo- acetyl exendin-4 (CA exendin-4, AP, USA). Among the two Lys isomer peaks, the last isomer peak (positional isomer of Lys27), which has more reaction and which is easily distinguishable from the N-terminal isomer peaks, was used for the coupling reaction. id="p-135"
id="p-135"
[135] The reaction was performed at a molar ratio of peptide:immunoglobulin Fc of 1:8, and a total concentration of proteins of 60 mg/mL at 4°C for 20 h. The reaction was performed in a solution of 100 mM K-P (pH 6.0), and 20 mM SCB was added as a reducing agent. The coupling reaction solution was purified through two purification columns. First, SOURCE Q (XK 16 mL, Amersham Biosciences) was used to remove a large amount of immunoglobulin Fc which had not participated in the coupling reaction. Using 20 mM Tris (pH 7.5) and 1 M NaCl with salt gradients, the im munoglobulin Fc having relatively weak binding power was eluted earlier, and then the exendinimmunoglobulin Fc was eluted. Through this first purification procedure, the immunoglobulin Fc was removed to some degree, but since the immunoglobulin Fc and the exendinimmunoglobulin Fc have similar binding powers to each other in the ion exchange column, they could not be completely separated from each other. Ac cordingly, secondary purification was performed using hydrophobicity of each of two materials. Using 20 mM Tris (pH7.5) and 1.5 M ammonium sulfate in SOURCE ISO (HR 16 mL, Amersham Biosciences), the first purified samples were coupled, and the sample was eluted with gradually reducing the concentration of ammonium sulfate. In the HIC Column, the immunoglobulin Fc having weak binding power was eluted earlier, and then the exendinimmunoglobulin Fc sample having strong binding power was eluted. Since they have prominently different hydrophobicity, they can be more easily separated from each other than in the ion exchange column. id="p-136"
id="p-136"
[136] id="p-137"
id="p-137"
[137] Column: SOURCE Q (XK 16 mL, Amersham Biosciences) id="p-138"
id="p-138"
[138] Flow rate: 2.0 mL/min id="p-139"
id="p-139"
[139] Gradient: AO ->25 70 min B (A: 20mM Tris pH7.5, B: A+ 1 M NaCl) id="p-140"
id="p-140"
[140] id="p-141"
id="p-141"
[141] Column: SOURCE ISO (HR 16 mL, Amersham Biosciences) id="p-142"
id="p-142"
[142] Flow rate : 7.0 mL/min id="p-143"
id="p-143"
[143] Gradient: B 100 →0 60 min B (A: 20 mM Tris pH7.5, B: A + 1.5M ammonium sulfate) id="p-144"
id="p-144"
[144] id="p-145"
id="p-145"
[145] Example 3 : Efficacy test on concurrent administration of long-acting insulin conjugate and long-acting exendin-4 conjugate in STZ (Streptozotocin)-induced diabetes id="p-146"
id="p-146"
[146] In order to perform in vivo efficacy test on administration of the compositions including the long-acting insulin conjugate and the long-acting exendin-4 conjugate prepared in Examples 1 and 2 or concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate, changes in the blood glucose levels were examined using STZ (Streptozotocin)-induced diabetic mice. id="p-147"
id="p-147"
[147] Diabetes was induced in 7-week old C57BL/6 mice fasted for 16 h by intraperitoneal injection of STZ (50 mg/kg, 1 mg/mL) in 10 mM citrate buffer (pH 4.5) for 5 con secutive days. After 2 days, 1-2 drops of blood was taken from the tail vein using a 26 G syringe, and the blood glucose was measured using a glucometer (OneTouch Ultra, LifeScan, Inc., USA). Diabetes induction was determined by the measured blood glucose (350-600 mg/dL). id="p-148"
id="p-148"
[148] Diabetes-induced mice were divided into five groups of five mice each: Gl, G2, G3, G4 and G5. id="p-149"
id="p-149"
[149] The groups were divided into a non-treated control group (Vehicle), a long-acting exendin-4 conjugate-treated group (5 mcg/kg), a long-acting insulin conjugate-treated group (100 mcg/kg), a long-acting exendin-4 conjugate (5 mcg/kg) and long-acting insulin conjugate (50 mcg/kg)-treated group, and a long-acting exendin-4 conjugate (5 mcg/kg) and long-acting insulin conjugate (100 mcg/kg) -treated group. After treatment of the above test materials, changes in the blood glucose levels were measured in each group every day. id="p-150"
id="p-150"
[150] As a result, the concurrent treatment of the long-acting insulin conjugate and the long-acting exendin-4 conjugate showed a stable blood glucose level and a sustained hypoglycemic effect (FIG. 1), and showed remarkably lower blood glucose levels, compared to single administration of the long-acting exendin-4 conjugate or the longacting insulin conjugate. id="p-151"
id="p-151"
[151] These results suggest that the concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate of the present invention shows a stable and sustained hypoglycemic effect, and thus remarkably reduces the admin istration dose, leading to reduction of side effects of exendin-4 such as vomiting and nausea and prevention of weight gain caused by insulin treatment. id="p-152"
id="p-152"
[152] id="p-153"
id="p-153"
[153] Example 4 : Changes in fasting blood glucose (AFBG) and body weight (ABW) by concurrent administration of long-acting insulin conjugate and long-acting exendin-4 conjugate id="p-154"
id="p-154"
[154] In order to perform in vivo efficacy test on administration of the compositions including the long-acting insulin conjugate and the long-acting exendin-4 conjugate prepared in Examples 1 and 2 or concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate, the improvement of the blood glucose levels and inhibition of weight gain were examined using type 2 diabetic db/db mouse. id="p-155"
id="p-155"
[155] Type 2 diabetic db/db mice were divided into single and concurrent administration groups of the long-acting insulin conjugate and the long-acting exendin-4 conjugate.
Single administration groups were treated with 430 nmol/kg of the long-acting insulin conjugate and 2.3 nmol/kg of the long-acting exendin-4 conjugate by subcutaneous injection once a week, respectively. Concurrent administration groups were treated with 108 nmol/kg and 216 nmol/kg of the long-acting insulin conjugate and 2.3 nmol/ kg of the long-acting exendin-4 conjugate by subcutaneous injection once a week. The test was performed for 28 days, and the animals were fasted for 8 h prior to the initial drug treatment and on the last day of the experiment, and then changes in fasting blood glucose (AFBG) and body weight (ABW) prior to the drug treatment and on the last day of the experiment were determined and calculated as final test items. id="p-156"
id="p-156"
[156] The measurement results of AFBG and ABW showed that concurrent administration of the long-acting insulin conjugate and the long-acting exendin-4 conjugate once a week showed excellent effects of improving the blood glucose level (FIG. 2) and in hibiting weight gain (FIG. 3) at a quarter dose of insulin (108 nmol/kg), compared to single administration of the long-acting insulin conjugate. These results shows that concurrent administration of the long-acting insulin conjugate and the long-acting CA exendin-4 conjugate has the advantages of reducing the risk of hypoglycemia and in hibiting weight gain by the reduction in the dose of insulin, indicating that even though the concurrent administration was performed once a week, it shows an excellent hypo glycemic effect, compared to daily injections of insulin and GLP-1 agonist, and also shows excellent blood glucose control greater than single administrations, and it reduces the demand for insulin, thereby reducing the risk of hypoglycemia and weight gain caused by insulin. id="p-157"
id="p-157"
[157] These results support that, even though administered once a week, the composition including the long-acting insulin conjugate and the long-acting exendin-4 conjugate of the present invention shows excellent blood glucose control and does not induce weight gain caused by insulin treatment while it remarkably reduces the side effects caused by single administrations of the known insulin peptide and exendin-4.
Claims (20)
1. A pharmaceutical composition for the prevention or treatment of diabetes comprising a long-acting insulin conjugate and a long-acting insulinotropic peptide conjugate, wherein each of the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate is prepared by linking insulin or insulinotropic peptide with an immunoglobulin Fc region via a non-peptidyl linker selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof.
2. The composition according to claim 1, wherein the insulin is a native insulin, a basal insulin, an insulin variant prepared by any one of substitution, addition, deletion, modification or a combination thereof of the amino acid sequences of the native insulin, an insulin derivative, or a fragment thereof, wherein the variant, derivative, and fragment have a function of regulating the blood glucose level in the body.
3. The composition according to claim 1, wherein the insulin in the conjugate is further modified with a non-peptidyl polymer at another position to where the non-peptidyl linker is linked.
4. The composition according to claim 3, wherein the non-peptidyl polymer is selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycolpropylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof.
5. The composition according to claim 1, wherein the insulinotropic peptide is selected from the group consisting of GLP-1, exendin-3, exendin-4, agonists thereof, derivatives thereof, fragments thereof, variants thereof, and combinations thereof, wherein the variant, derivative, and fragment have insulinotropic function. 22.
6. The composition according to claim 1, wherein the insulinotropic peptide is prepared by substituting the N-terminal histidine residue of insulinotropic peptide with a substance selected from the group consisting of des-amino-histidyl, dimethyl-histidyl, beta-hydroxy imidazopropionyl, 4-imidazoacetyl, and beta-carboxy imidazopropionyl.
7. The composition according to claim 1, wherein the insulinotropic peptide is selected from the group consisting of a native exendin-4, an exendin-4 derivative prepared by deleting N-terminal amine group, an exendin-4 derivative prepared by substituting N-terminal amine group with hydroxyl group, an exendin-4 derivative prepared by modifying N-terminal amine group with dimethyl group, an exendin-4 derivative prepared by deleting α-carbon of the first amino acid of exendin-4 (histidine), an exendin-4 variant prepared by substituting 12th amino acid (lysine) of exendin-4 with serine, and an exendin-4 variant prepared by substituting 12th amino acid (lysine) of exendin-4 with arginine.
8. The composition according to claim 1, wherein the immunoglobulin Fc region is aglycosylated.
9. The composition according to claim 1, wherein the immunoglobulin Fc region is composed of one to four domains selected from the group consisting of CH1, CH2, CH3 and CH4 domains.
10. The composition according to claim 1, wherein the immunoglobulin Fc region further includes a hinge region.
11. The composition according to claim 1, wherein the immunoglobulin Fc region is an Fc region derived from IgG, IgA, IgD, IgE, or IgM.
12. The composition according to claim 1, wherein each domain of the immunoglobulin Fc region is a hybrid domain of a different origin selected from the group consisting of IgG, IgA, IgD, IgE, and IgM. 23.
13. The composition according to claim 1, wherein the immunoglobulin Fc region is a dimer or a multimer composed of single-chain immunoglobulins of the same origin.
14. The composition according to claim 1, further comprising a pharmaceutically acceptable carrier.
15. The composition according to claim 1, wherein the long-acting insulin conjugate and the long-acting insulinotropic peptide conjugate are administered simultaneously, sequentially, or reversely.
16. Use of the composition of any one of claims 1 to 15 for the manufacture of a
17.medicament for the prevention or treatment of diabetes in a subject having diabetes or at risk
18.of having diabetes.
19. A pharmaceutical composition for the prevention or treatment of diabetes comprising a long-acting insulin conjugate and an insulinotropic peptide, wherein the long-acting insulin conjugate is prepared by linking insulin with an immunoglobulin Fc region via a non-peptidyl linker selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof.
20. A pharmaceutical composition for the prevention or treatment of diabetes comprising insulin and a long-acting insulinotropic peptide conjugate, wherein the long-acting insulinotropic peptide conjugate is prepared by linking insulinotropic peptide with an immunoglobulin Fc region via a non-peptidyl linker selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, a biodegradable polymer, a lipid polymer, chitin, hyaluronic acid, and a combination thereof.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20110053488 | 2011-06-02 | ||
KR10-2011-0053488 | 2011-06-02 | ||
PCT/KR2012/004367 WO2012165915A2 (en) | 2011-06-02 | 2012-06-01 | Composition for treating diabetes comprising long-acting insulin conjugate and long-acting insulinotropic peptide conjugate |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ618793A NZ618793A (en) | 2016-01-29 |
NZ618793B2 true NZ618793B2 (en) | 2016-05-03 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20190083579A1 (en) | Composition for treating diabetes comprising long-acting insulin conjugate and long-acting insulinotropic peptide conjugate | |
NZ590358A (en) | A polypeptide complex comprising non-peptidyl polymer having three functional ends | |
AU2013293720B2 (en) | A liquid formulation of long-acting insulin and insulinotropic peptide | |
EP3156066B1 (en) | Composition for treating diabetes, containing long-acting insulin analog conjugate and long-acting insulin secretion peptide conjugate | |
DK2552474T3 (en) | INSULIN CONJUGATE USING AN IMMUNGLOBULIN FRAGMENT | |
JP2018009022A (en) | Pharmaceutical composition for prevention or treatment of nonalcoholic fatty liver disease | |
US20130122023A1 (en) | Novel long-acting glucagon conjugate and pharmaceutical composition comprising the same for the prevention and treatment of obesity | |
IL296960A (en) | Composition for prevention or treatment of hyperlipidemia comprising trigonal glucagon/glp-1/gip receptor agonist or conjugate thereof and method using the same | |
NZ618793B2 (en) | Composition for treating diabetes comprising long-acting insulin conjugate and long-acting insulinotropic peptide conjugate | |
IL294482A (en) | Glucagon and glp-1 co-agonists for the treatment of chronic kidney disease and diabetic kidney disease in type 2 diabetes |