NZ614551B2 - 6,7-dihydro-pyrazolo[1,5-a]pyrazin-4-ylamine derivatives useful as inhibitors of beta-secretase (bace) - Google Patents

6,7-dihydro-pyrazolo[1,5-a]pyrazin-4-ylamine derivatives useful as inhibitors of beta-secretase (bace) Download PDF

Info

Publication number
NZ614551B2
NZ614551B2 NZ614551A NZ61455112A NZ614551B2 NZ 614551 B2 NZ614551 B2 NZ 614551B2 NZ 614551 A NZ614551 A NZ 614551A NZ 61455112 A NZ61455112 A NZ 61455112A NZ 614551 B2 NZ614551 B2 NZ 614551B2
Authority
NZ
New Zealand
Prior art keywords
compound
phenyl
acid
mmol
vacuo
Prior art date
Application number
NZ614551A
Other versions
NZ614551A (en
Inventor
Francisca Delgadojimenez
Henricus Jacobus Maria Gijsen
Andres Avelino Trabancosuarez
Gool Michiel Luc Maria Van
Ramiro Juan Antonio Vega
Jimenez Francisca Delgado
Suarez Andres Avelino Trabanco
Original Assignee
Janssen Pharmaceutica Nv
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Janssen Pharmaceutica Nv filed Critical Janssen Pharmaceutica Nv
Priority claimed from PCT/EP2012/053455 external-priority patent/WO2012117027A1/en
Publication of NZ614551A publication Critical patent/NZ614551A/en
Publication of NZ614551B2 publication Critical patent/NZ614551B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/18Antipsychotics, i.e. neuroleptics; Drugs for mania or schizophrenia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Abstract

Disclosed herein are 6,7-dihydro-pyrazolo[1,5-a]pyrazin-4-yl-amine derivatives as inhibitors of beta-secretase, also known as beta-site amyloid cleaving enzyme, BACE, BACEl, Asp2, or memapsin2. Also disclosed are pharmaceutical compositions comprising such compounds, processes for preparing such compounds and compositions, and the use of such compounds and compositions for the prevention and treatment of disorders in which beta-secretase is involved, such as Alzheimer's disease (AD), mild cognitive impairment, senility, dementia, dementia with Lewy bodies, Down's syndrome, dementia associated with stroke, dementia associated with Parkinson's disease or dementia associated with beta-amyloid. In one embodiment the compound is (R)-5-methoxy-pyrazine-2-carboxylic acid [3-(4-amino-3-fluoro-2, 6-dimethyl-6,7-dihydro-pyrazolo[1, 5-a]pyrazin-6-yl)-4-fluoro-phenyl]amide. pounds and compositions, and the use of such compounds and compositions for the prevention and treatment of disorders in which beta-secretase is involved, such as Alzheimer's disease (AD), mild cognitive impairment, senility, dementia, dementia with Lewy bodies, Down's syndrome, dementia associated with stroke, dementia associated with Parkinson's disease or dementia associated with beta-amyloid. In one embodiment the compound is (R)-5-methoxy-pyrazine-2-carboxylic acid [3-(4-amino-3-fluoro-2, 6-dimethyl-6,7-dihydro-pyrazolo[1, 5-a]pyrazin-6-yl)-4-fluoro-phenyl]amide.

Description

,7-DIHYDRO-PYRAZOLO[1,5-a]PYRAZINYLAMINE DERIVATIVES USEFUL AS INHIBITORS OF BETA-SECRETASE (BACE) FIELD OF THE INVENTION The present ion s to novel 6,7-dihydro-pyrazolo[l,5-a]pyrazinyl- amine derivatives as inhibitors of beta-secretase, also known as beta-site amyloid cleaving enzyme, BACE, BACEl, Asp2, or memapsin2. The invention is also directed to pharmaceutical compositions comprising such compounds, to processes for preparing such compounds and compositions, and to the use of such compounds and compositions for the prevention and treatment of disorders in which beta-secretase is involved, such as Alzheimer's disease (AD), mild cognitive impairment, senility, ia, dementia with Lewy bodies, Down's syndrome, dementia associated with stroke, dementia associated with Parkinson's disease or dementia associated with beta- amyloid.
BACKGROUND OF THE INVENTION Alzheimer's Disease (AD) is a neurodegenerative disease ated with aging.
AD patients suffer from cognition deficits and memory loss as well as behavioral ms such as anXiety. Over 90% of those afflicted with AD have a sporadic form of the er while less than 10% of the cases are familial or hereditary. In the United , about 1 in 10 people at age 65 have AD while at age 85, 1 out of every two individuals are affected with AD. The average life expectancy from the initial diagnosis is 7-10 years, and AD patients require extensive care either in an assisted living facility which is very costly or by family members. With the increasing number of elderly in the population, AD is a g medical concern. Currently ble therapies for AD merely treat the ms of the disease and include acetylcholinesterase inhibitors to improve cognitive properties as well as anXiolytics and antipsychotics to control the behavioral ms associated with this ailment.
The hallmark pathological features in the brain of AD ts are 3O neurofibrillary tangles which are ted by hyperphosphorylation of tau protein and amyloid plaques which form by aggregation of beta-amyloid l-42 (Abeta l-42) peptide. Abeta l-42 forms oligomers and then fibrils, and ultimately amyloid plaques.
The oligomers and fibrils are believed to be ally neurotoxic and may cause most of the neurological damage associated with AD. Agents that prevent the formation of Abeta l-42 have the potential to be disease-modifying agents for the treatment of AD.
Abeta l-42 is generated from the amyloid precursor protein (APP), comprised of 770 amino acids. The N-terminus of Abeta 1-42 is d by beta-secretase (BACE), and then gamma-secretase cleaves the inal end. In addition to Abeta 1-42, gamma- secretase also liberates Abeta 1-40 which is the predominant cleavage product as well as Abeta 1-38 and Abeta 1-43. These Abeta forms can also aggregate to form oligomers and fibrils. Thus, inhibitors of BACE would be expected to prevent the formation of Abeta 1-42 as well as Abeta 1-40, Abeta 1-38 and Abeta 1-43 and would be potential therapeutic agents in the treatment of AD.
SUMMARY OF THE ION The present ion is directed to a compound of Formula (I) R \ N \N RX4 HZN L \ \Ar X1 2¢X3 ‘X or a tautomer or a stereoisomeric form thereof, wherein R1 and R2 are independently selected from the group consisting of hydrogen, halo, cyano, C1-3alkyl, mono- and polyhalo-C1.3alkyl or C3_6cycloalkyl, R3 is selected from the group consisting of en, C1_3alkyl, C3-6cycloalkyl, mono- and polyhalo-C1-3alkyl, homoaryl and heteroaryl, X1, X2, X3, X4 are independently C(R4) or N, provided that no more than two thereof represent N, each R4 is selected from the group ting of hydrogen, halo, C1_3alkyl, mono- and polyhalo-C1-3alkyl, cyano, C1-3alkyloxy, mono- and polyhalo-C1_3alkyloxy, L is a bond or -N(R5)CO-, wherein R5 is hydrogen or C1_3alkyl, Ar is homoaryl or heteroaryl, wherein homoaryl is phenyl or phenyl tuted with one, two or three substituents selected from the group consisting of halo, cyano, C1-3alkyl, C1_3alkyloxy, mono- and polyhalo-C1_3alkyl, mono- and polyhalo-C1_3alkyloxy, heteroaryl is selected from the group consisting of pyridyl, pyrimidyl, pyrazyl, pyridazyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, thiazolyl, azolyl, oxazolyl, and oxadiazolyl, each optionally substituted with one, two or three substituents selected from the group consisting of halo, cyano, C1_3alkyl, C1_3alkyloxy, mono- and lo-C1_3alkyl, mono- and polyhalo-C1_3alkyloxy, or an addition salt or a solvate thereof Illustrative of the invention is a pharmaceutical composition comprising a pharmaceutically acceptable carrier and any of the compounds described above. An illustration of the invention is a ceutical composition made by mixing any of the compounds described above and a pharmaceutically acceptable carrier. Illustrating the invention is a process for making a pharmaceutical composition comprising mixing any of the compounds described above and a pharmaceutically able carrier.
Exemplifying the invention are methods of ng a disorder mediated by the beta-secretase enzyme, comprising stering to a subject in need thereof a therapeutically effective amount of any of the compounds or pharmaceutical compositions described above.
Further exemplifying the invention are methods of inhibiting the beta-secretase enzyme, comprising administering to a subject in need f a therapeutically effective amount of any of the compounds or ceutical compositions described above.
An example of the invention is a method of treating a disorder selected from the group consisting of Alzheimer's disease, mild cognitive impairment, senility, dementia, dementia with Lewy bodies, Down's me, dementia associated with , dementia ated with Parkinson's disease and dementia associated with beta- amyloid, preferably Alzheimer's disease, comprising stering to a subject in need thereof, a therapeutically effective amount of any of the compounds or ceutical compositions described above.
Another example of the invention is any of the compounds described above for use in treating: (a) Alzheimer's Disease, (b) mild cognitive impairment, (c) senility, (d) dementia, (e) dementia with Lewy , (f) Down's me, (g) dementia associated with stroke, (h) dementia associated with Parkinson's disease and (i) dementia associated with beta-amyloid, in a subject in need thereof DETAILED DESCRIPTION OF THE INVENTION The present ion is directed to compounds of formula (I) as defined hereinbefore and pharmaceutically acceptable salts and solvates thereof The 3O compounds of formula (I) are inhibitors of the beta-secretase enzyme (also known as beta-site cleaving enzyme, BACE, BACEl or in 2), and are useful in , Asp2 the treatment of Alzheimer's disease, mild cognitive impairment, senility, dementia, dementia associated with stroke, dementia with Lewy bodies, Down's syndrome, dementia associated with Parkinson's disease and dementia associated with beta- amyloid, preferably Alzheimer's e, mild cognitive impairment or ia, more preferably Alzheimer's disease.
In an embodiment of the t invention, R1 and R2 are independently selected from hydrogen and C1_3alkyl, X1, X2, X3, X4 are independently C(R4) wherein each R4 is selected from en and halo, L is a bond or -N(R5)CO-, wherein R5 is hydrogen; Ar is homoaryl or heteroaryl, wherein homoaryl is phenyl or phenyl substituted with one or two substituents ed from the group consisting of halo, cyano, kyl, C1.3alkyloxy, and polyhalo-C1_3alkyloxy, heteroaryl is selected from the group consisting of pyridyl, pyrimidyl, and pyrazyl, each optionally substituted with one or two substituents selected from the group consisting of halo, cyano, C1-3alkyl, C1-3alkyloxy, and polyhalo-C1_3alkyloxy, or an addition salt or a solvate thereof.
In another embodiment of the present invention, R1 and R2 are hydrogen, X1, X2, X3, X4 are CH, L is a bond or -N(R5)CO-, wherein R5 is hydrogen, Ar is homoaryl or heteroaryl, n homoaryl is phenyl substituted with chloro, heteroaryl is selected from the group consisting of pyridyl and pyrimidyl, each 2O optionally substituted with one or two substituents selected from the group ting of chloro, fluoro, cyano, methyl, and methoxy, or an addition salt or a solvate thereof.
In another embodiment, the carbon atom tuted with R3 has the R- configuration.
DEFINITIONS “Halo” shall denote fluoro, chloro and bromo, lkyl” shall denote a straight or branched saturated alkyl group having 1, 2 or 3 carbon atoms, e. g. methyl, ethyl, l-propyl and 2-propyl, “C1_3alkyloxy” shall denote an ether radical n C1-3alkyl is as defined before, “mono- and polyhaloC1.3alkyl” shall denote C1-3alkyl as defined 3O before, tuted with l, 2 3 or where possible with more halo atoms as defined before, “mono- and polyhaloC1-3alkyloxy” shall denote an ether radical wherein mono- and polyhaloC1-3alkyl is as defined before, ycloalkyl” shall denote cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl, “C3-6cycloalkanediyl” shall denote a bivalent radical such as cyclopropanediyl, cyclobutanediyl, cyclopentanediyl and cyclohexanediyl.
The term "subject" as used , refers to an animal, preferably a mammal, most preferably a human, who is or has been the object of treatment, observation or experiment.
The term "therapeutically effective amount" as used herein, means that amount of active compound or pharmaceutical agent that elicits the biological or medicinal se in a tissue , animal or human that is being sought by a researcher, veterinarian, medical doctor or other clinician, which es alleviation of the symptoms of the disease or disorder being treated.
As used herein, the term sition" is intended to encompass a product sing the specified ingredients in the specified s, as well as any product which results, ly or indirectly, from combinations of the specified ingredients in the specified amounts.
Hereinbefore and hereinafter, the term “compound of a (1)” is meant to include the on salts, the solvates and the stereoisomers thereof.
The terms “stereoisomers” or “stereochemically isomeric forms” hereinbefore or hereinafter are used interchangeably.
The invention includes all stereoisomers of the compound of Formula (I) either as a pure stereoisomer or as a mixture of two or more stereoisomers.
Enantiomers are stereoisomers that are non-superimposable mirror images of each other. A 1:1 mixture of a pair of enantiomers is a te or racemic mixture.
Diastereomers (or diastereoisomers) are stereoisomers that are not enantiomers, i.e. they are not related as mirror images. If a compound ns a double bond, the substituents may be in the E or the Z configuration. If a compound contains a disubstituted cycloalkyl group, the substituents may be in the cis or trans configuration.
Therefore, the invention includes enantiomers, diastereomers, racemates, E isomers, Z isomers, cis isomers, trans isomers and mixtures thereof The absolute configuration is specified ing to the Cahn-Ingold-Prelog system. The configuration at an asymmetric atom is specified by either R or S.
Resolved nds whose absolute configuration is not known can be designated by (+) or (-) depending on the direction in which they rotate plane polarized light.
When a specific stereoisomer is identified, this means that said isomer is substantially free, i.e. associated with less than 50%, preferably less than 20%, more preferably less than 10%, even more preferably less than 5%, in particular less than 2% and most preferably less than 1%, of the other isomers. Thus, when a compound of formula (I) is for instance specified as (R), this means that the compound is substantially free of the (S) isomer, when a compound of formula (I) is for instance specified as E, this means that the compound is substantially free of the Z isomer, when a compound of formula (I) is for instance specified as cis, this means that the compound is substantially free of the trans isomer.
The compounds ula (I) co-exist in a dynamic brium with the tautomers of Formula (I-l).
R2 R2 \ ~l\{ R1 \ N R1 \ N R3 ‘— X L X L H2N Nj<f \ HN ”kw3R Y W 1 3 1 3 X\X2-.X X\x2“X (I) (H) rmore, some of the crystalline forms for the nds of the present invention may exist as polymorphs and as such are intended to be included in the present invention. In addition, some of the compounds of the t invention may form solvates with water (i.e., es) or common organic solvents, and such solvates are also intended to be encompassed within the scope of this invention.
For use in medicine, the salts of the compounds of this invention refer to non- toxic "pharmaceutically able salts". Other salts may, however, be useful in the preparation of compounds according to this invention or of their pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds include acid addition salts which may, for example, be formed by mixing a solution of the compound with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, sulfuric acid, fumaric acid, maleic acid, ic acid, acetic acid, benzoic acid, citric acid, ic acid, carbonic acid or phosphoric acid. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include alkali metal salts, e.g., sodium or potassium salts, alkaline earth metal salts, e.g., calcium or magnesium salts, and salts formed with suitable organic ligands, e.g., quaternary ammonium salts.
Representative acids which may be used in the preparation of pharmaceutically acceptable salts include, but are not limited to, the following: acetic acid, 2,2-dichloroacetic acid, ed amino acids, adipic acid, alginic acid, ascorbic acid, rtic acid, benzenesulfonic acid, benzoic acid, 4- idobenzoic acid, (+)-camphoric acid, camphorsulfonic acid, capric acid, caproic acid, caprylic acid, cinnamic acid, citric acid, cyclamic acid, ethane-1,2-disulfonic acid, ethanesulfonic acid, 2-hydroxy-ethanesulfonic acid, formic acid, fumaric acid, galactaric acid, gentisic acid, glucoheptonic acid, D-gluconic acid, D-glucoronic acid, L-glutamic acid, beta- oxo-glutaric acid, glycolic acid, hippuric acid, hydrobromic acid, hydrochloric acid, (+)-L-lactic acid, (::)-DL-lactic acid, lactobionic acid, maleic acid, (-)—L-malic acid, malonic acid, (::)-DL-mandelic acid, methanesulfonic acid, naphthalenesulfonic acid, naphthalene-1,5- disulfonic acid, l-hydroxynaphthoic acid, nic acid, nitric acid, oleic acid, orotic acid, oxalic acid, palmitic acid, pamoic acid, phosphoric acid, L- pyroglutamic acid, salicylic acid, 4-amino-salicylic acid, c acid, c acid, succinic acid, sulfuric acid, tannic acid, (+)-L-tartaric acid, thiocyanic acid, p-toluenesulfonic acid, trifluoromethylsulfonic acid, and undecylenic acid.
Representative bases which may be used in the ation of pharmaceutically acceptable salts include, but are not limited to, the following: ammonia, L-arginine, benethamine, benzathine, calcium hydroxide, choline, dimethylethanolamine, diethanolamine, diethylamine, 2-(diethylamino)-ethanol, ethanolamine, ethylenediamine , N—methyl-glucamine, hydrabamine, lH-imidazole, L-lysine, magnesium ide, 4-(2-hydroxyethyl)-morpholine, piperazine, potassium hydroxide, l-(2-hydroxyethyl)-pyrrolidine, secondary amine, sodium hydroxide, triethanolamine, tromethamine and zinc hydroxide.
The chemical names of the compounds of the present invention were generated according to the nomenclature rules agreed upon by the Chemical Abstracts Service.
Some of the nds according to formula (I) may also exist in their tautomeric form. Such forms although not explicitly indicated in the above formula are intended to be ed within the scope of the present invention.
A. Preparation of the final compounds Experimental procedure 1 The final nds according to Formula (I), can be prepared by ng an intermediate compound of Formula (II) with an appropriate source of a such as, for e, ammonium chloride or aqueous ammonia, according to reaction scheme (1), a reaction that is performed in a suitable reaction-inert solvent, such as, for example, water or methanol, under thermal conditions such as, for example, heating the reaction e at 60 to 90 °C, for example for 4 to 100 hours. In reaction scheme (1), all variables are defined as in Formula (1).
R1 \ N R1 \ N R3 "ammonia source" R3 s N X4 L\ HZN \N X4 L\ H Ar I Y I 1 3 X \XZX (ll) Reaction Scheme 1 WO 17027 Experimental procedure 2 The final nds according to Formula (I-a) wherein L is -N(R5)CO-, can be prepared by reacting an intermediate compound of a (III-a) with an intermediate of Formula (IV) according to reaction scheme (2), a reaction that is performed in a suitable reaction-inert solvent, such as, for example, N,N—dimethyl- formamide, in the presence of a suitable base, such as, for example, K3PO4, a copper catalyst such as, for example, CuI and a diamine such as for example (lR,2R)-(-)-l,2- diaminocyclohexane, under thermal conditions such as, for example, g the reaction mixture at 180 °C, for example for 135 min under microwave irradiation. In reaction scheme (2), all variables are defined as in Formula (I) and W is halo.
R2 R2 ‘N H —l\{ R1 \ N R5/NTAr R1 \ N (N) O \ 1:536 \ 1:536 N w N E5 HZN Ar HZN 1| \\(3 \\|/3 X xx x1 xx \[Or (Ill-a) \xz (l-a) \XZ Reaction Scheme 2 Experimental procedure 3 Additionally, the final compounds according to Formula (I-a), can be prepared by reacting an intermediate compound of a ) with an intermediate of Formula (V) according to reaction scheme (3), a reaction that is performed in a suitable reaction-inert t, such as, for example, dichloromethane or methanol, optionally in the presence of a suitable base, such as, for example, N,N—diisopropylethylamine, in the presence of a condensation agent such as for example O-(7-azabenzotriazol-l-yl)- N,N,N’,N’-tetramethyluronium hexafiuorophosphate or 4-(4,6-dimethoxy-1,3,5-triazin- 2-yl)methylmorpholinium chloride ], under thermal conditions such as, for e, heating the reaction mixture at 25 °C, for example for 2 hours. In on scheme (3), all variables are defined as in Formula (I).
—N —N \ HO Ar \ \ N \[f R1 \ N (V) o '3 \ R34 YNHR HZN N X\ 1' N\n/Ar X\ 22X 0 (IIIb) ”X (I-a) X Reaction Scheme 3 Experimental procedure 4 Additionally, the final compounds according to Formula (I-a), can be ed by reacting an intermediate compound of Formula ) with an intermediate of Formula (VI) according to reaction scheme (4), a reaction that is performed in a suitable reaction-inert solvent, such as, for e, dichloromethane, in the presence of a suitable base, such as, for example, pyridine, under thermal conditions such as, for example, heating the on mixture at 25 °C, for example for 2 hours. In reaction scheme (4), all les are defined as in Formula (I) and Y is halo j?\ \ (Vl) NHR5 \n/Ar (lll-b) \Zx' (l-a) 15(sz Reaction Scheme 4 Experimental procedure 5 The final compounds according to a (I-b) wherein L is a bond, can be prepared by reacting an intermediate compound of Formula (III-a) with an intermediate of Formula (VII) ing to reaction scheme (5), a reaction that is performed in a suitable reaction-inert solvent, such as, for example, mixtures of inert solvents such as, 2O for example, l,4-dioxane/ethanol, in the presence of a suitable base, such as, for example, K2CO3, a Pd-complex catalyst such as, for e, tetrakis (triphenylphosphine)palladium (0) under thermal conditions such as, for example, heating the reaction mixture at 80 °C, for example for 20 hours or for example, heating the reaction mixture at 150 °C, for 10 min to 30 min under microwave irradiation. In reaction scheme (5), all variables are defined as in Formula (I) and W is halo. R6 and R7 may be hydrogen or alkyl, or may be taken er to form for example a bivalent radical Of formula —CH2CH2-, 2CH2-, Of-C(CH3)2C(CH3)2-. _ 10 _ R2 R2 —N ,O-R“ —N R1 \ N Ar—B\O’R7 R1 \ N \ 4 (V ) \ 4 H N N X W Ar 2 \\|/3 H N N X 1| 1| Y3 X '.X X :X (Ill-a) \xz (l-b) \XZ Reaction Scheme 5 Experimental procedure 6 The final compounds ing to a (I-c) wherein R1 is hydrogen, can be prepared from the corresponding final compounds of Formula (I-d) wherein R1 is selected from the group consisting of chlorine, bromine and iodine, following art- known reduction procedures according to reaction scheme (6). For e, said reduction may be carried out by stirring the reactants under a hydrogen atmosphere and in the presence of an appropriate catalyst such as, for example, palladium-on-charcoal, platinum-on-charcoal, Raney-nickel and the like catalysts. Suitable solvents are, for example, water, alkanols, e. g. methanol, ethanol and the like, esters, e. g. ethyl acetate and the like. In order to enhance the rate of said ion reaction it may be advantageous to elevate the temperature and/or the pressure of the reaction mixture.
Undesired further enation of certain functional groups in the reactants and the reaction products may be prevented by the on of a catalyst poison such as, for e, thiophene and the like, to the reaction mixture. In reaction scheme (6), all variables are defined as in Formula (I).
R2 R2 ‘N. ~N\ R1 \ N \ N "reduction" R3 \ 3:534 —> \ 4 H2N N X L\ H2N N X L\ 1| \\(3 Ar 1| \\(3 Ar X\sz X\XZX (I-d) (l-c) W A number of intermediates and starting materials in the foregoing preparations are known nds which may be prepared ing to art-known methodologies of preparing said or similar compounds and some intermediates are new. A number of such preparation methods will be described hereinafter in more detail.
B. Preparation of the intermediate compounds Experimental procedure 7 The intermediates according to a (II) can be prepared by reacting an intermediate compound of Formula (VIII) with a suitable sulphur donating reagent for the synthesis of thioamides such as, for example, phosphorous pentasulflde or 2,4-bis- (4-methoxyphenyl)—l,3-dithia-2,4-diphosphetane 2,4-disulf1de [Lawesson’s reagent] according to reaction scheme (7), a reaction that is performed in a reaction inert t, such as for example, tetrahydrofuran or toluene, in the presence of a suitable base such as, for example, pyridine, under thermal conditions such as, for example, heating the reaction mixture at 100 °C, for example for 5 hours. In reaction scheme (7), all variables are defined as in Formula (I).
R2 R2 —N ~N R1 \ N R1 \ N "th10nat10n". .
R3 R3 O M X4 L X4 L\ 8 I \\(3 \Ar M Ar X1\ Z—X X1\ 22X3 (VIII) X (H) X Reaction Scheme 7 mental ure 8 The intermediates according to a (VIII-a) wherein L is a bond, can be ed by reacting an intermediate nd of Formula (IX-a) with an intermediate of Formula (VII) according to reaction scheme (8), a on that is performed in a suitable mixture of inert solvents such as, for example, l,4-dioxane/water, in the presence of a le base, such as, for example, aqueous Na2C03, a Pd-complex catalyst such as, for example, tetrakis(triphenylphosphine)palladium (0) under thermal conditions such as, for example, heating the reaction mixture at 80 °C, for example for hours or for example, heating the reaction mixture at 150 °C, for example for 15 to min under microwave irradiation. In reaction scheme (8), all variables are defined as in Formula (I) and W is halo. R6 and R7 may be hydrogen or alkyl, or may be taken together to form for example a bivalent radical of formula 2-, -CH2CH2CH2-, or -C(CH3)2C(CH3)2-.
WO 17027 R2 R2 —N ,O-R“ —N R1 \ N Ar—B\ ’R7 R1 \ N Mk; 0 (VII) 0 W —> o Ar H 1' \\(3 HNE;1' Y3 X\ 29X X 2X (IX-a) X (VIII-a) x Reaction Scheme 8 mental procedure 9 The ediates according to Formula (III-b) can be prepared from the corresponding intermediate compounds of Formula (III-a) following own Buchwald-Hartwig type coupling procedures according to reaction scheme (9). Said coupling may be conducted by treatment of intermediate nds of Formula (III-a) with an intermediate of Formula (X) in a suitable reaction-inert solvent, such as, for example, ethanol or mixtures of inert solvents such as, l,2-dimethoxyethane/water/ ethanol, in the presence of a suitable base, such as, for example, aqueous K3PO4 or , a plex catalyst such as, for example, [1,1’-bis(diphenylphosphino) ferrocene]-dichloropalladium(II) or trans-bis(dicyclohexylamine) palladium diacetate [DAPCy] under thermal conditions such as, for example, g the on mixture at 80 0C, for example for 20 hours or for example, heating the reaction mixture at 130 °C, for example for 10 min under microwave irradiation. In reaction scheme (9), all variables are defined as in Formula (I) and W is halo. R5 is en or C1_3alkyl.
Alternatively, when R5 is en, intermediates of Formula (III-b) can be obtained as well following a two-step synthesis. First, a Buchwald-Hartwig type coupling can be 2O performed, under the conditions known to the person skilled in the art, between intermediate (III-a) and a stable imine such as benzophenone imine. In the second step, intermediate (III-b) can be obtained as a primary amine by treating the coupled product, dissolved in a suitable solvent, such as isopropanol, with an acid, such as for example hydrochloric acid, under thermal conditions such as, for example, heating the reaction mixture at 25 0C, for example for 2 hours.
R2 R2 ‘N HZNR5 ‘N R1 \ N R1 \ N HN \Nji/Ri“ w \Njifi“ NHR5 2 H2N X\ 22X X\ 21X (Ill-a) X (Ill-b) X Reaction Scheme 9 Experimental procedure 10 Additionally, the intermediates according to Formula (III-b) wherein R5 is hydrogen can be prepared from the corresponding intermediates of Formula ) following art-known nitro-to-amino reduction procedures according to on scheme (10). For example, said reduction may conveniently be conducted in presence of an appropriate reducing agent such as tin chloride, zinc or iron, in a suitable inert t such as ethanol or mixtures ethanol/acetic acid or methanol/ammonium chloride aqueous solution, under suitable on conditions, such as at a convenient temperature, lly ranging between 70 °C and 110 °C, for a period of time to ensure the completion of the reaction. The person skilled in the art would appreciate that in the case of R1 and/or R2 in intermediate (III-c) being a halogen selected from the group of chlorine, bromine and iodine, and undesired in the final compound, under the above described conditions also an oxidative addition-protonation process may occur, to afford ediate (III-b), where R1 and/or R2 is hydrogen. Alternatively, said reduction may be carried out by stirring the reactants under a hydrogen atmosphere and in the presence of an appropriate catalyst such as, for example, palladium-on-charcoal, platinum-on-charcoal, Raney-nickel and the like catalysts. Suitable solvents are, for example, water, alkanols, e. g. methanol, ethanol and the like, esters, e. g. ethyl acetate and the like. In order to enhance the rate of said reduction reaction it may be advantageous to elevate the temperature and/or the pressure of the on mixture. red r hydrogenation of certain filnctional groups in the nts and the reaction products may be prevented by the on of a catalyst poison such as, for e, thiophene and the like, to the reaction mixture. In reaction scheme (10), all variablesare defined as in Formula (I). a a"nitrotoaminoreduction" ”X x2 (III-c) (|||-b) Reaction Scheme 10 Experimental procedure 11 The compounds ofFormula (III-a) and (III-c) can generally be prepared ing the reaction steps shown in the reaction schemes (1 l) and (12) below.
(XIII-a) R = Alkyl (XIII-c) R = H R1 \ N PGHN IXYNOZ X1\ X3 Reaction Scheme 11 A: Thioamide-to-amidine conversion B: Amide-to-thioamide conversion (thionation) C: Cyclization D: Removing any N—protecting groups E: Metalation The amidine derivatives in the above reaction scheme (1 1) may be conveniently prepared from the corresponding thioamide derivatives following art-known thioamide- to-amidine conversion ures (reaction step A). Said conversion may conveniently be conducted by treatment of the said thioamides with an ammonia source such as, for example, ammonium chloride or aqueous ammonia, in a suitable reaction-inert solvent such as, for e, water or ol and the like, under thermal conditions such as, for example, heating the reaction e at 60 to 90 0C, for example for 6 to 100 hours.
The thioamide derivatives in the above reaction scheme (1 1) can be ed from amide derivatives ing art-known tion procedures (reaction step B).
Said conversion may conveniently be conducted by treatment of the said amides with a thionation agent such as, for example, orous pentasulf1de or 2,4-bis-(4-methoxy- phenyl)-l,3-dithia-2,4-diphosphetane 2,4-disulf1de [Lawesson’s reagent], under neat conditions or in a reaction inert solvent such as, for example, tetrahydrofuran or 1,4- dioxane and the like, optionally in the presence of a suitable base like pyridine under thermal conditions such as, for e, heating the reaction mixture at 50 to 100 °C, for example for 24 hours.
The amide derivatives of Formula (IX-a) and (IX-c) in the above reaction scheme (1 1) can be prepared from the corresponding intermediate nds of Formula (XII-a) and (XII-c) following art-known cyclization procedures (reaction step C). Said cyclization may conveniently be conducted by treatment of ediate compounds ofFormula ) and ) with a suitable base, such as potassium acetate, in a suitable reaction solvent, such as for example ethanol and the like, at 70 °C to 100 °C, for a period of time to ensure the completion of the reaction.
The intermediates of Formula (IX-a), wherein R2 is hydrogen, can be prepared from an intermediate of Formula (IX-a-l), n R2 is nitro, by reduction of the nitro 3O to the amino group, followed by a diazotization-deamination reaction.
The intermediates of Formula (IX-a), wherein R2 is difluoromethyl, can be prepared from an intermediate of Formula (IX-a-2), wherein R2 is alkoxycarbonyl, by conversion of the ester group into an aldehyde by one of the several methods known to the person skilled in the art, followed by reaction of the aldehyde group with DAST.
The intermediate compounds of Formula (XII-a) and (XII-c) in the above reaction scheme (1 1) can be prepared from the ponding intermediate compounds _ 16 _ of Formula (XIII-a) and (XIII-c) by removal of the ting group being carried out according to processes known to the person skilled in the art ion step D).
The intermediate compound of Formula (XIII-c) in the above reaction scheme (1 1) can be prepared from the corresponding intermediate nds of Formula (XIV-c) following art-known metalation ures (reaction step E). Said metalation may conveniently be conducted by treatment of intermediate compounds of Formula (XIV-c) with a suitable base, such as lithium diisopropylamide, and a suitable electrophile such as dry ice or ethyl chloroformate, in a suitable reaction solvent, such as for example tetrahydrofuran, at -80 °C to 0 °C, for a period of time to ensure the completion of the reaction.
R2 R2 / R1 \ N R020 4 PGHN 1| XYNOZ X X3 \X22 (XIII-a)X2R= Alkyl (XIV-c) R2 R2 R \‘Nile F R1/6N\ NH F ROZC (XV-a) (XV-c) R=Alky| d’SW936:? w O: NO \Y, (57W(936:?\Y 2 1' 1' 1x 3X Z \Xz \XZ (XVI-a) (XVI-c) 'G G CW4 CW4 . X w . X No2 O/IS\N I Y O/IS\N I Y \1 X1 2X3 \ 1 X1 2x3) Z \Xz Z \XZ (XVII-a) (XVII-c) H H HO HO R3 4 R3 4 X w X NO2 HI}! I Y HN Y 21 X1\ 23X3 21 X1: 22X3 X X (XVIII-a) (XVIII-c) Reaction Scheme 12 F: tion G: Oxathiazolidine oxidation H: Oxathiazolidine formation The intermediates ing to Formula (XIII-a) and (XIV-c) in the above reaction scheme (12) can be prepared from the corresponding intermediate compounds of Formula (XVI-a) and ), wherein Z1 is a protecting group of amines such as, for example, the lerl—butoxycarbonyl group, following art-known alkylation procedures (reaction step F). Said alkylation may conveniently be ted by treatment of (XV-a) and (XV-c) respectively with the corresponding intermediate compounds of a (XVI-a) and (XVI-c) with a suitable base such as, for example, sodium carbonate or cesium ate, in a suitable inert solvent such as, for example, N,N—dimethyl formamide or dimethoxysulfoxide, at low ature such as, for example, 0 °C for 30 min and then at a moderately high temperature such as, for e, 100 °C for 24 hours to 100 hours or for example, heating the reaction mixture at 130 °C, for example for 30 min to 45 min under microwave irradiation.
The intermediates according to Formula (XVI-a) and (XVI-c) in the above reaction scheme (12) can be prepared by reacting the intermediate nds of Formula a) and (XVII-c) following art-known ion procedures (reaction step G). Said oxidation may conveniently be conducted by treatment of the corresponding intermediate compounds of Formula (XVII-a) and c) with an oxidant agent such as, for e, sodium periodate in a suitable inert solvent such as, for example, acetonitrile/water, in the presence of ruthenium (III) chloride at a moderately high ature such as, for example, 25 °C, for example for 2 hours.
The intermediates according to Formula (XVII-a) and (XVII-c) in the above reaction scheme (12) can be prepared by reacting the intermediate compounds of Formula (XVIII-a) and (XVIII-c) following art-known sulfamidate formation 2O procedures (reaction step H). Said transformation may conveniently be conducted by treatment of the corresponding intermediate compounds of Formula (XVIII-a) and (XVIII-c) with thionyl chloride in the presence of a base such as, for example, ne, in a suitable reaction-inert solvent, such as, for example, acetonitrile, at low temperature such as, for example, -40 °C, for example for 30 min and then at a moderately high temperature such as, for example, 25 °C, for example for 24 to 72 hours.
The intermediates compounds of Formula -a) and (XVIII-c), wherein Z1 is a protecting group of amines such as, for example, the ZerZ-butoxycarbonyl group, can lly be prepared following art-known Strecker type procedures described in 3O literature.
PHARMACOLOGY The compounds of the present invention and the pharmaceutically acceptable compositions f inhibit BACE and therefore may be useful in the treatment or tion of Alzheimer’s Disease (AD), mild cognitive impairment (MCI), senility, dementia, dementia with Lewy bodies, cerebral amyloid angiopathy, multi-infarct 2012/053455 ia, Down’s syndrome, dementia associated with Parkinson’s disease and dementia associated with beta-amyloid.
The invention relates to a nd according to the general Formula (I), a stereoisomeric form thereof or a pharmaceutically acceptable acid or base addition salt or a solvate thereof, for use as a medicament.
The invention also relates to a compound ing to the general Formula (I), a stereoisomeric form thereof or a the pharmaceutically acceptable acid or base addition salt or a solvate thereof, for use in the treatment or prevention of diseases or conditions selected from the group consisting of AD, MCI, senility, dementia, dementia with Lewy bodies, cerebral amyloid angiopathy, multi-infarct dementia, Down's syndrome, ia associated with Parkinson's disease and dementia associated with beta-amyloid.
The invention also relates to the use of a compound according to the general Formula (I), a stereoisomeric form thereof or a pharmaceutically acceptable acid or base addition salt or a solvate thereof, for the manufacture of a medicament for the treatment or prevention of any one of the e conditions mentioned before.
In view of the utility of the nd of Formula (I), there is ed a method of treating warm-blooded animals, including humans, suffering from or a method of preventing warm-blooded animals, including humans, to suffer from any one of the diseases mentioned hereinbefore.
Said methods comprise the stration, i.e. the systemic or l administration, preferably oral administration, of an ive amount of a compound of Formula (I), a stereoisomeric form thereof, a pharmaceutically acceptable addition salt or solvate thereof, to a warm-blooded animal, including a human.
A method of treatment may also include administering the active ingredient on a regimen of between one and four intakes per day. In these methods of treatment the compounds according to the invention are preferably formulated prior to stration. As described herein below, suitable pharmaceutical formulations are prepared by known procedures using well known and readily available ingredients. 3O The compounds of the present invention, that can be suitable to treat or prevent Alzheimer's disease or the symptoms thereof, may be administered alone or in ation with one or more additional therapeutic agents. Combination therapy includes administration of a single pharmaceutical dosage formulation which contains a compound of Formula (I) and one or more additional therapeutic agents, as well as stration of the nd of Formula (I) and each additional therapeutic agents in its own separate pharmaceutical dosage formulation. For example, a compound of Formula (I) and a therapeutic agent may be administered to the t together in a single oral dosage composition such as a tablet or capsule, or each agent may be administered in separate oral dosage formulations.
PHARMACEUTICAL COMPOSITIONS The present invention also provides compositions for preventing or treating diseases in which inhibition of beta-secretase is beneficial, such as mer's disease (AD), mild cognitive impairment, senility, dementia, dementia with Lewy bodies, Down's syndrome, dementia ated with stroke, dementia associated with Parkinson's disease and dementia ated with beta-amyloid. Said compositions comprising a therapeutically effective amount of a compound according to formula (I) and a pharmaceutically acceptable carrier or diluent.
While it is possible for the active ingredient to be administered alone, it is preferable to present it as a pharmaceutical composition. Accordingly, the present invention further provides a pharmaceutical composition comprising a nd according to the present invention, together with a pharmaceutically acceptable carrier or diluent. The carrier or diluent must be “acceptable” in the sense of being compatible with the other ingredients of the composition and not deleterious to the recipients The pharmaceutical compositions of this invention may be prepared by any methods well known in the art of pharmacy. A therapeutically effective amount of the particular compound, in base form or on salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically able carrier, which may take a wide variety of forms depending on the form of preparation d for administration. These pharmaceutical compositions are desirably in unitary dosage form suitable, ably, for systemic administration such as oral, aneous or parenteral stration, or topical administration such as via tion, a nose spray, eye drops or via a cream, gel, shampoo or the like. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media may be employed, such as, for e, water, glycols, oils, alcohols and the like in the case of oral liquid ations such as sions, syrups, elixirs and solutions: or solid 3O carriers such as starches, sugars, kaolin, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of their ease in administration, tablets and capsules represent the most advantageous oral dosage unit form, in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will y comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included.
Injectable solutions, for example, may be prepared in which the carrier comprises saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case riate liquid carriers, suspending agents and the like may be employed. In the compositions suitable for percutaneous administration, the carrier optionally ses a penetration enhancing agent and/or a suitable wettable agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not cause any significant deleterious effects on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired itions. These compositions may be administered in various ways, e.g., as a transdermal patch, as a spot-on or as an ointment.
It is ally advantageous to formulate the aforementioned pharmaceutical compositions in dosage unit form for ease of administration and mity of dosage.
Dosage unit form as used in the ication and claims herein refers to ally discrete units suitable as unitary dosages, each unit containing a predetermined ty of active ient calculated to produce the desired therapeutic effect in association with the required pharmaceutical carrier. Examples of such dosage unit forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, injectable solutions or suspensions, teaspoonfuls, tablespoonfuls and the like, and segregated multiples thereof The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight, sex, extent of disorder and general physical condition of the particular patient as well as other tion the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the tion of the ian prescribing the compounds of the instant invention.
Depending on the mode of administration, the pharmaceutical composition will comprise from 0.05 to 99% by weight, ably from 0.1 to 70% by weight, more preferably from 0.1 to 50% by weight of the active ingredient, and, from 1 to 99.95% by weight, preferably from 30 to 99.9% by weight, more preferably from 50 to 99.9% by weight of a ceutically acceptable r, all percentages being based on the total weight of the composition.
The present compounds can be used for systemic stration such as oral, percutaneous or parenteral administration, or topical administration such as via inhalation, a nose spray, eye drops or via a cream, gel, shampoo or the like. The compounds are preferably orally administered. The exact dosage and frequency of administration depends on the particular nd according to formula (I) used, the particular condition being treated, the severity of the condition being treated, the age, weight, sex, extent of disorder and general physical condition of the ular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. rmore, it is t that said effective daily amount may be lowered or sed ing on the response of the treated subject and/or depending on the evaluation of the physician prescribing the compounds of the instant invention.
The amount of a compound of Formula (I) that can be combined with a carrier material to produce a single dosage form will vary depending upon the disease treated, the mammalian species, and the ular mode of administration. However, as a general guide, suitable unit doses for the compounds of the present invention can, for example, preferably contain between 0.1 mg to about 1000 mg of the active compound.
A preferred unit dose is between 1 mg to about 500 mg. A more preferred unit dose is between 1 mg to about 300mg. Even more preferred unit dose is between 1 mg to about 100 mg. Such unit doses can be administered more than once a day, for example, 2, 3, 4, 5 or 6 times a day, but preferably 1 or 2 times per day, so that the total dosage for a 70 kg adult is in the range of 0.001 to about 15 mg per kg weight of subject per administration. A preferred dosage is 0.01 to about 1.5 mg per kg weight of subject per administration, and such y can extend for a number of weeks or months, and in some cases, years. It will be understood, however, that the specific dose level for any particular t will depend on a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex and diet of the dual being treated, the time and route of administration, the rate of excretion, other drugs that have previously been administered, and the severity of the particular disease undergoing therapy, as is well understood by those of skill in the area.
It can be necessary to use dosages outside these ranges in some cases as will be apparent to those skilled in the art. Further, it is noted that the clinician or treating physician will know how and when to start, upt, adjust, or terminate therapy in conjunction with individual t response.
The following examples are intended to illustrate but not to limit the scope of the present invention.
Experimental Part Hereinafter, the term “AcOH” means acetic acid, “HCl” means hloric acid, “AcOEt” means ethylacetate, “DCM” means dichloromethane, “DIPE” means diisopropylether, “DMF” means N,N—dimethylformamide, “C02” means carbon dioxide, “DMSO” means ylsulfoxide, “Eth” means diethylether, “Et3N” means triethylamine, “EtOH” means ethanol, “iPrOH” means isopropanol, “iPrNHf‘ means isopropylamine, “MeCN” means acetonitrile, “MeOH” means methanol, “NaOH” means sodium ide, ” means ammonium chloride, “NH3” means ammonia, “NaHCOg” means sodium bicarbonate, “NaHSO4” means sodium hydrogenosulfate, “N212CO3” means sodium carbonate, “NaZSO4” means sodium sulphate, “H2804” means sulphuric acid, “MgSO4” means magnesium sulphate, “CuI” means copper iodide, “TFA” means trifuoromethansulfonic acid, “R1102” means ruthenium oxide, “DAST” means diethylaminosulfur trifluoride, “DBU” means l,8-diazabicyclo[5.4.0]undecene, “N2” means nitrogen, “C02” means carbon dioxide, “aq.” means aqueous, “min” means minutes, “mp.” means melting point, “rac” means racemic, “Rt” means retention times, “THF” means tetrahydrofuran, “SFC” means supercritical fluid chromatography.
Microwave assisted reactions were performed in a single-mode reactor: M Optimizer microwave reactor (Personal Chemistry A.B., currently Biotage).
Hydrogenation reactions were performed in a continuous flow hydrogenator H-CUBE® from ThalesNano Nanotechnology Inc.
Thin layer chromatography (TLC) was carried out on silica gel 60 F254 plates ) using t grade solvents. Open column chromatography was performed on silica gel, particle size 60 A, mesh = 23 0-400 (Merck) under standard techniques. Flash column chromatography was performed using ready-to-connect cartridges from Merck, on irregular silica gel, particle size 15-40 um (normal layer disposable flash s) on an SPOT or LAFLASH system from Armen Instrument.
Optical rotations were ed on a Perkin-Elmer 341 polarimeter with a sodium lamp and reported as follows: [oc]° (7», c g/ 100ml, solvent, T°C).
Flow reactions were performed in a commercially ble Vapourtec R2+R4 modular device.
For key intermediates, as well as some final compounds, the absolute ration of chiral centers (indicated as R and/or 5) were established via comparison with samples of known configuration, or the use of ical techniques 3O le for the determination of te configuration, such as VCD (vibrational cicular dichroism) or X—ray crystallography. When the absolute ration at a chiral center is unknown, it is arbitrarily designated R*.
A. Preparation of the intermediates Example Al Preparation of intermediate A1: racamino(3-bromo-phenyl)-propionitrile Trimethylsilylcyanide (20 g, 200 mmol) was added to a stirred solution of 3-bromoacetophenone (20 g, 100 mmol) and NH4Cl (11 g, 200 mmol) in NH3/Me0H (400 mL).
The mixture was stirred at room temperature for 4 days. The solvent was evaporated in vacuo and the residue was taken up in AcOEt (100 mL). The solid was d off and the filtrate was evaporated in vacuo to yield intermediate A1 (20 g, 86% yield), that was used in the next step without further purification.
Example A2 Preparation of intermediate A2: racamino(3 -bromo-phenyl)-propionic acid methyl ester \\ O/ BoxH2N ediate A1 (20 g, 88.9 mmol) was dissolved in HCl/MeOH (500 mL). The mixture was refluxed for 4 days. After cooling to room temperature, AcOEt (100 mL) and H20 (100 mL) were added and the mixture was extracted with AcOEt (2 x 100 mL). The combined aqueous layers were basified with an NH3 solution to pH = 8 and extracted with AcOEt (5 x 100 mL). The combined organic layers were dried (Na2S04), filtered and the solvents evaporated in vacuo to yield intermediate A2 (10.6 g, 46% yield) as an oil. LCMS: 258 [M+H]+; R: 3.77 min (method 7).
The ing intermediate was prepared according to the synthetic procedures bed in examples Al - A2: Example A3 Preparation of intermediate A3: racamino(3-nitro-phenyl)-propionic acid methyl ester 0 / [\lll+ 2 O From amino(3 -nitro-phenyl)-propionitrile. Flash column chromatography (silica gel; AcOEt/petroleum ether) to yield intermediate 3 (63%). LCMS: 225 [M+H]+; R: 0.98 min (method 9). _ 25 _ Example A4 Preparation of intermediate A4: racamino(3 -bromo-phenyl)-propanol Lithium aluminium hydride (1 M in THF; 22 mL, 22 mmol) was added dropwise to a stirred solution of intermediate A2 (7.5 g, 29.1 mmol) in THF (200 mL) at -15 °C. The mixture was left g up slowly to 0 °C during 1 hour. More THF (150 mL) was added and a saturated solution ofNaZSO4 was added se until no more hydrogen was formed. ous NaZSO4 was added and left stirring overnight at room temperature. The mixture was filtered over diatomaceous earth, washed with THF and the solvent evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel; 7 M solution of1\H3 in MeOH/DCM). The desired ons were collected and the solvents evaporated in vacuo to yield intermediate A4 (5.70 g, 85% yield) as an oil. LCMS: 230 [M--H]+; R: 0.69 min (method 1).
Example A5 Preparation of intermediate A5: amino(3-nitro-phenyl)-propanol 9- H2N Sodium dride (16.3 g, 429.4 mmol) was added nwise to a stirred solution of intermediate A3 (48.3 g, 214.7 mmol) in MeOH (500 mL). The mixture was stirred at room temperature for 10 hours. The solvent was evaporated in vacuo. The residue was basified with a saturated aqueous solution ofNaHC03 to pH = 9 and extracted with AcOEt (3 x 200 mL). The organic layers were dried (NaZSO4), filtered and the solvents evaporated in vacuo to yield intermediate A5 (30.26 g, 72% yield). LCMS: 197 [M+H]+; R: 3.16 min (method 8); mp. 238.7-241.6 °C (WRS-2A).
Example A6 Preparation of intermediate A6: (R)amino(3 -bromo-phenyl)-propanol A sample of intermediate A4 (15.4 g) was separated into the corresponding enantiomers by preparative SFC on lpak® Daicel AD x 250 mm). Mobile phase (C02, MeOH with 0.2% leNHz) to yield ediate A6 (7.21 g, 40% yield). LCMS: 230 [M+H]+; R: 0.71 min (method 1); OLD: -14.9 ° (589 nm, c 0.2946 w/v%, MeOH, 0C).
Example A7 Preparation of intermediate A7: (R)-[1-(3-bromo-phenyl)hydroxymethyl-ethyl]- carbamic acid lerl butyl ester B ©>H§JEOA< Di-lerl—butyldicarbonate (19.8 g, 90.7 mmol) was added portionwise to a stirred solution of ediate A6 (11.6 g, 50.4 mmol) in a mixture of saturated solution of NaHC03 (100 mL) and THF (100 mL) at 0 °C. The mixture was stirred at 0 °C for 10 min and at room temperature for 15 hours. The mixture was cooled in an ice/HZO bath and acidified with stirring to pH = 1-2 with NaHSO4. The c layer was ted and the aq. layer was further ted with AcOEt. The combined organic layers were separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by short column chromatography (silica gel; AcOEt/DCM). The desired fractions were collected and concentrated in vacuo to yield intermediate A7 (16.47 g, 99% yield) as a colorless oil that solidified upon standing. LCMS: 330 [M+H]+; R: 2.58 min d 1). e A8 Preparation of intermediate A8: (R)-[3-(Zerl-butyloxycarbonyl)(3 -bromo-phenyl) methyl-[1,1,3]oxathiazolidineoxide , S\ N Br (DI/k O O A solution of intermediate A7 (14.3 g, 43.3 mmol) in dry MeCN (80 mL) was added dropwise to a stirred solution of thionyl chloride (7.9 mL, 108.3 mmol) in dry MeCN (226 mL) cooled to -40 °C and under a N2 atmosphere. The reaction e was stirred for 30 min at -40 °C before pyridine (17.4 mL, 216.5 mmol) was added. The reaction was allowed to warm to room temperature and stirred for 64 hours. The solvents were evaporated in vacuo. The residue was treated with EtzO. The solids were filtered and the filtrate concentrated in vacuo to yield intermediate A8 (15.5 g, 95% yield) as a red oil. The product was used in the next reaction without r purification. LCMS: 393 [M+NH4]+; R: 3.4 min (method 1).
Example A9 Preparation of intermediate A9: (R)-[3-(Zerl-butyloxycarbonyl)(3 -bromo-phenyl) methyl-[1,1,3]oxathiazolidine-2,2-dioxide O\\ /0 O N 04 Br Ruthenium (III) chloride (85 mg, 0.41 mmol) was added to solution of intermediate A8 (15.3 g, 40.8 mmol) in a mixture ofMeCN and H20 (1:1) (438 mL) at 0 °C, followed by the addition of sodium periodate (13.1 g, 61.2 mmol). The reaction was allowed to warm to room temperature and stirred for 2 hours. The mixture was filtered through diatomaceous earth and washed with AcOEt (125 mL). H20 (125 mL) and AcOEt (250 mL) were added to the filtrate. The c layer was separated, dried (MgSO4), filtered and the solvents ated in vacuo. The product was purified by flash column chromatography (silica gel, DCM). The d fractions were collected and the solvents evaporated in vacuo to yield intermediate A9 (14.4 g, 90% yield) as a white solid. LCMS: 409 ]+, R: 3.3 min (method 1), mp. 133.1 °C (FP90), cm: -35.6 0 (589 nm, c 0.55 w/v%, DMF, 20 0C).
The following intermediate was ed ing to the synthetic ures described in examples A7 - A9: Example A10 Preparation of intermediate A10: rac-[3-(lerl—butyloxycarbonyl)(3 -nitro-phenyl) methyl-[1,1,3]oxathiazolidine-2,2-dioxide o\ /0 o”S‘N 1 p o N?“ O 0.
Prepared from rac-[3 -(lerl—butyloxycarbonyl)(3 -nitro-phenyl)methyl- [1,1,3]oxathiazolidineoxide. Flash column chromatography (silica gel, DCM) to yield intermediate A10 as a yellow solid (95%). LCMS: 376 [M+NH4]+, R: 1.35 min (method 2).
Example A11 Preparation of intermediate A11: 2-[2-(3-bromo-phenyl)-2R-ZerZ-butoxycarbonylamino-propyl ]-2H-pyrazolecarboxylic acid ethyl ester W0 2012/117027 yoi::NH Cesium carbonate (824 mg, 2.53 mmol) was added to a mixture of intermediate A9 (0.661 g, 1.69 mmol) and 2H-pyrazolecarboxylic acid ethyl ester (260 mg, 1.86 mmol) in DMSO (8 mL) at room temperature. The mixture was stirred at room temperature for 30 min and at 110 °C for 3 hours. The mixture was treated with a saturated on of citric acid and DCM (20 mL) and stirred for 2 hours. The organic phase was separated and d with H20 (10 mL) and extracted with DCM (2 x 10 mL). The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, DCM). The desired fractions were ted and the solvents evaporated in vacuo to yield intermediate A11 (186 mg, 24% yield) as a colorless oil. LCMS: 452 [M+H]+, R: 4.23 min (method 3).
Example A12 Preparation of ediate A12: rac-[2-(4-bromo-pyrazolyl)methyl(3 phenyl )-ethyl]-carbamic acid Zerl-butyl ester Sodium carbonate (59 mg, 0.56 mmol) was added to a mixture of intermediate A10 (100 mg, 0.28 mmol) and 4-bromo-1H-pyrazole (53 mg, 0.36 mmol) in DMF (3 mL).
The mixture was stirred at 130 °C for 2 hours. The solvent was evaporated in vacuo.
The residue was treated with H20 (2 mL) and extracted with DCM (2 x 10 mL). The organic layer was ted, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude t was purified by flash column chromatography (silica gel, DCM). The desired fractions were collected and the solvents evaporated in vacuo to yield intermediate A12 (100 mg, 84% yield) as a white solid after treatment with cold Eth. LCMS: 425 [M+H]+, R: 3.57 min (method 3), mp. 159.3 °C (PF 90). e A13 Preparation of intermediate A13: (R)[2-amino(3 -bromo-phenyl)-propyl]-2H- pyrazolecarboxylic acid ethyl ester 4‘! NH2 A0 0 .TFA Trifluoroacetic acid (1 mL) was added to a stirred solution of intermediate A11 (186 mg, 0.41 mmol) in DCM (5 mL) at 0 °C. The mixture was stirred at room temperature for 2 hours. The solvents were evaporated in vacuo to yield ediate A13 (180 mg, 94% yield) as a colorless oil that was used in the next step without further purification. LCMS: 352 [M+H]+, R: 2.69 min (method 3).
Example A14 Preparation of intermediate A14: bromo[2-lerl—butoxycarbonylamino(3- nitro-phenyl)-propyl]-2H-pyrazolecarboxylic acid Br§N@\ N NH HO C2 (,an A 2 M solution of lithium diisopropylamide in THF and heptane (0.25 mL, 0.49 mmol) was added to a solution of intermediate A12 (100 mg, 0.24 mmol) in THF (3 mL) at - 78 °C. The reaction mixture was stirred at -78 °C for 1 hour. Dry ice was then added and the mixture was warm to room temperature over 2 hours. The mixture was treated with a saturated solution of NH4C1 and extracted with DCM (3 x 10 mL). The c layer was separated, dried, filtered and the solvents ated in vacuo. The crude product was d by flash column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to yield intermediate A14 (60 mg, 54% yield) as colourless oil. LCMS: 469 [M+H]+, R: 1.74 min (method 3).
Example A15 Preparation of intermediate A15: (3 -bromo-phenyl)methyl-6,7-dihydro-5H— pyrazolo[1,5-a]pyrazinone Potassium acetate (83 mg, 0.85 mmol) was added to a solution of intermediate A13 (180 mg, 0.39 mmol) in EtOH (5 mL) at room ature. The mixture was stirred at 90 °C for 5 hours. The solvent was evaporated in vacuo. The residue was treated with a 0.5 M aq. solution of HCl and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude t was purified by flash column chromatography (silica gel, MeOH/DCM). The d fractions were collected and the solvents evaporated in vacuo to yield intermediate A15 (100 mg, 84% yield) as a colorless oil. LCMS: 306 [M+H]+, R: 2.01 min d Example A16 Preparation of intermediate A16: racbromomethyl(3 -phenyl)-6,7- o-5H-pyrazolo[l,5-a]pyrazinone Method A Trifluoroacetic acid (3 mL) was added to a solution of intermediate A14 (200 mg, 0.4 mmol) in DCM (20 mL). The mixture was stirred at room temperature for 2 hours.
Potassium acetate (59 mg, 0.06 mmol) in EtOH (3 mL) was then added. The mixture was stirred at 90 °C for 3 hours. The solvents were evaporated in vacuo. The crude was d with a l M aq. solution of HCl (10 mL) and the product extracted with AcOEt (4 x 20 mL). The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to yield intermediate A16 (120 mg, 19% yield) as a white solid.
LCMS: 35l , R: 2.45 min (method 5), mp. 285.3 °C (FP 90).
Method B Trifluoroacetic acid (100 mL) was added to a stirred solution of intermediate A23 (6.5 g, 13.07 mmol) in DCM (200 mL) at room temperature. The mixture was stirred at room temperature for 3 hours. The solvent was evaporated in vacuo, then potassium acetate (1.924 g, 19.60 mmoL) and EtOH (100 mL) were added, and the reaction 2012/053455 stirred at reflux for 4 hours. The crude was evaporated in vacuo and the residual treated with a l M aq. on of HCl to pH = 3. The crude was extracted with AcOEt (3 X 50 ml), the organic phase was evaporated to dryness and the crude treated with cold EtOH and Eth to afford ediate A16 as a beige solid. The combined solvents were evaporated in vacuo and purified by column tography (silica gel; MeOH/DCM).
The desired fractions were collected and the solvents evaporated in vacuo to afford an additional batch of intermediate A16 as a white solid (combined amount 4 g, 87%).
LCMS: 351 [M+H]+; R: 1.65 min (method 3).
Example A17 Preparation of ediate A17: (R)[3-(5-chloro-pyridinyl)-phenyl]methyl- 6,7-dihydro-5H—pyrazolo[l,5-a]pyrazinone N. / / N | _ \ N Tetrakis(triphenylphosphine)palladium(0) (34 mg, 0.029 mmol) was added to a stirred suspension of intermediate A15 (90 mg, 0.29 mmol) and ropyridineboronic acid (55 mg, 0.35 mmol) in a mixture of 1,4-dioxane (5 mL) and a saturated solution of Na2C03 (3 mL) at room temperature under N2. The mixture was stirred at 150 °C for 15 min under microwave irradiation. After cooling to room temperature, the mixture was diluted with H20 and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude t was purified by flash column chromatography (silica gel; MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo and washed with cold EtOH and Eth to yield intermediate A17 (81 mg, 81% yield) as a white solid. LCMS: 339 [M+H]+; R: 0.89 min (method 2).
Example A18 Preparation of intermediate A18: [3-(5-chloro-pyridinyl)-phenyl]methyl- 6,7-dihydro-5H—pyrazolo[l,5-a]pyrazinethione N. / / N | _ \ N Phosphoruspentasulflde (71 mg, 0.32 mmol) was added to a solution of intermediate A17 (90 mg, 0.27 mmol) in pyridine (4 mL) and the mixture was heated at 100 °C for 5 hours. The t was evaporated in vacuo and the crude product was purified by short column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to yield ediate A18 (60 mg, 63% yield) as a yellow oil. LCMS: 355 , R: 2.4 min (method 3).
The following intermediates were prepared according to the synthetic procedure described in example A18: Example A19 Preparation of intermediate A19: racbromomethyl(3 -nitro-phenyl)-6,7- dihydro-5H-pyrazolo[1, 5-a]pyrazinethione Prepared from intermediate A16. Flash column chromatography (silica gel, CM) to yield intermediate A19 as a yellow solid (87%). LCMS: 366 [M+H]+, R: 2.37 min (method 3).
Example A20 Preparation of intermediate A20: rac(3-amino-phenyl)bromomethyl-6,7- dihydro-pyrazolo[1, 5-a]pyrazinylamine 32% Aq. NH3 solution (3 mL) was added to a stirred mixture of intermediate A19 (600 mg, 1.63 mmol) in a 7 M solution ofNH3 in MeOH (5 mL) in a sealed tube. The mixture was stirred at 60 °C for 4 hours. After cooling to room ature the solvents were evaporated in vacuo. The crude product was dissolved in EtOH (20 mL) and 2O tin(II) chloride (372 mg, 1.96 mmol) was added. The mixture was stirred at 90 °C for 24 hours. After cooling to room temperature, the e was filtered through celite and the solvent evaporated in vacuo. The residue was treated with an 8% aq. solution of NaOH (10 mL) and extracted with DCM (30 mL). The mixture was d at room temperature for 1 hour. The organic layer was separated, dried (NaZSO4), filtered and the ts evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, 7 M on of NH3 in MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to yield intermediate A20 (200 mg; 38% yield) as a yellow oil. LCMS: 320 [M+H]+; R: 1.5 min (method 6).
Example A21 Preparation of intermediate A20: rac(3-amino-phenyl)bromomethyl-6;7- dihydro-pyrazolo[1;5-a]pyrazinylamine and intermediate A21: racbromo methyl(3-nitro-phenyl)-6;7-dihydro-pyrazolo[1;5-a]pyrazinylamine NH2 \\ 32% Aq. NH3 solution (4 mL) was added to a stirred e of intermediate A19 (3.8 g; 10.35 mmol) in a 7 M solution ofNH3 in MeOH (6 mL) in a sealed tube. The mixture was stirred at 100 °C for 6 hours. After cooling to room temperature the solvents were evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel; CM). The d ons were collected and the solvents evaporated in vacuo and the crude product was purified by flash column chromatography (silica gel; 7 M solution ofNH3 in MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to yield intermediate 20 (100 mg; 3% ; ediate 21 (200 mg; 6% yield) and a fraction ning a mixture of intermediate 20 and 21 (2.5 g). LCMS: A20: 322 ; R: 0.87 min (method 3); A21: 350 [M+H]+; R: 0.95 min (method 2) Example A22 Preparation of intermediate A22: rac(3-amino-phenyl)methyl-6;7-dihydro- pyrazolo[1;5-a]pyrazinylamine Method A A solution of intermediate A20 (200 mg; 0.62 mmol) in MeOH (30 mL) and Et3N (5 mL) was hydrogenated in a H-Cube reactor (1.2 mL/min; 30 mm palladium on carbon 10% cartridge; full hydrogen mode; 50 °C; 3 cycles). The solvents were concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel; 7 M solution of NH3 in MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to yield intermediate 22 (100 mg, 66% yield) as a white solid. LCMS: 415 [M+H]+; R: 1.58 min (method 3).
Method B Zinc (1.33 g, 20.40 mmol) was added to the fraction containing a e of intermediates 20 and 21 described in Example A21 (2.5 g, 7.46 mmol) in EtOH (100 mL) and AcOH (20 mL). The e was stirred at reflux for 24 hours. After cooling to room temperature the mixture was filtered through celite and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel; 7 M solution ofNH3 in CM). The desired ons were collected and the solvents evaporated in vacuo to yield intermediate 22 (0.93 g, 52% yield) as a yellow oil that precipitates upon standing.
The following intermediates were prepared according to the synthetic procedure bed in example A14, using ethyl chloroformate instead of dry ice: Example A23 Preparation of intermediate A23: racbromo[2-tert-butoxycarbonylamino(3- nitrophenyl)-propyl]-2H-pyrazolecarboxylic acid ethyl ester Br4§\:'1l\ N NH EtO C2 (3an Prepared from intermediate A12. Flash column chromatography (silica gel; AcOEt/heptane) to yield intermediate A23 (65%). LCMS: 499 ; R: 4.09 min (method 3).
Example A24 Preparation of intermediate A24: rac-[1-methyl(3 -nitro-phenyl)(3 -trifluoromethylpyrazolyl )-ethyl]-carbamic acid tert-butyl ester Intermediate A10 (2.5 g, 6.976 mmol) was added to a d solution of 3-(trifluoro- methyl)pyrazole (1.234 g, 9.069 mmol) and potassium carbonate (1.928 g, 13.952 mmol) in DMF (175 mL) at room temperature. The mixture was then heated at 2012/053455 110 °C for 2 hours. The solvent was evaporated and the residual treated with a saturated solution of citric acid (80 mL) and AcOEt (160 mL). The mixture was d for 1 hour at room temperature. The c layer was separated, dried and evaporated in vacuo.
The crude was purified by flash column chromatography (silica gel; DCM). The desired fractions were collected and evaporated in vacuo to yield a transparent oil; which, after treatment with cold Eth and standing; precipitated as a white solid (2 g; 69%).
Example A25 Preparation of intermediate A25: rac[2-tert-butoxycarbonylamino(3 -nitro- phenyl)-propyl]trifluoromethyl-2H-pyrazolecarboxylic acid ethyl ester O:N..f \ r'u Prepared from intermediate A24. Flash column chromatography (silica gel; AcOEt/heptane) to yield intermediate A25 (51%). LCMS: 487 [M+H]+; R: 4.22 min (method 3).
The following intermediate was prepared according to the synthetic procedure described in example A16 — Method B: e A26 Preparation of intermediate A26: racmethyl(3 -nitro-phenyl)trifluoromethyl- 6,7-dihydro-5H-pyrazolo[1,5-a]pyrazinone Prepared from intermediate A25. Flash column chromatography (silica gel; MeOH/DCM) to yield intermediate A26 as a white solid (93%). LCMS: 339 [M-H]'; R: 2.21 min (method 3).The following intermediate was prepared according to the synthetic procedure bed in example A18 - A21: Example A27 ation of intermediate A27: racmethyl(3 -nitro-phenyl)trifluoromethyl- 6,7-dihydro-5H-pyrazolo[1,5-a]pyrazinethione Prepared from intermediate A26. Flash column chromatography (silica gel; MeOH/DCM) to yield intermediate A27 as a yellow solid (95%). LCMS: 355 [M-H]'; R: 1.29 min d 2).
Example A28 Preparation of intermediate A28: rac(3-amino-phenyl)methyltrifluoromethyl- 6,7-dihydro-pyrazolo[l;5-a]pyrazinylamine and intermediate A29: 6-methyl(3- nitro-phenyl)trifluoromethyl-6;7-dihydro-pyrazolo[ l ; 5 -a]pyrazinylamine Prepared from intermediate A27. Flash column chromatography (silica gel; MeOH/DCM) to yield intermediate A28 (16%) and intermediate A29 (59%). LCMS: A28: 308 [M-H]'; R: 0.77 min (method 2); A29: 338 [M-H]'; R: 2.28 min (method 3); e A29 Preparation of intermediate A28: (3-amino-phenyl)methyltrifluoromethyl- 6,7-dihydro-pyrazolo[ l ;5-a]pyrazinylamine Iron (272 mg; 4.87 mmol) was added to a e of intermediate 29 (340 mg; 1 mmol) and NH4Cl (100 mg) in MeOH (20.4 mL) and H20 (6.8 mL). The reaction was stirred at 80 °C for 5 hours. The crude was cooled and filtered over celite and the solvent was evaporated in vacuo. The residue was d by flash column chromatography (silica gel; 7 M solution ofNH3 in MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to afford intermediate 28 as a transparent oil (260 mg; 84% yield). LCMS: 310 [M+H]+; R: 2.50 min (method Following ediate A30 was prepared according to the synthetic procedures described in examples Al - A4: Example A30 Preparation of intermediate A30: racamino(5-bromofluoro-phenyl)-propan-l- ol, intermediate A31: (R)amino(5-bromofluoro-phenyl)-propan-l-ol and intermediate A32 (S) amino(5-bromofluoro-phenyl)-propan-l-ol: R 8 OH OH OH NH2 NH2 NH2 Br F Br F Br F Prepared from l-(5-bromofluoro-phenyl)-ethanone.
This racemic material was then further purified by preparative SFC on Chiralpak Diacel AD 20 um (2000 g), mobile phase (70% heptane, 30% EtOH with 0.1% Et3N).
The desired fractions for each enantiomer were collected and concentrated in vacuo to yield intermediate A31 (44%) and intermediate A32 (44%).
The following intermediate was prepared according to the synthetic procedures described in e A7 - A12: Example A31 Preparation of intermediate A33: (R)-[l-(5-bromofluoro-phenyl)(4-fluoropyrazol- l -yl)- l l-ethyl] -carbamic acid tert-butyl ester \N NH F \ N Br Prepared from intermediate A31. Flash column chromatography (silica gel; AcOEt/heptane) to yield intermediate A33 as a arent oil (55%). LCMS: 418 [M+H]+; R: 1.57 min d 2).
The following intermediate was prepared according to the synthetic procedure described in example A25: Example A32 Preparation of intermediate A34: (R)[2-(5-bromofluoro-phenyl) tertbutoxycarbonylamino-propyl]fluoro-2H-pyrazolecarboxylic acid ethyl ester ed from intermediate A33. Flash column chromatography (silica gel; /heptane) to yield intermediate A34 as a transparent oil (67%). LCMS: 490 [M+H]+; R: 1.71 min (method 2).
The following intermediate was prepared according to the synthetic ure described in example A16 - Method B: Example A33 ation of intermediate A35: (R)(5-bromofluoro-phenyl)fluoromethyl- 6,7-dihydro-5H-pyrazolo[1,5-a]pyrazinone Prepared from intermediate A34. Flash column chromatography (silica gel; MeOH/DCM) to yield intermediate A35 as an oil (90%). LCMS: 343 [M+H]+; R: 0.96 min (method 2).
The following intermediate was prepared according to the synthetic procedure bed in example A18: Example A34 Preparation of intermediate A36: (R)(5-bromofluoro-phenyl)fluoromethyl- 6,7-dihydro-5H-pyrazolo[1,5-a]pyrazinethione Prepared from intermediate A35. Flash column chromatography a gel, MeOH/DCM) to yield intermediate A36 as a yellow solid (85%). LCMS: 360 [M+H]+, R: 1.19 min (method 2).
Example A35 Preparation of intermediate A37: (R)(5-bromofluoro-phenyl)fluoromethyl- 6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine 32% Aq. NH3 solution (1.5 mL) and a 7 M on ofNH3 in MeOH (3 mL) were added to intermediate A36 (330 mg, 0.921 mmol) at room temperature. The e was stirred at 100 °C in a sealed tube for 6 hours, then, after cooling, the t was removed in vacuo. The crude material was purified by column chromatography (silica gel, MeOH/DCM). The desired fractions were collected to afford intermediate A37 as a transparent oil (260 mg, 83%). LCMS: 343 [M+H]+, R: 1.03 min (method 2).
Example A36 Preparation of intermediate A38: (R)[5-(benzhydrylidene-amino)fluoro-phenyl]- 3-fluoromethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine Toluene (58 mL) was added to a mixture of intermediate A37 (3 g, 8.178 mmol), ibenzylideneacetone)dipalladium (749 mg, 0.818 mmol), 2,2’- bis(diphenylphosphino)-1,1’-binaphtyl (1.528 g, 2.453 mmol) and sodium tert-butoxide (1.415 g, 14.72 mmol) in a sealed tube under N2 at room temperature. The mixture was 2O flushed with N2 for a few min and then benzophenoneimine (2.745 mL, 16.356 mmol) was added and the mixture was stirred at 90 °C for 18 hours. The mixture was concentrated in vacuo and then the mixture was diluted with H20 and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvent concentrated in vacuo. The crude product was purified by flash column chromatography (silica gel, MeOH/DCM). The desired ons were collected and WO 17027 concentrated in vacuo to yield intermediate A38 as a pale yellow solid (3 g, 83%).
LCMS: 442 [M+H]+, R: 1.39 min (method 2).
Example A37 Preparation of intermediate A39: (R)(5-aminofluoro-phenyl)fluoromethyl- 6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine HCl 37% (1.05 mL) was added to a solution of ediate A38 (3 g, 6.795 mmol) in iPrOH (78 mL). The mixture was stirred at room temperature for 2 hours. The e was concentrated, and then triturated with EtzO. The solid was filtered off and taken on iPrOH. NaHC03 (5.709 g) was added to it and the mixture stirred for 1 hour, then filtered and the filtrate was concentrated in vacuo. The product was purified by flash column chromatography (silica gel, CM). The desired fractions were collected and concentrated in vacuo to yield pale a yellow oil. The material was treated with a mixture /Eth 3:1 to afford intermediate A39 as a yellow solid (1.1 g, 58%).
LCMS: 278 [M+H]+, R: 0.56 min (method 2).
Example A38 Preparation of intermediate A40: (3-acetylfluoro-phenyl)-carbamic acid benzyl ester F NH Q Benzyl chloroformate (3 mL, 21.5 mmol) was added to a mixture of 1-(5-amino fluorophenyl)ethanone (3 g, 19.6 mmol) and tetrabutylammonium bromide at room 2O temperature. The reaction was stirred at room ature for 24 hours, the crude was treated with AcOEt (50 mL) and H20 (50 mL), the organic phase was separated and evaporated in vacuo. The crude was purified by column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to afford intermediate A40 as a cream solid (4.7 g, 84%). LCMS: 286 [M-H]', R: 2.81 min (method 3).
The following ediate was prepared ing to the synthetic procedure described for the synthesis of intermediate A11: Example A39 Preparation of intermediate A4 1: rac- { 3 -[2-(4-bromo-pyrazolyl)tertbutoxycarbonylaminomethyl-ethyl ]fluoro-phenyl}-carbamic acid ethyl ester \N NH Br \ NQDNHWOV Prepared from intermediate A40. Flash column chromatography (silica gel, AcOEt/heptane) followed by washing with DIPE to yield intermediate A41 as a white solid (72%). LCMS: 487 , R: 3.56 min (method 3). e A40 Preparation of intermediate A42: rac-ethyl 2-[2-[5-[bis(ethoxycarbonyl)amino] fluoro-phenyl](tert-butoxycarbonylamino)propyl]bromo-pyrazole-3 -carboxylate Lithium diisopropylamide (2 M in cyclohexane/ethylbenzene/THF, 7.36 mL, 14.721 mmol) was added to a stirred solution of intermediate A41 (2.1 g, 4.327 mmol) in dry THF (66 mL) at -70 °C under N2 atmosphere. The e was stirred at -70 °C for 1 hour, then ethyl chloroformate (0.91 mL, 9.519 mmol) was added at -70 °C and the reaction was warmed at -30 °C for 2 hours. The crude was quenched with a ted on ofNH4C1 (30 mL) at -50 °C and warmed to room temperature, the crude was extracted with AcOEt (3 x 20 mL), the organic phase was evaporated in vacuo, dried, the resulting crude was purified by flash column chromatography (silica gel, AcOEt/heptane). The desired fractions were collected and evaporated in vacuo to yield intermediate A42 (1.6 g, 59%). LCMS: 631 [M+H]+, R: 4.22 min (method 3).
The following intermediate was prepared according to the synthetic procedure described in example A16 — Method B: Example A41 Preparation of intermediate A43: rac-ethyl N-[3-(3 methyloxo-5,7- opyrazolo[1,5-a]pyrazinyl)fluoro-phenyl]-N-ethoxycarbonyl-carbamate and intermediate A44: rac-ethyl N—[3-(3 -bromomethyloxo-5,7- dihydropyrazolo[1,5-a]pyrazinyl)fluoro-phenyl]carbamate _ 42 _ N yo Wop NH Prepared from intermediate A42. Flash column chromatography (silica gel; AcOEt/heptane) to yield ediate A43 as a white solid (52%) and intermediate A44 as a cream solid (20%). LCMS: A43: 485 [M+H]+; R: 2.15 min (method 3); A44: 413 [M+H]+; R: 0.98 min (method 2) The following intermediate was prepared according to the tic procedure bed in examples A18: Example A42 Preparation of intermediate A45: rac-ethyl N—[3-(3 -bromomethylthioxo-5,7- dihydropyrazolo[ l ; 5-a]pyrazinyl)fluoro-phenyl]-N-ethoxycarbonyl-carbamate and intermediate A46: rac-ethyl N—[3-(3 -bromomethylthioxo-5,7- opyrazolo[ l ; 5-a]pyrazinyl)fluoro-phenyl]carbamate Prepared from intermediate A43 and A44. Flash column chromatography (silica gel; MeOH/DCM) to yield intermediate A45 as a yellow solid (65%) and intermediate A46 as a yellow solid (28%). LCMS: A45: 501 [M+H]+; R: 2.70 min (method 3); A46: 429 [M+H]+; R: 2.53 min (method 3)The following ediate was prepared according to the synthetic procedure described in example A35: Example A43 Preparation of intermediate A47: rac-[3-(4-aminobromomethyl-6;7-dihydro- pyrazolo[l;5-a]pyrazinyl)—4-fluoro-phenyl]-carbamic acid ethyl ester Prepared from intermediates A45 and A46. Flash column tography (silica gel; MeOH/DCM) to yield intermediate A47 as a cream solid which was used as such in WO 17027 the next step.The following intermediate was prepared ing to the synthetic procedure described in example A22 — Method B: Example A44 Preparation of intermediate A48: rac-[3-(4-aminomethyl-6,7-dihydro-pyrazolo [l,5-a]pyrazinyl)fluoro-phenyl]-carbamic acid ethyl ester Prepared from intermediate A47. Flash column chromatography (silica gel; 7 M solution ofNH3 in MeOH/DCM) to yield intermediate A48 as an oil (71%). LCMS: 322 [M+H]+; R: 0.63 min d 2).
Example A45 Preparation of intermediate A49: 6-(5-aminofluoro-phenyl)methyl-6,7-dihydropyrazolo [ l ,5-a]pyrazinylamine Intermediate A48 (300 mg, 0.905 mmol) was added to a solution of HCl (6 M in H20 17.1 mL) at room temperature. The mixture was stirred at 110 °C for 35 hours, then the solvent was removed in vacuo and treated with a saturated solution 03 and extracted with AcOEt (3x 10 mL). The c layer was separated and evaporated in vacuo. The crude al was purified by column chromatography (silica gel; MeOH/DCM). The desired fractions were collected to intermediate A49 as a transparent oil (160 mg, 68%). LCMS: 260 [M+H]+; R: 0.51 min d 3).
The following intermediate was prepared according to the synthetic procedure described in example A8: Example A46 Preparation of intermediate A50: rac(5-bromofluoro-phenyl)difluoromethyl- 2-oxo-21ambda*4*-[l,2,3]oxathiazolidinecarboxylic acid tert-butyl ester Prepared from carbamic acid, N—[1-(5-bromofluorophenyl)-2,2-difluoro (hydroxymethyl)ethyl]-, 1,1-dimethylethyl ester. Intermediate A50 obtained as a yellow oil (crude al, e of diastereoisomers, 100%).
The following intermediate was prepared according to the synthetic procedure described in example A9: Example A47 Preparation of intermediate A51: rac(5-bromofluoro-phenyl)difluoromethyl- oxo-2lambda*6*-[1,2,3]oxathiazolidinecarboxylic acid tert-butyl ester 0&6 CHF2 099” N >|\ F Prepared from intermediate A50. Trituration in heptane followed by column chromatography (silica gel, DCM) to yield intermediate A51 as a white solid (78%).
LCMS: 465 ]+, R: 1.46 min (method 2).
Example A48 Preparation of intermediate A52: rac(5-bromofluoro-phenyl)-2,2-difluoro (5 -methyl-3 -nitro-pyrazolylmethyl)-ethylamine \\/NFF Br EtOZC To intermediate A51 (6.8 g, 15.238 mmol) and ethyl 5-nitro-1H-pyrazole carboxylate (3.4 g, 18.365 mmol) in MeCN (150 mL) was added DBU (5.1 mL, 34.103 mmol) at room temperature. The resulting mixture was stirred at 60 °C for 18 hours.
The solvent was then evaporated in vacuo and to the residue was added HCl (4 M in dioxane, 40 mL) at room temperature. The ing solution was stirred at room temperature for 2 hours, then the solvent was evaporated in vacuo. H20 and sat.
Na2C03 were added to the residue, and the mixture extracted with DCM. The c layer was dried (Na2S04), filtered and the solvents evaporated in vacuo. The crude WO 17027 product was purified by flash column chromatography (silica gel; DCM in heptane 50/50). The desired fractions were collected and evaporated in vacuo to yield intermediate 52 as a sticky foam (4.6 g; 67%). LCMS: 453 [M+H]+; R: 1.46 min (method 2).
Example A49 Preparation of intermediate A53: (5-bromofiuoro-phenyl)difiuoromethyl- 2-nitro-6;7-dihydro-5H-pyrazolo[1;5-a]pyrazinone DBU (4.126 mL; 27.6 mmol) was added to a stirred e of intermediate A52 (4.15 g; 9.198 mmol) in MeCN (45 mL) in a sealed tube. The mixture was stirred at 150 0C for 30 min under microwave irradiation. The mixture was diluted with 10% NH4Cl and extracted with DCM. The organic layer was dried (NaZSO4); filtered and the solvent evaporated in vacuo. The residue was purified by flash column chromatography (silica gel; AcOEt). The desired fractions were collected and evaporated in vacuo to yield intermediate A54 (2.48 g; 67%). LCMS: 405 [M-H]'; R: 1.10 min (method 2).
Example A50 Preparation of intermediate A54: racamino(5-bromofiuoro-phenyl) difiuoromethyl-6;7-dihydro-5H-pyrazolo[1;5-a]pyrazinone H2N N Intermediate A53 (2.4 g; 5.924 mmol) was dissolved in MeOH (150 mL). The solution was hydrogenated with R1102 cartridge (50 °C; filll en, 1 ml/min). The solvent was evaporated in vacuo and the e purified by flash column tography (silica gel; MeOH/DCM). The desired fractions were collected and concentrated in vacuo to yield intermediate A54 as an ite solid (2.1 g; 94%).
LCMS: 377 [M+H]+; R: 0.74 min (method 2).
Example A51 Preparation of intermediate A55: rac(5-bromofiuoro-phenyl)difiuoromethyl- 6,7-dihydro-5H-pyrazolo[1;5-a]pyrazinone A mixture of intermediate A54 (1.8 g, 4.798 mmol), EtOH (36 mL) and H2804 (0.767 mL) was heated to 90 °C. Sodium nitrite (828 mg, 11.995 mmol) was then added portionwise and the mixture was stirred at 90 °C for 20 min. Then, the mixture was cooled to room temperature, poured into sat. Na2C03 and H20 and extracted with DCM. The organic layer was separated, dried (Na2S04), filtered and the solvents ated in vacuo. The crude product was d by flash column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and concentrated in vacuo to yield intermediate A55 as a white solid (1.25 g, 72%). LCMS: 403 [M+MeCN+H]+, R: 0.92 min (method 2).
The following intermediate was prepared according to the synthetic procedure described in examples A18: Example A52 Preparation of ediate A56: (5-bromofluoro-phenyl)difluoromethyl- 6,7-dihydro-5H-pyrazolo[1,5-a]pyrazinethione ed from intermediate A55. Flash column chromatography (silica gel, DCM) to yield intermediate 56 as a yellow solid (1.14 g, 88%). LCMS: 419 [M+MeCN+H]+, R: 1.19 min (method 2).
Example A53 Preparation of intermediate A57: rac(5-bromofluoro-phenyl)difluoromethyl- 2O 6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine N CHF2 NH2 F A solution of intermediate 56 (1.12 g, 2.977 mmol) in 7 M NH3 in MeOH (30 mL) was stirred under microwave irradiation for 30 min at 120 °C. The solvent was evaporated in vacuo and the residue treated with DCM and washed with diluted Na2C03 solution. The organic layer was separated, dried (Na2S04), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel; 7 M solution of NH3 in MeOH/DCM). The desired fractions were ted and trated in vacuo to yield intermediate 57 as a yellow solid (1.03 g, 96%). LCMS: 361 [M+H]+; R: 0.99 min (method 2).
The following intermediate was prepared according to the synthetic procedures described in examples A36 - A37: Example A54 Preparation of intermediate A58: rac(5-aminofluoro-phenyl)difluoromethyl- 6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine \ CHE —N NH2 NH2 F Prepared from intermediate A54. Flash column chromatography (silica gel; 7 M NH3 in MeOH/DCM) to yield ediate 58 as an off-white foam (86%). LCMS: 296 ; R: 0.61 min d 2).
Example A5 5 Preparation of intermediate A59: 1H-pyrazole-3,5-dicarboxylic acid diamide CONH2 \ N H2NOC Diethylpyrazole-3,5-dicarboxylate (5.2 g, 24.5 mmol) was dissolved in a 7 M NH3 in MeOH and the mixture was heated at 70 °C in a sealed tube for 48 hours. The solvent was then evaporated to give intermediate A59 (3.74 g, 99%) as a solid.
Example A56 Preparation of intermediate A60: 1H-pyrazole-3,5-dicarbonitrile Phosphorus oxychloride (11.249 mL, 9 mmol) was added to a mixture of 2O intermediate 59 (3.72 g, 24.136 mmol) in MeCN (90 mL) at 0 °C. The mixture was stirred in a sealed tube at 120 °C for 5 hours (until the solid disappeared). The reaction was poured in a mixture of ice/ H20 and ted with DCM. The organic layer was separated, dried (NaZSO4), filtered and the solvents evaporated in vacuo to give intermediate A60 as a solid, which was used in next step without further purification.
LCMS: 117 [M-H]'; R: 0.61 min (method 2).
The following intermediate was prepared according to the synthetic procedures bed in examples A7 - A12: Example A57 Preparation of intermediate A61: (R)-[1-(5-bromofluoro-phenyl)(3,5-dicyanopyrazolyl )methyl-ethyl]-carbamic acid tert-butyl ester NC 0% \ N NH \ N Br Prepared from intermediate A31. Flash column chromatography (silica gel; AcOEt/DCM) to yield intermediate A61 as a foam (60%). LCMS: 467 [M+NH4]+; R: 1.57 min (method 2).
Example A58 ation of intermediate A62: (R)amino(5-bromofluorophenyl)methyl- hydro-pyrazolo[1,5-a]pyrazinecarbonitrile To a stirred mixture of intermediate A61 (4.483 g, 8.4 mmol) in DCM (40 mL) at room temperature was added trifluoroacetic acid (4 mL). The mixture was stirred for 20 hours at room temperature, then basif1ed with a sat.solution 03 and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and concentrated in vacuo. The residue was purified by flash column chromatography (silica gel; 7 N NH3 in MeOH/DCM). The d fractions were collected and concentrated in vacuo to give intermediate A62 (2.9 g, 99%). LCMS: 349 ; R: 1.13 min (method 2).
Example A59 Preparation of intermediate A63: (R)amino(5-aminofluorophenyl)methyl- 6,7-dihydro-pyrazolo[1,5-a]pyrazinecarbonitrile The on was set-up in two equal batches. The total amount ofmaterial used is ed CuI (342 mg, 1.795 mmol) was added to a sion of intermediate A62 (500 mg, 1.436 mmol), sodium azide (284 mg, 4.308 mmol), N,N’-dimethylethylenediamine (255 uL, 2.369 mmol) and Na2CO3 (457 mg, 4.308 mmol) in MeCN (10 mL) and the reaction was degassed. The mixture was heated at 110 0C for 4 hours, then at 120 °C for additional 2 hours. The mixture was then quenched with 1 M HCl and the water layer was basified with NH4OH and extracted with AcOEt (3x). The combined organic layers were dried ), filtered and concentrated. The crude t was purified by flash column chromatography (silica gel, 7 N solution ofNH3 in MeOH/DCM). The desired fractions were collected and concentrated in vacuo to yield intermediate A63 (300 mg, 65%). LCMS: 285 [M+H]+, R: 0.74 min (method 2).
The following intermediate was prepared according to the synthetic procedures described in examples A7 - A9, A11, A13 and A15: Example A60 Preparation of intermediate A64: (R)(5-bromofluoro-phenyl)methyloxo- 4 5 6 7-tetrahydro-pyrazolo[1,5-a]pyrazinecarboxylic acid ethyl ester 7 7 7 Prepared from diethylpyrazole-3,5-dicarboxylate. Intermediate A64 used as a crude white solid in the subsequent reaction.
Example A61 Preparation of ediate A65: (R)(5-bromofluoro-phenyl)hydroxymethyl- 6-methyl-6,7-dihydro-5H-pyrazolo[1,5-a]pyrazinone Sodium borohydride (3.094 g, 81.774 mmol) was added to a stirred solution of intermediate 64 (3.6 g, 9.086 mmol) in THF (10 mL) and MeOH (5 mL) at 0 °C. The mixture was stirred at room temperature for 18 hours. The mixture was cooled to 0 °C, treated with H20 and extracted with DCM. The organic layer was dried (NaZSO4), filtered and the t evaporated in vacuo to yield intermediate A65 (3.2 g, 99%) as a white solid. e A62 Preparation of intermediate A66: (R)(5-bromofiuoro-phenyl)methyloxo- 4,5,6,7-tetrahydro-pyrazolo[l,5-a]pyrazinecarbaldehyde Manganese dioxide (7 g, 80.5 mmol) was added to a solution of intermediate A65 (3.2 g, 9.035 mmol) in chloroform (48 mL).The reaction mixture was stirred at 62 °C for 4 hours. The mixture was filtered h celite and washed with DCM. The organic layer was concentrated to yield intermediate A66 as a light orange fluffy solid (2.3 g, 72%).
Example A63 Preparation of intermediate A67: (R)(5-bromofiuoro-phenyl)difiuoromethyl- 6-methyl-6,7-dihydro-5H-pyrazolo[ l ,5-a]pyrazinone A solution of intermediate A66 (2.3 g, 6.531 mmol) in DCM (50ml) and DAST (2. 193 mL, 16.328 mmol) in DCM (50ml) were pumped h a flow try tec R2+R4 modulardeVice, coil 10 mL at 80 °C, Rt = 15 min. The outlet solution was collected over C21CO3. The solution was filtered through celite and washed with DCM, the organic layer was washed with a sat. solution ofNaHC03 and extracted with DCM.
The organic layer was dried over NaZSO4, filtered and concentrated in vacuo to yield intermediate A67 (2.2 g, 90%) as a brown oil.
Example A64 Preparation of intermediate A68: (R)(5-bromofiuoro-phenyl)difiuoromethyl- 6-methyl-6,7-dihydro-5H-pyrazolo[ l ,5-a]pyrazinethione .5].
Phosphoruspentasulfide (1.871 g, 8.419 mmol) was added to a solution of ediate A67 (2.1 g, 5.613 mmol) in dioxane (1 mL) and the mixture was heated at 100 °C for 18 hours. The mixture was concentrated in vacuo and d by flash column chromatography (silica gel; DCM). The desired fractions were collected and concentrated in vacuo to yield intermediate A68 (2 g, 91%) as a yellow oil. LCMS: 392 [M+H]+; R: 1.29 min (method 2).
Example A65 Preparation of ediate A69: (R)(5-bromofiuoro-phenyl)difiuoromethyl- 6-methyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine The reaction was set-up in two equal batches. The total amount ofmaterial used is reported NH3 (2 M in EtOH, 30 mL, 60 mmol) was added to intermediate A69 (2 g, 5.125 mmol) and NH4Cl (2.173 g, 41 mmol). The mixture was heated under microwave irradiation at 170 °C for 45 min. The mixture was concentrated, and another mL ofNH3 (2 M in EtOH) were added. The e was heated under microwave irradiation at 170 °C for 45 min. This procedure was repeated 4 times for a total amount of time of 180 min. The mixture was filtered and the filtrate was concentrated in vacuo.
The crude was d by flash column chromatography (silica gel; MeOH/DCM). The desired fractions were collected and concentrated in vacuo to yield intermediate A69 (1 g, 52%) as an oil. LCMS: 375 [M+H]+; R: 1.11 min (method 2).
The following intermediate was prepared according to a synthetic procedures similar to the one described in example A59: Example A66 Preparation of intermediate A70: (R)(5-aminofiuoro-phenyl)difiuoromethyl- 6-methyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine 2012/053455 Prepared from intermediate A69. Flash column chromatography (silica gel; MeOH/DCM) to yield intermediate A70 as an oil (51%). LCMS: 310 [M+H]+; R: 0.69 min (method 2).
The following intermediate was ed according to a tic procedures similar to the one described in examples A7 - A11, A48, A15 and A18: Example A67 Preparation of intermediate A71: (R)(5-bromofluoro-phenyl)fluoro-2,6- dimethyl-6,7-dihydro-5H-pyrazolo[1,5-a]pyrazinethione Prepared from omethyl-1H-pyrazolecarboxylic acid ethyl ester. Flash column chromatography (silica gel; AcOEt/DCM) to yield intermediate A71 as a yellow solid (92%). LCMS: 374 [M+H]+; R: 1.27 min (method 2).
Example A68 Preparation of intermediate A72: (5-bromofluoro-phenyl)fluoro-2,6- dimethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine NH3 (2 M in EtOH, 10 eq) was added to a solution of intermediate 71 (2.4 g, 6.448 mmol) and NH4Cl (4 eq.) and the mixture was heated at 85 °C in a sealed tube for 24 hours. The solvent was evaporated in vacuo and the residue suspended in DCM and washed with H20. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. To the residue more NH4Cl (4 eq.) followed by NH3 (2 M in EtOH, 10 eq), were added and the mixture was heated at 85 °C in a sealed tube for 24 hours. This process was repeated four more times for a total amount ofNH3 (2 M in EtOH) of 276 mL, and 8.277 g ofNH4Cl. The t was then purified by flash column chromatography a gel, MeOH/DCM). The desired fractions were collected and concentrated in vacuo to yield intermediate A72 (960 mg, 42%) as a pale yellow solid. LCMS: 357 [M+H]+, R: 1.11 min d 2).
The following intermediate was prepared according to a synthetic procedures similar to the one described in examples A36 - A37: Example A69 Preparation of ediate A73: (R)(5-aminofluoro-phenyl)fluoro-2,6- dimethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine Prepared from intermediate A72. Flash column chromatography (silica gel, 7 N NH3 in MeOH/DCM) to yield intermediate A73 as a pale yellow solid (42%).
The ing intermediate was prepared according to a synthetic procedures similar to the one described in examples A7 — A9, A48, A23, Al6B. A18, A21, A36, A37: e A70 Preparation of intermediate A74: (R)(5-aminofluoro-phenyl)chloromethyl- 6,7-dihydro-pyrazolo[1,5-a]pyrazinylamine Prepared from intermediate A31. Flash column chromatography (silica gel, 2O MeOH/DCM) followed by trituration in DIPE/Eth to yield ediate A74 as a yellow solid (94%). LCMS: 294 [M+H]+, R: 1.13 min (method 3).
Preparation of the final compounds Example B1 Preparation of compound 1: (R)[3-(5-chloro-pyridinyl)-phenyl]methyl-6,7- dihydro-pyrazolo[1,5-a]pyrazinylamine trifluoroacetate salt _ 54 _ N\ / / N | _ \ N A 32% aq. NH3 solution (0.5 mL) was added to a stirred mixture of intermediate A18 (60 mg, 0.17 mmol) in a 7 M solution of NH3 in MeOH (1.5 mL) in a sealed tube. The mixture was stirred at 100 °C for 5 hours. After cooling to room ature, the solvents were evaporated in vacuo. The crude product was purified by short column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and concentrated in vacuo to give a fraction that was further purified by reverse phase HPLC (Gradient from 80% 0.1% TFA solution in H20, 20% CH3CN to 0% 0.1% TFA solution in H20, 100% CH3CN).and triturated with DIPE to yield compound 1 (36 mg, 46% yield) as a white solid. 1H NMR (500 MHz, DMSO-d6) 6 ppm 1.79 (s, 3 H), 4.69 (d, J=13.6 Hz, 1 H), 5.25 (d, J=13.9 Hz, 1 H), 7.23 (d, J=2.3 Hz, 1 H), 7.45 (br. d, J=8.7 Hz, 1 H), 7.52 (t, J=7.8 Hz, 1 H), 7.69 (d, J=2.0 Hz, 1 H), 7.75 (br. d, J=7.8 Hz, 1 H), 7.94 — 7.96 (m, 1 H), 8.28 (t, J=2.2 Hz, 1 H), 8.66 (d, J=2.3 Hz, 1 H), 8.88 (d, J=2.0 Hz, 1 H), 9.28 (br. s, 1 H), 9.87 (br. s, 1 H), 11.06 (br. s, 1 H).
Example B2 Preparation of compound 2: racchloro-pyridinecarboxylic acid [3-(4-amino methyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)-phenyl]-amide -Chloro-pyridinecarboxylic acid (71.8 mg, 0.68 mmol) was added to a solution of -dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (137 mg, 0.5 mmol) in MeOH (4 mL). The mixture was stirred at room temperature for 5 min.
Then the mixture was cooled to 0 °C and a solution of intermediate A22 (100 mg, 0.41 mmol) in MeOH (3 mL) was added. The mixture was warmed to room temperature and stirred for 3 hours. The mixture was treated with a ted solution ofNa2C03 and H20 and extracted with DCM. The organic layer was separated, dried 4), filtered and the solvents evaporated in vacuo. The crude product was triturated with Et2O and then was purified by flash column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the ts evaporated in vacuo and the resulting fraction was further d by flash column chromatography a gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo to yield compound 2 (21 mg, 13% yield) as a white solid. 1H NMR (500 MHz, CDC13) 5 ppm 1.67 (s, 3 H), 4.38 (d, J=13.3 Hz, 1 H), 4.53 (d, J=13.3 Hz, 1 H), 4.79 (br. s, 2H), 6.72 (br. s, 1 H), 7.24 (br. d, J=7.8 Hz, 1 H), 7.34 (t, J=7.9 Hz, 1 H), 7.51 (d, J=2.0 Hz, 1 H), 7.73 (dd, J=8.1, 1.2 Hz, 1 H), 7.85 — 7.90 (m, 2 H), 8.23 (d, J=8.4 Hz, 1 H), 8.55 (d, J=2.0 Hz, 1 H), 9.86 (br. s, 1 H).
Example B3 Preparation of compound 3: rac-3,5-dichloro-pyridinecarboxylic acid [3-(4-amino- 6-methyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)-phenyl]-amide Cl Cl 1:“Wmm I N / O 3,5-Dichloro-pyridinecarboxylic acid (112 mg, 0.58 mmol) was added to a solution of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium de (176.2 mg, 0.64 mmol) in MeOH (5 mL). The mixture was stirred at room temperature for 5 min.
Then the mixture was cooled to 0 °C and a solution of intermediate A22 (128 mg, 0.53 mmol) in MeOH (5 mL) was added. The mixture was warmed to room temperature and stirred for 3 hours. The mixture was treated with a saturated solution ofNa2C03 and H20 and extracted with DCM. The organic layer was ted, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was d by flash column chromatography (silica gel, MeOH/DCM). The d ons were collected and the ts evaporated in vacuo. The crude product was triturated with Eth and then was purified by flash column chromatography (silica gel, MeOH/DCM).
The desired fractions were collected and the solvents evaporated in vacuo to yield compound 3 (180 mg, 82% yield) as a white solid. 1H NMR (500 MHz, DMSO-d6) 6 ppm 1.41 (s, 3 H), 4.12 — 4.45 (m, 2 H), 6.54 (br. s., 2 H), 6.64 (d, J=2.0 Hz, 1 H), 7.25 — 7.32 (m, 2 H), 7.45 (d, J=2.0 Hz, 1 H), 7.63 (m, J=6.3, 2.5, 2.5 Hz, 1 H), 7.82 (br. s, 1 H), 8.43 (d, J=2.0 Hz, 1 H), 8.72 (d, J=2.0 Hz, 1 H), 10.64 (br. s., 1 H).
Example B4 Preparation of compound 4: (R*)—3,5-dichloro-pyridinecarboxylic acid [3-(4-amino- 6-methyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)-phenyl]-amide and compound 5: (S*)-3,5-dichloro-pyridinecarboxylic acid [3-(4-aminomethyl-6,7-dihydropyrazolo [1,5-a]pyrazinyl)-phenyl]-amide CI CI CI CI N\ / N\ / / N | / N | 1c \ \ _ H / _ 8* H N N /N /N o o H2N H2N A sample of compound 3 (0.58 g) was washed with cold DCM and then with Eth.
This c compound was then separated into the corresponding enantiomers by preparative SFC on Chiralpak AD-H 511m (250 X 20 mm), mobile phase (0.3% iPrNHg, 60% C02, 40% EtOH). The desired fractions for each enantiomer were collected and concentrated in vacuo to yield compound 4 (152 mg, 26% . 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.41 (s, 3 H), 4.28 (br. s, 2 H), 6.41 (br. s., 2 H), 6.64 (d, J=1.4 Hz, 1 H), 7.30 (s, 2 H), 7.45 (d, J=2.0 Hz, 1 H), 7.60 — 7.67 (m, 1 H), 7.83 (s, 1 H), 8.44 (d, J=2.0 Hz, 1 H), 8.73 (d, J=2.3 Hz, 1 H), 10.65 (br. s., 1 H) and compound 5 (155 mg, 27% yield) 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.41 (s, 3 H), 4.28 (s, 2 H), 6.41 (br. s., 2 H), 6.64 (d, J=O.9 Hz, 1 H), 7.26 — 7.33 (m, 2 H), 7.45 (d, J=1.4 Hz, 1 H), 7.59 — 7.69 (m, 1 H), 7.84 (s, 1 H), 8.44 (d, J=2.0 Hz, 1 H), 8.73 (d, J=2.0 Hz, 1 H), 10.65 (br. s., 1 H) both as white solids.
Example B5 Preparation of compound 6: raccyano-pyridinecarboxylic acid [3-(4-amino methyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)-phenyl]-amide and compound 7: (R*)cyano-pyridinecarboxylic acid [3-(4-aminomethyl-6,7-dihydropyrazolo [1,5-a]pyrazinyl)-phenyl]-amide and compound 8: (S*)—5-cyano-pyridine- 2-carboxylic acid [3-(4-aminomethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)- phenyl]-amide WNN wNyG/K wNyQ/KON\ / N\ / N\ / / N H I / N H I / N H I \ \ \ O O HZN HZN HZN 5-Cyano-pyridinecarboxylic acid (187.8 mg, 1.27 mmol) was added to a solution of -dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (412.9 mg, 1.49 mmol) in MeOH (20 mL). The mixture was stirred at room temperature for 5 min.
Then the mixture was cooled to 0 °C and a solution of intermediate A22 (300 mg, 1.24 mmol) in MeOH (10 mL) was added. The mixture was warmed to room temperature and stirred for 4 hours. The mixture was treated with a saturated solution ofNa2C03 and H20 and extracted with DCM. The organic layer was ted, dried ), filtered and the solvents ated in vacuo. The crude product was d by flash column chromatography a gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo. The crude product was triturated with Eth and then was purified by flash column chromatography (silica gel, 7 M solution ofNH3 in MeOH/DCM). The desired fractions were collected and the ts evaporated in vacuo. The crude product was washed with EtOH and Eth and then purified by flash column chromatography (silica gel, MeOH/DCM). The desired W0 2012/117027 2012/053455 fractions were collected and the solvents evaporated in vacuo to yield compound 6 (122 mg, 26% yield) as a cream solid. 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.42 (s, 3 H), 4.31 (m, J=3.5 Hz, 2 H), 6.66 (br. s, 2 H), 6.66 (d, J=1.7 Hz, 1 H), 7.26 — 7.33 (m, 2 H), 7.45 (d, J=2.0 Hz, 1 H), 7.78 (dt, J=6.9, 1.9 Hz, 1 H), 8.01 — 8.06 (m, 1 H), 8.29 (dd, J=8.1, 0.6 Hz, 1 H), 8.59 (dd, J=8.1, 2.0 Hz, 1 H), 9.18 — 9.22 (m, 1 H), 10.68 (s, 1 H). This c compound was then further purified by preparative SFC on Chiralpak AD-H 511m (250 X 20 mm), mobile phase (0.3% , 60% C02, 40% EtOH). The desired fractions for each enantiomer were collected and concentrated in vacuo to yield compound 7 (45.8 mg, 10% yield) 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.41 (s, 3 H), 4.21 — 4.35 (m, 2 H), 6.39 (br. s., 2 H), 6.64 (br. s, 1 H), 7.26 — 7.35 (m, 2 H), 7.45 (d, J=1.2 Hz, 1 H), 7.78 (br. d, J=7.2 Hz, 1 H), 8.05 (br. s, 1 H), 8.30 (d, J=8.1 Hz, 1 H), 8.60 (dd, J=8.1, 2.0 Hz, 1 H), 9.20 — 9.22 (m, 1 H), 10.68 (s, 1 H) and compound 8 (46.5 mg, 10% yield) 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.41 (s, 3 H), 4.29 (br. s., 2 H), 6.41 (br. s., 2 H), 6.64 (d, J=1.7 Hz, 1 H), 7.27 — 7.34 (m, 2 H), 7.45 (d, J=1.7 Hz, 1 H), 7.77 — 7.80 (m, 1 H), 8.05 (br. s, 1 H), 8.30 (dd, J=8.2, 0.7 Hz, 1 H), 8.60 (dd, J=8.1, 2.0 Hz, 1 H), 9.19 — 9.24 (m, 1 H), 10.68 (s, 1 H), both as white solids.
Example B6 Preparation of compound 9: raccyano-pyridinecarboxylic acid amino bromomethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)-phenyl]-amide trifluorocetate salt N\ / / NMH I Br /N U N\[/l:l\l\/Kc! -Cyano-pyridinecarboxylic acid (23.6 mg, 0.16 mmol) was added to a solution of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (51.9 mg, 0.19 mmol) in MeOH (5 mL). The mixture was stirred at room temperature for 5 min.
Then the mixture was cooled to 0 °C and a solution of intermediate A20 (50 mg, 0.16 mmol) in MeOH (5 mL) was added. The mixture was warmed to room temperature and stirred for 4 hours. The e was treated with a saturated solution ofNa2C03 and H20 and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was d by flash column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo. The crude t was triturated with Eth and then was purified by flash column chromatography (silica gel, MeOH/DCM).
The desired fractions were collected and concentrated in vacuo and the residue was W0 2012/117027 purified by ative HPLC (RP C18 XSelect 19 x 100 5 um), mobile phase (gradient from 80% 0.1% TFA solution in H20, 20% CH3CN to 0% 0.1% TFA solution in H20, 100% CH3CN) to yield compound 9 (9.8 mg, 11% yield) as a white solid. 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.75 (s, 3 H), 4.74 (d, J=13.9 Hz, 1 H), 5.09 (d, J=13.6 Hz, 1 H), 7.19 — 7.24 (m, 1 H), 7.40 (t, J=8.1 Hz, 1 H), 7.87 (dd, J=8.1, 1.2 Hz, 1 H), 7.88 (s, 1 H), 8.00 (br. s, 1 H), 8.29 (dd, J=8.1, 0.6 Hz, 1 H), 8.60 (dd, J=8.4, 2.0 Hz, 1 H), 8.78 (br. s., 1 H), 9.21 (dd, J=2.0, 0.9 Hz, 1 H), 9.70 (br. s., 1 H), 10.89 (s, 1 H), 11.23 (br. s., 1 H).
Example B7 Preparation of compound 10: rac-3,5-dichloro-pyridinecarboxylic acid [3-(4-amino- 6-methyltrifluoromethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)-phenyl]-amide and compound 11: (R*)-3,5-dichloro-pyridinecarboxylic acid [3-(4-amino trifluoromethyl-6,7-dihydro-pyrazolo[ 1 , 5-a]pyrazinyl)-phenyl]-amide and compound 12: (S*)-3,5-dichloro-pyridinecarboxylic acid [3-(4-aminomethyl trifluoromethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)-phenyl]-amide CIWCI CIWCI CI CI F3C N myN N W T/ ‘N H J \N H J Fscj/ \N H _/ N \ _/ R* N \ _/ N \ J \ 8* N N \ N /N I /N /N | / o O / O H2N H2N H2N chloropyridinecarboxylic acid (70 mg, 0.366 mmol) was added to a solution of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (119 mg, 0.431 mmol) in MeOH (5 mL). The mixture was stirred at room temperature for 5 min.
Then the mixture was cooled to 0 °C and a solution of intermediate A28 (111 mg, 0.359 mmol) in MeOH (5 mL) was added. The e was warmed to room temperature and stirred for 4 hours. The mixture was treated with a saturated solution ofNa2C03 and H20 and extracted with DCM. The organic layer was separated, dried ), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, MeOH/DCM). The d fractions were collected and the solvents evaporated in vacuo. The crude product was triturated with Et2O, sonicated, filtered and dried in vacuo at 50°C to yield compound 10 (95 mg, 55% yield) as a white solid. This racemic compound was then r purified by preparative SFC on Chiralpak AD-H 5pm (250 x 20 mm), mobile phase (0.3% iPrNH2, 70% CO2, 30% iPrOH). The desired fractions for each enantiomer were collected and concentrated in vacuo to yield compound 11 (40 mg, 23% yield). 1H NMR (400 MHz, DMSO-d6) 5 ppm 1.42 (s, 3 H), 4.35 — 4.47 (m, 2 H), 6.61 (br. s., 2 H), 7.09 (br. s, 1 H), 7.26 — 7.35 (m, 2 H), 7.59 — 7.67 (m, 1 H), 7.83 (br. s, 1 H), 8.43 (d, J=2.1 Hz, 1 H), 8.72 (d, J=2.1 Hz, 1 H), 10.67 (s, 1 H) and compound 12 (38 mg, 22% yield), for which the 1H NMR was in agreement with the one of compound 11.
Example B8 ation of compound 13: (R)methoxy-pyrazinecarboxylic acid [3-(4-amino- 3-fiuoromethyl-6,7-dihydro-pyrazolo[ l ,5-a]pyrazinyl)fiuoro-phenyl]-amide -Methoxypyrazinecarboxylic acid (120 mg, 0.78 mmol) was added to a solution of 4-(4,6-dimethoxy-l,3,5-triazinyl)methylmorpholinium chloride (233 mg, 0.841 mmol) in MeOH (5 mL). The mixture was stirred at room temperature for 5 min.
Then the mixture was cooled to 0 °C and a solution of intermediate A39 (212 mg, 0.764 mmol) in MeOH (5 mL) was added. The mixture was warmed to room temperature and stirred for 4 hours. The mixture was treated with a saturated on ofNa2C03 and H20 and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo. The crude product was ated with Eth and then was purified by flash column chromatography (silica gel, MeOH/DCM).
The desired fractions were collected and concentrated in vacuo to afford a white solid.
The solid was treated with DIPE to afford compound 13 (155 mg, 49%) as a white solid. 1H NMR (500 MHz, CDC13) 5 ppm 1.59 (s, 3 H), 4.06 (s, 3 H), 4.28 (br. d, J=13.0 Hz, 1 H), 4.51 (br. d, J=13.0 Hz, 1 H), 5.04 (br. s., 2 H), 7.09 (dd, J=11.6, 9.0 Hz, 1 H), 7.36 (d, J=4.0 Hz, 1 H), 7.84 — 7.97 (m, 2 H), 8.12 (d, J=1.2 Hz, 1 H), 8.99 (d, J=1.2 Hz, 1 H), 9.51 (br. s, 1 H).
Example B9 Preparation of compound 14: rac-3,5-dichloro-pyridinecarboxylic acid [3-(4-amino- 6-methyl-6,7-dihydro-pyrazolo[ l , 5-a]pyrazinyl)fiuoro-phenyl]-amide and nd 15: (R*)—3,5-dichloro-pyridinecarboxylic acid [3-(4-aminomethyl- 6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)—4-fiuoro-phenyl]-amide and compound 16: (S*)-3,5-dichloro-pyridinecarboxylic acid aminomethyl-6,7-dihydropyrazolo [l,5-a]pyrazinyl)fiuoro-phenyl]-amide N\ CIWCI N\ CIWC N\ CIWCI f N H H N H H N H —/ N f \N/ —/ R* N f J \N/ —/ 3* N \N WM 0 WM 0 WM 0 H2N F H2N F H2N F 3,5-Dichloropyridinecarboxylic acid (75.5 mg, 0.393 mmol) was added to a on of 4-(4,6-dimethoxy-l,3,5-triazinyl)methylmorpholinium chloride (128 mg, 0.463 mmol) in MeOH (5 mL). The mixture was stirred at room temperature for 5 min.
W0 2012/117027 Then the mixture was cooled to 0 °C and a solution of intermediate A49 (100 mg, 0.386 mmol) in MeOH (5 mL) was added. The mixture was warmed to room temperature and stirred for 4 hours. The mixture was treated with a saturated solution ofNa2C03 and H20 and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo. The crude product was triturated with Et2O, sonicated, d and dried in vacuo at 50°C. The resulting compound was purified one addition time by flash column tography (silica gel, MeOH/DCM) to yield, after treatment with AcOEt and DIPE, compound 14 (95 mg, 57% yield) as a white solid. This racemic compound was then fiirther purified by preparative SFC on Chiralcel OJ-H 5 um (250 x 20 mm), mobile phase (0.3% iPrNH2, 85% CO2, 15% EtOH). The desired fractions for each enantiomer were collected and concentrated in vacuo to yield compound 15 (38 mg, 23% yield). 1H NMR (400 MHz, CDCl3) 5 ppm 1.58 (s, 3 H), 2.52 (br. s., 2 H), 4.41 (br. d, J=13.2 Hz, 1 H), 4.62 (dd, J=13.2, 0.9 Hz, 1 H), 6.43 (d, J=2.1 Hz, 1 H), 7.08 (dd, J=11.7, 8.9 Hz, 1 H), 7.52 (d, J=2.1 Hz, 1 H), 7.81 (dd, J=6.9, 2.8 Hz, 1 H), 7.89 (d, J=2.1 Hz, 1 H), 7.94 (ddd, J=8.8, 4.1, 3.0 Hz, 1 H), 8.42 (d, J=2.1 Hz, 1 H), 9.71 (br. s., l H) and compound 16 (40 mg, 24% , for which the 1H NMR was in agreement with the one of compound 15.
Example B 10 ation of compound 17: racmethoxy-pyrazinecarboxylic acid [3-(4-amino- 6-difluoromethyl-6,7-dihydro-pyrazolo[ l , 5-a]pyrazinyl)fluoro-phenyl]-amide and nd 18: (R*)—5-methoxy-pyrazinecarboxylic acid [3-(4-amino difluoromethyl-6,7-dihydro-pyrazolo[ l , 5-a]pyrazinyl)fluoro-phenyl]-amide and compound 19: -methoxy-pyrazinecarboxylic acid [3-(4-amino diNfluoromethyl-6, 7-//dihydro-pyrazolo[Cl, 5-a]pyrazinyl)Nfluoro-phenyl]-amideVOMe VOMe VOMe -Methoxypyrazinecarboxylizc acid (187.9 mg, 1.219 mmle) was added to a mixture of 4-(4,6-dimethoxy-l,3,5-triazinyl)methylmorpholinium chloride (337 mg, 1.219 mmol) in MeOH (6 mL). The e was d at room temperature for 5 min.
Then the mixture was cooled to 0 °C and a solution of intermediate A58 (300 mg, 1.016 mmol) in MeOH (4 mL) was added. The mixture was warmed to room temperature and stirred for 1 hour, then treated with a saturated solution ofNa2C03 and H20 and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the ts evaporated in vacuo. Part of the product was precipitated with DCM W0 17027 and the remaning crude material purified by flash column chromatography (silica gel, 7 M NH3 in MeOH/DCM). The desired fractions were collected and the ts evaporated in vacuo. The resulting product was combined with the one obtained from precipitation and triturated with heptane, ted and filtered, to afford compound 17 (278 mg, 62% yield) as a white solid. This racemic compound was then further d by preparative SFC on Chiralcel OD-H 5 pm (250 x 20 mm), mobile phase (0.3% iPrNHg, 70% C02, 30% EtOH). The desired fractions for each enantiomer were collected and concentrated in vacuo to yield compound 18 (103 mg, 23% yield). 1H NMR (500 MHz, DMSO-d6) 5 ppm 4.03 (s, 3 H) 4.58 (br. d, J=13.6 Hz, 1 H) 4.75 (br. d, J=13.6 Hz, 1 H) 6.27 (t, J=55.5 Hz, 1 H) 6.68 (d, J=2.0 Hz, 1 H) 6.93 (br. s, 2 H) 7.20 (dd, J=11.8, 9.0 Hz, 1 H) 7.48 (d, J=2.0 Hz, 1 H) 7.78 (dt, J=8.4, 3.6 Hz, 1 H) 8.17 (dd, J=7.1, 2.7 Hz, 1 H) 8.42 (d, J=1.2 Hz, 1 H) 8.88 (d, J=1.2 Hz, 1 H) 10.51 (s, l H) and compound 19 (102 mg, 23% yield), for which the 1H NMR was in agreement with the one of compound 18.
Example B1 1 Preparation of compound 20: racfiuoro-pyridinecarboxylic acid [3-(4-amino difiuoromethyl-6,7-dihydro-pyrazolo[ l , 5-a]pyrazinyl)fiuoro-phenyl]-amide and compound 21: (S*)fiuoro-pyridinecarboxylic acid [3-(4-aminodifiuoromethyl- 6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)fiuoro-phenyl]-amide and compound 22: (R*)fiuoro-pyridinecarboxylic acid [3-(4-aminodifiuoromethyl-6,7-dihydropyrazolo [l,5-a]pyrazinyl)fiuoro-phenyl]-amide N /\/F N /\/F N /\/F f ‘N CHF2 H /J V \N CHF2 H \N CHF2 H —/ N \N —/ 3* N /J V \N —/ R* N /J WM 0 WM 0 WM 0 H2N F H2N F H2N F -Fluoropyridinecarboxylic acid (74.5 mg, 0.528 mmol) was added to a mixture of 4-(4,6-dimethoxy-l,3,5-triazinyl)methylmorpholinium chloride (146 mg, 0.528 mmol) in MeOH (3 mL). The mixture was stirred at room temperature for 5 min.
Then the mixture was cooled to 0 °C and a solution of intermediate A58 (130 mg, 0.44 mmol) in MeOH (2 mL) was added. The mixture was warmed to room temperature and stirred for 1 hour, then treated with a saturated on ofNa2C03 and H20 and extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, 7 M NH3 in MeOH/DCM). The desired ons were collected and the ts evaporated in vacuo. The ing t was triturated with heptane, sonicated and filtered, to afford compound 17 (112 mg, 60% yield) as a white solid. This c compound was then filrther purified by preparative SFC on a Chiralpak AD-H column (5 um, 250 x 20 mm), mobile phase [70% C02, 30% EtOH (+ 0.3% iPrNH2)]. The desired ons for each enantiomer were collected and concentrated in vacuo to yield compound 21 (41 mg, 22% yield), for which the 1H NMR was in agreement with the one of compound 22, and compound 22 (43 mg, 23% yield). 1H NMR (400 MHz, 6) 5 ppm 4.53 — 4.61 (m, 1 H), 4.74 (br. d, J=13.4 Hz, 1 H), 6.26 (t, J=55.9 Hz, 1 H), 6.67 (d, J=1.8 Hz, 1 H), 6.93 (br. s, 2 H), 7.20 (dd, J=12.0, 9.0 Hz, 1 H), 7.47 (d, J=1.8 Hz, 1 H), 7.79 (ddd, J=8.8, 3.9, 2.8 Hz, 1 H), 7.98 (td, J=8.7, 2.9 Hz, 1 H), 8.16 (dd, J=7.1, 2.7 Hz, 1 H), 8.21 (dd, J=8.8, 4.6 Hz, 1 H), 8.73 (d, J=2.8 Hz, 1 H), 10.62 (br. s, 1 H).
Example B12 Preparation of compound 23: (R)methoxy-pyrazinecarboxylic acid [3-(4-amino- 2-cyanomethyl-6,7-dihydro-pyrazolo[ l ,5-a]pyrazinyl)fluoro-phenyl]-amide NC /N\N O\ H2N F -Methoxypyrazinecarboxylic acid (95.4 mg, 0.619 mmol) was added to a mixture of 4-(4,6-dimethoxy-l,3,5-triazinyl)methylmorpholinium chloride (171.3 mg, 0.619 mmol) in MeOH (3 mL). The mixture was stirred at room temperature for 30 min, then it was cooled to 0 °C and a solution of intermediate A63 (160 mg, 0.563 mmol) in MeOH (3 mL) was added. The mixture was warmed to room temperature and stirred for 20 hour, then treated with a ted solution ofNa2C03 and stirred for few minutes. The mixture was then extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column tography (silica gel, MeOH/DCM).
The desired fractions were collected and the solvents evaporated in vacuo, to afford after drying compound 23 (115 mg, 49% yield) as a solid. 1H NMR (500 MHz, CDCl3) ppm 1.58 (s, 3 H), 1.66 (br. s., 2 H), 4.07 (s, 3 H), 4.47 (br. d, J=13.6 Hz, 1 H), 4.66 (br. d, J=13.3 Hz, 1 H), 6.81 (br. s, 1 H), 7.09 (dd, J=11.6, 9.0 Hz, 1 H), 7.75 — 7.81 (m, 1 H), 7.97 (dd, J=7.1, 2.7 Hz, 1 H), 8.14 (s, 1 H), 9.00 (s, 1 H), 9.49 (br. s., l H).
Example B13 Preparation of nd 24: (R)fluoro-pyridinecarboxylic acid [3-(4-amino cyanomethyl-6,7-dihydro-pyrazolo[l,5-a]pyrazinyl)fluoro-phenyl]-amide NC N / / \N I — R NH H2N F -Fluoropyridinecarboxylic acid (87.4 mg, 0.619 mmol) was added to a e of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (171.3 mg, 0.619 mmol) in MeOH (3 mL). The e was stirred at room temperature for 30 min, then it was cooled to 0 °C and a solution of intermediate A63 (160 mg, 0.563 mmol) in MeOH (3 mL) was added. The mixture was warmed to room temperature and stirred for 20 hour, then treated with a saturated solution of Na2C03 and stirred for few min. The mixture was then extracted with DCM. The organic layer was separated, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, MeOH/DCM). The desired ons were collected and the solvents evaporated in vacuo, to afford an oil that was ated with DIPE. The resulting solid was filtered and dried to give compound 24 (95 mg, 41% yield) as a solid. 1H NMR (400 MHz, CDCl3) 6 ppm 1.58 (br. s, 3 H) 4.46 (br. d, J=13.4 Hz, 1 H) 4.66 (d, J=13.4 Hz, 1 H) 4.90 (br. s., 2 H) 6.81 (s, 1 H) 7.10 (dd, J=11.8, 8.8 Hz, 1 H) 7.60 (td, J=8.3, 2.8 Hz, 1 H) 7.78 — 7.86 (m, 1 H) 7.96 (dd, J=7.1, 2.7 Hz, 1 H) 8.32 (dd, J=8.7, 4.5 Hz, 1 H) 8.45 (d, J=2.8 Hz, 1 H) 9.80 (br. s, 1 H).
Example B 14 Preparation of compound 25: (R)difluoromethyl-1H-pyrazolecarboxylic acid [3- (4-aminocyanomethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)fluoro- phenyl]-amide NC /N\ — R / N NHHLN\</N\ F H2N F 1-Difluoromethyl-1H-pyrazolecarboxylic acid (82.7 mg, 0.51 mmol) was added to a mixture of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (155 mg, 0.561 mmol) in MeOH (3 mL). The mixture was stirred at room temperature for 30 min, then it was cooled to 0 °C and a solution of intermediate A63 (145 mg, 0.51 mmol) in MeOH (3 mL) was added. The mixture was warmed to room temperature and d for 3 hour, then treated with a saturated solution of Na2C03 and stirred for few min. The e was then extracted with DCM. The organic layer was separated, dried (MgSO4), d and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, MeOH/DCM). The desired ons were collected and the solvents evaporated in vacuo, to afford an oil that was triturated with heptane. The resulting solid was filtered and dried to give compound 25 (100 mg, 46% yield) as a solid. 1H NMR (500 MHz, CDCl3) 5 ppm 1.58 (s, 3 H) 4.47 (br. d, J=13.3 Hz, 1 H) 4.65 (d, J=13.3 Hz, 1 H) 4.94 (br. s., 2 H) 6.81 (s, 1 H) 7.05 (d, J=2.6 Hz, 1 H) 7.09 (dd, J=11.6, 9.0 Hz, 1 H) 7.20 (t, J=60.4 Hz, 1 H) 7.69 — 7.75 (m, 1 H) 7.88 (d, J=2.6 Hz, 1 H) 7.91 (dd, J=6.8, 2.2 Hz, 1 H) 8.62 (br. s, 1 H).
Example B 1 5 Preparation of compound 26: (R)cyano-pyridinecarboxylic acid [3-(4-amino 6-methyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)fluoro-phenyl]-amide NCW/N‘N — R NHfl\ H2N F -Cyanopyridinecarboxylic acid (79.7 mg, 0.538 mmol) was added to a mixture of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (163.8 mg, 0.592 mmol) in MeOH (3 mL). The mixture was stirred at room ature for 30 min, then it was cooled to 0 °C and a solution of intermediate A63 (153 mg, 0.538 mmol) in MeOH (3 mL) was added. The mixture was warmed to room temperature and stirred for 3 hour, then treated with a saturated solution ofNa2C03 and stirred for few min. The mixture was then extracted with DCM. The organic layer was ted, dried (MgSO4), filtered and the solvents evaporated in vacuo. The crude product was purified by flash column chromatography (silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo, to afford an oil that was triturated with heptane. The resulting solid was filtered and dried to give nd 26 (63 mg, 28% yield) as a solid. 1H NMR (500 MHz, DMSO-d6) 6 ppm 1.47 (br. s, 3 H) 4.43 — 4.55 (m, 2 H) 6.76 (br. s., 2 H) 7.20 (dd, J=11.8, 9.0 Hz, 1 H) 7.27 (br. s, 1 H) 7.71 — 7.79 (m, 1 H) 8.10 (br. d, J=5.2 Hz, 1 H) 8.26 (d, J=8.1 Hz, 1 H) 8.57 (dd, J=8.2, 1.6 Hz, 1 H) 9.18 (br. s, 1 H) 10.81 (br. s, 1 H).
Example B 16 ation of compound 27: (R)fluoro-pyridinecarboxylic acid amino difluoromethylmethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)fluoro-phenyl]- amide -Fluoropyridinecarboxylic acid (68 mg, 0.485 mmol) was added to a mixture of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (148 mg, 0.533 mmol) in MeOH (3 mL). The mixture was stirred at room temperature for 5 min, then it was cooled to 0 °C and a solution of intermediate A70 (150 mg, 0.485 mmol) in MeOH (2 mL) was added. The mixture was warmed to room temperature and stirred for 4 hours, then concentrated in vacuo in a cold bath. The crude product was purified by flash column chromatography (dry load, silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo, to afford an off-white solid, that was further purified by RP HPLC on C18 Sunf1re (30 x 100 5um). Mobile phase: nt from 80% 0.1% TFA solution in H20, 20% CH3CN to 0% 0.1% TFA solution in H20, 100% CH3CN, yielding compound 27 (57 mg, 33%) as a white solid. 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.84 (br. s, 3 H), 4.79 (br. d, J=13.9 Hz, 1 H), 5.02 (br. d, J=13.3 Hz, 1 H), 7.10 (t, J=54.3 Hz, 1 H), 7.30 (dd, J=12.0, 8.8 Hz, 1 H), 7.46 (br. s., 1 H), 7.86 — 7.91 (m, 1 H), 7.93 (dd, J=7.5, 2.3 Hz, 1 H), 7.98 (td, J=8.7, 2.9 Hz, 1 H), 8.20 (dd, J=8.7, 4.6 Hz, 1 H), 8.73 (d, J=2.9 Hz, 1 H), 9.33 (br. s., 1 H), .07 (br. s., 1 H), 10.80 (br. s, 1 H), 11.09 (br. s., 1 H).
Example B 17 Preparation of compound 28: (R)methoxy-pyrazinecarboxylic acid [3-(4-amino- 2-difluoromethylmethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)fluoro-phenyl]- amide R NHfl/l;/NIrO\ -Methoxypyrazinecarboxylic acid (75 mg, 0.485 mmol) was added to a e of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (148 mg, 0.533 mmol) in MeOH (3 mL). The mixture was d at room temperature for 5 min, then it was cooled to 0 °C and a solution of intermediate A70 (150 mg, 0.485 mmol) in MeOH (2 mL) was added. The mixture was warmed to room temperature and stirred for 4 hours, then concentrated in vacuo in a cold bath. The crude product was d by flash column chromatography (dry load, silica gel, MeOH/DCM). The desired fractions were collected and the solvents evaporated in vacuo, to afford an off-white solid, that was further purified by RP HPLC on C18 e (30 x 100 5um). Mobile phase: gradient from 80% 0.1% TFA solution in H20, 20% CH3CN to 0% 0.1% TFA solution in H20, 100% CH3CN, yielding nd 27 (32 mg, 12%) as a white solid. 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.85 (br. s., 3 H) 4.03 (s, 3 H) 4.80 (br. (1, J=l3.9 Hz, 1 H) 5.03 (br. (1, J=l2.7 Hz, 1 H) 7.12 (t, J=54.3 Hz, 1 H) 7.31 (dd, J=11.8, 9.0 Hz, 1 H) 7.47 (br. s., 1 H) 7.84 — 7.90 (m, 1 H) 7.96 (dd, J=7.4, 2.2 Hz, 1 H) 8.42 (d, J=1.4 Hz, 1 H) 8.88 (d, J=1.4 Hz, 1 H) 9.32 (br. s., 1 H) 10.09 (br. s., 1 H) .70 (s, 1 H) 11.08 (br. s., 1 H).
Example B 1 8 Preparation of compound 29: (R)methoxy-pyrazinecarboxylic acid [3-(4-amino- 3-fiuoro-2,6-dimethyl-6,7-dihydro-pyrazolo[1,5-a]pyrazinyl)fiuoro-phenyl]- amide /N\N NH(ENick H2N F -Methoxypyrazinecarboxylic acid (97 mg, 0.631 mmol) was added to a mixture of 4-(4,6-dimethoxy-1,3,5-triazinyl)methylmorpholinium chloride (175 mg, 0.631 mmol) in MeOH (2 mL). The mixture was d at room temperature for 5 min, then it was cooled to 0 °C and a solution of intermediate A73 (175 mg, 0.601 mmol) in MeOH (2 mL) was added. The mixture was warmed to room temperature and stirred for 24 hours, The solvent was removed in vacuo and the residue was suspended in DCM and treated with sat. Na2CO3. The organic layer was ted, dried (MgSO4), filtered and concentrated in vacuo. The crude t was purified by flash column tography (silica gel, 7 M NH3 in MeOH/DCM). The d fractions were collected and the solvents evaporated in vacuo. The residue was suspended in EtzO.
The precipitate was filtered off and dried under vacuum at 50°C to yield compound 29 (195 mg, 76%) as a white solid. 1H NMR (500 MHz, DMSO-d6) 5 ppm 1.45 (br. s, 3 H), 2.12 (s, 3 H), 4.02 (s, 3 H), 4.18 (br. d, J=13.0 Hz, 1 H), 4.24 (br. d, J=12.4 Hz, 1 H), 6.26 (br. s., 2 H), 7.17 (dd, J=12.0, 8.8 Hz, 1 H), 7.68 — 7.77 (m, 1 H), 8.04 (br. d, J=5.2 Hz, 1 H), 8.40 (d, J=1.2 Hz, 1 H), 8.87 (d, J=1.2 Hz, 1 H), 10.46 (br. s, 1 H).
Table 1 C4Stereochemistry/ salt R / CF3COOH 2012/053455 _ 67 _ EX. I C4Stere0chemistry/ ><H ---L-Ar No. salt IIw 0E 0E (/3 IIww 0E OE m IIw4; 0E O IIw4; 0E 0E * IIwU} 0E O (I) U} 0E OE 66 0E O HI OE OE RS / CF3COOH y—x O \l OS“ OE OE (I) IIw\l 0:11 0E 0E 66 y—x IIw\l OS“ 0E OE (I) % y—x IIw00 OE OE .1; II 01 OE (I) U: II 0'11 OE 66 y—x O\ HI O’11 OE (I) % _ 68 _ IIIIIII-IIIEX.1 2 3 C4Stere0chemistry/ II Pd(/3 (I) 66 Pd(/3 III W66 IIII (I) 66 IIIIIII IIIII I 0F IICH 0F II0"11 0E R / CF3COOH R / CF3COOH 0F II0 0E 0F IIOE W(I) 0F II0E ”3* 0F II0E 73 _ 69 _ ,M .0U)85g(DE.E“ i.’CD'1 mm N O O'11 0E 76 m N O ’11 0E w N 0F ’11 0E w wN 0F 0 0E w 93 \l w[\J 0 0 I2 w B2 0 O OE w m\o 0 0 '11 OE w O\ 0 0 ’11 0E w N 0 0 ’11 0E 76(/3 N 0 0 ’11 0E w 0 0F ’11 0E w C. cal Part Nuclear Ma netic Resonance NMR 1H NMR spectra were recorded either on a Bruker DPX-4OO or on a Bruker AV-SOO spectrometer with standard pulse sequences, operating at 400 MHz and 500 MHz respectively. Chemical shifts (6) are reported in parts per million (ppm) downfield from tetramethylsilane (TMS), which was used as internal standard ethod For (LC)MS-characterization of the compounds of the present invention, the following methods were used.
WO 17027 General procedure A [or Acquity—Sg 2D instrument The UPLC (Ultra Performance Liquid Chromatography) measurement was performed using an Acquity UPLC (Waters) system comprising a r organizer, a binary pump with degasser, a four column’s oven, a diode-array detector (DAD) and a column as specified in the respective methods. The MS detector was configured with an electrosprayionization . Mass spectra were acquired on a single quadrupole SQD or by scanning from 100 to 1000 in 0.1 second using an channel delay of 0.08 second. The capillary needle voltage was 3.0 kV. The cone voltage was 25 V for positive ionization mode and 30 V for negative tion mode. Nitrogen was used as the nebulizer gas. The source temperature was maintained at 140 oC. Data acquisition was performed with MassLynX-OpenlynX software.
Method 1: In addition to the general procedure A: Reversed phase UPLC was carried out on a BEH-C18 column (1.7 um, 2.1 X 50 mm) from Waters, with a flow rate of 1.0 ml/min, at 50°C without split to the MS detector. The nt conditions used are: 95 % A (0.5 g/l ammonium acetate solution + 5 % acetonitrile), 5 % B (acetonitrile), to 40 % A, 60 % B in 3.8 minutes, to 5 % A, 95 % B in 4.6 minutes, kept to 5.0 s. Injection volume 2.0 ul.
Method 2.‘ In addition to the general procedure A: Reversed phase UPLC was carried out on a RRHD Eclipse Plus-C18 (1.8 um, 2.1 X 50 mm) from Agilent, with a flow rate of 1.0 ml/min, at 50°C without split to the MS detector. The gradient conditions used are: 95 % A (0.5 g/l ammonium acetate solution + 5 % acetonitrile), 5 % B nitrile), to 40 % A, 60 % B in 1.2 minutes, to 5 % A, 95 % B in 1.8 minutes, kept to 2.0 minutes.
Injection volume 2.0 ul.
Method 3: Same gradient as method 1; column used: RRHD Eclipse Plus-C18 (1.8 um, 2.1 X 50 mm) from Agilent.
General procedure B [or HP 1100-MS instruments (TOF or MSD) , Sg 2D The HPLC measurement was performed using an HP 1100 (Agilent Technologies) system comprising a pump (quaternary or binary) with degasser, an autosampler, a column oven, a diode-array detector (DAD) and a column as specified in the respective s. The MS detector (SQD, TOF or MSD) was configured with either an electrospray ionization source or an ESCI dual tion source (electrospray combined with atmospheric pressure chemical ionization). en was used as the nebulizer gas. The source temperature was maintained either at 140°C or 100°C. Data _ 7] _ acquisition was performed either with MassLynX-OpenlynX software or tion- Agilent Data Browser software.
Bl: Mass spectra were acquired on a single quadrupole MSD detector in APCI mode by scanning from 100 to 1000 in 0.99 s, step size of 0.30 and peak width of 0. 10 minutes. The capillary needle voltage was 3.0 Kv, the fragmentor voltage was 70V for positive and negative tion modes and the Corona ity was 4 uA.
B2: Mass spectra were acquired on a single quadrupole SQD detector by scanning from 100 to 1000 in 0.1 second using an inter-channel delay of 0.08 second. The capillary needle voltage was 3.0 kV. The cone voltage was 20 V for positive ionization mode and 30 V for ve ionization mode.
B3: Mass spectra were acquired on a Time of Flight (TOF) detector by scanning from 100 to 750 in 0.5 seconds using a dwell time of 0.3 seconds. The ary needle voltage was 2.5 kV for positive tion mode and 2.9 kV for negative ionization mode. The cone voltage was 20 V for both positive and negative ionization modes.
Leucine-Enkephaline was the standard nce used for the lock mass calibration.
Method 4: In addition to the general procedure Bl: Reversed phase HPLC was carried out on an Eclipse Plus-C18 column (3.5 um, 21 X 30 mm) from Agilent, with a flow rate of 1.0 ml/min, at 60°C. The gradient conditions used are: 95 % A (6.5 mM NH4AcO in N 95/5), 5 % B (ACN), kept 0.2 minutes, to 100 % B in 3.0 minutes, kept to 3. 15 minutes and equilibrated to initial conditions at 3.3 s until 5.0 minutes.
Injection volume 2 ul.
Method 5.' In addition to the general procedure B2: Reversed phase HPLC was d out on an Eclipse Plus-C18 column (3.5 um, 21 X 30 mm) from Agilent, with a flow rate of 1.0 ml/min, at 60°C. The gradient conditions used are: 95 % A (6.5 mM NH4AcO in HgO/ACN 95/5), 5 % B (ACN/ MeOH l/l), to 100 % B in 5.0 minutes, kept to 5. 15 minutes and equilibrated to initial conditions at 5.30 minutes until 7.0 minutes.
Injection volume 2 ul.
Method 6: In addition to the general procedure B3: Reversed phase HPLC was carried out on a e Plus-C18 column (3.5 um, 21 X 30 mm) from Agilent, with a flow rate of 1.0 ml/min, at 60°C. The gradient conditions used are: 95 % A (6.5 mM NH4AcO in HZO/ACN 95/5), 5 % B (ACN), kept 0.2 minutes, to 100 % B in 3.0 minutes, kept to 3.15 minutes and equilibrated to initial conditions at 3.3 minutes until 5.0 minutes.
Injection volume 2 ul. _ 72 _ General procedure C The HPLC ement was performed using an Agilent 1100 module sing a pump, a diode-array detector (DAD) (wavelength used 220 nm), a column heater and a column as specified in the tive s below. Flow from the column was split to a Agilent MSD Series G1946C and G1956A. MS detector was configured with API-ES (atmospheric pressure electrospray ionization). Mass spectra were acquired by ng from 100 to 1000. The capillary needle voltage was 2500 V for positive tion mode and 3000 V for negative ionization mode. Fragmentation e was 50 V. Drying gas temperature was maintained at 350 0C at a flow of 10 l/min.
Method 7: In addition to general procedure C: Reversed phase HPLC was carried out on an YMC- Pack ODS-AQ, 50x20 mm 5um column with a flow rate of 0.8 ml/min. Two mobile phases (mobile phase A: H20 with 0.1 % TFA, mobile phase B: ACNwith 0.05 % TFA) were used. First, 100 % A was hold for 1 minute. Then a gradient was applied to 40 % A and 60 % B in 4 minutes and hold for 2.5 minutes. Typical injection volumes of 2 ul were used. Oven temperature was 50 oC. (MS polarity: positive).
Method 8: In addition to general procedure C: Reversed phase HPLC was d out on an te XB-C18, 50x21 mm 5um column with a flow rate of 0.8 ml/min. Two mobile phases (mobile phase C: 10 mmol/L NH4HC03, mobile phase D:ACN) were used.
First, 100 % C was hold for 1 minute. Then a gradient was applied to 40 % C and 60 % D in 4 minutes and hold for 2.5 minutes. Typical injection volumes of 2 ul were used.
Oven temperature was 50 oC. (MS polarity: positive).
General procedure D The UHPLC measurement was performed using a Shimadzu 2010 LCMS- system comprising a pump, photo diode array detector or (PDA) (wavelength used 220 nm), a column oven and a column as specified in the respective methods below. Flow from the column was split to a Shimadzu 2010 MSD or. MS detector was configured with API-ES (atmospheric pressure electrospray ionization).
Mass spectra were acquired by scanning from 100 to 1000. The interface voltage was 4500 V for positive ionization mode. The nebulizing gas flow was 1.5 l/min. The CDL (Curved Desolvation Line with heated capillary) temperature was 250 oC and the CDL voltage was 30 V. The heat block temperature was 200 oC. The detector voltage was 3 5 1500 V. _ 73 _ Method 9 In addition to general procedure D: Reversed phase UHPLC was carried out on a e C18 (30>< 2.1mm 3.0um) column with a flow rate of 1.2 mL/min. Two mobile phases (A: H20 with 0.15% TFA, B: ACN with 0.75% TFA) were used. First, 100 % A was hold for 1 min. Then a gradient was applied to 40 % A and 60 % B in 0.9 min, kept to 1.5 min and equilibrated to initial conditions at 1.51 min until 2.0 min. Typical injection volumes of 1.0 uL were used. Oven temperature was 50 oC. (MS polarity: positive).
General procedure E The LC measurement was performed using a UPLC (Ultra Performance Liquid Chromatography) Acquity (Waters) system comprising a binary pump with degasser, an mpler, a diode-array detector (DAD) and a column as specified in the respective methods below, the column is held at a temperature of 40°C. Flow from the column was brought to a MS or. The MS detector was configured with an electrospray tion source. Mass a were acquired on a triple quadrupole mass spectrometer Quattro detector (Waters) by scanning from 100 to 1000 in 0.2 seconds using an inter-scan delay of 0.1 seconds. The capillary needle voltage was 3 kV and the source temperature was maintained at 130 oC. Cone voltage was 20V for ve and ve ionization mode. Nitrogen was used as the zer gas. Data acquisition was performed with nX-OpenlynX software (Waters).
Method 10: In addition to the general procedure E: Reversed phase UPLC was carried out on a Waters Acquity BEH (bridged ethylsiloxane/silica hybrid) Phenyl-Hexyl column (1.7 pm, 2.1 X 100 mm) with a flow rate of 0.343 . Two mobile phases (mobile phase A: 95 % 7 mM7 mM NH4AcO / 5 % ACN, mobile phase B: 100 %ACN) were employed to run a gradient condition from 84.2 % A and 15.8 % B (hold for 0.49 minutes) to 10.5 % A and 89.5 % B in 2.18 minutes, hold for 1.94 min and back to the l conditions in 0.73 min, hold for 0.73 minutes. An injection volume of 2 ml was used.
Melting Points Values are either peak values or melt ranges, and are obtained with experimental uncertainties that are commonly associated with this analytical method.
Mettler FP 81HT/FP90 — FP62 apparatus (indicated by FP90 and FP62 in Table 2) For a number of compounds, melting points were determined in open capillary tubes either on a Mettler FP62 or a Mettler FPS lHT/FP90 apparatus. Melting points were _ 74 _ measured with a temperature gradient of 1, 3, 5 or 10°C/minute. Maximum temperature was 300 oC. The melting point was read from a digital display.
Table 2: Analytical data — Rt means ion time (in min), [M+H]+ means the protonated mass of the compound, method refers to the method used for (LC)MS.
[M+H]+ Method Melting Point 1 1.55 338 3 n.d. 2 1.6 381 3 n.d. 3 1.58 415 3 94.4 °C (FP62) 4 2.25 415 10 212.2 °C (FP62) 2.25 415 10 186.3 °C (FP62) 6 1.18 372 3 221.6 °C (FP62) 7 1.98 372 10 281.8 °C (FP62) 8 1.99 372 10 248.8 °C (FP62) 9 1.98 450 3 147.4 °C (FP62) 3.60 483 5 >300 °C (FP90) 11 2.90 483 10 147.8 °C (FP62) 12 2.90 483 10 221.8 °C (FP62) 13 0.97 414 2 99.4 °C (FP90) 14 1.74 433 3 n.d. 2.37 433 10 >300 °C (FP90) 16 2.37 433 10 >300 °C (FP90) 17 1.90 432 3 263.4 °C (FP90) 18 2.45 432 10 248 °C (FP90) 19 2.45 432 10 279.9 °C (FP90) 1.94 419 3 236.9 °C (FP90) 21 2.48 419 10 n.d. 22 2.49 419 10 220.4 °C (FP90) 23 2.26 421 3 276.3 °C (FP90) 24 2.29 408 3 186.4 °C (FP90) 2.23 433 3 180 °C (FP90) 26 2.18 446 3 n.d. 27 2.14 428 3 n.d. _ 75 _ o. R [M+H] Method Melting P01nt 28 2.18 429 3 n.d. 29 2.25 415 3 >300 °C (FP90) 3 .31 446 5 n.d. 31 2.72 446 10 220.9 °C (FP62) 32 2.72 446 10 220 °C (FP62) 33 0.99 401 2 186 °C (FP90) 34 1.47 387 3 187 °C (FP62) 3.24 455 5 87.2 °C (FP62) 36 2.75 401 5 109.8 °C (FP62) 37 2.24 430 3 108.8 °C (FP90) 38 2.32 417 3 >300 °C (FP90) 39 2.53 449 3 n.d. 40 2.04 454 3 n.d. 41 2.18 415 3 n.d. 42 1.94 436 3 n.d. 43 1.86 394 3 n.d. n.d. means not determined SFCMS-Methods General procedure A for SFC—MS methods The SFC measurement was performed using an Analytical SFC system from Berger Instruments (Newark, DE, USA) comprising a dual pump control module (FCM-1200) for delivery of carbon dioxide (C02) and modifier, a thermal control module for column heating (TCM2100) with temperature control in the range 1-150 OC and column selection valves (Valco, VICI, Houston, TX, USA) for six different columns. The photodiode array detector (Agilent 1100, Waldbronn, Germany) is equipped with a high-pressure flow cell (up to 400 bar) and ured with a CTC LC Mini PAL auto r (Leap Technologies, Carrboro, NC, USA). A ZQ mass spectrometer (Waters, d, MA, USA) with an orthogonal Z-electrospray interface is d with the stem. Instrument control, data collection and processing were performed with an integrated platform consisting of the SFC ProNTo software and MasslynX software.
Method 1 In addition to the general ure A: The chiral separation in SFC was carried out on a CHIRALPAK AD-H column (4.6 mm X 500 mm) at 50 °C with a flow rate of3.0 ml/min. The mobile phase is CO2, 20% MeOH (containing 0.2% iPrNH2) hold 15.00 min, isocratic mode.
General procedure B The SFC measurement was performed using an Analytical SFC system from Berger instruments (Newark, DE, USA) comprising a FCM-1200 dual pump fluid control module for delivering carbon dioxide (CO2) and modifier, a CTC Analytics automatic liquid r, a TCM-20000 thermal control module for column heating from room temperature to 80°C. An Agilent 1100 UV photodiode array detector ed with a high-pressure flow cell ng up to 400 bars was used. Flow from the column was split to a MS spectrometer. The MS detector was configured with an atmospheric pressure ionization source. The following ionization parameters for the Waters ZQ mass spectrophotometer are: corona: 9ua, source temp: 140°C, cone: 30 V, probe temp 450°C, extractor 3 V, desolvatation gas 400L/hr, cone gas 70 L/hr.
Nitrogen was used as the nebulizer gas. Data acquisition was performed with a Waters- Micromass MassLynX-OpenlynX data system.
Method 2 In addition to the general procedure B: The chiral separation in SFC was carried out on a CHIRALPAK AD DAICEL column (10 um, 4.6 X 250 mm) at 35 °C with a flow rate of 3.0 ml/min. The mobile phase is CO2, 60% Ethanol, 40% EtOH (containing 0.3% iPrNH2) hold 7 min.
Table 3: Analytical SFC data — Rt means retention time (in min), [M+H]+ means the protonated mass of the compound, method refers to the method used for SFC/MS analysis of enantiomerically pure compounds.
Isomer Co. No. [M+H]+ UV Area% Method n Order" Intermediate A6(S) Intermediate 6.88 230 100 1 B - A6(R) 4 3.17 415 100 2 A - 4.17 415 100 2 B - 7 1.92 372 100 2 A - _ 77 _ Isomer Order" 3.05 2 B 11 4.95 483 100 3 B - 12 4.01 483 100 3 A - 4.14 433 100 4 A - 16 5.17 433 100 4 B - 18 3.07 432 100 5 A - 19 4.15 432 100 5 B - 21 2.81 419 100 3 A - 22 4.17 419 100 3 B - 27 4.37 433 89.33 6 A 79 28 4.97 446 70.11 7 A 40 31 3.33 446 100 3 A - 32 3.90 446 99.44 3 B - 39 5.20 449 91.51 6 A 83 40 3.40 454 93.61 7 A 88 >“A means the first isomer that elutes. B means the second isomer that elutes. The ee was evaluated in the case of enantiomerically not pure nds.
Optical Rotations: Optical rotations were measured on a Perkin-Elmer 341 polarimeter with a sodium lamp and ed as follows: [ochtoc (c g/100 ml, solvent).
Table 4: Analytical data — Optical rotation values for enantiomerically pure com I ounds Wavelength Concentration Solvent Temp.
Co. No. OLD (0) w/v% ° C 4 +20. 3 0 56 -3l.6 589 0.5 DMF 20 7 -70.7 589 0.45 DMF 20 8 +456 589 0.41 DMF 20 11 12.0 589 0.50 MeOH 20 12 -18.8 589 0.50 MeOH 20 2012/053455 _ 78 _ nm w/v% ° C 13 83.7 589 0.55 DVIF 20 18 136.8 589 0.51 DVIF 20 19 -l40.8 589 0.50 DVIF 20 21 -126.7 589 0.51 DVIF 20 22 115.2 589 0.54 DVIF 20 23 144.4 589 0.50 DVIF 20 24 111.4 589 0.51 DVIF 20 121.1 589 0.50 DVIF 20 29 111.0 589 0.51 DVIF 20 31 17.9 589 0.50 MeOH 20 32 -26.4 589 0.50 MeOH 20 33 56.6 589 0.65 DMF 20 81.5 589 0.50 DMF 20 37 29.2 589 0.52 DMF 20 38 14.8 589 0.49 DMF 20 41 65.2 589 0.50 DMF 20 42 77.1 589 0.50 DMF 20 n.d. means not determined Pharmacological examples The compounds provided in the present invention are inhibitors of the B-site APP-cleaving enzyme 1 (BACEl). Inhibition of BACEl, an aspartic protease, is ed to be relevant for treatment of Alzheimer’s Disease (AD). The production and accumulation of B-amyloid peptides (AB) from the B-amyloid precursor protein (APP) is believed to play a key role in the onset and progression of AD. AB is ed from the amyloid precursor protein (APP) by sequential cleavage at the N— and C-termini of the AB domain by etase and etase, respectively.
Compounds ofFormula (I) are expected to have their effect substantially at BACEl by virtue of their ability to inhibit the enzymatic activity. The behaviour of such inhibitors tested using a biochemical Fluorescence Resonance Energy Transfer (FRET) based assay and a cellular dlisa assay in SKNBE2 cells described below and which are le for the identification of such compounds, and more particularly the compounds according to Formula (I), are shown in Table 3.
Biochemical FRET based assay This assay is a Fluorescence Resonance Energy Transfer Assay (FRET) based assay. The ate for this assay is an APP derived 13 amino acids peptide that ns the ‘Swedish’ Lys-Met/Asn-Leu mutation of the amyloid precursor protein (APP) B-secretase cleavage site. This substrate also ns two fluorophores: (7-methoxycoumarinyl) acetic acid (Mca) is a fluorescent donor with excitation wavelength at 320 nm and emission at 405 nm and 2,4-Dinitrophenyl (an) is a proprietary quencher acceptor. The distance between those two groups has been ed so that upon light excitation, the donor fluorescence energy is significantly quenched by the acceptor, through resonance energy transfer. Upon cleavage by BACEl, the hore Mca is separated from the quenching group an, ing the full fluorescence yield of the donor. The increase in fluorescence is linearly related to the rate of proteolysis (Koike H el al. J. Biochem. 1999, 126, 23 5-242).
Briefly in a 384-well format recombinant BACEl protein in a final concentration of l ug/ml is incubated for 120 min at room temperature with 10 um substrate in incubation buffer (40mM Citrate buffer pH 5.0, 0.04% PEG, 4% DMSO) in the absence or ce of compound. Next the amount of proteolysis is directly measured by fluorescence measurement at T=0 and T=l20 (excitation at 320 nm and on at 405 nm). Results are expressed in RFU, as difference between T120 and TO A best-fit curve is fitted by a m sum of squares method to the plot of %Controlmin versus compound concentration. From this an IC50 value (inhibitory concentration causing 50% inhibition of activity) can be obtained.
LC = Median of the low control values = Low control: Reaction without enzyme HC = Median of the High control values = High Control: Reaction with enzyme %Effect = 100-[(sample-LC) / (HC-LC) >“100] %Control = (sample /HC)* 100 %Controlmin = (sample-LC) / (HC-LC) >“100 The following exemplified compounds were tested essentially as described above and exhibited the ing the activity: Table 5 Biochemical FRET based assay Co. No.
IIC50 1 6.28 2 7.08 WO 17027 _ 80 _ IC50 3 7.33 4 4.67 7.43 6 7.25 7 7.75 8 4.86 9 5.1 7.2 11 7.55 12 5.06 13 7.14 14 7.45 7.73 16 5.98 17 7.24 18 7.65 19 5.01 7.18 21 <4.52 22 7.59 23 7.4 24 7.49 7.56 26 7.31 27 7.22 28 7.16 29 7.09 6.77 31 4.97 32 7.20 33 7.19 _ 8] _ IC50 34 7.23 6.91 36 7.04 37 5.86 38 6.03 39 7.39 40 7.28 41 6.93 42 7.12 43 7.53 Cellular alisa assay in SKNBE2 cells In two dlisa assays the levels of ABtotal and A1342 produced and secreted into the medium of human neuroblastoma SKNBE2 cells are quantified. The assay is based on the human neuroblastoma SKNBE2 expressing the wild type Amyloid Precursor Protein (hAPP695). The compounds are d and added to these cells, incubated for 18 hours and then ements of A1342 and A13total are taken. A13total and A1342 are measured by sandwich alisa. dlisa is a sandwich assay using biotinylated antibody AbN/25 attached to streptavidin coated beads and antibody Ab4G8 or cAb42/26 conjugated acceptor beads for the detection of A13total and A1342 tively. In the presence of A13total or A1342, the beads come into close proximity. The excitation of the Donor beads provokes the release of singlet oxygen molecules that triggers a cascade of energy transfer in the Acceptor beads, resulting in light emission. Light emission is measured after 1 hour tion (excitation at 650nm and emission at 615nm).
A best-fit curve is fitted by a minimum sum of squares method to the plot of %Controlmin versus compound concentration. From this an IC50 value (inhibitory concentration causing 50% inhibition of activity) can be obtained.
LC = Median of the low l values = Low l: cells preincubated without compound, without biotinylated Ab in the alisa HC = Median of the High control values = High Control: cells preincubated without nd t = 100-[(sample-LC) / (HC-LC) >“100] %Control = (sample /HC)* 100 _ 82 _ olmin = (sample-LC) / (HC-LC) >“100 The following exemplified compounds were tested essentially as described above and exhibited the following the activity: Table 6 Cellular alisa assay in Cellular alisa assay in SKNBE2 cells SKNBE2 cells Co. No.
Afitotal IC50 21 <5 <5 22 7.17 7.21 23 8.75 8.71 24 8.48 8.41 8.88 8.87 _ 83 _ ar alisa assay in Cellular alisa assay in SKNBEZ cells SKNBEZ cells Afitotal n.t. means not tested tration ofin vivo eflicacy AB peptide lowering agents of the invention can be used to treat AD in mammals such as humans or alternatively demonstrating y in animal models such as, but not limited to, the mouse, rat, or guinea pig. The mammal may not be diagnosed with AD, or may not have a c predisposition for AD, but may be transgenic such that it overproduces and eventually deposits AB in a manner similar to that seen in humans afflicted with AD.
AB peptide lowering agents can be administered in any standard form using any standard method. For example, but not limited to, AB peptide lowering agents can be in the form of liquid, tablets or capsules that are taken orally or by injection. AB peptide lowering agents can be administered at any dose that is sufficient to significantly WO 17027 2012/053455 reduce levels of AB es in the blood, blood plasma, serum, cerebrospinal fluid (CSF), or brain.
To determine whether acute administration of an AB42 peptide lowering agent would reduce AB peptide levels in vivo, non-transgenic rodents, e. g. mice or rats were used. s treated with the AB peptide lowering agent were examined and compared to those untreated or treated with vehicle and brain levels of soluble AB42 and total AB were quantitated by standard techniques, for example, using ELISA. ent periods varied from hours (h) to days and were adjusted based on the results of the AB42 ng once a time course of onset of effect could be established.
A typical protocol for measuring AB42 lowering in vivo is shown but it is only one of many variations that could be used to optimize the levels of detectable AB. For example, AB e ng compounds were formulated in 20 % hydroxypropyl B cyclodextrin. The AB peptide ng agents were administered as a single oral dose (p.o.) or a single subcutaneous dose (s.c.) to overnight fasted animals. After a certain time, usually 2 or 4 h (as indicated in Table 7), the animals were sacrificed and AB42 levels were analysed.
Blood was collected by decapitation and exsanguinations in reated tion tubes. Blood was centrifuged at 1900 g for 10 minutes (min) at 4 OC and the plasma recovered and flash frozen for later analysis. The brain was removed from the cranium and hindbrain. The cerebellum was removed and the left and right hemisphere were separated. The left hemisphere was stored at -18 0C for quantitative analysis of test compound levels. The right hemisphere was rinsed with phosphate-buffered saline (PB S) buffer and immediately frozen on dry ice and stored at -80 0C until homogenization for biochemical assays.
Mouse brains from non-transgenic animals were resuspended in 8 volumes of 0.4 % DEA (diethylamine) /50 mM NaCl containing protease inhibitors (Roche- 11873580001 or 59001) per gram oftissue, e.g. for 0.158 g brain, add 1.264 ml of 0.4 % DEA. All samples were homogenized in the FastPrep-24 system (MP Biomedicals) using lysing matrix D (MPBio #6913-100) at 6m/s for 20 seconds.
Homogenates were centrifuged at 221.300 x g for 50 min. The resulting high speed supematants were then transferred to fresh eppendorf tubes. Nine parts of supernatant were neutralized with 1 part 0.5 M Tris-HCl pH 6.8 and used to quantify ABtotal and A842.
To quantify the amount of ABtotal and A842 in the soluble fraction of the brain homogenates, Enzyme-Linked-Immunosorbent-Assays were used . Briefly, the standards (a dilution of synthetic AB1-40 and AB1-42, Bachem) were ed in 1.5 ml Eppendorf tube in Ultraculture, with final concentrations ranging from 10000 to 0.3 pg/ml. The samples and standards were co-incubated with HRPO-labelled N—terminal antibody for A1342 detection and with the biotinylated mid-domain antibody 4G8 for A13total ion. 50 ul of conjugate/sample or conjugate/standards mixtures were then added to the antibody-coated plate (the capture antibodies selectively recognize the C-terminal end of A1342, antibody JRF/cA1342/26, for A1342 detection and the N—terminus of A13, antibody JRF/rA13/2, for A13total detection). The plate was allowed to incubate overnight at 4 0C in order to allow ion of the antibody- amyloid complex. Following this incubation and subsequent wash steps the ELISA for A1342 quantification was finished by addition of Quanta Blu fiuorogenic peroxidase substrate according to the manufacturer’s instructions (Pierce Corp, Rockford, 11). A reading was performed after 10 to 15 min (excitation 320 nm /emission 420 nm).
For A13total detection, a Streptavidine-Peroxidase-Conjugate was added, followed 60 min later by an addional wash step and addition of Quanta Blu fiuorogenic peroxidase substrate according to the cturer’s ctions (Pierce Corp, Rockford, 11). A reading was med after 10 to 15 min (excitation 320 nm /emission 420 nm).
In this model at least 20 % A1342 lowering compared to untreated animals would be advantageous.
The following ified nds were tested essentially as described above and exhibited the following the activity: Table 7: A1342 ABtotal Route of Time after (%Ctrl)_Mea (%Ctrl)_Mea administration administration 1—: 1—: _ 86 _ AB42 ABtotal Route of Time after (%Ctrl)_Mea (%Ctrl)_Mea administration administration n.t. means not ; s.c. means subcutaneous ; p.o. means oral

Claims (12)

Claims
1. A compound of Formula (I) R1 N H2N N X4 L X1 X3 5 X2 or a er or a stereoisomeric form thereof, wherein R1 and R2 are independently selected from the group consisting of hydrogen, halo, cyano, C1-3alkyl, mono- and polyhalo-C1-3alkyl or C3-6cycloalkyl; R3 is selected from the group consisting of hydrogen, C1-3alkyl, 10 C3-6cycloalkyl, mono- and lo-C1-3alkyl, homoaryl and heteroaryl; X1, X2, X3, X4 are independently C(R4) or N, ed that no more than two thereof represent N; each R4 is selected from the group consisting of hydrogen, halo, C1-3alkyl, mono- and polyhalo-C1-3alkyl, cyano, C1-3alkyloxy, mono- and polyhalo-C1-3alkyloxy; 15 L is a bond or -N(R5)CO-, wherein R5 is hydrogen or C1-3alkyl; Ar is homoaryl or heteroaryl; wherein homoaryl is phenyl or phenyl tuted with one, two or three substituents selected from the group consisting of halo, cyano, C1-3alkyl, C1-3alkyloxy, mono- and polyhalo-C1-3alkyl, mono- and polyhalo-C1-3alkyloxy; 20 aryl is selected from the group consisting of pyridyl, pyrimidyl, pyrazyl, pyridazyl, furanyl, thienyl, pyrrolyl, pyrazolyl, imidazolyl, triazolyl, thiazolyl, thiadiazolyl, oxazolyl, and oxadiazolyl, each optionally substituted with one, two or three tuents selected from the group consisting of halo, cyano, C1-3alkyl, kyloxy, mono- and polyhalo-C1-3alkyl, mono- and polyhalo-C1-3alkyloxy; or 25 an addition salt or a solvate thereof.
2. The compound of claim 1 wherein, R1 and R2 are ndently selected from hydrogen and C1-3alkyl; X1, X2, X3, X4 are independently C(R4) wherein each R4 is selected from en and halo; L is a bond or -N(R5)CO-, wherein R5 is hydrogen; Ar is homoaryl or aryl; 5 wherein homoaryl is phenyl or phenyl substituted with one or two substituents selected from the group consisting of halo, cyano, C 1-3alkyl, C1-3alkyloxy, and polyhalo-C1-3alkyloxy; heteroaryl is selected from the group consisting of pyridyl, pyrimidyl, and pyrazyl, each optionally substituted with one or two substituents selected from the group 10 consisting of halo, cyano, C1-3alkyl, C1-3alkyloxy, and lo-C1-3alkyloxy; or an addition salt or a solvate thereof.
3. The compound of claim 1 wherein, R1 and R2 are hydrogen; 15 X1, X2, X3, X4 are CH; L is a bond or -N(R5)CO-, wherein R5 is en; Ar is homoaryl or heteroaryl; wherein homoaryl is phenyl substituted with chloro; heteroaryl is selected from the group consisting of pyridyl and pyrimidyl, each 20 optionally substituted with one or two substituents selected from the group consisting of chloro, fluoro, cyano, methyl, and y; or an addition salt or a solvate thereof.
4. The compound of claim 1 wherein the carbon atom substituted with R3 has the 25 R-configuration.
5. A pharmaceutical ition comprising a therapeutically effective amount of a compound as defined in any one of claims 1 to 4 and a ceutically acceptable r.
6. A process for preparing a pharmaceutical composition as defined in claim 5, wherein a pharmaceutically acceptable carrier is intimately mixed with a therapeutic ally effective amount of a compound as defined in any one of claims 1 to 4.
7. A compound as defined in any one of claims 1 to 4 for use in the treatment, prevention or prophylaxis of Alzheimer's disease (AD), mild cognitive impairment, senility, dementia, dementia with Lewy , Down's syndrome, dementia associated with stroke, dementia associated with Parkinson's disease or dementia 5 associated with beta-amyloid.
8. Use of a compound as defined in any one of claims 1 to 4 or a pharmaceutical composition as defined in claim 5 in the manufacture of a medicament for treating a disorder selected from the group ting of Alzheimer's disease, mild 10 cognitive impairment, senility, ia, dementia with Lewy bodies, Down's syndrome, ia associated with stroke, dementia associated with Parkinson's disease and ia associated with beta-amyloid.
9. The compound of claim 1, ntially as herein described with reference to any 15 one of the es thereof.
10. The pharmaceutical composition of claim 5, wherein the compound is substantially as herein described with reference to any one of the Examples thereof. 20
11. The process of claim 6, wherein the nd is substantially as herein described with reference to any one of the Examples thereof.
12. The use of claim 8, substantially as herein described with reference to any one of the Examples thereof.
NZ614551A 2011-03-01 2012-02-29 6,7-dihydro-pyrazolo[1,5-a]pyrazin-4-ylamine derivatives useful as inhibitors of beta-secretase (bace) NZ614551B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11156463.9 2011-03-01
EP11156463 2011-03-01
PCT/EP2012/053455 WO2012117027A1 (en) 2011-03-01 2012-02-29 6,7-dihydro-pyrazolo[1,5-a]pyrazin-4-ylamine derivatives useful as inhibitors of beta-secretase (bace)

Publications (2)

Publication Number Publication Date
NZ614551A NZ614551A (en) 2014-06-27
NZ614551B2 true NZ614551B2 (en) 2014-09-30

Family

ID=

Similar Documents

Publication Publication Date Title
CA2824360C (en) 6,7-dihydro-pyrazolo[1,5-a]pyrazin-4-ylamine derivatives useful as inhibitors of beta-secretase (bace)
EP2683721B1 (en) 3,4-DIHYDRO-PYRROLO[1,2-a]PYRAZIN-1-YLAMINE DERIVATIVES USEFUL AS INHIBITORS OF BETA-SECRETASE (BACE)
CA2807904C (en) 4,7-dihydro-pyrazolo[1,5-a]pyrazin-6-ylamine derivatives useful as inhibitors of beta-secretase (bace)
CA2819175C (en) 5,6-dihydro-imidazo[1,2-a]pyrazin-8-ylamine derivatives useful as inhibitors of beta-secretase (bace)
NZ614551B2 (en) 6,7-dihydro-pyrazolo[1,5-a]pyrazin-4-ylamine derivatives useful as inhibitors of beta-secretase (bace)
NZ615720B2 (en) 3,4-DIHYDRO-PYRROLO[1,2-a]PYRAZIN-1-YLAMINE DERIVATIVES USEFUL AS INHIBITORS OF BETA-SECRETASE (BACE)
NZ626662A (en) 6-difluoromethyl-5,6-dihydro-2h-[1,4]oxazin-3-amine derivatives