NZ613087B2 - Histone deacetylase inhibitors and compositions and methods of use thereof - Google Patents

Histone deacetylase inhibitors and compositions and methods of use thereof Download PDF

Info

Publication number
NZ613087B2
NZ613087B2 NZ613087A NZ61308712A NZ613087B2 NZ 613087 B2 NZ613087 B2 NZ 613087B2 NZ 613087 A NZ613087 A NZ 613087A NZ 61308712 A NZ61308712 A NZ 61308712A NZ 613087 B2 NZ613087 B2 NZ 613087B2
Authority
NZ
New Zealand
Prior art keywords
henyl
alkyl
hydroxy
optionally substituted
phenylcyclopropanecarboxamide
Prior art date
Application number
NZ613087A
Other versions
NZ613087A (en
Inventor
Perla Breccia
Roland W Burli
Celia Dominguez
Alan F Haughan
Samantha J Hughes
Christopher A Luckhurst
John E Mangette
Ignacio Munozsanjuan
Andrew J Stott
Original Assignee
Chdi Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chdi Foundation Inc filed Critical Chdi Foundation Inc
Priority claimed from PCT/US2012/022216 external-priority patent/WO2012103008A1/en
Publication of NZ613087A publication Critical patent/NZ613087A/en
Publication of NZ613087B2 publication Critical patent/NZ613087B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C259/00Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups
    • C07C259/04Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids
    • C07C259/08Compounds containing carboxyl groups, an oxygen atom of a carboxyl group being replaced by a nitrogen atom, this nitrogen atom being further bound to an oxygen atom and not being part of nitro or nitroso groups without replacement of the other oxygen atom of the carboxyl group, e.g. hydroxamic acids having carbon atoms of hydroxamic groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/02Systems containing only non-condensed rings with a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/14Sulfonamides having sulfur atoms of sulfonamide groups bound to carbon atoms of rings other than six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D205/00Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom
    • C07D205/02Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings
    • C07D205/04Heterocyclic compounds containing four-membered rings with one nitrogen atom as the only ring hetero atom not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D207/00Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D207/02Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D207/04Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D207/10Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/46Iso-indoles; Hydrogenated iso-indoles with an oxygen atom in position 1
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/56Nitrogen atoms
    • C07D211/58Nitrogen atoms attached in position 4
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/68Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member
    • C07D211/70Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having one double bond between ring members or between a ring member and a non-ring member with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/54Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/56Amides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/18Halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • C07D233/61Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms with hydrocarbon radicals, substituted by nitrogen atoms not forming part of a nitro radical, attached to ring nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/64Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms, e.g. histidine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D237/00Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings
    • C07D237/02Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings
    • C07D237/06Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
    • C07D237/08Heterocyclic compounds containing 1,2-diazine or hydrogenated 1,2-diazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/26Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D263/00Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings
    • C07D263/02Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings
    • C07D263/30Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D263/32Heterocyclic compounds containing 1,3-oxazole or hydrogenated 1,3-oxazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D265/00Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D265/281,4-Oxazines; Hydrogenated 1,4-oxazines
    • C07D265/341,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings
    • C07D265/361,4-Oxazines; Hydrogenated 1,4-oxazines condensed with carbocyclic rings condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D267/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one oxygen atom as the only ring hetero atoms
    • C07D267/02Seven-membered rings
    • C07D267/08Seven-membered rings having the hetero atoms in positions 1 and 4
    • C07D267/12Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D267/14Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/22Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • C07D277/30Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/14Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D295/155Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals with the ring nitrogen atoms and the carbon atoms with three bonds to hetero atoms separated by carbocyclic rings or by carbon chains interrupted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/44Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D317/46Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 ortho- or peri-condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/141,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
    • C07D319/161,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • C07D319/18Ethylenedioxybenzenes, not substituted on the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/06Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/08Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/08Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing alicyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems

Abstract

The disclosure relates to substituted phenylcyclopropanecarboxamide derivatives of formula (I) and pharmaceutically acceptable salt thereof, which are histone deacetylase (HDAC) inhibitors, wherein the variables are as defined in the specification. These compounds of formula (I) are suitable for treating a condition or disorder mediated by at least one histone deacetylase in a subject, and therefore useful for treating a neurodegenerative pathology, particularly Huntington's disease. ating a condition or disorder mediated by at least one histone deacetylase in a subject, and therefore useful for treating a neurodegenerative pathology, particularly Huntington's disease.

Description

HISTONE DEACETYLASE INHIBITORS AND COMPOSITIONS AND METHODS OF USE THEREOF This application claims the benefit of priority of U.S. Application No. 61/435,678, filed January 24, 2011, which is incorporated herein by reference for all purposes.
Provided herein are certain histone deacetylase (HDAC) inhibitors, compositions thereof, and methods of their use.
Histone deacetylases (HDACs) are zinc-containing enzymes which catalyse the removal of acetyl groups from the s-arnino termini of lysine residues clustered near the amino terminus of nucleosomal histones. There are 11 known metal-dependent human histone deacetylases, grouped into four classes based on the structure of their accessory domains. Class I includes HDAC1, HDAC2, HDAC3, and HDAC8 and have homology to yeast RPD3. HDAC4, HDAC5, HDAC7, and HDAC9 belong to Class Ila and have homology to yeast HDAC1.
HDAC6 and HDAC10 contain two catalytic sites and are classified as Class llb, whereas HDAC11 has conserved residues in its catalytic center that are shared by both Class I and Class II deacetylases and is sometimes placed in Class IV.
Provided is a compound of Formula I Formula I or a pharmaceutically acceptable salt thereof wherein R1 and R2 are independently chosen from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; R3 is chosen from -COOH, -C(O)NH(OH) and -N(OH)C(O)R4; R3a is chosen from hydrogen and lower alkyl optionally substituted with halo; and R4 is chosen from hydrogen and lower alkyl; wherein if R1 and R2 are both phenyl and R3a is hydrogen, then R3 is -N(OH)C(O)H or -C(O)NH(OH).
Also provided is a pharmaceutical composition comprising a compound, or a pharmaceutically acceptable salt thereof, described herein and at least one pharmaceutically acceptable excipient.
Also provided is a method of treating a condition or disorder mediated by at least one histone deacetylase in a subject in need of such a treatment which method comprises administering to the subject a therapeutically effective amount of a compound, or a pharmaceutically acceptable salt thereof, described herein.
As used in the present specification, the following words, phrases and symbols are generally intended to have the meanings as set forth below, except to the extent that the context in which they are used indicates otherwise.
A dash ("-") that is not between two letters or symbols is used to indicate a point of attachment for a substituent. For example, -CONH2 is attached through the carbon atom.
By "optional" or "optionally" is meant that the subsequently described event or circumstance may or may not occur, and that the description includes instances where the event or circumstance occurs and instances in which it does not. For example, "optionally substituted alkyl" encompasses both "alkyl" and "substituted alkyl" as defined below. It will be understood by those skilled in the art, with respect to any group containing one or more substituents, that such groups are not intended to introduce any substitution or substitution patterns that are sterically impractical, synthetically non-feasible and/or inherently unstable.
"Alkyl" encompasses straight chain and branched chain having the indicated number of carbon atoms, usually from 1 to 20 carbon atoms, for example 1 to 8 carbon atoms, such as 1 to 6 carbon atoms. For example C1-C6 alkyl encompasses both straight and branched chain alkyl of from 1 to 6 carbon atoms. Examples of alkyl groups include methyl, ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, pentyl, 2-pentyl, isopentyl, neopentyl, hexyl, 2-hexyl, 3-hexyl, 3-methylpentyl, and the like. Alkylene is another subset of alkyl, referring to the same residues as alkyl, but having two points of attachment. Alkylene groups will usually have from 2 to 20 carbon atoms, for example 2 to 8 carbon atoms, such as from 2 to 6 carbon atoms. For example, Co alkylene indicates a covalent bond and C1 alkylene is a methylene group. When an alkyl residue having a specific number of carbons is named, all geometric isomers having that number of carbons are intended to be encompassed; thus, for example, "butyl" is meant to include n-butyl, sec-butyl, isobutyl and t-butyl; "propyl" includes n-propyl and isopropyl. "Lower alkyl" refers to alkyl groups having 1 to 4 carbons.
"Cycloalkyl" indicates a non-aromatic, fully saturated carbocyclic ring having the indicated number of carbon atoms, for example, 3 to 10, or 3 to 8, or 3 to 6 ring carbon atoms. Cycloalkyl groups may be monocyclic or polycyclic (e.g., bicyclic, tricyclic). Examples of cycloalkyl groups include cyclopropyl, cyclobutyl, cyclopentyl, cyclopentenyl and cyclohexyl, as well as bridged and caged ring groups (e.g., norbornane, bicyclo[2.2.2]octane). In addition, one ring of a polycyclic cycloalkyl group may be aromatic, provided the polycyclic cycloalkyl group is bound to the parent structure via a non-aromatic carbon. For example, a 1,2,3,4-tetrahydronaphthalenyl group (wherein the moiety is bound to the parent structure via a non-aromatic carbon atom) is a cycloalkyl group, while 1,2,3,4-tetrahydronaphthalenyl (wherein the moiety is bound to the parent structure via an aromatic carbon atom) is not considered a cycloalkyl group.
By "alkoxy" is meant an alkyl group of the indicated number of carbon atoms attached through an oxygen bridge such as, for example, methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, sec-butoxy, tert-butoxy, pentoxy, 2- pentyloxy, isopentoxy, neopentoxy, hexoxy, 2-hexoxy, 3-hexoxy, 3- methylpentoxy, and the like. Alkoxy groups will usually have from 1 to 6 carbon atoms attached through the oxygen bridge. "Lower alkoxy" refers to alkoxy groups having 1 to 4 carbons.
"Aryl" indicates an aromatic carbon ring having the indicated number of carbon atoms, for example, 6 to 12 or 6 to 10 carbon atoms. Aryl groups may be monocyclic or polycyclic (e.g., bicyclic, tricyclic). In some instances, both rings of a polycyclic aryl group are aromatic (e.g., naphthyl). In other instances, polycyclic aryl groups may include a non-aromatic ring (e.g., cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl) fused to an aromatic ring, provided the polycyclic aryl group is bound to the parent structure via an atom in the aromatic ring. Thus, a 1,2,3,4-tetrahydronaphthalenyl group (wherein the moiety is bound to the parent structure via an aromatic carbon atom) is considered an aryl group, while 1,2,3,4-tetrahydronaphthalenyl (wherein the moiety is bound to the parent structure via a non-aromatic carbon atom) is not considered an aryl group. Similarly, a 1,2,3,4-tetrahydroquinolinyl group (wherein the moiety is bound to the parent structure via an aromatic carbon atom) is considered an aryl group, while 1,2,3,4-tetrahydroquinolinyl group (wherein the moiety is bound to the parent structure via a non-aromatic nitrogen atom) is not considered an aryl group. However, the term "aryl" does not encompass or overlap with "heteroaryl", as defined herein, regardless of the point of attachment (e.g., both quinolinyl and quinolinyl are heteroaryl groups). In some instances, aryl is phenyl or naphthyl. In certain instances, aryl is phenyl.
Bivalent radicals formed from substituted benzene derivatives and having the free valences at ring atoms are named as substituted phenylene radicals. Bivalent radicals derived from univalent polycyclic hydrocarbon radicals whose names end in "-yl" by removal of one hydrogen atom from the carbon atom with the free valence are named by adding "-idene" to the name of the corresponding univalent radical, e.g., a naphthyl group with two points of attachment is termed naphthylidene.
The term "halo" includes fluoro, chloro, bromo, and iodo, and the term "halogen" includes fluorine, chlorine, bromine, and iodine.
"Heteroaryl" indicates an aromatic ring containing the indicated number of atoms (e.g., 5 to 12, or 5 to 10 membered heteroaryl) made up of one or more heteroatoms (e.g., 1, 2, 3 or 4 heteroatoms) selected from N, 0 and S and with the remaining ring atoms being carbon. Heteroaryl groups do not contain adjacent Sand 0 atoms. In some embodiments, the total number of S and 0 atoms in the heteroaryl group is not more than 2. In some embodiments, the total number of S and 0 atoms in the heteroaryl group is not more than 1.
Unless otherwise indicated, heteroaryl groups may be bound to the parent structure by a carbon or nitrogen atom, as valency permits. For example, "pyridyl" includes 2-pyridyl, 3-pyridyl and 4-pyridyl groups, and "pyrrolyl" includes 1-pyrrolyl, 2-pyrrolyl and 3-pyrrolyl groups. When nitrogen is present in a heteroaryl ring, it may, where the nature of the adjacent atoms and groups permits, exist in an oxidized state (i.e., N+-0} Additionally, when sulfur is present in a heteroaryl ring, it may, where the nature of the adjacent atoms and groups permits, exist in an oxidized state (i.e., s-o or 802). Heteroaryl groups may be monocyclic or polycyclic (e.g., bicyclic, tricyclic).
In some instances, a heteroaryl group is monocyclic. Examples include pyrrole, pyrazole, imidazole, triazole (e.g., 1,2,3-triazole, 1,2,4-triazole, 1,2,4-triazole), tetrazole, furan, isoxazole, oxazole, oxadiazole (e.g., 1,2,3- oxadiazole, 1,2,4-oxadiazole, 1,3,4-oxadiazole), thiophene, isothiazole, thiazole, thiadiazole (e.g., 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,3,4-thiadiazole), pyridine, pyridazine, pyrimidine, pyrazine, triazine (e.g., 1,2,4-triazine, 1,3,5-triazine) and tetrazine.
In some instances, both rings of a polycyclic heteroaryl group are aromatic. Examples include indole, isoindole, indazole, benzoimidazole, benzotriazole, benzofuran, benzoxazole, benzoisoxazole, benzoxadiazole, benzothiophene, benzothiazole, benzoisothiazole, benzothiadiazole, 1 H­ pyrrolo[2,3-b]pyridine, 1 H-pyrazolo[3,4-b]pyridine, 3H-imidazo[4,5-b]pyridine, 3H­ [1,2,3]triazolo[4,5-b]pyridine, 1 H-pyrrolo[3,2-b]pyridine, 1 H-pyrazolo[4,3- b]pyridine, 1 H-imidazo[4,5-b]pyridine, 1 H-[1,2,3]triazolo[4,5-b]pyridine, 1 H­ pyrrolo[2,3-c]pyridine, 1 H-pyrazolo[3,4-c]pyridine, 3H-imidazo[4,5-c]pyridine, 3H­ [1,2,3]triazolo[4,5-c]pyridine, 1 H-pyrrolo[3,2-c]pyridine, 1 H-pyrazolo[4,3- c]pyridine, 1 H-imidazo[4,5-c]pyridine, 1 H-[1,2,3]triazolo[4,5-c]pyridine, furo[2,3- b]pyridine, oxazolo[5,4-b]pyridine, isoxazolo[5,4-b]pyridine, [1,2,3]oxadiazolo[5,4- b]pyridine, furo[3,2-b]pyridine, oxazolo[4,5-b]pyridine, isoxazolo[4,5-b]pyridine, [1,2,3]oxadiazolo[4,5-b]pyridine, furo[2,3-c]pyridine, oxazolo[5,4-c]pyridine, isoxazolo[5,4-c]pyridine, [1,2,3]oxadiazolo[5,4-c]pyridine, furo[3,2-c]pyridine, oxazolo[4,5-c]pyridine, isoxazolo[4,5-c]pyridine, [1,2,3]oxadiazolo[4,5-c]pyridine, thieno[2,3-b]pyridine, thiazolo[5,4-b]pyridine, isothiazolo[5,4-b]pyridine, [1,2,3]thiadiazolo[5,4-b]pyridine, thieno[3,2-b]pyridine, thiazolo[4,5-b]pyridine, isothiazolo[4,5-b]pyridine, [1,2,3]thiadiazolo[4,5-b]pyridine, thieno[2,3-c]pyridine, thiazolo[5,4-c]pyridine, isothiazolo[5,4-c]pyridine, [1,2,3]thiadiazolo[5,4-c]pyridine, thieno[3,2-c]pyridine, thiazolo[4,5-c]pyridine, isothiazolo[4,5-c]pyridine, [1,2,3]thiadiazolo[4,5-c]pyridine, quinoline, isoquinoline, cinnoline, quinazoline, quinoxaline, phthalazine, naphthyridine (e.g., 1,8-naphthyridine, 1,7- naphthyridine, 1,6-naphthyridine, 1,5-naphthyridine, 2,7-naphthyridine, 2,6- naphthyridine), imidazo[1,2-a]pyridine, 1 H-pyrazolo[3,4-d]thiazole, 1 H­ pyrazolo[4,3-d]thiazole and imidazo[2, 1-b]thiazole.
In other instances, polycyclic heteroaryl groups may include a non­ aromatic ring (e.g., cycloalkyl, cycloalkenyl, heterocycloalkyl, heterocycloalkenyl) fused to a heteroaryl ring, provided the polycyclic heteroaryl group is bound to the parent structure via an atom in the aromatic ring. For example, a 4,5,6,7- tetrahydrobenzo[d]thiazolyl group (wherein the moiety is bound to the parent structure via an aromatic carbon atom) is considered a heteroaryl group, while 4,5,6,7-tetrahydrobenzo[d]thiazolyl (wherein the moiety is bound to the parent structure via a non-aromatic carbon atom) is not considered a heteroaryl group.
"Heterocycloalkyl" indicates a non-aromatic, fully saturated ring having the indicated number of atoms (e.g., 3 to 10, or 3 to 7, membered heterocycloalkyl) made up of one or more heteroatoms (e.g., 1, 2, 3 or 4 heteroatoms) selected from N, 0 and Sand with the remaining ring atoms being carbon. Heterocycloalkyl groups may be monocyclic or polycyclic (e.g., bicyclic, tricyclic).
Examples of monocyclic heterocycloalkyl groups include oxiranyl, aziridinyl, azetidinyl, pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidinyl, piperazinyl, morpholinyl and thiomorpholinyl.
When nitrogen is present in a heterocycloalkyl ring, it may, where the nature of the adjacent atoms and groups permits, exist in an oxidized state (i.e., N+-0} Examples include piperidinyl N-oxide and morpholinyl-N-oxide.
Additionally, when sulfur is present in a heterocycloalkyl ring, it may, where the nature of the adjacent atoms and groups permits, exist in an oxidized state (i.e., s-o or -S02-). Examples include thiomorpholine S-oxide and thiomorpholine S,S-dioxide.
In addition, one ring of a polycyclic heterocycloalkyl group may be aromatic (e.g., aryl or heteroaryl), provided the polycyclic heterocycloalkyl group is bound to the parent structure via a non-aromatic carbon or nitrogen atom. For example, a 1,2,3,4-tetrahydroquinolinyl group (wherein the moiety is bound to the parent structure via a non-aromatic nitrogen atom) is considered a heterocycloalkyl group, while 1,2,3,4-tetrahydroquinolinyl group (wherein the moiety is bound to the parent structure via an aromatic carbon atom) is not considered a heterocycloalkyl group.
"Heterocycloalkenyl" indicates a non-aromatic ring having the indicated number of atoms (e.g., 3 to 10, or 3 to 7, membered heterocycloalkyl) made up of one or more heteroatoms (e.g., 1, 2, 3 or 4 heteroatoms) selected from N, 0 and Sand with the remaining ring atoms being carbon, and at least one double bond derived by the removal of one molecule of hydrogen from adjacent carbon atoms, adjacent nitrogen atoms, or adjacent carbon and nitrogen atoms of the corresponding heterocycloalkyl. Heterocycloalkenyl groups may be monocyclic or polycyclic (e.g., bicyclic, tricyclic). When nitrogen is present in a heterocycloalkenyl ring, it may, where the nature of the adjacent atoms and groups permits, exist in an oxidized state (i.e., N+-0} Additionally, when sulfur is present in a heterocycloalkenyl ring, it may, where the nature of the adjacent atoms and groups permits, exist in an oxidized state (i.e., s-o or-S02-).
Examples of heterocycloalkenyl groups include dihydrofuranyl (e.g., 2,3- dihydrofuranyl, 2,5-dihydrofuranyl), dihydrothiophenyl (e.g., 2,3- dihydrothiophenyl, 2,5-dihydrothiophenyl), dihydropyrrolyl (e.g., 2,3-dihydro-1 H­ pyrrolyl, 2,5-dihydro-1 H-pyrrolyl), dihydroimidazolyl (e.g., 2,3-dihydro-1 H­ imidazolyl, 4,5-dihydro-1 H-imidazolyl), pyranyl, dihydropyranyl (e.g., 3,4-dihydro- 2H-pyranyl, 3,6-dihydro-2H-pyranyl), tetrahydropyridinyl (e.g., 1,2,3,4- tetrahydropyridinyl, 1,2,3,6-tetrahydropyridinyl) and dihydropyridine (e.g., 1,2- dihydropyridine, 1,4-dihydropyridine). In addition, one ring of a polycyclic heterocycloalkenyl group may be aromatic (e.g., aryl or heteroaryl), provided the polycyclic heterocycloalkenyl group is bound to the parent structure via a non­ aromatic carbon or nitrogen atom. For example, a 1,2-dihydroquinolinyl group (wherein the moiety is bound to the parent structure via a non-aromatic nitrogen atom) is considered a heterocycloalkenyl group, while 1,2-dihydroquinolinyl group (wherein the moiety is bound to the parent structure via an aromatic carbon atom) is not considered a heterocycloalkenyl group.
The term "substituted", as used herein, means that any one or more hydrogens on the designated atom or group is replaced with a selection from the indicated group, provided that the designated atom's normal valence is not exceeded. When a substituent is oxo (i.e., =O) then 2 hydrogens on the atom are replaced. Combinations of substituents and/or variables are permissible only if such combinations result in stable compounds or useful synthetic intermediates.
A stable compound or stable structure is meant to imply a compound that is sufficiently robust to survive isolation from a reaction mixture, and subsequent formulation as an agent having at least practical utility. Unless otherwise specified, substituents are named into the core structure. For example, it is to be understood that when (cycloalkyl)alkyl is listed as a possible substituent, the point of attachment of this substituent to the core structure is in the alkyl portion.
The terms "substituted" alkyl (including without limitation lower alkyl), cycloalkyl, aryl, heterocycloalkyl, and heteroaryl, unless otherwise expressly defined, refer respectively to alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl wherein one or more (such as up to 5, for example, up to 3) hydrogen atoms are replaced by a substituent independently chosen from -Ra, -ORb, -O(C1-C2 alkyl)O- (e.g., methylenedioxy-), -SRb, guanidine, guanidine wherein one or more of the guanidine hydrogens are replaced with a lower-alkyl group, -NRbRc, halo, cyano, oxo (as a substituent for heterocycloalkyl), nitro, -CORb, -C02Rb, -CONRbRc, -OCORb, -OC02Ra, -OCONRbRc, -NRcCORb, -NRcC02Ra, -NRcCONRbRc, -SORa, -S02Ra, -S02NRbRc, and -NRcS02Ra, where Ra is chosen from optionally substituted C1-C6 alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocycloalkyl, and optionally substituted heteroaryl; Rb is chosen from H, optionally substituted C1-C6 alkyl, optionally substituted aryl, and optionally substituted heteroaryl; and Re is chosen from hydrogen and optionally substituted C1-C4 alkyl; or Rb and Re, and the nitrogen to which they are attached, form an optionally substituted heterocycloalkyl group; and where each optionally substituted group is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C1-C4 alkyl, C3-C5 cycloalkyl, aryl, heteroaryl, aryl-C1-C4 alkyl-, heteroaryl-Cr-C, alkyl-, C1-C4 haloalkyl-, -OC1-C4 alkyl, -OC1-C4 alkylphenyl, -C1-C4 alkyl-OH, -C1-C4 alkyl-O-C1-C4 alkyl, -OC1-C4 haloalkyl, halo, -OH, -NH2, -C1-C4 alkyl-NH2, -N(C1-C4 alkyl)(C1-C4 alkyl), -NH(C1-C4 alkyl), -N(C1-C4 alkyl)(C1-C4 alkylphenyl), -NH(C1-C4 alkylphenyl), cyano, nitro, oxo (as a substitutent for heteroaryl), -C02H, -C(O)OC1-C4 alkyl, -CON(C1-C4 alkyl)(C1-C4 alkyl), -CONH(C1-C4 alkyl), -CONH2, -NHC(O)(C1-C4 alkyl), -NHC(O)(phenyl), -N(C1-C4 alkyl)C(O)(C1-C4 alkyl), -N(C1-C4 alkyl)C(O)(phenyl), -C(O)C1-C4 alkyl, -C(O)C1-C4 phenyl, -C(O)C1-C4 haloalkyl, -OC(O)C1-C4 alkyl, -S02(C1-C4 alkyl), -S02(phenyl), - S02(C1-C4 haloalkyl), -S02NH2, -S02NH(C1-C4 alkyl), -S02NH(phenyl), - NHS02(C1-C4 alkyl), -NHS02(phenyl), and -NHS02(C1-C4 haloalkyl).
The term "substituted alkoxy" refers to alkoxy wherein the alkyl constituent is substituted (i.e., (substituted alkyl)) wherein "substituted alkyl" is as described herein.
The term "substituted amino" refers to the group -NH Rd or -NRdRd where each Rd is independently chosen from hydroxy, optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted acyl, aminocarbonyl, optionally substituted aryl, optionally substituted heteroaryl, optionally substituted heterocycloalkyl, optionally substituted alkoxycarbonyl, sulfinyl and sulfonyl, each as described herein, and provided that only one Rd may be hydroxyl. The term "substituted amino" also refers to N-oxides of the groups -NH Rd, and NRdRd each as described above. N-oxides can be prepared by treatment of the corresponding amino group with, for example, hydrogen peroxide or m­ chloroperoxybenzoic acid. The person skilled in the art is familiar with reaction conditions for carrying out the N-oxidation.
"Aminocarbonyl" encompasses a group of the formula - (C=O)(optionally substituted amino) wherein substituted amino is as described herein.
"Acyl" refers to the groups (alkyl)-C(O)-; (cycloalkyl)-C(O)-; (aryl)- C(O)-; (heteroaryl)-C(O)-; and (heterocycloalkyl)-C(O)-, wherein the group is attached to the parent structure through the carbonyl functionality and wherein alkyl, cycloalkyl, aryl, heteroaryl, and heterocycloalkyl are as described herein.
Acyl groups have the indicated number of carbon atoms, with the carbon of the keto group being included in the numbered carbon atoms. For example a C2 acyl group is an acetyl group having the formula CH3(C=O)-.
By "alkoxycarbonyl" is meant an ester group of the formula (alkoxy)(C=O)- attached through the carbonyl carbon wherein the alkoxy group has the indicated number of carbon atoms. Thus a C1-C5alkoxycarbonyl group is an alkoxy group having from 1 to 6 carbon atoms attached through its oxygen to a carbonyl linker.
By "amino" is meant the group -NH2.
The term "sulfinyl" includes the groups -S(O)-H, -S(O)-(optionally substituted (C1-C5)alkyl), -S(O)-optionally substituted aryl), -S(O)-optionally substituted heteroaryl), -S(O)-(optionally substituted heterocycloalkyl); and -S(O)­ (optionally substituted amino).
The term "sulfonyl" includes the groups -S(02)-H, -S(02)-(optionally substituted (C1-C5)alkyl), -S(02)-optionally substituted aryl), -S(02)-optionally substituted heteroaryl), -8(02)-(optionally substituted heterocycloalkyl), -8(02)-(optionally substituted alkoxy), -8(02)-optionally substituted aryloxy), -S(02)-optionally substituted heteroaryloxy), -S(02)-(optionally substituted heterocyclyloxy); and -S(02)-(optionally substituted amino).
The term "substituted acyl" refers to the groups (substituted alkyl)- C(O)-; (substituted cycloalkyl)-C(O)-; (substituted aryl)-C(O)-; (substituted heteroaryl)-C(O)-; and (substituted heterocycloalkyl)-C(O)-, wherein the group is attached to the parent structure through the carbonyl functionality and wherein substituted alkyl, cycloalkyl, aryl, heteroaryl, and heterocycloalkyl are as described herein.
The term "substituted alkoxy" refers to alkoxy wherein the alkyl constituent is substituted (i.e., (substituted alkyl)) wherein "substituted alkyl" is as described herein.
The term "substituted alkoxycarbonyl" refers to the group (substituted alkyl)C(O)- wherein the group is attached to the parent structure through the carbonyl functionality and wherein substituted alkyl is as described herein.
Compounds described herein include, but are not limited to, their optical isomers, racemates, and other mixtures thereof. In those situations, the single enantiomers or diastereomers, i.e., optically active forms, can be obtained by asymmetric synthesis or by resolution of the racemates. Resolution of the racemates can be accomplished, for example, by conventional methods such as crystallization in the presence of a resolving agent, or chromatography, using, for example a chiral high-pressure liquid chromatography (HPLC) column. In addition, such compounds include Z- and E- forms (or cis- and trans- forms) of compounds with carbon-carbon double bonds. Where compounds described herein exist in various tautomeric forms, the term "compound" is intended to include all tautomeric forms of the compound. Such compounds also include crystal forms including polymorphs and clathrates. Similarly, the term "salt" is intended to include all tautomeric forms and crystal forms of the compound.
"Pharmaceutically acceptable salts" include, but are not limited to salts with inorganic acids, such as hydrochlorate, phosphate, diphosphate, hydrobromate, sulfate, sulfinate, nitrate, and like salts; as well as salts with an organic acid, such as malate, maleate, fumarate, tartrate, succinate, citrate, acetate, lactate, methanesulfonate, p-toluenesulfonate, 2-hydroxyethylsulfonate, benzoate, salicylate, stearate, and alkanoate such as acetate, HOOC-(CH2)n­ COOH where n is 0-4, and like salts. Similarly, pharmaceutically acceptable cations include, but are not limited to sodium, potassium, calcium, aluminum, lithium, and ammonium.
In addition, if the compounds described herein are obtained as an acid addition salt, the free base can be obtained by basifying a solution of the acid salt. Conversely, if the product is a free base, an addition salt, particularly a pharmaceutically acceptable addition salt, may be produced by dissolving the free base in a suitable organic solvent and treating the solution with an acid, in accordance with conventional procedures for preparing acid addition salts from base compounds. Those skilled in the art will recognize various synthetic methodologies that may be used to prepare non-toxic pharmaceutically acceptable addition salts.
"Prodrugs" described herein include any compound that becomes a compound of Formula I when administered to a patient, e.g., upon metabolic processing of the prodrug. Examples of prodrugs include derivatives of functional groups, such as a carboxylic acid group, in the compounds of Formula I.
Exemplary prodrugs of a carboxylic acid group include, but are not limited to, carboxylic acid esters such as alkyl esters, hydroxyalkyl esters, arylalkyl esters, and aryloxyalkyl esters. Other exemplary prodrugs include lower alkyl esters such as ethyl ester, acyloxyalkyl esters such as pivaloyloxymethyl (POM), glycosides, and ascorbic acid derivatives. The term "compound" is intended to include prodrugs.
Other exemplary prodrugs include amides of carboxylic acids.
Exemplary amide prodrugs include metabolically labile amides that are formed, for example, with an amine and a carboxylic acid. Exemplary amines include NH2, primary, and secondary amines such as NHRx, and NRxRy, wherein Rx is hydrogen, (C1-C18)-alkyl, (C3-C7)-cycloalkyl, (C3-C7)-cycloalkyl-(C1-C4)-alkyl-, (C5- C14)-aryl which is unsubstituted or substituted by a residue (C1-C2)-alkyl, (C1-C2)­ alkoxy, fluoro, or chloro; heteroaryl-, (C5-C14)-aryl-(C1-C4)-alkyl- where aryl is unsubstituted or substituted by a residue (C1-C2)-alkyl, (C1-C2)-alkoxy, fluoro, or chloro; or heteroaryl-(C1-C4)-alkyl- and in which RY has the meanings indicated for Rx with the exception of hydrogen or wherein Rx and RY, together with the nitrogen to which they are bound, form an optionally substituted 4- to?­ membered heterocycloalkyl ring which optionally includes one or two additional heteroatoms chosen from nitrogen, oxygen, and sulfur. A discussion of prodrugs is provided in T. Higuchi and V. Stella, Pro-drugs as Novel Delivery Systems, Vol. 14 of the A.C.S. Symposium Series, in Edward B. Roche, ed., Bioreversible Carriers in Drug Design, American Pharmaceutical Association and Pergamon Press, 1987, and in Design of Prodrugs, ed. H. Bundgaard, Elsevier, 1985.
A "solvate" is formed by the interaction of a solvent and a compound. The term "compound" is intended to include solvates of compounds.
Similarly, "salts" includes solvates of salts. Suitable solvates are pharmaceutically acceptable solvates, such as hydrates, including monohydrates and hemi-hydrates.
A "chelate" is formed by the coordination of a compound to a metal ion at two (or more) points. The term "compound" is intended to include chelates of compounds. Similarly, "salts" includes chelates of salts.
A "non-covalent complex" is formed by the interaction of a compound and another molecule wherein a covalent bond is not formed between the compound and the molecule. For example, complexation can occur through van der Waals interactions, hydrogen bonding, and electrostatic interactions (also called ionic bonding). Such non-covalent complexes are included in the term "compound'.
The term "hydrogen bond" refers to a form of association between an electronegative atom (also known as a hydrogen bond acceptor) and a hydrogen atom attached to a second, relatively electronegative atom (also known as a hydrogen bond donor). Suitable hydrogen bond donor and acceptors are well understood in medicinal chemistry.
"Hydrogen bond acceptor" refers to a group comprising an oxygen or nitrogen, such as an oxygen or nitrogen that is sp2 -hybridized, an ether oxygen, or the oxygen of a sulfoxide or N-oxide.
The term "hydrogen bond donor" refers to an oxygen, nitrogen, or heteroaromatic carbon that bears a hydrogen.group containing a ring nitrogen or a heteroaryl group containing a ring nitrogen.
As used herein the terms "group", "radical" or "fragment" are synonymous and are intended to indicate functional groups or fragments of molecules attachable to a bond or other fragments of molecules.
The term "active agent" is used to indicate a compound or a pharmaceutically acceptable salt thereof which has biological activity. In some embodiments, an "active agent" is a compound or pharmaceutically acceptable salt thereof having pharmaceutical utility. For example an active agent may be an anti-neurodegenerative therapeutic.
The term "therapeutically effective amount" means an amount effective, when administered to a human or non-human patient, to provide a therapeutic benefit such as amelioration of symptoms, slowing of disease progression, or prevention of disease e.g., a therapeutically effective amount may be an amount sufficient to decrease the symptoms of a disease responsive to inhibition of HOAG activity.
As used herein, the terms "histone deacetylase" and "HOAG" are intended to refer to anyone of a family of enzymes that remove N°-acetyl groups from the s-arnino groups of lysine residues of a protein (for example, a histone, or tubulin). Unless otherwise indicated by context, the term "histone" is meant to refer to any histone protein, including H1, H2A, H2B, H3, H4, and H5, from any species. In some embodiments, the histone deacetylase is a human HOAG, including, but not limited to, HOAG-4, HOAG-5, HOAG-6, HOAG-7, HOAG-9, and HOAG-10. In some embodiments, the at least one histone deacetylase is selected from HOAG-4, HOAG-5, HOAG-7, and HOAG-9. In some embodiments, the histone deacetylase is a class Ila HOAG. In some embodiments, the histone deacetylase is HOAG-4. In some embodiments, the histone deacetylase is HOAG-5. In some embodiments, the histone deacetylase is derived from a protozoa! or fungal source.
The terms "histone deacetylase inhibitor" and "inhibitor of histone deacetylase" are intended to mean a compound, or a pharmaceutically acceptable salt thereof, described herein which is capable of interacting with a histone deacetylase and inhibiting its enzymatic activity.
The term "a condition or disorder mediated by HOAG" or "a condition or disorder mediated by histone deacetylase" as used herein refers to a condition or disorder in which HOAG and/or the action of HOAG is important or necessary, e.g., for the onset, progress, expression, etc. of that condition, or a condition which is known to be treated by HOAG inhibitors (such as, e.g., trichostatin A).
The term "effect" describes a change or an absence of a change in cell phenotype or cell proliferation. "Effect" can also describe a change or an absence of a change in the catalytic activity of HOAG. "Effect" can also describe a change or an absence of a change in an interaction between HOAG and a natural binding partner.
The term "inhibiting histone deacetylase enzymatic activity" is intended to mean reducing the ability of a histone deacetylase to remove an acetyl group from a protein, such as but not limited to a histone or tubulin. The concentration of inhibitor which reduces the activity of a histone deacetylase to 50% of that of the uninhibited enzyme is determined as the IGso value. In some embodiments, such reduction of histone deacetylase activity is at least 50%, such as at least about 75%, for example, at least about 90%. In some embodiments, histone deacetylase activity is reduced by at least 95%, such as by at least 99%.
In some embodiments, the compounds and pharmaceutical acceptable salts thereof described herein have an IG50 value less than 100 nanomolar. In some embodiments, the compounds and pharmaceutical acceptable salts thereof described herein have an ICso value from 100 nanomolar to 1 micromolar. In some embodiments, the compounds and pharmaceutical acceptable salts thereof described herein have an IC50 value from 1 to 25 micromolar.
In some embodiments, such inhibition is specific, i.e., the histone deacetylase inhibitor reduces the ability of a histone deacetylase to remove an acetyl group from a protein at a concentration that is lower than the concentration of the inhibitor that is required to produce another, unrelated biological effect. In some embodiments, the concentration of the inhibitor required for histone deacetylase inhibitory activity is at least 2-fold lower, such as at least 5-fold lower, for example, at least 10-fold lower, such as at least 20-fold lower than the concentration required to produce an unrelated biological effect.
"Treatment" or "treating" means any treatment of a disease state in a patient, including a) preventing the disease, that is, causing the clinical symptoms of the disease not to develop; b) inhibiting the disease; c) slowing or arresting the development of clinical symptoms; and/or d) relieving the disease, that is, causing the regression of clinical symptoms.
"Subject" or "patient' refers to an animal, such as a mammal, that has been or will be the object of treatment, observation or experiment. The methods described herein may be useful in both human therapy and veterinary applications. In some embodiments, the subject is a mammal; and in some embodiments the subject is human.
Provided is a compound of Formula I Formula I or a pharmaceutically acceptable salt thereof wherein R1 and R2 are independently chosen from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; R3 is chosen from -COOH, -C(O)NH(OH) and -N(OH)C(O)R4; R3a is chosen from hydrogen and lower alkyl optionally substituted with halo; and R4 is chosen from hydrogen and lower alkyl; wherein if R1 and R2 are both phenyl and R3a is hydrogen, then R3 is -N(OH)C(O)H or -C(O)NH(OH).
In some embodiments, R1 is chosen from alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl, each of which is optionally substituted with one, two, or three groups independently chosen from -R11, -OR12, halo, -NR12R13, - C(O)R12, -C(O)OR12, -C(O)NR12R13, -OC(O)R12, -OC(O)OR11, -OC(O)NR12R13, -NR13C(O)R12, -NR13C(O)OR11, -NR13C(O)NR12R13, -S(O)R11, -S02R11, -S02NR12R13, and -NR13S02R11, wherein R11 is chosen from optionally substituted C1-C5 alkyl, optionally substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl, optionally substituted heterocycloalkyl, optionally substituted heterocycloalkenyl, and optionally substituted heteroaryl; R12 is chosen from H, optionally substituted C1-C5 alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted heterocycloalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; and R13 is chosen from hydrogen and optionally substituted C1-C4 alkyl.
In some embodiments, R1 is phenyl optionally substituted with one, two, or three groups independently chosen from -R11, -OR12, halo, -C(O)R12, -NR12R13, and -NR13S02R11.
In some embodiments, R1 is phenyl optionally substituted with one, two or three groups independently selected from halo, lower alkyl, aryl optionally substituted with one or two groups independently chosen from lower alkyl, trifluoromethyl,cycloalkyl, phenyl, and benzyloxy, heteroaryl optionally substituted with one or two groups independently chosen from lower alkyl, trifluoromethyl, cycloalkyl, and phenyl, (cycloalkyl)sulfonamido, and heterocycloalkyl optionally substituted with one or two groups independently chosen from halo, lower alkyl, trifluoromethyl, cycloalkyl, heterocycloalkyl, and phenyl.
In some embodiments, R1 is phenyl optionally substituted with one, two or three groups independently selected from halo, lower alkyl, oxazolyl, oxazolyl, pyrimidinyl, pyrimidinyl, pyridazinyl, pyridazinyl, 1 H­ pyrazolyl, (cycloalkyl)sulfonamido, 1 H-imidazolyl, imidazolyl, 1,2,3,6- tetrahydropyrid inyl, azetid inyl, pyrrol id inyl, 2-oxaazaspiro[3.3]heptan- 6-yl, phenyl, hexahydropyrrolo[1,2-a]pyrazin-2(1 H)-yl, piperidinyl, piperazin yl, and 6,7-dihydropyrazolo[1,5-a]pyrimidin-4(5H)-yl, each of which is optionally substituted with one or two groups independently chosen from halo, lower alkyl, trifluoromethyl, phenyl, cycloalkyl, benzyl, benzyloxy, and pyrrolidinyl.
In some embodiments, R1 is chosen from phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2-bromophenyl, 3-bromophenyl, 4-bromophenyl, 4-(1-benzyl-1,2,3,6- tetrahydropyrid inyl )phenyl, 4-(pyrim id inyl )phenyl, 4-(pyrim id inyl )phenyl, 4- (5-methylpyrim idinyl )phenyl ,3-(5-fluoropyrim id inyl )phenyl, 4-(5- chloropyrimidinyl)phenyl, 4-(5-fluoropyrimidinyl)phenyl, 4-(4- (trifl uoromethyl )pyrim id inyl )phenyl, 4-( 5-trifluoromethyl pyrim id inyl )phenyl, 4- ( 5-cyclopropyl pyrim id inyl )phenyl, 4-(pyridazinyl )phenyl, 4-(pyridazin yl )phenyl, 4-(1 H-imidazolyl)phenyl, 4-(1-methyl-1 H-imidazolyl)phenyl, 4-(5- methyl-1 H-im idazolyl )phenyl), 4-( 1 H-pyrazolyl )phenyl, 4-(3-methyl-1 H­ pyrazolyl )phenyl, 4-(3-(trifluoromethyl)-1 H-pyrazolyl)phenyl, 3-(oxazol yl )phenyl, 4-( oxazolyl )phenyl, 4-(oxazolyl )phenyl, 4-(2-methyloxazol yl )phenyl ,4-(2-cyclopropyloxazolyl )phenyl, 4-(2-phenyloxazolyl )phenyl, 4- (cyclopropanesulfonamido)phenyl, 4-(3,3-dimethylazetidinyl)phenyl, 4-(3,3- d ifluoropyrrol id inyl )phenyl, 4-(2-oxaazaspiro[3.3]heptanyl )phenyl, 3'­ (benzyloxy)biphenylyl, 3-(hexahydropyrrolo[1,2-a]pyrazin-2(1 H)-yl)phenyl, 3- (4-(pyrrolidinyl)piperidinyl)phenyl, 4-(4-methylpiperazinyl)phenyl, 4-(4- isopropylpiperazinyl )phenyl, and 3-(6, 7-d ihydropyrazolo[1 ,5-a]pyrim id in-4(5H )­ yl )phenyl.
In some embodiments, R1 is chosen from 4-(1-benzyl-1,2,3,6- tetrahyd ropyrid inyl )phenyl, 4-(pyrim id inyl )phenyl, 4-( 5-methyl pyrim id in yl )phenyl, 4-(5-chloropyrimidinyl)phenyl, 4-(5-fluoropyrimidinyl)phenyl, 4-(4- (trifluoromethyl)pyrimidinyl)phenyl, 4-(5-cyclopropylpyrimidinyl)phenyl, 4- (pyridazinyl )phenyl, 4-(pyridazinyl )phenyl, 4-(5-methyl-1 H-im idazol yl )phenyl), 4-(5-(trifluoromethyl )-1 H-im idazolyl )phenyl, 3-chloro(5-methyl- 1 H-imidazolyl)phenyl, 3-fluoro(5-methyl-1 H-imidazolyl)phenyl, 4-(1 H­ pyrazolyl)phenyl, 3-(oxazolyl)phenyl, 4-(oxazolyl)phenyl, 4-(oxazol yl )phenyl, 4-(2-cyclopropyloxazolyl )phenyl, 4-( 4-isopropylpiperazinyl )phenyl, and 3-(6, 7-dihydropyrazolo[1,5-a]pyrimidin-4(5H)-yl)phenyl.
In some embodiments, R1 is chosen from 1,2,3,4- tetrahydroquinolinyl, 2,3,4,5-tetrahydrobenzo[f][1,4]oxazepinyl, 1,2,3,4- tetrahydropyrrolo[1 ,2-a]pyrazinyl, im idazo[1 ,2-a]pyrid inyl, im idazo[1 ,2- a]pyrid inyl, pyrrolo[1,2-a]pyrimidinyl, 1,5-naphthyridinyl, 2,3- dihydrobenzo[b][1,4]dioxinyl, benzo[d][1,3]dioxolyl, and 1-oxo-isoindolin yl, each of which is optionally substituted with one or two groups independently chosen from halo and lower alkyl optionally substituted with one, two, or three halo groups.
In some embodiments, R1 is heteroaryl optionally substituted with one, two, or three groups independently chosen from -R11, -OR12, halo, and -NR13S02R11.
In some embodiments, R1 is chosen from pyridinyl, pyridinyl, 1 H-pyrazolyl, pyrimidinyl, pyridazinyl, benzo[d]isoxazolyl, benzo[d]oxazolyl, and thiazolyl, each of which is optionally substituted with one, two, or three groups independently chosen from -R11, -OR12, halo, and -NR13S02R11.
In some embodiments, R1 is chosen from pyridinyl, pyridinyl, 1 H-pyrazolyl, pyrimidinyl, pyridazinyl, benzo[d]isoxazolyl, benzo[d]oxazolyl, and thiazolyl, each of which is optionally substituted with one or two groups independently chosen from halo, lower alkyl, 2,2,2- trifluoroethylamino, trifluoromethyl, 2,2,2-trifluoroethyl, cycloalkyl, cyclopropylmethyl, 1 H-pyrazolyl optionally substituted with lower alkyl, pyrimidinyl optionally substituted with lower alkyl or halo, oxazolyl optionally substituted with lower alkyl, piperazinyl optionally substituted with lower alkyl, piperidinyl optionally substituted with 2,2,2-trifluoroethyl, and pyridinyl optionally substituted with lower alkyl or trifluoromethyl.
In some embodiments, R1 is chosen from 2-cyclopropylpyridinyl, 6-(trifluoromethyl )pyrid inyl, 2-(trifluoromethyl )pyrid inyl, 5- (trifluoromethyl )pyrid inyl, 2-(2,2,2-trifluoroethylamino)pyridinyl, 6-(2,2,2- trifluoroethylamino )pyridinyl, 6-(3-methyl-1 H-pyrazolyl)pyridinyl, 6-(5- methylpyrim id inyl )pyrid inyl, 6-(2-methyloxazolyl )pyrid inyl, 6-(5- chloropyrimid inyl )pyrid inyl, 6-(4-isopropylpiperazinyl)pyridinyl, 2,6- dicyclopropylpyridinyl, 6-(5-fluoropyrimidinyl)pyridinyl, 2-(5- chloropyrimidinyl)cyclopropylpyridinyl, 1-methyl-1 H-pyrazolyl, 1-(2,2,2- trifluoroethyl)-1 H-pyrazolyl, 1-(cyclopropylmethyl)-1 H-pyrazolyl, 1- cyclopropyl-1 H-pyrazolyl, 1,3-dimethyl-1 H-pyrazolyl, 1-(1-(2,2,2- trifluoroethyl)piperidinyl)-1 H-pyrazolyl, 1-(5-(trifluoromethyl)pyridinyl)-1 H­ pyrazolyl, 1-(5-(trifluoromethyl)pyridinyl)-1 H-pyrazolyl, pyrimidinyl, 2- cyclopropylpyrimidyl, 3-cyclopropylpyrimidyl, pyridazinyl, 6- cyclopropylpyridazinyl, benzo[d] isoxazolyl, 2-isopropylbenzo[ d]oxazolyl, and 2-methylth iazolyl.
In some embodiments, R2 is chosen from cycloalkyl, heterocycloalkyl, alkyl, aryl and heteroaryl, each of which is optionally substituted with one, two, or three groups independently chosen from -R21, -OR22, halo, and -NR23S02R21, wherein R21 is chosen from optionally substituted C1-C5 alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocycloalkyl, and optionally substituted heteroaryl; R22 is chosen from H, optionally substituted C1-C5 alkyl, optionally substituted cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted heterocycloalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; and R23 is chosen from hydrogen and optionally substituted C1-C4 alkyl.
In some embodiments, R2 is chosen from cyclohexyl, thiophenyl, thiazolyl, and phenyl, each of which is optionally substituted with one, two, or three groups independently chosen from -R21, -OR22, and halo.
In some embodiments, R2 is thiophenyl or phenyl, each of which is optionally substituted with one, two, or three groups independently chosen from lower alkyl, lower alkoxy, trifluoromethyl, and halo.
In some embodiments, R2 is chosen from phenyl, 2-chlorophenyl, 2- fluorophenyl, 2-methylphenyl, 2-trifluoromethylphenyl, 3-fluorophenyl, 3- methylphenyl, 3-trifluoromethylphenyl, 4-fluorophenyl, 5-methylthiophenyl, 3- fluoromethylth iophenyl, 5-methyl(trifluoromethyl )th iophenyl, and 5- (trifluoromethyl )th iophenyl.
In some embodiments, R2 is chosen from phenyl, 2-fluorophenyl, 3- fluorophenyl, and 4-fluorophenyl.
In some embodiments, R2 is phenyl.
In some embodiments, R3 is chosen from-C(O)NH(OH) and -N(OH)C(O)R4.
In some embodiments, R3 is -C(O)NH(OH).
In some embodiments, R3 is -N(OH)C(O)R4 wherein R4 is hydrogen.
In some embodiments, R3 is -N(OH)C(O)R4 wherein R4 is methyl.
In some embodiments, R3a is -CF3. In some embodiments, R3a is hydrogen or methyl.
Also provided is a compound of Formula II or a pharmaceutically acceptable salt thereof, Formula II wherein R1, R2, R3, and R3a are as described for compounds of Formula I.
Also provided is a compound of Formula Ill or a pharmaceutically acceptable salt thereof, Formula Ill wherein R1, R2, R3, and R3a are as described for compounds of Formula I.
Also provided is a compound of Formula IV or a pharmaceutically acceptable salt thereof, Formula IV wherein R1, R2, and R3 are as described for compounds of Formula I.
Also provided is a compound of Formula Vora pharmaceutically acceptable salt thereof, Formula V wherein R1, R2, and R3 are as described for compounds of Formula l.F Also provided is a compound chosen from trans-N-Hydroxy-2,3-diphenylcyclopropanecarboxamide; ( 1 R* ,2R* ,3R*)Cyclohexyl-N-hydroxy phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)-N-Hydroxy(2-isopropoxyphenyl ) phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)(2-Fluorophenyl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1 S* ,2R* ,3R*)(2-Fluorophenyl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)(2-Bromophenyl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)(3-Bromophenyl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)( 4-Bromophenyl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)-N-Hyd roxyphenylo-tolylcyclopropanecarboxam ide; (1 R*,2R*,3R*)-N-Hydroxyphenylm-tolylcyclopropanecarboxamide; ( 1 R* ,2R* ,3R*)-N-Hyd roxyphenylp-tolylcyclopropanecarboxam ide; (1R*,2R*,3R*)(4-(cyclopropanesulfonamido)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 S* ,2R* ,3R*)Cyclopentyl-N-hydroxy phenylcyclopropanecarboxam ide; (1 R,2R,3R)-N-Hydroxy(1-methyl-1 H-pyrazolyl) phenylcyclopropanecarboxamide; ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl(pyrim id in yl )cyclopropanecarboxam ide; (1 R,2R,3R)(2,3-Dihydrobenzo[b][1,4]dioxinyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)(8-Chloro-2,3-dihydrobenzo[b][1,4]dioxinyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 S,2R,3R)(8-Chloro-2,3-dihydrobenzo[b][1,4]dioxinyl)(2- fluorophenyl)-N-hydroxycyclopropanecarboxamide; ( 1 R*,2R*,3R*)-N-Hyd roxyphenyl(pyridazin yl )cyclopropanecarboxam ide; ( 1 R,2R,3R)(2-Cyclopropyl pyrid inyl )-N-hyd roxy phenylcyclopropanecarboxam ide; (1 S,2R,3R)(2-Cyclopropylpyridinyl)(2-fluorophenyl)-N­ hydroxycyclopropanecarboxamide; ( 1 R,2R,3R)(2-Cyclopropyl pyrid inyl )( 4-fl uorophenyl )-N­ hyd roxycyclopropanecarboxam ide; (1 R,2R,3R)(2,2-Difluorobenzo[d][1,3]dioxolyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxyphenyl(6-(trifluoromethyl)pyridin yl)cyclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxyphenyl(2-(trifluoromethyl)pyridin yl)cyclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxy(1-oxo(2,2,2-trifluoroethyl)isoindolinyl) phenylcyclopropanecarboxamide; (1 R,2R,3R)-N-hydroxy(2-isopropylbenzo[d]oxazolyl) phenylcyclopropanecarboxamide; ( 1 R,2R,3R)-N-Hydroxy(3-(oxazolyl )phenyl ) phenylcyclopropanecarboxam ide; (1 R,2R,3R)-N-Hydroxy(4-(oxazolyl)phenyl) phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)(4-(1 H-imidazolyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)(4-(2-Cyclopropyloxazolyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4-(2-phenyloxazol yl )phenyl )cyclopropanecarboxam ide; (1 R*,2R*,3R*)(4-(5-Fluoropyrimidinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)(3-(5-Fluoropyrimidinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)(4-(5-Cyclopropylpyrimidinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R* ,2R* ,3R*)( 4-( 4-Trifluoromethylpyrim id inyl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide; (1 R,2R,3R)(4-(5-Trifluoromethylpyrimidinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4-(pyridazin yl )phenyl )cyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)-N -Hydroxyphenyl( 4-(pyridazin yl )phenyl )cyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4-(pyrim id in yl )phenyl )cyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4-(pyrim id in yl )phenyl )cyclopropanecarboxam ide; ( 1 R,2R,3R)( 4-(5-Chloropyrim id inyl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)-N-Hydroxy( 4-( 5-methylpyrim id inyl )phenyl ) phenylcyclopropanecarboxam ide; ( 1R*,2R*,3R*)-N-Hydroxy(4-(5-methyl-1 H-imidazolyl )phenyl ) phenylcyclopropanecarboxam ide; (1 R*,2R*,3R*)(4-(2-cyclopropylisoindolinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; (1R,2R,3R)(3'-(Benzyloxy)-[1,1 '-biphenyl]yl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R* ,2R* ,3R*)( 4'-(9H-carbazolyl )-[1 , 1 '-biphenyl]yl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1R,2R,3R)-N-hydroxy(4-( 4-methyl-3,4-d ihydro-2H-benzo[b] [1 ,4 ]oxazin- 7-yl )phenyl )phenylcyclopropanecarboxamide; ( 1R*,2R*,3R*)-N-Hydroxy(4-( 4-isopropylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide; ( 1R*,2R*,3R*)-N-Hydroxy(3-(4-isopropylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide; ( 1R*,2R*,3R*)-N-Hydroxy(4-(3,3-d ifluoropyrrol id inyl )phenyl ) phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R *)( 4-(3,3-Dimethylazetid inyl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1 R*,2R*,3R*)( 4-(2-0xaazaspiro[3 .3] heptanyl )phenyl )-N-hydroxy- 3-phenylcyclopropanecarboxam ide; ( 1 R*,2R*,3R*)(3-(Hexahydropyrrolo[1 ,2-a]pyrazin-2( 1 H )-yl )phenyl )-N­ hyd roxyphenylcyclopropanecarboxam ide; ( 1R*,2R*,3R*)-N-Hydroxyphenyl(3-(4-(pyrrol id inyl)piperid in yl )phenyl )cyclopropanecarboxam ide; ( 1R,2R,3R)(3-(6,7-Dihydropyrazolo[1 ,5-a]pyrim id in-4(5H )-yl )phenyl )-N­ hyd roxyphenylcyclopropanecarboxam ide; ( 1R*,2R*,3R*)-N-Hydroxy(4-( 4-methylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide; ( 1 R*, 2R*, 3R*J-N-Hyd roxy( 4-( oxazolyl )phenyl ) phenylcyclopropanecarboxam ide; ( 1 R* ,2R* ,3R*)-N -Hydroxy( 4-( 1-methyl-1 H-im idazolyl )phenyl ) phenylcyclopropanecarboxam ide; ( 1R*,2S*,3S*)(4-( 5-Fluoropyrim id inyl )phenyl )-N-hydroxymethyl phenylcyclopropanecarboxam ide; (1 R*,2R*,3R*)(4-(1 H-pyrazolyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxyphenyl(5-(trifluoromethyl)pyridin yl)cyclopropanecarboxamide; ( 1R,2R,3R)(4-( 1-Benzyl-1 ,2,3,6-tetrahydropyrid inyl )phenyl )-N­ hyd roxyphenylcyclopropanecarboxam ide; (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(4-(2-methyloxazol yl )phenyl )cyclopropanecarboxam ide; ( 1 S,2R,3S)(2-fluorophenyl )-N-hydroxymethyl( 4-(2-methyloxazol yl )phenyl )cyclopropanecarboxam ide; ( 1 S,2R,3R)(2-fluorophenyl )-N-hydroxy( 4-(3-methyl-1 H-pyrazol yl )phenyl )cyclopropanecarboxam ide; (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(4-(3-(trifluoromethyl)-1 H­ pyrazolyl )phenyl )cyclopropanecarboxam ide; (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(4-(isopropyl(2- morphol inoethyl )amino )phenyl )cyclopropanecarboxam ide; ( 1 R,2R,3R)(2-cyclopropyl pyrim id inyl )-N-hyd roxy phenylcyclopropanecarboxam ide; ( 1 R,2R,3R)(benzo[ d] isoxazolyl )-N-hyd roxy phenylcyclopropanecarboxam ide; (1 R,2R,3R)(6-cyclopropylpyridazinyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 S,2R,3R)(2-fluorophenyl )-N-hydroxy(6-(3-methyl-1 H-pyrazol yl )pyrid inyl )cyclopropanecarboxam ide; ( 1 S,2R,3R)(6-( 5-ch loropyrim id inyl )pyrid inyl )(2-fl uorophenyl )-N­ hyd roxycyclopropanecarboxam ide; ( 1 R,2R,3R)( 5-chloro( 4-isopropylpiperazinyl )pyrid inyl )-N­ hyd roxyphenylcyclopropanecarboxam ide; ( 1 S,2R,3R)(2-fl uorophenyl )( 6-( 5-fl uoropyrim id inyl )pyrid inyl )-N­ hyd roxycyclopropanecarboxam ide; ( 1 S,2R,3R)(2-fl uorophenyl )-N-hyd roxy( 6-( 5-methylpyrim id in yl )pyrid inyl )cyclopropanecarboxam ide; ( 1 R,2R,3R)-N-hyd roxy( 6-(2-methyloxazolyl )pyrid inyl ) phenylcyclopropanecarboxam ide; (1 R,2R,3R)(5-chloro(2-methyloxazolyl)pyridinyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(2-(2,2,2- trifl uoroethylam ino )pyrid inyl )cyclopropanecarboxam ide; (1 R,2R,3R)-N-hydroxyphenyl(1-(2,2,2-trifluoroethyl)-1 H-pyrazol yl)cyclopropanecarboxamide; ( 1R,2R,3R)(1-cyclopropyl-1 H-pyrazolyl )-N-hydroxy phenylcyclopropanecarboxam ide; ( 1R,2R,3R)-N-hydroxyphenyl(1-( 1-(2,2,2-trifluoroethyl )pipe rid inyl )- 1 H-pyrazolyl )cyclopropanecarboxam ide; (1 R,2R,3R)(1,3-dimethyl-1 H-pyrazolyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R,2R,3S)-N-hyd roxy(2-methylth iazolyl ) phenylcyclopropanecarboxam ide; (1 R,2R,3R)(8-chloro-1,2,3,4-tetrahydroquinolinyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)-N-hydroxyphenyl(4-(2,2,2-trifluoroethyl)-2,3,4,5- tetrahydrobenzo[f] [1,4 ]oxazepinyl )cyclopropanecarboxam ide; (1 R,2R,3R)-N-hydroxy(1-methyl(2,2,2-trifluoroethyl)-1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazinyl) phenylcyclopropanecarboxamide; (1 R,2R,3R)(1-fluoro(2,2,2-trifluoroethyl)-1,2,3,4-tetrahydropyrrolo[1,2- a]pyrazinyl)-N-hydroxyphenylcyclopropanecarboxamide; (1 R,2R,3R)-N-hydroxyphenyl(2-(2,2,2-trifluoroethyl)-1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazinyl)cyclopropanecarboxamide; ( 1 R,2R,3R)-N-hydroxyphenyl(7-(2,2,2-trifluoroethyl )-5,6, 7 ,8- tetrahydroimidazo[1 ,2-a] pyrazinyl )cyclopropanecarboxam ide; (1 R,2R,3R)-N-hydroxyphenyl(2-(trifluoromethyl)imidazo[1,2-a]pyridin- 7-yl )cyclopropanecarboxam ide; (1 R,2R,3R)-N-hydroxy(imidazo[1,2-a]pyridinyl) phenylcyclopropanecarboxamide; (1 R,2R,3R)-N-hydroxyphenyl(pyrrolo[1,2-a]pyrimidin yl)cyclopropanecarboxamide; ( 1R,2R,3R)-N-hydroxy(1 ,5-naphthyrid inyl ) phenylcyclopropanecarboxam ide; ( 1 S ,2S ,3R )(2-cyclopropyl pyrid inyl )-N-hyd roxy(2-methylth iazol yl )cyclopropanecarboxam ide; ( 1 S,2S ,3R)(2-cyclopropyl pyrid inyl )-N-hyd roxy( 5- (trifl uoromethyl )th iophenyl )cyclopropanecarboxam ide; (1 R,2R,3R)(1-((5-fluoropyridinyl)methyl)-1 H-pyrazolyl)-N-hydroxy- 3-phenylcyclopropanecarboxam ide; ( 1 S,2R,3S)(3-fluoromethylth iophenyl )-N-hydroxy( 1-methyl-1 H­ pyrazolyl )cyclopropanecarboxam ide; ( 1S,2S,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl )( 5-methyl (trifl uoromethyl )th iophenyl )cyclopropanecarboxam ide; ( 1S,2S,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl )( 5-methylth iophen yl )cyclopropanecarboxam ide; ( 1R,2R,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl )o­ tolylcyclopropanecarboxam ide; ( 1R,2R,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl )(2- (trifl uoromethyl )phenyl )cyclopropanecarboxam ide; (1 S,2R,3R)(2-chlorophenyl)-N-hydroxy(1-methyl-1 H-pyrazol yl)cyclopropanecarboxamide; ( 1 R,2R,3R)(3-fluorophenyl )-N-hydroxy( 1-methyl-1 H-pyrazol yl )cyclopropanecarboxam ide; ( 1R,2R,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl )m­ tolylcyclopropanecarboxam ide; ( 1R,2R,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl )(3- (trifl uoromethyl )phenyl )cyclopropanecarboxam ide; ( 1 R,2R,3R)(3-chlorophenyl )-N-hydroxy( 1-methyl-1 H-pyrazol yl )cyclopropanecarboxam ide; ( 1 S,2S ,3R)(2-cyclopropyl pyrid inyl )(3-fl uoromethylth iophenyl )­ N-hyd roxycyclopropanecarboxam ide; ( 1 S,2S ,3R)(2-cyclopropyl pyrid inyl )-N-hyd roxy( 5-methyl (trifl uoromethyl )th iophenyl )cyclopropanecarboxam ide; ( 1 S,2S ,3R)(2-cyclopropyl pyrid inyl )-N-hyd roxy( 5-methylth iophen yl )cyclopropanecarboxam ide; ( 1R,2R,3R)-N-hydroxyphenyl(4-(5-(trifluoromethyl )-1 H-im idazol yl )phenyl )cyclopropanecarboxam ide; ( 1R,2R,3R)(3-chloro(5-methyl-1 H-im idazolyl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide; and (1 R,2R,3R)(3-fluoro(5-methyl-1 H-imidazolyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide, or a pharmaceutically acceptable salt thereof.
Methods for obtaining the compounds, or pharmaceutically acceptable salts thereof, described herein will be apparent to those of ordinary skill in the art, suitable procedures being described, for example, in examples below, and in the references cited herein.
Also provided is a method for inhibiting at least one histone deacetylase. In some embodiments, the at least one histone deacetylase is a class Ila HDAC. In some embodiments, the at least one histone deacetylase is selected from HDAC-4, HDAC-5, HDAC-7, and HDAC-9. In some embodiments, the inhibition is in a cell. In some embodiments, the compound, or pharmaceutically acceptable salt thereof, described herein is selective for inhibiting at least one class II histone deacetylase. In some embodiments, the compound, or pharmaceutically acceptable salt thereof, described herein is a selective inhibitor of HDAC-4 and/or HDAC-5.
Also provided is a method of treating a condition or disorder mediated by HDAC in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HDAC comprises a neurodegenerative pathology. Accordingly, also provided is a method of treating a neurodegenerative pathology mediated by HDAC in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the neurodegenerative pathology is chosen from Alzheimer's disease, Parkinson's disease, neuronal intranuclear inclusion disease (NllD), Dentatorubral pallidolusyian atrophy (DRPLA), Friedreich's ataxia, Rubenstein-Taubi Sydrome, and polyglutamine diseases such as Huntington's disease; spinocerebellar ataxia 1 (SCA 1 ), spinocerebellar ataxia 7 (SCA 7), seizures, striatonigral degeneration, progressive supranuclear palsy, torsion dystonia, spasmodic torticollis, dyskinesis, familial tremor, Gilles de la Tourette syndrome, diffuse Lewy body disease, progressive supranuclear palsy, Pick's disease, primary lateral sclerosis, progressive neural muscular atrophy, spinal muscular atrophy, hypertrophic interstitial polyneuropathy, retinitis pigmentosa, hereditary optic atrophy, hereditary spastic paraplegia, Shy-Drager syndrome, Kennedy's disease, protein-aggregation-related neurodegeneration, Machado­ Joseph's disease, spongiform encephalopathy, prion-related disease, multiple sclerosis (MS), progressive supranuclear palsy (Steel-Richardson-Olszewski disease), llallervorden-Spdtz disease, progressive familial myoclonic epilepsy, cerebellar degeneration, Shy-Drager syndrome, motor neuron disease, Werdnig­ Hoffman disease, Wohlfart-Kugelberg-Welander disease, Gharcot-Mane-Tooth disease, Dejenne-Sottas disease, retimtis pigmentosa, Lebei's disease, progressive systemic sclerosis, dermatomyositis, and mixed connective tissue disease.
In some embodiments, the neurodegenerative pathology is an acute or chronic degenerative disease of the eye. Acute or chronic degenerative diseases of the eye include glaucoma, dry age-related macular degeneration, retinitis pigmentosa and other forms of heredodegenerative retinal disease, retinal detachment, macular pucker, ischemia affecting the outer retina, cellular damage associated with diabetic retinopathy and retinal ischemia, damage associated with laser therapy, ocular neovascular, diabetic retinopathy, rubeosis iritis, uveitis, Fuch's heterochromatic iridocyclitis, neovascular glaucoma, corneal neovascularization, retinal ischemia, choroidal vascular insufficinency, choroidal thrombosis, carotid artery ischemia, contusive ocular injury, retinopathy of permaturity, retinal vein occlusion, proliferative vitreoretinopathy, corneal angiogenesis, retinal microvasculopathy, and retinal eduema.
In some embodiments, the condition or disorder mediated by HOAG comprises a fibrotic disease such as liver fibrosis, cystic fibrosis, cirrhosis, and fibrotic skin diseases, e.g., hypertrophic scars, keloid, and Dupuytren's contracture. Accordingly, also provided is a method of treating a fibrotic disease mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a psychological disorder, such as depression, bipolar disease and dementia. In some embodiments, the condition or disorder mediated by HOAG comprises depression. Accordingly, also provided is a method of treating a psychological disorder, such as depression, mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein. In some embodiments, the depression is chosen from major depressive disorder, and bipolar disorder.
In some embodiments, the condition or disorder mediated by HOAG comprises anxiety. Accordingly, also provided is a method of treating an anxiety mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises schizophrenia. Accordingly, also provided is a method of treating a schizophrenia mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a motor neuron disease, muscle atrophy/muscle wasting disorders, or amyotrophic lateral sclerosis (ALS). Accordingly, also provided is a method of treating a motor neuron disease, muscle atrophy/muscle wasting disorders, or amyotrophic lateral sclerosis (ALS) mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a cardiovascular condition. Accordingly, also provided is a method of treating a cardiovascular condition mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein. In some embodiments, the cardiovascular condition is chosen from cardiomyopathy, cardiac hypertrophy, myocardial ischemia, heart failure, cardiac restenosis, and arteriosclerosis.
In some embodiments, the condition or disorder mediated by HOAG comprises cancer. Accordingly, also provided is a method of treating cancer mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein. In some embodiments, the cancer is chosen from lymphoma, pancreatic cancer, colorectal cancer, hepatocellular carcinoma, Waldenstrom macroglobulinemia, hormone refractory cancer of the prostate, and leukaemia, breast cancer, lung cancer, ovarian cancer, prostate cancer, head and neck cancer, renal cancer, gastric cancer, brain cancer, B-cell lymphoma, peripheral T-cell lymphoma, and cutaneous T-cell lymphoma. In some further embodiments, the cancer is chosen from the following cancer types. Cardiac: sarcoma (angiosarcoma, fibrosarcoma, rhabdomyosarcoma, liposarcoma), myxoma, rhabdomyoma, fibroma, lipoma and teratoma; Lung: bronchogenic carcinoma (squamous cell, undifferentiated small cell, undifferentiated large cell, adenocarcinoma), alveolar (bronchiolar) carcinoma, bronchial adenoma, sarcoma, lymphoma, chondromatous hamartoma, mesothelioma; Gastrointestinal: esophagus (squamous cell carcinoma, adenocarcinoma, leiomyosarcoma, lymphoma), stomach (carcinoma, lymphoma, leiomyosarcoma), pancreas (ductal adenocarcinoma, insulinoma, glucagonoma, gastrinoma, carcinoid tumors, vipoma), small bowel (adenocarcinoma, lymphoma, carcinoid tumors, Karposi's sarcoma, leiomyoma, hemangioma, lipoma, neurofibroma, fibroma), large bowel (adenocarcinoma, tubular adenoma, villous adenoma, hamartoma, leiomyoma); Genitourinary tract: kidney (adenocarcinoma, Wilm's tumor [nephroblastoma], lymphoma, leukemia), bladder and urethra (squamous cell carcinoma, transitional cell carcinoma, adenocarcinoma), prostate (adenocarcinoma, sarcoma), testis (seminoma, teratoma, embryonal carcinoma, teratocarcinoma, choriocarcinoma, sarcoma, interstitial cell carcinoma, fibroma, fibroadenoma, adenomatoid tumors, lipoma); Liver: hepatoma, cholangiocarcinoma, hepatoblastoma, angiosarcoma, hepatocellular adenoma, hemangioma; Bone: osteogenic sarcoma (osteosarcoma), fibrosarcoma, malignant fibrous histiocytoma, chondrosarcoma, Ewing's sarcoma, malignant lymphoma (reticulum cell sarcoma), multiple myeloma, malignant giant cell tumor chordoma, osteochronfroma (osteocartilaginous exostoses), benign chondroma, chondroblastoma, chondromyxofibroma, osteoid osteoma and giant cell tumors; Nervous system: skull (osteoma, hemangioma, granuloma, xanthoma, osteitis deformans), meninges (meningioma, meningiosarcoma, gliomatosis), brain (astrocytoma, medulloblastoma, glioma, ependymoma, germinoma [pinealoma], glioblastoma multiform, oligodendroglioma, schwannoma, retinoblastoma, congenital tumors), spinal cord neurofibroma, meningioma, glioma, sarcoma); Gynecological: uterus (endometrial carcinoma), cervix (cervical carcinoma, pre-tumor cervical dysplasia), ovaries (ovarian carcinoma [serous cystadenocarcinoma, mucinous cystadenocarcinoma, unclassified carcinoma], granulosa-thecal cell tumors, Sertoli-Leydig cell tumors, dysgerminoma, malignant teratoma), vulva (squamous cell carcinoma, intraepithelial carcinoma, adenocarcinoma, fibrosarcoma, melanoma), vagina (clear cell carcinoma, squamous cell carcinoma, botryoid sarcoma (embryonal rhabdomyosarcoma), fallopian tubes (carcinoma); Hematologic: blood (myeloid leukemia [acute and chronic], acute lymphoblastic leukemia, chronic lymphocytic leukemia, myeloproliferative diseases, multiple myeloma, myelodysplastic syndrome), Hodgkin's disease, non-Hodgkin's lymphoma [malignant lymphoma]; Skin: malignant melanoma, basal cell carcinoma, squamous cell carcinoma, Karposi's sarcoma, moles dysplastic nevi, lipoma, angioma, dermatofibroma, keloids, psoriasis; and Adrenal glands: neuroblastoma; and the sensitization of tumors to radiotherapy by administering the compound according to the invention before, during or after irradiation of the tumor for treating cancer.
In some embodiments, the condition or disorder mediated by HOAG comprises a condition or disorder treatable by immune modulation. Accordingly, also provided is a method of treating a condition or disorder treatable by immune modulation mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein. In some embodiments, the condition or disorder treatable by immune modulation is chosen from asthma, irritable bowel syndrome, Grohn's disease, ulcerative colitis, bowel motility disorders, hypertension, rheumatoid arthritis, osteoarthritis, juvenile chronic arthritis, graft versus host disease, psoriasis, spondyloarthropathy, inflammatory bowel disease, alcoholic hepatitis, Sjogren's syndrome, ankylosing spondylitis, membranous glomerulopathy, discogenic pain, systemic lupus erythematosus, allergic bowel disease, coeliac disease, bronchitis, cystic fibrosis, rheumatoid spondylitis, osteoarthritis, uveitis, intis, and conjunctivitis, ischemic bowel disease, psoriasis, eczema, dermatitis, septic arthritis, gout, pseudogout, juvenile arthritis, Still's disease, Henoch-Schonlein purpura, psoriatic arthritis, myalgia, reactive arthritis (Reiter's syndrome), hemochromatosis, Wegener's granulomatosis, familial Mediterranean fever (FMF), HBOS (hyperimmunoglobulinemia 0 and periodic fever syndrome), TRAPS (TNF-alpha receptor associated periodic fever syndrome), chronic obstructive pulmonary disease, neonatal-onset multisystem inflammatory disease (NOMIO), cryopyrin-associated periodic syndrome (CAPS), and familial cold autoinflammatory syndrome (FCAS).
In some embodiments, the condition or disorder mediated by HOAG comprises an allergic disease. Accordingly, also provided is a method of treating an allergic disease, mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein. Allergic diseases include, but are not limited to, respiratory allergic diseases such as allergic rhinitis, hypersensitivity lung diseases, hypersensitivity pneumonitis, eosinophilic pneumonias, Loeffler's syndrome, chronic eosinophilic pneumonia, delayed-type hypersensitivity, interstitial lung diseases (ILO), idiopathic pulmonary fibrosis, polymyositis, dermatomyositis, systemic anaphylaxis, drug allergies (e.g., to penicillin or cephalosporins), and insect sting allergies.
In some embodiments, the condition or disorder mediated by HOAG comprises an infectious disease such as a fungal infection, bacterial infection, viral infection, and protozoa! infection, e.g., malaria, giardiasis, leishmaniasis, Chaga's disease, dysentery, toxoplasmosis, and coccidiosis. In some embodiments, the condition or disorder mediated by HOAG comprises malaria.
Accordingly, also provided is a method of treating an infectious disease, such as malaria, mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises autism or Rett syndrome. Accordingly, also provided is a method of treating autism or Rett syndrome mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a hematological disorder such as thalassemia, anemia, and sickle cell anemia. Accordingly, also provided is a method of treating a hematological disorder mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a metabolic disease such as prediabetes or diabetes (type I or II).
Accordingly, also provided is a method of treating a metabolic disease, such as prediabetes or diabetes (type I or II), mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a disorder that may also be treated by progenitor/stem cell based therapies such as: disorders related to diabetes (organ failure, cerrosis, and hepatitis); central nervous system (CNS) disorders associated with dysregulation of progenitor cells in the brain (e.g., post-traumatic stress disorder (PTSO); tumors (e.g., retinoblastomas); disorders affecting oligodendrycoyte progenitor cells (e.g., astrocytomas and ependimal cell tumors); multiple sclerosis; demyelinating disorders such as the leukodystrophies; neuropathies associated with white matter loss; and cerebellar disorders such as ataxia; and olfactory progenitor disorders (e.g., anosmic conditions). Accordingly, also provided is a method of treating a disorder that is mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein, either before, during, or after a treatment with progenitor/stem cell based therapies.
In some embodiments, the condition or disorder mediated by HOAG comprises a disorder related to the proliferation of epithelial and mesenchymal cells (e.g., tumors, wound healing, and surgeries). Accordingly, also provided is a method of treating a disorder related to the proliferation of epithelial and mesenchymal cells that is mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a disorder related to the proliferation of bone progenitors (e.g., osteoblasts and osteoclasts), disorders related to hair and epidermal progenitors (e.g., hair loss, cutaneous tumors, skin regeneration, burns, and cosmetic surgery); and disorders related to bone loss during menopause. Accordingly, also provided is a method of treating disorders related to the proliferation of bone progenitors, disorders related to hair and epidermal progenitors, or disorders related to bone loss that are mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG is a viral disorder for which blood cells become sensitized to other treatments after HOAG inhibition, following administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, as described herein.
In some embodiments, the condition or disorder mediated by HOAG is an immune disorder that may be co-treated with TN Fa or other immune modulators, upon administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, as described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a graft rejection or transplant rejection. Accordingly, also provided is a method of treating a disorder related to a graft rejection or a transplant rejection that is mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
In some embodiments, the condition or disorder mediated by HOAG comprises a blood pressure disorder related to nitric oxide (NO) regulation (e.g., hypertension, erectile dysfunction, asthma; and ocular disorders as glaucoma).
Accordingly, also provided is a method of treating a blood pressure disorder related to nitric oxide (NO) regulation that is mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein. In some embodiments, the condition or disorder is a cardiac hypertrophic disorder. Accordingly, also provided is a method of treating a cardiac hypertrophic disorder that is mediated by HOAG in a subject in need of such a treatment, comprising administering to the subject a therapeutically effective amount of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
Also provided are methods of treatment in which at least one compound, or pharmaceutically acceptable salt thereof, described herein is the only active agent given to the subject and also includes methods of treatment in which at least one compound, or pharmaceutically acceptable salt thereof, described herein is given to the subject in combination with one or more additional active agents.
In general, the compounds, or pharmaceutically acceptable salts thereof, described herein will be administered in a therapeutically effective amount by any of the accepted modes of administration for agents that serve similar utilities. The actual amount of the compound, i.e., the active ingredient, will depend upon numerous factors such as the severity of the disease to be treated, the age and relative health of the subject, the potency of the compound used, the route and form of administration, and other factors well know to the skilled artisan. The drug can be administered at least once a day, such as once or twice a day.
In some embodiments, the compounds, or pharmaceutically acceptable salts thereof, described herein are administered as a pharmaceutical composition. Accordingly, provided are pharmaceutical compositions comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein, together with at least one pharmaceutically acceptable vehicle chosen from carriers, adjuvants, and excipients.
Pharmaceutically acceptable vehicles must be of sufficiently high purity and sufficiently low toxicity to render them suitable for administration to the animal being treated. The vehicle can be inert or it can possess pharmaceutical benefits. The amount of vehicle employed in conjunction with the compound, or pharmaceutically acceptable salt thereof, is sufficient to provide a practical quantity of material for administration per unit dose of the compound, or pharmaceutically acceptable salt thereof.
Exemplary pharmaceutically acceptable carriers or components thereof are sugars, such as lactose, glucose and sucrose; starches, such as corn starch and potato starch; cellulose and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose, and methyl cellulose; powdered tragacanth; malt; gelatin; talc; solid lubricants, such as stearic acid and magnesium stearate; calcium sulfate; synthetic oils; vegetable oils, such as peanut oil, cottonseed oil, sesame oil, olive oil, and corn oil; polyols such as propylene glycol, glycerine, sorbitol, mannitol, and polyethylene glycol; alginic acid; phosphate buffer solutions; emulsifiers, such as the TWEENS; wetting agents, such sodium lauryl sulfate; coloring agents; flavoring agents; tableting agents; stabilizers; antioxidants; preservatives; pyrogen-free water; isotonic saline; and phosphate buffer solutions.
Optional active agents may be included in a pharmaceutical composition, which do not substantially interfere with the activity of the compound, or pharmaceutically acceptable salt thereof, described herein.
Effective concentrations of at least one compound, or pharmaceutically acceptable salt thereof, described herein are mixed with a suitable pharmaceutically acceptable vehicle. In instances in which the compound, or pharmaceutically acceptable salt thereof, exhibits insufficient solubility, methods for solubilizing compounds may be used. Such methods are known to those of skill in this art, and include, but are not limited to, using cosolvents, such as dimethylsulfoxide (DMSO), using surfactants, such as TWEEN, or dissolution in aqueous sodium bicarbonate.
Upon mixing or addition of a compound, or pharmaceutically acceptable salt thereof, described herein, the resulting mixture may be a solution, suspension, emulsion or the like. The form of the resulting mixture depends upon a number of factors, including the intended mode of administration and the solubility of the compound, or pharmaceutically acceptable salt thereof, in the chosen vehicle. The effective concentration sufficient for ameliorating the symptoms of the disease treated may be empirically determined.
The compounds, or pharmaceutically acceptable salts thereof, described herein may be administered orally, topically, parenterally, intravenously, by intramuscular injection, by inhalation or spray, sublingually, transdermally, via buccal administration, rectally, as an ophthalmic solution, or by other means, in dosage unit formulations.
Pharmaceutical compositions may be formulated for oral use, such as for example, tablets, troches, lozenges, aqueous or oily suspensions, dispersible powders or granules, emulsions, hard or soft capsules, or syrups or elixirs. Pharmaceutical compositions intended for oral use may be prepared according to any method known to the art for the manufacture of pharmaceutical compositions and such compositions may contain one or more agents, such as sweetening agents, flavoring agents, coloring agents and preserving agents, in order to provide pharmaceutically elegant and palatable preparations. In some embodiments, oral pharmaceutical compositions contain from 0.1 to 99% of at least one compound, or pharmaceutically acceptable salt thereof, described herein. In some embodiments, oral pharmaceutical compositions contain at least % (weight%) of at least one compound, or pharmaceutically acceptable salt thereof, described herein. Some embodiments contain from 25% to 50% or from % to 75% of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
Orally administered pharmaceutical compositions also include liquid solutions, emulsions, suspensions, powders, granules, elixirs, tinctures, syrups, and the like. The pharmaceutically acceptable carriers suitable for preparation of such compositions are well known in the art. Oral pharmaceutical compositions may contain preservatives, flavoring agents, sweetening agents, such as sucrose or saccharin, taste-masking agents, and coloring agents.
Typical components of carriers for syrups, elixirs, emulsions and suspensions include ethanol, glycerol, propylene glycol, polyethylene glycol, liquid sucrose, sorbitol and water. Syrups and elixirs may be formulated with sweetening agents, for example glycerol, propylene glycol, sorbitol or sucrose.
Such pharmaceutical compositions may also contain a demulcent.
The compound, or pharmaceutically acceptable salt thereof, described herein can be incorporated into oral liquid preparations such as aqueous or oily suspensions, solutions, emulsions, syrups, or elixirs, for example.
Moreover, pharmaceutical compositions containing these at least one compound, or pharmaceutically acceptable salt thereof, can be presented as a dry product for constitution with water or other suitable vehicle before use. Such liquid preparations can contain conventional additives, such as suspending agents (e.g., sorbitol syrup, methyl cellulose, glucose/sugar, syrup, gelatin, hydroxyethyl cellulose, carboxymethyl cellulose, aluminum stearate gel, and hydrogenated edible fats), emulsifying agents (e.g., lecithin, sorbitan monsoleate, or acacia), non-aqueous vehicles, which can include edible oils (e.g., almond oil, fractionated coconut oil, silyl esters, propylene glycol and ethyl alcohol), and preservatives (e.g., methyl or propyl p-hydroxybenzoate and sorbic acid).
For a suspension, typical suspending agents include methylcellulose, sodium carboxymethyl cellulose, AVICEL RC-591, tragacanth and sodium alginate; typical wetting agents include lecithin and polysorbate 80; and typical preservatives include methyl paraben and sodium benzoate.
Aqueous suspensions contain the active material(s) in admixture with excipients suitable for the manufacture of aqueous suspensions. Such excipients are suspending agents, for example sodium carboxymethylcellulose, methylcellulose, hydropropylmethylcellulose, sodium alginate, polyvinylpyrrolidone, gum tragacanth and gum acacia; dispersing or wetting agents; may be a naturally-occurring phosphatide, for example, lecithin, or condensation products of an alkylene oxide with fatty acids, for example polyoxyethylene stearate, or condensation products of ethylene oxide with long chain aliphatic alcohols, for example heptadecaethyleneoxycetanol, or condensation products of ethylene oxide with partial esters derived from fatty acids and a hexitol such as polyoxyethylene sorbitol substitute, or condensation products of ethylene oxide with partial esters derived from fatty acids and hexitol anhydrides, for example polyethylene sorbitan substitute. The aqueous suspensions may also contain one or more preservatives, for example ethyl, or n­ propyl p-hydroxybenzoate.
Oily suspensions may be formulated by suspending the active ingredients in a vegetable oil, for example peanut oil, olive oil, sesame oil or coconut oil, or in a mineral oil such as liquid paraffin. The oily suspensions may contain a thickening agent, for example beeswax, hard paraffin or cetyl alcohol.
Sweetening agents such as those set forth above, and flavoring agents may be added to provide palatable oral preparations. These pharmaceutical compositions may be preserved by the addition of an anti-oxidant such as ascorbic acid.
Pharmaceutical compositions may also be in the form of oil-in-water emulsions. The oily phase may be a vegetable oil, for example olive oil or peanut oil, or a mineral oil, for example liquid paraffin or mixtures of these. Suitable emulsifying agents may be naturally-occurring gums, for example gum acacia or gum tragacanth, naturally-occurring phosphatides, for example soy bean, lecithin, and esters or partial esters derived from fatty acids and hexitol, anhydrides, for example sorbitan monoleate, and condensation products of the said partial esters with ethylene oxide, for example polyoxyethylene sorbitan monoleate.
Dispersible powders and granules suitable for preparation of an aqueous suspension by the addition of water provide the active ingredient in admixture with a dispersing or wetting agent, suspending agent and one or more preservatives. Suitable dispersing or wetting agents and suspending agents are exemplified by those already mentioned above.
Tablets typically comprise conventional pharmaceutically acceptable adjuvants as inert diluents, such as calcium carbonate, sodium carbonate, mannitol, lactose and cellulose; binders such as starch, gelatin and sucrose; disintegrants such as starch, alginic acid and croscarmelose; lubricants such as magnesium stearate, stearic acid and talc. Glidants such as silicon dioxide can be used to improve flow characteristics of the powder mixture.
Coloring agents, such as the FD&C dyes, can be added for appearance.
Sweeteners and flavoring agents, such as aspartame, saccharin, menthol, peppermint, and fruit flavors, can be useful adjuvants for chewable tablets.
Capsules (including time release and sustained release formulations) typically comprise one or more solid diluents disclosed above. The selection of carrier components often depends on secondary considerations like taste, cost, and shelf stability.
Such pharmaceutical compositions may also be coated by conventional methods, typically with pH or time-dependent coatings, such that the compound, or pharmaceutically acceptable salt thereof, is released in the gastrointestinal tract in the vicinity of the desired topical application, or at various times to extend the desired action. Such dosage forms typically include, but are not limited to, one or more of cellulose acetate phthalate, polyvinylacetate phthalate, hydroxypropyl methylcellulose phthalate, ethyl cellulose, Eudragit coatings, waxes and shellac.
Pharmaceutical compositions for oral use may also be presented as hard gelatin capsules wherein the active ingredient is mixed with an inert solid diluent, for example, calcium carbonate, calcium phosphate or kaolin, or as soft gelatin capsules wherein the active ingredient is mixed with water or an oil medium, for example peanut oil, liquid paraffin or olive oil.
Pharmaceutical compositions may be in the form of a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to the known art using those suitable dispersing or wetting agents and suspending agents that have been mentioned above. The sterile injectable preparation may also be sterile injectable solution or suspension in a non-toxic parentally acceptable vehicle, for example as a solution in 1,3- butanediol. Among the acceptable vehicles that may be employed are water, Ringer's solution, and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose any bland fixed oil may be employed including synthetic mono- or diglycerides. In addition, fatty acids such as oleic acid can be useful in the preparation of injectables.
The compound, or pharmaceutically acceptable salt thereof, described herein may be administered parenterally in a sterile medium.
Parenteral administration includes subcutaneous injections, intravenous, intramuscular, intrathecal injection or infusion techniques. The compound, or pharmaceutically acceptable salt thereof, described herein, depending on the vehicle and concentration used, can either be suspended or dissolved in the vehicle. Advantageously, adjuvants such as local anesthetics, preservatives and buffering agents can be dissolved in the vehicle. In many pharmaceutical compositions for parenteral administration the carrier comprises at least 90% by weight of the total composition. In some embodiments, the carrier for parenteral administration is chosen from propylene glycol, ethyl oleate, pyrrolidone, ethanol, and sesame oil.
The compound, or pharmaceutically acceptable salt thereof, described herein may also be administered in the form of suppositories for rectal administration of the drug. These pharmaceutical compositions can be prepared by mixing the drug with a suitable non-irritating excipient that is solid at ordinary temperatures but liquid at rectal temperature and will therefore melt in the rectum to release the drug. Such materials include cocoa butter and polyethylene glycols.
The compound, or pharmaceutically acceptable salt thereof, described herein may be formulated for local or topical application, such as for topical application to the skin and mucous membranes, such as in the eye, in the form of gels, creams, and lotions and for application to the eye. Topical pharmaceutical compositions may be in any form including, for example, solutions, creams, ointments, gels, lotions, milks, cleansers, moisturizers, sprays, skin patches, and the like.
Such solutions may be formulated as 0.01% -10% isotonic solutions, pH 5-7, with appropriate salts. The compound, or pharmaceutically acceptable salt thereof, described herein may also be formulated for transdermal administration as a transdermal patch.
Topical pharmaceutical compositions comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein can be admixed with a variety of carrier materials well known in the art, such as, for example, water, alcohols, aloe vera gel, allantoin, glycerine, vitamin A and E oils, mineral oil, propylene glycol, PPG-2 myristyl propionate, and the like.
Other materials suitable for use in topical carriers include, for example, emollients, solvents, humectants, thickeners and powders. Examples of each of these types of materials, which can be used singly or as mixtures of one or more materials, are as follows.
Representative emollients include stearyl alcohol, glyceryl monoricinoleate, glyceryl monostearate, propane-1,2-diol, butane-1,3-diol, mink oil, cetyl alcohol, iso-propyl isostearate, stearic acid, iso-butyl palmitate, isocetyl stearate, oleyl alcohol, isopropyl laurate, hexyl laurate, decyl oleate, octadecan ol, isocetyl alcohol, cetyl palmitate, dimethylpolysiloxane, di-n-butyl sebacate, iso­ propyl myristate, iso-propyl palmitate, iso-propyl stearate, butyl stearate, polyethylene glycol, triethylene glycol, lanolin, sesame oil, coconut oil, arachis oil, castor oil, acetylated lanolin alcohols, petroleum, mineral oil, butyl myristate, isostearic acid, palmitic acid, isopropyl linoleate, lauryl lactate, myristyl lactate, decyl oleate, and myristyl myristate; propellants, such as propane, butane, iso­ butane, dimethyl ether, carbon dioxide, and nitrous oxide; solvents, such as ethyl alcohol, methylene chloride, iso-propanol, castor oil, ethylene glycol monoethyl ether, diethylene glycol monobutyl ether, diethylene glycol monoethyl ether, dimethyl sulphoxide, dimethyl formamide, tetrahydrofuran; humectants, such as glycerin, sorbitol, sodium 2-pyrrolidonecarboxylate, soluble collagen, dibutyl phthalate, and gelatin; and powders, such as chalk, talc, fullers earth, kaolin, starch, gums, colloidal silicon dioxide, sodium polyacrylate, tetra alkyl ammonium smectites, trialkyl aryl ammonium smectites, chemically modified magnesium aluminium silicate, organically modified montmorillonite clay, hydrated aluminium silicate, fumed silica, carboxyvinyl polymer, sodium carboxymethyl cellulose, and ethylene glycol monostearate.
The compound, or pharmaceutically acceptable salt thereof, described herein may also be topically administered in the form of liposome delivery systems, such as small unilamellar vesicles, large unilamellar vesicles, and multilamellar vesicles. Liposomes can be formed from a variety of phospholipids, such as cholesterol, stearylamine or phosphatidylcholines.
Other pharmaceutical compositions useful for attaining systemic delivery of the compound, or pharmaceutically acceptable salt thereof, include sublingual, buccal and nasal dosage forms. Such pharmaceutical compositions typically comprise one or more of soluble filler substances such as sucrose, sorbitol and mannitol, and binders such as acacia, microcrystalline cellulose, carboxymethyl cellulose, and hydroxypropyl methylcellulose. Glidants, lubricants, sweeteners, colorants, antioxidants and flavoring agents disclosed above may also be included.
Pharmaceutical compositions for inhalation typically can be provided in the form of a solution, suspension or emulsion that can be administered as a dry powder or in the form of an aerosol using a conventional propellant (e.g., dichlorodifluoromethane or trichlorofluoromethane).
The pharmaceutical compositions may also optionally comprise an activity enhancer. The activity enhancer can be chosen from a wide variety of molecules that function in different ways to enhance or be independent of therapeutic effects of the compound, or pharmaceutically acceptable salt thereof, described herein. Particular classes of activity enhancers include skin penetration enhancers and absorption enhancers.
Pharmaceutical compositions may also contain additional active agents that can be chosen from a wide variety of molecules, which can function in different ways to enhance the therapeutic effects of at least one compound, or pharmaceutically acceptable salt thereof, described herein. These optional other active agents, when present, are typically employed in the pharmaceutical compositions at a level ranging from 0.01 % to 15%. Some embodiments contain from 0.1%to10% by weight of the composition. Other embodiments contain from 0.5% to 5% by weight of the composition.
Also provided are packaged pharmaceutical compositions. Such packaged compositions include a pharmaceutical composition comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein, and instructions for using the composition to treat a subject (typically a human patient). In some embodiments, the instructions are for using the pharmaceutical composition to treat a subject suffering a condition or disorder mediated by HDAC. The packaged pharmaceutical composition can include providing prescribing information; for example, to a patient or health care provider, or as a label in a packaged pharmaceutical composition. Prescribing information may include for example efficacy, dosage and administration, contraindication and adverse reaction information pertaining to the pharmaceutical composition.
In all of the foregoing the compound, or pharmaceutically acceptable salt thereof, can be administered alone, as mixtures, or in combination with other active agents.
The methods described herein include methods for treating Huntington's disease, including treating memory and/or cognitive impairment associated with Huntington's disease, comprising administering to a subject, simultaneously or sequentially, at least one compound, or pharmaceutically acceptable salt thereof, described herein and one or more additional agents used in the treatment of Huntington's disease such as, but not limited to, Amitriptyline, lmipramine, Despiramine, Nortriptyline, Paroxetine, Fluoxetine, Setraline, Terabenazine, Haloperidol, Chloropromazine, Thioridazine, Sulpride, Quetiapine, Clozapine, and Risperidone. In methods using simultaneous administration, the agents can be present in a combined composition or can be administered separately. As a result, also provided are pharmaceutical compositions comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein and one or more additional pharmaceutical agents used in the treatment of Huntington's disease such as, but not limited to, Amitriptyline, lmipramine, Despiramine, Nortriptyline, Paroxetine, Fluoxetine, Setraline, Terabenazine, Haloperidol, Chloropromazine, Thioridazine, Sulpride, Quetiapine, Clozapine, and Risperidone. Similarly, also provided are packaged pharmaceutical compositions containing a pharmaceutical composition comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein, and another composition comprising one or more additional pharmaceutical agents used in the treatment of Huntington's disease such as, but not limited to, Amitriptyline, lmipramine, Despiramine, Nortriptyline, Paroxetine, Fluoxetine, Setraline, Terabenazine, Haloperidol, Chloropromazine, Thioridazine, Sulpride, Quetiapine, Clozapine, and Risperidone.
Also provided are methods for Alzheimer's disease, including treating memory and/or cognitive impairment associated with Alzheimer's disease, comprising administering to a subject, simultaneously or sequentially, at least one compound, or pharmaceutically acceptable salt thereof, described herein and one or more additional agents used in the treatment of Alzheimer's disease such as, but not limited to, Reminyl, Cognex, Aricept, Exelon, Akatinol, Neotropin, Eldepryl, Estrogen and Clioquinol. In methods using simultaneous administration, the agents can be present in a combined composition or can be administered separately. Also provided are pharmaceutical compositions comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein, and one or more additional pharmaceutical agents used in the treatment of Alzheimer's disease such as, but not limited to, Reminyl, Cognex, Aricept, Exelon, Akatinol, Neotropin, Eldepryl, Estrogen and Clioquinol.
Similarly, also provided are packaged pharmaceutical compositions containing a pharmaceutical composition comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein, and another composition comprising one or more additional pharmaceutical agents used in the treatment of Alzheimer's disease such as, but not limited to Reminyl, Cognex, Aricept, Exelon, Akatinol, Neotropin, Eldepryl, Estrogen and Clioquinol.
Also provided are methods for treating cancer comprising administering to a subject, simultaneously or sequentially, at least one compound, or pharmaceutically acceptable salt thereof, described herein and one or more additional agents used in the treatment of cancer such as, but not limited to, the following categories of anti-tumor agents (i) other cell cycle inhibitory agents that work by the same or different mechanisms from those defined hereinbefore, for example cyclin dependent kinase (CDK) inhibitors, in particular CDK2 inhibitors; (ii) cytostatic agents such as antioestrogens (for example tamoxifen, toremifene, raloxifene, droloxifene, iodoxyfene), progestogens (for example megestrol acetate), aromatase inhibitors (for example anastrozole, letrazole, vorazole, exemestane), antiprogestogens, antiandrogens (for example flutamide, nilutamide, bicalutamide, cyproterone acetate), LHRH agonists and antagonists (for example goserelin acetate, luprolide), inhibitors of testosterone 5.alpha.­ dihydroreductase (for example finasteride), anti-invasion agents (for example metalloproteinase inhibitors like marimastat and inhibitors of urokinase plasminogen activator receptor function) and inhibitors of growth factor function, (such growth factors include for example vascular endothelial growth factor, epithelial growth factor, platelet derived growth factor and hepatocyte growth factor such inhibitors include growth factor antibodies, growth factor receptor antibodies, tyrosine kinase inhibitors and serine/threonine kinase inhibitors); (iii) antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology, such as antimetabolites (for example antifolates like methotrexate, fluoropyrimidines like 5-fluorouracil, purine and adenosine analogues, cytosine arabinoside); antitumour antibiotics (for example anthracyclines like doxorubicin, daunomycin, epirubicin and idarubicin, mitomycin-C, dactinomycin, mithramycin); platinum derivatives (for example cisplatin, carboplatin); alkylating agents (for example nitrogen mustard, melphalan, chlorambucil, busulphan, cyclophosphamide, ifosfamide, nitrosoureas, thiotepa); antimitotic agents (for example vinca alkaloids like vincrisitine and taxoids like taxol, taxotere); topoisomerase inhibitors (for example epipodophyllotoxins like etoposide and teniposide, amsacrine, topotecan); (iv) antiangiogenic agents that work by different mechanisms from those defined hereinbefore (for example receptor tyrosine kinases like Tie-2, inhibitors of integrin .alpha.v.beta.3 function, angiostatin, razoxin, thalidomide), and including vascular targeting agents; and (v) differentiation agents (for example retinoic acid and vitamin D).
In methods using simultaneous administration, the agents can be present in a combined composition or can be administered separately. Also provided are pharmaceutical compositions comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein, and one or more anti­ tumor agent as described herein. Similarly, also provided are packaged pharmaceutical compositions containing a pharmaceutical composition comprising at least one compound, or pharmaceutically acceptable salt thereof, described herein, and another composition comprising one or more one or more anti-tumor agent as described herein. When used in combination with one or more additional pharmaceutical agent or agents, the described herein may be administered prior to, concurrently with, or following administration of the additional pharmaceutical agent or agents.
In some embodiments, the compounds, or pharmaceutically acceptable salts thereof, described herein, are administered in conjunction with surgery or radiotherapy, optionally in combination with one or more additional agents used in the treatment of cancer.
The dosages of the compounds described herein depend upon a variety of factors including the particular syndrome to be treated, the severity of the symptoms, the route of administration, the frequency of the dosage interval, the particular compound utilized, the efficacy, toxicology profile, pharmacokinetic profile of the compound, and the presence of any deleterious side-effects, among other considerations.
The compound, or pharmaceutically acceptable salt thereof, described herein is typically administered at dosage levels and in a manner customary for HOAG inhibitors. For example, the compound, or pharmaceutically acceptable salt thereof, can be administered, in single or multiple doses, by oral administration at a dosage level of generally 0.001-100 mg/kg/day, for example, 0.01-100 mg/kg/day, such as 0.1-70 mg/kg/day, for example, 0.5-10 mg/kg/day.
Unit dosage forms can contain generally 0.01-1000 mg of at least one compound, or pharmaceutically acceptable salt thereof, described herein, for example, 0.1-50 mg of at least one compound, or pharmaceutically acceptable salt thereof, described herein. For intravenous administration, the compounds can be administered, in single or multiple dosages, at a dosage level of, for example, 0.001-50 mg/kg/day, such as 0.001-10 mg/kg/day, for example, 0.01-1 mg/kg/day. Unit dosage forms can contain, for example, 0.1-10 mg of at least one compound, or pharmaceutically acceptable salt thereof, described herein.
A labeled form of a compound, or pharmaceutically acceptable salt thereof, described herein can be used as a diagnostic for identifying and/or obtaining compounds that have the function of modulating an activity of HOAG as described herein. The compound, or pharmaceutically acceptable salt thereof, described herein may additionally be used for validating, optimizing, and standardizing bioassays.
By "labeled" herein is meant that the compound is either directly or indirectly labeled with a label which provides a detectable signal, e.g., radioisotope, fluorescent tag, enzyme, antibodies, particles such as magnetic particles, chemiluminescent tag, or specific binding molecules, etc. Specific binding molecules include pairs, such as biotin and streptavidin, digoxin and antidigoxin etc. For the specific binding members, the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures, as outlined above. The label can directly or indirectly provide a detectable signal.
In carrying out the procedures of the methods described herein, it is of course to be understood that reference to particular buffers, media, reagents, cells, culture conditions and the like are not intended to be limiting, but are to be read so as to include all related materials that one of ordinary skill in the art would recognize as being of interest or value in the particular context in which that discussion is presented. For example, it is often possible to substitute one buffer system or culture medium for another and still achieve similar, if not identical, results. Those of skill in the art will have sufficient knowledge of such systems and methodologies so as to be able, without undue experimentation, to make such substitutions as will optimally serve their purposes in using the methods and procedures disclosed herein.
EXAMPLES The compounds, or pharmaceutically acceptable salts thereof, compositions, and methods described herein are further illustrated by the following non-limiting examples.
As used herein, the following abbreviations have the following meanings. If an abbreviation is not defined, it has its generally accepted meaning.
Abbreviations [bmim][PF5]: 1-Butylmethylimidazolium hexafluorophosphate BOP: Benzotriazoleyl-oxy-tris-(dimethylamino)-phosphonium hexafluorophosphate DCM: Dichloromethane DCE: Dichloroethane DIPEA: Diisopropylethylamine OMA: Dimethylacetam ide DME: Dimethoxyethane DMF: Dimethylformam ide DMSO: Dimethylsulfoxide ES+: Electrospray Positive Ionisation ES-: Electrospray Negative Ionisation Diethyl ether Et20: EtOAc: Ethyl acetate h: Hour HPLC: High Performance Liquid Chromatography i-hex: iso-Hexane LCMS: Liquid Chromatography Mass Spectrometry LiHMDS: Lithium bis(trimethylsilyl)amide M: Mass MeCN: Acetonitrile MeOH: Methanol NMP: N-Methyl pyrrolidinone Pd/C: Palladium on carbon Pd2(dba)3: Tris(dibenzylideneacetone)dipalladium(O) Pd(dppf)Cl2: [1, 1 '-Bis(diphenylphosphino)ferrocene]dichloropalladium(ll) Pd(PPh3)4: Tetrakis(triphenylphosphine)palladium(O) o-tol: ortho-T olyl Rh2(0Ac)4: Rhodium(ll) acetate RT: Retention time r.t.: Room temperature Ru Phos: 2-Dicyclohexylphosph ino-2' ,6'-d i-iso -propoxy-1 , 1 '-biphenyl THF: Tetrahydrofuran Xantphos: 4,5-Bis(diphenylphosphino)-9,9-dimethylxanthene Analytical Conditions Compounds were named with the aid of the Cambridgesoft Chemistry Cartridge (v. 9.0.0.182) software.
All reactions involving air- or moisture-sensitive reagents were performed under a nitrogen atmosphere using dried solvents and glassware.
Racemic mixtures of the cyclopropyl core are denoted using asterisks e.g. (1 R*,2R*,3R*). Chirally pure compounds are denoted without asterisks e.g. (1 R,2R,3R).
Analytical Condition Method Description 10cm ESI Formic 1 - - - MeCN, 10cm Solvents: Acetonitrile (far UV grade) ESCI Formic MeCN - - - with 0.1 % (v/v) formic acid.
Water (high purity via Purelab Option unit) with 0.1 % formic acid Column: Phenomenex Luna 5 urn C18 (2), 100 x 4.6 mm (Plus guard cartridge) Flow Rate: 2 ml/min gradient: A: Water/formic acid B: MeCN/formic acid Time A% 8% 0.00 95 5 3.50 95 .50 5 95 .60 95 5 6.50 95 5 Typical Injections 2-7 µL (concentration - 0.2-1.0 mg/ml) 15cm Bicarb GeminiN 2 X HPLC MeCN Solvents: 100% Acetonitrile (Far UV grade) Water (High purity via Purelab Ultra unit) with 10 mM Ammonium Bicarbonate Column: Phenomenex, Gemini NX, 3 urn C18,150 x 4.6 mm.
Flow Rate: 1 ml/min gradient: A: 10 mM Ammonium Bicarbonate in water B: 100% MeCN Time A% B% 0.00 95.5 4.5 3.00 95.5 4.4 9.00 0 100 13.6 0 100 13.7 95.5 4.5 95.5 4.5 Typical Injections 2-7 µL (concentration - 0.2-1 mg/ml) 15cm Formic Ascentis HPLC MeCN Solvents: Acetonitrile (Far UV grade) with 0.1 % (VN) formic acid Water (High purity via Purelab Ultra unit) with 0.1 % formic acid Column: Supelco, Ascentis® Express C18 or Hichrom Halo C18, 2.7 urn C18, 150 x4.6mm.
Flow Rate: 1ml/min gradient: A: Water I formic B: MeCN/formic Time A% 8% 0.00 96 4 3.00 96 4 9.00 100 13.6 0 100 13.7 96 4 4 Typical Injections 2-7 µL (concentration - 0.2-1 mg/ml) 1 Ocm ESCI bicarb Me 4 - - - Solvents: Acetonitrile (Far UV grade) Water (High purity via Purelab Option unit) with mM ammonium bicarbonate (ammonium hydrogen carbonate) Column: Waters Xterra MS 5m C18, 100 x 4.6 mm. (Plus guard cartridge) Flow Rate: 2ml/min gradient: A: Water/Bicarb B: MeCN Time A% 8% 0.00 95 5 0.50 95 5 4.00 95 .50 5 95 .60 95 5 6.50 95 5 Typical Injections 2-7 µL (concentration - 0.2-1 mg/ml) 10cm Formic ACE- 5 AR HPLC CH3CN Solvents: Acetonitrile (Far UV grade) with 0.1 % (VN) formic acid Water (High purity via Purelab Ultra unit) with 0.1 % formic acid Column: Hichrom ACE 3 C18-AR mixed mode column 100x4.6 mm Flow Rate: 1 ml/min gradient: A: Water I formic B: MeCN/formic Time A% 8% 0.00 2 3.00 98 2 12.00 0 100 .4 0 100 .5 98 2 17 98 2 Typical Injections 0.2-10 µL Analytical Condition Method Description Solvents: Methanol (AR grade) with 0.1% (VN)formic acid Water (High purity via Purelab Ultra unit) with 0.1 % formic acid Column: Hichrom ACE 3 C18- AR mixed mode column 100x4.6mm Flow Rate: 1ml/min 1 Ocm Formic ACE- AR HPlC CH30H Slo 6 - - - gradient: A: Water I formic B: MeOH/formic Time A% 8% 0.00 2 3.00 2 12.00 0 100 .4 0 100 .5 98 2 17 98 2 Typical Injections 0.2-1 Oµl Synthetic Section Method A (hydroxamic acid formation) To a stirred solution of ester (0.30 mmol) in THF/MeOH (1 :1, 3 ml) was added hydroxylamine (0.2 ml, 50% aqueous solution, 3.00 mmol) and potassium hydroxide (33 mg, 0.60 mmol). The mixture was stirred at r.t. for 2 h, neutralized with 1 M HCl(aq) and extracted with DCM. The combined organic layers were washed with brine (10 ml), passed through a phase separator and concentrated.
Method B (hydroxamic acid formation) To a stirred solution of acid (0.26 mmol), BOP (0.29 mmol) and triethylamine (0.78 mmol) in pyridine (1 ml) was added hydroxylamine hydrochloride (0.29 mmol). The reaction mixture was stirred at r.t. for 2 h, diluted with water (10 ml) and extracted into EtOAc (3 x 20 ml). The combined organic layers were washed with water (2 x 20 ml), dried (MgS04) and concentrated.
Method C (Wittig reaction) To a stirred solution of triethyl phosphonoacetate (24.4 mmol) in THF (30 ml) at 0°C was added sodium hydride (24.4 mmol) portionwise. The mixture was stirred for 1 h before addition of aldehyde (12.2 mmol). The reaction mixture was allowed to warm to r.t. and stirred for 17 h, before quenching with water (50 ml) and extracting into EtOAc (2 x 50 ml). The organic layers were combined and washed with water (2 x 50 ml), dried (MgS04), filtered and concentrated.
Method D (Heck reaction - 1) To a stirred solution of aryl bromide (4.42 mmol) in anhydrous DMF (16 ml) was added ethyl acrylate (5.75 mmol), Pd(OAc)2 (0.44 mmol), DABCO (8.84 mmol) and potassium carbonate (8.84 mmol). The solution was degassed under nitrogen for 15 min before heating to 125°C for 17 h. The mixture was cooled, diluted with H20 (30 ml) and extracted into DCM (2 x 30 ml). The organic layers were washed with H20 (3 x 50 ml) and brine (2 x 50 ml), passed through a phase separator and concentrated.
Method E (Heck reaction - 2) A stirred mixture of aryl bromide (10.0 mmol), ethyl acrylate (15.0 mmol), palladium acetate (1.00 mmol), P(o-tol), (2.00 mmol) and triethylamine (20.0 mmol) in MeCN (50 ml) was degassed with nitrogen for 15 min and heated to 80°C for 3-18 h. The reaction mixture was cooled and the MeCN removed in vacuo. The residue was partitioned between DCM and H20 and the organic layers were passed through a phase separator and concentrated.
Method F (Cyclopropanation reaction) A mixture of sulfonium salt (8.92 mmol), acrylate (5.96 mmol) and 12-crown-4 (8.92 mmol) in DCM (20 ml) was cooled to -20°C. LiHMDS (8.92 ml) was then added dropwise. After complete addition, the mixture was warmed to r.t, stirred for 2 hand quenched with H20 (30 ml). The layers were separated and the organic phase was washed with brine (2 x 30 ml), separated, dried (MgS04), filtered and concentrated.
Method G (Suzuki coupling from boronate on scaffold) To a stirred solution of cyclopropyl bromo scaffold (3.02 mmol) in dioxane (5 ml) was added bis-pinacolato diboron (3.32 mmol), Pd(dppf)Cl2 (0.30 mmol) and potassium acetate (15.1 mmol). The mixture was degassed with nitrogen and heated to 100°C for 2 h. The reaction mixture was diluted with H20 (20 ml) and extracted into DCM (2 x 20 ml). The organic layers were passed through a phase separator and concentrated. The crude residue was dissolved in dioxane and an aliquot (0.66 mmol) was added to a reaction tube. To this was added heterocyclic halide (0.69 mmol), Pd(PPh3)4 (0.066 mmol), and aqueous Na2C03 (5 ml, 1 M solution). The reaction was heated at 100°C for 2 h. The mixture was diluted with H20 (10 ml) and extracted into DCM (20 ml). The organic layers were passed through a phase separator and concentrated.
Method H (Suzuki coupling) A mixture of cyclopropyl bromo scaffold (2.00 mmol), boronic ester (or acid) (2.40 mmol), 1 N Na2C03 (6.00 mmol) and Pd(PPh3)4 (0.10 mmol) in dioxane (6 ml) was stirred at 100°C for 3 h. The reaction mixture was diluted with water and extracted into DCM. The organic layer was dried and concentrated and the crude mixture was purified by flash silica column chromatography.
Method I (Buchwald reaction) To a stirred solution of aryl bromide (0.76 mmol) and amine (0.86 mmol) in dioxane (4 ml), was added XantPhos (0.048 mmol), cesium carbonate (1.66 mmol) and Pd2(dba)3 (0.024 mmol). The mixture was stirred for 16 h at 90 °C, diluted with water and extracted into DCM (20 ml). The organic layers were passed through a phase separator and concentrated and the crude mixture was purified by flash silica column chromatography.
Example 1 Reaction Scheme 1 CONHOH Ph'''.~Ph trans-2,3-Diphenylcyclopropanecarboxylic acid (1) To a stirred solution of trans-stilbene (1.0 g, 5.6 mmol) and copper sulphate (44 mg, 0.28 mmol) in toluene (50 ml) at 75°C was added ethyl diazoacetate (1.16 ml, 11.1 mmol) dropwise. Evolution of nitrogen was observed. The mixture was stirred for 15 min, allowed to cool to r.t. and concentrated in vacuo. The residue was taken-up in EtOH (25 ml) and filtered.
The filtrate was concentrated and purified by flash silica column chromatography (gradient elution petroleum ether to 2.5% EtOAc in petroleum ether). The ethyl ester intermediate was then dissolved in MeOH (5 ml) and aqueous 2 M LiOH (10 ml) and stirred at 50°C for 16 h. The mixture was washed with Et20 (30 ml) and the basic aqueous solution acidified using aqueous 1 M HCI. The resulting precipitate was collected by filtration to give the title compound (62 mg, 5%) as a white solid. trans-N-Hydroxy-2,3-diphenylcyclopropanecarboxamide (2) Following method B, from compound 1 (62 mg, 0.26 mmol). The crude material was purified by preparative HPlC and PEAX cartridge (DCM:MeOH, 1 :1 ). The solvent was removed in vacuo to afford the title compound (25 mg, 38%) as a white solid. lCMS (ES+) 254 (M+H)+, (ES-) 252 (M-H)-, RT 2.97 min (Analytical method 1 ). NMR s (ppm)(DMSO-d5): 10.55 (1 H, s), 8.69 (1 H, s), 7.36-7.16 (10 H, m), 3.09 (1 H, dd, J = 6.8, 5.4 Hz), 2.83 (1 H, dd, J = 9.6, 6.8 Hz), 2.20 (1 H, dd, J = 9.6, 5.4 Hz).
Example 2 Reaction Scheme 2 QONHOH -Ph~ (E)-(2-Cyclohexylvinyl )benzene (3) To a stirred solution of K3P04 (11.4 g, 53.8 mmol) in OMA (15 ml) was added bromobenzene (3.0 g, 19 mmol), vinylcyclohexane (5.04 g, 45.8 mmol) and palladium acetate (213 mg, 0.95 mmol). The mixture was stirred at 140°C for 16 h, allowed to cool to r.t., diluted with water (50 ml) and extracted into EtOAc (2 x 50 ml). The combined organic layers were washed with water (2 x 50 ml) and brine (2 x 50 ml), separated, dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (i-hex) gave the title compound as a colourless oil (2.30 g, 65%). ( 1 R* ,2R* ,3R*)-Ethylcyclohexylphenylcyclopropanecarboxylate ( 4) To a stirred solution of 3 (1.50 g, 8.06 mmol) and Rh2(0Ac)4 (106 mg, 0.806 mmol) in anhydrous DCM (10 ml) was added ethyl diazoacetate (0.85 ml, 8.06 mmol) in DCM (10 ml) at a rate of 0.2 ml/h. After complete addition the mixture was stirred for 1 h at r.t.. Purification by flash silica column chromatography (gradient elution of i-hex to 2% EtOAc in i-hex) gave the title compound as a colourless oil (400 mg, 18%). ( 1 R* ,2R* ,3R*)Cyclohexyl-N-hydroxyphenylcyclopropanecarboxam ide ( 5) Following method A from compound 4 (750 mg, 2.76 mmol).
Purification by preparative HPlC gave the title compound as a white solid (10 mg, 3%). lCMS (ES+) 260 (M+H)+, 258 (M-H)-, RT 9.41 min (Analytical method 3). NMR o (ppm)(DMSO-d5): 10.51 (1 H, s), 8.76 (1 H, s), 7.30-7.22 (2 H, m), 7.18-7.12 (1 H, m), 7.08 (2 H, d, J = 7.6 Hz), 2.33-2.27 (1 H, m), 1.82-1.58 (7 H, m), 1.31-1.00 (6 H, m).
Example 3 Reaction Scheme 3 a R =Ph, 6a R = 2-FPh, 6b R = 4-FPh, 6c 1-Benzyltetrahydrothiophenium bromide (6a) To a stirred solution of benzyl bromide (27 ml, 227 mmol) in acetone at r.t. was added tetrahydrothiophene (10.0 ml, 114 mmol). The solution was stirred for 16 h and the resulting precipitate filtered and washed with acetone (3 x 50 ml) and dried under air, to give the title compound as a white solid (51.9 g, 88%). 1-(2-Fluorobenzyl)tetrahydrothiophenium bromide (6b) 2-Fluorobenzyl bromide (8 g, 42.3 mmol) was added to tetrahydrothiophene (25 ml, 284 mmol) and the mixture was stirred for 17 h. The resulting precipitate was collected by vacuum filtration and then slurried in Et20 for 1 h before collecting by vacuum filtration, to give the title compound as a white solid (7.7 g, 66%). 1-(4-Fluorobenzyl)tetrahydrothiophenium bromide (6c) To a stirred solution of 4-fluorobenzyl bromide (4.0 g, 21.1 mmol) in acetone (30 ml) was added tetrahydrothiophene (1.8 ml, 21.1 mmol) and the mixture was stirred for 17 h. The resulting precipitate was filtered to give the title compound as a white solid (160 mg, 3%).
Example 4 Reaction Scheme 4 ~COzEl CON HOH &"''Ph R = OiPr, 10a R = OiPr, 11a R = F, 10b R = F, 11b (E)-Ethyl(2-n itrophenyl )acrylate (7) Following method C from 2-nitrobenzaldehyde (5.0 g, 34.2 mmol).
Purification by flash silica column chromatography (gradient elution i-hex to 50% DCM in i-hex) gave the title compound as a white solid (2.9 g, 38%). ( 1 R* ,2R* ,3R*)-Ethyl(2-n itrophenyl )phenylcyclopropanecarboxylate (8) To a stirred solution of 7 (2.90 g, 13.1 mmol) in anhydrous DCM/THF (75 ml/30 ml) was added sulfonium salt 6a (5.10 g, 19.7 mmol) and the mixture was cooled to -78°C. LiHMDS (26.2 ml, 1 M solution in THF) was slowly added via syringe pump (1 ml/min). After complete addition, the mixture was warmed to r.t., stirred for 16 h, quenched with water (50 ml) and extracted into DCM (2 x 100 ml). The combined organic layers were washed with water (2 x 250 ml) and brine (100 ml). The biphasic mixture was separated and the organic layer was dried (MgS04), fitered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a yellow oil (2.10 g, 51%). ( 1 R* ,2R* ,3R*)-Ethyl(2-am inophenyl )phenylcyclopropanecarboxylate (9) A solution of 8 (2.10 g, 6.75 mmol) and 10% Pd/C (200 mg) in MeOH (75 ml) was stirred at r.t. under H2 (1 atmosphere), for 17 h. The mixture was filtered through Celite and purified by flash silica column chromatography (gradient elution i-hex to 20% EtOAc in i-hex) to give the title compound as a red oil (1.55 g, 82%). lCMS (ES+) 282 (M+Ht. ( 1 R* ,2R* ,3R*)-E thyl(2-isopropoxyphenyl )phenylcyclopropanecarboxylate (10a) To a stirred solution of compound 9 (500 mg, 1.78 mmol) in water (10 ml) was added concentrated H2S04 (0.85 ml) and NaN02 (184 mg, 2.67 mmol). The reaction mixture was stirred at 0°C for 1 h, then poured into boiling water (20 ml) and stirred for 30 min. The solution was allowed to cool to r.t. and extracted into DCM (3 x 20 ml). The combined organic layers were washed with brine (20 ml), dried (MgS04) and concentrated. The resulting red oil was dissolved in DMF (5 ml) and 2-bromopropane (0.17 ml, 1.77 mmol) and cesium carbonate (434 mg, 1.34 mmol) were added. The mixture was stirred at 80°C for 16 h, then diluted with water (20 ml) and extracted into DCM (2 x 30 ml). The combined organic layers were washed with water (20 ml) and brine (20 ml), dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a colourless oil (125 mg, 44%). lCMS (ES+) 325 (M+H( ( 1 R* ,2R* ,3R*)-Ethyl(2-fluorophenyl )phenylcyclopropanecarboxylate ( 1 Ob) A solution of nitrosonium tetrafluoroborate (125 mg, 1.07 mmol) and [bmim][PF6] (1.8 ml) was cooled to 0°C. Compound 9 (300 mg, 1.07 mmol) was added and the mixture was stirred for 30 min at 0°C, and 17 h at r.t. The mixture was then heated to 100°C for 2 h (gas evolution observed) and cooled to r.t. DIPEA (0.18 ml, 1.07 mmol) and Et20 (10 ml) were added. The organic layer was decanted from the ionic liquid and this process repeated twice more. The combined organic layers were concentrated and purified by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) to give the title compound as a colourless oil (135 mg, 45%). lCMS (ES+) 285 (M+H( ( 1 R* ,2R* ,3R*)-N-Hydroxy(2-isopropoxyphenyl ) phenylcyclopropanecarboxam ide ( 11 a) Following method A from compound 10a (125 mg, 0.39 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the title compound as a white solid (28 mg, 23%). lCMS (ES+) 312 (M+H)+, (ES-) 310 (M-H)-, RT 3.41 min (Analytical method 1).
NMR o (ppm)(CHCI 3-d): 7.99 (1 H, s), 7.41 (2 H, d, J = 7.6 Hz), 7.31 (2 H, t, J = 7.1 Hz), 7.27-7.18 (2 H, m), 7.11-7.07 (1 H, m), 6.92-6.87 (2 H, m), 4.66-4.59 (1 H, septet, J = 6.0), 3.29 (1 H, t, J = 6.4 Hz), 2.81 (1 H, dd, J = 9.2, 7.3 Hz), 2.02 (1 H, br m), 1.36 (6 H, dd, J = 10.1, 6.0 Hz), OH not observed. ( 1 R* ,2R* ,3R*)(2-FI uorophenyl )-N-hyd roxyphenylcyclopropanecarboxam ide (11 b) Following method A from compound 10b (130 mg, 0.46 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 1 % MeOH in DCM) gave the title compound as a white solid (18 mg, 14%). lCMS (ES+) 272 (M+H)+, (ES-) 270 (M-H)-, RT 3.02 min (Analytical method 1).
NMR o (ppm)(DMSO-d6): 10.60 (1 H, s), 8.74 (1 H, s), 7.34-7.14 (9 H, m), 3.17 (1 H, dd, J = 7.0, 5.6 Hz), 2.86 (1 H, dd, J = 9.5, 7.0 Hz), 2.25 (1 H, dd, J = 9.5, .4Hz).
Example 5 Reaction Scheme 5 (:02Et (:ON HOH UC02Et ____:__ cr··r) cr···O ( 1 S* ,2R* ,3R*)-Ethyl(2-fluorophenyl )phenylcyclopropanecarboxylate ( 12) A mixture of sulfonium salt 6b (500 mg, 1.80 mmol), ethyl cinnamate (0.20 ml, 1.20 mmol) and 12-crown-4 (0.19 ml, 1.20 mmol) in DCM (10 ml) was cooled to -78°C. LiHMDS (2.41 ml, 1 M solution in THF) was slowly added via syringe pump (2 ml/h). After complete addition, the mixture was warmed to r.t. and stirred for 16 h. The reaction mixture was quenched with H20 (30 ml). The biphasic mixture was separated and the organic layers were washed with brine (2 x 30 ml), dried (MgS04), filtered and concentrated.
Purification by flash silica column chromatography (gradient elution i-hex to 50% EtOAc in i-hex) gave the title compound as a colourless oil (190 mg, 56%).
LCMS (ES+) 285 (M+H( ( 1 S* ,2R* ,3R*)(2-FI uorophenyl )-N-hyd roxyphenylcyclopropanecarboxam ide (13) Following method A from compound 12 (190 mg, 0.67 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the title compound as a white solid (50 mg, 28%). LCMS (ES+) 272 (M+H)+, (ES-) 270 (M-H)-, RT 3.06 min (Analytical method 1).
NMR s (ppm)(DMSO-d6): 10.60 (1 H, s), 8.73 (1 H, s), 7.42-7.20 (7 H, m), 7.13- 7.06 (2 H, m), 3.03 (1 H, dd, J = 6.8, 5.3 Hz), 2.77 (1 H, dd, J = 9.3, 6.9 Hz), 2.23 (1 H, dd, J = 9.3, 5.3 Hz).
Example 6 Reaction Scheme 6 <;;:ON HOH ~02R BVC02R I '° "tr···o "tr···o 2-Br, 16a 2-Br, R =Et, 14a 2-Br, R =Et, 15a 3-Br, 16b 3-Br, R =Et, 14b 3-Br, R = Et, 1 Sb 4-Br, 16c 4-Br, R =Me, 15c ~02R <;;:ON HOH Mtr.,·o Mtr···o I '° I '° 2-Me, R = Et, 17a 2-Me, 18a 3-Me, R = Et 17b 3-Me, 18b 4-Me, R =Me, 17c 4-Me, 18c (E)-Ethyl(2-bromophenyl )acrylate ( 14a) Following method C from 2-bromobenzaldehyde (4.66 g, 25.2 mmol). Purification by flash silica column chromatography (gradient elution i-hex to i-hex:DCM, 5:2) gave the title compound as a colourless oil (2.52 g, 39%).
LCMS (ES+) 255, 257 (M+H( (E)-Ethyl(3-bromophenyl )acrylate ( 14b) Following method C from 3-bromobenzaldehyde (10 g, 54.1 mmol).
Purification by flash silica column chromatography (gradient elution i-hex to i­ hex:DCM, 1 :1) gave the title compound as a colourless oil (7.8 g, 56%). lCMS (ES+) 255, 257 (M+Ht. ( 1 R* ,2R* ,3R*)-Ethyl(2-bromophenyl )phenylcyclopropanecarboxylate ( 15a) A mixture of sulfonium salt 6a (1.52 g, 5.88 mmol) and cinnamate 14a (1.00 g, 3.92 mmol) in DCM/THF (5:2, 35 ml) was cooled to -78°C. LiHMDS (7.84 ml, 1 M solution in THF) was slowly added via syringe pump (1 ml/h).
After complete addition, the mixture was warmed to r.t., stirred for 16 hand quenched with H20 (30 ml). The biphasic mixture was separated and the aqueous portion re-extracted with DCM (30 ml). The combined organic layers were washed with water (50 ml) and brine (50 ml), separated, dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 2.5% EtOAc in i-hex) gave the title compound as a colourless oil (1.05 g, 78%). lCMS (ES+) 345, 347 (M+Ht ( 1 R* ,2R* ,3R*)-Ethyl(3-bromophenyl )phenylcyclopropanecarboxylate ( 15b) A mixture of sulfonium salt 6a (2.10 g, 8.10 mmol) and cinnamate 14b (1.03 g, 4.04 mmol) in DCM (20 ml) was cooled to -78°C. LiHMDS (6.00 ml, 1 M solution in THF) was slowly added via syringe pump (6 ml/h). After complete addition, the mixture was warmed to r.t., stirred for 16 h and quenched with H20 (30 ml). The biphasic mixture was separated and the aqueous layer was re-extracted with DCM (30 ml). The combined organic layers were washed with water (50 ml) and brine (50 ml), dried (MgS04), filtered and concentrated.
Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a colourless oil (350 mg, 25%). lCMS (ES+) 345, 347 (M+Ht_ ( 1 R* ,2R* ,3R*)-Methyl 2-( 4-bromophenyl )phenylcyclopropanecarboxylate ( 15c) A mixture of sulfonium salt 6a (3.39 g, 13.1 mmol) and (E)-methyl 3- (4-bromophenyl)acrylate (2.10 g, 8.71 mmol) in DCM (50 ml) was cooled to - 78°C and slowly treated with LiHMDS (13.1 ml, 1 M solution in THF) (via syringe pump, 1 ml/h). After complete addition, the mixture was warmed to r.t., stirred for 16 h and was quenched with H20 (50 ml). The biphasic mixture was separated and the organic layer washed with brine (2 x 50 ml), dried (MgS04) and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a colourless oil (600 mg, 20%). LCMS (ES+) 345, 347 (M+Ht_ ( 1 R* ,2R* ,3R*)(2-Bromophenyl )-N-hyd roxyphenylcyclopropanecarboxam ide (16a) Following method A from compound 15a (100 mg, 0.30 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM), then passage through a PEAX cartridge (DCM:MeOH, 1 :1) gave the title compound as a white solid (32 mg, 33%). LCMS (ES+) 332, 334 (M+H)+, 330, 332 (M-H)-, RT 10.44 min (Analytical method 3). NMR s (ppm)(DMSO­ d5): 10.57 (1 H, s), 8.73 (1 H, s), 7.66 (1 H, dd, J = 7.9, 1.2 Hz), 7.41-7.33 (3 H, m), 7.30-7.15 (5 H, m), 3.28 (1 H, dd, J = 5.9, 6.9 Hz), 2.83 (1 H, dd, J = 9.5, 7.1 Hz), 2.20 (1 H, dd, J = 9.5, 5.6 Hz). ( 1 R* ,2R* ,3R*)(3-Bromophenyl )-N-hyd roxyphenylcyclopropanecarboxam ide (16b) Following method A from compound 15b (100 mg, 0.29 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the title compound as a white solid (28 mg, 28%). LCMS (ES+) 332, 334 (M+H)+, 330, 332 (M-H)-, RT 3.81 min (Analytical method 1).
NMR s (ppm)(DMSO-d5): 10.54 (1 H, s), 8.71 (1 H, s), 7.50 (1 H, s), 7.44-7.40 (1 H, m), 7.35-7.22 (6 H, m), 7.18 (1 H, t, J = 7.2 Hz), 3.12 (1 H, dd, J = 6.8, 5.4 Hz), 2.88 (1 H, dd, J = 9.6, 6.8 Hz), 2.23 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 R* ,2R* ,3R*)( 4-Bromophenyl )-N-hyd roxyphenylcyclopropanecarboxam ide (16c) Following method A from compound 15c (100 mg, 0.30 mmol).
The residue after work-up was passed through a PEAX cartridge (elution DCM­ MeOH, 1 :1) to give the title compound as a white solid (34 mg, 34%). LCMS (ES+) 332, 334 (M+H)+, 330, 332 (M-H)-. RT 3.30 min (Analytical method 1).
NMR s (ppm)(DMSO-d6): 10.54 (1 H, s), 8.67 (1 H, s), 7.51-7.45 (2 H, m), 7.31- 7.18 (6 H, m), 7.15 (1 H, t, J = 7.2 Hz), 3.07 (1 H, dd, J = 6.9, 5.4 Hz), 2.81 (1 H, dd, J = 9.6, 6.9 Hz), 2.17 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 R*,2R*,3R*)-Ethylphenylo-tolylcyclopropanecarboxylate ( 17a) To a stirred solution of 15a (200 mg, 0.58 mmol) in dioxane/water (9:1, 3 ml) was added trimethylboroxine (80 µI, 0.58 mmol), Pd(PPh3)4 (67 mg, 0.058 mmol) and cesium carbonate (566 mg, 1.74 mmol). The mixture was degassed with nitrogen for 10 min and heated in the microwave at 115°C for 10 min. The mixture was allowed to cool to r.t. and partitioned between DCM and H20 (15 ml each). The organic layers were passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a colourless oil (140 mg, 86%). ( 1 R*,2R*,3R*)-Ethylphenylm-tolylcyclopropanecarboxylate ( 17b) To a stirred solution of 15b (200 mg, 0.58 mmol) in dioxane/water (9:1, 3 ml) was added trimethylboroxine (80 µI, 0.58 mmol), Pd(PPh3)4 (67 mg, 0.058 mmol) and cesium carbonate (566 mg, 1.74 mmol). The mixture was degassed with nitrogen for 10 min and heated in the microwave at 115°C for 10 min. The mixture was allowed to cool to r.t. and partitioned between DCM and H20 (15 ml each). The organic layers were passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a colourless oil (120 mg, 73%). ( 1 R*,2R*,3R*)-Methylphenylp-tolylcyclopropanecarboxylate ( 17 c) To a stirred solution of 15c (200 mg, 0.60 mmol) in dioxane/water (9:1, 3 ml) was added trimethylboroxine (80 µI, 0.60 mmol), Pd(PPh3)4 (69 mg, 0.06 mmol) and cesium carbonate (585 mg, 1.80 mmol). The mixture was degassed with nitrogen for 10 min and heated in the microwave at 115°C for 10 min. The mixture was allowed to cool to r.t. and partitioned between DCM and H20 (15 ml each). The organic layers were passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (120 mg, 75%). ( 1 R* ,2R* ,3R*)-N-Hydroxyphenylo-tolylcyclopropanecarboxam ide ( 18a) Following method A from compound 17a. Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM), then passage through a PEAX cartridge (DCM/MeOH, 1 :1) gave the title compound as a white solid (10 mg, 7%). LCMS (ES+) 266 (M-H)-, RT 9.54 min (Analytical method 2). NMR o (ppm)(DMSO-d5): 10.54 (1 H, s), 8.71 (1 H, s), 7.36 (2 H, d, J = 7.5 Hz), 7.27 (2 H, t, J = 7.5 Hz), 7.21-7.10 (5 H, m), 3.12 (1 H, dd, J = 7.2, .7 Hz), 2.76 (1 H, dd, J = 9.4, 7.3 Hz), 2.34 (3 H, s), 2.07 (1 H, dd, J = 9.4, 5.6 Hz). ( 1 R* ,2R* ,3R*)-N-Hydroxyphenylm-tolylcyclopropanecarboxam ide ( 18b) Following method A from compound 17b. Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the title compound as a white solid (67 mg, 56%). LCMS (ES+) 268 (M+H)+, RT 3.71 min (Analytical method 1 ). NMR s (ppm)(DMSO-d6): 10.54 (1 H, s), 8.68 (1 H, s), 7.32 (2 H, d, J = 7.5 Hz), 7.25 (2 H, t, J = 7.4 Hz), 7.20-7.09 (5 H, m), 3.05 (1 H, dd, J = 6.9, 5.4 Hz), 2.77 (1 H, dd, J = 9.6, 6.9 Hz), 2.28 (3 H, s), 2.15 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 R* ,2R* ,3R*)-N-Hydroxyphenylp-tolylcyclopropanecarboxam ide ( 18c) Following method A from compound 17c. Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) followed by elution through PEAX cartridge (1 :1, DCM:MeOH) gave the title compound as a white solid (21 mg, 17%). LCMS (ES+) 268 (M+H)+, RT 3.71 min (Analytical method 1 ). NMR o (ppm)(DMSO-d5): 10.54 (1 H, s), 8.68 (1 H, s), 7.32 (2 H, d, J = 7.5 Hz), 7.25 (2 H, t, J = 7.4 Hz), 7.20-7.10 (5 H, m), 3.04 (1 H, dd, J = 6.9, 5.4 Hz), 2.77 (1 H, dd, J = 9.6, 6.9 Hz), 2.28 (3 H, s), 2.15 (1 H, dd, J = 9.6, 5.4 Hz).
Example 7 Reaction Scheme 7 CON HOH ( 1 R* ,2R* ,3R*)-Ethyl( 4-n itrophenyl )phenylcyclopropanecarboxylate ( 19) A mixture of sulfonium salt 6a (1.00 g, 3.76 mmol) and ethyl nitrocinnamate (553 mg, 2.51 mmol) in DCM (10 ml) was cooled to -78°C.
LiHMDS (3.76 ml, 1 M solution in THF) was slowly added via syringe pump (1 ml/h). After complete addition, the mixture was warmed to r.t., stirred for 1 h and quenched with H20 (30 ml). The biphasic mixture was separated and the aqueous layer was re-extracted with DCM (30 ml). The combined organic layers were washed with water (50 ml) and brine (50 ml), dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a yellow oil (180 mg, 23%). lCMS (ES+) 312 (M+H( ( 1 R* ,2R* ,3R*)-Ethyl( 4-am inophenyl )phenylcyclopropanecarboxylate (20) A solution of compound 19 (180 mg, 0.58 mmol) in MeOH (6 ml) was hydrogenated using a H-cube apparatus (Full H2 mode, 10% Pd/C cartridge, 1 ml/min, r.t.). The reaction mixture was concentrated to give a yellow oil (165 mg, 100%) which was used directly in the next step of the synthesis. (1R*,2R*,3R*)-Ethyl(4-(cyclopropanesulfonamido)phenyl) phenylcyclopropanecarboxylate (21) To a stirred solution of compound 20 (165 mg, 0.59 mmol) in DCM (5 ml) was added cyclopropylsulfonyl chloride (248 mg, 1.76 mmol) and triethylamine (0.24 ml, 1.76 mmol). The mixture was stirred at r.t. for 16 hand washed with water (10 ml). The organic layers were collected by phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 50% EtOAc in i-hex) gave the title compound as a pale yellow solid (175 mg, 77%). lCMS (ES+) 386 (M+H( (1R*,2R*,3R*)(4-(cyclopropanesulfonamido)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide (22) Following method A from compound 21 (175 mg, 0.45 mmol). The carboxylic acid was obtained as the major product. The mixture was acidified with aqueous 1 M HCI and extracted into EtOAc (3 x 10 ml). The organic layers were combined, dried (MgS04) and concentrated. The sample was then subjected to method B. Purification by preparative HPlC and passage through a PEAX cartridge (DCM/MeOH, 1 :1) gave the title compound as a white solid (15 mg, 8%). lCMS (ES+) 373 (M+H)+, RT 8.20 min (Analytical method 3). NMR o (ppm)(DMSO-d6): 10.55 (1 H, s), 9.62 (1 H, s), 8.68 (1 H, s), 7.33-7.13 (9 H, m), 3.05 (1 H, dd, J = 6.9, 5.4 Hz), 2.79 (1 H, dd, J = 9.5, 6.9 Hz), 2.60-2.53 (1 H, qt, J = 6.0 Hz), 2.15 (1 H, dd, J = 9.5, 5.3 Hz), 0.91 (4 H, d, J = 6.3 Hz).
Example 8 Reaction Scheme 8 QONHOH Q02Et ~C02Et - /\ - R1~·,,R2 R1 R1~·,,R2 - 23a-e 24a-f 25a-f Table 1 R1 R2 Compound R1 R2 Compoun Ph 25a Ph 25d Ph 25b Ph 25e Ph 25c (E )-Ethylcyclopentylacrylate (23a) Following method C from cyclopentanecarbaldehyde (2.00 g, 20.4 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 5:2 i-hex:DCM) gave the title compound as a colourless oil (2.00 g, 58%).
LCMS (ES+) 259 (M+H( (E)-Ethyl( 1-methyl-1 H-pyrazolyl )acrylate (23b) [0021 O] Following method C from 1-methyl-1 H-pyrazolecarbaldehyde (500 mg, 4.50 mmol). Purification by flash silica column chromatography (gradient elution i-hex to EtOAc) gave the title compound as a yellow oil (900 mg, 99%). LCMS (ES+) 181 (M+Ht_ (E)-Ethyl(pyrim id inyl )acrylate (23c) Following method C from pyrimidinecarbaldehyde (2 g, 19.2 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 50% EtOAc in i-hex) gave the title compound as a colourless oil (2.34 g, 68%, 3:1 trans:cis). lCMS (ES+) 179 (M+Ht_ (E )-Ethyl(2,3-d ihydrobenzo[b] [1,4 ]dioxinyl )acrylate (23d) Following method C from 2,3-dihydrobenzo[b][1,4]dioxine carbaldehyde (2.00 g, 12.2 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a white solid (2.64 g, 93%). lCMS (ES+) 235 (M+Ht (E )-Ethyl(8-chloro-2,3-d ihydrobenzo[b ][1 ,4 ]d ioxinyl )acrylate (23e) Following method C from 8-chloro-2,3-dihydrobenzo[b][1,4]dioxine- 6-carbaldehyde (700 mg, 3.53 mmol). The resulting yellow oil was used without further purification. lCMS (ES+) 269, 271 (M+Ht ( 1 S* ,2R* ,3R*)-Ethylcyclopentylphenylcyclopropanecarboxylate (24a) A mixture of 6a (2.30 g, 8.92 mmol), compound 23a (1.00 g, 5.96 mmol) and 12-crown-4 (1.44 ml, 8.92 mmol) in DCM (20 ml) was cooled to - 78°C. LiHMDS (8.92 ml, 1 M solution in THF) was slowly added via syringe pump (4 ml/h). After complete addition, the reaction mixture was warmed to r.t. and stirred for 16 h. The reaction mixture was quenched with H20 (30 ml). The biphasic mixture was separated and the organic layers washed with brine (2 x 30 ml), separated, dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a colourless oil (263 mg, 7%). (1 R*,2R*,3R*)-Ethyl(1-methyl-1 H-pyrazolyl) phenylcyclopropanecarboxylate (24b) Following method F from compound 23b (810 mg, 4.50 mmol) and 6a (1.94 mg, 7.50 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 75% EtOAc in i-hex) gave the title compound as a colourless oil (493 mg, 41%, 3:1 trans:cis). lCMS (ES+) 271 (M+Ht ( 1 R* ,2R* ,3R*)-Ethylphenyl(pyrim id inyl )cyclopropanecarboxylate (24c) Following method F from 23c (1.00 g, 5.62 mmol) and 6a (2.18 g, 8.43 mmol). The addition was performed at -78°C and allowed to stir at RT for 17 h. Purification by flash silica column chromatography (gradient elution i-hex to 50% EtOAc in i-hex) gave the title compound as a colourless oil (270 mg, 19%). lCMS (ES+) 269 (M+Ht_ ( 1 R* ,2R* ,3R*)-Ethyl(2,3-d ihydrobenzo[b] [1 ,4 ]d ioxinyl ) phenylcyclopropanecarboxylate (24d) Following method F from compound 23d (2.64 g, 11.3 mmol) and 6a (4.4 g, 16.9 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 7.5% EtOAc in i-hex) gave the title compound as a colourless oil (652 mg, 18%). LCMS (ES+) 325 (M+Ht (1 R*,2R*,3R*)-Ethyl(8-chloro-2,3-dihydrobenzo[b][1,4]dioxinyl) phenylcyclopropanecarboxylate (24e) Following method F from 23e (946 mg, 3.52 mmol) and 6a (1.37 mg, 5.28 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (484 mg, 38%, 4:1 trans:cis). LCMS (ES+) 359, 361 (M+Ht_ (1 S*,2R*,3R*)-Ethyl(8-chloro-2,3-dihydrobenzo[b][1,4]dioxinyl)(2- fluorophenyl )-cyclopropanecarboxylate (24f) Following method F from 23e (860 mg, 3.20 mmol) and 6b (1.33 mg, 4.80 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (472 mg, 39%, 3:1 trans:cis). LCMS (ES+) 377 (M+Ht RT 3.48 min (Analytical method 1). (1 S*,2R*,3R*)Cyclopentyl-N-hydroxyphenylcyclopropanecarboxamide (25a) Using method A from compound 24a (1.05 g, 4.06 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 4% MeOH in DCM) and preparative HPLC gave the title compound as a white solid (23 mg, 9%). LCMS (ES+) 246 (M+H)+, RT 3.18 min (Analytical method 1 ).
NMR s (ppm)(DMSO-d6): 10.57 (1 H, s), 8.76 (1 H, s), 7.35-7.27 (2 H, m), 7.24- 7.18 (3 H, m), 1.88 (1 H, t, J = 5.0 Hz), 1.71-1.60 (1 H, m), 1.58-1.47 (2 H, m), 1.50-1.16 (8 H, m). (1 R,2R,3R)-N-Hydroxy(1-methyl-1 H-pyrazolyl) phenylcyclopropanecarboxam ide (25b) Following method A from 24b (493 mg, 1.83 mmol). Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and then preparative HPLC gave the racemic mixture as a white solid (235 mg, 50%). Preparative chiral HPLC gave the title compound (Chiralpak IC 30/70 IPNMeOH (50/50/0.1 % formic acid)/Heptane, 1.0 ml/min, RT 10.3 min). LCMS (ES+) 258 (M+H)+, (ES-) 256 (M+H)-, RT 2.65 min (Analytical method 1 ).
NMR o (ppm)(DMSO-d5): 10.50 (1 H, s), 8.63 (1 H, s), 7.61 (1 H, s), 7.34 (1 H, s), 7.28-7.13 (5 H, m), 3.78 (3 H, s), 2.86 (1 H, dd, J = 6.9, 5.3 Hz), 2.63 (1 H, dd, J = 9.4, 6.9 Hz), 1.97 (1 H, dd, J = 9.4, 5.3 Hz). ( 1 R* ,2 R*, 3R*)-N-Hyd roxyphenyl(pyrim id inyl )cyclopropanecarboxam ide (25c) Using method A, from compound 24c (270 mg, 1.08 mmol).
Purification by flash silica chromatography gradient elution DCM to 7% MeOH in DCM) and reversed phase HPLC gave the title compound as a yellow solid (9 mg, 5%). LCMS (ES+) 256 (M+H)+, RT 2.52 min (Analytical method 1 ). NMR o (ppm)(DMSO-d5): 10.61 (1 H, s), 9.06 (1 H, s), 8.79 (2 H, s), 8.72 (1 H, s), 7.34 (2 H, d, J = 7.6 Hz), 7.27 (2 H, t, J = 7.5 Hz), 7.22-7.17 (1 H, m), 3.15 (1 H, dd, J = 6.8, 5.5 Hz), 3.04 (1 H, dd, J = 9.6, 6.9 Hz), 2.37 (1 H, dd, J = 9.7, 5.5 Hz). (1 R,2R,3R)(2,3-Dihydrobenzo[b][1,4]dioxinyl)-N-hydroxy phenylcyclopropanecarboxam ide (25d) Following method A from compound 24d (652 mg, 2.01 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (420 mg, 67%).
Preparative chiral HPLC gave the title compound (Chiralpak IC 30/70 IPNMeOH (50/50/0.1 % formic acid)/heptane, 1.0 ml/min, RT 8.1 min). LCMS (ES+) 312 (M+H)+, RT 8.59 min (Analytical method 5). NMR o (ppm)(DMSO-d6): 10.57 (1 H, s), 8.73 (1 H, s), 7.35 (2 H, d, J = 7.59 Hz), 7.29 (2 H, t, J = 7.5 Hz), 7.24- 7.17 (1 H, m), 6.85 (1 H, d, J = 8.5 Hz), 6.80-6.74 (2 H, m), 4.26 (4 H, s), 3.02 (1 H, dd, J = 6.8, 5.4 Hz), 2.78 (1 H, dd, J = 9.6, 6.8 Hz), 2.14 (1 H, dd, J = 9.6, 5.4 Hz). (1 R,2R,3R)(8-Chloro-2,3-dihydrobenzo[b][1,4]dioxinyl)-N-hydroxy phenylcyclopropanecarboxam ide (25e) Following method A from 24e (484 mg, 1.35 mmol). Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and then preparative HPLC gave the the racemic product as a white solid (174 mg, 37%). Preparative chiral HPLC gave the title compound (Chiralpak IC 20/80 IPNMeOH (50/50/0.1 % formic acid)/Heptane, 1.0 ml/min, RT 10.4 min). LCMS (ES+) 346, 348 (M+H)+, RT 3.57 min (Analytical method 1 ). NMR s (ppm)(DMSO-d5): 10.50 (1 H, s), 8.68 (1 H, s), 7.31 (2 H, d, J = 7.6 Hz), 7.25 (2 H, t, J = 7.4 Hz), 7.21-7.13 (1 H, m), 6.93 (1 H, d, J = 2.1 Hz), 6.77 (1 H, d, J = 2.1 Hz), 4.34-4.26 (4 H, m), 3.00 (1 H, dd, J = 6.8, 5.4 Hz), 2.79 (1 H, dd, J = 9.6, 6.8 Hz), 2.14 (1 H, dd, J = 9.8, 5.4 Hz). (1 S,2R,3R)(8-Chloro-2,3-dihydrobenzo[b][1,4]dioxinyl)(2-fluorophenyl)-N­ hydroxycyclopropanecarboxamide (25f) Following method A from 24f (472 mg, 1.25 mmol) to yield a white glass (480 mg). Purification by preparative HPLC gave the the racemic product as a white glass (180 mg, 39%). Preparative chiral HPLC gave the title compound (Chiralpak IA 50/50 EtOH (0.1 % formic acid)/Heptane, 1.0 ml/min).
LCMS (ES+) 364 (M+H)+, RT 3.60 min (Analytical method 1 ). NMR s (ppm)(DMSO-d6): 10.55 (1 H, s), 8.72 (1 H, s), 7.38 (1 H, t, J = 7.6 Hz), 7.28-7.20 (1 H, m), 7.13-7.05 (2 H, m), 6.95 (1 H, d, J = 2.1 Hz), 6.80 (1 H, d, J = 2.1 Hz), 4.36-4.24 (4 H, m), 2.93 (1 H, dd, J = 6.9, 5.3 Hz), 2.72 (1 H, dd, J = 9.3, 6.9 Hz), 2.17 (1 H, dd, J = 9.4, 5.3 Hz).
Example 9 Reaction Scheme 9 QONHOH Q02Et R(L~.,'R2 Rp.,,R2 27a-g 28a-g Table 2 R1 R2 Compound R1 R2 Compound Ph 28a Ph 28e Ph 28b Ph 28f Ph 28g (E)-Ethyl 3-(pyridazinyl)acrylate (26a) Following method E from 4-bromopyridazine (500 mg, 3.14 mmol).
Purification by flash silica column chromatography (gradient elution i-hex to EtOAc) gave the title compound as a colourless oil (94 mg, 17%). LCMS (ES+) 179 (M+H( (E)-Ethyl(2-cyclopropylpyridinyl)acrylate (26b) Following method D from 4-bromo(cyclopropyl)pyridine (1.00 g, .05 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a white solid (530 mg, 48%). LCMS (ES+) 218 (M+Ht_ (E )-Ethyl(2,2-d ifluorobenzo[d] [1 ,3]d ioxolyl )acrylate (26c) Following method E from 5-bromo-2,2-difluorobenzo[d][1,3]dioxole (2.00 g, 8.44 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 7.5% EtOAc in i-hex) gave the title compound as a white solid (1.62 g, 75%). LCMS (ES+) 257 (M+Ht_ (E )-Ethyl( 6-(trifl uoromethyl )pyrid inyl )acrylate (26d) Following method D from 5-bromo(trifluoromethyl)pyridine (1.0 g, 4.42 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a white solid (700 mg, 65%). LCMS (ES+) 246 (M+Ht_ (E)-Ethyl(2-(trifl uoromethyl )pyrid inyl )acrylate (26e) Following method D from 4-bromo(trifluoromethyl)pyridine (1.0 g, 4.42 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 15% EtOAc in i-hex) gave the title compound as a white solid (100 mg, 9%). LCMS (ES+) 246 (M+Ht_ (1 R*,2R*,3R*)-Ethylphenyl(pyridazinyl)cyclopropanecarboxylate (27a) Following method F from 26a (94 mg, 0.53 mmol) and 6a. As the reaction was incomplete after 1 h, the reaction was cooled to -20°C and additional amounts of sulfonium salt, 12-crown-4 and LiHMDS (0.5 eq each) were added. Purification by flash silica column chromatography (gradient elution i-hex to EtOAc) gave the title compound as a colourless oil (45 mg, 32%). LCMS (ES+) 269 (M+H( ( 1 R*,2R*,3R*)-E thyl(2-cyclopropyl pyrid inyl ) phenylcyclopropanecarboxylate (27b) Following method F from compound 26b (530 mg, 2.44 mmol) and 6a. Purification by flash silica column chromatography (gradient elution i-hex to % EtOAc in i-hex) gave the title compound as a colourless oil (330 mg, 44%, :4 trans:cis). LCMS (ES+) 308 (M+Ht_ ( 1 S* ,2R* ,3R*)-Ethyl(2-cyclopropylpyrid inyl)(2- fluorophenyl )cyclopropanecarboxylate (27 c) Following method F from 26b (130 mg, 0.60 mmol) and 6b (249 mg, 0.90 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a colourless oil (150 mg, 77%, 3:1 trans:cis). LCMS (ES+) 326 (M+Ht_ ( 1 R* ,2 R* ,3R*)-Ethyl(2-cyclopropyl pyrid inyl )( 4- fluorophenyl )cyclopropanecarboxylate ( 27 d) Following method F from 26b (481 mg, 2.22 mmol) and 6c (921 mg, 3.32 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a colourless oil (510 mg, 71 %, 4:1 trans:cis). LCMS (ES+) 326 (M+Ht_ ( 1 R* ,2R* ,3R*)-Ethyl(2,2-d ifl uorobenzo[d] [1 ,3]d ioxolyl ) phenylcyclopropanecarboxylate (27e) Following method F from compound 26c (1.62 g, 6.33 mmol) and 6a (2.46 g, 9.49 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a colourless oil (400 mg, 18%). LCMS (ES+) 347 (M+Ht ( 1 R* ,2R* ,3R*)-Ethylphenyl(6-(trifluoromethyl )pyrid in yl )cyclopropanecarboxylate (27f) Following method F from compound 26d (700 mg, 2.86 mmol) and 6a (1.11 g, 4.29 mmol). The reaction was incomplete after 2 h. The reaction was cooled to 0°C and additional 1 equivalent of sulfonium salt, 12-crown-4 and LiHMDS were added and the mixture was stirred at r.t. for 10 min. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a colourless oil (720 mg, 2:1 trans: cis, 65%). LCMS (ES+) 322 (M+Ht_ ( 1 R*,2R*,3R*)-Ethylphenyl(2-(trifl uoromethyl )pyrid in yl )cyclopropanecarboxylate (27g) Following method F from compound 26e (100 mg, 0.41 mmol) and 6a (159 mg, 0.61 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (130 mg, 2:1 trans: cis, 100%). LCMS (ES+) 322 (M+Ht ( 1 R*,2R*,3R*)-N-Hyd roxyphenyl(pyridazinyl )cyclopropanecarboxam ide (28a) Following method A, from 27a (45 mg, 0.17 mmol). Purification by flash silica column chromatography (gradient elution DCM to 4% MeOH in DCM) and reversed phase HPLC gave the title compound as a white solid (3 mg, 21 %).
LCMS (ES+) 256 (M+H)+, RT 7.02 min (Analytical method 3). NMR s (ppm)(DMSO-d 6 ): 10.69 (1 H, s), 9.34 (1 H, s), 9.15 (1 H, d, J = 5.4 Hz), 8.81 (1 H, s), 7.63-7.61 (1 H, m), 7.40-7.30 (4 H, m), 7.27-7.24 (1 H, m), 3.22 (1 H, dd, J = 5.2, 6.4 Hz), 3.13 (1 H, dd, J = 6.4, 9.5 Hz), 2.45 (1 H, dd, J = 9.5, 5.3 Hz). ( 1 R,2R,3R)(2-Cyclopropyl pyrid inyl )-N-hyd roxy phenylcyclopropanecarboxam ide (28b) Following method A from compound 27b (330 mg, 1.07 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (60 mg, 19%).
Preparative chiral HPLC gave the title compound (Chiralpak IC 30/70 IPNMeOH (50/50/0.1 formic acid)/heptane, 1.0 ml/min, RT 9.6 min). LCMS (ES+) 295 (M+H)+, (ES-) 293 (M-H)-, RT 2.12 min (Analytical method 1). NMR s (ppm)(DMSO-d 6 ): 10.65 (1 H, s), 8.78 (1 H, s), 8.32 (1 H, d, J = 5.1 Hz), 7.37 (2 H, d, J = 7.6 Hz), 7.34-7.28 (2 H, m), 7.25 (2 H, d, J = 8.2 Hz), 7.07 (1 H, dd, J = .2, 1.7 Hz), 3.10 (1 H, dd, J = 6.7, 5.6 Hz), 2.99 (1 H, dd, J = 9.7, 6.7 Hz), 2.34 (1 H, dd, J = 9.7, 5.6 Hz), 2.12-2.07 (1 H, m), 0.98-0.93 (4 H, m). (1 S,2R,3R)(2-Cyclopropylpyridinyl)(2-fluorophenyl)-N­ hydroxycyclopropanecarboxam ide (28c) Following method A from 27c (150 mg, 0.46 mmol). Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as an off-white solid (50 mg, 35%). Preparative chiral HPLC gave the title compound (Chiralpak IC 40/60 EtOH (0.1 formic acid)/heptanes, 1.0 ml/min, RT 9.3 min). LCMS (ES+) 313 (M+H)+, RT 2.18 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.68 (1 H, s), 8.81 (1 H, s), 8.34 (1 H, d, J = 5.1 Hz), 7.44 (1 H, t, J = 7.7 Hz), 7.34-7.27 (2 H, m), 7.18-7.08 (3 H, m), 3.04 (1 H, dd, J = 6.6, 5.0 Hz), 2.95 (1 H, dd, J = 9.2, 6.9 Hz), 2.36 (1 H, dd, J = 9.4, 5.3 Hz), 2.14-2.09 (1 H, m), 0.99-0.92 (4 H, m). ( 1 R,2R,3R)(2-Cyclopropyl pyrid inyl )( 4-fl uorophenyl )-N­ hyd roxycyclopropanecarboxam ide (28d) Following method A from 27d (510 mg, 1.57 mmol). Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (145 mg, 30%). Preparative chiral HPLC gave the title compound (Chiralpak IC 20/80 IPA/MeOH (50/50/0.1 % formic acid)/Heptane, 1.0 ml/min, RT 13.7 min). LCMS (ES+) 313 (M+H)+, RT 2.87 min (Analytical method 4). NMR o (ppm)(DMSO-d6): 10.65 (1 H, br s), 8.82 (1 H, br s), 8.33 (1 H, d, J = 5.1 Hz), 7.40 (2 H, dd, J = 8.4, 5.6 Hz), 7.25 (1 H, s), 7.14 (2 H, t, J = 8.8 Hz), 7.07 (1 H, dd, J = 5.2, 1.7 Hz), 3.07 (1 H, dd, J = 6.8, 5.4 Hz), 2.99 (1 H, dd, J = 9.6, 6.8 Hz), 2.32 (1 H, dd, J = 9.6, 5.4 Hz), 2.14- 2.06 (1 H, m), 0.99-0.92 (4 H, m). (1 R,2R,3R)(2,2-Difluorobenzo[d][1,3]dioxolyl)-N-hydroxy phenylcyclopropanecarboxam ide (28e) Following method A from compound 27e (400 mg, 1.17 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 2% MeOH in DCM) gave the the racemic mixture as a white solid (300 mg, 78%).
Preparative chiral HPLC gave the title compound (Chiralpak IC 20/80 IPNMeOH (50/50/0.1 % formic acid)/Heptane, 1.5 ml/min, RT 6.3 min). LCMS (ES+) 334 (M+H)+, RT 3.89 min (Analytical method 1). NMR s (ppm)(DMSO-d6): 10.63 (1 H, s), 8.76 (1 H, s), 7.44-7.33 (4 H, m), 7.31 (2 H, t, J = 7.44 Hz), 7.25-7.18 (2 H, m), 3.21 (1 H, dd, J = 6.8, 5.4 Hz), 2.92 (1 H, dd, J = 9.6, 6.8 Hz), 2.25 (1 H, dd, J = 9.6, 5.4 Hz). (1 R,2R,3R)-N-Hydroxyphenyl(6-(trifluoromethyl)pyridin yl )cyclopropanecarboxam ide (28f) Following method A from compound 27f (720 mg, 2.24 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) followed by preparative HPLC, gave the racemic mixture as a white solid (83 mg, 11 % ). Preparative chiral HPLC gave the title compound (Chiralpak IC 20/80 IPNMeOH (50/50/0.1 formic acid)/heptane, 1.0 ml/min, RT 14.5 min). LCMS (ES+) 323 (M+H)+, RT 8.60 min (Analytical method 3).
NMR o (ppm)(DMSO-d 6 ): 10.70 (1 H, s), 8.84 (1 H, s), 8.82 (1 H, s), 8.02-7.97 (1 H, m), 7.91 (1 H, d, J = 8.2 Hz), 7.40 (2 H, d, J = 7.6 Hz), 7.33 (2 H, t, J = 7.5 Hz), 7.28-7.22 (1 H, m), 3.32 (1 H, dd, J = 6.7 and 5.6 Hz), 3.09 (1 H, dd, J = 9.7, 6.8 Hz), 2.43 (1 H, dd, J =9.7 and 5.6 Hz). (1 R,2R,3R)-N-Hydroxyphenyl(2-(trifluoromethyl)pyridin yl)cyclopropanecarboxamide (28g) Following method A from compound 27g (130 mg, 0.41 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) followed by preparative HPLC, gave the racemic mixture as a white solid (90 mg, 68%). Preparative chiral HPLC gave the title compound (Chiralpak IC 20/80 IPNMeOH (50/50/0.1 formic acid)/heptane, 1.0 ml/min, RT .3 min). LCMS (ES+) 323 (M+H)+, RT 3.50 min (Analytical method 1).
NMR o (ppm)(DMSO-d 6 ): 10.66 (1 H, s), 8.81 (1 H, s), 8.71 (1 H, d, J = 5.0 Hz), 7.92 (1 H, s), 7.70 (1 H, d, J = 5.1 Hz), 7.40 (2 H, d, J = 7.5 Hz), 7.32 (2 H, t, J = 7.5 Hz), 7.27-7.22 (1 H, m), 3.35 (1 H, dd, J = 6.6, 5.4 Hz), 3.16 (1 H, dd, J = 9.5, 6.6 Hz), 2.48 (1 H, dd, J = 9.5, 5.4 Hz).
Example 10 Reaction Scheme 10 4-Bromo(hydroxymethyl)-N-(2,2,2-trifluoroethyl)benzamide (29) To a stirred suspension of aluminium trichloride (5.30 g, 39.8 mmol) in DCE (50 ml) at 0°C was added 2,2,2-trifluoroethylamine (5 g, 50.5 mmol).
This was stirred for 4 h before addition of 5-bromophthalide (5.30 g, 39.8 mmol) in one portion, and then heated to 80°C for 17 h. The mixture was quenched with iced water (100 ml) and stirred for 30 min. DCM (50 ml) was added and the mixture was filtered through silica. The organic layers were washed with H20 (3 x 100 ml) and the aqueous layers were back-extracted into DCM (50 ml). The combined organic layers were dried (MgS04), filtered and concentrated to give an off-white solid. The crude mixture (2.2 g) containing -50% residual 5- bromophthalide was progressed to the next step. lCMS (ES+) 312, 314 (M+Ht -Bromo(2,2,2-trifluoroethyl )isoindol inone (30) To a stirred solution of 29 (2.2 g, 7.05 mmol) and NMP (13 ml) in anhydrous THF (40 ml) at 5°C was added i-PrMgCl.LiCI (10.8 ml, 14.1 mmol) keeping the temperature below 10°C. After addition (30 min), the reaction was stirred at 5°C for 1 hand at r.t. for 1 h. The reaction was then cooled to 5°C and N,N,N',N'-tetramethyphosphorodiamidic chloride (1.57 ml, 10.6 mmol) was added dropwise. The reaction mixture was heated at reflux for 2 days. The mixture was cooled, quenched with H20 (50 ml), acidified with aqueous 1 M HCI and extracted into EtOAc (3 x 50 ml). The organic layers were dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 20% EtOAc in i-hex) gave the title compound as a white solid (3 g). The crude material was used in the next step. lCMS (ES+) 294, 296 (M+Ht_ (E)-Ethyl 3-(1-oxo(2,2,2-trifluoroethyl)isoindolinyl)acrylate (31) A stirred mixture of 30 (2.96 g, 10.0 mmol), ethyl acrylate (1.62 ml, .0 mmol), palladium acetate (224 mg, 1.00 mmol), P(o-tol)3 (608 mg, 2.00 mmol) and triethylamine (2.78 ml, 20.0 mmol) in MeCN (50 ml) was degassed under nitrogen for 15 min and heated to 80°C for 3 h. An additional amount of palladium acetate (224 mg, 1.00 mmol), P(o-tol), (608 mg, 2.00 mmol) and ethyl acrylate (1.00 ml, 9.26 mmol) were added and stirred at 80°C for a further 2 h.
The reaction mixture was cooled and the MeCN was removed in vacuo. The residue was partitioned between DCM and H20 and the organic layers were passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 75% EtOAc in i-hex) gave the title compound as a white solid (1.7 g). The crude material was used in the next step. LCMS (ES+) 314 (M+Ht. ( 1 R* ,2R* ,3R*)-Ethyl( 1-oxo(2,2,2-trifluoroethyl )isoindol inyl ) phenylcyclopropanecarboxylate (32) Following method F from 31 (1.70 g, 5.40 mmol) and 6a (2.10 g, 8.10 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 15% EtOAc in i-hex) gave the title compound as a white solid (340 mg).
LCMS (ES+) 404 (M+Ht_ (1 R,2R,3R)-N-Hydroxy(1-oxo(2,2,2-trifluoroethyl)isoindolinyl) phenylcyclopropanecarboxam ide (33) Following method A from 32 (340 mg, 0.84 mmol). Purification by flash silica column chromatography (gradient elution DCM to 6% MeOH in DCM) and then preparative HPLC gave the racemic mixture as a white solid.
Preparative chiral HPLC gave the title compound (Chiralpak IC 30/70 EtOH (0.1 formic acid)/heptanes, 1.0 ml/min, RT 12.1 min). LCMS (ES+) 391 (M+H)+, RT 3.47 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.61 (1 H, s), 8.72 (1 H, s), 7.70 (1 H, d, J = 7.9 Hz), 7.56 (1 H, s), 7.45 (1 H, d, J = 8.0 Hz), 7.35 (2 H, d, J = 7.6 Hz), 7.27 (2 H, t, J = 7.5 Hz), 7.19 (1 H, t, J = 7.2 Hz), 4.60 (2 H, s), 4.39 (2 H, q, J = 9.7 Hz), 3.24 (1 H, dd, J = 6.8, 5.4 Hz), 2.93 (1 H, dd, J = 9.7, 6.8 Hz), 2.30 (1 H, dd, J = 9.7, 5.4 Hz).
Example 11 Reaction Scheme 11 C02Et "'ff''p' H2N 36 J d C02Et gONHOH "'ff''ph N 37 (E )-Ethyl(3-bromon itrophenyl )acrylate (34) Following method C from 3-bromonitrobenzaldehyde (5 g, 21.7 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound (2.4 g, 37%). lCMS (ES+) 300, 302 (M+H( ( 1 R* ,2R* ,3R*)- E thyl(3-bromon itrophenyl )phenylcyclopropanecarboxylate (35) Following method F from compound 34 (2.35 g, 7.8 mmol) and 6a (4.04 g, 15.6 mmol). The reaction was incomplete after stirring at r.t. for 72 h.
The reaction was cooled to -20°C and an additional 1 equivalent of sulfonium salt, 12-crown-4 and LiHMDS were added and the mixture was stirred at r.t. for 3 h.
Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a yellow oil (630 mg, 21 %). lCMS (ES+) 390, 391 (M+Ht_ ( 1 R* ,2R* ,3R*)- Ethyl( 4-am inobromophenyl ) phenylcyclopropanecarboxylate (36) To a solution of compound 35 (580 mg, 1.51 mmol) in ethanol (12 ml) and acetic acid (12 ml) was added iron powder (824 mg, 15.1 mmol) and the reaction mixture was stirred at r.t. for 3 h. The reaction mixture was filtered through Celite and concentrated. The residue was partitioned between 1 N HCI and DCM-MeOH. The aqueous layer was extracted several times with DCM.
The combined organic layers were concentrated to afford the title compound (470 mg, 88%). lCMS (ES+) 360, 362 (M+Ht_ ( 1 R* ,2R* ,3R*)- Ethyl(3-bromoisobutyram idophenyl ) phenylcyclopropanecarboxylate (37) To a solution of compound 36 (470 mg, 1.31 mmol) in DCM (10 ml) was added DIPEA (0.23 ml, 1.31 mmol) and isobutyryl chloride (140 mg, 1.31 mmol). The reaction mixture was stirred for 2 h, water was added, the organic phase isolated by phase separator and concentrated to afford the title compound (488 mg, 87%). lCMS (ES+) 430, 432 (M+Ht_ (1 R*,2R*,3R*)- Ethyl(2-isopropylbenzo[d]oxazolyl) phenylcyclopropanecarboxylate (38) A mixture of compound 37 (488 mg, 1.14 mmol), K2C03 (314 mg, 2.28 mmol), pyridine (5 ml) in DMF (15 ml) was degassed for 30 min. Then copper(l)bromide (326 mg, 2.28 mmol) was added and the reaction mixture was heated under microwave irradiation at 140 °C for 4 h. The reaction mixture was diluted with DCM and washed several times with water and brine. The organic layers were combined, dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound (350 mg, 88%) as a yellow oil. lCMS (ES+) 350, 352 (M+Ht_ (1 R,2R,3R)-N-hydroxy(2-isopropylbenzo[d]oxazolyl) phenylcyclopropanecarboxam ide (39) Following method A from compound 38 (350 mg, 1.00 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a tan solid (126 mg, 36%).
Preparative chiral HPlC gave the title compound (Chiralpak IC, 20/80 EtOH (0.1%formic)/heptane,1.0 ml/min, RT 15.7 min). lCMS (ES+) 337 (M+H)+, RT 3.59 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.63 (1 H, s), 8.76 (1 H, s), 7.66-7.64 (2 H, m), 7.39 (2 H, d, J = 7.60 Hz), 7.35-7.29 (3 H, m), 7.26- 7.20 (1 H, m), 3.36-3.23 (2 H, m), 2.96 (1 H, dd, J = 9.6, 6.9 Hz), 2.30 (1 H, dd, J = 9.6, 5.4 Hz), 1.42 (6 H, d, J = 6.9 Hz).
Example 12 Reaction Scheme 12 CONHOH ~)-v6''eh 3-Br, R1=Et,15b 3-0xazole, R1 = Et, 40a 3-0xazole, 41a 4-0xazole, 41b 4-Br, R1 =Me, 15c 4-0xazole, R1 =Me, 40b ( 1 R*,2R*,3R*)-Ethyl(3-( oxazolyl )phenyl )phenylcyclopropanecarboxylate (40a) A stirred solution of 15b (500 mg, 1.45 mmol), oxazole (0.19 ml, 2.90 mmol), Pd(OAc)2 (16 mg, 0.07 mmol), di-terl-butyl(2',4',6'-triisopropyl- 3,4,5,6-tetramethylbiphenylyl)phosphine (67 mg, 0.14 mmol), K2C03 (600 mg, 4.35 mmol), pivalic acid (59 mg, 0.58 mmol) in OMA (8 ml) was degassed with nitrogen for 15 min before heating at 110°C for 16 h. The mixture was cooled and diluted with DCM (20 ml) and washed with H20 (3 x 30 ml). The organic layers were passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a colourless oil (494 mg, 100%). lCMS (ES+) 334 (M+Ht_ ( 1 R*,2R*,3R*)-Methyl 2-( 4-( oxazolyl )phenyl )phenylcyclopropanecarboxylate (40b) A stirred solution of 15c (482 mg, 1.46 mmol), oxazole (0.19 ml, 2.42 mmol), Pd(OAc)2 (16 mg, 0.07 mmol), di-terl-butyl(2',4',6'-triisopropyl- 3,4,5,6-tetramethylbiphenylyl)phosphine (70 mg, 0.146 mmol), K2C03 (604 mg, 4.38 mmol), pivalic acid (59 mg, 0.58 mmol) in OMA (7.5 ml) was degassed with nitrogen for 15 min before heating at 110°C for 16 h. The mixture was cooled and diluted with DCM (20 ml) and washed with H20 (3 x 30 ml). The organic layers were passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a colourless oil (300 mg, 65% ). lCMS (ES+) 320 (M+Ht_ ( 1 R,2R,3R)-N-Hydroxy(3-(oxazolyl )phenyl ) phenylcyclopropanecarboxam ide ( 41 a) Following method A from compound 40a (482 mg, 1.45 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (233 mg, 50%).
Preparative chiral HPlC gave the title compound (Chiralpak IC 40/60 EtOH (0.1 formic acid)/heptane, 1.0 ml/min, RT 7.7 min). lCMS (ES+) 321 (M+H)+, RT 2.82 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.62 (1 H, s), 8.76 (1 H, s), 8.52 (1 H, s), 7.80 (1 H, s), 7.70 (1 H, s), 7.64 (1 H, d, J = 7.8 Hz), 7.49 (1 H, t, J = 7.7 Hz), 7.42-7.28 (5 H, m), 7.24 (1 H, t, J = 7.2 Hz), 3.22 (1 H, dd, J = 6.9, 5.4 Hz), 2.98 (1 H, dd, J = 9.6, 6.9 Hz), 2.32 (1 H, dd, J = 9.6, 5.4 Hz). (1 R,2R,3R)-N-Hydroxy(4-(oxazolyl)phenyl) phenylcyclopropanecarboxam ide ( 41 b) Following method A from compound 40b. Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (88 mg, 29%). Preparative chiral HPlC gave the title compound (Chiralpak IC 20/80 EtOH (0.1 formic acid)/heptane, 1.0 ml/min, RT 18.7 min). lCMS (ES+) 321 (M+H)+, RT 2.77 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.63 (1 H, s), 8.76 (1 H, s), 8.49 (1 H, s), 7.76-7.72 (3 H, m), 7.47-7.36 (4 H, m), 7.35-7.29 (2 H, m), 7.25-7.20 (1 H, m), 3.18 (1 H, dd, J = 6.8, 5.4 Hz), 2.94 (1 H, dd, J = 9.6, 6.8 Hz), 2.30 (1 H, dd, J = 9.6, 5.4 Hz).
Example 13 Reaction Scheme 13 (;:ONHOH 0ff···o ff···o N N 42 Br 1 Sc \:::::l (1 R*,2R*,3R*)(4-(1 H-imidazolyl)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 42) A stirred solution of 15c (100 mg, 0.30 mmol), CuCI (3 mg, 0.03 mmol) and K2C03 (41 mg, 0.30 mmol) in NMP (0.1 ml) was degassed with nitrogen before addition of acetylacetone (7 µI, 0.075 mmol) and imidazole (26 mg, 0.39 mmol). The mixture was stirred at 130°C for 17 h, cooled to r.t., diluted with DCM and washed with 1 M NaHC03 (2 x 20 ml). The organic layers were passed through a phase separator and concentrated (150 mg). The crude material was dissolved in THF:MeOH (1 :1, 3 ml) and hydroxylamine (0.1 ml, 50% aqueous solution, 1.51 mmol) and potassium hydroxide (67 mg, 1.20 mmol) were added. The mixture was stirred at r.t. for 2 h. ,neutralized with 1 M HCI and extracted into EtOAc. The organic layers were concentrated and the residue re­ dissolved in pyridine (1 ml). To this solution was added hydroxylamine hydrochloride (20 mg, 0.29 mmol), BOP (87 mg, 0.20 mmol) and triethylamine (82 µI, 0.59 mmol). The mixture was stirred at r.t. for 2 h, concentrated and partitioned between DCM and H20. The organic layers were isolated by phase separator and concentrated. Purification by preparative HPlC gave the racemic mixture as a white solid (10 mg, 11%over3 steps). lCMS (ES+) 320 (M+H)+, RT 2.24 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.58 (1 H, s), 8.71 (1 H, s), 8.30 (1 H, s), 7.77 (1 H, s), 7.62 (2 H, d, J = 8.1 Hz), 7.43 (2 H, d, J = 8.1 Hz), 7.35 (2 H, d, J = 7.6 Hz), 7.31-7.24 (2 H, m), 7.22-7.16 (2 H, m), 3.17 (1 H, dd, J = 6.8, 5.4 Hz), 2.89 (1 H, dd, J = 9.6, 6.9 Hz), 2.24 (1 H, dd, J = 9.5, .3 Hz).
Example 14 Reaction Scheme 14 [>--cN pl Br - ~/o ~ - v-\' I N Nol 43 N -( 4-Bromophenyl )cyclopropyloxazole ( 43) Triflic acid (18.6 ml, 0.113 mol) was added dropwise to a solution of thallium acetate (14.37 g, 0.037 mol) in cyclopropylnitrile (200 ml) at r.t. under nitrogen. The solution was stirred for 15 min before a solution of 4- bromoacetophenone in cyclopropylnitrile (120 ml) was added and the solution was heated to 90°C for 2 h. The reaction mixture was concentrated and the red residue was taken up in DCM (500 ml), washed with saturated NaHC03 and water. The organic layers were separated, dried (Mg2S04), filtered and concentrated to give a dark red gum. Purification by flash silica column chromatography (gradient elution i-hex to 40% EtOAc in i-hex) gave the title compound as a pale yellow solid (3.97 g, 60%). lCMS (ES+) 264, 266 (M+Ht (E )-Ethyl( 4-(2-cyclopropyloxazolyl )phenyl )acrylate ( 44) Compound 43 (3.97 g, 15 mmol), ethyl acrylate (2.1 ml, 19.5 mmol), Pd(OAc)2 (337 mg, 1.5 mmol), tri-orlho-tolylphoshine (915 mg, 3 mmol), triethylamine (4.2 ml, 30 mmol) in MeCN (55 ml) were degassed with nitrogen for 15 min before heating the mixture to 80°C for 18 h. The reaction mixture was concentrated and the brown residue was taken up in DCM (150 ml), washed with water, separated, dried (Mg2S04), filtered and concentrated to give a brown gum.
Purification by flash silica column chromatography (gradient elution i-hex to EtOAc) gave the title compound as a pale yellow solid (3.44 g, 80%). lCMS (ES+) 284 (M+H( ( 1 R* ,2R* ,3R*)-Ethyl( 4-(2-cyclopropyloxazolyl )phenyl ) phenylcyclopropanecarboxylate (45) Following method F from compound 44 (360 mg, 1.27 mmol) and 6a (494 mg, 1.91 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a colourless oil (300 mg, 7:2, trans:cis, 63%). lCMS (ES+) 374 (M+Ht (1 R,2R,3R)(4-(2-Cyclopropyloxazolyl)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 46) Following method A from compound 45 (300 mg, 0.80 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 3% MeOH in DCM) gave the racemic mixture as a white solid (300 mg, 78%).
Preparative chiral HPlC gave the title compound (Chiralpak IC 30/70 EtOH (0.1 formic acid)/heptane, 1.0 ml/min, RT 19.8 min). lCMS (ES+) 361 (M+H)+, (ES-) 359 (M-H)-, RT 3.67 min (Analytical method 1 ). NMR s (ppm)(DMSO-d 6 ): .62 (1 H, s), 8.76 (1 H, s), 7.65 (2 H, d, J = 8.2 Hz), 7.52 (1 H, s), 7.42-7.35 (4 H, m), 7.31 (2 H, t, J = 7.5 Hz), 7.23 (1 H, t, J = 7.2 Hz), 3.17 (1 H, dd, J = 6.9, 5.4 Hz), 2.92 (1 H, dd, J = 9.7, 6.9 Hz), 2.28 (1 H, dd, J = 9.6, 5.4 Hz), 2.23-2.17 (1 H, m), 1.15-1.08 (2 H, m), 1.09-1.03 (2 H, m).
Example 15 Reaction Scheme 15 <;;;ON HOH - O;t: .,,Ph Ph\( I N 48 ( 1 R* ,2R* ,3R*)-Methylphenyl( 4-(2-phenyloxazol yl )phenyl )cyclopropanecarboxylate (47) Compound 40b (75 mg, 0.23 mmol), pivalic acid (14 mg, 0.14 mmol), potassium tert-butoxide (78 mg, 0.69 mmol) and RuPhos (16 mg, 0.034 mmol) were dissolved in dry toluene (5 ml) and the reaction flask was evacuated and back-filled with nitrogen three times. Pd(OAc)2 (4 mg, 0.017 mmol) and bromobenzene (54 mg, 0.34 mmol) were then added and the mixture was heated to 110°C overnight. The reaction mixture was cooled and treated with 0.1 M HCI (5 ml) and extracted with Et20 (3 x 10 ml). The combined organic layers were dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 50% EtOAc in i-hex) gave the title compound as a colourless oil (22 mg, 26%). LCMS (ES+) 396 (M+Ht. ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4-(2-phenyloxazol yl )phenyl )cyclopropanecarboxam ide ( 48) Following method A from compound 47 (22 mg, 0.06 mmol).
Purification by preparative HPLC gave the title compound as a white solid (16 mg, 70%). LCMS (ES+) 397 (M+H)+, RT 4.09 min (Analytical method 1 ).
NMR o (ppm)(DMSO-d 6 ): 10.58 (1 H, s), 8.71 (1 H, s), 8.12-8.08 (2 H, m), 7.81 (3 H, d, J = 8.2 Hz), 7.62-7.54 (3 H, m), 7.42 (2 H, d, J = 8.0 Hz), 7.36 (2 H, d, J = 7.6 Hz), 7.31-7.23 (2 H, m), 7.22-7.15 (1 H, m), 3.17 (1 H, dd, J = 6.8, 5.3 Hz), 2.91 (1 H, dd, J = 9.6, 6.8 Hz), 2.27 (1 H, dd, J = 9.6, 5.3 Hz).
Example 16 Reaction Scheme 16 CON HOH SOa-1 3-Br, R1 = Et, 1 Sb 49a-l 4-Br, R1=Me,15c Table 3 3 or4 3 or4 R2 Compound R2 Compound Substitution Substitution 4 50a 4 50g 3 50b 4 50h 4 50c 4 50i 4 4 50j J:'Y\ 4 50e 4 50k J:'Y\ 4 50f 4 501 )-~H (1 R*,2R*,3R*)-Methyl 2-(4-(5-fluoropyrimidinyl)phenyl) phenylcyclopropanecarboxylate (49a) Following method G from the crude boronate derived from 15c (250 mg) and 2-chlorofluoropyrimidine (91 mg, 0.69 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (240 mg, 100%). LCMS (ES+) 349 (M+Ht. ( 1 R* ,2R* ,3R*)-Ethyl(3-( 5-fluoropyrim id inyl )phenyl ) phenylcyclopropanecarboxylate ( 49b) Following method G from the crude boronate derived from 15b (300 mg) and 2-chlorofluoropyrimidine (107 mg, 0.81 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (140 mg, 50%). LCMS (ES+) 363 (M+Ht. (1 R*,2R*,3R*)-Methyl(4-(5-cyclopropylpyrimidinyl)phenyl) phenylcyclopropanecarboxylate ( 49c) Following method G from the crude boronate derived from 15c (250 mg) and 2-bromocyclopropylpyrimidine (137 mg, 0.69 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i­ hex) gave the title compound as a colourless oil (240 mg, 98%). LCMS (ES+) 371 (M+H( ( 1 R* ,2 R* ,3R*)-Methylphenyl( 4-( 4-(trifl uoromethyl )pyrim id in yl )phenyl )cyclopropanecarboxylate ( 49d) Following method G from the crude boronate derived from 15c (250 mg) and 2-chlorotrifluoromethylpyrimidine (126 mg, 0.69 mmol).
Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (220 mg, 84%).
LCMS (ES+) 399 (M+H( ( 1 R* ,2 R* ,3R*)-Methylphenyl( 4-( 5-(trifl uoromethyl )pyrim id in yl )phenyl )cyclopropanecarboxylate ( 49e) Following method G from the crude boronate derived from 15c (480 mg) and 2-chlorotrifluoromethylpyrimidine (243 mg, 1.33 mmol).
Purification by flash silica column chromatography (gradient elution i-hex to 20% EtOAc in i-hex) gave the title compound as a white solid (180 mg, 36%). LCMS (ES+) 399 (M+H( ( 1 R* ,2R* ,3R*)-Methylphenyl( 4-(pyridazin yl )phenyl )cyclopropanecarboxam ide ( 49f) Following method G from the crude boronate derived from 15c (400 mg), and 3-bromopyridazine (160 mg, 1.00 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (220 mg, 84%). LCMS (ES+) 331 (M+Ht. ( 1 R* ,2R* ,3R*)-Methylphenyl( 4-(pyridazin yl )phenyl )cyclopropanecarboxam ide (49g) Following method G from the crude boronate derived from 15c (400 mg), and 4-bromopyridazine (160 mg, 1.00 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a pale yellow solid (210 mg, 61 %). LCMS (ES+) 331 (M+Ht. ( 1R*,2R*,3R*)-Methylphenyl(4-(pyrim id in yl )phenyl )cyclopropanecarboxylate ( 49h) Following method G from the crude boronate derived from 15c (274 mg), and 2-chloropyrimidine (87 mg, 0.76 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a pale yellow oil (110 mg, 46%). LCMS (ES+) 331 (M+Ht. ( 1 R* ,2R* ,3R*)-Methylphenyl( 4-(pyrim id in yl )phenyl )cyclopropanecarboxylate ( 49i) To a stirred solution of 15c (130 mg, 0.39 mmol) in MeOH:DME (1 :5, 5 ml), was added Pd(PPh3)4 (45 mg, 0.039 mmol), cesium fluoride (119 mg, 0.78 mmol) and 5-pyrimidine boronic acid (58 mg, 0.47 mmol). The mixture was degassed with nitrogen for 15 min before heating in the microwave at 120°C for 1 h. The reaction mixture was diluted with H20 (10 ml) and extracted into DCM (50 ml). The organic layers were dried over MgS04, filtered and concentrated.
Purification by column chromatography (gradient elution i-hex to 5% EtOAc in i­ hex) gave the title compound as a colourless oil (120 mg, 93%). lCMS (ES+) 331 (M+H( ( 1 R* ,2 R* ,3R*)-Methyl( 4-( 5-ch loropyrim id inyl )phenyl ) phenylcyclopropanecarboxylate (49j) Following method G from the crude boronate derived from 15c (1.5 mmol), and 2,5-dichloropyrimidine (298 mg, 2.00 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 50% EtOAc in i-hex) gave the title compound as a pale yellow oil (305 mg, 56%). lCMS (ES+) 365 (M+Ht. ( 1 R* ,2 R* ,3R*)-Methyl( 4-( 5-methyl pyrim id inyl )phenyl ) phenylcyclopropanecarboxylate (49k) Following method G from the crude boronate derived from 15c (250 mg), and 2-chloromethylpyrimidine (89 mg, 0.69 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a pale yellow oil (180 mg, 79%). lCMS (ES+) 345 (M+Ht. ( 1 R* ,2R* ,3R*)-Methyl( 4-( 5-methyl-1 H-im idazolyl )phenyl ) phenylcyclopropanecarboxylate (491) Following method G from crude boronate derived from 15c (1.5 mmol) and 2-bromomethylimidazole (242 mg, 1.5 mmol). The mixture was stirred at 100°C for 48 h, diluted with H20 (20 ml) and extracted into DCM (50 ml). The layers were passed through a phase separator and concentrated.
Purification Following flash silica column chromatography (gradient elution DCM/MeOH 0% to 10%) gave the ester intermediate as a yellow oil (285 mg).
The crude material was used in the next step. lCMS (ES+) 335 (M+H( (1 R*,2R*,3R*)(4-(5-Fluoropyrimidinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 50a) Following method A from compound 49a (220 mg, 0.63 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the title compound as a white solid (81 mg, 37%). lCMS (ES+) 350 (M+H)+, RT 3.13 min (Analytical method 1). NMR o(ppm)(DMSO­ d 6 ): 10.58 (1 H, s), 8.97 (2 H, d, J = 0.8 Hz), 8.70 (1 H, s), 8.30 (2 H, d, J = 8.2 Hz), 7.44 (2 H, d, J = 8.2 Hz), 7.36 (2 H, d, J = 7.6 Hz), 7.27 (2 H, t, J = 7.5 Hz), 7.20 (1 H, d, J = 7.2 Hz), 3.18 (1 H, dd, J = 6.7, 5.6 Hz), 2.93 (1 H, dd, J = 9.6, 6.7 Hz), 2.30 (1 H, dd, J = 9.6, 5.4 Hz) (1 R*,2R*,3R*)(3-(5-Fluoropyrimidinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 50b) Following method A from compound 49b (140 mg, 0.39 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 7% MeOH in DCM) and preparative HPLC gave the title compound as a racemic mixture (12 mg, 9%). LCMS (ES+) 350 (M+H)+, RT 3.61 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.59 (1 H, s), 9.01 (2 H, s), 8.71 (1 H, s), 8.20 (2 H, t, J = 4.0 Hz), 7.51-7.48 (2 H, m), 7.37 (2 H, d, J = 7.6 Hz), 7.29-7.24 (2 H, m), 7.20 (1 H, d, J = 7.3 Hz), 3.22 (1 H, dd, J = 6.8, 5.5 Hz), 2.85 (1 H, dd, J = 9.6, 6.8 Hz), 2.32 (1 H, dd, J = 9.6, 5.4 Hz). (1 R*,2R*,3R*)(4-(5-Cyclopropylpyrimidinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 50c) Following method A from compound 49c (240 mg, 0.65 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the title compound as a white solid (155 mg, 64%). LCMS (ES+) 372 (M+H)+, RT 3.89 min (Analytical method 1 ). NMR s (ppm)(DMSO­ d 6 ): 10.58 (1 H, s), 8.70 (1 H, s), 8.64 (1 H, d, J = 5.2 Hz), 8.30 (2 H, d, J = 8.2 Hz), 7.40 (2 H, d, J = 8.2 Hz), 7.38-7.29 (3 H, m), 7.27 (2 H, t, J = 7.5 Hz), 7.22- 7.15 (1 H, m), 3.17 (1 H, dd, J = 6.8, 5.4 Hz), 2.90 (1 H, dd, J = 9.6, 6.9 Hz), 2.28 (1 H, dd, J = 9.6, 5.4 Hz), 2.21-2.13 (1 H, m), 1.19-1.09 (4 H, m). ( 1 R* ,2R* ,3R*)( 4-( 4-Trifluoromethylpyrim id inyl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide ( 50d) Following method A from compound 49d (220 mg, 0.55 mmol).
The carboxylic acid was obtained as the major product. The reaction mixture was acidified with aqueous 1 M HCI and extracted into EtOAc (3 x 10 ml). The organic layers were combined, dried (MgS04), filtered and concentrated. The compound was then subjected to method B. Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the title compound as a white solid (77 mg, 37%). LCMS (ES+) 400 (M+H)+, 398 (M-H)-, RT 13.26 min (Analytical method 3). NMR o (ppm)(DMSO-d 6 ): 10.60 (1 H, s), 9.26 (1 H, d, J = 5.0 Hz), 8.71 (1 H, s), 8.38 (2 H, d, J = 8.2 Hz), 7.93 (1 H, d, J = .0 Hz), 7.50 (2 H, d, J = 8.2 Hz), 7.36 (2 H, d, J = 7.6 Hz), 7.28 (2 H, t, J = 7.5 Hz), 7.22-7.15 (1 H, m), 3.21 (1 H, dd, J = 6.8, 5.4 Hz), 2.94 (1 H, dd, J = 9.7, 6.9 Hz), 2.32 (1 H, dd, J = 9.7, 5.3 Hz). (1 R,2R,3R)(4-(5-Trifluoromethylpyrimidinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 50e) Following method A from compound 49e (180 mg, 0.45 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (99 mg, 55%).
Preparative chiral HPLC gave the title compound (Chiralpak IC 10/90 IPNMeOH (50/50/0.1 % formic acid)/Heptane, 1.0 ml/min, RT 16.2 min). LCMS (ES+) 400 (M+H)+, RT 3.96 min (Analytical method 1). NMR s (ppm)(DMSO-d6): 10.66 (1 H, s), 9.39 (2 H, s), 8.79 (1 H, s), 8.47 (2 H, d, J = 8.2 Hz), 7.55 (2 H, d, J = 8.2 Hz), 7.41 (2 H, d, J = 7.6 Hz), 7.33 (2 H, t, J = 7.5 Hz), 7.24 (1 H, t, J = 7.2 Hz), 3.26 (1 H, dd, J = 6.8, 5.3 Hz), 3.00 (1 H, dd, J = 9.6, 6.8 Hz), 2.38 (1 H, dd, J = 9.6, 5.3 Hz). ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4-(pyridazin yl )phenyl )cyclopropanecarboxam ide ( 50f) Following method A from compound 49f (68 mg, 0.21 mmol).
Purification using an lsolute anion exchange SPE (elution DCM-MeOH, 1 :1) gave the racemic mixture as a white solid (49 mg, 70%). LCMS (ES+) 332 (M+H)+, RT 2.95 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.59 (1 H, s), 9.20 (1 H, dd, J = 4.8, 1.5 Hz), 8.71 (1 H, s), 8.23 (1 H, dd, J = 8.6, 1.5 Hz), 8.14 (2 H, d, J = 8.1 Hz), 7.78 (1 H, dd, J = 8.6, 4.9 Hz), 7.48 (2 H, d, J = 8.1 Hz), 7.37 (2 H, d, J = 7.5 Hz), 7.32-7.24 (2 H, m), 7.22-7.16 (1 H, m), 3.19 (1 H, dd, J = 6.8, 5.4 Hz), 2.93 (1 H, dd, J = 9.6, 6.8 Hz), 2.31 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 R* ,2R* ,3R*)-N -Hydroxyphenyl( 4-(pyridazin yl )phenyl )cyclopropanecarboxam ide (50g) Following method A from compound 49g (190 mg, 0.58 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 10% MeOH in DCM) gave the racemic mixture as an off-white solid (75 mg, 39%).
LCMS (ES+) 332 (M+H)+, RT 2.77 min (Analytical method 4). 1 H NMR s (ppm)(DMSO-d 6 ): 10.59 (1 H, s), 9.66 (1 H, dd, J = 2.5, 1.2 Hz), 9.26 (1 H, dd, J = 5.4, 1.23 Hz), 8.71 (1 H, d, J = 1.7 Hz), 8.02 (1 H, dd, J = 5.5, 2.5 Hz), 7.92 (2 H, d, J = 8.1 Hz), 7.48 (2 H, d, J = 8.1 Hz), 7.36 (2 H, d, J = 7.6 Hz), 7.31-7.23 (2 H, m), 7.22-7.16 (1 H, m), 3.22-3.16 (1 H, m), 2.93 (1 H, dd, J = 9.6, 6.8 Hz), 2.29 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4-(pyrim id in yl )phenyl )cyclopropanecarboxam ide ( 50h) Following method A from compound 49h (110 mg, 0.33 mmol).
Purification by column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the title compound as a white solid (75 mg, 67%). LCMS (ES+) 332 (M+H)+, (ES-) 330 (M+H)-, RT 2.78 min (Analytical method 1 ). NMR s (ppm)(DMSO-d 6 ): 10.59 (1 H, s), 8.90 (2 H, d, J = 4.8 Hz), 8.72 (1 H, s), 8.36 (2 H, d, J = 8.2 Hz), 7.48-7.40 (3 H, m), 7.36 (2 H, d, J = 7.6 Hz), 7.27 (2 H, t, J = 7.6 Hz), 7.19 (1 H, t, J = 7.3 Hz), 3.18 (1 H, dd, J = 6.8, 5.4 Hz), 2.93 (1 H, dd, J = 9.6, 6.8 Hz), 2.30 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4-(pyrim id in yl )phenyl )cyclopropanecarboxam ide (50i) Following method A from compound 49i (120 mg, 0.36 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and passage through an lsolute anion exchange SPE (elution DCM-MeOH, 1 :1) gave the title compound as a white solid (21 mg, 17%). LCMS (ES+) 332 (M+H)+, RT 3.07 min (Analytical method 1 ). 1 H NMR s (ppm)(DMSO­ d6 ): 10.60 (1 H, s), 9.18 (1 H, s), 9.15 (2 H, s), 8.72 (1 H, s), 7.79 (2 H, d, J = 8.1 Hz), 7.45 (2 H, d, J = 8.1 Hz), 7.35 (2 H, d, J = 7.6 Hz), 7.27 (2 H, t, J = 7.6 Hz), 7.19 (1 H, t, J = 7.2 Hz), 3.18 (1 H, dd, J = 6.8, 5.4 Hz), 2.92 (1 H, dd, J = 9.6, 6.8 Hz), 2.27 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 R,2R,3R)( 4-(5-Chloropyrim id inyl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide ( 50j) Following method A from compound 49j (300 mg, 0.82 mmol). The racemic mixture (119 mg, 40%) was obtained after purification using flash silica column chromatography (gradient elution DCM/MeOH 0% to 10%). Preparative chiral HPLC gave the title compound (Chiralpak IC 30/70 IPNMeOH (50/50/0.1 formic acid)/heptanes, 1.0 ml/min, RT 8.21 min). LCMS (ES+) 366 (M+H), RT 3.90 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.64 (1 H, s), 9.06 (2 H, s), 8.77 (1 H, s), 8.37 (2 H, d, J = 8.2 Hz), 7.50 (2 H, d, J = 8.2 Hz), 7.40 (2 H, d, J = 7.6 Hz), 7.32 (2 H, t, J = 7.5 Hz), 7.26-7.21 (1 H, m), 3.23 (1 H, dd, J = 6.8, 5.4 Hz), 2.98 (1 H, dd, J = 9.7, 6.8 Hz), 2.35 (1 H, dd, J = 9.7, 5.4 Hz). ( 1 R* ,2R* ,3R*)-N-Hydroxy( 4-( 5-methylpyrim id inyl )phenyl ) phenylcyclopropanecarboxam ide (50k) Following method A from compound 49k (180 mg, 0.52 mmol).
The carboxylic acid was obtained as the major product. The reaction mixture was acidified with aqueous 1 M HCI and extracted into EtOAc (3 x 10 ml). The organic layers were combined, dried (MgS04), concentrated and the residue subjected to method B. Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and preparative HPLC gave the title compound as a white solid (16 mg, 7%). LCMS (ES+) 346 (M+H)+, RT 3.50 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.58 (1 H, s), 8.74 (2 H, d, J = 0.8 Hz), 8.70 (1 H, s), 8.35-8.28 (2 H, m), 7.45-7.32 (4 H, m), 7.30-7.23 (2 H, m), 7.22-7.15 (1 H, m), 3.17 (1 H, dd, J = 6.7, 5.4 Hz), 2.91 (1 H, dd, J = 9.6, 6.8 Hz), 2.31 (3 H, s), 2.29 (1 H, dd, J = 9.6, 5.4 Hz). ( 1R*,2R*,3R*)-N-Hydroxy(4-(5-methyl-1 H-imidazolyl )phenyl ) phenylcyclopropanecarboxam ide (501) Following method A from compound 491 (280 mg, 0.84 mmol).
Purification by preparative HPLC gave the title compound as a white solid (4.8 mg, 1 % yield over 3 steps). LCMS (ES+) 334 (M+H)+, RT 7.93 min (Analytical method 3). NMR o (ppm)(DMSO-d 6 ): 10.62 (1 H, s), 8.42 (1 H, s), 7.88 (2 H, d, J = 8.0 Hz), 7.41-7.28 (6 H, m), 7.25-7.20 (1 H, m), 6.84 (1 H, s), 3.16 (1 H, dd, J = 6.9, 5.5 Hz), 2.92 (1 H, dd, J = 9.4, 6.7 Hz), 2.31-2.20 (4 H, m), OH not observed.
Example 17 Reaction Scheme 17 -Bromocyclopropyl isoindol ine To a solution of phthalic anhydride (4.5 g, 20 mmol) in toluene (25 ml) was added cyclopropylamine (1.52 ml) at 0 °C and the reaction mixture was stirred at 90 °C for 17 h. The solvent was evaporated and THF (20 ml) was added. To this was added BH3.Me2S THF complex 1 M (80 ml, 80 mmol) and the mixture was stirred at 50 °C for 48 h. The reaction was cooled to 0°C and poured onto a solution of 3M HCI (27 ml) and stirred at 60 °C for 1 h. The mixture was washed with ethyl acetate, the aqueous phase was basified (pH 12) and extracted with DCM. The organic layer was dried, filtered and concentrated to afford the title compound as a yellow oil (1.6 g, 34%). lCMS (ES+) 238, 240 (M+Ht.
Example 18 Reaction Scheme 18 <;;:ON HOH ( 1 R* ,2R* ,3R*)-methyl( 4-(2-cyclopropyl isoindolinyl )phenyl ) phenylcyclopropanecarboxylate (51) Following method G from the boronate derived from 15c (1.5 mmol) and 5-bromocyclopropylisoindoline (240 mg, 1 mmol). The mixture was stirred at 90°C for 2 h, diluted with H20 (20 ml) and extracted into DCM (50 ml). The organic layers were passed through a phase separator and concentrated.
Purification using flash silica column chromatography (gradient elution DCM/MeOH 1 % to 7%) gave the ester intermediate as a yellow oil (360 mg, 59%). lCMS (ES+) 410 (M+H( (1 R*,2R*,3R*)(4-(2-cyclopropylisoindolinyl)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 52) Following method A from compound 51 (40 mg, 0.098 mmol).
Purification by preparative HPlC gave the title compound as a white solid (6.9 mg, 17%). lCMS (ES+) 411 (M+H)+, RT 7.48 min (Analytical method 3).
NMR o (ppm)(DMSO-d 6 ): 10.63 (1 H, s), 8.75 (1 H, s), 7.65 (2 H, d, J = 8.1 Hz), 7.56 (1 H, s), 7.53 (1 H, d, J = 7.9 Hz), 7.44-7.27 (7 H, m), 7.26-7.20 (1 H, m), 4.05 (4 H, d, J = 9.3 Hz), 3.17 (1 H, dd, J = 6.7, 5.3 Hz), 2.90 (1 H, dd, J = 9.5, 6.8 Hz), 2.29 (1 H, dd, J = 9.5, 5.4 Hz), 2.14-2.08 (1 H, m), 0.56-0.50 (2 H, m), 0.51-0.45 (2 H, m).
Example 19 Reaction Scheme 19 CONHOH ---- 15c 53a-c 54a-c Table 4 R Compound R Compound (oyy\ 54a 54c Ph v (1R*,2R*,3R*)-Methyl(3'-(benzyloxy)-[1,1 '-biphenyl]yl) phenylcyclopropanecarboxylate (53a) Following method H from compound 15c (660 mg, 2 mmol) and 3- (benzyloxy)phenyl boronic acid (547 mg, 2.40 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a yellow oil (710 mg, 82%). LCMS (ES+) 435 (M+Ht (1R*,2R*,3R*)-Methyl(4'-(9H-carbazolyl)-[1,1 '-biphenyl]yl) phenylcyclopropanecarboxylate ( 53b) Following method H from compound 15c (660 mg, 2.0 mmol) and 4-(9H-carbazolyl)phenyl boronic acid (886 mg, 2.40 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 30% EtOAc in i-hex) gave the title compound as a yellow oil (310 mg, 31 %). LCMS (ES+) 494 (M+Ht ( 1 R* ,2R* ,3R*)-Methyl( 4-( 4-methyl-3,4-d ihydro-2H-benzo[b][1 ,4 ]oxazin yl )phenyl )phenylcyclopropanecarboxylate ( 53c) Following method H from compound 15c (330 mg, 1.0 mmol) and 4-methyl( 4 ,4 ,5,5-tetramethyl-1 ,3,2-d ioxaborolanyl )-3,4-d ihydro-2H- benzo[b][1,4]oxazine (331 mg, 1.2 mmol). Purification by flash silica column chromatography (gradient elution i-hex - 5% to 80% EtOAc in i-hex) gave the title compound as a yellow oil (280 mg, 70%). LCMS (ES+) 400 (M+Ht (1R,2R,3R)(3'-(Benzyloxy)-[1,1 '-biphenyl]yl)-N-hydroxy phenylcyclopropanecarboxam ide ( 54a) Following method A from compound 53a (700 mg, 1.61 mmol).
Purification by flash silica column chromatography (gradient elution EtOAc from % to 100% in i-hex) followed by PEAX cartridge (elution DCM-MeOH 1 :1) gave the racemic mixture as a white solid (450 mg, 64%). Purification by chiral preparative HPLC gave the title compound (Chiralpak IC 20/80 EtOH (0.1 % FA) I heptane, 1.0 ml/min, RT 13.0 min). LCMS (ES+) 436 (M+H)+, RT 4.47 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.63 (1 H, s), 8.76 (1 H, s), 7.68 (2 H, d, J = 8.1 Hz), 7.54 (2 H, d, J = 7.5 Hz), 7.50-7.21 (13 H, m), 7.05 (1 H, dd, J = 8.1, 2.4 Hz), 5.25 (2 H, s), 3.19 (1 H, dd, J = 6.8, 5.4 Hz), 2.93 (1 H, dd, J = 9.6, 6.8 Hz), 2.30 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 R* ,2R* ,3R*)( 4'-(9H-carbazolyl )-[1 , 1 '-biphenyl]yl )-N-hydroxy phenylcyclopropanecarboxam ide ( 54b) Following method A from compound 53b (300 mg, 0.61 mmol).
Purification by preparative HPLC gave the title compound as a white solid (8 mg, 3%). LCMS (ES+) 495 (M+H)+, RT 11.55 min (Analytical method 3). NMR s (ppm)(DMSO-d 6 ): 10.66 (1 H, s), 8.79 (1 H, s), 8.33 (2 H, d, J = 7.8 Hz), 8.03 (2 H, d, J = 8.2 Hz), 7.83 (2 H, d, J = 8.0 Hz), 7.78 (2 H, d, J = 8.2 Hz), 7.54-7.47 (6 H, m), 7.44-7.30 (6 H, m), 7.25 (1 H, t, J = 7.2 Hz), 3.23 (1 H, dd, J = 6.8, 5.4 Hz), 2.98 (1 H, dd, J = 9.6, 6.9 Hz), 2.34 (1 H, dd, J = 9.6, 5.4 Hz). ( 1R,2R,3R)-N-hydroxy(4-( 4-methyl-3,4-d ihydro-2H-benzo[b] [1 ,4 ]oxazin yl )phenyl )phenylcyclopropanecarboxamide ( 54c) Following method A from compound 53c (280 mg, 0.70 mmol).
The carboxylic acid was obtained as the major product. The reaction mixture was acidified with aqueous 1 M HCI and extracted into EtOAc (3 x 10 ml). The organic layers were combined, dried (MgS04), filtered and concentrated. The sample was then subjected to method B. Purification by chiral preparative HPLC (Chiralpak IC 20/80 EtOH (0.1 % FA) I heptane, 1.0 ml/min, RT 15.9 min) gave the title compound as a white solid. LCMS (ES+) 401 (M+H)+, RT 4.02 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.63 (1 H, s), 8.75 (1 H, s), 7.56 (2 H, d, J = 8.1 Hz), 7.38 (2 H, d, J = 7.6 Hz), 7.35-7.27 (3 H, m), 7.26-7.20 (1 H, m), 7.15 (1 H, dd, J = 8.3, 2.1 Hz), 7.02 (1 H, d, J = 2.1 Hz), 6.81 (1 H, d, J = 8.4 Hz), 4.33-4.29 (2 H, m), 3.33-3.28 (3 H, m), 3.14 (1 H, dd, J = 6.8, 5.3 Hz), 2.91 (3 H, s), 2.91-2.85 (1 H, m), 2.26 (1 H, dd, J = 9.6, 5.3 Hz).
Example 20 Reaction Scheme 20 CON HOH 3-Br, R1 =Et, 1 Sb 56a-i 55a-i 4-Br, R1 =Me, 15c Table 5 3 or4 3 or4 R2 Compound R2 Compound Substitution Substitution 4 56a 3 56f 3 56b 3 56g 4 56c 3 56h 4 4 56i 4 56e ( 1 R* ,2R* ,3R*)-Methyl( 4-( 4-isopropylpiperazinyl )phenyl ) phenylcyclopropanecarboxylate (55a) Following method I from compound 15c (250 mg, 0.76 mmol) and iso-propylpiperazine (125 µI, 0.86 mmol). Purification using flash silica column chromatography (gradient elution i-hex/EtOAc 0% to 100%) gave the title compound as a yellow oil (187 mg, 65%). LCMS (ES+) 379 (M+Ht ( 1R*,2R*,3R*)-Ethyl(3-(4-isopropylpiperazinyl )phenyl ) phenylcyclopropanecarboxylate ( 55b) Following method I from compound 15b (250 mg, 0.76 mmol) and iso-propylpiperazine (125 µI, 0.86 mmol). Purification using flash silica column chromatography (gradient elution DCM/MeOH 0% to 8%) gave the title compound as a yellow oil (180 mg, 58%). LCMS (ES+) 393 (M+Ht ( 1R*,2R*,3R*)-Methyl(4-(3,3-d ifl uoropyrrol idinyl )phenyl ) phenylcyclopropanecarboxylate ( 55c) Following method I from compound 15c (250 mg, 0.76 mmol) and 3,3-difluoropyrrolidine (124 mg, 0.86 mmol). Purification by flash silica column chromatography (gradient elution i-hex/EtOAc 0% to 100%) gave the title compound as a clear oil (210 mg, 59%). LCMS (ES+) 358 (M+Ht. ( 1R*,2R*,3R*)-Methyl(4-(3,3-d imethylazetid inyl )phenyl ) phenylcyclopropanecarboxylate ( 55d) Following method I from compound 15c (250 mg, 0.76 mmol) and 3,3-dimethylazatidine (105 mg, 0.86 mmol). Purification by flash silica column chromatography (gradient elution i-hex/EtOAc 0% to 100%) gave the title compound as a clear oil (210 mg, 59%). LCMS (ES+) 336 (M+Ht. ( 1 R*,2R*,3R*)-Methyl( 4-(2-oxaazaspiro[3 .3] heptanyl )phenyl ) phenylcyclopropanecarboxylate ( 55e) Following method I from compound 15c (250 mg, 0.76 mmol) and 2-oxaazaspiro[3.3]heptane formate salt (160 mg, 0.86 mmol). Purification by flash silica column chromatography (gradient elution i-hex/EtOAc 0% to 100%) gave the title compound as a clear oil (210 mg, 59%). LCMS (ES+) 350 (M+H( ( 1 R*,2R*,3R*)-Ethyl(3-(hexahydropyrrolo[1 ,2-a]pyrazin-2( 1 H )-yl )phenyl ) phenylcyclopropanecarboxylate ( 55f) Following method I from compound 15b (500 mg, 1.56 mmol) and octahydropyrrolo[1,2-a]pyrazine (195 mg, 1.72 mmol). Purification by flash silica column chromatography (gradient elution DCM/MeOH 0% to 8%) gave the title compound as a yellow oil (265 mg, 44%). LCMS (ES+) 391 (M+Ht ( 1R*,2R*,3R*)-Ethylphenyl(3-(4-(pyrrol id inyl )piperid in yl )phenyl )cyclopropanecarboxylate ( 55g) Following method I from compound 15b (500 mg, 1.56 mmol) and 4-(pyrrolidinyl)piperidine (241 mg, 1.72 mmol). Purification by flash silica column chromatography (gradient elution DCM/MeOH 0% to 8%) gave the title compound as a yellow oil (230 mg, 35%). LCMS (ES+) 491 (M+Ht ( 1R*,2R*,3R*)-Ethyl(3-(6,7-d ihydropyrazolo[1 ,5-a]pyrim id in-4( 5H )-yl )phenyl)­ phenylcyclopropanecarboxylate ( 55h) Following method I from compound 15b (250 mg, 0.78 mmol) and 4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine (106 mg, 0.86 mmol). Purification by flash silica column chromatography (gradient elution DCM/MeOH 0% to 8%) gave the title compound as a yellow oil (165 mg, 42%). LCMS (ES+) 388 (M+Ht ( 1R*,2R*,3R*)-Methyl(4-( 4-methylpiperazinyl )phenyl ) phenylcyclopropanecarboxylate (55i) Following method I from compound 15c (250 mg, 0.76 mmol) and N-methylpiperazine (95 µI, 0.86 mmol). Purification using lsolute cation exchange SCX (elution DCM-MeOH 50% and 5-10% 7N NH3 in MeOH) gave the title compound as a yellow oil (72 mg, 27%). LCMS (ES+) 351 (M+Ht ( 1R*,2R*,3R*)-N-Hydroxy(4-( 4-isopropylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide ( 56a) Following method A from compound 55a (170 mg, 0.49 mmol).
Purification by preparative HPLC gave the title compound as a white solid (36 mg, 21 %). LCMS (ES+) 380 (M+H)+, RT 2.30 min (Analytical method 1 ).
NMR o (ppm)(DMSO-d 6 ): 10.50 (1 H, d, J = 1.9 Hz), 8.64 (1 H, d, J = 1.7 Hz), 7.31 (2 H, m), 7.25 (2 H, m), 7.20-7.07 (3 H, m), 6.88 (2 H, d, J = 8.4 Hz), 3.08 (4 H, m), 2.99 (1 H, m), 2.75-2.61 (2 H, m), 2.56 (4 H, dd, J = 7.4, 4.1 Hz), 2.12-2.06 (1 H, m), 1.00 (6 H, d, J = 6.5 Hz). ( 1R*,2R*,3R*)-N-Hydroxy(3-(4-isopropylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide ( 56b) Following method A from compound 55b (180 mg, 0.46 mmol).
Purification by preparative HPLC gave the title compound as a white solid (73 mg, 42%). LCMS (ES+) 380 (M+H)+, RT 7.23 min (Analytical method 3).
NMR o (ppm)(DMSO-d 6 ): 10.56 (1 H, s), 7.37 (2 H, d, J = 7.6 Hz), 7.30 (2 H, t, J = 7.5 Hz), 7.25-7.17 (2 H, m), 6.88 (1 H, s), 6.84-6.80 (1 H, m), 6.69 (1 H, d, J = 7.5 Hz), 3.18 (5 H, t, J = 4.5 Hz), 3.08 (1 H, dd, J = 6.8, 5.4 Hz), 2.87 (1 H, dd, J = 9.5, 6.9 Hz), 2.73 (1 H, t, J = 6.5 Hz), 2.62 (4 H, t, J = 4.6 Hz), 2.22 (1 H, dd, J = 9.6, 5.4 Hz), 1.06 (6 H, d, J = 6.5 Hz). ( 1R*,2R*,3R*)-N-Hydroxy(4-(3,3-d ifluoropyrrol id inyl )phenyl ) phenylcyclopropanecarboxam ide ( 56c) Following method A from compound 55c (205 mg, 0.57 mmol).
Purification by preparative HPLC gave the title compound as a white solid (35 mg, 17%). LCMS (ES+) 359 (M+H)+, RT 9.27 min (Analytical method 6).
NMR o (ppm)(DMSO-d 6 ): 10.50 (1 H, s), 8.64 (1 H, d, J = 1.8 Hz), 7.31 (2 H, d, J = 7.6 Hz), 7.25 (2 H, t, J = 7.4 Hz), 7.19-7.08 (3 H, m), 6.60 (2 H, d, J = 8.2 Hz), 3.66 (2 H, t, J = 13.4 Hz), 3.44 (2 H, m), 2.99 (1 H, m), 2.70-2.65 (2 H, m), 2.33 (1 H, m), 2.08 (1 H, dd, J = 9.5, 5.4 Hz). ( 1 R* ,2R* ,3R *)( 4-(3,3-Dimethylazetid inyl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide ( 56d) Following method A from compound 55d (200 mg, 0.59 mmol).
Purification by preparative HPLC gave the title compound as a white solid (23 mg, 14%). LCMS (ES+) 337 (M+H)+, RT 3.42 min (Analytical method 1).
NMR o (ppm)(DMSO-d 6 ): 10.49 (1 H, s), 8.63 (1 H, s), 7.33-7.20 (4 H, m), 7.19- 7.12 (1 H, m), 7.05 (2 H, d, J = 8.2 Hz), 6.37 (2 H, d, J = 8.2 Hz), 3.48 (4 H, s), 2.97 (1 H, dd, J = 6.9, 5.4 Hz), 2.68 (1 H, dd, J = 9.5, 6.9 Hz), 2.06 (1 H, dd, J = 9.5, 5.4 Hz), 1.27 (6 H, s). ( 1 R*,2R*,3R*)( 4-(2-0xaazaspiro[3 .3] heptanyl )phenyl )-N-hyd roxy phenylcyclopropanecarboxam ide ( 56e) Following method A from compound 55e (214 mg, 0.61 mmol).
Purification by preparative HPLC gave the title compound as a white solid (23 mg, 14%). LCMS (ES+) 351 (M+H)+, RT 8.07 min (Analytical method 3).
NMR o (ppm)(DMSO-d 6 ): 10.50 (1 H, s), 8.64 (1 H, d, J = 1.8 Hz), 7.31 (2 H, d, J = 7.6 Hz), 7.28-7.21 (2 H, m), 7.19-7.08 (3 H, m), 6.60 (2 H, d, J = 8.2 Hz), 3.70- 3.61 (4 H, m), 3.48-3.39 (4 H, m), 2.99 (1 H, dd, J = 6.9, 5.4 Hz), 2.70 (1 H, dd, J = 9.5, 6.9 Hz), 2.08 (1 H, dd, J = 9.5, 5.4 Hz). ( 1 R*,2R*,3R*)(3-(Hexahydropyrrolo[1 ,2-a]pyrazin-2( 1 H )-yl )phenyl )-N-hydroxy- 3-phenylcyclopropanecarboxam ide ( 56f) Following method A from compound 55f (265 mg, 0.68 mmol).
Purification by preparative HPLC gave the title compound as a white solid (9 mg, 4%). LCMS (ES+) 378 (M+H)+, RT 8.26 min (Analytical method 3). NMR s (ppm)(DMSO-d 6 ): 10.56 (1 H, s), 7.38 (2 H, d, J = 7.6 Hz), 7.30 (2 H, t, J = 7.5 Hz), 7.24-7.15 (2 H, m), 6.89 (1 H, s), 6.84 (1 H, dd, J = 8.4, 2.4 Hz), 6.69 (1 H, d, J = 7.6 Hz), 3.87 (1 H, d, J = 11.2 Hz), 3.71 (2 H, d, J = 12.2 Hz), 3.13-3.03 (4 H, m), 2.87 (1 H, dd, J = 9.6, 6.9 Hz), 2.81-2.71 (1 H, m), 2.30-2.19 (2 H, m), 2.16- 2.04 (2 H, m), 1.91-1.83 (1 H, m), 1.81-1.70 (2 H, m), 1.48-1.39 (1 H, m). ( 1R*,2R*,3R*)-N-Hydroxyphenyl(3-(4-(pyrrol id inyl)piperid in yl )phenyl )cyclopropanecarboxam ide (56g) Following method A from compound 55g (230 mg, 0.55 mmol).
Purification by preparative HPLC gave the title compound as a white solid (40 mg, 10%). LCMS (ES+) 406 (M+H)+, RT 2.42 min (Analytical method 1 ).
NMR o (ppm)(DMSO-d 6 ): 10.56 (1 H, s), 8.72 (1 H, s), 7.38 (2 H, d, J = 7.61 Hz), 7.33-7.24 (2 H, m), 7.25-7.14 (2 H, m), 6.90 (1 H, s), 6.90-6.80 (1 H, m), 6.67 (1 H, d, J = 7.59 Hz), 3.84-3.69 (2 H, m), 3.08 (1 H, dd, J = 6.93 5.4 Hz), 2.90-2.82 (1 H, m), 2.82-2.72 (7 H, m), 2.22 (1 H, dd, J = 9.6, 5.4 Hz), 2.00 (2 H, d, J = 12.01 Hz), 1.79 (4 H, s), 1.65-1.51 (2 H, m). ( 1R,2R,3R)(3-(6,7-Dihydropyrazolo[1 ,5-a]pyrim id in-4(5H )-yl )phenyl )-N­ hydroxyphenylcyclopropanecarboxam ide ( 56h) Following method A from compound 55h (180 mg, 0.46 mmol).
The racemic mixture was obtained after purification by preparative HPLC as a white solid (41.5 mg, 24%). Purification by chiral preparative HPLC (Chiralpak IA 40/60 IPA/MeOH (50/50/0.1 % formic acid) I heptane, 1.0 ml/min, RT 10.1 min) gave the title compound. LCMS (ES+) 375 (M+H)+, RT 2.90 min (Analytical method 1 ). NMR o (ppm)(DMSO-d 6 ): 10.59 (1 H, s), 8.74 (1 H, s), 7.39-7.28 (5 H, m), 7.26-7.20 (4 H, m), 7.02 (1 H, d, J = 1.4 Hz), 5.66 (1 H, d, J = 1.9 Hz), 4.15 (2 H, t, J = 6.1 Hz), 3.74 (2 H, t, J = 5.2 Hz), 3.14 (1 H, dd, J = 6.8, 5.4 Hz), 2.88 (1 H, dd, J = 9.5, 6.8 Hz), 2.28-2.22 (3 H, m). ( 1R*,2R*,3R*)-N-Hydroxy(4-( 4-methylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide ( 56i) Following method A from compound 55i (70 mg, 0.20 mmol).
Purification by preparative HPLC gave the title compound as a white solid (49 mg, 70%). lCMS (ES+) 352 (M+H)+, RT 6.86 min (Analytical method 3).
NMR o (ppm)(DMSO-d 6) 10.50 (1 H, s), 8.64 (1 H, s), 7.31 (2 H, d, J = 7.6 Hz), 7.25 (2 H, t, J = 7.4 Hz), 7.20-7.08 (3 H, m), 6.89 (2 H, d, J = 8.5 Hz), 3.09 (4 H, t, J = 4.8 Hz), 2.99 (1 H, dd, J = 6.8, 5.4 Hz), 2.71 (1 H, dd, J = 9.5, 6.9 Hz), 2.44 (4 H, t, J = 4.7 Hz), 2.22 (3 H, s), 2.09 (1 H, dd, J = 9.5, 5.4 Hz).
Example 21 Reaction Scheme 21 CON HOH ( 1 R* ,2R* ,3R*)-Methyl( 4-( oxazolyl )phenyl ) phenylcyclopropanecarboxam ide (57) A mixture of compound 15c (250 mg, 0.75 mmol), 2-(tri-n- butylstannyl)oxazole (0.230 ml, 1.1 mmol), Pd(PPh3)4 (43 mg, 0.038 mmol) in 1,4-dioxane (4 ml) was heated in the microwave at 150°C for 1 h. The mixture was concentrated and purified by flash silica column chromatography (gradient elution DCM to 10% MeOH in DCM) to afford the title compound as a white solid (175 mg, 73%). lCMS (ES+) 320 (M+Ht. ( 1 R*, 2R*, 3R*J-N-Hyd roxy( 4-( oxazolyl )phenyl ) phenylcyclopropanecarboxam ide ( 58) Following method A from compound 57 (160 mg, 0.50 mmol).
Crystallization from MeOH gave the title compound as a white solid (71 mg, 45%). lCMS (ES+) 321 (M+H)+, RT 2.80 min (Analytical method 1 ). NMR s (ppm)(DMSO-d 6 ): 10.58 (1 H, s), 8.70 (1 H, s), 8.21 (1 H, d, J = 0.8 Hz), 7.94 (2 H, d, J = 8.1 Hz), 7.45 (2 H, d, J = 8.1 Hz), 7.39-7.33 (3 H, m), 7.31-7.23 (2 H, m), 7.22-7.15 (1 H, m), 3.20-3.13 (1 H, m), 2.91 (1 H, dd, J = 9.6, 6.8 Hz), 2.28 (1 H, dd, J = 9.6, 5.3 Hz).
Example 22 Reaction Scheme 22 CON HOH ~-··o ( 1R*,2R*,3R*)-Methyl(4-( 1-methyl-1 H-im idazolyl )phenyl ) phenylcyclopropanecarboxam ide ( 59) Following the method described for compound 57, from 15c (222 mg, 0.67 mmol) and 1-methyl(tributylstannyl)imidazole (300 mg, 0.81 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 10% MeOH in DCM) gave the title compound as a yellow solid (187 mg, 84%). LCMS (ES+) 333 (M+H( ( 1 R* ,2R* ,3R*)-N -Hydroxy( 4-( 1-methyl-1 H-im idazolyl )phenyl ) phenylcyclopropanecarboxam ide (60) Following method A from compound 59 (187 mg, 0.56 mmol).
Crystallization from DCM and washes with MeOH, gave the title compound as a white solid (98 mg, 53%). LCMS (ES+) 334 (M+H)+, RT 9.74 min (Analytical method 3). NMR o (ppm)(DMSO-d 6 ): 10.58 (1 H, s), 8.70 (1 H, s), 7.65 (2 H, d, J = 8.1 Hz), 7.44-7.31 (4 H, m), 7.30-7.24 (3 H, m), 7.23-7.15 (1 H, m), 6.99 (1 H, d, J = 1.1 Hz), 3.75 (3 H, s), 3.19-3.13 (1 H, dd, J = 6.8, 5.4 Hz), 2.90 (1 H, dd, J = 9.6, 6.8 Hz), 2.26 (1 H, dd, J = 9.6, 5.4 Hz).
Example 23 Reaction Scheme 23 ~~2Me ~~~2Me ~CONHOH - 'Ph - .,, ,,,;:;.
Br r( N'- r( N.::: 61 F~N 62 F~N 63 ( 1R*,2S*,3S*)-Methyl(4-bromophenyl )methyl phenylcyclopropanecarboxylate (61) To a solution of 15c (331 mg, 1 mmol) in dry THF at -78 °C, was added LOA (2 Min THF, 0.5 ml) dropwise and the reaction mixture was stirred at -78 °C for 30 min. Methyl iodide (0.065 ml, 1 mmol) was added and the reaction mixture was allowed to warm up to r.t. and stirred for 1 h. The reaction mixture was quenched with water and the compound was extracted into DCM. The organic phase was dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 50% EtOAc in i-hex) gave the title compound as a colourless oil (346 mg, 100%). lCMS (ES+) 346 (M+H( ( 1R*,2S*,3S*)-Methyl(4-(5-fluoropyrim id inyl )phenyl )methyl phenylcyclopropanecarboxylate (62) Following method G from 61 (346 mg, 1.0 mmol) and 2-chloro fluoropyrimidine (170 µI, 1.1 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (160 mg, 44%). lCMS (ES+) 363 (M+H( ( 1R*,2S*,3S*)(4-( 5-Fluoropyrim id inyl )phenyl )-N-hydroxymethyl phenylcyclopropanecarboxam ide (63) Following method A from 62 (350 mg, 0.97 mmol). Purification by flash silica column chromatography (gradient elution DCM to 10% MeOH in DCM) followed by preparative HPlC gave the title compound as a white solid (2 mg, 2%). lCMS (ES+) 364 (M+H)+, RT 10.83 min (Analytical method 3). NMR s (ppm)(DMSO-d 6 ): 10.62 (1 H, s), 8.98 (2 H, d, J = 0.7 Hz), 8.64 (1 H, s), 8.31 (2 H, d, J = 8.1 Hz), 7.51 (2 H, d, J = 8.1 Hz), 7.31-7.23 (4 H, m), 7.22-7.15 (1 H, m), 3.46 (1 H, d, J = 7.2 Hz), 2.78 (1 H, d, J = 7.2 Hz), 1.12 (3 H, s).
Example 24 Reaction Scheme 24 CONHOH ( 1R*,2R*,3R*)-Methyl(4-( 1 H-pyrazolyl )phenyl ) phenylcyclopropanecarboxylate (64) To a stirred solution of compound 15c (1.0 g, 3.02 mmol) in dioxane (5 ml) was added bis-pinacolato diboron (844 mg, 3.32 mmol), Pd(dppf)Cl2 (246 mg, 0.30 mmol) and potassium acetate (1.48 g, 15.1 mmol). The mixture was degassed with nitrogen, heated to 100°C for 2 h, diluted with H20 (20 ml) and extracted into DCM (2 x 20 ml). The organic layers were passed through a phase separator and concentrated. Part of this crude residue (400 mg, 1.00 mmol) was dissolved in a mixture of MeOH (4 ml) and THF (2 ml) and to this was added pyrazole (82 mg, 1.2 mmol) and Cu20 (8 mg, 0.056 mmol). The mixture was stirred at 100°C for 16 h, diluted with H20 (10 ml) and extracted into DCM (20 ml). The organic layers were passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) afforded the title compound as a cream solid (161 mg, 51%). lCMS (ES+) 319 (M+Ht. (1 R*,2R*,3R*)(4-(1 H-pyrazolyl)phenyl)-N-hydroxy phenylcyclopropanecarboxamide (65) Following method A from compound 64 (121 mg, 0.38 mmol) The carboxylic acid was obtained as the major product. The acid (43 mg, 0.14 mmol) was subjected to method B. Purification by preparative HPlC gave the title compound as a cream solid (9 mg, 21 %). lCMS (ES+) 320 (M+H)+ , RT 8.49 min (Analytical method 3). NMR o (ppm)(DMSO-d 6) 10.56 (1 H, s), 8.69 (1 H, s), 8.48 (1 H, d, J = 2.5 Hz), 7.80 (2 H, d, J = 8.4 Hz), 7.73 (1 H, d, J = 1.7 Hz), 7.40 (2 H, d, J = 8.3 Hz), 7.35 (2 H, d, J = 7.6 Hz), 7.27 (2 H, m), 7.19 (1 H, m), 6.54 (1 H, dd, J = 2.4, 1.7 Hz), 3.19-3.13 (1 H, dd, J = 6.8, 5.3 Hz), 2.89 (1 H, dd, J = 9.6, 6.8 Hz), 2.24 (1 H, dd, J = 9.6, 5.3 Hz).
Example 25 Reaction Scheme 25 CON HOH ~~C02Me CF3 66 ( E)-Methyl( 5-(trifl uoromethyl )pyrid inyl )acrylate ( 66) A stirred solution of 5-bromo(trifluoromethyl)pyridine (1.0 g, 4.42 mmol), (E)-ethyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolanyl)acrylate (1.0 g, 4.43 mmol), Pd(PPh3)4 (511 mg, 0.44 mmol) and Na2C03 (13.3 ml, 1 M solution, 13.3 mmol) was degassed with nitrogen for 10 min and then heated to 100°C for 17 h. The mixture was allowed to cool, diluted with water (20 ml), and extracted into DCM (3 x 20 ml). The product was extracted from the organic layers with sat. NaHC03 (20 ml). The pH was adjusted to 5.5 and the resulting white precipitate collected by vacuum filtration (431 mg, 45%). lCMS indicated that the corresponding carboxylic acid had formed. In a separate flask, thionyl chloride (0.19 ml, 1.99 mmol) was added slowly to MeOH (5 ml) at -78°C, and the acid (431 mg, 1.99 mmol) was added. The mixture was refluxed for 1.5 h, cooled to r.t. and concentrated. The residue was dissolved in sat. NaHC03 (20 ml) and extracted into DCM (3 x 20 ml), and the combined organic layers passed through a phase separator and concentrated to give the title compound as a colourless oil (403 mg, 88%). lCMS (ES+) 232 (M+Ht_ ( 1 R*,2R*,3R*)-Ethylphenyl( 5-(trifl uoromethyl )pyrid in yl )cyclopropanecarboxylate (67) Following method F from compound 66 (403 mg, 1.74 mmol) and 6a (678 mg, 2.62 mmol). After stirring at 0°C for 2 h an additional 1.5 equivalents of LiHMDS were added. Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (250 mg, 2:1 trans: cis, 45%). lCMS (ES+) 322 (M+Ht (1 R,2R,3R)-N-Hydroxyphenyl(5-(trifluoromethyl)pyridin yl)cyclopropanecarboxamide (68) Following method A from compound 67 (250 mg, 0.78 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) followed by preparative HPlC gave the racemic mixture as a white solid (83 mg, 11 % ). Preparative chiral HPlC gave the title compound (Chiralpak IC 20/80 EtOH (0.1 % formic acid)/heptane, 1.0 ml/min, RT 11.3 min). lCMS (ES+) 323 (M+H)+, RT 3.30 min (Analytical method 1 ). NMR s (ppm)(DMSO-d 6 ): 10.64 (1 H, s), 8.96 (1 H, s), 8.88 (1 H, s), 8.79 (1 H, s), 8.15 (1 H, s), 7.41 (2 H, d, J = 7.6 Hz), 7.32 (2 H, t, J = 7.4 Hz), 7.24 (1 H, t, J = 7.2 Hz), 3.41 (1 H, obscured by water), 3.15 (1 H, dd, J = 9.8, 6.9 Hz), 2.44 (1 H, dd, J = 9.8, 5.4 Hz).
Example 26 Reaction Scheme 26 tert-Butyl( 4-( ( 1 R* ,2R* ,3R*)( methoxycarbonyl )phenylcyclopropyl )phenyl)- ,6-d ihyd ropyrid ine-1 (2H)-carboxylate (69) Following method H from compound 15c (660 mg, 2 mmol) and (1- (tert-butoxycarbonyl)-1,2,3,6-tetrahydropyridinyl)boronic acid (750 mg, 2.4 mmol). The crude compound was used in the next step without further purification. ( 1 R* ,2R* ,3R*)-Methylphenyl( 4-( 1 ,2,3,6-tetrahydropyrid in yl )phenyl )cyclopropanecarboxylate (70) A solution of 69 (2 mmol) in a mixture of TFA (6 ml) and DCM (14 ml) was stirred at r.t. for 3 h. The reaction mixture was concentrated and the residue dissolved in DCM-MeOH 1 :1 (2 ml) and passed through a SCX cartridge (elution 7 M NH3 in MeOH). The free amine was isolated as a yellow oil (655 mg, 96%). This was dissolved in CH3CN (20 ml) and Cs2C03 (1.2 g, 3.9 mmol) and benzyl bromide (255 µl, 2.15 mmol) were added. The reaction mixture was stirred for 17 hand concentrated. The residue was dissolved in DCM and washed with water and brine. The organic layer was passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 15% EtOAc in i-hex) gave the title compound as a yellow oil (305 mg, 36%). lCMS (ES+) 424 (M+H)+. ( 1R,2R,3R)(4-( 1-Benzyl-1 ,2,3,6-tetrahydropyrid inyl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide (71) Following method A from compound 70 (300 mg, 0.71 mmol).
Purification by PEAX cartridge (elution DCM-MeOH 1 :1) gave the racemic mixture as a yellow solid (230 mg, 94%). Purification by chiral preparative HPlC (Chiralpak IC 40/60 EtOH (0.1 % FA) I heptane, 1.0 ml/min, RT 14.2 min) gave the title compound as a yellow solid. lCMS (ES+) 425 (M+H)+, RT 7.59 min (Analytical method 3). NMR o (ppm)(DMSO-d 6 ): 10.61 (1 H, s), 8.75 (1 H, s), 7.45-7.20 (14 H, m), 6.18 (1 H, s), 3.63 (2 H, s), 3.15-3.08 (3 H, m), 2.86 (1 H, dd, J = 9.4, 6.7 Hz), 2.69 (2 H, t, J = 5.6 Hz), 2.55-2.46 (2 H, m), 2.23 (1 H, dd, J = 9.6, 5.3 Hz).
Example 27 Reaction Scheme 27 (:ON HOH - -(fJ"' -yell I co,"__ ~~~.~~ -----~= -, ,,() N 0 ~ o lb ~ ---./0 R~ ~ I ~ I R \\ I N R = H, 75a 72 73 R = H, 74a R-F,75b R-F, 74b -( 4-Bromophenyl )methyloxazole (72) Triflic acid (37 ml, 0.22 mol) was added dropwise to a solution of thallium acetate (28.7 g, 0.07 mol) in acetonitrile (400 ml) at r.t under nitrogen.
The solution was stirred for 15 min before a solution of 4-bromobenzaldehyde in acetonitrile (200 ml) was added and the solution heated to 90°C for 2.5 h. The reaction mixture was concentrated and the red residue was taken up in DCM (600 ml), washed with saturated NaHC03, water, dried (MgS04) and concentrated to give a brown gum (12.7 g). Purification by flash silica column chromatography (gradient elution i-hex to 70% EtOAc in i-hex) gave the title compound as an orange solid (8.68 g, 72%). lCMS (ES+) 238,240 (M+Ht E thyl( 4-(2-methyloxazolyl )phenyl )acrylate (73) Following method E from compound 72 (8.68 g, 36 mmol).mlmlml The reaction solution was decanted from the palladium residues and salts and then concentrated to give an orange solid. This was taken up in DCM (150 ml), washed with water, dried (MgS04) and concentrated to give an orange solid. This was triturated with diethyl ether to give the title compound as a beige solid (6.18 mg, 66%). lCMS (ES+) 258 (M+H( ( 1R*,2R*,3R*)-Ethyl(4-(2-methyloxazolyl )phenyl ) phenylcyclopropanecarboxylate (7 4a) Following method F from compound 73 (500 mg, 1.95 mmol) and 6a (756 mg, 2.92 mmol). The reaction was incomplete after 2 h. The reaction was cooled to -20°C and an additional 1.5 equivalents of sulfonium salt, 12- crown-4 and LiHMDS were added and the mixture stirred at r.t. overnight.
Purification by flash silica column chromatography (gradient elution i-hex to 30% EtOAc in i-hex) gave the title compound as an orange oil (460 mg, 12:2:1 cinnammate:trans:cis). lCMS (ES+) 348 (M+H( ( 1 S*,2R*,3R*)-Ethyl(2-fl uorophenyl )( 4-(2-methyloxazol yl )phenyl )cyclopropanecarboxylate (7 4b) Following method F from compound 73 (500 mg, 1.95 mmol) and 1-(2-fluorobenzyl)tetrahydrothiophenium bromide (811 mg, 2.93 mmol).
Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as an orange oil (888 mg, >100%, 3:1, trans:cis). LCMS (ES+) 366 (M+Ht. ( 1 R,2R,3R)-N-Hyd roxy( 4-(2-methyloxazolyl )phenyl ) phenylcyclopropanecarboxam ide (75a) Following method A from compound 74a (460 mg, 13% pure).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and then preparative HPLC gave the racemic mixture as a white solid (35 mg, 59%). Preparative chiral HPLC gave the title compound (Chiralpak IC 40/60 EtOH (0.1% formic acid)/Heptane, 1.0 ml/min, RT 12.0 min). LCMS (ES+) 335 (M+H( RT 3.28 min (Analytical method 1). NMR s (ppm)(DMSO­ d5): 10.50 (1 H, s), 8.63 (1 H, s), 7.55 (2 H, d, J = 8.1 Hz), 7.43 (1 H, s), 7.34-7.23 (4 H, m), 7.23-7.15 (2 H, m), 7.14-7.07 (1 H, m), 3.05 (1 H, dd, J = 6.8, 5.4 Hz), 2.81 (1 H, dd, J = 9.6, 6.8 Hz), 2.40 (3 H, s), 2.16 (1 H, dd, J = 9.6, 5.4 Hz). ( 1 S,2R,3R)(2-FI uorophenyl )-N-hyd roxy( 4-(2-methyloxazol yl )phenyl )cyclopropanecarboxam ide (75b) Following method A from compound 74b (200 mg, 0.55 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and then preparative HPLC gave the racemic mixture as a white solid (99 mg, 54%). Preparative chiral HPLC gave the title compound (Chiralpak IC 20/80 IPA/MeOH (50/50/0.1 % formic acid)/Heptane, 1.0 ml/min, RT 17.4 min).
LCMS (ES+) 353 (M+H( RT 3.41 min (Analytical method 1). NMR s (ppm)(DMSO-d5): 10.67 (1 H, s), 8.80 (1 H, s), 7.68 (2 H, d, J = 8.1 Hz), 7.56 (1 H, s), 7.45 (3 H, dd, J = 12.1, 7.7 Hz), 7.33-7.26 (1 H, m), 7.21-7.11 (2 H, m), 3.12 (1 H, dd, J = 6.9, 5.3 Hz), 2.88 (1 H, dd, J = 9.3, 6.9 Hz), 2.53 (3 H, s ), 2.32 (1 H, dd, J = 9.3, 5.3 Hz).
Example 28 Reaction Scheme 28 ( 1 R*,2R*,3R*)-Ethyl(3-( 5-methyl pyrim id inyl )phenyl ) phenylcyclopropanecarboxylate (76) Following method G from the crude boronate derived from 15b (565 mg) and 2-chloromethyl pyrimidine (194 mg, 1.51 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a colourless oil (260 mg, 50% ). LCMS (ES+) 359 (M+Ht. ( 1 R,2R,3R)-N-Hyd roxy(3-( 5-methyl pyrim id inyl )phenyl ) phenylcyclopropanecarboxam ide (77) Following method A from compound 76 (260 mg, 0.73 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (220 mg, 88%).
Preparative chiral HPLC gave the title compound (Chiralpak IC 40/60 EtOH (0.1 % formic acid)/Heptane, 1.0 ml/min, RT 18.0 min). LCMS (ES+) 346 (M+Ht. RT 3.47 min (Analytical method 1). NMR o (ppm)(DMSO-d6): 10.52 (1 H, s), 8.70 (2 H, s), 8.65 (1 H, s), 8.19-8.13 (2 H, m), 7.40 (2 H, d, J = 5.2 Hz), 7.30 (2 H, d, J = 7.6 Hz), 7.20 (2 H, t, J = 7.5 Hz), 7.12 (1 H, t, J = 7.2 Hz), 3.15 (1 H, dd, J = 6.8, .4 Hz), 2.78 (1 H, dd, J = 9.6, 6.8 Hz), 2.30-2.20 (4 H, m).
Example 29 Reaction Scheme 29 ( 1 R* ,2R* ,3R*)-Methyl 2-( 4-(3-methyl-1 H-pyrazolyl )phenyl ) phenylcyclopropanecarboxylate (78) To a stirred solution of 15c (1.0 g, 3.02 mmol) in dioxane (5 ml) was added bis-pinacolato diboron (844 mg, 3.32 mmol), Pd(dppf)Cl2 (246 mg, 0.30 mmol) and potassium acetate (1.48 g, 15.1 mmol). The mixture was degassed with nitrogen, heated to 100°C for 2 h, diluted with H20 (20 ml) and extracted into DCM (2 x 20 ml). The organic layers were passed through a phase separator and concentrated. Part of this crude residue (600 mg, 1.5 mmol) was dissolved in a mixture of MeOH (6 ml) and THF (4 ml) and to this was added 3-methylpyrazole (145 µl, 1.8 mmol) and Cu20 (15 mg, 0.11 mmol). The mixture was stirred at 100°C for 48 h, diluted with H20 (20 ml) and extracted into DCM (50 ml). The organic layers were passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 60% EtOAc in i-hex) afforded the title compound as a cream solid (150 mg, 30%). lCMS (ES+) 333 (M+Ht. ( 1R,2R,3R)-N-Hydroxy(4-(3-methyl-1 H-pyrazolyl )phenyl ) phenylcyclopropanecarboxam ide (79) Following method A from compound 78 (148 mg, 0.45 mmol).
Purification by preparative HPlC gave the racemic mixture as a cream solid (69.8 mg, 47%). Preparative chiral HPlC gave the title compound (Chiralpak IC 40/60 IPA/MeOH (50/50/0.1 formic acid)/heptane, 1.0 ml/min, RT 9.0 min). RT 3.56 min (Analytical method 1). lCMS (ES+) 334 (M+Ht, RT 8.67 min. NMR s (ppm)(DMSO-d6) 10.62 (1 H, s), 8.75 (1 H, s), 8.40 (1 H, d, J = 2.4 Hz), 7.79 (2 H, d, J = 8.4 Hz), 7.47-7.37 (4 H, m), 7.32 (2 H, t, J = 7.5 Hz), 7.27-7.19 (1 H, m), 6.37 (1 H, d, J = 2.4 Hz), 3.18 (1 H, dd, J = 6.8, 5.4 Hz), 2.91 (1 H, dd, J = 9.6, 6.8 Hz), 2.32 (3 H, s), 2.27 (1 H, dd, J = 9.6, 5.4 Hz).
Example 30 Reaction Scheme 30 C02Et Q _,,N _,,N ff''o Cl N CON HOH (E)-Ethyl(6-chloropyrid inyl )acrylate (80) NaH (792 mg, 20.0 mmol) was added portion wise to stirred anhydrous DMSO (18 ml). The mixture was heated to 80°C until evolution of gas ceased and then cooled to 0°C. A solution of (carbethoxymethyl)­ triphenylphosphonium bromide (4.3 g, 10.0 mmol) in DMSO (36 ml) was then added and the mixture stirred at r.t for 30 min. The mixture was cooled to 0°C and a solution of 6-chloroisonicotinaldehyde (1.4 g, 10.0 mmol) in DMSO (36 ml) was added and the mixture was stirred at r.t for 1 h. The mixture was then poured into aqueous 1 M HCI and extracted into DCM (3 x 70 ml). The organics were combined and washed with H20 (3 x 100 ml) and brine (3 x 100 ml), separated, dried (MgS04) and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 80% EtOAc in i-hex) gave the title compound as a yellow solid (0.95 g, 45%). lCMS (ES+) 212 (M+H( ( 1 S*,2R*,3R*)-E thyl(6-ch loropyrid inyl )(2- fluorophenyl )cyclopropanecarboxylate (81) Following method F from compound 80 (730 mg, 3.45 mmol) and 6b (1.43 g, 5.18 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 40% EtOAc in i-hex) gave the title compound (810 mg, 73%). lCMS (ES+) 320 (M+H( ( 1 S* ,2R* ,3R*)-Ethyl(2-fluorophenyl )(6-( 4-isopropylpiperazinyl )pyrid in yl )cyclopropanecarboxylate (82) A mixture of compound 81 (200 mg, 0.63 mmol) and isopropylpiperazine (0.75 ml) was heated in the microwave at 180°C for 1 h. The reaction mixture was dissolved in DCM (30 ml) and washed with water (2 x 20 ml). The organic layer was passed through a phase separator and concentrated to afford a crude compound used in the next step (205 mg). lCMS (ES+) 412 (M+Ht. (1 S, 2R, 3R)(2-Fluorophenyl)-N-hydroxy(6-(4-isopropylpiperazin yl )pyrid inyl )cyclopropanecarboxam ide (83) Following method A from compound 82 (200 mg, 0.45 mmol).
Purification by preparative HPlC gave the racemic mixture as a white solid (49.8 mg, 26%). Preparative chiral HPlC gave the title compound (Chiralpak IC 50/50 IPA/MeOH (50/50/0.1 formic acid)/heptane, 1.0 ml/min, RT 13.2 min). RT 2.18 min (Analytical method 1). lCMS (ES+) 399. NMR s (ppm)(DMSO-d5) 10.63 (1 H, s), 8.77 (1 H, s), 8.17 (1 H, s), 7.46-7.41 (2 H, m), 7.30-7.27 (1 H, m), 7.17- 7.14 (2 H, m), 6.86 (1 H, d, J = 8.8 Hz), 3.55-3.42 (5 H, m), 2.99-2.95 (1 H, m), 2.78-2.74 (2 H, m), 2.67-2.57 (3 H, m), 2.19 (1 H, dd, J = 9.0, 5.2 Hz), 1.06 (6 H, d, J = 6.4 Hz).
Example 31 Reaction Scheme 31 CIYN Cl ....:::- ··.,,~ (E)-Ethyl(2,6-dichloropyridinyl)acrylate (84) NaH (613 mg, 15.4 mmol) was added portion wise to stirred anhydrous DMSO (10 ml). The mixture was heated to 80°C until evolution of gas ceased and then cooled to 0°C. A solution of (carbethoxymethyl)­ triphenylphosphonium bromide (3.29 g, 7.74 mmol) in DMSO (5 ml) was then added and the mixture stirred at r.t for 30 min. The mixture was cooled to 0°C and a solution of 2,6-dichloroisonicotinaldehyde (1.35 g, 7.74 mmol) in DMSO (5 ml) was added and the mixture was stirred at r.t for 1 h. The mixture was then poured into aqueous 1 M HCI and extracted into DCM (3 x 50 ml). The organics were combined and washed with H20 (3 x 100 ml) and brine (2 x 100 ml), separated, dried (MgS04) and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 20% EtOAc in i-hex) gave the title compound as a yellow solid (1.25 g, 66%). lCMS (ES+) 247 (M+H( (E)-Ethyl(2-chlorocyclopropylpyridinyl)acrylate (85) A stirred solution of compound 84 (1.29 g, 5.24 mmol), cyclopropyl boronic acid (496 mg, 5.77 mmol), potassium phosphate (tribasic) (3.88 g, 18.3 mmol), Pd(OAc)2 (117 mg, 0.52 mmol) and tricyclohexylphosphine (1.05 ml, 1 M in toluene, 1.05 mmol) in toluene/l-l-O (30ml/1.5 ml) was degassed using nitrogen for 15 min and then heated at 100°C for 17 h. The reaction mixture was allowed to cool, diluted with H20 (50 ml) and extracted into DCM (3 x 50 ml).
The combined organics were washed with H20 (2 x 50 ml) and brine (50 ml), separated, dried (MgS04) and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound as a yellow solid (561 mg, 43%). lCMS (ES+) 252.5 (M+Ht. ( 1 S*,2R*,3R*)-E thyl(2-ch lorocyclopropyl pyrid inyl )(2- fluorophenyl )cyclopropanecarboxylate (86) Following method F from compound 85 and 6b (894 mg, 3.23 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 4% EtOAc in i-hex) gave the title compound (790 mg, 99%, 5:1 trans:cis). lCMS (ES+) 360.5 (M+Ht. (1 S*,2R*,3R*)-Ethyl(2,6-dicyclopropylpyridinyl)(2- fluorophenyl)cyclopropanecarboxylate (87) A stirred solution of compound 86 (162 mg, 0.45 mmol), cyclopropyl boronic acid (62 mg, 0.72 mmol), potassium phosphate (tribasic) (0.49 g, 2.30 mmol), Pd(OAc)2 (14 mg, 0.065 mmol) and tricyclohexylphosphine (0.13 ml, 1 M in toluene, 0.13 mmol) in toluene/l-l.O (5 ml/0.25 ml) was degassed using nitrogen for 15 min and then heated at 100°C for 17 h. The mixture was allowed to cool, diluted with H20 (10 ml) and extracted into DCM (3 x 10 ml). The combined organics were washed with H20 (2 x 10 ml) and brine (10 ml), separated, dried (MgS04) and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 5% EtOAc in i-hex) gave the title compound (164 mg, 100%). LCMS (ES+) 366 (M+Ht. ( 1 S,2R,3R)(2 ,6-Dicyclopropyl pyrid inyl )(2-fl uorophenyl )-N­ hyd roxycyclopropanecarboxam ide (88) Following method A from compound 87 (164 mg, 0.45 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 3% MeOH in DCM) gave the racemic mixture as a white solid (85 mg, 53%).
Preparative chiral HPLC gave the title compound (Chiralpak IC 15/85 IPNMeOH (50/50)/heptane, 1.0 ml/min, RT 9.3 min). RT 2.48 min (Analytical method 1).
LCMS (ES+) 353 (M+H( NMR s (ppm)(DMSO-d5): 10.86 (1 H, s), 9.01 (1 H, s), 7.64-7.59 (1 H, m), 7.53-7.46 (1 H, m), 7.38-7.31 (2 H, m), 7.24 (0.2 H, s), 7.20 (1.8 H, s), 3.20-3.10 (2 H, m), 2.54 (1 H, dd, J = 9.3, 5.3 Hz), 2.26-2.17 (2 H, m), 1.12-1.07 (8 H, m).
Example 32 Reaction Scheme 32 OYOEt ?OEt N,N - - N,N - N:ir""O 89a-b 90a-b 91a-b R= t>->- 92a OYNHOH N:ir""O 1-(Cyclopropylmethyl)iodo-1 H-pyrazole (89a) To a solution of 4-iodopyrazole (960 mg, 5 mmol) in DMF (6 ml) at 0 °C was added NaH (227 mg, 5.9 mmol) and the mixture was stirred for 1 h.
Then cyclopropyl bromide (755 mg, 5.9 mmol) was added and the reaction mixture was stirred at r.t. overnight. The reaction mixture was quenched with sat NaHC03 and extracted with EtOAc. The organic layer was dried (MgS04), filtered and concentrated to afford a crude used in the next step without further purification (905 mg, 73%). lCMS (ES+) 249 (M+Ht. 2-(4-lodo-1 H-pyrazolyl)(trifluoromethyl)pyridine (89b) To a solution of 4-iodopyrazole (960 mg, 5 mmol) in DMF (10 ml) at 0 °C was added Cs2C03 (2.4 g, 7.4 mmol) and 5-trifluoromethylchloropyridine (1.5 g, 8.3 mmol). The reaction mixture was stirred at 60°C overnight. The reaction mixture was quenched with H20 and extracted with EtOAc. The organic layer was dried (MgS04), filtered and concentrated to afford a crude used in the next step without further purification (1.29 g, 76%). lCMS (ES+) 340 (M+Ht.
(E)-Ethyl(1-(cyclopropylmethyl)-1 H-pyrazolyl)acrylate (90a) A mixture of compound 89a (900 mg, 3.6 mmol), palladium acetate (10 mg, 0.04 mmol), P(OEt)3 (27 µl, 0.16 mmol), EbN (1 ml, 7.2mmol) and ethyl acrylate in DMF (10 ml) was stirred at 80°C for 17 h. The reaction mixture was partitioned between water and EtOAc, the organic layer was washed with water and 4% aq. LiCI, dried (MgS04), filtered and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 40% EtOAc in i-hex) gave the title compound as a yellow oil (489 mg, 62%). lCMS (ES+) 221 (M+Ht.
(E)-Ethyl 3-(1-(5-(trifluoromethyl)pyridinyl)-1 H-pyrazolyl)acrylate (90b) To a solution of compound 89b (960 mg, 5 mmol) in DMF (10 ml) at 0°C was added Cs2C03 (2.4 g, 7.4 mmol) and 5-trifluoromethyl chloropyridine (1.5 g, 8.3 mmol). The reaction mixture was stirred at 60°C overnight. The reaction mixture was quenched with H20 and extracted with EtOAc. The organic layer was dried (MgS04), filtered and concentrated to afford a crude used in the next step without further purification (1.29 g, 76%). lCMS (ES+) 340 (M+H( (1 R*,2R*,3R*)-Ethyl(1-(cyclopropylmethyl)-1 H-pyrazolyl) phenylcyclopropanecarboxylate (91 a) Following method F from compound 90a (195 mg, 0.89 mmol) and 1-benzyltetrahydrothiophenium triflate (436 mg, 1.33 mmol). The reaction was incomplete after 1 h. The reaction was cooled to -20°C and an additional 1.5 equivalents of sulfonium salt, 12-crown-4 and LiHMDS were added and the mixture stirred at r.t. overnight. Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a yellow oil (250 mg, 93%, 1 :1 trans:cis). LCMS (ES+) 311 (M+H( ( 1R*,2R*,3R*)-Ethylphenyl(1-(5-(trifluoromethyl )pyrid inyl )-1 H-pyrazol yl )cyclopropanecarboxylate (91 b) Following method F from compound 90b (263 mg, 0.85 mmol) and 1-benzyltetrahydrothiophenium triflate (416 mg, 1.27 mmol). The reaction was incomplete after 1 h. The reaction was cooled to -20°C and an additional 1.5 equivalents of sulfonium salt, 12-crown-4 and LiHMDS were added and the mixture stirred at r.t. overnight. Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a yellow oil (207 mg, 61 %, 5:4 trans:cis). LCMS (ES+) 402 (M+H( ( 1R,2R,3R)(1-(Cyclopropylmethyl )-1 H-pyrazolyl )-N-hydroxy phenylcyclopropanecarboxam ide (92a) Following method A from compound 91a (250 mg, 0.81 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (65 mg, 27%).
Preparative chiral HPLC gave the title compound (Chiralpak IC 20/80 IPNMeOH (50/50/0.1 % formic acid)/Heptane, 1.0 ml/min, RT 12.0 min). RT 3.12 min (Analytical method 1). LCMS (ES+) 298 (M+H( NMR s (ppm)(DMSO-d6): .42 (1 H, s), 8.57 (1 H, s), 7.65 (0.1 H, s), 7.63 (0.9 H, s), 7.31 (0.1 H, s), 7.28 (0.9 H, s), 7.24-7.13 (4 H, m), 7.11-7.06 (1 H, m), 3.82 (2 H, d, J = 7.1 Hz), 2.80 (1 H, dd, J = 6.8, 5.3 Hz), 2.59 (1 H, dd, J = 9.4, 6.8 Hz), 1.91 (1 H, dd, J = 9.4, .3 Hz), 1.17-1.07 (1 H, m), 0.46-0.39 (2 H, m), 0.29-0.24 (2 H, m) ( 1R,2R,3R)-N-Hydroxyphenyl(1-( 5-(trifluoromethyl )pyrid inyl )-1 H-pyrazol- 4-yl )cyclopropanecarboxam ide (92b) Following method A from compound 91 b (263 mg, 0.85 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM), then preparative chiral HPLC (Chiralpak IC 20/80 IPA/MeOH (50/50/0.1 % formic acid)/Heptane, 1.0 ml/min, RT 10.2 min) and preparative achiral HPLC gave the title compound (15 mg, 20%). RT 3.12 min (Analytical method 4). LCMS (ES+) 389 (M+Ht. NMR s (ppm)(DMSO-d6): 10.51 (1 H, s), 8.84 (1 H, s), 8.64 (1 H, s), 8.61 (1 H, s), 8.33 (1 H, dd, J = 8.7, 2.4 Hz), 8.03 (1 H, d, J = 8.7 Hz), 7.89 (1 H, s), 7.27 (2 H, d, J = 7.5 Hz), 7.22 (2 H, t, J = 7.5 Hz), 7.14 (1 H, d, J = 7.2 Hz), 2.99 (1 H, dd, J = 6.9, 5.3 Hz), 2.84 (1 H, dd, J = 9.4, 6.9 Hz), 2.12 (1 H, dd, J = 9.4, 5.3 Hz) Example 33 Reaction Scheme 33 Boe~ t~JJ ~.Ph S:,_ 02Me CONHOH CO Me F,C(~'Ph ~ t)crl~Ph ~ "(~'Ph 0 98 0 97 96 (E)( 4-( tert-Butoxycarbonyl )-2,3,4 ,5-tetrahydrobenzo[~ [1 ,4 ]oxazepinyl )acrylic acid (93) To a stirred solution of tert-butylbromo-2,3- dihydrobenzojjjj l ,4]oxazepine-4(5H)-carboxylate (480 mg, 1.46 mmol) in dioxane (20 ml) was added (E)-ethyl(4,4,5,5-tetramethyl-1,3,2-dioxaborolan yl)acrylate (360 mg, 1.61 mmol), aqueous Na2C03 (1.44 ml, 2 M, 2.92 mmol) and Pd(dppf)Cl2 (33 mg, 0.04 mmol). The mixture was degassed with nitrogen and then heated at 90°C for 17 h. The reaction mixture was diluted with H20 and extracted into DCM. The organic layer was passed through a phase separator and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a yellow oil (267 mg, 57%). lCMS (ES+) 320 (M+Ht.
(E)-tert-Butyl(3-methoxyoxopropenyl)-2,3- d ihydrobenzojr] [1 ,4 ]oxazepine-4(5H )-carboxylate (94) To a stirred solution of compound 93 (267 mg, 0.84 mmol) in MeOH (30 ml) was added H2S04 (3 drops) and the mixture heated to 80°C for 17 h.
The reaction mixture was concentrated and purified by flash silica column chromatography (gradient elution DCM to 25% MeOH in DCM) to give the deprotected amine (270 mg, 1.16 mmol). This was dissolved in DCM (10 ml) and di-tert-butyl dicarbonate (304 mg, 1.39 mmol) and DIPEA (0.4 ml, 2.32 mmol) added. The solution was stirred at r.t for 2 hand then diluted with H20 (50 ml) and DCM (40 ml). The biphasic mixture was shaken and the organics collected. The aqueous layer was re-extracted with DCM (50 ml) and the combined organics passed through a phase separator and concentrated.
Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a yellow oil (230 mg, 60%). lCMS (ES+) 333 (M+H( terl-Butyl( ( 1 R* ,2R* ,3R*)(methoxycarbonyl )phenylcyclopropyl )-2,3- d ihydrobenzo[f] [1 ,4 ]oxazepine-4(5H )-carboxylate (95) Following method F from compound 94 (200 mg, 0.60 mmol) and 1-benzyltetrahydrothiophenium triflate (296 mg, 0.90 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 20% EtOAc in i-hex) gave the title compound as a colourless oil (206 mg, 84%, 5:4 trans:cis). lCMS (ES+) 424 (M+H( ( 1 R*,2R*,3R*)-Methylphenyl(2,3,4 ,5-tetrahydrobenzo[~ [1,4 ]oxazepin yl )cyclopropanecarboxylate (96) To a stirred solution of compound 95 (206 mg, 0.50 mmol) in MeOH (10 ml) was added H2S04 (3 drops) and the mixture heated to 80°C for 1 h. The reaction mixture was concentrated, dissolved in a minimum quantity of DCM:MeOH (1 :1) and loaded onto an sex-cartridge (elution with 5% (7 M NH3 in MeOH) in DCM:MeOH (1 :1 )). The sample was concentrated to give a colourless oil (137 mg, 88%). (1 R*,2R*,3R*)-Methylphenyl(4-(2,2,2-trifluoroethyl)-2,3,4,5- tetrahydrobenzojr] [1,4 ]oxazepinyl )cyclopropanecarboxylate (97) To a stirred solution of compound 96 (137 mg, 0.45 mmol) in DMF (5 ml) was added DIPEA (0.23 ml, 1.35 mmol) and 2,2,2-trifluoroethyl methylbenzenesulfonate (172 mg, 0.68 mmol) and the mixture heated to 80°C for 2 h. The reaction was partitioned between DCM (50 ml) and H20 (50 ml), and the organics collected. The aqueous portion was extracted with DCM (50 ml), and the combined organics washed with H20 (5 x 50 ml) and 4 % aqueous LiCI (100 ml). The organics were collected, dried (MgS04), filtered and concentrated.
Purification by flash silica column chromatography (gradient elution i-hex to 10% EtOAc in i-hex) gave the title compound as a colourless oil (126 mg, 72%).
LCMS (ES+) 390 (M+H( (1 R*,2R*,3R*)-N-Hydroxyphenyl(4-(2,2,2-trifluoroethyl)-2,3,4,5- tetrahydrobenzojr] [1,4 ]oxazepinyl )cyclopropanecarboxam ide (98) Following method A from compound 97 (126 mg, 0.32 mmol).
Purification by preparative HPLC gave the racemic mixture as a white solid (33 mg, 25%). Preparative chiral HPLC gave the title compound (Chiralpak IC 10/90 EtOH (0.1 % formic acid)/heptane, 1.0 ml/min, RT 12.9 min). RT 3.70 min (Analytical method 1). LCMS (ES+) 407 (M+Ht. NMR s (ppm)(DMSO-d5): .46 (1 H, s), 8.60 (1 H, s), 7.24 (2 H, d, J = 7.6 Hz), 7.21-7.15 (2 H, m), 7.13- 7.07 (1 H, m), 7.05-7.01 (2 H, m), 6.87 (1 H, d, J = 7.9 Hz), 3.92-3.88 (2 H, m), 3.84 (2 H, s), 3.19-3.03 (4 H, m), 2.97 (1 H, dd, J = 6.8, 5.4 Hz), 2.72 (1 H, dd, J = 9.5, 6.8 Hz), 2.07 (1 H, dd, J = 9.5, 5.4 Hz).
Example 34 Reaction Scheme 34 CON HOH ( 1 S*,2R*,3R*)-E thyl(3-ch lorophenyl )(2-cyclopropyl pyrid in yl )cyclopropanecarboxylate (99a) 1-(3-Chlorobenzyl)tetrahydro-1 H-thiophenium bromide was synthesized using the same preparation as compound 6b, from 1-(bromomethyl)- 3-chlorobenzene. Following method F from compound 26b (190 mg, 0.88 mmol) and 1-(3-chlorobenzyl)tetrahydro-1 H-thiophenium bromide (385 mg, 1.31 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a colourless oil (299 mg, >99%, 3:2 trans:cis). LCMS (ES+) 342.5 (M+Ht. ( 1 S*,2R*,3R*)-E thyl(3-fl uorophenyl )(2-cyclopropyl pyrid in yl )cyclopropanecarboxylate (99b) 1-(3-Fluorobenzyl)tetrahydro-1 H-thiophenium bromide was synthesized using the same preparation as compound 6b, from 1-(bromomethyl)- 3-fluorobenzene. Following method F from compound 26b (190 mg, 0.88 mmol) and 1-(3-chlorobenzyl)tetrahydro-1 H-thiophenium bromide (363 mg, 1.31 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a colourless oil (243 mg, 85%, 3:2 trans:cis). LCMS (ES+) 326 (M+H( (1 S,2R,3R)(3-Chlorophenyl)(2-cyclopropylpyridinyl)-N­ hydroxycyclopropanecarboxamide (100a) Following method A from compound 99a (299 mg, 0.88 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and preparative HPLC gave the racemic mixture as a white solid (100 mg, 35%). Preparative chiral HPLC gave the title compound (Chiralpak IC 30170 EtOH (0.1 % formic acid) /heptane, 1.0 ml/min, RT 8.6 min). RT 2.36 min (Analytical method 1). LCMS (ES+) 329 (M+Ht. NMR s (ppm)(DMSO-d6): .56 (1 H, s), 8.72 (1 H, s), 8.21 (1 H, d, J = 5.1 Hz), 7.32 (1 H, s), 7.27-7.13 (4 H, m), 6.96 (1 H, dd, J = 5.2, 1.7 Hz), 3.03 (1 H, dd, J = 6.7, 5.3 Hz), 2.92 (1 H, dd, J = 9.6, 6.8 Hz), 2.23 (1 H, dd, J = 9.6, 5.4 Hz), 2.02-1.94 (1 H, m), 0.88-0.80 (4 H, m). (1 S,2R,3R)(2-Cyclopropylpyridinyl)(3-fluorophenyl)-N­ hydroxycyclopropanecarboxam ide ( 1 OOb) Following method A from compound 99b (243 mg, 0.75 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and preparative HPLC gave the racemic mixture as a white solid (95 mg, 41 % ). Preparative chiral HPLC gave the title compound (Chiralpak IC /80 IPA/MeOH (50/50/0.1 % formic acid) /heptane, 1.0 ml/min, RT 12.1 min).
RT 2.21 min (Analytical method 1). LCMS (ES+) 313 (M+Ht. NMR s (ppm)(DMSO-d5): 10.55 (1 H, s), 8.70 (1 H, s), 8.21 (1 H, d, J = 5.1 Hz), 7.27- 7.18 (1 H, m), 7.16-7.04 (3 H, m), 6.97-6.90 (2 H, m), 3.02 (1 H, dd, J = 6.6, 5.2 Hz), 2.91 (1 H, dd, J = 9.6, 6.7 Hz), 2.24 (1 H, dd, J = 9.7, 5.4 Hz), 2.01-1.94 (1 H, m), 0.88-0.80 (4 H, m).
Example 35 Reaction Scheme 35 OYOMe ~ ~;;r .. ,o 15c r 101 ( 1 S*,2R*,3R*)(2 ,6-Dicyclopropyl pyrid inyl )(2-fl uorophenyl )-N­ hyd roxycyclopropanecarboxam ide (101) A mixture of 15c (250 mg, 0.75 mmol), 5-methyl (tributylstannyl)thiazole (350 mg, 0.90 mmol) and Pd(PPh3)4 (43 mg, 0.037 mmol) in dioxane (4 ml) was heated under microwave irradiation at 150 °C for 1 h. The reaction mixture was concentrated and purified by flash silica column chromatography (gradient elution i-hex to 20% EtOAc in i-hex) to give the title compound (180 mg, 69%). LCMS (ES+) 350 (M+Ht. ( 1 R,2 R,3R )-N-hyd roxy( 4-( 5-methylth iazolyl )phenyl ) phenylcyclopropanecarboxam ide ( 102) Following method A from compound 101 (160 mg, 0.46 mmol).
Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) gave the racemic mixture as a white solid (150 mg, 93%).
Preparative chiral HPLC gave the title compound (Chiralpak IC 40/60 IPNMeOH (50/50/0.1 % formic acid)/heptane, 1.0 ml/min, RT 11.8 min). RT 3.72 min (Analytical method 1). LCMS (ES+) 351 (M+Ht. NMR s (ppm)(DMSO-d6): .53 (1 H, s), 8.65 (1 H, s), 7.75 (2 H, d, J = 8.1 Hz), 7.51 (1 H, d, J = 1.4 Hz), 7.34-7.23 (4 H, m), 7.19 (2 H, t, J = 7.5 Hz), 7.11 (1 H, t, J = 7.2 Hz), 3.07 (1 H, dd, J = 6.8, 5.4 Hz), 2.82 (1 H, dd, J = 9.6, 6.8 Hz), 2.42 (3 H, under DMSO), 2.19 (1 H, dd, J = 9.6, 5.4 Hz).
Example 36 Reaction Scheme 36 OYNHOH I '<:::: I '<:::: ---- ---- ---- ~·····6'<:::: F C/'.NJLNJ _.;:;; Cl 3 H 103 104 105 (E)-Ethyl(6-chloropyrid inyl )acrylate ( 103) NaH (792 mg, 20.0 mmol) was added portion wise to stirred anhydrous DMSO (18 ml). The mixture was heated to 80°C until evolution of gas ceased and then cooled to 0°C. A solution of (carbethoxymethyl)­ triphenylphosphonium bromide (4.3 g, 10.0 mmol) in DMSO (36 ml) was then added and the mixture stirred at r.t for 30 min. The mixture was cooled to 0°C and a solution of 6-chloroisonicotinaldehyde (1.4 g, 10 mmol) in DMSO (36 ml) was added and the mixture was stirred at r.t for 1 h. The mixture was then poured into aqueous 1 M HCI and extracted into DCM (3 x 70 ml). The organics were combined and washed with H20 (3 x 100 ml) and brine (3 x 100 ml), separated, dried (MgS04) and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 80% EtOAc in i-hex) gave the title compound as a yellow solid (0.95 g, 45%). lCMS (ES+) 212 (M+H( ( 1 S*,2R*,3R*)-E thyl(6-ch loropyrid inyl )(2- fluorophenyl )cyclopropanecarboxylate ( 104) Following method F from compound 103 (730 mg, 3.45 mmol) and 6b (1.43 g, 5.18 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 40% EtOAc in i-hex) gave the title compound (810 mg, 73%). lCMS (ES+) 320 (M+H( ( 1 S* ,2R* ,3R*)-Ethyl(2-fluorophenyl )(6-( (2,2,2-trifluoroethyl )amino )pyridin yl )cyclopropanecarboxylate (105) A mixture of compound 104 (65 mg, 0.203 mmol), trifluoroethylamine (1.0 ml) and NMP (1.0 ml) was heated in the microwave at 225°C for 1.30 h. The reaction mixture was concentrated and the crude compound purified by flash silica column chromatography (gradient elution DCM to 10% MeOH in DCM) gave the title compound as a yellow solid (42 mg, 54%). lCMS (ES+) 383 (M+H( (1 S, 2R, 3R)(2-Fluorophenyl)-N-hydroxy(6-((2,2,2- trifluoroethyl)amino )pyridinyl)cyclopropanecarboxamide (106) Following method A from compound 105 (40 mg, 0.105 mmol).
Post work-up the racemic compound was obtained as a white solid (38 mg, 98% ). Preparative chiral HPlC gave the title compound (Chiralpak IC 15/85 EtOH/heptane, 1.0 ml/min, RT 9.2 min). RT 2.60 min (Analytical method 1) lCMS (ES+) 370. NMR s (ppm)(DMSO-d5): 10.52 (1 H, s), 8.65 (1 H, s), 7.96 (1 H, t, J = 2.4 Hz), 7.33-7.25 (2 H, m), 7.20-7.13 (1 H, m), 7.07-6.93 (3 H, m), 6.53 (1 H, d, J = 8.6 Hz), 4.14-4.01 (2 H, m), 2.83 (1 H, dd, J = 6.9, 5.3 Hz), 2.63 (1 H, dd, J = 9.2, 7.0 Hz), 2.05 (1 H, dd, J = 9.2, 5.3 Hz).
Example 37 Reaction Scheme 37 C02Et CON HOH F,c-{d-o ~ F,c-{~·-o (E)-Ethyl(2-(trifluoromethyl)imidazo[1,2-a]pyridinyl )acrylate (107) A stirred mixture of 7-bromo(trifluoromethyl)imidazo[1,2- a]pyridine (1.00 g, 3.77 mmol), ethyl acrylate (0.53 ml, 4.91 mmol), palladium acetate (84.6 mg, 0.38 mmol), P(o-tol)3 (33 mg, 0.76 mmol) and triethylamine (1.05 ml, 7.55 mmol) in MeCN (1 Oml) was degassed under nitrogen for 15 min and heated to 80°C for 18 h. The reaction mixture was cooled and the MeCN was removed in vacuo. The residue was partitioned between DCM and H20 and the organic layers were passed through a phase separator and concentrated.
Purification by flash silica column chromatography (gradient elution i-hex to 100% EtOAc) gave the title compound as a pale yellow solid (1.09 g, 100%). lCMS (ES+) 285 (M+H( ( 1 R*,2R*,3R*)-Ethylphenyl(2-(trifluoromethyl )im idazo[1 ,2-a]pyrid in yl )cyclopropanecarboxylate (108) Following method F from compound 107 (0.83 mg, 2.92 mmol) and 1-(2-fluorobenzyl)tetrahydro-1 H-thiophenium triflate (1.44 mg, 4.38 mmol).
Purification by flash silica column chromatography (gradient elution i-hex to 30% EtOAc in i-hex) gave the title compound as a pale yellow oil (540mg, 49%, 2:1 trans:cis). lCMS (ES+) 375 (M+Ht. ( 1 R,2R,3R)-N-Hydroxyphenyl(2-(trifluoromethyl )im idazo[1 ,2-a]pyrid in yl )cyclopropanecarboxam ide (109) Following method A from compound 108 (540 mg, 1.44 mmol).
Purification by preparative-HPlC gave the racemic product as a pale yellow solid (215 mg, 41 %). Preparative chiral purification afforded the title compound (Chiralpak IC 40/60 IPA/MeOH(50/50)/Heptane 5.0 ml/min, RT 7.46 min.) lCMS (ES+) 362 (M+Ht, RT 3.35 min. (Analytical method 1); NMR s (ppm)(DMSO­ d6): 10.62 (1 H, s), 8.72 (1 H, s), 8.64 (1 H, s), 8.43 (1 H, s), 7.66 (1 H, d, J = 9.4 Hz), 7.39-7.33 (3 H, m), 7.32-7.24 (2 H, m), 7.23-7.16 (1 H, m), 3.19 (1 H, dd, J = 6.8, 5.4 Hz), 2.91 (1 H, dd, J = 9.6, 6.9 Hz), 2.26 (1 H, dd, J = 9.6, 5.4 Hz).
Example 38 Reaction Scheme 38 (E)-Ethyl(2-methylthiazolyl)acrylate (110) Following method C to a stirred solution of 2-methyl-1,3 thiazole-50 carboxaldehyde (1.00 g, 7.86 mmol) in anhydrous THF (10 ml) at -10°C was added sodium hydride (0.63 g, 16.0 mmol) portionwise over 10 min. This was stirred for a further 30 min at -10°C then triethylphoshonoacetate (3.12 ml, 16.0 mmol) in THF (10 ml) was added dropwise at -10°C. The solution was warmed to RT and stirred for 18 h. The reaction mixture was poured into iced water and extracted with ethyl acetate. The organic layer was washed with brine, dried (MgS04), filtered and concentrated to give a dark brown gum (1.97 g).
Purification by flash silica column chromatography (gradient elution i-hex to 100% EtOAc in i-hex) gave the title compound as a pale yellow solid (1.39 g, 89%). lCMS (ES+) 198 (M+H( (1 R*,2R*,3S*)-Ethyl(2-methylthiazolyl)phenylcyclopropanecarboxy (111) Following method F from compound 110 (0.72 g, 3.65 mmol) and 1-(2-fluorobenzyl)tetrahydro-1 H-thiophenium triflate (1.80 g, 5.48 mmol).
Purification by flash silica column chromatography (gradient elution i-hex to 30% EtOAc in i-hex) gave the title compound as a pale yellow oil (392 mg, 37%, 4:1 trans:cis). LCMS (ES+) 287 (M+Ht. ( 1 R,2R,3S)-N-Hyd roxy(2-methylth iazolyl ) phenylcyclopropanecarboxam ide ( 112) Following method A from 111 (390 mg, 1.36 mmol). Purification by preparative-HPLC gave the the racemic product as a pale yellow solid (240 mg, 64 %). Preparative chiral purification gave the title compound (Chiralpak IC 40/60 IPNMeOH(50/50)/Heptane 5.0 ml/min, RT 6.05 min). LCMS (ES+) 275 (M+Ht, RT 2.86 min. (Analytical method 1); NMR s (ppm)(DMSO-d6): 10.59 (1 H, s), 8.72 (1 H, s), 7.53 (1 H, s), 7.33-7.21 (4 H, m), 7.22-7.15 (1 H, m), 3.26-3.20 (1 H, m), 2.81 (1 H, dd, J = 9.6, 6.8 Hz), 2.60 (3 H, s), 2.16 (1 H, dd, J = 9.6, 5.3 Hz).
Example 39 Reaction Scheme 39 114 115 (E)-Ethyl(imidazo[1,2-a]pyridinyl)acrylate (113) Following method C from imidazo[1,2-a]pyridinecarbaldehyde (1 g, 6.85 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 75% EtOAc in i-hex) gave the title compound (800 mg, 54%).
LCMS (ES+) 217 (M+H( (1 R*,2R*,3R*)-Ethyl(imidazo[1,2-a]pyridinyl) phenylcyclopropanecarboxylate ( 114) Following method F from 113 (800 mg, 3.70 mmol) and 1-(2- fluorobenzyl)tetrahydro-1 H-thiophenium triflate (1.82 mg, 5.56 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 100% EtOAc in i­ hex) gave the title compound (813 mg, 72%). LCMS (ES+) 307 (M+H( ( 1 R,2R,3R)-N-hydroxy(im idazo[1 ,2-a]pyrid inyl ) phenylcyclopropanecarboxam ide ( 115) Following method A from 114 (813 mg, 2.66 mmol). Precipitation from DCM gave the title compound as a white solid (400 mg, 51 %). Preparative chiral purification gave 8 (Chiralpak IC 40/60 IPA/MeOH(50/50)/Heptane 5.0 ml/min, RT 10.4 min). lCMS (ES+) 294 (M+Ht, RT 2.05 min. (Analytical method 1); NMR o (ppm)(DMSO-d6): 10.56 (1 H, s), 8.72 (1 H, s), 8.14 (1 H, d, J = 6.7 Hz), 7.52 (1 H, d, J = 9.0 Hz), 7.43 (0.1 H, s), 7.41 (1 H, s), 7.35 (2 H, d, J = 7.5 Hz), 7.26-7.13 (4 H, m), 6.97-6.93 (1 H, m), 3.20 (1 H, dd, J = 6.8, 5.4 Hz), 2.84 (1 H, dd, J = 9.5, 6.8 Hz), 2.09 (1 H, dd, J = 9.5, 5.4 Hz).
Example 40 Reaction Scheme 40 117 118 (E)-Ethyl(5-chloropyridinyl)acrylate (116) NaH (570 mg, 14.24 mmol) was added portion wise to stirred anhydrous DMSO (10 ml). The mixture was heated to 80°C until evolution of gas ceased and then cooled to 0°C. A solution of (carbethoxymethyl)­ triphenylphosphonium bromide (3.05 g, 7.12 mmol) in DMSO (10 ml) was then added and the mixture stirred at r.t for 30 min. The mixture was cooled to 0°C and a solution of 5-chloronicotinaldehyde (1.0 g, 7.12 mmol) in DMSO (10 ml) was added and the mixture was stirred at r.t for 1 h. The mixture was then poured into aqueous 1 M HCI and extracted into DCM (3 x 50 ml). The organics were combined and washed with H20 (3 x 100 ml) and brine (3 x 100 ml), separated, dried (MgS04) and concentrated. Purification by flash silica column chromatography (gradient elution i-hex to 25% EtOAc in i-hex) gave the title compound as a yellow solid (1.1g,57%). lCMS (ES+) 271 (M+H( ( 1 R*,2R*,3R*)-Ethyl( 5-ch loropyrid inyl )phenylcyclopropanecarboxylate (117) Following method F from 116 (1.1 g, 4.07 mmol) and 1-(2- fluorobenzyl)tetrahydro-1 H-thiophenium triflate (2.0 g, 6.10 mmol). Purification by flash silica column chromatography (gradient elution i-hex to 15% EtOAc in i-hex) gave the title compound (396 mg, 54%). lCMS (ES+) 361 (M+Ht. (1 R,2R,3R)(5-Chloropyridinyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 118) Following method A from 117 (396 mg, 1.10 mmol). Purification by flash silica column chromatography (gradient elution DCM to 5% MeOH in DCM) and preparative HPLC purification gave the racemic compound (161 mg, 51%).
Preparative chiral purification gave the title compound (Chiralpak IC 40/60 IPNMeOH(50/50/0.1 % formic acid)/heptane 5.0 ml/min, RT 7.74 min). LCMS (ES+) 289 (M+Ht, RT 3.10 min. (Analytical method 1); NMR s (ppm)(DMSO­ d6): 10.47 (1 H, s), 8.61 (1 H, s), 8.49 (1 H, d, J = 1.9 Hz), 8.40 (1 H, d, J = 2.3 Hz), 7.78-7.73 (1 H, m), 7.26 (2 H, d, J = 7.6 Hz), 7.19 (2 H, t, J = 7.5 Hz), 7.11 (1 H, t, J = 7.2 Hz), 3.10 (1 H, dd, J = 6.8, 5.4 Hz), 2.93 (1 H, dd, J = 9.6, 6.9 Hz), 2.26 (1 H, dd, J = 9.6, 5.4 Hz).
Example 41 The following examples may be prepared according to methods substantially as described above.
Table 6 Structure IUPAC Name O<:::rNHOH ( 1 S,2R,3S)(2-fluorophenyl )-N-hydroxymethyl( 4- N~"o (2-methyloxazolyl )phenyl )cyclopropanecarboxam ide O<:::rNHOH (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(4-(3-methyl- ff"'6 1 H-pyrazolyl )phenyl )cyclopropanecarboxam ide O<:::rNHOH (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(4-(3- (trifluoromethyl)-1 H-pyrazol ~~ N yl )phenyl )cyclopropanecarboxam ide O~NHOH (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(4- (isopropyl(2- ~N I b I b d··O morphol inoethyl )amino )phenyl )cyclopropanecarboxam id -..../'N ,)_.__ O";rNH ( 1 R,2R,3R)(2-cyclopropyl pyrim id inyl )-N-hyd roxy phenylcyclopropanecarboxam ide v>::r"o O";rNH (1 R,2R,3R)(benzo[d]isoxazolyl)-N-hydroxy phenylcyclopropanecarboxam ide q,r.o o-N fi O~NHOH ~-- .. ,o (1 R,2R,3R)(6-cyclopropylpyridazinyl)-N-hydroxy phenylcyclopropanecarboxam ide O";rNHOH ff··O (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(6-(3-methyl- ~~ N N 1 H-pyrazolyl )pyrid inyl )cyclopropanecarboxam ide O";rNHOH ( 1 S ,2R,3R)( 6-( 5-ch loropyrim id inyl )pyrid inyl ) ,~··O (2-fluorophenyl)-N-hydroxycyclopropanecarboxamide Cl N OYN'OH (1 R,2R,3R)(5-chloro(4-isopropylpiperazin yl )pyrid inyl )-N-hyd roxy r,q4~c phenylcyclopropanecarboxam ide IN-..) Cl (1 S,2R,3R)(2-fluorophenyl)(6-(5-fluoropyrimidin yl)pyridinyl)-N-hydroxycyclopropanecarboxamide OyNHOH (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(6-(5- methyl pyrim id inyl )pyrid in J:~·-6 yl )cyclopropanecarboxam ide OYNHOH ( 1 R,2R,3R)-N-hyd roxy(6-(2-methyloxazolyl )pyrid in- o ~1Y .. ·o 3-yl )phenylcyclopropanecarboxam ide (1 R,2R,3R)(5-chloro(2-methyloxazolyl)pyridin yl )-N-hyd roxyphenylcyclopropanecarboxam ide (1 S,2R,3R)(2-fluorophenyl)-N-hydroxy(2-(2,2,2- trifluoroethylam ino )pyrid in yl )cyclopropanecarboxam ide (1 R,2R,3R)-N-hydroxyphenyl(1-(2,2,2- trifluoroethyl )-1 H-pyrazolyl )cyclopropanecarboxam ide OyN'OH (1 R,2R,3R)(1-cyclopropyl-1 H-pyrazolyl)-N-hydroxy- No('···o 3-phenylcyclopropanecarboxam ide (1 R,2R,3R)-N-hydroxyphenyl(1-(1-(2,2,2- trifluoroethyl )pipe rid inyl )-1 H-pyrazol yl )cyclopropanecarboxam ide OYN'OH (1 R,2R,3R)(1,3-dimethyl-1 H-pyrazolyl)-N-hydroxy- 3-phenylcyclopropanecarboxam ide NY""O OYN'OH ( 1 R,2R,3S)-N-hydroxy(2-methylth iazolyl ) phenylcyclopropanecarboxam ide -<r· .. o (1 R,2R,3R)(8-chloro-1,2,3,4-tetrahydroquinolinyl)­ N-hyd roxyphenylcyclopropanecarboxam ide (1 R,2R,3R)-N-hydroxyphenyl(4-(2,2,2- trifluoroethyl)-2,3,4,5-tetrahydrobenzo[f][1,4]oxazepin yl )cyclopropanecarboxam ide (1 R,2R,3R)-N-hydroxy(1-methyl(2,2,2- trifluoroethyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazin yl )phenylcyclopropanecarboxam ide (1 R,2R,3R)(1-fluoro(2,2,2-trifluoroethyl)-1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazinyl)-N-hydroxy phenylcyclopropanecarboxam ide (1 R,2R,3R)-N-hydroxyphenyl(2-(2,2,2- trifluoroethyl)-1,2,3,4-tetrahydropyrrolo[1,2-a]pyrazin yl )cyclopropanecarboxam ide (1 R,2R,3R)-N-hydroxyphenyl(7-(2,2,2- trifluoroethyl)-5,6,7,8-tetrahydroimidazo[1,2-a]pyrazin yl )cyclopropanecarboxam ide O~NHOH (1 R,2R,3R)-N-hydroxyphenyl(2- (trifluoromethyl )im idazo[1 ,2-a]pyrid in yl )cyclopropanecarboxam ide F,C~u6···o ( 1 R,2R,3R)-N-hydroxy(im idazo[1 ,2-a]pyrid inyl ) phenylcyclopropanecarboxam ide O~NHOH (1 R,2R,3R)-N-hydroxyphenyl(pyrrolo[1,2- a] pyrim id inyl )cyclopropanecarboxam ide ~)~···o NJ I~ ( 1R,2R,3R)-N-hydroxy(1 ,5-naphthyrid inyl ) phenylcyclopropanecarboxam ide (1 S,2S,3R)(2-cyclopropylpyridinyl)-N-hydroxy(2- I ":::: methylth iazolyl )cyclopropanecarboxam ide N .o Oo/N, - OH (1 S,2S,3R)(2-cyclopropylpyridinyl)-N-hydroxy(5- (trifl uoromethyl )th iophenyl )cyclopropanecarboxam ide ''r( O~NHOH (1 R,2R,3R)(1-((5-fluoropyridinyl)methyl)-1 H- N.:.Y·,,,o pyrazolyl)-N-hydroxy phenylcyclopropanecarboxam ide O~N'OH (1 S,2R,3S)(3-fluoromethylthiophenyl)-N- hydroxy(1-methyl-1 H-pyrazol N:r·,,,~ yl )cyclopropanecarboxam ide 'N I s ,1 O~N'OH (1 S,2S,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl)(5- ~ CF3 methyl(trifl uoromethyl )th iophen yl )cyclopropanecarboxam ide } ''r? O~N'OH (1 S,2S,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl)(5- methyl th iophenyl )cyclopropanecarboxam ide Npr·,,~~ O~N'OH (1 R,2R,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl)o- tolylcyclopropanecarboxam ide N~''() (1 R,2R,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl)(2- (trifl uoromethyl )phenyl )cyclopropanecarboxam ide (1 S,2R,3R)(2-chlorophenyl)-N-hydroxy(1-methyl- 1 H-pyrazolyl )cyclopropanecarboxam ide (1 R,2R,3R)(3-fluorophenyl)-N-hydroxy(1-methyl- N /:--._ fa.,,,r(YF 1 H-pyrazolyl )cyclopropanecarboxam ide ~_J v (1 R,2R,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl)m­ tolylcyclopropanecarboxam ide O~N'OH (1 R,2R,3R)-N-hydroxy(1-methyl-1 H-pyrazolyl)(3- (trifl uoromethyl )phenyl )cyclopropanecarboxam ide Nor··,,vCF3 O~N'OH ( 1 R,2R,3R)(3-chlorophenyl )-N-hydroxy( 1-methyl- 1 H-pyrazolyl )cyclopropanecarboxam ide Nor·,,vCI (1 S,2S,3R)(2-cyclopropylpyridinyl)(3-fluoro I~ methylth iophenyl )-N­ N ,,,,::; hydroxycyclopropanecarboxam ide 0vN'OH (1 S,2S,3R)(2-cyclopropylpyridinyl)-N-hydroxy(5- methyl(trifl uoromethyl )th iophen ':-~ yl )cyclopropanecarboxam ide 0vN'OH (1 S,2S,3R)(2-cyclopropylpyridinyl)-N-hydroxy(5- methyl th iophenyl )cyclopropanecarboxam ide OyNHOH ( 1 R,2R,3R)-N-hyd roxyphenyl( 4-( 5-(trifl uoromethyl )- N....._ I I h- 1 H-im idazolyl )phenyl )cyclopropanecarboxam ide .c.c OyNHOH ( 1 R,2R,3R)(3-chloro(5-methyl-1 H-im idazol N....._ I I h- ff··o yl )phenyl )-N-hyd roxyphenylcyclopropanecarboxam ide ~NH Cl OyNHOH ( 1 R,2R,3R)(3-fluoro(5-methyl-1 H-im idazol yl )phenyl )-N-hyd roxyphenylcyclopropanecarboxam ide Nff···o ~NH F Example 42: Analysis of inhibition of HDAC4 with Class Ila Histone Deacetylase (HDAC) inhibitors.
The potency of Class Ila Histone Deacetylase (HDAC) inhibitors is quantified by measuring the Histone Deacetylase 4 (HDAC4) catalytic domain enzymatic activity using the Class Ila selective substrate, Boc-Lys(Tfa)-AMC.
The substrate is deacetylated to Boc-Lys-AMC by HDAC4. Cleavage by trypsin results in the release of the fluorophore AMC from the deacetylated substrate.
The fluorescence of the sample is directly related to the histone deacetylase activity in the sample.
Serially dilute HDAC inhibitor compounds. Serial dilutions of the HDAC inhibitors and control reference compound (1-(5-(3-((4-(1,3,4-oxadiazol yl )phenoxy)methyl )-1 ,2,4-oxad iazolyl )th iophenyl )-2,2,2-trifluoroethanone) are made by first resuspending the lyophilized compound to a final concentration of 10 mM in 100% dimethyl sulfoxide (DMSO). Stocks of 60 µI aliquots of the 10 mM compound in DMSO are prepared and stored at -20°C. From one stock aliquot of each compound to be tested and the reference compound, a 16-point serial dilution is prepared according to Table 7 using a 125 µI 16-channel Matrix multi-channel pipette (Matrix Technologies Ltd).
Table 7: Serial Dilution of Compounds Diluted Concentration Dilution Well Volumes Solutions (µM) ratio 60 µ11 OmM Test Concentration 1 A 10000 - compound/ reference control Concentration 2 B 5000 1 :2 30 µI A+ 30 µI DMSO Concentration 3 c 2500 1 :2 30 µI B + 30 µI DMSO Concentration 4 D 1000 1 :2.5 30 µIC+ 45 µI DMSO Concentration 5 E 500 1 :2 30 µID+ 30 µI DMSO Concentration 6 F 250 1 :2 30 µIE+ 30 µI DMSO Concentration 7 G 125 1 :2 30 µI F + 30 µI DMSO Concentration 8 H 62.5 1 :2 30 µI G + 30 µI DMSO Concentration 9 I 31.25 1 :2 30 µI H + 30 µI DMSO Concentration J 15.63 1 :2 30 µI I+ 30 µI DMSO Concentration K 7.81 1 :2 30 µI J + 30 µI DMSO Concentration L 3.91 1 :2 30 µI K + 30 µI DMSO Concentration M 1.95 1 :2 30 µIL+ 30 µI DMSO Concentration N 0.98 1 :2 30 µI M + 30 µI DMSO Concentration 0.49 1 :2 30 µIN+ 30 µI DMSO Concentration 0.24 1 :2 30 µI 0 + 30 µI DMSO 2 µI (200x) of each diluted solution and each control (full activity: 100% DMSO alone or full inhibition 1 mM) is stamped into V-bottomed polypropylene 384-well compound plates using either the Bravo (384-well head from Agilent) or 12.5 µI 16-channel Matrix multi-channel pipette (Matrix Technologies Ltd). Each well with the 200x compound solution is diluted 1 :20 by the addition of 38 µI assay buffer+ DMSO (10.5 % DMSO, 45 mM Tris-HCI, 123 mM NaCl, 2.4 mM KCI, and 0.9 mM MgCl2 at pH 8.0 and equilibrated to room temperature).
Prepare HDAC4 catalytic domain enzyme (0.86 µg/ml). The HDAC4 catalytic domain enzyme is human catalytic domain HDAC4 protein (amino acids 648-1057, but with a replacement of amino acids 730-744 with 4 amino acid GSGS linker) made from VCID 3428 and provided by Emerald Biostructures at 1 .2 mg/ml. A working solution of enzyme is prepared from a 1.2 mg/ml stock aliquot of HDAC4 catalytic domain (thawed on ice) diluted to 0.86 µg/ml with assay buffer (50 mM Tris-HCI, 137 mM NaCl, 2.7 mM KCI, and 1 mM MgCl2 at pH 8 and equilibrated to room temperature) just prior to the addition of the enzyme to the assay.
Prepare 5x (50 µM) Boc-Lys(Tfa)-AMC substrate. 5x (50 µM) substrate is prepared just prior to the addition to the assay. A 1 mM substrate stock is made by diluting a 100 mM Boc-Lys(Tfa)-AMC in DMSO solution 1 :100 by adding it drop-wise to assay buffer (equilibrated to room temperature) while vortexing at slow speed to prevent precipitation. The 5x substrate is prepared by diluting the 1 mM substrate solution 1 :20 by adding it drop-wise to assay buffer (equilibrated to room temperature) while vortexing at slow speed to prevent precipitation.
Prepare 3x (30 µM) Developer/Stop Solution. 3x (30 µM) Developer/Stop Solution is prepared just prior to addition to the plate by diluting a stock solution of 10 mM reference compound 1 :333 in 25 mg/ml trypsin (PAA Laboratories Ltd.) equilibrated to room temperature.
Assay. 5 µI of each solution of 1 :20 diluted compound from above is transferred to a clear bottomed, black, 384-well assay plate using the Bravo or the Janus (384-well MDT head from Perkin Elmer). Using a 16-channel Matrix multi-channel pipette, 35 µI of the working solution of HDAC4 catalytic domain enzyme (0.86 µg/ml in assay buffer) is transferred to the assay plate. The assay is then started by adding 10 µI of 5x (50 µM) substrate to the assay plates using either the Bravo, Janus or 16-channel Matrix multi-channel pipette. The assay plate is then shaken for two minutes on an orbital shaker at 900 rpm (rotations per minute). Next the plate is incubated for 15 minutes at 37°C. The reaction is stopped by adding 25 µI of 3x (30 µM) developer/stop solution to the assay plates using either the Bravo, Janus or a 16-channel Matrix multi-channel pipette.
Assay plates are then shaken for 5 minutes on an orbital shaker at 1200 rpm.
Next, the assay plates are incubated at 37°C for 1 hour in a tissue culture incubator. Finally, the fluorescence is measured (Excitation: 355 nm, Emission: 460 nm) using PerkinElmer EnVision in top read mode.
Example 43: Analysis of inhibition of HDAC5 with Class Ila Histone Deacetylase (HDAC) inhibitors.
The potency of Class Ila Histone Deacetylase (HDAC) inhibitors is quantified by measuring the Histone Deacetylase 5 (HDAC5) enzymatic activity using the Class Ila selective substrate, Boc-Lys(Tfa)-AMC. The substrate is deacetylated to Boc-Lys-AMC by HDAC5. Cleavage by trypsin results in the release of the fluorophore AMC from the deacetylated substrate. The fluorescence of the sample is directly related to the histone deacetylase activity in the sample.
Serially dilute HDAC inhibitor compounds. Serial dilutions of the HDAC inhibitors and control reference compound (1-(5-(3-((4-(1,3,4-oxadiazol yl )phenoxy)methyl )-1 ,2,4-oxad iazolyl )th iophenyl )-2,2,2-trifluoroethanone) are made by first resuspending the lyophilized compound to a final concentration of 10 mM in 100% DMSO. Stocks of 60 µI aliquots of the 10 mM compound in DMSO are prepared and stored at -20°C. From one stock aliquot of each compound to be tested and the reference compound, a 16-point serial dilution is prepared according to Table 7 using a 125 µI 16-channel Matrix multi-channel pipette. 2 µI (200x) of each diluted solution and each control (full activity: 100% DMSO alone or full inhibition 1 mM) is stamped into V-bottom polypropylene 384-well compound plates using either Bravo, Janus, or a 12.5 µI 16-channel Matrix multi-channel pipette. Each well with the 2 µI of the 200x stamped compound solution is diluted 1 :20 by the addition of 38 µI assay buffer+ DMSO (10.5 % DMSO, 45 mM Tris-HCI, 123 mM NaCl, 2.4 mM KCI, and 0.9 mM MgCl2 at pH 8.0 and equilibrated to 37°C).
Prepare HDAC5 catalytic domain enzyme (0.57 µg/ml). The HDAC5 catalytic domain enzyme is human HDAC5 catalytic domain (GenBank Accession No. NM_001015053), amino acids 657-1123 with a C-terminal His tag and can be obtained from BPS Bioscience. The protein is 51 kDa and is expressed in a baculovirus expression system. A working solution of enzyme is prepared from a 1.65 mg/ml stock aliquot of HDAC5 catalytic domain (thawed on ice) diluted to 0.57 µg/ml with assay buffer (50 mM Tris-HCI, 137 mM NaCl, 2.7 mM KCI, and 1 mM MgCl2 at pH 8 and equilibrated to 37°C) just prior to the addition of the enzyme to the assay.
Prepare 5x (40 µM) Boc-Lys(Tfa)-AMC substrate. 5x (40 µM) substrate is prepared just prior to the addition to the assay. The 5x substrate is prepared by diluting the 100 mM Boc-Lys(Tfa)-AMC in DMSO solution 1 :2500 by adding it drop-wise to assay buffer (equilibrated to 37°C) while vortexing at slow speed to prevent precipitation.
Prepare 3x (30 µM) Developer/Stop Solution. 3x (30 µM) Developer/Stop Solution is prepared just prior to addition to the plate by diluting a stock solution of 10 mM reference compound 1 :333 in 25 mg/ml trypsin equilibrated to 37°C.
Assay. 5 µI of each solution of the 1 :20 diluted inhibitor compounds and controls from above is transferred to a clear bottomed, black, 384-well assay plate using the Bravo or Janus. Using a 16-channel Matrix multi-channel pipette, µI of the working solution of the HDAC5 catalytic domain enzyme (0.57 µg/ml in assay buffer) is transferred to the assay plate. The assay is then started by adding 10 µI of 5x (40 µM) substrate to the assay plates using either the Bravo, Janus or 16-channel Matrix multi-channel pipette. The assay plate is then shaken for one minute on an orbital shaker at 900 rpm. Next, the plates are incubated for 15 minutes at 37°C. The reaction is stopped by adding 25 µI of 3x (30µM) developer/stop solution to the assay plates using either the Bravo, Janus or a 16-channel Matrix multi-channel pipette. Assay plates are then shaken for 2 minutes on an orbital shaker at 900 rpm. Next, the assay plates are incubated at 37°C for 1 hour in a tissue culture incubator followed by shaking for 1 minute at the maximum rpm on an orbital shaker before reading on the EnVision. Finally, the fluorescence is measured (Excitation: 355 nm, Emission: 460 nm) using PerkinElmer EnVision in top read mode.
Example 44: Analysis of inhibition of HDAC7 with Class Ila Histone Deacetylase (HDAC) inhibitors.
The potency of Class Ila Histone Oeacetylase (HOAG) inhibitors is quantified by measuring the Histone Oeacetylase 7 (HOAC7) enzymatic activity using the Class Ila selective substrate, Boc-Lys(Tfa)-AMC. The substrate is deacetylated to Boc-Lys-AMC by HOAC7. Cleavage by trypsin results in the release of the fluorophore AMC from the deacetylated substrate. The fluorescence of the sample is directly related to the histone deacetylase activity in the sample.
Serially dilute HDAC inhibitor compounds. Serial dilutions of the HOAG inhibitors and control reference compound (1-(5-(3-((4-(1,3,4-oxadiazol yl )phenoxy)methyl )-1 ,2,4-oxad iazolyl )th iophenyl )-2,2,2-trifluoroethanone) are made by first resuspending the lyophilized compound to a final concentration of 10 mM in 100% OMSO. Stocks of 60 µI aliquots of the 10 mM compound in OMSO are prepared and stored at -20°C. From one stock aliquot of each compound to be tested and the reference compound, a 16-point serial dilution is prepared according to Table 7 using a 125 µI 16-channel Matrix multi-channel pipette. 2 µI (200x) of each diluted solution and each control (full activity: 100% OMSO alone or full inhibition 1 mM) is stamped into V-bottom polypropylene 384-well compound plates using either the Bravo, Janus, or a 12.5 µI 16-channel Matrix multi-channel pipette. Each well with the 200x compound solution is diluted 1 :20 by the addition of 38 µI assay buffer+ DMSO (10.5 % DMSO, 45 mM Tris-HCI, 123 mM NaCl, 2.4 mM KCI, and 0.9 mM MgCl2 at pH 8.0 and equilibrated to 37°C).
Prepare HDAC7 enzyme (71 ng/ml). The HDAC7 enzyme is human HDAC7 (GenBank Accession No. AY302468) amino acids 518-end with a N-terminal Glutathione S-transferase (GST) tag and can be obtained from BPS BioScience. The protein is 78 kDa and is expressed in a baculovirus expression system. A working solution of enzyme is prepared from a 0.5 mg/ml stock aliquot of HDAC7 (thawed on ice) diluted to 71 ng/ml with assay buffer (50 mM Tris-HCI, 137 mM NaCl, 2.7 mM KCI, and 1 mM MgCl2 at pH 8 and equilibrated to 37°C) just prior to the addition of enzyme to the assay.
Prepare 5x (50 µM) Boc-Lys(Tfa)-AMC substrate. 5x (50 µM) substrate is prepared just prior to the addition to the assay. The 5x substrate is prepared by diluting a 100 mM Boc-Lys(Tfa)-AMC in DMSO solution 1 :2000 by adding it drop-wise to assay buffer (equilibrated to 37°C) while vortexing at slow speed to prevent precipitation.
Prepare 3x (30 µM) Developer/Stop Solution. 3x (30 µM) Developer/Stop Solution is prepared just prior to addition to the plate by diluting a stock solution of 10 mM reference compound 1 :333 in 25 mg/ml trypsin equilibrated to 37°C.
Assay. 5 µI of each solution of 1 :20 diluted compound from above is transferred to a clear bottomed, black, 384-well assay plate using the Bravo or Janus. Using a 16-channel Matrix multi-channel pipette, 35 µI of the working solution of the HDAC7 enzyme (71 ng/ml in assay buffer) is transferred to the assay plate. The assay is then started by adding 10 µI of 5x (50 µM) substrate to the assay plate using either the Bravo, Janus or 16-channel Matrix multi-channel pipette. The assay plate is then shaken for one minute on an orbital shaker at 900 rpm. Next, the plate is incubated for 15 minutes at 37°C. The reaction is then stopped by adding 25 µI of 3x (30 µM) developer/stop solution to the assay plates using either the Bravo, Janus or a 16-channel Matrix multi-channel pipette.
The assay plate is then shaken for 2 minutes on an orbital shaker at 900 rpm.
Next, the assay plate is incubated at 37°C for 1 hour in a tissue culture incubator followed by shaking for 1 minute at maximum rpm on an orbital shaker. Finally, the fluorescence is measured (Excitation: 355 nm, Emission: 460 nm) using PerkinElmer EnVision in top read mode.
Example 45: Analysis of inhibition of HDAC9 with Class Ila Histone Deacetylase (HDAC) inhibitors.
The potency of Class Ila Histone Oeacetylase (HOAG) inhibitors is quantified by measuring the Histone Oeacetylase 9 (HOAC9) enzymatic activity using the Class Ila selective substrate, Boc-Lys(Tfa)-AMC. The substrate is deacetylated to Boc-Lys-AMC by HOAC9. Cleavage by trypsin results in the release of the fluorophore AMC from the deacetylated substrate. The fluorescence of the sample is directly related to the histone deacetylase activity in the sample.
Serially dilute HDAC inhibitor compounds. Serial dilutions of the HOAG inhibitors and control reference compound (1-(5-(3-((4-(1,3,4-oxadiazol yl )phenoxy)methyl )-1 ,2,4-oxad iazolyl )th iophenyl )-2,2,2-trifluoroethanone) are made by first resuspending the lyophilized compound to a final concentration of 10 mM in 100% OMSO. Stocks of 60 µI aliquots of the 10 mM compound in OMSO are prepared and stored at -20°C. From one stock aliquot of each compound to be tested and the reference compound, a 16-point serial dilution is prepared according to Table 7 using a 125 µI 16-channel Matrix multi-channel pipette. 2 µI (200x) of each diluted solution and each control (full activity: 100% OMSO alone or full inhibition 1 mM) is stamped into V-bottom polypropylene 384-well compound plates using either the Bravo, Janus, or 12.5 µI 16-channel Matrix multi-channel pipette. Each well with the stamped 200x compound solution is diluted 1 :20 by the addition of 38 µI assay buffer+ OMSO (10.5 % OMSO, 45 mM Tris-HCI, 123 mM NaCl, 2.4 mM KCI, and 0.9 mM MgCl2 at pH 8.0 and equilibrated to 37°C).
Prepare HDAC9 enzyme (0.57 µg/ml). The HOAC9 enzyme is human HOAC9 (Gen Bank Accession No. NM_ 178423) amino acids 604-1066 with a C-terminal His tag and can be obtained from BPS BioScience. The protein is 50.7 kOa and is expressed in a baculovirus expression system. A working solution of enzyme is prepared from a 0.5 mg/ml stock aliquot of HOAC9 (thawed on ice) diluted to 0.57 µg/ml with assay buffer (50 mM Tris-HCI, 137 mM NaCl, 2.7 mM KCI, and 1 mM MgCl2 at pH 8 and equilibrated to 37°C) just prior to the addition of enzyme to the assay.
Prepare 5x (125 µM) Boc-Lys(Tfa)-AMC substrate. 5x (125 µM) substrate is prepared just prior to the addition to the assay. The 5x substrate is prepared by diluting a 100 mM Boc-Lys(Tfa)-AMC in DMSO solution 1 :800 by adding it drop-wise to assay buffer (equilibrated to 37°C) while vortexing at slow speed to prevent precipitation.
Prepare 3x (30 µM) Developer/Stop Solution. 3x (30 µM) Developer/Stop Solution is prepared just prior to addition to the plate by diluting a stock solution of 10 mM reference compound 1 :333 in 25 mg/ml trypsin equilibrated to 37°C.
Assay. 5 µI of each solution of 1 :20 diluted compound from above is transferred to a clear bottomed, black, 384-well assay plate using the Bravo or Janus. Using a 16-channel Matrix multi-channel pipette, 35 µI of the working solution of the HDAC9 enzyme (0.57 µg/ml in assay buffer) is transferred to the assay plate. The assay is then started by adding 10 µI of 5x (125 µM) substrate to the assay plate using either the Bravo, Janus or 16-channel Matrix multi­ channel pipette. The assay plate is then shaken for one minute on an orbital shaker at 900 rpm. Next, the plate is incubated for 15 minutes at 37°C. The reaction is stopped by adding 25 µI of 3x developer/stop solution to the assay plates using either the Bravo, Janus or a 16-channel Matrix multi-channel pipette.
The assay plate is then shaken for 2 minutes on an orbital shaker at 900 rpm.
Next, the assay plate is incubated at 37°C for 1 hour in a tissue culture incubator followed by shaking for 1 minute at maximum rpm on an orbital shaker before reading on the envision. Finally, the fluorescence is measured (Excitation: 355 nm, Emission: 460 nm) using PerkinElmer EnVision in top read mode.
Example 46: Analysis of inhibition of cellular HDAC activity with Class Ila Histone Deacetylase (HDAC) inhibitors.
The potency of Class Ila Histone Deacetylase (HDAC) inhibitors is quantified by measuring the cellular histone deacetylase enzymatic activity using the Class Ila selective substrate, Boc-Lys(Tfa)-AMC. After penetration in Jurkat E6-1 cells, the substrate is deacetylated to Boc-Lys-AMC. After cell lysis and cleavage by trypsin, the fluorophore AMC is released from the deacetylated substrate only. The fluoresence of the sample is directly related to the histone deacetylase activity in the sample.
Jurkat E6.1 cell culture and plating. Jurkat E6.1 cells are cultured according to standard cell culture protocols in Jurkat E6.1 Growth Media (RPMI without phenol red, 10% FBS, 10 mM HEP ES, and 1 mM Sodium Pyruvate). Jurkat E6.1 cells are counted using a Coulter Counter and resuspended in Jurkat E6.1 growth media at a concentration of 75,000 cells/35 µI. µI or 75,000 cells is seeded into Greiner microtitre assay plates. The plates are then incubated at 37°C and 5% C02 while other assay components are being prepared.
Serially dilute HDAC inhibitor compounds. Serial dilutions of the HDAC inhibitors and control reference compound (1-(5-(3-((4-(1,3,4-oxadiazol yl )phenoxy)methyl )-1 ,2,4-oxad iazolyl )th iophenyl )-2,2,2-trifluoroethanone) are made by first resuspending the lyophilized compound to a final concentration of 10 mM in 100% DMSO. Stocks of 70 µI aliquots of the 10 mM compound in DMSO are prepared and stored at -20°C. From one stock aliquot of each compound to be tested and the reference compound, a 16-point serial dilution is prepared according to Table 7 using a 125 µI 16-channel Matrix multi-channel pipette. 2 µI (200x) of each diluted solution and each control (full activity: 100% DMSO alone or full inhibition 1 mM) is stamped into V-bottom polypropylene 384-well compound plates using either the Bravo, Janus, or 12.5 µI 16-channel Matrix multi-channel pipette. Each well with the 200x compound solution is diluted 1 :20 by the addition of 38 µI Jurkat assay buffer+ DMSO (9.5 % DMSO, RPMI without phenol red, 0.09% FBS, 9 mM Hepes, and 0.9 mM Sodium Pyruvate equilibrated to room temperature) Prepare 5x (500 µM) Boc-Lys(Tfa)-AMC substrate. 5x (500 µM) substrate is prepared just prior to the addition to the assay. The 5x substrate is prepared by diluting a 100 mM Boc-Lys(Tfa)-AMC in DMSO solution 1 :200 by adding it drop-wise to Jurkat assay medium (RPMI without phenol red, 0.1 % FBS, mM Hepes, and 1 mM Sodium Pyruvate equilibrated to 37°C) while vortexing at slow speed to prevent precipitation.
Prepare 3x Lysis Buffer. 10 ml of 3x lysis buffer is prepared with 8.8 ml of 3x stock lysis buffer (50 mM Tris-HCI, pH 8.0, 137 mM NaCl, 2.7 mM KCI, 1 mM MgCl2, 1 % Nonidet P40 Substitute equilibrated to room temperature) and 1.2 ml of 3 mg/ml Trypsin equilibrated to room temperature.
Assay. 5 µI of each solution of 1 :20 diluted compound from above is transferred to the Greiner microtitre assay plates with 75,000 cells/well using the Bravo. Cells are then incubated for 2 hours at 37°C and 5% C02. The assay is then started by adding 10 µI of 5x (500 µM) substrate to the assay plate using either the Bravo or 16-channel Matrix multi-channel pipette. The cells are then incubated for 3 hours at 37°C and 5% C02. Next, 25 µI of 3x lysis buffer is added to each well using either the 125 µI 16 channel pipette or the Bravo. The assay plate is then incubated overnight (15-16 hours) at 37°C and 5% C02. The following day, the plates are shaken on an orbital shaker for 1 minute at 900 rpm.
Finally the top read fluorescence (Excitation: 355 nm, Emission: 460 nm) is measured using PerkinElmer EnVision.
Example 47 Using the synthetic methods similar to those described above and the assay protocols described above, the following compounds were synthesized and tested.
Table 8 Chemical Name Compound Biochemical Cellular Number HDAC-4 ICso IC50 (µM) (µM) ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4- 50i 0.10 1.25 (pyrim id in yl )phenyl )cyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)(2-Bromophenyl )-N- 16a 0.62 6.53 hydroxy phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)-N-Hydroxyphenylo- 18a 1.72 13.16 tolylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4- 50h 0.06 0.62 (pyrim id in yl )phenyl )cyclopropanecarboxam ide ( 1 S* ,2R* ,3R*)(2-Fluorophenyl )-N- 13 0.94 7.67 hydroxy phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)-N-Hydroxy(2- 11 a 20.57 50 Chemical Name Compound Biochemical Cellular Number IC50 HDAC-4 ICso (µM) (µM) isopropoxyphenyl ) phenylcyclopropanecarboxarn ide ( 1 R* ,2R* ,3R*)(2-Fluorophenyl )-N- 11 b 0.32 1.83 hydroxy phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl 25c 1.81 19.68 ( pyrirn id inyl )cyclopropanecarboxam ide ( 1 S* ,2R* ,3R*)Cyclopentyl-N-hydroxy- 25a 8.96 48.08 3-phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)-N-Hydroxy( 4-( 5- 50k 0.09 0.48 methyl pyrim id inyl )phenyl ) phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)(4-(4- 50d 0.21 0.88 Trifluoromethylpyrimidinyl)phenyl)-N- hydroxy phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)(4-(5- 50c 0.22 0.81 Cyclopropylpyrimidinyl)phenyl)-N- hydroxy phenylcyclopropanecarboxarn ide ( 1 R* ,2R* ,3R*)( 4-( 5-Fluoropyrim id in 50a 0.06 0.39 yl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)(3-( 5-Fluoropyrim id in 0.10 1.02 yl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide ( 1 R*,2R*,3R*)-N-Hyd roxyphenyl 28a 1.09 23.52 ( pyridazinyl )cyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxy(4-(oxazol 41b 0.02 0.22 yl)phenyl) phenylcyclopropanecarboxarn ide ( 1 R,2R,3R)-N-Hydroxy(3-( oxazol 41a 0.04 0.39 yl)phenyl) phenylcyclopropanecarboxam ide (1 R,2R,3R)-N-hydroxy(2- 39 0.02 0.22 isopropyl benzo[ d]oxazolyl ) phenylcyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxyphenyl(5- 68 0.23 2.31 (trifl uoromethyl )pyrid in vi )cyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxyphenyl(6- 28f 0.34 5.67 (trifl uoromethyl )pyrid in yl )cyclopropanecarboxam ide ( 1 R,2R,3R)(2-Cyclopropylpyrid inyl )- 28b 0.02 0.67 N-hydroxy Chemical Name Compound Biochemical Cellular Number IC50 HDAC-4 ICso (µM) (µM) phenylcyclopropanecarboxam ide ( 1 R,2R,3R)(2-Cyclopropylpyrid inyl )- 25d 0.03 0.62 3-( 4-fluorophenyl )-N- hydroxvcvclopropanecarboxamide (1 R,2R,3R)(2,2- 28e 0.12 2.03 Difluorobenzo[d][1,3]dioxolyl)-N- hydroxy phenylcyclopropanecarboxarn ide (1 R,2R,3R)(4-(2-Cyclopropyloxazol 46 0.04 0.28 yl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxyphenyl(2- 28g 0.30 2.58 (trifl uoromethyl )pyrid in yl )cyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxy(1-oxo(2,2,2- 0.03 0.34 trifl uoroethyl )isoindol inyl ) phenylcyclopropanecarboxam ide (1 S,2R,3R)(2-Cyclopropylpyridinyl)- 28c 0.04 0.53 3-(2-fluorophenyl)-N- hydroxycyclopropanecarboxamide ( 1 R,2R,3R)(2-Cyclopropylpyrid inyl )- 28d 0.12 0.79 3-( 4-fluorophenyl )-N- hydroxycyclopropanecarboxamide (1 R,2R,3R)-N-Hydroxy(1-methyl-1 H- 25b 0.54 2.62 pyrazolyl ) phenylcyclopropanecarboxam ide (1 R,2R,3R)(4-(5- 50e 0.18 0.69 Trifluoromethylpyrimidinyl)phenyl)-N- hydroxy phenylcyclopropanecarboxam ide (1 R,2R,3R)(8-Chloro-2,3- 25e 0.02 0.13 dihydrobenzo[b][1,4]dioxinyl)-N- hydroxy phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4- 50f 0.08 0.62 (pyridazin yl )phenyl )cyclopropanecarboxam ide (1 R*,2R*,3R*)-N -Hydroxyphenyl(4- 50g 0.11 0.66 (pyridazin vi )phenyl )cyclopropanecarboxam ide ( 1R*,2R*,3R*)-N-Hydroxy(4-( 4- 56i 0.14 1.31 methylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide (1 R*,2R*,3R*J-N-Hydroxy(4-(oxazol 58 0.05 0.35 yl)phenyl) Chemical Name Compound Biochemical Cellular Number IC50 HDAC-4 ICso (µM) (µM) phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)-N -Hydroxy(4-(1-methyl- 60 0.29 2.05 1 H-imidazolyl )phenyl ) phenylcyclopropanecarboxarn ide ( 1R*,2R*,3R*)(4-( 1 H-pyrazol 65 0.09 0.97 yl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R *)( 4-(3,3-Dimethylazetid in- 56d 0.33 3.17 1-yl)phenyl)-N-hydroxy phenylcyclopropanecarboxam ide ( 1R*,2R*,3R*)-N-Hydroxy(4-( 4- 56a 0.09 0.76 isopropylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)-N-Hydroxy(4-(3,3- 0.15 1.77 d ifluoropyrrol id inyl )phenyl ) phenylcyclopropanecarboxam ide ( 1R*,2R*,3R*)(4-(2-0xa 0.15 1.33 azaspiro[3.3]heptanyl)phenyl)-N- hydroxy phenylcyclopropanecarboxam ide (1R,2R,3R)(3'-(Benzyloxy)-[1,1 '- 54a 0.99 8.85 biphenyl]yl)-N-hydroxy phenylcyclopropanecarboxam ide (1 R,2R,3R)(4-(1-Benzyl-1,2,3,6- 71 0.35 0.75 tetrahyd ropyrid inyl )phenyl )-N-hyd roxy- 3-phenylcyclopropanecarboxam ide ( 1R,2R,3R)-N-hydroxy(4-( 4-methyl-3,4- 54c 0.26 1.43 dihydro-2H-benzo[b][1,4]oxazin yl)phenyl) phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)(4-(2- 52 0.48 1.79 cyclopropyl isoindol inyl )phenyl )-N- hydroxy phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)( 4'-(9H-carbazolyl )- 54b 5.66 50 [1, 1 '-biphenyl]yl)-N-hydroxy phenylcyclopropanecarboxam ide ( 1R*,2S*,3S*)(4-( 5-Fluoropyrim id in 63 0.27 1.55 yl )phenyl )-N-hydroxymethyl phenylcyclopropanecarboxarn ide ( 1R*,2R*,3R*)-N-Hydroxy(3-(4- 56b 1.43 5.08 isopropylpiperazinyl )phenyl ) phenylcyclopropanecarboxam ide ( 1R,2R,3R)(3-(6,7- 56h 0.17 0.77 Dihydropvrazolo[1 ,5-a]pvrim id in-4( 5H )- Chemical Name Compound Biochemical Cellular Number IC50 HDAC-4 ICso (µM) (µM) yl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)(3- 56f 0.63 1.85 (Hexahydropyrrolo[1,2-a]pyrazin-2(1 H)- yl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)-N-Hydroxyphenyl(3- 56g 0.39 2.18 (4-(pyrrolidinyl)piperidin yl )phenyl )cyclopropanecarboxam ide (1 R,2R,3R)(4-(5-Chloropyrimidin 50j 0.14 0.42 yl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide ( 1R*,2R*,3R*)-N-Hydroxy(4-( 5-methyl- 501 0.10 0.46 1 H-imidazolyl )phenyl ) phenylcyclopropanecarboxam ide (1 S,2R,3R)(8-Chloro-2,3- 25f 0.03 0.24 d ihydrobenzo[b ][1 ,4 ]d ioxinyl )(2- fluorophenyl )-N- hydroxycyclopropanecarboxamide ( 1 R* ,2R* ,3R*)-N-Hydroxyphenyl( 4- 48 0.28 1.26 (2-phenyloxazol yl )phenyl )cyclopropanecarboxam ide trans-N-Hydroxy-2,3- 2 0.34 2.52 d iphenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)Cyclohexyl-N-hydroxy 5 6.22 36.91 phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)( 4-Bromophenyl )-N- 16c 0.37 2.87 hydroxy phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)(4-(1 H-imidazol 42 0.20 1.63 yl )phenyl )-N-hydroxy phenylcyclopropanecarboxam ide (1 R*,2R*,3R*)(4- 22 0.05 1.32 (cyclopropanesulfonamido )phenyl)-N- hydroxy phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)-N-Hydroxyphenylp- 18c 0.15 2.25 tolylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)(3-Bromophenyl )-N- 16b 0.07 1.41 hydroxy phenylcyclopropanecarboxam ide ( 1 R* ,2R* ,3R*)-N-Hydroxyphenylm- 18b 0.15 2.74 tolylcyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxy(4-(2- 75a 0.03 0.33 methyloxazolyl )phenyl ) Chemical Name Compound Biochemical Cellular Number IC50 HDAC-4 ICso (µM) (µM) phenylcyclopropanecarboxam ide (1 S,2R,3R)(2-Fluorophenyl)-N- 75b 0.05 0.47 hyd roxy( 4-(2-methyloxazol vi )phenyl )cyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxy(3-(5- 77 0.16 0.78 methyl pyrim id inyl )phenyl ) phenylcyclopropanecarboxam ide (1 S,2R,3R)(2,6-Dicyclopropylpyridin 88 0.20 1.48 yl )(2-fluorophenyl )-N- hydroxycyclopropanecarboxamide ( 1R,2R,3R)-N-Hydroxy(4-(3-methyl- 79 0.09 0.65 1 H-pyrazolyl )phenyl ) phenylcyclopropanecarboxam ide (1 S, 2R, 3R)(2-Fluorophenyl)-N- 0.12 0.75 hydroxy(6-( 4-isopropylpiperazin yl )pyrid inyl )cyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxyphenyl(1-(5- 92b 0.18 1.17 (trifluoromethyl)pyrid inyl )-1 H-pyrazol yl )cyclopropanecarboxam ide (1 R,2R,3R)-N-hydroxy(imidazo[1,2- 115 0.55 6.66 a] pyrid i nyl ) phenylcyclopropanecarboxam ide (1 R,2R,3R)-N-Hydroxyphenyl(2- 109 0.23 2.5 (trifluoromethyl )im idazo[1 ,2-a]pyrid in yl )cyclopropanecarboxam ide (1 S,2R,3R)(2-Cyclopropylpyridinyl)- 100b 0.02 0.42 3-(3-fluorophenyl)-N- hydroxvcvclopropanecarboxamide (1 R,2R,3R)-N-hydroxy(4-(5- 102 0.04 0.44 methyl th iazolyl )phenyl ) phenylcyclopropanecarboxam ide (1 S, 2R, 3R)(2-Fluorophenyl)-N- 106 0.17 1.41 hydroxy(6-((2,2,2- trifluoroethyl)amino )pyridin yl )cyclopropanecarboxam ide While some embodiments have been shown and described, various modifications and substitutions may be made thereto without departing from the spirit and scope of the invention. For example, for claim construction purposes, it is not intended that the claims set forth hereinafter be construed in any way narrower than the literal language thereof, and it is thus not intended that exemplary embodiments from the specification be read into the claims.
Accordingly, it is to be understood that the present invention has been described by way of illustration and not limitations on the scope of the claims.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps.
The reference in this specification to any prior publication ( o r information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (o r information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.

Claims (31)

THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
1. A compound of Formula I 3 3a Formula I or a pharmaceutically acceptable salt thereof wherein R and R are independently chosen from optionally substituted alkyl, optionally substituted cycloalkyl, optionally substituted heterocycloalkyl, optionally substituted aryl, and optionally substituted heteroaryl; R is–C(O )N H(O H); R is chosen from hydrogen and lower alkyl optionally substituted with halo; where each optionally substituted group for R and R is unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C1­C4 alkyl, C3­C6 cycloalkyl, aryl, heteroaryl, aryl­C1­C4 alkyl­, heteroaryl­C1­C4 alkyl­, C1­C4 haloalkyl- , ­OC1­C4 alkyl, ­OC1­C4 alkylphenyl, -C1­C4 alkyl­OH, -C1­C4 alkyl­O- C1­C4 alkyl, ­OC1­C4 haloalkyl, halo, ­OH, ­NH2, ­C1­C4 alkyl­NH2, ­N(C 1­C4 alkyl)( C 1­C4 alkyl) , ­NH( C 1­C4 alkyl), ­N(C 1­C4 alkyl)( C1­C4 alkylphenyl), ­NH(C 1­C4 alkylphenyl) , cyano, nitro, oxo (a s a substitutent for heteroaryl), ­CO2H, ­C(O )O C1­C4 alkyl, ­CON(C 1­C4 alkyl) ( C 1­C4 alkyl), ­CONH(C 1­C4 alkyl) , ­CONH2, ­NHC(O)( C 1­C4 alkyl), ­NHC(O ) ( p henyl), ­N(C 1­C4 alkyl) C ( O ) ( C 1­C4 alkyl) , ­N( C 1­C4 alkyl) C(O ) ( p henyl) , ­C(O)C 1­C4 alkyl, ­C( O )C1­C4 phenyl, ­C(O ) C 1­C4 haloalkyl, ­OC( O )C 1­C4 alkyl, -SO2( C 1­C4 alkyl), -SO2(p henyl) , - SO2(C 1­C4 haloalkyl), -SO2NH2, ­SO2NH(C 1­C4 alkyl), ­SO2NH(p henyl) , -NHSO2( C 1­C4 alkyl), -NHSO2( p henyl), and ­NHSO2( C 1­C4 haloalkyl) .
2. A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound of Formula I is chosen from compounds of Formula II. Formula II
3. A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound of Formula I is chosen from compounds of Formula III. Formula III
4. A compound according to any one of claims 1 to 3, or a pharmaceutically acceptable salt thereof, wherein R is hydrogen or methyl.
5. A compound according to any one of claims 1 to 3, or a pharmaceutically acceptable salt thereof, wherein R is –CF . 3a 3
6. A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound of Formula I is chosen from compounds of Formula IV Formula IV
7. A compound according to claim 1, or a pharmaceutically acceptable salt thereof, wherein the compound of Formula I is chosen from compounds of Formula V. Formula V
8. A compound according to any one of claims 1 to 7, or a pharmaceutically acceptable salt thereof, wherein R is chosen from cycloalkyl, heterocycloalkyl, alkyl, aryl and heteroaryl, each of which is optionally substituted with one, two, or three groups independently chosen from ­R , ­OR , halo, and ­NR SO R , wherein 22 23 2 21 R is chosen from optionally substituted C ­C alkyl, optionally 21 1 6 substituted cycloalkyl, optionally substituted aryl, optionally substituted heterocycloalkyl, and optionally substituted heteroaryl; R is chosen from H, optionally substituted C ­C alkyl, optionally 22 1 6 substituted cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted heterocycloalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; and R is chosen from hydrogen and optionally substituted C ­C alkyl; 23 1 4 where each optionally substituted group mentioned for R , R or R , is 21 22 23 unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C1­C4 alkyl, C3­C6 cycloalkyl, aryl, heteroaryl, aryl­C1­C4 alkyl­, heteroaryl­C1­C4 alkyl­, C1­C4 haloalkyl-, ­OC1­C4 alkyl, ­OC1­C4 alkylphenyl, -C1­C4 alkyl­OH, - C1­C4 alkyl­O-C1­C4 alkyl, ­OC1­C4 haloalkyl, halo, ­OH, ­NH2, ­C1­C4 alkyl­NH2, ­N(C 1­C4 alkyl)( C 1­C4 alkyl) , ­NH( C1­C4 alkyl) , ­N(C 1­C4 alkyl) (C 1­C4 alkylphenyl), ­NH(C 1­C4 alkylphenyl), cyano, nitro, oxo ( a s a substitutent for heteroaryl), ­CO2H, ­C(O ) O C1­C4 alkyl, ­CON(C1­C4 alkyl) (C 1­C4 alkyl) , ­CONH(C 1­C4 alkyl), ­CONH2, ­NHC(O ) ( C 1­C4 alkyl) , ­NHC(O ) (p henyl), ­N( C 1­C4 alkyl) C (O )( C 1­C4 alkyl), ­N(C 1­C4 alkyl)C(O ) ( p henyl), ­C(O) C 1­C4 alkyl, ­C(O )C1­C4 phenyl, ­C(O )C 1­C4 haloalkyl, ­OC(O ) C 1­C4 alkyl, -SO2( C 1­C4 alkyl), -SO2( p henyl) , - SO2(C 1­C4 haloalkyl), -SO2NH2, ­SO2NH( C 1­C4 alkyl), ­SO2NH( p henyl), - NHSO2( C 1­C4 alkyl), -NHSO2( p henyl) , and ­NHSO2(C 1­C4 haloalkyl) .
9. A compound according to claim 8, or a pharmaceutically acceptable salt thereof, wherein R is chosen from cyclohexyl, thiophenyl, thiazolyl, and phenyl, each of which is optionally substituted with one, two, or three groups independently chosen from ­R , ­OR , and halo, 21 22
10. A compound according to claim 9, or a pharmaceutically acceptable salt thereof, wherein R is thiophenyl or phenyl, each of which is optionally substituted with one, two, or three groups independently chosen from lower alkyl, lower alkoxy, trifluoromethyl, and halo.
11. A compound according to claim 10, or a pharmaceutically acceptable salt thereof, wherein R is chosen from phenyl, 2-chlorophenyl, 2-fluorophenyl, 2-methylphenyl, 2-trifluoromethylphenyl, 3-fluorophenyl, 3-methylphenyl, 3- trifluoromethylphenyl, 4-fluorophenyl, 5-methylthiophenyl, 3-fluoro methylthiophenyl, 5-methyl(t rifluoromethyl) t hiophenyl, and 5- (t rifluoromethyl)t hiophenyl.
12. A compound according to claim 11, or a pharmaceutically acceptable salt thereof, wherein R is chosen from phenyl, 2-fluorophenyl, 3-fluorophenyl, and 4-fluorophenyl.
13. A compound according to claim 12, or a pharmaceutically acceptable salt thereof, wherein R is phenyl.
14. A compound according to any one of claims 1 to 13, or a pharmaceutically acceptable salt thereof, wherein R is chosen from alkyl, cycloalkyl, aryl, heterocycloalkyl, and heteroaryl, each of which is optionally substituted with one, two, or three groups independently chosen from ­R , ­OR , halo, 11 12 ­NR R , -C( O ) R , ­C( O )O R , ­C(O )N R R , ­OC(O )R , ­OC(O ) OR , 12 13 12 12 12 13 12 11 ­OC(O )N R R , ­NR C( O )R , ­NR C(O ) O R , ­NR C(O )NR R , 12 13 13 12 13 11 13 12 13 ­S(O )R , ­SO R , ­SO NR R , and ­NR SO R , wherein 11 2 11 2 12 13 13 2 11 R is chosen from optionally substituted C ­C alkyl, optionally 11 1 6 substituted cycloalkyl, optionally substituted cycloalkenyl, optionally substituted aryl, optionally substituted heterocycloalkyl, optionally substituted heterocycloalkenyl, and optionally substituted heteroaryl; R is chosen from H, optionally substituted C ­C alkyl, optionally 12 1 6 substituted cycloalkyl, optionally substituted aryl, optionally substituted arylalkyl, optionally substituted heterocycloalkyl, optionally substituted heteroaryl, and optionally substituted heteroarylalkyl; and R is chosen from hydrogen and optionally substituted C ­C alkyl; 13 1 4 where each optionally substituted group mentioned for R , R or R , is 11 12 13 unsubstituted or independently substituted with one or more, such as one, two, or three, substituents independently selected from C1­C4 alkyl, C3­C6 cycloalkyl, aryl, heteroaryl, aryl­C1­C4 alkyl­, heteroaryl­C1­C4 alkyl­, C1­C4 haloalkyl-, ­OC1­C4 alkyl, ­OC1­C4 alkylphenyl, -C1­C4 alkyl­OH, - C1­C4 alkyl­O-C1­C4 alkyl, ­OC1­C4 haloalkyl, halo, ­OH, ­NH2, ­C1­C4 alkyl­NH2, ­N(C 1­C4 alkyl)( C 1­C4 alkyl) , ­NH(C1­C4 alkyl) , ­N(C 1­C4 alkyl)(C 1­C4 alkylphenyl) , ­NH( C 1­C4 alkylphenyl) , cyano, nitro, oxo (a s a substitutent for heteroaryl), ­CO2H, ­C(O ) O C1­C4 alkyl, ­CON( C1­C4 alkyl) (C 1­C4 alkyl), ­CONH(C 1­C4 alkyl), ­CONH2, ­NHC( O ) ( C 1­C4 alkyl), ­NHC(O )(p henyl), ­N(C 1­C4 alkyl)C (O )( C 1­C4 alkyl), ­N(C 1­C4 alkyl)C(O ) ( p henyl), ­C(O)C 1­C4 alkyl, ­C(O )C1­C4 phenyl, ­C( O ) C 1­C4 haloalkyl, ­OC(O ) C 1­C4 alkyl, -SO2(C 1­C4 alkyl), -SO2( p henyl) , - SO2(C 1­C4 haloalkyl), -SO2NH2, ­SO2NH(C 1­C4 alkyl), ­SO2NH(p henyl) , - NHSO2(C 1­C4 alkyl) , -NHSO2(p henyl), and ­NHSO2( C 1­C4 haloalkyl).
15. A compound according to claim 14, or a pharmaceutically acceptable salt thereof, wherein R is phenyl optionally substituted with one, two, or three groups independently chosen from ­R , ­OR , halo, -C( O ) R , ­NR R , 11 12 12 12 13 and ­NR SO R . 13 2 11
16. A compound according to claim 15, or a pharmaceutically acceptable salt thereof, wherein R is phenyl optionally substituted with one, two or three groups independently selected from halo, lower alkyl, aryl optionally substituted with one or two groups independently chosen from lower alkyl, trifluoromethyl,cycloalkyl, phenyl, and benzyloxy, heteroaryl optionally substituted with one or two groups independently chosen from lower alkyl, trifluoromethyl, cycloalkyl, and phenyl, (cy cloalkyl)su lfonamido, and heterocycloalkyl optionally substituted with one or two groups independently chosen from halo, lower alkyl, trifluoromethyl, cycloalkyl, heterocycloalkyl, and phenyl.
17. A compound according to claim 16, or a pharmaceutically acceptable salt thereof, wherein R is phenyl optionally substituted with one, two or three groups independently selected from halo, lower alkyl, oxazolyl, oxazol yl, pyrimidinyl, pyrimidinyl, pyridazinyl, pyridazinyl, 1H-pyrazol yl, (c ycloalkyl)su lfonamido, 1H-imidazolyl, imidazolyl, 1,2,3,6- tetrahydropyridinyl, azetidinyl, pyrrolidinyl, 2-oxa azaspiro[3.3]heptanyl, phenyl, hexahydropyrrolo[1,2-a]pyrazin-2( 1H) - yl, piperidinyl, piperazinyl, and 6,7-dihydropyrazolo[1,5-a]pyrimidin-4(5 H)- yl, each of which is optionally substituted with one or two groups independently chosen from halo, lower alkyl, trifluoromethyl, phenyl, cycloalkyl, benzyl, benzyloxy, and pyrrolidinyl.
18. A compound according to claim 17, or a pharmaceutically acceptable salt thereof, wherein R is chosen from phenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 2-fluorophenyl, 3-fluorophenyl, 4-fluorophenyl, 2- bromophenyl, 3-bromophenyl, 4-bromophenyl, 4-(1 -benzyl-1,2,3,6- tetrahydropyridinyl)phenyl, 4-(p yrimidinyl)p henyl, 4-(p yrimidin yl)p henyl, 4-(5 -methylpyrimidinyl)p henyl,3-(5-fluoropyrimidinyl)p henyl, 4-(5 -chloropyrimidinyl)p henyl, 4-( 5 -fluoropyrimidinyl)p henyl, 4-( 4- ( t rifluoromethyl)p yrimidinyl)p henyl, 4-(5 -trifluoromethylpyrimidin yl) p henyl, 4-( 5 -cyclopropylpyrimidinyl)p henyl, 4-( p yridazinyl) p henyl, 4- (p yridazinyl)p henyl, 4-(1 H-imidazolyl)p henyl, 4-(1 -methyl-1H-imidazol- 2-yl) p henyl, 4-(5 -methyl-1H-imidazolyl)p henyl), 4-(1 H-pyrazol yl)p henyl, 4-(3 -methyl-1H-pyrazolyl)p henyl, 4-( 3 -(t rifluoromethyl)-1H- pyrazolyl)p henyl, 3-(oxazolyl)p henyl, 4-( o xazolyl)p henyl, 4-( o xazol- 5-yl)p henyl, 4-(2 -methyloxazolyl)p henyl,4-(2 -cyclopropyloxazol yl)p henyl, 4-(2 -phenyloxazolyl)p henyl, 4- (cy clopropanesulfonamido)p henyl, 4-( 3 ,3-dimethylazetidinyl)p henyl, 4- ( 3 ,3-difluoropyrrolidinyl)p henyl, 4-(2 -oxaazaspiro[3.3]heptan yl)p henyl, 3' -(b enzyloxy) b iphenylyl, 3-( h exahydropyrrolo[1,2-a]pyrazin- 2(1 H)- yl)p henyl, 3-(4 -( pyrrolidinyl) p iperidinyl)p henyl, 4-(4 - methylpiperazinyl)p henyl, 4-(4 -isopropylpiperazinyl)p henyl, and 3- (6 ,7-dihydropyrazolo[1,5-a]pyrimidin-4(5 H)- yl)phenyl.
19. A compound according to claim 18, or a pharmaceutically acceptable salt thereof, wherein R is chosen from 4-(1 -benzyl-1,2,3,6-tetrahydropyridin yl)p henyl, 4-( p yrimidinyl)p henyl, 4-(5 -methylpyrimidinyl)p henyl, 4-(5 - chloropyrimidinyl)p henyl, 4-( 5 -fluoropyrimidinyl)p henyl, 4-(4 - (t rifluoromethyl)p yrimidinyl)p henyl, 4-(5 -cyclopropylpyrimidinyl)phenyl, 4-(p yridazinyl) p henyl, 4-( p yridazinyl) p henyl, 4-( 5 -methyl-1H-imidazol- 2-yl)p henyl), 4-(5 -( t rifluoromethyl)-1H-imidazolyl)p henyl, 3-chloro(5 - methyl-1H-imidazolyl) p henyl, 3-fluoro(5 -methyl-1H-imidazol yl) p henyl, 4-(1 H-pyrazolyl) p henyl, 3-(o xazolyl) p henyl, 4-( o xazol yl) p henyl, 4-(o xazolyl) p henyl, 4-(2 -cyclopropyloxazolyl)p henyl, 4-( 4 - isopropylpiperazinyl)p henyl, and 3-(6 ,7-dihydropyrazolo[1,5-a]pyrimidin- 4(5 H)- yl)p henyl.
20. A compound according to claim 14, or a pharmaceutically acceptable salt thereof, wherein R is chosen from 1,2,3,4-tetrahydroquinolinyl, 2,3,4,5- tetrahydrobenzo[f][1,4]oxazepinyl, 1,2,3,4-tetrahydropyrrolo[1,2- a]pyrazinyl, imidazo[1,2-a]pyridinyl, imidazo[1,2-a]pyridinyl, pyrrolo[1,2-a]pyrimidinyl, 1,5-naphthyridinyl, 2,3- dihydrobenzo[b][1,4]dioxinyl, benzo[d][1,3]dioxolyl, and 1-oxo- isoindolinyl, each of which is optionally substituted with one or two groups independently chosen from halo and lower alkyl optionally substituted with one, two, or three halo groups.
21. A compound according to claim 14, or a pharmaceutically acceptable salt thereof, wherein R is heteroaryl optionally substituted with one, two, or three groups independently chosen from ­R , ­OR , halo, and 11 12 ­NR SO R . 13 2 11
22. A compound according to claim 21, or a pharmaceutically acceptable salt thereof, wherein R is chosen from pyridinyl, pyridinyl, 1H-pyrazolyl, pyrimidinyl, pyridazinyl, benzo[d]isoxazolyl, benzo[d]oxazolyl, and thiazolyl, each of which is optionally substituted with one, two, or three groups independently chosen from ­R , ­OR , halo, and 11 12 ­NR SO R . 13 2 11
23. A compound according to claim 22, or a pharmaceutically acceptable salt thereof, wherein R is chosen from pyridinyl, pyridinyl, 1H-pyrazolyl, pyrimidinyl, pyridazinyl, benzo[d]isoxazolyl, benzo[d]oxazolyl, and thiazolyl, each of which is optionally substituted with one or two groups independently chosen from halo, lower alkyl, 2,2,2- trifluoroethylamino, trifluoromethyl, 2,2,2-trifluoroethyl, cycloalkyl, cyclopropylmethyl, 1H-pyrazolyl optionally substituted with lower alkyl, pyrimidinyl optionally substituted with lower alkyl or halo, oxazolyl optionally substituted with lower alkyl, piperazinyl optionally substituted with lower alkyl, piperidinyl optionally substituted with 2,2,2-trifluoroethyl, and pyridinyl optionally substituted with lower alkyl or trifluoromethyl.
24. A compound according to claim 23, or a pharmaceutically acceptable salt thereof, wherein R is chosen from 2-cyclopropylpyridinyl, 6- (t rifluoromethyl)p yridinyl, 2-(t rifluoromethyl) p yridinyl, 5- (t rifluoromethyl)p yridinyl, 2-(2 ,2,2-trifluoroethylamino)p yridinyl, 6- (2 ,2,2-trifluoroethylamino)p yridinyl, 6-( 3 -methyl-1H-pyrazolyl)p yridin yl, 6-( 5 -methylpyrimidinyl)p yridinyl, 6-(2 -methyloxazolyl) p yridinyl, 6-(5 -chloropyrimidinyl) p yridinyl, 6-(4 -isopropylpiperazinyl) p yridin yl, 2,6-dicyclopropylpyridinyl, 6-( 5 -fluoropyrimidinyl)p yridinyl, 2-(5 - chloropyrimidinyl)cyclopropylpyridinyl, 1-methyl-1H-pyrazolyl, 1- ( 2 ,2,2-trifluoroethyl) -1H-pyrazolyl, 1-(c yclopropylmethyl)-1H-pyrazolyl, 1-cyclopropyl-1H-pyrazolyl, 1,3-dimethyl-1H-pyrazolyl, 1-(1 -(2 ,2,2- trifluoroethyl)p iperidinyl)-1H-pyrazolyl, 1-( 5 -(t rifluoromethyl)p yridin yl)- 1H-pyrazolyl, 1-(5-( t rifluoromethyl) p yridinyl) -1H-pyrazolyl, pyrimidinyl, 2-cyclopropylpyrimidyl, 3-cyclopropylpyrimidyl, pyridazinyl, 6-cyclopropylpyridazinyl, benzo[d]isoxazolyl, 2- isopropylbenzo[d]oxazolyl, and 2-methylthiazolyl.
25. A compound chosen from trans-N-Hydroxy-2,3-diphenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*)- 2-Cyclohexyl-N-hydroxyphenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- N-Hydroxy( 2 -isopropoxyphenyl) phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- 2-(2 -Fluorophenyl) -N-hydroxy phenylcyclopropanecarboxamide; (1 S*,2R*,3R*)- 2-( 2 -Fluorophenyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- 2-( 2 -Bromophenyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- 2-(3 -Bromophenyl)- N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- 2-(4 -Bromophenyl) -N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- N-Hydroxyphenylo-tolylcyclopropanecarboxamide; (1 R*,2R*,3R*)- N-Hydroxyphenylm-tolylcyclopropanecarboxamide; (1 R*,2R*,3R*)- N-Hydroxyphenylp-tolylcyclopropanecarboxamide; ( 1 R*,2R*,3R*)- 2-(4 -( cycl opropanesulfonamido)p henyl) -N-hydroxy phenylcyclopropanecarboxamide; ( 1 S*,2R*,3R*)Cyclopentyl-N-hydroxyphenylcyclopropanecarboxamide; ( 1 R,2R,3R)- N-Hydroxy( 1 -methyl-1H-pyrazolyl) - 3- phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)-N-Hydroxyphenyl(p yrimidin yl) c yclopropanecarboxamide; (1 R,2R,3R) - 2-(2 ,3-Dihydrobenzo[b][1,4]dioxinyl) -N-hydroxy phenylcyclopropanecarboxamide; ( 1 R,2R,3R)- 2-( 8 -Chloro-2,3-dihydrobenzo[b][1,4]dioxinyl) - N-hydroxy phenylcyclopropanecarboxamide; (1 S,2R,3R)(8 -Chloro-2,3-dihydrobenzo[b][1,4]dioxinyl) - 3-(2 - fluorophenyl) -N-hydroxycyclopropanecarboxamide; ( 1 R*,2R*,3R*)- N-Hydroxyphenyl(p yridazin yl)c yclopropanecarboxamide; (1 R,2R,3R) - 2-(2 -Cyclopropylpyridinyl) - N-hydroxy phenylcyclopropanecarboxamide; (1 S,2R,3R)(2 -Cyclopropylpyridinyl) - 3-(2 -fluorophenyl)-N- hydroxycyclopropanecarboxamide; ( 1 R,2R,3R)- 2-(2 -Cyclopropylpyridinyl)- 3-(4 -fluorophenyl)-N- hydroxycyclopropanecarboxamide; (1 R,2R,3R) ( 2 ,2-Difluorobenzo[d][1,3]dioxolyl) - N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxyphenyl(6 -(t rifluoromethyl)p yridin yl)c yclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxyphenyl( 2 -(t rifluoromethyl)p yridin yl) c yclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxy( 1 -oxo(2 ,2,2-trifluoroethyl)i soindolinyl) - 3- phenylcyclopropanecarboxamide; ( 1 R,2R,3R)-N-hydroxy(2 -isopropylbenzo[d]oxazolyl) - 3- phenylcyclopropanecarboxamide; (1 R,2R,3R)- N-Hydroxy(3 -(o xazolyl)p henyl) phenylcyclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxy( 4 -( o xazolyl)p henyl) phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)(4 -(1 H-imidazolyl)p henyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R,2R,3R) (4 -(2 -Cyclopropyloxazolyl)p henyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*)-N-Hydroxyphenyl(4 -( 2 -phenyloxazol yl)p henyl)c yclopropanecarboxamide; (1 R*,2R*,3R*)(4 -( 5 -Fluoropyrimidinyl)p henyl) -N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)( 3 -(5 -Fluoropyrimidinyl) p henyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)( 4 -(5 -Cyclopropylpyrimidinyl) p henyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)(4 -( 4 -Trifluoromethylpyrimidinyl)p henyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)(4 -(5 -Trifluoromethylpyrimidinyl)p henyl) -N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)-N-Hydroxyphenyl(4 -(p yridazin yl)p henyl)c yclopropanecarboxamide; (1 R*,2R*,3R*)-N -Hydroxyphenyl(4 -(p yridazin yl) p henyl) c yclopropanecarboxamide; ( 1 R*,2R*,3R*)-N-Hydroxyphenyl( 4 -(p yrimidin yl)p henyl)c yclopropanecarboxamide; ( 1 R*,2R*,3R*)-N-Hydroxyphenyl( 4 -(p yrimidin yl) p henyl)c yclopropanecarboxamide; (1 R,2R,3R) ( 4 -(5 -Chloropyrimidinyl) p henyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)-N-Hydroxy(4 -( 5 -methylpyrimidinyl)p henyl) phenylcyclopropanecarboxamide; (1 R*,2R*,3R*) - N-Hydroxy( 4 -(5 -methyl-1H-imidazolyl)p henyl) phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*)( 4 -(2 -cyclopropylisoindolinyl)p henyl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R) - 2-(3 ' -(B enzyloxy)-[1,1' -biphenyl]yl)-N-hydroxy phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- 2-(4 ' -(9 H-carbazolyl) -[1,1' -biphenyl]yl) -N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)- N-hydroxy( 4 -( 4 -methyl-3,4-dihydro-2H-benzo[b][1,4]oxazin yl) p henyl)phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*)- N-Hydroxy(4 -( 4 -isopropylpiperazinyl) p henyl) phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*)- N-Hydroxy( 3 -(4 -isopropylpiperazinyl) p henyl) phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*) - N-Hydroxy(4 -( 3 ,3-difluoropyrrolidinyl)p henyl) phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*) - 2-(4 -(3 ,3-Dimethylazetidinyl) p henyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*)- 2-(4 -(2 -Oxaazaspiro[3.3]heptanyl)p henyl) -N-hydroxy phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*) - 2-( 3 -(H exahydropyrrolo[1,2-a]pyrazin-2(1 H)- yl) p henyl) -N- hydroxyphenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- N-Hydroxyphenyl(3 -( 4 -(pyrrolidinyl)p iperidin yl) p henyl) c yclopropanecarboxamide; (1 R,2R,3R)- 2-(3 -( 6 ,7-Dihydropyrazolo[1,5-a]pyrimidin-4(5 H)- yl) p henyl)-N- hydroxyphenylcyclopropanecarboxamide; (1 R*,2R*,3R*) - N-Hydroxy(4 -(4 -methylpiperazinyl) p henyl) phenylcyclopropanecarboxamide; ( 1 R*,2R*,3R*)- N-Hydroxy(4 -(o xazolyl)p henyl) phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)-N -Hydroxy(4 -( 1 -methyl-1H-imidazolyl)p henyl) phenylcyclopropanecarboxamide; (1 R*,2S*,3S*) - 2-(4 -( 5 -Fluoropyrimidinyl) p henyl)-N-hydroxymethyl phenylcyclopropanecarboxamide; (1 R*,2R*,3R*)- 2-(4 -( 1 H-pyrazolyl) p henyl) -N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)-N-Hydroxyphenyl(5 -(t rifluoromethyl) p yridin yl)c yclopropanecarboxamide; (1 R,2R,3R) - 2-(4 -(1 -Benzyl-1,2,3,6-tetrahydropyridinyl)p henyl)- N-hydroxy phenylcyclopropanecarboxamide; ( 1 S,2R,3R)(2 -fluorophenyl) -N-hydroxy( 4-( 2 -methyloxazol yl) p henyl) c yclopropanecarboxamide; (1 S,2R,3S)- 2-(2 -fluorophenyl)-N-hydroxymethyl(4 -(2 -methyloxazol yl)p henyl) c yclopropanecarboxamide; (1 S,2R,3R) - 2-(2 -fluorophenyl) -N-hydroxy(4-(3 -methyl-1H-pyrazol yl) p henyl) c yclopropanecarboxamide; ( 1 S,2R,3R)- 2-(2 -fluorophenyl)-N-hydroxy(4-( 3 -(t rifluoromethyl)-1H- pyrazolyl)p henyl)c yclopropanecarboxamide; (1 S,2R,3R)- 2-(2 -fluorophenyl) -N-hydroxy(4-(i sopropyl(2 - morpholinoethyl)a mino) p henyl)cy clopropanecarboxamide; (1 R,2R,3R) - 2-(2 -cyclopropylpyrimidinyl) -N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R)( b enzo[d]isoxazolyl) - N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R) - 2-( 6 -cyclopropylpyridazinyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 S,2R,3R) - 2-( 2 -fluorophenyl)-N-hydroxy( 6-(3 -methyl-1H-pyrazol yl)p yridinyl)c yclopropanecarboxamide; ( 1 S,2R,3R)- 2-( 6 -(5 -chloropyrimidinyl) p yridinyl) (2 -fluorophenyl)- N- hydroxycyclopropanecarboxamide; (1 R,2R,3R)( 5 -chloro(4 -isopropylpiperazinyl)p yridinyl) - N-hydroxy- 3-phenylcyclopropanecarboxamide; (1 S,2R,3R)- 2-(2 -fluorophenyl)- 3-( 6 -( 5 -fluoropyrimidinyl) p yridinyl) - N- hydroxycyclopropanecarboxamide; (1 S,2R,3R)- 2-( 2 -fluorophenyl)-N-hydroxy(6-( 5 -methylpyrimidin yl) p yridinyl) c yclopropanecarboxamide; (1 R,2R,3R) - N-hydroxy( 6 -(2 -methyloxazolyl)p yridinyl) - 3- phenylcyclopropanecarboxamide; (1 R,2R,3R) (5 -chloro( 2 -methyloxazolyl)p yridinyl)- N-hydroxy phenylcyclopropanecarboxamide; ( 1 S,2R,3R) - 2-(2 -fluorophenyl)-N-hydroxy(2-( 2 ,2,2- trifluoroethylamino)p yridinyl)c yclopropanecarboxamide; ( 1 R,2R,3R) - N-hydroxyphenyl(1 -(2 ,2,2-trifluoroethyl) -1H-pyrazol yl)c yclopropanecarboxamide; (1 R,2R,3R)- 2-( 1 -cyclopropyl-1H-pyrazolyl) -N-hydroxy phenylcyclopropanecarboxamide; (1 R,2R,3R) - N-hydroxyphenyl(1 -(1 -(2 ,2,2-trifluoroethyl)p iperidinyl)- 1H-pyrazolyl) c yclopropanecarboxamide; (1 R,2R,3R) - 2-(1 ,3-dimethyl-1H-pyrazolyl)- N-hydroxy phenylcyclopropanecarboxamide; ( 1 R,2R,3S)- N-hydroxy( 2 -methylthiazolyl) phenylcyclopropanecarboxamide; (1 R,2R,3R) - 2-(8 -chloro-1,2,3,4-tetrahydroquinolinyl)-N-hydroxy phenylcyclopropanecarboxamide; ( 1 R,2R,3R) - N-hydroxyphenyl( 4 -(2 ,2,2-trifluoroethyl)-2,3,4,5- tetrahydrobenzo[f][1,4]oxazepinyl)c yclopropanecarboxamide; (1 R,2R,3R)- N-hydroxy(1 -methyl(2 ,2,2-trifluoroethyl)-1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazinyl)- 3- phenylcyclopropanecarboxamide; ( 1 R,2R,3R) - 2-(1 -fluoro(2 ,2,2-trifluoroethyl)-1,2,3,4-tetrahydropyrrolo[1,2- a]pyrazinyl) - N-hydroxyphenylcyclopropanecarboxamide; (1 R,2R,3R)- N-hydroxyphenyl( 2 -( 2 ,2,2-trifluoroethyl) -1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazinyl) c yclopropanecarboxamide; ( 1 R,2R,3R)-N-hydroxyphenyl( 7 -(2 ,2,2-trifluoroethyl)-5,6,7,8- tetrahydroimidazo[1,2-a]pyrazinyl) c yclopropanecarboxamide; (1 R,2R,3R) - N-hydroxyphenyl(2 -( t rifluoromethyl) i midazo[1,2-a]pyridin- 7-yl)c yclopropanecarboxamide (1 R,2R,3R) - N-hydroxy(i midazo[1,2-a]pyridinyl) phenylcyclopropanecarboxamide; ( 1 R,2R,3R) - N-hydroxyphenyl( p yrrolo[1,2-a]pyrimidin yl)c yclopropanecarboxamide; ( 1 R,2R,3R)- N-hydroxy( 1 ,5-naphthyridinyl)- 3- phenylcyclopropanecarboxamide; ( 1 S,2S,3R)( 2 -cyclopropylpyridinyl)- N-hydroxy( 2 -methylthiazol yl)c yclopropanecarboxamide; (1 S,2S,3R) - 2-(2 -cyclopropylpyridinyl)- N-hydroxy(5 - ( t rifluoromethyl)t hiophenyl)c yclopropanecarboxamide; (1 R,2R,3R)(1 -(( 5 -fluoropyridinyl)m ethyl) -1H;pyrazolyl)- N-hydroxy phenylcyclopropanecarboxamide (1 S,2R,3S) - 2-(3 -fluoromethylthiophenyl)-N-hydroxy( 1 -methyl-1H- pyrazolyl)c yclopropanecarboxamide; ( 1 S,2S,3R)- N-hydroxy( 1 -methyl-1H-pyrazolyl) - 3-( 5 -methyl (t rifluoromethyl) t hiophenyl)c yclopropanecarboxamide; ( 1 S,2S,3R)- N-hydroxy( 1 -methyl-1H-pyrazolyl)- 3-(5 -methylthiophen yl)c yclopropanecarboxamide; (1 R,2R,3R)- N-hydroxy(1 -methyl-1H-pyrazolyl)- 3-o- tolylcyclopropanecarboxamide; (1 R,2R,3R) - N-hydroxy(1 -methyl-1H-pyrazolyl) - 3-( 2 - (t rifluoromethyl)phenyl) cyclopropanecarboxamide; (1 S,2R,3R)- 2-( 2 -chlorophenyl)- N-hydroxy(1-methyl-1H-pyrazol yl)c yclopropanecarboxamide; (1 R,2R,3R)- 2-(3 -fluorophenyl)- N-hydroxy(1-methyl-1H-pyrazol yl)c yclopropanecarboxamide; (1 R,2R,3R)- N-hydroxy(1 -methyl-1H-pyrazolyl)- 3-m- tolylcyclopropanecarboxamide; (1 R,2R,3R)- N-hydroxy(1 -methyl-1H-pyrazolyl)- 3-(3 - (t rifluoromethyl) p henyl)cyclopropanecarboxamide; (1 R,2R,3R)- 2-(3 -chlorophenyl)-N-hydroxy(1-methyl-1H-pyrazol yl)c yclopropanecarboxamide; (1 S,2S,3R)- 2-(2 -cyclopropylpyridinyl)- 3-( 3 -fluoromethylthiophenyl) - N-hydroxycyclopropanecarboxamide; (1 S,2S,3R) - 2-(2 -cyclopropylpyridinyl)- N-hydroxy( 5 -methyl ( t rifluoromethyl)t hiophenyl)c yclopropanecarboxamide; ( 1 S,2S,3R)- 2-( 2 -cyclopropylpyridinyl) - N-hydroxy(5 -methylthiophen yl) c yclopropanecarboxamide; (1 R,2R,3R)- N-hydroxyphenyl( 4 -( 5 -(t rifluoromethyl) -1H-imidazol yl)p henyl)cyclopropanecarboxamide; (1 R,2R,3R)- 2-( 3 -chloro(5 -methyl-1H-imidazolyl)p henyl) -N-hydroxy phenylcyclopropanecarboxamide; and ( 1 R,2R,3R) ( 3 -fluoro( 5 -methyl-1H-imidazolyl) p henyl) -N-hydroxy phenylcyclopropanecarboxamide, or a pharmaceutically acceptable salt thereof.
26. A pharmaceutical composition comprising a compound according to any one of claims 1 to 25, or a pharmaceutically acceptable salt thereof, and at least one pharmaceutically acceptable excipient.
27. Use of a compound according to any one of claims 1 to 25, or a pharmaceutically acceptable salt thereof, in the manufacture of a medicament for treating a condition or disorder mediated by at least one histone deacetylase in a subject in need of such a treatment.
28. Use according to claim 27 wherein the at least one histone deacetylase is HDAC-4.
29. Use according to claim 27 wherein said condition or disorder involves a neurodegenerative pathology.
30. Use according to claim 29 wherein the condition or disorder is Huntington’s disease.
31. A compound, composition or use according to any of claims 1, 26 or 27 substantially as hereinbefore described.
NZ613087A 2011-01-24 2012-01-23 Histone deacetylase inhibitors and compositions and methods of use thereof NZ613087B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161435678P 2011-01-24 2011-01-24
US61/435,678 2011-01-24
PCT/US2012/022216 WO2012103008A1 (en) 2011-01-24 2012-01-23 Histone deacetylase inhibitors and compositions and methods of use thereof

Publications (2)

Publication Number Publication Date
NZ613087A NZ613087A (en) 2015-02-27
NZ613087B2 true NZ613087B2 (en) 2015-05-28

Family

ID=

Similar Documents

Publication Publication Date Title
US9765054B2 (en) Histone deacetylase inhibitors and compositions and methods of use thereof
US10457675B2 (en) Histone deacetylase inhibitors and compositions and methods of use thereof
US9855267B2 (en) Histone deacetylase inhibitors and compositions and methods of use thereof
US9783488B2 (en) Histone deacetylase inhibitors and compositions and methods of use thereof
WO2014159214A1 (en) Histone deacetylase inhibitors and compositions and methods of use thereof
US10106535B2 (en) Histone deacetylase inhibitors and compositions and methods of use thereof
AU2016258188B2 (en) Histone deacetylase inhibitors and compositions and methods of use thereof
NZ613087B2 (en) Histone deacetylase inhibitors and compositions and methods of use thereof