NZ611362B2 - A heterogeneous catalytic reaction apparatus and method - Google Patents
A heterogeneous catalytic reaction apparatus and method Download PDFInfo
- Publication number
- NZ611362B2 NZ611362B2 NZ611362A NZ61136212A NZ611362B2 NZ 611362 B2 NZ611362 B2 NZ 611362B2 NZ 611362 A NZ611362 A NZ 611362A NZ 61136212 A NZ61136212 A NZ 61136212A NZ 611362 B2 NZ611362 B2 NZ 611362B2
- Authority
- NZ
- New Zealand
- Prior art keywords
- tray
- liquid
- catalyst
- vapour
- column reactor
- Prior art date
Links
- 238000006555 catalytic reaction Methods 0.000 title claims abstract description 13
- 238000000034 method Methods 0.000 title claims description 32
- 239000007788 liquid Substances 0.000 claims abstract description 111
- 239000003054 catalyst Substances 0.000 claims abstract description 108
- 238000006243 chemical reaction Methods 0.000 claims abstract description 58
- 239000000376 reactant Substances 0.000 claims abstract description 20
- 239000007791 liquid phase Substances 0.000 claims abstract description 17
- 239000012071 phase Substances 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims abstract description 10
- 239000011949 solid catalyst Substances 0.000 claims abstract description 7
- 238000005886 esterification reaction Methods 0.000 claims description 21
- 230000032050 esterification Effects 0.000 claims description 18
- 230000003197 catalytic effect Effects 0.000 claims description 7
- 238000000066 reactive distillation Methods 0.000 claims description 4
- 238000005342 ion exchange Methods 0.000 claims description 2
- 101100536354 Drosophila melanogaster tant gene Proteins 0.000 abstract 1
- 239000000203 mixture Substances 0.000 description 26
- 238000004519 manufacturing process Methods 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000002253 acid Substances 0.000 description 16
- 239000011347 resin Substances 0.000 description 16
- 229920005989 resin Polymers 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 150000007513 acids Chemical class 0.000 description 15
- 150000002148 esters Chemical class 0.000 description 14
- 238000004821 distillation Methods 0.000 description 12
- 238000011068 loading method Methods 0.000 description 12
- -1 aliphatic monocarboxylic acids Chemical class 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 9
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 150000008064 anhydrides Chemical class 0.000 description 7
- 235000014113 dietary fatty acids Nutrition 0.000 description 7
- 229930195729 fatty acid Natural products 0.000 description 7
- 239000000194 fatty acid Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 150000001991 dicarboxylic acids Chemical class 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical class CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 150000001733 carboxylic acid esters Chemical class 0.000 description 5
- 150000004665 fatty acids Chemical class 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 125000005907 alkyl ester group Chemical group 0.000 description 4
- 239000003456 ion exchange resin Substances 0.000 description 4
- 229920003303 ion-exchange polymer Polymers 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000000725 suspension Substances 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 125000003118 aryl group Chemical group 0.000 description 3
- 229920001429 chelating resin Polymers 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000005690 diesters Chemical class 0.000 description 3
- 238000001914 filtration Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 150000002763 monocarboxylic acids Chemical class 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000005809 transesterification reaction Methods 0.000 description 3
- 150000003626 triacylglycerols Chemical class 0.000 description 3
- LNETULKMXZVUST-UHFFFAOYSA-N 1-naphthoic acid Chemical compound C1=CC=C2C(C(=O)O)=CC=CC2=C1 LNETULKMXZVUST-UHFFFAOYSA-N 0.000 description 2
- XDOFQFKRPWOURC-UHFFFAOYSA-N 16-methylheptadecanoic acid Chemical compound CC(C)CCCCCCCCCCCCCCC(O)=O XDOFQFKRPWOURC-UHFFFAOYSA-N 0.000 description 2
- DUYOHDPGXMPOKD-UHFFFAOYSA-N 2-formyloxypropyl formate Chemical compound O=COC(C)COC=O DUYOHDPGXMPOKD-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 2
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 238000013019 agitation Methods 0.000 description 2
- 230000029936 alkylation Effects 0.000 description 2
- 238000005804 alkylation reaction Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- RWGFKTVRMDUZSP-UHFFFAOYSA-N cumene Chemical compound CC(C)C1=CC=CC=C1 RWGFKTVRMDUZSP-UHFFFAOYSA-N 0.000 description 2
- 239000003599 detergent Substances 0.000 description 2
- POULHZVOKOAJMA-UHFFFAOYSA-N dodecanoic acid Chemical compound CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- VKOBVWXKNCXXDE-UHFFFAOYSA-N icosanoic acid Chemical compound CCCCCCCCCCCCCCCCCCCC(O)=O VKOBVWXKNCXXDE-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 239000011973 solid acid Substances 0.000 description 2
- 150000003900 succinic acid esters Chemical class 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- URAYPUMNDPQOKB-UHFFFAOYSA-N triacetin Chemical compound CC(=O)OCC(OC(C)=O)COC(C)=O URAYPUMNDPQOKB-UHFFFAOYSA-N 0.000 description 2
- OYHQOLUKZRVURQ-NTGFUMLPSA-N (9Z,12Z)-9,10,12,13-tetratritiooctadeca-9,12-dienoic acid Chemical compound C(CCCCCCC\C(=C(/C\C(=C(/CCCCC)\[3H])\[3H])\[3H])\[3H])(=O)O OYHQOLUKZRVURQ-NTGFUMLPSA-N 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- GYSCBCSGKXNZRH-UHFFFAOYSA-N 1-benzothiophene-2-carboxamide Chemical compound C1=CC=C2SC(C(=O)N)=CC2=C1 GYSCBCSGKXNZRH-UHFFFAOYSA-N 0.000 description 1
- VLDPXPPHXDGHEW-UHFFFAOYSA-N 1-chloro-2-dichlorophosphoryloxybenzene Chemical compound ClC1=CC=CC=C1OP(Cl)(Cl)=O VLDPXPPHXDGHEW-UHFFFAOYSA-N 0.000 description 1
- JTXMVXSTHSMVQF-UHFFFAOYSA-N 2-acetyloxyethyl acetate Chemical compound CC(=O)OCCOC(C)=O JTXMVXSTHSMVQF-UHFFFAOYSA-N 0.000 description 1
- IKCQWKJZLSDDSS-UHFFFAOYSA-N 2-formyloxyethyl formate Chemical compound O=COCCOC=O IKCQWKJZLSDDSS-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- GHVNFZFCNZKVNT-UHFFFAOYSA-N Decanoic acid Natural products CCCCCCCCCC(O)=O GHVNFZFCNZKVNT-UHFFFAOYSA-N 0.000 description 1
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N Myristic acid Natural products CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- 235000019482 Palm oil Nutrition 0.000 description 1
- 235000021314 Palmitic acid Nutrition 0.000 description 1
- LGRFSURHDFAFJT-UHFFFAOYSA-N Phthalic anhydride Natural products C1=CC=C2C(=O)OC(=O)C2=C1 LGRFSURHDFAFJT-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 235000019484 Rapeseed oil Nutrition 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000001242 acetic acid derivatives Chemical class 0.000 description 1
- 150000008065 acid anhydrides Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 238000005865 alkene metathesis reaction Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- JHIWVOJDXOSYLW-UHFFFAOYSA-N butyl 2,2-difluorocyclopropane-1-carboxylate Chemical compound CCCCOC(=O)C1CC1(F)F JHIWVOJDXOSYLW-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- FOCAUTSVDIKZOP-UHFFFAOYSA-N chloroacetic acid Chemical compound OC(=O)CCl FOCAUTSVDIKZOP-UHFFFAOYSA-N 0.000 description 1
- 235000019864 coconut oil Nutrition 0.000 description 1
- 239000003240 coconut oil Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- UYAAVKFHBMJOJZ-UHFFFAOYSA-N diimidazo[1,3-b:1',3'-e]pyrazine-5,10-dione Chemical compound O=C1C2=CN=CN2C(=O)C2=CN=CN12 UYAAVKFHBMJOJZ-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002118 epoxides Chemical class 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 238000000895 extractive distillation Methods 0.000 description 1
- 229940013317 fish oils Drugs 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- VZCYOOQTPOCHFL-OWOJBTEDSA-L fumarate(2-) Chemical class [O-]C(=O)\C=C\C([O-])=O VZCYOOQTPOCHFL-OWOJBTEDSA-L 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N glutaric acid Chemical class OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- 239000001087 glyceryl triacetate Substances 0.000 description 1
- 235000013773 glyceryl triacetate Nutrition 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 150000003944 halohydrins Chemical class 0.000 description 1
- 239000002638 heterogeneous catalyst Substances 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012442 inert solvent Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 150000002596 lactones Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 150000002688 maleic acid derivatives Chemical class 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 238000006384 oligomerization reaction Methods 0.000 description 1
- 150000003901 oxalic acid esters Chemical class 0.000 description 1
- 239000002540 palm oil Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 150000003140 primary amides Chemical class 0.000 description 1
- 229940116423 propylene glycol diacetate Drugs 0.000 description 1
- 150000003235 pyrrolidines Chemical class 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005201 scrubbing Methods 0.000 description 1
- 150000003334 secondary amides Chemical class 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000003760 tallow Substances 0.000 description 1
- NUMQCACRALPSHD-UHFFFAOYSA-N tert-butyl ethyl ether Chemical compound CCOC(C)(C)C NUMQCACRALPSHD-UHFFFAOYSA-N 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- 229960002622 triacetin Drugs 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D3/00—Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
- B01D3/14—Fractional distillation or use of a fractionation or rectification column
- B01D3/16—Fractionating columns in which vapour bubbles through liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00743—Feeding or discharging of solids
- B01J2208/00752—Feeding
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00743—Feeding or discharging of solids
- B01J2208/00761—Discharging
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00893—Feeding means for the reactants
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/02—Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
- B01J8/003—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor in a downward flow
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/0015—Feeding of the particles in the reactor; Evacuation of the particles out of the reactor
- B01J8/0035—Periodical feeding or evacuation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/04—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid passing successively through two or more beds
- B01J8/0492—Feeding reactive fluids
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/18—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
- B01J8/20—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
- B01J8/22—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
- B01J8/224—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
- B01J8/228—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement externally, i.e. the particles leaving the vessel and subsequently re-entering it
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/08—Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/48—Separation; Purification; Stabilisation; Use of additives
- C07C67/52—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation
- C07C67/54—Separation; Purification; Stabilisation; Use of additives by change in the physical state, e.g. crystallisation by distillation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
Abstract
apparatus for use in heterogeneous catalytic reactions comprising a column reactor (1) comprising a plurality of trays (2) mounted one above another, each adapted to hold a predetermined liquid volume and a charge of particles of a solid catalyst thereon; means for introducing a liquid phase reactant above the uppermost tray; means for introducing a vapour phase reactant below the lowermost tray; means for removing a liquid phase post-reaction stream from below the lowermost tray; means for removing a vapour phase post-reaction stream from above the uppermost tray; vapour upcomer means (14) associated with each tray (2a, 2b, 2c) adapted to allow vapour to enter that tray from below; underflow means (7) associated with each tray adapted to remove liquid from that tray and the column reactor before being introduced into the column reactor at a lower tray; means for temporarily directing the liquid removed from a tray to bypass at least one lower tray and be reintroduced to the column reactor at a tray located below the at least one bypassed tray; means for removing the liquid and catalyst from the at least one bypassed tray: and means for replacing a liquid and catalyst inventory on the at least one bypassed tray. tant above the uppermost tray; means for introducing a vapour phase reactant below the lowermost tray; means for removing a liquid phase post-reaction stream from below the lowermost tray; means for removing a vapour phase post-reaction stream from above the uppermost tray; vapour upcomer means (14) associated with each tray (2a, 2b, 2c) adapted to allow vapour to enter that tray from below; underflow means (7) associated with each tray adapted to remove liquid from that tray and the column reactor before being introduced into the column reactor at a lower tray; means for temporarily directing the liquid removed from a tray to bypass at least one lower tray and be reintroduced to the column reactor at a tray located below the at least one bypassed tray; means for removing the liquid and catalyst from the at least one bypassed tray: and means for replacing a liquid and catalyst inventory on the at least one bypassed tray.
Description
A Heterogeneous Catalytic Reaction Apparatus and Method The present invention relates to apparatus and a method for carrying out heterogeneous catalytic reactions. More particularly it relates to a method and apparatus for carrying out a heterogeneous catalytic reaction for the production of carboxylic acid esters.
Carrying out a reaction in the presence of catalyst in a distillation column such that the reaction is carried out concurrently with the separation of the products of the reaction has been known and practiced for some time. This so-called catalytic distillation is particularly useful for carrying out reversible reactions in the liquid phase such as esterification reactions.
A variety of arrangements have been suggested. Generally the catalyst will be in particulate form. In some arrangements the catalyst is placed on conventional trays within a distillation column. Examples of such catalytic distillation columns include US5536856 and US5157168.
In the arrangement described in US5536856, the contents of which are incorporated herein by reference, esterification is carried out in a column reactor in which there is a plurality of esterification trays. Each tray has a predetermined liquid hold-up and contains a charge of a particulate esterification catalyst. A liquid phase containing the carboxylic acid component flows down the column reactor from one esterification tray to the next tray down against an upflowing alcohol vapour stream which is injected into the bottom of the column reactor.
Water of esterification is removed from the top of the column reactor in the vapour stream while ester product is recovered from the sump of the reactor. As the liquid flows down the trays it encounters progressively drier alcohol and the esterification equilibrium reaction is driven further towards ester formation.
As the reaction continues, the catalyst will become deactivated. When this occurs it is necessary to remove the spent catalyst and replace it with fresh catalyst. Conventionally this requires the process to be shut down so that the column can be emptied of catalyst and restocked with fresh catalyst. This is an expensive procedure in terms of the action required and in terms of lost production.
A further problem is that the catalyst in the column may become deactivated at different rates depending on its location in the column. Thus in the situation where the entire process is shut down and the column emptied of catalyst, at least some of the catalyst in the column may not be deactivated and therefore will be replaced unnecessarily. In order to minimise this loss, the point at which shut-down occurs may be delayed until more catalyst has been consumed.
However, whilst this may address the above problem, there will be a balance between keeping the process running to prevent loss of active catalyst while needing to replace spent catalyst to maintain efficient production.
In order to address this problem various proposals have been made to enable catalyst to be removed and replaced without requiring total operation to be stopped.
For example, in US5510089 a reactor is described in which small particulate catalyst is loosely supported on trays in a distillation column. The catalyst is submerged in the liquid on the trays and is held in suspension by the upflowing gas. A draw-off is provided for each tray so that liquid containing the suspended catalyst can be removed to a separator during operation. Once removed, the catalyst is separated from the liquid which is recycled to the tray until all of the catalyst has been removed. Fresh catalyst can then be added to the separator where it is slurried into the liquid being recirculated from the tray. The trays can all be connected to the same separator/slurry mixer. Further arrangements for removing catalyst without column shutdown are described in US5198196, and US5133942.
A modified arrangement is described in US6036848. In this arrangement a monophase fluid is diverted to prevent it from passing through the catalyst. The column can then have the spent catalyst removed and have fresh catalyst added. The circulation of the monophase fluid is then restored. The catalyst can be removed by gravity or, if that is inadequate, additional means may be provided. Liquid containing the reagents is introduced into a downtake in the reaction zone. The downtake is located in the centre of the column and comes out into a distribution device from which the liquid is sent to be distributed inside the catalytic bed so as to pass through the catalytic bed upwards from bottom to top. The liquid fraction then pours out of the top of the bed toward the distillation zone located below the reaction zone via an overflow. The distillation zone has an upper distillation plate which comprises an overflow edge which is used to allow the further separation of the liquid fraction containing product.
The remaining liquid is then sent towards the next reaction zone positioned below the distillation zone where the procedure is repeated.
Whilst these arrangements address the problem of the previous arrangements in which complete shutdown of the column was required, they still suffer from various disadvantages and drawbacks. In particular as the liquid from a tray is diverted to the apparatus in which the catalyst is separated from the liquid, the flow into and out of the column is effected as is the liquid inventory in the column.
It is therefore desirable to provide an apparatus and a method which enable the above- mentioned problems to be overcome. This is achieved by a system in which the tray that has to have the catalyst replaced is by-passed while the catalyst is replaced so that reaction in the remainder in the column can continue.
Thus according to a first aspect of the present invention there is provided an apparatus for use in heterogeneous catalytic reactions comprising: (a) a column reactor comprising a plurality of trays mounted one above another, each adapted to hold a predetermined liquid volume and a charge of particles of a solid catalyst thereon; (b) means for introducing a liquid phase reactant above the uppermost tray; (c) means for introducing a vapour phase reactant below the lowermost tray; (d) means for removing a liquid phase post-reaction stream from below the lowermost tray; (e) means for removing a vapour phase post-reaction stream from above the uppermost tray; (f) vapour upcomer means associated with each tray adapted to allow vapour to enter that tray from below; (g) underflow means associated with each tray adapted to remove liquid from that tray and the column reactor before being introduced into the column reactor at a lower tray; (h) means for temporarily directing said liquid removed from a tray to bypass at least one lower tray and be reintroduced to the column reactor at a tray located below said at least one bypassed tray; (i) means for removing the liquid and catalyst from said at least one bypassed tray; (j) means for replacing a liquid and catalyst inventory on said at least one bypassed tray.
By this means the liquid and catalyst inventory can be replaced without the overall flow into or out of the column reactor being affected. This is achieved by the use of the underflow and by the fact that the underflow means removes the flow from the column reactor before reintroducing it thereto at a lower tray i.e. that an external system is used. The underflow arrangement ensures that the liquid inventory is substantially constant.
It should be understood that by "external system" we generally mean that the pipework completely leaves the column reactor however, it will be understood that it also covers arrangements where the pipework is within the external shall of the plant construction while still being external of the column reactor which is considered to be the area in which the trays are located.
It should also be understood that by "underflow means" we mean an outlet which is positioned below the liquid-level in a reaction vessel to allow the flow of liquid from below the top surface of said liquid. This is in contrast to an overflow arrangement wherein liquid is removed from the top of the liquid once the liquid level reaches a predetermined level in the reaction vessel.
The underflow means will preferably be configured such that substantially only liquid is removed from said tray via the underflow means. This can be achieved by any suitable means. In one arrangement, a filter may be included at or near the entrance to the underflow means. A cyclone arrangement may also be used.
Liquid removed from a tray via the underflow means may be directed to the tray below, or when one or more trays are being bypassed, a subsequent lower tray, by any suitable means.
In one arrangement, the liquid from the underflow means is passed to a vessel including means which allows the liquid level on the tray to be controlled. The means to control the liquid level may be of any suitable configuration and may be a baffle. The baffle will hold liquid in the pot up to the upper level of the baffle. Liquid in excess of the baffle will then overflow the baffle and flow via appropriate pipework to be introduced to the reaction column at a subsequent tray. Means may be included in the pot to enable it to be evacuated if necessary.
The column reactor comprises a plurality of trays. Although two or three trays may suffice, in some cases it will typically be necessary to provide at least about 5 up to about 20 or more trays in the column reactor depending on the reaction to be carried out. Typically each tray will be designed to provide a residence time for liquid on each tray of from about 1 minute up to about 120 minutes, preferably from about 5 minutes to about 60 minutes although again this will depend on the reaction being carried out.
While we have indicated that the means for introducing the liquid and vapour reactants respectively above and below the trays, it will be understood that these will be above the trays on which reaction is being carried out. If, for example, liquid reactant is added below a tray, that tray will not take part in the reaction and as such the addition in this way does not take the apparatus outside the scope of the present invention. A similar situation applies if any vapour is added above a tray. It will also be understood that an analogous situation applies in connection with the removal of the vapour and liquid post-reaction streams.
One or more wash trays may be provided above the esterification trays in order to prevent loss of product, solvent and/or reagents from the column reactor.
The vapour upcomer means associated with each tray may comprise a sparger positioned so that, in operation, it will lie below the surface of the mixture of liquid and solid catalyst on that tray and so that vapour bubbles emerging therefrom will agitate said mixture of liquid and solid particulate catalyst. The sparger may be a ring sparger. At least one baffle means may be mounted in the vicinity of the sparger to enhance the mixing action thereof. For small scale operation a sparger on the axis of the column reactor under a cylindrical baffle can be used.
In one embodiment the sparger is a ring sparger and inner and outer annular baffle means are positioned in the vicinity of the sparger and define an upflow zone in the region of upflowing vapour bubbles and adjacent downflow zones within and outside the upflow zone.
It is important to avoid stagnant zones where solid catalyst can settle out because this can lead to excessive formation of by-products or to occurrence of hot spots. Although mechanical stirrers can be provided on each tray to maintain the catalyst particles suspended in liquid, this adds somewhat to the complexity of the reactor. However, it is possible, by suitable design of the sparger and tray, to ensure that the upflowing vapour provides sufficient agitation in passage through the liquid on the tray to maintain the catalyst particles in suspension. To achieve this end it is convenient if at least a part of the floor of one or more, and preferably all, of the trays slopes towards a zone where there is turbulence caused by the upflowing vapour such as is to be found under the sparger. The angle of slope is preferably selected so as to be equal to or greater than the angle of repose of the solid particulate catalyst under the liquid in the tray. The adoption of such a slope will tend to ensure that all of the catalyst is in dynamic contact with the liquid during operation and that no stagnant zones of catalyst are formed. Such stagnant zones are undesirable because they can enable undesirable side reactions or even thermal runaway to occur in certain instances.
In the arrangement of the present invention, the liquid on the bypassed tray is used to discharge the catalyst from that tray without the need for the circulation of liquid or addition of fresh liquid to remove the catalyst. Thus the liquid inventory is maintained.
Once removed, the catalyst from the bypassed tray is removed from the liquid. This may be achieved by any suitable means. In one arrangement, the catalyst is separated by filtration.
The use of filtration rather than settling allows for a relatively quick turnaround time.
Fresh catalyst is then slurried in a volume of liquid required to replace the liquid on the bypassed tray and returned to the bypassed tray which can then be put back on stream. It will be understood that by "fresh" catalyst we mean either new catalyst or regenerated catalyst.
Thus the catalyst and liquid inventory can be replaced without the need for the circulation of liquid or the use of additional liquid to replace the catalyst.
The liquid used to slurry the fresh catalyst may be the liquid previously removed from the tray, fresh liquid or a mixture thereof.
The apparatus of the above first aspect may be used for carrying out a variety of heterogeneous catalytic reactions.
Thus according to a second aspect of the present invention there is provided a process for carrying out a heterogeneous catalytic reaction comprising: (a) supplying a liquid phase reactant to the apparatus of the above first aspect; (b) supplying a vapour phase reactant to the apparatus of the above first aspect; (c) passing the liquid phase reactant and vapour phase reactant in countercurrent through the column reactor, said reactor being maintained under reaction conditions to allow reaction to occur; (d) as required carrying out a catalyst replacement process comprising: i. directing liquid from a tray to bypass at least one tray located below said tray; ii. removing liquid and catalyst on the at least one bypassed tray; iii. replenishing said at least one bypassed tray with a charge of liquid and catalyst; iv. directing liquid from the tray to the previously bypassed at least one tray; (e) recovering a liquid phase post-reaction stream; and (f) recovering a vapour phase post-reaction stream.
The process may additionally include separating the removed liquid from the removed catalyst. This may be achieved by any suitable means such as filtration. The removed catalyst may be washed before being discharged. Fresh catalyst may be washed before being used to replenish the bypassed tray.
Generally the system used for the removal and replenishment of catalyst will be purged before operation to remove oxygen. It will generally be purged with an inert gas such as nitrogen.
The heterogeneous catalytic reaction can be any suitable reaction. In one arrangement it is an esterification process. In particular, it is a process for the production of carboxylic acid esters by reaction of a carboxylic acid component selected from mono-, di- and polycarboxylic acids, anhydrides thereof, and mixtures thereof, and of an alcohol component selected from mono-, di- and polyhydric alcohols, phenols, and mixtures thereof, in the presence of a solid esterification catalyst selected from particulate ion exchange resins having sulphonic groups, carboxylic groups or both.
Examples of monoesterification reactions include the production of alkyl esters of aliphatic monocarboxylic acids from alkanols and aliphatic monocarboxylic acids or anhydrides thereof. Such monocarboxylic acids may contain, for example, from about 6 to about 26 carbon atoms and may include mixtures of two or more thereof. Alkyl esters derived from alkanols containing 1 to about 10 carbon atoms may be of particular importance.
Such monocarboxylic acids include fatty acids such as decanoic acid, dodecanoic acid, tetradecanoic acid, hexadecanoic acid, octadecanoic acid, linoleic acid, eicosanoic acid, isostearic acid and the like, as well as mixtures of two or more thereof. Mixtures of fatty acids are produced commercially by hydrolysis of naturally occurring triglycerides of vegetable origin, such as coconut oil, rape seed oil and palm oils, and triglycerides of animal origin, such as lard, tallow and fish oils. If desired, such mixtures of acids can be subjected to distillation to remove lower boiling acids having a lower boiling point than a chosen temperature (e.g. C to C acids) and thus produce a "topped" mixture of acids, or to remove 8 10 higher boiling acids having a boiling point higher than a second chosen temperature (e.g. C acids) and thus produce a "tailed" mixture of acids, or to remove both lower and higher boiling acids and thus produce a "topped and tailed" mixture of acids. Such fatty acid mixtures may also contain ethylenically unsaturated acids such as oleic acid. These fatty acid mixtures can be esterified with methanol to yield methyl fatty acid ester mixtures that can be hydrogenated to yield mixtures of alkanols, e.g. C to C alkanols (often called detergent 8 20 alcohols), that are acceptable for production of detergents without prior separation of alkanols one from another.
Another class of carboxylic acid esters that can be produced by the process of the invention are dialkyl esters of aliphatic and cycloaliphatic C to C saturated and unsaturated 4 18 dicarboxylic acids. These can be produced by reaction of alkanols with the dicarboxylic acids or anhydrides thereof, or with mixtures of the dicarboxylic acid and its anhydride.
Dialkyl oxalates, dialkyl maleates, dialkyl succinates, dialkyl fumarates, dialkyl glutarates, dialkyl pimelates, and dialkyl azelaates are examples of such dicarboxylic acid esters. Other examples of such esters include dialkyl esters of tetrahydrophthalic acid. The C to C alkyl 1 10 esters of such dicarboxylic acids are of particular interest. Either the free dicarboxylic acid or its anhydride, if such exists, or a mixture of dicarboxylic acids and anhydride can be used as the carboxylic acid component starting material for production of such dialkyl esters. Alkyl esters of aromatic C to C monocarboxylic acids and mixtures thereof can be made by a 7 20 process of the invention. Benzoic acid and 1-naphthoic acid are examples of such acids.
Alkyl esters of aromatic C to C dicarboxylic acids can also be produced by the process of 8 20 the invention from the acids, their anhydrides and mixtures thereof.
It is also possible to produce polyalkyl esters of polycarboxylic acids by the process of the invention. Such polycarboxylic acid moieties include, for example, citric acid, pyromellitic dianhydride, and the like.
Carboxylic acid esters of dihydric and polyhydric alcohols can be produced by the process of the invention. Examples of such esters include ethylene glycol diformate, ethylene glycol diacetate, propylene glycol diformate, propylene glycol diacetate, glyceryl triacetate, hexose acetates, and the acetate, propionate and n-butyrate esters of sorbitol, mannitol and xylitol, and the like.
The more volatile of the carboxylic acid component and the alcohol component will often be the alcohol component. For example methanol will be the more volatile component in the production of methyl fatty acid esters from fatty acid mixtures obtained by the hydrolysis of triglycerides. In contrast, in the production of the di-n-butyryl ester of ethylene glycol from n-butyric acid and ethylene glycol, for example, n-butyric acid will be the more volatile component. Similarly, in the production of propylene glycol diformate from propylene glycol and formic acid, the more volatile component will be the carboxylic acid component, i.e. formic acid.
The esterification conditions used in the column reactor will normally include use of elevated temperatures up to about 160°C. For example a temperature in the range of from about 80°C to about 140°C, preferably in the range of from about 100°C to about 125°C may be used.
Such operating temperatures will be determined by such factors as the thermal stability of the esterification catalyst, the kinetics of the esterification reaction and the vapour temperature of the vaporous component fed to the base of the column reactor at the relevant inlet pressure.
Typical operating pressures at the vapour inlet of the column reactor range from about 0.1 bar to about 25 bar. A liquid hourly space velocity through the column reactor in the range of -1 -1 -1 -1 from about 0.1 hr to about 10 hr , typically from about 0.2 hr to about 2 hr , may be used.
The liquid phase reactant may be supplied to an upper part of the column reactor in neat form, in solution in recycled product or in solution in an inert solvent or diluent therefor.
Where the reactants are those for esterification, the alcohol component and/or the carboxylic acid component may be pre-reacted prior to introduction to the column reactor. Such pre- reaction may be used, for example, in a case in which reaction between the two components can be initiated in the absence of added catalyst. The reaction of an acid anhydride, such as maleic anhydride or phthalic anhydride, with an alcohol component, such as an alkanol, for example, methanol, ethanol or n-butanol, is an example of such a reaction, the formation of the corresponding monoester occurring under moderate conditions, e.g. 60°C and 5 bar, without the need of any added catalyst. This monoester is still a monocarboxylic acid. In addition some formation of diester will occur. The resulting reaction mixture may contain a mixture of monoester, diester, water, and alkanol. Further alkanol can be added, if desired, to the mixture prior to introduction to the column reactor for conversion of the monoester to the diester.
In other cases, even when a monocarboxylic acid ester is the desired product, the alcohol component and the carboxylic acid component can be reacted to equilibrium in the presence of an acidic ion exchange resin containing –SO H and/or --COOH groups prior to introduction of the resulting equilibrium mixture to the column reactor.
In the process of the invention a vaporous mixture exits the column reactor as an overhead product. Provision may be made for scrubbing such vaporous mixture with the more volatile component, usually the alcohol component, in liquid form in order to wash traces of carboxylic acid ester product and of the other component, usually the carboxylic acid component, back into the column reactor. This overhead product from the column reactor can be condensed and treated in known manner to separate its constituents, the recovered water of esterification being rejected and the more volatile component, usually the alcohol component, being recycled for re-use in as dry a form as is practicable within the relevant economic constraints.
The lower the water content of the vapour that is supplied to the lowermost one of said esterification trays, the further towards 100% conversion to ester the esterification equilibrium reaction can be driven and the lower the residual acidity of the ester containing product recovered from the bottom of the column reactor will be. However, a balance may often have to be struck between the cost of providing, for example, a substantially dry alkanol for vaporisation into the column reactor, on the one hand, and the cost of providing and operating any additional downstream processing facilities that may be required to upgrade the ester product to the required quality if a less dry alkanol is used. This will vary from alkanol to alkanol and will depend upon the interaction between water and alkanol, for example azeotrope formation, and its effect upon alkanol/water separation. Preferably, when using an upflowing alkanol vapour in the column reactor, the water content of the alkanol vapour supplied to the reactor is less than about 5 mole %, and even more preferably is less than about 1 mole %.
The particulate catalyst used will depend on the reaction being conducted. Where the reaction is an esterification reaction, the solid catalyst may be a granular ion exchange resin containing –SO H and/or --COOH groups. Macroreticular resins of this type are preferred.
Examples of suitable resins are those sold under the trade marks "Amberlyst", "Dowex", "Dow" and "Purolite" such as Amberlyst 13, Amberlyst 66, Dow C351 and Purolite C150.
Different catalysts may be used on different trays of the column reactor. Moreover different concentrations of solid catalyst can be used on different trays.
The charge of solid particulate or granular catalyst on each tray is typically sufficient to provide a catalyst:liquid ratio on that tray corresponding to a resin concentration of at least 0.2% w/v, for example a resin concentration in the range of from about 2% w/v to about 20% w/v, preferably 5% w/v to 10% w/v, calculated as dry resin. Sufficient catalyst should be used to enable equilibrium or near equilibrium conditions to be established on the tray within the selected residence time at the relevant operating conditions. However, the amount of catalyst used should not be so much that it becomes difficult to maintain the catalyst in suspension in the liquid on the tray by the agitation produced by the upflowing vapour entering the tray from below. For a typical catalyst a concentration in the range of from about 2% v/v to about 20% v/v, preferably 5% v/v to 10% v/v may be used.
The particle size of the catalyst should be large enough to facilitate retention of the catalyst on each tray by means of a screen or similar device. However, as the larger the catalyst particle size is the more difficult it is to maintain in suspension and the lower the geometrical surface area per gram, it is expedient to use not too large a catalyst particle size. A suitable catalyst particle size is in the range of from about 0.1 mm to about 5 mm.
As indicated above, the present invention may be used in any heterogeneous catalytic reaction. It is particularly suitable for use in any reactive distillation including those in which an ion exchange catalyst is used.
Further examples of reactions which can be carried out using the present invention include, but are not limited to: the formation of pyrrolidines such as from succinates or from lactones such as γ- butyrolactone; transesterifications such as the formation of aromatic carbonates from dialkyl carbonate and an aromatic monohydroxy compound, the formation of alkanediol and a dialkyl carbonate from alkylene carbonate and an alkanol, the formation of diaryl carbonate esters by reaction of a dialkyl carbonate and the reaction of an aromatic alcohol to form a diaryl carbonate and an alkyl alcohol, such transesterifications being carried out in an extractive/reactive distillation column in the presence of a transesterification catalyst; the production of epoxides from aqueous alkali and halohydrin; the production of acetates from acetic acid; the production of polyamides; the production of dioxylane from ethylene glycol and an aqueous formaldehyde solution; propylene oligomerization such as that using a tungstated zirconia catalyst; the production of cumene from benzene and propylene using a column packed with a solid acid zeolite catalyst; the production of diethylenetriamine (DETA), by continuous reaction of ethylenediamine (EDA) in the presence of a heterogeneous catalyst; the alkylation of light aromatic hydrocarbons such as benzene with C -C olefins 2 30 using a solid acid alkylation catalyst; the production of monochloroacetic acid from chlorine and acetic acid; the production of dimethylformamide by reacting methyl formate and dimethylamine; hydrolysis reactions such as the production of esters, primary and secondary amides and halogenalkanes; etherification reactions such as the production of MTBE and ETBE olefin metathesis.
The present invention will now be described, by way of example, with reference to the accompanying drawings in which: Figure 1 is a schematic representation of a nozzle and manifold arrangement in a column reactor; and Figure 2 is a schematic representation of a catalyst handling system for use with the column reactor.
It will be understood that the drawings are diagrammatic and that further items of equipment such as reflux drums, pumps, vacuum pumps, temperature sensors, pressure relief valves, control valves, flow controllers, level controllers, holding tanks, storage tanks, and the like may be required in a commercial plant. The provision of such ancillary items of equipment forms no part of the present invention and is in accordance with conventional chemical engineering practice.
For convenience, the present invention will be specifically described with reference to the esterification of carboxylic acid with an alcohol in the presence of a solid esterification catalyst such as an ion exchange resin containing a –SO H and/or –COOH groups. However, the technology is equally applicable to other heterogeneous catalytic reactions which are suitable to be carried out in a catalytic distillation column reactor.
As illustrated in Figure 1, a distillation column reactor 1 is provided which comprises a plurality of reaction trays 2. These trays can be a horizontal diaphragm or partition that extends within the walls of the reactor 1. This closes off the cross section of the reactor 2 except for the upcomer 14 which is discussed in detail below. For clarity only three trays 2 (2a, 2b and 2c) are illustrated. However, in practice the number of trays will be selected to give the required reaction and separation.
Each tray 2 can retain a volume of liquid, such that there is a liquid level 3. As discussed in more detail below, liquid removed from the tray is passed to a pot 4. The pot 4 comprises a baffle 5 the height of which determines the liquid level on the tray. A vent line 8 may be provided.
In operation, liquid phase reactants introduced into column reactor 1 in line 6 enters tray 2a where it contacts catalyst in a slurry on the tray and vapour flowing up the column such that reaction occurs. Liquid is then removed via underflow 7 and passed to the pot 4. Liquid overflowing baffle 5 leaves the pot 4 in line 9. In normal usage it will then flow in line 10 and be introduced to tray 2b via line 11. The process is then repeated so that liquid leaving tray 2b leaves respective pot 4 and is passed in line 12 and 13 to tray 2c and so on.
Each tray 2 includes means to allow vapour to travel up the column through the liquid held on the trays. In the illustrated arrangement, a vapour upcomer 14 is used.
For ease of reference lines illustrating the addition of the vapour phase and the removal of post-reaction streams have been omitted from the figure.
When an operator wishes to empty a tray, for example tray 2b, the flow of liquid down the column reactor 1 is altered so that the liquid from tray 2a flows directly to tray 2c bypassing tray 2b. In the illustrated arrangement, liquid leaving pot 4 associated with tray 2a rather than being passed in line 10 to tray 2b is directed via valve 15 into line 16 and hence into line 13 for addition to tray 2c.
The used catalyst must then be removed from tray 2b. Valve 17 is then opened to allow the liquid and spent catalyst from tray 2b to be removed in line 18 and then transferred in line 19 to the catalyst handling which is illustrated in Figure 2.
The tray contents enter the resin loading filter 20 which includes a screen 25. The size of the pores in the screen will be selected to hold the catalyst particles. The liquid component of the tray contents overflow out of the filter 20 and pass in line 21 and pass to the resin loading drum 22. When the liquid has drained out of the filter 21 a valve, not shown, is closed to isolate the filter. The liquid is then pumped using pump 23 via line 24 and 19 back to tray 2b.
When all of the liquid has been transferred to tray 2b, the pump 23 is stopped and the transfer valve 17 is closed. The column tray 2b may be put back on stream by resetting valve 15 to the normal position.
Before the spent catalyst can be discharged to drums it may be necessary to remove any organics from it and return it to the process. This may be achieved by washing the catalyst.
Organics such as esters and acids can be removed by washing with alcohol such as methanol.
The methanol can then be removed by washing with water. Washing can be achieved by loading the resin loading drum 22 with the washing liquid through line 26. The wash liquid can then be circulated via line 24 to the filter 20. When the catalyst has been washed, the filer can be drained down to the resin loading drum 22 which can then be emptied of washings. The pump 23 will generally be stopped before the resin loading drum 22 is empty.
The spent catalyst will then be removed from the filter 20 via outlet 27.
It is then necessary to reload the tray with fresh catalyst. Fresh catalyst is loaded into the filter 20 in line 28. The system will then generally be pressure purged with a gas such as nitrogen to remove the oxygen. The resin loading drum 22 is then filled with wash such as methanol. The pump 23 is then operated to transfer the wash liquid to the filter 20 to wash the catalyst. Once the resin loading drum is empty of wash liquid the pump can be stopped.
The liquid inventory from reaction tray 2b on which the catalyst is to be loaded is transferred to the resin loading drum 22 as described above using the bypass system for tray 2b. The liquid form tray 2b is transferred to the resin loading filter 20 and will overflow into the resin loading drum 22. The pump is then operated to allow forward flow to the reaction tray. The valve 29 will then be opened to allow the flow of catalyst from the resin loading filter 20 into line 30 and hence line 19.
When all the fluid and fresh catalyst has been transferred back to the reaction tray 2b, the pump is stopped and valve 17 is closed to the normal position and valve 15 is altered to put tray 2b back on line.
The term "comprising" as used in this specification and claims means "consisting at least in part of". When interpreting statements in this specification and claims which include the term "comprising", other features besides the features prefaced by this term in each statement can also be present. Related terms such as "comprise" and "comprised" are to be interpreted in a similar manner.
Claims (11)
1. An apparatus for use in heterogeneous catalytic reactions comprising: (a) a column reactor comprising a plurality of trays mounted one above another, each adapted to hold a predetermined liquid volume and a charge of particles of a solid catalyst thereon; (b) means for introducing a liquid phase reactant above the uppermost tray; (c) means for introducing a vapour phase reactant below the lowermost tray; (d) means for removing a liquid phase post-reaction stream from below the lowermost tray; (e) means for removing a vapour phase post-reaction stream from above the uppermost tray; (f) vapour upcomer means associated with each tray adapted to allow vapour to enter that tray from below; (g) underflow means associated with each tray adapted to remove liquid from that tray and the column reactor before being introduced into the column reactor at a lower tray; (h) means for temporarily directing said liquid removed from a tray to bypass at least one lower tray and be reintroduced to the column reactor at a tray located below said at least one bypassed tray; (i) means for removing the liquid and catalyst from said at least one bypassed tray; and (j) means for replacing a liquid and catalyst inventory on said at least one bypassed tray.
2. Apparatus according to Claim 1 wherein the underflow means includes a filter.
3. Apparatus according to Claim 1 or 2 wherein liquid removed via the underflow means is passed to a pot including means which allows the liquid level on the tray to be controlled.
4. Apparatus according to Claim 3 wherein the means to control the liquid level is a baffle.
5. Apparatus according to any one of Claims 1 to 3 wherein the vapour upcomer means comprises a sparger.
6. Apparatus according to any one of Claims 1 to 5 additionally including a filter in which catalyst from the bypassed tray is removed from the liquid.
7. A process for carrying out a heterogeneous catalytic reaction comprising: (a) supplying a liquid phase reactant to the apparatus of any one of Claims 1 to 6; (b) supplying a vapour phase reactant to the apparatus of any one of Claims 1 to (c) passing the liquid phase reactant and vapour phase reactant in countercurrent through the column reactor, said reactor being maintained under reaction conditions to allow reaction to occur; (d) as required carrying out a catalyst replacement process comprising: (i) directing liquid from a tray to bypass at least one tray located below said tray; (ii) removing liquid and catalyst on the at least one bypassed tray; (iii)replenishing said at least one bypassed tray with a charge of liquid and catalyst; (iv) directing liquid from the tray to the previously bypassed at least one tray; (e) recovering a liquid phase post-reaction stream; and (f) recovering a vapour phase post-reaction stream.
8. A process according to Claim 7 which additionally includes separating the removed liquid from the removed catalyst.
9. A process according to Claim 7 wherein the heterogeneous catalytic process is a reactive distillation.
10. A process according to Claim 9 wherein the reactive distillation is carried out in the presence of an ion exchange catalyst.
11. A process according to any one of Claims 7 to 10 wherein the heterogeneous catalytic process is an esterification process.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GBGB1116382.1A GB201116382D0 (en) | 2011-09-22 | 2011-09-22 | Apparatus and method |
GB1116382.1 | 2011-09-22 | ||
PCT/GB2012/052098 WO2013041836A1 (en) | 2011-09-22 | 2012-08-24 | Apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
NZ611362A NZ611362A (en) | 2015-02-27 |
NZ611362B2 true NZ611362B2 (en) | 2015-05-28 |
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0454719B1 (en) | A continuous process for the production of carboxylic acid esters | |
JP2781272B2 (en) | Method for producing aliphatic alcohol | |
AU2012311278B2 (en) | Apparatus and method | |
EP2614043B1 (en) | Process for producing fatty alcohols from fatty acids | |
US5133942A (en) | Distillation column reactor with catalyst replacement apparatus | |
CA2923338A1 (en) | Process for the production of carboxylic acid esters | |
US2644009A (en) | Continuous esterification process | |
US5510089A (en) | Method for operating a distillation column reactor | |
NZ611362B2 (en) | A heterogeneous catalytic reaction apparatus and method | |
KR100492100B1 (en) | Improved process for preparing unsaturated carboxylic esters | |
CN102908955B (en) | The preparation method of macroporous plate esterifier and dimethyl maleate | |
US20150291491A1 (en) | Process For The Production Of A Fatty Alcohol From A Fatty Acid | |
WO2014045034A1 (en) | Process for the production of carboxylic acid esters |