NZ584752A - Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives - Google Patents

Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives

Info

Publication number
NZ584752A
NZ584752A NZ584752A NZ58475205A NZ584752A NZ 584752 A NZ584752 A NZ 584752A NZ 584752 A NZ584752 A NZ 584752A NZ 58475205 A NZ58475205 A NZ 58475205A NZ 584752 A NZ584752 A NZ 584752A
Authority
NZ
New Zealand
Prior art keywords
solution
methyl
fluoro
mmol
deoxy
Prior art date
Application number
NZ584752A
Inventor
Peiyuan Wang
Byoung-Kwon Chun
Junxing Shi
Jinfa Du
Wojciech Stec
Original Assignee
Pharmasset Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pharmasset Inc filed Critical Pharmasset Inc
Priority claimed from NZ552927A external-priority patent/NZ552927A/en
Publication of NZ584752A publication Critical patent/NZ584752A/en

Links

Landscapes

  • Saccharide Compounds (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed is a method for the preparation of a 2'-deoxy-2'-fluoro-2'-C-methyl-beta-D-ribofuranosyl nucleoside of the pictured formula, where Base is one of the two pictured groups and the other substituents are as defined in the specification.

Description

New Zealand Paient Spedficaiion for Paient Number 584752 *10058751132* 58*7 52 INTELLECTUAL PROPERTY OFFICE OF N.Z. 1 9 APR 2010 Rf=CF!VED NEW ZEALAND PATENTS ACT, 1953 No: Divided out of NZ 552927 Date: Dated 21 July 2005 COMPLETE SPECIFICATION PREPARATION OF ALKYL-SUBSTITUTED 2-DEOXY-2-FLUORO-D-RIBOFURANOSYL PYRIMIDINES AND PURINES AND THEIR DERIVATIVES We, PHARMASSET, INC., of 303A College Road East, Princeton, New Jersey 08540, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: RECEIVED at IPONZ on 4 Apr 2011 PREPARATION OF ALKYL-SUBSTITUTED 2-DEOXY-2-FLURO-D-RIBOFURANOSYL PYRIMIDINES AND PURINES AND THEIR DERIVATIVES This application is a divisional of New Zealand Patent Application No. 552927, and claims priority to U.S. Provisional Application No. 60/589,866, filed July 21,2004 and U.S. Provisional Patent Application No. 60/608,320, filed September 9,2004.
FIELD OF THE INVENTION Described herein is (i) a process for preparing a 2-deoxy-2-fluoro-2-methyl-D-ribonolactorie derivative, and (ii) conversion of the lactone to nucleosides with potent anti- HCV activity, and their analogues.
The present invention relates to a method to prepare the anti-HCV nucleosides containing the 2<-deoxy-2,-fluoro-2'-C-methyl-p-D-ribofuranosyl nucleosides from a preformed, preferably naturally-occurring, nucleoside.
BACKGROUND OF THE INVENTION In light of the fact that HCV infection has reached epidemic levels worldwide, and has tragic effects on the infected patients. Presently there is no universally effective treatment for this infection and the only drugs available for treatment of chronic hepatitis C are various forms of alpha interferon (IFN-oc), either alone or in combination with ribavirin. However, the therapeutic value of these treatments has been compromised largely due to adverse effects, which highlights the need for development of additional options for treatment.
HCV is a small, enveloped virus in the Flaviviridae family, with a positive single-:stranded RNA genome of ~9,6 kb within the nucleocapsid. The genome contains a single open reading frame (ORF) encoding a polyprotein of just over 3,000 amino acids, which is cleaved to generate the mature structural and - la -(followed by - 2 -) RECEIVED at IPONZ on 4 Apr 2011 nonstructural viral proteins. ORF is flanked by 5' and 3' non-translated regions (NTRs) of a few hundred nucleotides in length, which are important for RNA translation and replication. The translated polyprotein contains the structural core (C) and envelope proteins (El, E2, p7) at the N-terminus, followed by the nonstructural proteins (NS2, NS3, NS4A, NS4B, NS5A, NS5B). The mature structural proteins are generated via cleavage by the host signal peptidase. The junction between NS2 and NS3 is autocatalytically cleaved by the NS2/NS3 protease, while the remaining four junctions are cleaved by the N-terminal serine protease domain of NS3 complexed with NS4A. The NS3 protein also contains the NTP-dependent helicase activity which unwinds duplex RNA during replication. The NS5B protein possesses RNA-dependent RNA polymerase (RDRP) activity, which is essential for viral replication. It is emphasized here that, unlike BBV or HIV, no DNA is involved in the replication of HCV.
U.S. Patent Application (Serial No. 10/828,753 published as US 2005/0009737) discloses that l-(2-deoxy-2- fluoro-2-C-methyl-P-D-ribofuranosyl)cytosine (14) is a potent and selective anti-HCV agent. The original synthetic procedures (Schemes 1 - 3) are quite inefficient, with overall yields at or below 4% and are not amenable to large-scale.
Scheme 1 hohS ^>°H oh - i"k Q? o- - H HO F 14 BzO F 13 Scheme 2 \°j — HO OH IttllK Reagents: a) Bz20/DMF; b) TIPDSCI^pyridlne; c) COCl2/DMSO/-r8°C: d) MeLi/Et20, -78°C; e) MeMgBr/Et20; 0 TBAF/THF; g) BzCI/py; or AcjO/py; h) DAST/Toluene; i) NHj/MeOH HO. >iXo Received at IPONZ on 11 August 2011 Scheme 3 fx RO N O W - 23. A » H ZU.K 266. R « Oz «Bi < ci Ci uti fx 0. NA nAO Ufcl Y 6 —SI-0 A „ >A> oet % h\ 67% >-X°, £ a# oet X, <x O \^OH /-SI-0 CHj A u UCi & O V^CH> /— Si—O OH A « Reagents: a) soci2/ch3ci, reflux; b) NaOEt/ElOW reflux; c) TIPSDSCIj/pyridin/rtd) Cr03/Ac20/pyridlne, rt; e) WeLi/Et20. -78°C; f) MaMgBr/E^O. -SO °C; g) TBAF/THF;h) Ac20/py; i) OAST/Toluena; j) NHj/MeOH; k) 1N NaOH/THF/ 60 °C In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art.
SUMMARY OF INVENTION The present invention provides a method for the preparation of a 2'-deoxy-2'-fluoro-2'-C-methyl-P-D-ribofuranosyl nucleoside of the following formula: OH F Received at IPONZ on 30 November 2011 wherein the base is: C R4 or N wherein R2 and R4 are independently H, OH, NH2, or OR; Z is halogen, H, OH, OR', SH, SR', NH2, NHR', or R'; R' is an optionally substituted straight, branched, or cyclic alkyl of C,- Y is N or CH; comprising the following steps: (a) reacting a nucleoside intermediate of the following formula: RsO— Protected Base ^OH OR3 CH, wherein the base is as defined above and the protecting group is benzoyl; wherein R3 and R5 are each independently tetrahydropyranyl, methyl, ethyl, benzyl, benzoyl, p-methoxybenzyl, benzyloxymethyl, phenoxymethyl, methoxymethyl, ethoxymethyl, mesyl, tosyl, trifluoroacetyl, or trichloroacetyl with diethylaminosulfur trifluoride or bis(2-methoxyethyl)aminosulfur trifluoride to yield a fluorinated intermediate of the following formula: Protected Base -O^ RO- CH, OR3 - 4a - RECEIVED at IPONZ on 4 Apr 2011 (b) deprotecting the R3 and R5 groups of the product of step (a) by treatment with a boron trihalide to yield an intermediate of the following formula: HO Protected Base O \ /- OH F (c) saponifying the product of step (b) to yield the desired nucleoside.
The invention also provides a 2'-deoxy-2'-fluoro-2'-C-methyl-p-D-ribofuranosyl nucleoside as defined above when prepared by a method of the invention.
Described are the composition and synthetic methods of compounds of general formulas [I] and [II], R3'0 X R3'0 x I II wherein X is halogen (F, CI, Br), -4b- Received at IPONZ on 30 November 2011 Y is N or CH, Z is H, halogen, OH, OR', SH, SR', NH2, NHR', or R' R2 is alkyl of C[-C3, vinyl, or ethynyl; R3 and R5 can be same or different H, alkyl, aralkyl, acyl, cyclic acetal such as 2',3'-0-isopropylidene or 2',3-O-benzylidene, or 2',3'-cyclic carbonate; R2, R4, and R5 are independently H, halogen including F, CI, Br, I, OH, OR', SH, SR', N3, NH2, NHR', NR'2, NHC(0)0R', lower alkyl of Ci-C6, halogenated (F, CI, Br, I) lower alkyl of Ci-C6 such as CF3 and CH2CH2F, lower alkenyl of C2-Q such as CH=CH2, halogenated (F, CI, Br, I) lower alkenyl of C2-C6 such as CH=CHC1, CH=CHBr and CH=CHI, lower alkynyl of C2-C6 such as C=CH, halogenated (F, CI, Br, I) lower alkynyl of C2-C6, hydroxy lower alkyl of Ci-C6 such as CH2OH and CH2CH2OH, halogenated (F, CI, Br, I) lower alkyl of C,-C$, lower alkoxy of C1-C6 such as methoxy and ethoxy, C02H, C02R', CONH2, CONHR', CONR'2, CH=CHC02H, CH=CHC02R'; and, R' is an optionally substituted alkyl of C1-C12 (particularly when the alkyl is an amino acid residue), cycloalkyl, optionally substituted alkynyl of C2-C6, optionally substituted lower alkenyl of C2-C6, or optionally substituted acyl.
Also described herein are methods to prepare nucleosides containing the 2-deoxy-2-fluoro-2-C-methyl-D-ribofuranosyl moiety of general structures of III and IV, R3'd F Ryd F III IV Received at IPONZ on 30 November 2011 through (i) synthesis of the 3,5-protected 2-deoxy-2-fluoro-2-C-methyl-D-ribono-y-lactone intermediate of general structure V, (ii) conversion of V into purine and pyrimidine nucleosides of general structures of III and IV, and (iii) preparation of nucleosides of general structures of III and IV from preformed, preferably natural, 5 nucleosides.
V Regarding III, IV and V above, Z, R3', R5', R2, R4 and R5 are as defined above and R3 and R5 can 10 be independently H, Me, Acyl (such as Ac, Bz, substituted Bz), benzyl, substituted benzyl, Trityl, Trialkylsilyl, f-Butyldialkylsilyl, f-Butyldiphenylsilyl, TEPDS, THP, MOM, MEM, or R3 and R5 are linked through -SiR2-0-SiR2- or -SiR2-, wherein R is a lower alkyl group such as Me, Et, «-Pr or z'-Pr.
Described herein are the novel lactone intermediates of formula V and processes for the preparation of the lactone intermediates as detailed below, including precursor ester intermediates as also detailed below.
DETAILED DESCRIPTION 20 Presently no preventive means against Flaviviridae, including hepatitis C virus (HCV), Dengue virus (DENV), West Nile virus (WNV) or Yellow Fever virus (YFV), infection is available. The only approved therapies are for treatment of HCV infection with alpha interferon alone or in combination with the nucleoside ribavirin, but the therapeutic value of these treatments has been compromised largely due to 25 adverse effects. It was recently discovered that a group of nucleosides, including 2'-deoxy-2'-fluoro-2'-C-methylcytidine (14), exhibit potent and selective activity against replication of HCV in a replicon system. However, the difficulty of chemical synthesis of this and analogous nucleosides impedes further biophysical, biochemical, pharmacological evaluations mandatory for development of clinical 30 drugs for treatment of Flaviviridae infection.
Received at IPONZ on 11 August 2011 Described herein is an efficient preparation of nucleosides containing the 2-deoxy-2-fluoro-2-C-methyl-D-ribofuranosyl moiety III and IV, through (i) synthesis of intermediate the 3,5-protected 2-deoxy-2-fluoro-2-C-methyl-D-ribono-y-lactone of general structure V, (ii) conversion of V into purine and pyrimidine nucleosides of general structures of III and IV, and (iii) preparation of nucleosides of general structures of III and IV from preformed, preferably natural, nucleosides.
Definitions The term "comprising" as used in this specification means "consisting at least in part of'. When interpreting each statement in this specification that includes the term "comprising", features other than that or those prefaced by the term may also be present. Related terms such as "comprise" and "comprises" are to be interpreted in the same manner.
As used herein, the terms "enantiomerically pure" or "enantiomerically enriched"refers to a nucleoside composition that comprises at least approximately 95%, and preferably approximately 97%, 98%, 99% or 100% of a single enantiomer of that nucleoside.
As used herein, the term "substantially free of' or "substantially in the absence of' refers to a nucleoside composition that includes at least 85 or 90% by weight, preferably 95% to 98% by weight, and even more preferably 99% to 100% by weight, of the designated enantiomer of that nucleoside. In a preferred embodiment, in the methods and compounds of this invention, the compounds are substantially free of enantiomers.
The term "alkyl," as used herein, unless otherwise specified, refers to a saturated straight or branched hydrocarbon chain of typically Ci to Cio, and specifically includes methyl, ethyl, propyl, isopropyl, butyl, isobutyl, /-butyl, pentyl, , isopentyl, neopentyl, hexyl, isohexyl, cyclohexyl. cyclohexylmethyl, 3-methylpentyl, 2,2-dimethylbutyl, and 2,3-dimethylbutyl, and the like. The term includes both substituted and unsubstituted alkyl groups. Alkyl groups can be optionally substituted with one or more moieties selected from the group consisting of hydroxyl, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate. One or more of the hydrogen atoms attached to carbon atom on alkyl may be replaces by one or more halogen atoms, e.g. fluorine or chlorine or both, such as trifluoromethyl, difluoromethyl, fluorochloromethyl, and the like. The hydrocarbon chain may also be interrupted by a heteroatom, such as N, O or S.
The term "lower alkyl," as used herein, and unless otherwise specified, refers to a Ci to C4 saturated straight or branched alkyl group, including both substituted and unsubstituted forms as defined above. Unless otherwise specifically stated in this application, when alkyl is a suitable moiety, lower alkyl is preferred. Similarly, when alkyl or lower alkyl is a suitable moiety, unsubstituted alkyl or lower alkyl is preferred.
■ The term "cycloalkyl", as used herein, unless otherwise specified, refers to a saturated hydrocarbon ring having 3-8 carbon atoms, preferably, 3-6 carbon atoms, 5 such as cyclopropyl, cyclobutyl, cyclopentyl and cyclohexyl. The cycloalkyl group may also be substituted on the ring by and alkyl group, such as cyclopropylmethyl and the like.
The terms "alkylamino" or "arylamino" refer to an amino group that has one or two alkyl or aryl substituents, respectively.
The term "protected," as used herein and unless otherwise defined, refers to a group that is added to an oxygen, nitrogen, or phosphorus atom to prevent its further reaction or for other purposes. A wide variety of oxygen and nitrogen protecting groups are known to those skilled in the art of organic synthesis. Non-limiting examples include: C(0)-alkyl, C(0)Ph, C(0)aryl, CH3, CH2-alkyl, CH2-alkenyl, CH2Ph, CH2-aiyl, CH20-alkyl, CH20-aryl, S02-alkyl, S02-aryl, tert-butyldimethylsilyl, terf-butyldiphenylsilyl, and 1,3-(l, 1,3,3-tetraisopropyldisiloxanylidene).
The term "aryl," as used herein, and unless otherwise specified, refers to phenyl, biphenyl, or naphthyl, and preferably phenyl. The term includes both substituted and unsubstituted moieties. The aryl group can be substituted with one or more substituents, including, but not limited to hydroxyl, halo, amino, alkylamino, arylamino, alkoxy, aryloxy, nitro, cyano, sulfonic acid, sulfate, phosphonic acid, phosphate, or phosphonate, either unprotected, or protected as necessary, as known to those skilled in the art, for example, as taught in T.W.
Greene and P.G.M. Wuts, "Protective Groups in Organic Synthesis," 3rd ed., John Wiley & Sons, 1999.
The terms "alkaryl" or "alkylaryl" refer to an alkyl group with an aryl substituent. The terms "aralkyl" or "arylalkyl" refer to an aryl group with an alkyl substituent, as for example, benzyl.
The term "halo," as used herein, includes chloro, bromo, iodo and fluoro.
The term "acyl ester" or "O-linked ester" refers to a carboxylic acid ester of the formula C(0)R' in which the non-carbonyl moiety of the ester group, R\ is a straight or branched alkyl, or cycloalkyl or lower alkyl, alkoxyalkyl including methoxymethyl, aralkyl including benzyl, aryloxyalkyl such as phenoxymethyl, aryl' including phenyl optionally substituted with halogen (F, CI, Br, I), Ci to C4 alkyl or Ci to C4 alkoxy, sulfonate esters such as alkyl or aralkyl sulphonyl including methanesulfonyl, the mono, di or triphosphate ester, trityl or monomethoxytrityl, substituted benzyl, trialkylsilyl (e.g. dimethyl-t-butylsilyl) or diphenylmethylsilyl. Aryl groups in the esters optimally include a phenyl group. 40 The term "acyl" refers to a group of the formula R"C(0)-, wherein R" is a straight or branched alkyl, or cycloalkyl, amino acid, aryl including phenyl, alkylaryl, aralkyl including benzyl, alkoxyalkyl including methoxymethyl, aryloxyalkyl such as phenoxymethyl; or substituted alkyl (including lower alkyl), aryl including phenyl Received at IPONZ on 11 August 2011 optionally substituted with chloro, bromo, fluoro, iodo, Ci to C4 alkyl or Ci to C4 alkoxy, sulfonate esters such as alkyl or aralkyl sulphonyl including methanesulfonyl, the mono, di or triphosphate ester, trityl or monomethoxy-trityl, substituted benzyl, alkaryl, aralkyl including benzyl, alkoxyalkyl including 5 methoxymethyl, aryloxyalkyl such as phenoxymethyl. Aryl groups in the esters optimally comprise a phenyl group. In particular, acyl groups include acetyl, trifluoroacetyl, methylacetyl, cyclopropylacetyl, cyclopropyl carboxy, propionyl, butyryl, hexanoyl, heptanoyl, octanoyl, neo-heptanoyl, phenylacetyl, 2-acetoxy-2-phenylacetyl, diphenylacetyl, a-methoxy-a-trifluoromethyl-phenylacetyl, 10 bromoacetyl, 2-nitro-benzeneacetyl, 4-chloro-benzeneacetyl, 2-chloro-2,2-diphenylacetyl, 2-chloro-2-phenylacetyl, trimethylacetyl, chlorodifluoroacetyl, perfluoroacetyl, fluoroacetyl, bromodifluoroacetyl, methoxyacetyl, 2-thiopheneacetyl, chlorosulfonylacetyl, 3-methoxyphenylacetyl, phenoxyacetyl, tert-butylacetyl, trichloroacetyl, monochloro-acetyl, dichloroacetyl, 7H-dodecafluoro-15 heptanoyl, perfluoro-heptanoyl, 7H-dodeca-fluoroheptanoyl, 7-chlorododecafluoro-heptanoyl, 7-chloro-dodecafluoro-heptanoyl, 7H-dodecafluoroheptanoyl, 7H-dodeca-fluoroheptanoyl, nona-fluoro-3,6-dioxa-heptanoyl, nonafluoro-3,6-dioxaheptanoyl, perfluoroheptanoyl, methoxybenzoyl, methyl 3-amino-5-phenylthiophene-2-carboxyl, 3,6-dichloro-2-methoxy-benzoyl, 4-(l ,1,2,2-20 tetrafluoro-ethoxy)-benzoyl, 2-bromo-propionyl, omega-aminocapryl, decanoyl, n-pentadecanoyl, stearyl, 3-cyclopentyl-propionyl, 1 -benzene-carboxyl, O-acetylmandelyl, pivaloyl acetyl, 1-adamantane-carboxyl, cyclohexane-carboxyl, 2,6-pyridinedicarboxyl, cyclopropane-carboxyl, cyclobutane-carboxyl, perfluorocyclohexyl carboxyl, 4-methylbenzoyl, chloromethyl isoxazolyl carbonyl, 25 perfluorocyclohexyl carboxyl, crotonyl, 1-methyl-lH-indazole-3-carbonyl, 2- propenyl, isovaleryl, 1-pyrrolidinecarbonyl, 4-phenylbenzoyl. When the term acyl is used, it is meant to be a specific and independent disclosure of acetyl, trifluoroacetyl, methylacetyl, cyclopropylacetyl, propionyl, butyryl, hexanoyl, heptanoyl, octanoyl, neo-heptanoyl, phenylacetyl, diphenylacetyl, ct-trifluoromethyl-phenylacetyl, 30 bromoacetyl, 4-chloro-benzeneacetyl, 2-chloro-2,2-diphenylacetyl, 2-chloro-2-phenylacetyl, trimethylacetyl, chlorodifluoroacetyl, perfluoroacetyl, fluoroacetyl, bromodifluoroacetyl, 2-thiopheneacetyl, tert-butylacetyl, trichloroacetyl, monochloro-acetyl, dichloroacetyl, methoxybenzoyl, 2-bromo-propionyl, decanoyl, n-pentadecanoyl, stearyl, 3-cyclopentyl-propionyl, 1 -benzene-carboxyl, pivaloyl 35 acetyl, 1-adamantane-carboxyl, cyclohexane-carboxyl, 2,6-pyridinedicarboxyl, cyclopropane-carboxyl, cyclobutane-carboxyl, 4-methylbenzoyl, crotonyl, 1-methyl-1 H-indazole-3-carbonyl, 2-propenyl, isovaleryl, 4-phenylbenzoyl.
The term "lower acyl" refers to an acyl group in which R", above defined, is lower alkyl. 40 The term "purine" or "pyrimidine" base includes, but is not limited to, adenine, N6-alkylpurines, N6-acytourines (wherein acyl is C(0)(alkyl, aryl, alkylaryl, or arylalkyl), N -benzylpurine, N -halopurine, N6-vinylpurine, N6-acetylenic purine, N6-acyl purine, N6-hydroxyalkyl purine, N6-allylaminopurine, N6-thioallyl purine. N2-alkylpurines, N2-alkyl-6-thiopurines, thymine, cytosme, 5-fluorocytosine, 5-45 methylcytosine, 6-azapyrimidine, ncluding 6-azacytosine, 2- and/or 4-mercaptopyrimidine, uracil, 5-halouracil, including 5-fluorouracil, C5- alkylpyrimidines, C5-benzylpyrimidines, C5-halopyrimidines, C5-vinylpyrimidine, Received at IPONZ on 11 August 2011 C5-acetylenic pyrimidine, C5-acyl pyrimidine, C5-hydroxyalkyl purine, C5-amidopyrimidine, C5-cyanopyrimidine, ,C5-iodopyrimidine, C6-lodo-pyrimidine, C5-Br-vinyl pyrimidine, C6-Br-vinyl pyrimidine, C5-nitropyrimidine, C5-amino-pyrimidine, N^-alkylpurines, N"-alkyl-6-thiopurines, 5-azacytidinyl, 5-azauracilyl, 5 triazolopyridinyl, imidazolopyridinyl, pyrrolopyrimidinyl, and pyrazolopyrimidinyl. Purine bases include, but are not limited to, guanine, adenine, hypoxanthine, 2,6-diaminopurine, and 6-chloropurine. Functional oxygen and nitrogen groups on the base can be protected as necessary or desired. Suitable protecting groups are well known to those skilled in the art, and include trimethylsilyl, dimethylhexylsilyl, t-10 butyldimethylsilyl, and f-butyldiphenylsilyl, trityl, alkyl groups, and acyl groups such as acetyl and propionyl, methanesulfonyl, and p-toluenesulfonyl.
The term "amino acid" includes naturally occurring and synthetic a, @ 7 or 8 amino acids, and includes but is not limited to, amino acids found in proteins, i.e. glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, 15 proline, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartate, glutamate, lysine, arginine and histidine. In a preferred embodiment, the amino acid is in the L-configuration. Alternatively, the amino acid can be a derivative of alanyl, valinyl, leucinyl, isoleucinyl, prolinyl, phenylalaninyl, tryptophanyl, methioninyl, glycinyl, serinyl, threoninyl, cysteinyl, tyrosinyl, asparaginyl, glutaminyl, aspartoyl, 20 glutaroyl, lysinyl, argininyl, histidinyl, /3-alanyl, /3-valinyl, j3-leucinyl, /3-isoleucinyl, j3-prolinyl, j8-phenylalaninyl, j8-tryptophanyl, /S-methioninyl, /3-glycinyl, /3-serinyl, 0-threoninyl, j8-cysteinyl, /3-tyrosinyl, /3-asparaginyl, /3-glutaminyl, j8-aspartoyl, /?-glutaroyl, /3-lysinyl, /3-argininyl or /3-histidinyl. When the term amino acid is used, it is considered to be a specific and independent disclosure of each of the esters of a, 0 25 7 or 5 glycine, alanine, valine, leucine, isoleucine, methionine, phenylalanine, tryptophan, proline, serine, threonine, cysteine, tyrosine, asparagine, glutamine, aspartate, glutamate, lysine, arginine and histidine in the D and L-configurations.
The term "pharmaceutically acceptable salt or prodrug" is used throughout the specification to describe any pharmaceutically acceptable form (such as an ester, 30 phosphate ester, salt of an ester or a related group) of a compound which, upon administration to a patient, provides the active compound. Pharmaceutically acceptable salts include those derived from pharmaceutically acceptable inorganic or organic bases and acids. Suitable salts include those derived from alkali metals such as potassium and sodium, alkaline earth metals such as calcium and magnesium, 35 among numerous other acids well known in the pharmaceutical art. Pharmaceutically acceptable salts may also be acid addition salts when formed with a nitrogen atom. Such salts are derived from pharmaceutically acceptable inorganic or organic acids, such as hydrochloric, sulfuric, phosphoric, acetic, citric, tartaric, and the like. Pharmaceutically acceptable prodrugs refer to a compound that is metabolized, for 40 example hydrolyzed or oxidized, in the host to form the compound of the present invention. Typical examples of prodrugs include compounds that have biologically labile protecting groups on a functional moiety of the active compound. Prodrugs include compounds that can be oxidized, reduced, aminated, deaminated, hydroxylated, dehydroxylated, hydrolyzed, dehydrolyzed, alkylated, dealkylated, 45 acylated, deacylated, phosphorylated, dephosphorylated to produce the active compound.
Received at IPONZ on 11 August 2011 PREPARATION OF THE COMPOUNDS (i) Synthesis of 3,5-Di-O-protected-D-ribono-y-lactone Wittig reaction of 2,3-O-isopropylidene-D-glyceraldehyde 39 (Scheme 4) with commercially available 40 affords the (£)-product 41 as a major product. Sharpless dihydroxylation (J. Org. Chem. 1992, 57, 2768-2771) using AD-mix-p as a dihydroxylation reagent gives only the desired product 42 in very high yield. High yield lactonization of 42 to 2-C-methyl-D-arabino-y-lactone (46) is achieved by 10 HCl/MeOH treatment. Selective 0-benzoylation of primary and secondary OH groups yields 3,5-di-O-benzoyl derivative 47 in high yield. Treatment of 47 with DAST or Deoxofluor, [bis(2-methoxyethyl)amino]sulfur trifluoride, under various conditions gives trace amounts of the desired 2'-fluoro-ribono-y-lactone 49, but mostly a mixture from which the non-fluorinated ribonolactone (48) is isolated. 15 However, treatment of 47 with excess, preferably three (3) equivalents, of tertiary amine, preferably diisopropylethylamine, and excess, preferably five (5) equivalents, of DAST or Deoxofluor provides 49 in ~50% yield. It was also found that using 3,5-O-MOM instead of benzoyl protection, the yield of 48 approaches 90%. Thus, treatment of 46 with dimethoxymethane in the presence of strong acid such as 20 trifluoromethylsulfonic acid affords 50, which upon reaction with DAST or Deoxofluor in the presence of base yielded 87% isolated yield of 49.
It was also discovered that smooth fluorination can occur upon treatment of the open-chain monobenzoate 43, which can be readily obtained by selective benzoylation of 42, with DAST or Deoxofluor giving rise to the desired ethyl 2-25 deoxy-2-fluoro-2-C-methyl-3-0-benzoyl-4,5-0-isopropylidene-D-ribonate 44.
Lactonization of 44 gives only the y-lactone 45. Further benzoylation of 45 affords dibenzoate 49.
RECEIVED at IPONZ on 4 Apr 2011 Scheme 4 BzO BzO >V DAST BZ0~V0>=0 HlCI \ f-CIIj V_fOH Bid OH / BiO tH3 ^h3 47 'T5s°» 46 CH^OMefcj HO MOMO HO p 52 HCI/ElOH n YV° < DAST V—+**-"3 wii&unfac MOMO MOMO F 51 MOMO CH3 50 Described herein is a method for the 5 synthesis of intermediate 49 through Reformatsky condensation of 39 with an alkyl 2-bromopropionate such as 53 (Scheme 5) in the presence of activated zinc in an ethereal solvent such as diethyl ether or tetrahydrofuran (or a mixture of the two solvents) to give 54, which is converted to 55 by oxidation. Possible oxidizing agents are: activated dimethylsulfoxide, such as a mixture of dimethylsulfoxide, 10 trifluoroacetic anhydride or acetic anhydride (a Swern/Moffat oxidiation); chromium trioxide or other chromate reagent; D ess-Martin periodinane; or tetrapropylammonium perruthenate (TPAP) with or without molecular sieves. This oxidation to provide the C-3 ketone preferably proceeds without affecting the stereochemistry at C-4.
Fluorination of 55 is performed at the 2-position using an electrophilic fluorination ("F+") in an appropriate solvent such as dimethylformamide, tetrahydrofuran, ethanol, tert-butanol, or diethyl ether or any combination of these solvents known to those skilled in the art (Rozen, et. al., J. Org. Chem2001,66, 7646-7468; Jun-An Ma and Dominique Cahard, Journal of Fluorine Chemistry, Received at IPONZ on 11 August 2011 2004, in press, and references cited therein), to afford 56. Some non-limiting examples of electrophilic fluorinating reagents are Selectflour®, N-fluorosulfonimide (NFSI), and AcOF. Stereoselective fluorination can be achieved by using a catalyst such as an asymmetric transition metal complex catalyst as taught by Sodeoka, et al, 5 (JP2004010555) or by other catalysts. The starting (3-keto ester 55 may also be first converted to a ketene silyl acetal prior to fluorination (Rozen, et. al., J. Org. Chem., 2001, 66, 7646-7468).
Selective reduction of the C-3 ketone 56 using triphenylsilane in the presence of a Lewis acid such as AICI3 or in the presence of an organic acid such as 10 trifluoroacetic acid (Kitazume, et al., J. Org. Chem., 1987, 52, 3218-3223) provides two 2,3 anti products 57 and 58. However, by utilizing a stereoselective fluorination combined with the selective reduction, a good yield (with high diastereomeric excess) of 58 can be achieved. Benzoylation of 58 gives 44 which is converted to lactone 45 as described earlier.
Scheme 5 (ii) Preparation of nucleosides containing 2-deoxy-2-fluoro-3-methyI-D-20 ribofuranosyl moiety by condensation.
A lactone such as 49 can be reduced to the corresponding lactol with DIBAL-H. After acetylation of the anomeric hydroxyl group, 59 (Scheme 6) is obtained in high yield. Condensation of 59 with silylated base (e.g., silylated N4-benzoylcytosine under Vorbriiggen's conditions) affords a mixture of protected 25 anomeric nucleosides 60 and 60-a After separation of the anomers, the desired /3-nucleoside 14 is prepared by deprotection with metal alcoholate in alcohol, preferably NaOMe/MeOH, or methanolic ammonia.
Received at IPONZ on 11 August 2011 Scheme 6 Compound 59 can be converted into the bromo sugar 61, (Scheme 7) which is condensed with a sodium salt of purine, e.g., sodio-N6-benzoyladenine to give the corresponding protected purine nucleoside 62. The desired free nucleoside 63 is readily obtainable by saponification.
Scheme 7 62-<x (iii) Synthesis from preformed nucleosides: Using preformed nucleosides as starting materials for preparation of the desired 2 '-C-alkyl-2' -deoxy-2'-fluoro-p-D-ribonucleosides has certain advantages, as the formation of anomers and their subsequent separation can be circumvented, resulting in high yields of the targeted nucleosides.
Received at IPONZ on 11 August 2011 Two procedures to prepare the desired nucleoside 14 from nucleoside starting materials have been disclosed (Schemes 2 and 3). As mentioned earlier, however, these procedures also produced two undesirable products 22 and 23, the latter produced by neighboring group participation as shown in Scheme 8. The separation of the desired nucleoside 14 from the mixture is rather cumbersome. Thus, this invention prevents production of 23 using non-participating protecting group, such as THP, methyl, ethyl, benzyl, /?-methoxybenzyl-, benzyloxymethyl, phenoxymethyl, methoxymethyl, ethoxymethyl, mesyl, tosyl, trifluoroacetyl, trichloroacetyl, at the 3'-OH group.
Scheme 8 NHBz O II RCO NHBz N A.
. N RCO CH, II * o 19 R - Me or Ph 19a An example is shown in Scheme 9. When A^,5'-0-dibenzoyl-3'-0-mesyl-15 2'-deoxy-2'-C-methyl-P-D-arabinofuranosylcytosine (64) is treated with DAST or Deoxofluor, the desired fluorinated product 65 is obtained in 54% yield along with the olefin 66 in 39% yield. As expected, no unfluorinated cytidine derivative 67 is formed in detectable amounts. There are several ways to de-protect 65 to 14. An example is shown in Scheme 9 that requires a double inversion of the 3'-20 configuration.
Received at IPONZ on 11 August 2011 Scheme 9 A. & 0 Ob uaaso ch 67 When the 3'-0-substituent is a non-participating and non-leaving group, such as methoxymethyl (MOM), methyl, benzyl, methoxybenzyl or tetrahydropyranyl, the intermediate is fluorinated more effectively than 64.
The following examples are presented to illustrate the present invention but are not to be limited thereto.
Experimental: 2,3-O-Isopropylidene-D-glyceraldehyde (39) is prepared by literature procedures (Organic Synthesis, Annual Volume 72, page 6; J. Org. Chem. 1991, 56, 4056-4058) starting from commercially available protected D-mannitol. Other reagents, including 40 and AD-mix-(3, are from commercial sources.
EXAMPLES EXAMPLE 1 Ethyl trans-2,3-dideoxy-4,5-0-isopropylidene-2-C-methyl-D-glycero-pent-.2-enoate (41) To a solution of (carbethoxyethylidene)triphenylphosphorane (40, 25 g, 69 mmol) in dry CH2CI2 (65 mL) at room temperature is added dropwise a solution of 2,3-O-isopropylidene-D-glyceraldehyde (39, 9.41 g, 72.3 mmol) in CH2CI2 ( 30 mL). The mixture is stirred at room temperature overnight. The reaction mixture is then concentrated to dryness, diluted with light petroleum ether (300 mL), and kept at 25 room temperature for 2 h. Triphenylphosphine oxide precipitated is removed by filtration and an aliquot is concentrated in vacuo. The residue is purified by silica gel column chromatography with 0-1.5% EtOAc in hexanes to give 41 (10.4 g, 71%) as an oil (1Carbohydrate Res., 115, 250-253 (1983)). !H NMR (CDCI3) 5 1.30 (t, J = 6.8 Hz, 3H, -OCHaCHi), 1.41 (,s, 3H, CH3), 1.45 (,s, 3H, CH3), 1.89 (d, J= 1.2 Hz, 3H, 2-CH3), 3.63 (t, J= 8.0 Hz, 1H, H-5), 4.14-4.23(m, 3H, H-5' and -OCHaCHs), 4.86 (dd, J= 7.6 and 13.6 Hz, 1 H, H-4), 6.69 (dd, J= 1.6 and 8.0 Hz, 1 H, H-3), EXAMPLE 2 (2S, 3R)-3-[(4R)-2,2-Dimethyl-[l,3]dioxolan-4-yl]-2,3-dihydroxy-2-methyl-propionic acid ethyl ester (42) A round-bottomed flask, equipped with a magnetic stirrer, is charged with 25 10 mL of/-BuOH, 25 mL of water, and 7.0 g of AD-mix-p. Stirring at room temperature produced two clear phases; the lower aqueous phase appears bright yellow. Methanesulfonamide (475 mg) is added at this point. The mixture is cooled to 0 °C whereupon some of the dissolved salts precipitated, 1.07 g (5 mmol) of 41 is added at once, and the heterogeneous slurry is stirred vigorously at 0 °C for 24 h. 15 After this time, while the mixture is stirred at 0 °C, solid sodium sulfite (7.5 g) is added and the mixture allowed to warm to room temperature and stirred for 30-60 min. EtOAc (50 mL) is added to the reaction mixture, and after separation of the layers, the aqueous phase is further extracted with EtOAc. The organic layer is dried over Na2S04 and concentrated to dryness. The residue is purified by silica gel 20 column chromatography with 20 % EtOAc in hexanes to provide 42 (1.13 g, 91 %) as a solid. 1HNMR(DMSO-rf6) □ 1.18 (t,7=6.8 Hz, 3H, -OCH,CHA 1.24 (,s, 3H, CH3), 1.25 (,s, 3H, CH3), 1.28 (s, 3H, 2-CH3), 3.67 (t, J = 7.2 Hz, 1 H), 3.85,4.06 and 4.12 (m, 4 H), 4.96 (s, 1H, 2-OH, D20 exchangeable), 5.14 (d, J= 1.6 Hz, 2-OH, 25 D20 exchangeable). Anal. Calcd for CnH2o06: C, 53.22; H, 8.12; Found: C, 53.32; H, 8.18.
EXAMPLE 3 (2S, 3R)-3-[(4R)-2,2-Dimethyl-[l,3]dioxolan-4-yl]-3-benzoyloxy-2-hydroxy-2-methylpropionic acid ethyl ester (43) To a solution of compound 42 (245 mg, 0.99 mmol) in dry pyridine (3 mL) is added dropwise a solution of BzCl (300 mg, 2.1 mmol) in pyridine (1 mL). After the mixture is stirred at room temperature for 2 h, the reaction is quenched with H2O (1 mL). The mixture is concentrated to dryness and the residue is partitioned between CH2CI2 and sat. NaHCC>3 solution. The organic phase is dried (anh. Na2S04), filtered and concentrated. The residue is purified by silica gel column chromatography with 5 % EtOAc in hexanes to give 43 (247 mg, 71%) as a solid. Anal. Calcd for ChHmO?: C, 61.35; H, 6.86; Found: C, 60.95; H, 6.73.
EXAMPLE 4 (2R, 3R)-3-[(4R)-2,2-Dimethyl-[l,3]dioxolan-4-yl]-3-benzoyloxy-2-fluoro-2-methyl- propionic acid ethyl ester (44) To a solution of compound 43 (36 mg, 0.102 mmol) in anhydrous THF ( 1.5 mL) is added DAST or Deoxofluor (0.08 mL, 0.68 mmol) at 0 °C under argon. The reaction mixture is stirred at room temperature for 3 h, then cooled down to 0 °C, and carefully treated with cold saturated NaHCC>3 solution (2 mL). The organic layer is dried over Na2S04 and concentrated to dryness. The residue is purified by silica gel column chromatography with 1-3 % EtOAc in hexanes to give 44 (24.6 mg, 68%) as a syrup. HR-FAB MS; Obsd: m/z 361.1621. Calcd for CistfeOeFLi: m/z 361.1639 (M+H)+.
EXAMPLE 5 3-0-Benzoyl-2-methyl-2-deoxy-2-fluoro-D-ribono-y-lactone (45) A mixture of compound 44 (308 mg, 0.86 mmol), MeCN (20 mL), water (1 mL) and CF3CO2H (0.17 mL) is refluxed at 80-85 °C for 3 h. The open-chain intermediate is not isolated, but converted directly to 45 by azeotropic distillation using a Dean-Stark water separator. The removed MeCN is replaced with dry toluene, and the azeotropic distillation continued until the oil bath temperature reached 130 °C. Stirring at 130 °C is continued overnight. The mixture is then cooled to room temperature and the solvent is removed in vacuo to give a syrup, 5 which is purified by silica gel column chromatography with 10-15 % EtOAc in hexanes to give, after solvents evaporation, solid 45 (136 mg, 58.3%).
EXAMPLE 6 3,5-Di-0-benzoyl-2-methyl-2-deoxy-2-fluoro-D-ribono-y-lactone (49) 10 To a solution of 45 (60 mg, 0.224 mmol) in EtOAc (1 mL) are added pyridine (100 mg, 1.26 mmol) and 4-dimethylaminopyridine (2.7 mg). The mixture is warmed to 60 °C and BzCl (110 mg, 0.79 mmol) in EtOAc (0.4 mL) is added dropwise. After stirring for 3 h, the mixture is cooled to 0 °C and pyridine HCl salt is filtered off. The filtrate is diluted with EtOH and the mixture is evaporated to 15 dryness. The residue is purified by silica gel column chromatography with 3-6 % EtOAc in hexanes to provide, after solvents evaporation, solid 49 (75 mg, 91%).
EXAMPLE 7 2-Methyl-D-arabino-y-lactone (46) 20 A solution of compound 42 (248 mg, 1 mmol) in 1.5 mL of EtOH is treated with 0.3 mL of concentrated HCl. The reaction mixture is stirred at room temperature for 2 h. The solvent is removed in vacuo (bath temp. < 45 °C). The residue is co-evaporated with toluene (3 x 10 mL) to give a residue, which is purified by silica gel column chromatography with 70 % EtOAc in hexanes. 25 Evaporation of solvents give oily 46 (170 mg, 105%). Anal. Calcd for C6H10O5: C, 41.24; H, 6.22; Found: C, 41.00; H, 6.74.
EXAMPLE 8 3, S-Di-O-benzoyl-2-methyl-D-arabino-y-lactone (47) To a stirred solution of compound 46 (880 mg, 5.4 mmol) in dry pyridine (80 mL) is added dropwise a solution of BzCl (1.73 g, 12.29 mmol) in dry pyridine (45 5 mL) at room temperature over a period 75 min. The mixture is stirred for another 90 min, then treated with MeOH (5 mL), and concentrated to dryness. The residue is purified by silica gel column chromatography with 12-20 % EtOAc in hexanes to give 47 (1.1 g, 55%) as an oil.
EXAMPLE 9 3,5-Di-0-benzoyl-2-deoxy-2-fluoro-2-C-methyl-D-ribonolactone (49) To a solution of 47 (430 mg, 1.16 mmol) in anhydrous THF (20 mL) and diisopropylethylamine (1 mL, 5.74 mmol) is added DAST or DEOXOFLUOR (0.48 mL, 3.66 mmol) at room temperature under argon. The reaction mixture is stirred at 15 room temperature for 3 h, then cooled down to 0 °C, and carefully treated with cold saturated NaHCOa solution (5 mL). The reaction mixture is partitioned between EtOAc (100 mL) and water (20 mL). The organic layer is dried over (Na2S04) and concentrated to dryness. The residue is purified by silica gel column chromatography with 3-6 % EtOAc in hexanes to provide 49 (220 mg, 51%) as a 20 solid.
EXAMPLE 10 3,5-Di-0-benzoyl-2-meihyl-D-ribono-lactone (48) To a solution of 47 (160 mg, 0.432 mmol) in anhydrous CH2CI2 (5 mL) is added DAST or DEOXOFLUOR (0.15 mL, 1.14 mmol) at 0-5 °C under argon. The reaction mixture is stirred at 0-5 °C for 1 h then at room temperature. After 24 hrs, the reaction still does not go well as there is no major less polar product appears in the TLCs. The reaction mixture is cooled to 0 °C, and carefully treated with cold saturated NaHC03 solution. The organic layer is dried over Na2S04 and concentrated to dryness. The residue is checked by proton NMR. It shows that the major product is 3,5-dibenzoyl-2-methyl-D-ribono-y-lactone (48), which is identical with authentic sample. Traces of 49 are detected on the spectrum.
EXAMPLE 11 3,5-Di-0-methoxymethyl-2-C-methyl-D-arabino-y-lactone (50) To a solution of 2-methylarabinolactone (46) (324 mg, 2 mmol) in CH2(OMe)2 (30 mL) and CH2CI2 (30 mL) was added CF3SO3H (50 (iL), and the solution was stirred at RT under argon for 14 h. The reaction was quenched by 10 addition of 28% NH4OH (0.1 mL), and the mixture was dried by addition of Na2SC>4. After removal of the solvent by evaporation, the residue was purified by flash chromatography on silica gel eluting with CH2Cl2/MeOH (95:5 to 9:1) to give 450 mg (90%) of product as a pale yellow oil. 'H-NMR (DMSO-dg): 6.10 (s, OH, D2O exchangeable), 4.70 (q, 2H, CH2), 4.62 (d, 2H, CH2), 4.30 (m, IH, H-4), 4.20 (d, IH, 15 H-3), 3.80-3.65 (m, 2H, H-5), 3.30, 3.28 (2s, 6H, 2 CH3), 1.26 (s, 3H, CH3).
EXAMPLE 12 3,5-Di-0-methoxymethyl-2-deoxy-2-fluoro-2-C-methyl-D-ribono-y-lactone (51) To a solution of 50 (100 mg, 0.4 mmol) in CH2CI2 (3 mL) and pyridine (0.5 20 mL) at -78 °C is added DAST or DEOXOFLUOR (0.21 mL, 1.6 mmol), and the solution is stirred at -78 °C for 15 min. Then the solution is allowed to warm up to room temperature and stirred at room temperature for 2 h. The reaction is quenched by addition of saturated aqueous NaHC03 (0.5 mL) and ice-water (0.5 mL), followed by CH2CI2 (20 mL) and saturated aqueous NaHC03 (10 mL). The aqueous 25 layer is extracted with CH2CI2 twice, the combined organic layers are washed with NaHC03, and dried over Na2S04. The evaporation of the solvent gives 51 (88 mg, 87%) as a brownish-yellow oil. 'H-NMR (DMSO-d6): 4.74 (q, J = 6.9 & 18.1 Hz, 2H, CH2), 4.63 (d, J = 0.77 Hz, 2H, CH2), 4.54 (m, IH, H-4), 4.18 (dd, J = 7.8 & 20.0 Hz, IH, H-3), 3.86-3.71 (m, 2H, H-5), 3.34, 3.28 (2s, 6H, 2 CH3), 1.59 (d, J -30 24.26 Hz, 3H, CH3).
EXAMPLE 13 Ethyl 4,5-0-Isopropylidene-3,4,5-trihydroxy-2-methylvalerate (54) To activated zinc (6.5 g, 0.10 mmol) is added about 20 mL of a solution containing 39 (13.0 g, 0.1 mmol), 53 (13.0 mL, 0.10 mmol), THF (50 mL), and 5 diethyl ether (50 mL). After the addition, one crystal of I2 is added, whereby an exotherm is generated, causing the solution to reflux. The remaining solution is added over about 0.75 h as to maintain a gentle reflux. The mixture is gently heated to reflux for an additional 1 h after the final addition. The mixture is cooled to room temp, poured into ice (200 mL) and 1 N HCl (200 mL) and allowed to stir until most 10 of the ice had melted (about 0.5 h). The organic layer is separated and the aqueous layer is extracted with diethyl ether (2 x 75 mL). The combined organic layers are washed with satd NaHCC>3 (1 x 150 mL), brine (1 x 150 mL), dried (Na2SC>4), filtered, and concentrated to dryness in vacuo. Further drying in vacuo provides 54 as a mixture of diastereomers (15.1 g, 65.1%). This compound is used without 15 further purification.
EXAMPLE 14 Ethyl 4,5-0-Isopropylidene-3-oxo-2-methylvalerate (55) Compound 54 (9.85 g, 0.042 mol) is dissolved in dry THF (50 mL). 20 Anhydrous DMSO (16.0 mL, 0.22 mol) is added and the resulting solution is cooled to between -20 °C and -15 °C. Trifluoroacetic anhydride (9.8 mL, 0.69 mol) is added dropwise over 15 minutes and the solution is stirred between -20 °C and -15 °C for 2 h after which anhydrous NEt3 (24.0 mL, 0.17 mol) is added over 20 min. The resulting solution is stirred at room temp for 1 h, diluted with diethyl ether (50 25 mL), and washed with H2O (3 x 100 mL), dried (Na2S04) and concentrate in vacuo to compound 55 as a yellow oil (8.1 g, 82.0%) that is used without further purification. lH NMR (CDCI3,400 MHz): 8 1.24-1.38 (m, 26H), 3.81 (q, 1.3 H, J = 7.3 Hz), 3.89 (q, 1.0H, J= 7.3 Hz), 3.99-4.04 (m, 3H), 4.10-4.20 (m, 7H), 4.21-4.29 (m, 3H), 4.51 (dd, 1 .OH, J= 8.1, 6.2 Hz), 4.58 (dd, 1.3H, J= 7.7, 5.0 Hz).
EXAMPLE 15 Ethyl 4,5-0-Isopropylidene-2-fluoro-3-keto-2-methylvalerate (56) Compound 55 (7.36 g, 0.042 mol) is dissolved in anhydrous DMF (5.0 mL) and treated with a slurry of Selectfluor (55.0 g, 0.155 mol) in DMF (45.0 mL). The 5 mixture is placed in an oil bath maintained at 45 - 50 °C and the suspension is maintained with stirring at that temperature overnight under an argon atmosphere. The solution is concentrated to near dryness in vacuo, treated with diethyl ether (-25 mL) and washed with water (3 x 100 mL). The organic phase is dried (NaaSOO and concentrate in vacuo to compound 56 as a yellow oil (5.65 g, 71.2%) that was an 10 approximate 1:1 mixture of 2R : 2S fluorinated compound as judged by 19F NMR. 'H NMR (CDClj, 400 MHz): 8 1.20-1.46 (m, 16H), 1.70 (2d, 3H, 7= 22.8 Hz ), 4.05-4.10 (m, 2H,), 4.12-4.32 (m, 2H,), 4.90-97 (m, IH). ,9F NMR (CDCI3, 376 MHz, C6F6 external standard): 8 4.30 (q), 4.01 (q).
EXAMPLE 16 3,5-0-dipivaloyl-2-methyl-D-arabino-y-lactone (47 B).
To a solution of 42 (4 mmol, 897 mg) in EtOH (20 mL) was added concentrated HCl (2.0 mL), and the solution stirred at room temperature for 1 h. The solution was concentrated to dryness and the residue was co-evaporated with 20 THF (10 mL) and dissolved in pyridine (6 mL) and CH2CI2 (14 mL). The solution was cooled in ice-bath. To the solution was added pivaloyl chloride (8 mmol, 0.98 mL) and the solution stirred at 0 °C for 30 min. To the solution was added an additional pivaloyl chloride (4 mmol, 0.49 mL) and the solution stirred at room temperature for 5 h. To the solution was added 4-dimethylaminopyridine (100 mg) 25 and the solution was stirred at room temperature for 20 h. H2O (5 mL) was added and the mixture was stirred at room temperature for 20 min. EtOAc (50 mL) was added. The mixture was washed with water, brine and dried (Na2S04). Solvent was removed and the residue was recrystallized from EtOAc-Hexanes to give fine crystals (625 mg, 47%). H-NMR (CDC13): 8 5.18 (d, J - 6.80Hz, IH, H-3), 4.45, 30 4.22 (m, 2H, H-5), 4.41 (m, IH, H-4), 3.32 (br s, IH, OH, D20 exchangeable), 1.43 (s, IH, Me), 1.25,1.22 [ss, 18H, C(Me)3].

Claims (6)

RECEIVED at IPONZ on 4 Apr 2011 EXAMPLE 17 2~Deoxy-3,S~0-dipivaloyl- 2-fluoro-2-C-methyl-D~ribono-y-lactone (49B). To a solution of 47B (100 mg, 0.3 mmol) in THF (5 mL) were added EtNPr2 (2 mmol, 0.35 mL) and Deoxo-Fluor (0.18 mL, 0.9 mmol), and the solution was 5 stirred at room temperature for 4 h. To the solution was added additional Deoxo-Fluor (0.18 mL, 0.9 mmol) and the solution was stirred at room temperature for 16 h, refluxed for 1 h. EtOAc (50 mL) was added. The solution was washed with aqueous NaHCOs, brine, dried (NajSO^. Solvent was removed and the residue was purified by column (10% EtOAc in hexanes) to give product as a solid (65 mg, 10 65%). H-NMR (CDC13): 5 5.12 (m, IH, H-3), 4.68 (m, IH, H-4), 4.41, 4.18 (mm, 2H, H-5), 1.63 (d, J = 23.2Hz, IH, Me), 1.25,1.20 [ss, 18H, C(Me)3]. In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art. In the description in this specification reference may be made to subject matter that is not within the scope of the claims of the current application. That subject matter should be readily identifiable by a person skilled in the art and may assist in putting into practice the invention as defined in the claims of this application. - 24 - Received at IPONZ on 30 November 2011 WHAT WE CLAM IS:
1. A method for the preparation of a 2'-deoxy-2'-fluoro-2'-C-methyl-/3-D-ribofuranosyl nucleoside of the following formula: Base ^O- CH3 HO- V OH wherein the base is: R4 or wherein R2 and R4 are independently H, OH, NH2, or OR'; Z is halogen, H, OH, OR', SH, SR', NH2, NHR', or R'; R' is an optionally substituted straight, branched, or cyclic alkyl of C1-C12; Y is N or CH; comprising the following steps: (a) reacting a nucleoside intermediate of the following formula: Protected Base wherein the base is as defined above and the protecting group is benzoyl; wherein R3 and R5 are each independently tetrahydropyranyl, methyl, ethyl, benzyl, benzoyl, p- 25 RECEIVED at IPONZ on 4 Apr 2011 methoxybenzyl, benzyloxymethyl, phenoxymethyl, methoxymethyl, ethoxymethyl, mesyl, tosyl, trifluoroacetyl, or trichloroacetyl with diethylamino sulfur trifluoride or bis(2-mcthoxyethyl)aminosulfui: trifluoride to yield a fluorinated intermediate of the following formula: Protected Base R O- OR3 (b) deprotecting the R3 and R5 groups of the product of step (a) by treatment with a boron trihalide to yield an intermediate of the following formula: Protected Base HO- A- CH, OH (c) saponifying the product of step (b) to yield the desired nucleoside.
2. The method of claim 1, wherein the boron trihalide of step (b) is selected from boron trifluoride, boron trichloride, boron tribromide or boron triiodide.
3. The method of claim 1, wherein the saponification of step (c) is done with a metal alcoholate in alcohol.
4. The method of claim 3, wherein the metal alcoholate in alcohol is sodium methoxide in methanol.
5. A method as claimed in any one of claims 1 to 4 substantially as herein described with reference to any example thereof.
6. A 2'-deoxy-2'-fluoro-2'-C-methyl-B-D-ribofuranosyl nucleotide as defined in claim 1, when prepared by a method as claimed in any one of claims 1 to 4. 26
NZ584752A 2004-07-21 2005-07-21 Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives NZ584752A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US58986604P 2004-07-21 2004-07-21
US60823004P 2004-09-09 2004-09-09
NZ552927A NZ552927A (en) 2004-07-21 2005-07-21 Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives

Publications (1)

Publication Number Publication Date
NZ584752A true NZ584752A (en) 2012-01-12

Family

ID=46087718

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ584752A NZ584752A (en) 2004-07-21 2005-07-21 Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives

Country Status (2)

Country Link
NZ (1) NZ584752A (en)
SI (1) SI1773856T1 (en)

Also Published As

Publication number Publication date
SI1773856T1 (en) 2012-07-31

Similar Documents

Publication Publication Date Title
CA2735079C (en) Preparation of alkyl-substituted 2-deoxy-2-fluoro-d-ribofuranosyl pyrimidines and purines and their derivatives
US8481713B2 (en) Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives
US10577359B2 (en) Preparation of 2′-fluoro-2′-alkyl-substituted or other optionally substituted ribofuranosyl pyrimidines and purines and their derivatives
JP2008507547A6 (en) Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives
NZ584752A (en) Preparation of alkyl-substituted 2-deoxy-2-fluoro-D-ribofuranosyl pyrimidines and purines and their derivatives

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 21 JUL 2016 BY COMPUTER PACKAGES INC

Effective date: 20150701

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 21 JUL 2017 BY COMPUTER PACKAGES INC

Effective date: 20160701

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 21 JUL 2018 BY COMPUTER PACKAGES INC

Effective date: 20170701

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 21 JUL 2019 BY COMPUTER PACKAGES INC

Effective date: 20180703

LAPS Patent lapsed