NZ579989A - 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mglur2 -receptor modulators - Google Patents

1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mglur2 -receptor modulators

Info

Publication number
NZ579989A
NZ579989A NZ579989A NZ57998908A NZ579989A NZ 579989 A NZ579989 A NZ 579989A NZ 579989 A NZ579989 A NZ 579989A NZ 57998908 A NZ57998908 A NZ 57998908A NZ 579989 A NZ579989 A NZ 579989A
Authority
NZ
New Zealand
Prior art keywords
disorder
compound
formula
disorders
compounds
Prior art date
Application number
NZ579989A
Inventor
Jose Maria Cid-Nunez
Andres Avelino Trabanco-Suarez
Gregor James Macdonald
Guillaume Albert Jacques Duvey
Robert Johannes Lutjens
Original Assignee
Ortho Mcneil Janssen Pharm
Addex Pharmaceuticals Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ortho Mcneil Janssen Pharm, Addex Pharmaceuticals Sa filed Critical Ortho Mcneil Janssen Pharm
Priority claimed from PCT/EP2008/052767 external-priority patent/WO2008107480A1/en
Publication of NZ579989A publication Critical patent/NZ579989A/en

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed is a phenylene and cyano substituted pyridine-2-one of formula (I)wherein the substituents are as disclosed in the description. Also disclosed is a pharmaceutical composition comprising a compound of formula (I), the use of a compound of formula (I) in the manufacture of a medicament and the process for preparing a compound of formula (I). Examples of compounds are 1-Cyclopropylmethyl-4-[4-(2,3-dimethyl-pyridin-4-yloxy)-3-fluoro-phenyl] -2-oxo-1,2-dihydro-pyridine-3-carbonitrile and 3-cyano-1-butyl-4-[4-(2-methyl-pyridin-4-yloxy)-phenyl]-pyridine-2(1H)-one. Examples of diseases and conditions that the medicament can be used to treat are: central nervous system disorder selected from the group of anxiety disorders, psychotic disorders, personality disorders, substance-related disorders, eating disorders, mood disorders, migraine, epilepsy or convulsive disorders, childhood disorders, cognitive disorders, neurodegeneration, neurotoxicity and ischemia.

Description

New Zealand Paient Spedficaiion for Paient Number 579989 1,4-DISUBSTITUTED 3-CYANO-PYRIDONE DERIVATIVES AND THEIR USE AS POSITIVE MGLUR2-RECEPTOR MODULATORS Field of the Invention The present invention relates to novel pyridin-2-one-derivatives which are positive allosteric modulators of the metabotropic glutamate receptor subtype 2 ("mGluR2") and which are useful for the treatment or prevention of neurological and psychiatric disorders associated with glutamate dysfunction and diseases in which the mGluR2 subtype of metabotropic receptors is involved. The invention is also directed 10 to pharmaceutical compositions comprising such compounds, to processes to prepare such compounds and such compositions, and to the use of such compounds for the prevention or treatment of neurological and psychiatric disorders and diseases in which mGluR2 is involved.
Background of the Invention Glutamate is the major amino acid neurotransmitter in the mammalian central nervous system. Glutamate plays a major role in numerous physiological functions, such as learning and memory but also sensory perception, development of synaptic plasticity, motor control, respiration, and regulation of cardiovascular function.
Furthermore, glutamate is at the centre of several different neurological and psychiatric diseases, where there is an imbalance in glutamatergic neurotransmission.
Glutamate mediates synaptic neurotransmission through the activation of ionotropic glutamate receptors channels (iGluRs), and the NMD A, AMPA and kainate receptors which are responsible for fast excitatory transmission.
In addition, glutamate activates metabotropic glutamate receptors (mGluRs) which have a more modulatory role that contributes to the fine-tuning of synaptic efficacy.
Glutamate activates the mGluRs through binding to the large extracellular amino-terminal domain of the receptor, herein called the orthosteric binding site. This binding induces a conformational change in the receptor which results in the activation of the G-protein and intracellular signalling pathways.
The mGluR2 subtype is negatively coupled to adenylate cyclase via activation of Gai-protein, and its activation leads to inhibition of glutamate release in the synapse. tat-\ r-\ ^n/'Ar» WO 2008/107480 PCT/EP2008/052767 In the central nervous system (CNS), mGluR2 receptors are abundant mainly throughout cortex, thalamic regions, accessory olfactory bulb, hippocampus, amygdala, caudate-putamen and nucleus accumbens.
Activating mGluR2 was shown in clinical trials to be efficacious to treat anxiety 5 disorders. In addition, activating mGluR2 in various animal models was shown to be efficacious, thus representing a potential novel therapeutic approach for the treatment of schizophrenia, epilepsy, addiction/drug dependence, Parkinson's disease, pain, sleep disorders and Huntington's disease.
To date, most of the available pharmacological tools targeting mGluRs are 10 orthosteric ligands which activate several members of the family as they are structural analogs of glutamate.
A new avenue for developing selective compounds acting at mGluRs is to identify compounds that act through allosteric mechanisms, modulating the receptor by binding to a site different from the highly conserved orthosteric binding site.
Positive allosteric modulators of mGluRs have emerged recently as novel pharmacological entities offering this attractive alternative. Various compounds have been described as mGluR2 positive allosteric modulators.
W02004/092135 (NPS & Astra Zeneca), W02004/018386, W02006/014918 and W02006/015158 (Merck), W02001/56990 (Eli Lilly) and W02006/030032 20 (Addex & Janssen Pharmaceutica) describe respectively phenyl sulfonamide, acetophenone, indanone, pyridylmethyl sulfonamide and pyridinone derivatives as mGluR2 positive allosteric modulators. None of the specifically disclosed compounds are structurally related to the compounds of the invention.
W02007/104783 describes 1,4-disubstituted 3-cyano-pyridone-derivatives that 25 are positive allosteric modulators of metabotropic receptors-subtype 2 ("mGluR2").
It was demonstrated that such compounds do not activate the receptor by themselves. Rather, they enable the receptor to produce a maximal response to a concentration of glutamate which by itself induces a minimal response. Mutational analysis has demonstrated unequivocally that the binding of mGluR2 positive allosteric 30 modulators does not occur at the orthosteric site, but instead at an allosteric site situated within the seven transmembrane region of the receptor.
Animal data are suggesting that positive allosteric modulators of mGluR2 have effects in anxiety and psychosis models similar to those obtained with orthosteric agonists. Allosteric modulators of mGluR2 were shown to be active in fear-potentiated RECEIVED at IPONZ on 14 January 2011 startle, and in stress-induced hyperthermia models of anxiety. Furthermore, such compounds were shown to be active in reversal of ketamine- or amphetamine-induced hyperlocomotion, and in reversal of amphetamine-induced disruption of prepulse inhibition of the acoustic startle effect models of schizophrenia (J. Pharmacol. Exp. Ther. 2006, 318, 173-185; Psychopharmacology 2005,179,271-283).
Recent animal studies further reveal that the selective positive allostric modulator of metabotropic glutamate receptor subtype 2 biphenyl-indanone (BINA) blocks a hallucinogenic drug model of psychosis, supporting the strategy of targeting mGluR2 receptors for treating glutamatergic dysfunction in schizophrenia (Mol. Pharmacol. 2007, 72,477-484).
Positive allosteric modulators enable potentiation of the glutamate response, but they have also been shown to potentiate the response to orthosteric mGluR2 agonists such as LY3 79268 or DCG-IV. These data provide evidence for yet another novel therapeutic approach to treat above mentioned neurological and psychiatric diseases involving mGluR2, 15 which would use a combination of a positive allosteric modulator of mGluR2 together with an orthosteric agonist of mGluR2.
The present compounds are characterized by a central pyridine-2-one moiety substituted in position 3 with cyano and in position 4 with optionally substituted phenyl which is on its turn substituted in position 4 with substituted pyridinyloxy. The present compounds 20 are potent positive allosteric mGluR2 modulators and exhibit improved cardiovascular safety profile.
A reference herein to a patent document or other matter which is given as prior art is not to be taken as an admission that that document or matter was known or that the information it contains was part of the common general knowledge as at the priority date of 25 any of the claims.
Throughout the description and claims of the specification, the word "comprise" and variations of the word, such as "comprising" and "comprises", is not intended to exclude other additives, components, integers or steps.
Description of the Invention The invention relates to compounds having metabotropic glutamate receptor 2 modulator activity. The present invention provides a compound according to formula (I), SPEC-NZ16734-09.doc RECEIVED at IPONZ on 14 January 2011 -3a- including any stereochemically isomeric form thereof, wherein Ri is C^alkyl, or Chalky! substituted with C3-7cycloalkyl; SPEC-NZ 16734-09.doc tat-\ r-\ ^n/'Ar» R2 is hydrogen or halo; A is pyridinyl substituted with one or two substituents, each substituent independently selected from halo or Ci_4alkyl; n is an integer of value 1 or 2; or a pharmaceutical^ acceptable salt or a solvate thereof; provided that if R2 is 2-fluoro then A is not 3-pyridinyl substituted with one or two substituents, each substituent independently selected from halo or Ci_4alkyl.
The present invention also relates to the use of a compound of formula (I) or 10 any subgroup thereof for the manufacture of a medicament for treating or preventing, in particular for treating, a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of an allosteric modulator of mGluR2, in particular a positive allosteric modulator.
An embodiment of the present invention are those compounds of formula (I) including any stereochemically isomeric form thereof, wherein Ri is C4-6alkyl, or Ci_3alkyl substituted with C3-7cycloalkyl; R2 is hydrogen or halo; A is pyridinyl substituted with one or two substituents, each substituent independently selected from halo or Ci_4alkyl; n is an integer of value 1 or 2; or a pharmaceutically acceptable salt or a solvate thereof; provided that if R2 is 2-fluoro then A is not 3-pyridinyl substituted with one or two 25 substituents, each substituent independently selected from halo or Ci_4alkyl; and provided that the compound is other than tat-\ r-\ ^n/'Ar» -Ri R2 -A H H YV ^7 H c'Yy CI I H An embodiment of the present invention are those compounds of formula (I) 5 wherein Ri is C^alkyl, in particular Chalky 1, such as for example 1-butyl, 2-methyl-1-propyl, 3-methyl-1-butyl; in particular 1-butyl or 3-methyl-1-butyl; more in particular 1-butyl.
An embodiment of the present invention are those compounds of formula (I) wherein Ri is Ci_3alkyl substituted with C3-7cycloalkyl, in particular cyclopropylmethyl 10 or 2-(cyclopropyl)-l-ethyl, more in particular cyclopropylmethyl.
An embodiment of the present invention are those compounds of formula (I) or any subgroup thereof as mentioned hereinbefore as embodiment, wherein R2 is hydrogen or fluoro, in particular fluoro.
An embodiment of the present invention are those compounds of formula (I) or 15 any subgroup thereof as mentioned hereinbefore as embodiment, wherein R2 is halo, in particular fluoro.
An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein n is 1 and R2 is hydrogen. tat-\ r-\ ^n/'Ar» An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein n is 1 and R2 is halo, in particular fluoro.
An embodiment of the present invention are those compounds of formula (I) or, 5 whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein n is 2 and R2 is halo, in particular fluoro.
An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein n is 1 and R2 is halo, in particular fluoro, and placed in ortho position 10 compared to the pyridinone moiety, i.e. in position 2.
An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein n is 1 and R2 is halo, in particular fluoro, and placed in meta position compared to the pyridinone moiety, i.e. in position 3.
An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein n is 2 and R2 is halo, in particular fluoro, and the R2 substituents are placed in meta position compared to the pyridinone moiety, i.e. in positions 3 and 5.
An embodiment of the present invention are those compounds of formula (I) or, 20 whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein n is 2 and R2 is halo, in particular fluoro, and the R2 substituents are placed in ortho position compared to the pyridinone moiety, i.e. in positions 2 and 6.
An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, 25 wherein A is substituted 2-pyridinyl.
An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein A is substituted 3-pyridinyl.
An embodiment of the present invention are those compounds of formula (I) or, 30 whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, wherein A is substituted 4-pyridinyl.
An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, tat-\ r-\ ^n/'Ar» wherein the pyridinyl ring represented by A is substituted with one substituent selected from halo, in particular fluoro, or Ci_4alkyl, in particular methyl.
An embodiment of the present invention are those compounds of formula (I) or, whenever possible, any subgroup thereof as mentioned hereinbefore as embodiment, 5 wherein the pyridinyl ring represented by A is substituted with two substituents, each substituent independently being selected from halo, in particular chloro, or Ci_4alkyl, in particular methyl.
An embodiment of the present invention are those compounds of formula (I), wherein Ri is C4_6alkyl, in particular 1-butyl or 3-methyl-1-butyl; or Ci_3alkyl 10 substituted with C3-7cycloalkyl, in particular cyclopropylmethyl or 2-(cyclopropyl)-l-ethyl; R2 is hydrogen or fluoro; n is 1 or 2; A is pyridinyl substituted with one or two substituents, each substituent independently 15 being selected from methyl or chloro.
An embodiment of the present invention are those compounds of formula (I) selected from, tat-\ r-\ ^n/'Ar» -Ri R2 -A 2-F YY N 3-F YY N ""Y 2-F YY N ""Y 3-F YY N "Y 2-F YV N^J "Y 3-F YV 3-F fY 2-F YY N 3-F fY 3,5-diF YY N H fY H VY^' H YY N "Y H \Y N^> tat-\ r-\ ^n/'Ar» -Ri R2 -A CI I H A'" or a pharmaceutically acceptable salt thereof or a solvate thereof An embodiment of the present invention are those compounds of formula (I) selected from, tat-\ r-\ ^n/'Ar» -Ri R2 -A ^7 3-F YY N ^7 2-F YV ^7 3-F YV 3-F fY 2-F YY N 3-F fY 3,5-diF YY N H fY or a pharmaceutically acceptable salt thereof or a solvate thereof.
As used hereinbefore or hereinafter, the notation Ci_3alkyl as a group or part of a group defines a saturated, straight or branched, hydrocarbon radical having from 1 to 5 3 carbon atoms, such as methyl, ethyl, 1-propyl and 1-methyl-1-ethyl. Preferably Ci_3alkyl represents methyl.
As used hereinbefore or hereinafter, the notation Ci_4alkyl as a group or part of a group defines a saturated, straight or branched, hydrocarbon radical having from 1 to 4 carbon atoms such as methyl, ethyl, propyl, 1-methyl-1-ethyl, 1-butyl, 2-methyl-l -10 propyl. Preferably, Ci_4alkyl represents methyl.
As used hereinbefore or hereinafter, the notation C4_6alkyl as a group or part of a group defines a saturated, straight or branched, hydrocarbon radical having from 4 to 6 carbon atoms such as 1-butyl, 2-methyl-l-propyl, 1-pentyl, 2-methyl-l-butyl, 3-methyl-1-butyl, 1-hexyl and the like. Preferably C4_6alkyl represents 1-butyl. 15 As used hereinbefore or hereinafter, the notation Chalky 1 as a group or part of tat-\ r-\ ^n/'Ar» a group defines a saturated, straight or branched, hydrocarbon radical having 4 or 5 carbon atoms such as 1-butyl, 2-methyl-l-propyl, 1-pentyl, 2-methyl-l-butyl, 3-methyl-1-butyl and the like.
As used hereinbefore or hereinafter, the notation C3_7Cydoalkyl defines a 5 saturated, cyclic hydrocarbon radical having from 3 to 7 carbon atoms, such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. Preferably C3-7cycloalkyl represents cyclopropyl.
As used hereinbefore or hereinafter, the notation halo is generic to fluoro, chloro, bromo and iodo.
For therapeutic use, salts of the compounds of formula (I) are those wherein the counterion is pharmaceutically acceptable. However, salts of acids and bases which are non-pharmaceutically acceptable may also find use, for example, in the preparation or purification of a pharmaceutically acceptable compound. All salts, whether 15 pharmaceutically acceptable or not, are included within the ambit of the present invention.
The pharmaceutically acceptable salts are defined to comprise the therapeutically active non-toxic acid addition salt forms that the compounds according to formula (I) are able to form. Said salts can be obtained by treating the base form of the compounds 20 according to formula (I) with appropriate acids, for example inorganic acids, for example hydrohalic acid, in particular hydrochloric acid, hydrobromic acid, sulphuric acid, nitric acid and phosphoric acid ; organic acids, for example acetic acid, hydroxyacetic acid, propanoic acid, lactic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid, malic acid, tartaric acid, citric acid, 25 methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, cyclamic acid, salicylic acid, p-aminosalicylic acid and pamoic acid.
Conversely said acid salt forms can be converted into the free base form by treatment with an appropriate base .
The compounds according to formula (I) containing acidic protons may also be 30 converted into their therapeutically active non-toxic base salt forms by treatment with appropriate organic and inorganic bases. Appropriate base salt forms comprise, for example, the ammonium salts, the alkaline and earth alkaline metal salts, in particular lithium, sodium, potassium, magnesium and calcium salts, salts with organic bases, e.g. tat-\ r-\ ^n/'Ar» WO 2008/107480 PCT/EP2008/052767 the benzathine, /V-methyl-D-glucamine, hybramine salts, and salts with amino acids, for example arginine and lysine.
Conversely, said base salt forms can be converted into the free acid forms by treatment with an appropriate acid.
The pharmaceutically acceptable acid addition salt forms of the compounds of formula (I) are the preferred pharmaceutically acceptable salt forms of the compounds of formula (I).
The term solvate comprises the solvent addition forms as well as the pharmaceutically acceptable salts thereof, which the compounds of formula (I) are able 10 to form. Examples of such solvent addition forms are e.g. hydrates, alcoholates and the like.
It will be appreciated that some of the compounds of formula (I) and their salts and solvates may contain one or more centers of chirality and exist as stereochemically isomeric forms.
The term "stereochemically isomeric forms" as used hereinbefore defines all the possible isomeric forms that the compounds of formula (I) may possess. Unless otherwise mentioned or indicated, the chemical designation of compounds denotes the mixture of all possible stereochemically isomeric forms, said mixtures containing all diastereomers and enantiomers of the basic molecular structure. But the invention also 20 embraces each of the individual isomeric forms of formula (I) and their salts or solvates, substantially free, i.e. associated with less than 10%, preferably less than 5%, in particular less than 2% and most preferably less than 1% of the other isomers. Thus, when a compound of formula (I) is for instance specified as (R), this means that the compound is substantially free of the (S) isomer.
In particular, stereogenic centers may have the R- or S-configuration; substituents on bivalent cyclic (partially) saturated radicals may have either the cis- or trans-configuration.
Following CAS nomenclature conventions, when two stereogenic centers of known absolute configuration are present in a compound, an R or S descriptor is 30 assigned (based on Cahn-Ingold-Prelog sequence rule) to the lowest-numbered chiral center, the reference center. The configuration of the second stereogenic center is indicated using relative descriptors or [R*,£*], where R* is always specified as the reference center and indicates centers with the same chirality and [/?*,£*] indicates centers of unlike chirality. For example, if the lowest-numbered chiral center tat-\ r-\ ^n/'Ar» WO 2008/107480 PCT/EP2008/052767 in the compound has an S configuration and the second center is R, the stereo descriptor would be specified as S*]. If "a" and "P" are used : the position of the highest priority substituent on the asymmetric carbon atom in the ring system having the lowest ring number, is arbitrarily always in the "a" position of the mean plane determined by 5 the ring system. The position of the highest priority substituent on the other asymmetric carbon atom in the ring system (hydrogen atom in compounds according to Formula (I)) relative to the position of the highest priority substituent on the reference atom is denominated "a", if it is on the same side of the mean plane determined by the ring system, or "P", if it is on the other side of the mean plane determined by the ring 10 system.
Whenever used hereinafter, the term "compounds of formula (I)" or any subgroup thereof, is meant to also include their stereochemically isomeric forms, their pharmaceutically acceptable salts and their solvates. Of special interest are those compounds of formula (I) which are stereochemically pure.
In the framework of this application, an element, in particular when mentioned in relation to a compound according to formula (I), comprises all isotopes and isotopic mixtures of this element, either naturally occurring or synthetically produced, either with natural abundance or in an isotopically enriched form. In particular, when hydrogen is mentioned, it is understood to refer to 1H, 2H, 3H or mixtures thereof; 20 when carbon is mentioned, it is understood to refer to nC, 12C, 13C, 14C or mixtures thereof; when nitrogen is mentioned, it is understood to refer to 13N, 14N, 15N or mixtures thereof; when oxygen is mentioned, it is understood to refer to 140,150, 160, 170, 180 or mixtures thereof; and when fluor is mentioned, it is understood to refer to 18F, 19F or mixtures thereof. The compounds according to the invention therefore also 25 comprise compounds with one or more isotopes of one or more element, and mixtures thereof, including radioactive compounds, also called radiolabeled compounds, wherein one or more non-radioactive atoms has been replaced by one of its radioactive isotopes. In particular, the radioactive atom is selected from the group of hydrogen, carbon, nitrogen, sulfur, oxygen and halogen. Preferably, the radioactive atom is 30 selected from the group of hydrogen, carbon and halogen. In particular, the radioactive isotope is selected from the group of 3H, nC, 18F, 122I, 1231, 125I, 131I, 75Br, 76Br, 77Br and 82 3 11 18 Br. Preferably, the radioactive isotope is selected from the group of H, C and F.
Whenever used hereinbefore or hereinafter that substituents can be selected each independently out of a list of definitions, all possible combinations are intended 35 which are chemically possible. tat-\ r-\ ^n/'Ar» Lines drawn from substituents into ring systems indicate that the bond may be attached to any of the suitable ring atoms.
In general, compounds of formula (I) can be prepared according to the below 5 Experimental procedures 1.
Experimental procedure 1 Compounds of formula (I) can be prepared by reacting an intermediate of formula (II) wherein Y represents a group suitable for Pd mediated coupling with boronic acids or 10 boronic esters, such as, for example, a halo or triflate, with an intermediate of formula (III) wherein R3 and R4 represent hydrogen or Ci_4alkyl, or wherein R3 and R4 may be taken together to form for example the bivalent radical of formula -CH2CH2-, -CH2CH2CH2-, or -C(CH3)2C(CH3)2-, according to Reaction Scheme (1). The reaction may be performed in a suitable reaction-inert solvent, such as, for example, 1,4-dioxane 15 or mixtures of inert solvents such as, for example, 1,4-dioxane/DMF, in the presence of a suitable base, such as, for example, aqueous NaHCC>3 or Na2C03, a suitable catalyst, such as for example a Pd-complex catalyst such as, for example, Pd(PPh3)4i under thermal conditions such as, for example, heating the reaction mixture at 150 °C under microwave irradiation, during for example 10 minutes. In Reaction Scheme (1), all 20 variables are defined as in formula (I) or as defined hereinabove.
(II) Reaction Scheme (1) OR, A.
O B„ OR, (R2), 2/n (IN) The compounds of formula (I) and some of the intermediates in the present invention may contain an asymmetric carbon atom. Pure stereochemically isomeric 25 forms of said compounds and said intermediates can be obtained by the application of art-known procedures. For example, diastereoisomers can be separated by physical methods such as selective crystallization or chromatographic techniques, e.g. counter current distribution, chiral liquid chromatography and the like methods. Enantiomers tat-\ r-\ ^n/'Ar» can be obtained from racemic mixtures by first converting said racemic mixtures with suitable resolving agents such as, for example, chiral acids, to mixtures of diastereomeric salts or compounds; then physically separating said mixtures of diastereomeric salts or compounds by, for example, selective crystallization or 5 chromatographic techniques, e.g. liquid chromatography and the like methods; and finally converting said separated diastereomeric salts or compounds into the corresponding enantiomers. Pure stereochemically isomeric forms may also be obtained from the pure stereochemically isomeric forms of the appropriate intermediates and starting materials, provided that the intervening reactions occur 10 stereospecifically.
An alternative manner of separating the enantiomeric forms of the compounds of formula (I) and intermediates involves liquid chromatography or SCF (Super Critical Fluid) chromatography, in particular using a chiral stationary phase.
Some of the intermediates and starting materials are known compounds and 15 may be commercially available or may be prepared according to art-known procedures.
The intermediates can also be prepared according to the below Experimental procedures 2 to 10.
Experimental procedure 2 Intermediates of formula (II) wherein Y represents halo, said intermediates being represented by formula (Il-a), can be prepared by reacting an intermediate of formula (IV) with a suitable halogenating agent such as, for example, P(=0)Br3 according to Reaction Scheme (2). The reaction may be performed in a suitable reaction-inert 25 solvent such as, for example, DMF, at a moderately elevated temperature such as, for example, 110 °C. In reaction scheme (2), all variables are defined as in formula (I).
Reaction Scheme (2) (IV) (Il-a) tat-\ r-\ ^n/'Ar» Experimental procedure 3 Intermediates of formula (II) wherein Y represents F3C-S(=0)2-0-, said intermediates being represented by formula (Il-b), can be prepared by reacting an intermediate of formula (IV) with triflic anhydride (also called trifloromethanesulfonic anhydride) 5 according to Reaction Scheme (3). The reaction may be performed in a suitable reaction-inert solvent such as, for example, dichloromethane, in the presence of a suitable base such as, for example, pyridine at a low temperature such as, for example, -78 °C. In Reaction Scheme (3), all variables are defined as in formula (I).
Reaction Scheme 3 (IV) (N-b) Experimental procedure 4 Intermediates of formula (IV) can be prepared by art-known procedures by reacting an intermediate of formula (V) with a suitable reagent for methylether-cleavage, such as, 15 for example, NaOH, according to Reaction Scheme (4). The reaction can be performed in a suitable solvent such as, for example, water, THF, at a moderately high temperature such as, for example, 100 °C. In Reaction Scheme (4), all variables are defined as in formula (I).
Reaction Scheme (4) (V) (IV) Experimental procedure 5 Intermediates of formula (V) can be prepared by art-known procedures by reacting commercially available 4-methoxy-2-oxo-l,2-dihydro-pyridine-3-carbonitrile with an 25 alkylating agent of formula (VI), wherein Z represents a suitable leaving group, such as for example halo, e.g. bromo and the like, according to Reaction Scheme (5). An example of an alkylating agent of formula (VI) is for example tat-\ r-\ ^n/'Ar» cyclopropylmethylbromide. The reaction can be performed in an inert solvent such as, for example, acetonitrile, using a suitable base such as, for example, K2CO3, and, optionally an iodine salt such as for example KI, at a moderately high temperature such as, for example, 120 °C. In reaction scheme (5), all variables are defined as in formula 5 (I).
Reaction Scheme (5) (V) Experimental procedure 6 10 Intermediates of formula (III) can be prepared by art-known procedures by reacting an intermediate of formula (VII) wherein A' represents a pyridinyl moiety A as defined hereinabove for formula (I) or a N-oxide thereof, with a suitable boron source such as, for example, bis(pinacolato)diborane in the presence of a suitable palladium catalyst such as, for example, l,r-bis(diphenylphosphino)ferrocenepalladium(II)dichloride 15 according to Reaction Scheme (6). The reaction may be performed in an inert solvent such as, for example, dichloromethane, in the presence of a suitable salt such as, for example, potassium acetate, at moderately elevated temperature such as, for example, 110°C during for example 16 hours.
Alternatively, intermediates of formula (III) can also be prepared by art-known 20 procedures of metal-halogen exchange and subsequent reaction with an appropriate boron source from intermediates of formula (VII). For example, an intermediate of formula (VII) can be reacted with an organolithium compound such as, for example, n-butyllithium, at a moderately low temperature such as, for example, -40 °C, in an inert solvent such as, for example, THF, followed by subsequent reaction with an 25 appropriate boron source such as, for example, trimethoxyborane.
In reaction scheme (6), all variables are defined as in formula (I) or as defined hereinabove. i^n/'Ar4 WO 2008/107480 PCT/EP2008/052767 Reaction Scheme (6) (VII) (Ml) Experimental procedure 7 5 Intermediates of formula (VII) can be prepared by art-known procedures by reacting a hydroxyphenol intermediate of formula (VIII) with a suitable intermediate of formula (IX) wherein X is a suitable leaving group such as, for example, halo or nitro, according to Reaction Scheme (7). Examples of intermediates of formula (IX) are 2,3-dimethyl-4-nitro-pyridine 1-oxide and 2-bromo-4,6-dimethylpyridine. The reaction 10 may be performed in an inert solvent such as, for example, dimethylformamide or xylene, in the presence of a suitable base such as, for example, sodium hydride or potassium carbonate, at moderately elevated temperature such as, for example, 180 °C during for example 60 minutes either under classical or microwave irradiation heating. In reaction scheme (7), all variables are defined as in formula (I).
Reaction Scheme (7) base/heat "o-H, • (R2)n U (R2)n (VIII) (IX) (VII) Experimental procedure 8 Intermediates of formula (VII) wherein A' represents A, said intermediates being 20 represented by formula (VH-a), can be prepared by art-known procedures from an aniline-like intermediate of formula (X) via a Sandmeyer type reaction according to reaction Scheme (8).
In reaction scheme (8), all variables are defined as in formula (I). tat-\ r-\ ^n/'Ar» Reaction Scheme (8) Sandmeyer type reaction halo Experimental procedure 9 5 Intermediates of formula (X) can be prepared by art-known procedures from the corresponding nitro intermediate of formula (XI) via reduction of the nitro group to the amino function by art-know procedures such as catalytic hydrogenation by using a suitable catalyst, such as for example palladium 10% on activated carbon or the use of tin(II) chloride dihydrate as a reducting agent, according to Reaction Scheme (9).
In Reaction Scheme (9), all variables are defined as in formula (I).
Reaction Scheme (9) O i + (XI) (X) Experimental procedure 10 Intermediates of formula (XI) can be prepared by art-known procedures by reacting an intermediate of formula (XII) with a suitable hydroxypyridyl intermediate of formula (XIII) such as for example 2-methyl-3-hydroxypyridine according to Reaction Scheme (10). The reaction can be performed in an inert solvent such as, for example, tetrahydrofuran, in the presence of a suitable base such as, for example, cesium 20 carbonate, at moderately elevated temperature such as, for example, 140 °C, during for example 16 hours. tat-\ r-\ ^n/'Ar» In Reaction Scheme (10), all variables are defined as in formula (I).
Reaction Scheme (10) (XII) (XIII) (XI) Pharmacology The compounds provided in this invention are positive allosteric modulators of metabotropic glutamate receptors, in particular they are positive allosteric modulators of mGluR2. The compounds of the present invention do not appear to bind to the glutamate recognition site, the orthosteric ligand site, but instead to an allosteric site 10 within the seven transmembrane region of the receptor. In the presence of glutamate or an agonist of mGluR2, the compounds of this invention increase the mGluR2 response. The compounds provided in this invention are expected to have their effect at mGluR2 by virtue of their ability to increase the response of such receptors to glutamate or mGluR2 agonists, enhancing the response of the receptor. Hence, the present invention 15 relates to a compound according to the present invention for use as a medicine, as well as to the use of a compound according to the invention or a pharmaceutical composition according to the invention for the manufacture of a medicament for treating or preventing, in particular treating, a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the 20 neuromodulatory effect of allosteric modulators of mGluR2, in particular positive allosteric modulators thereof. The present invention also relates to a compound according to the present invention or a pharmaceutical composition according to the invention for use in the manufacture of a medicament for treating or preventing, in particular treating, a condition in a mammal, including a human, the treatment or 25 prevention of which is affected or facilitated by the neuromodulatory effect of allosteric modulators of mGluR2, in particular positive allosteric modulators thereof. The present invention also relates to a compound according to the present invention or a pharmaceutical composition according to the invention for treating or preventing, in particular treating, a condition in a mammal, including a human, the treatment or tat-\ r-\ ^n/'Ar» prevention of which is affected or facilitated by the neuromodulatory effect of allosteric modulators of mGluR2, in particular positive allosteric modulators thereof.
Also, the present invention relates to the use of a compound according to the invention or a pharmaceutical composition according to the invention for the 5 manufacture of a medicament for treating, preventing, ameliorating, controlling or reducing the risk of various neurological and psychiatric disorders associated with glutamate dysfunction in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of positive allosteric modulators of mGluR2.
Where the invention is said to relate to the use of a compound or composition according to the invention for the manufacture of a medicament for e.g. the treatment of a mammal, it is understood that such use is to be interpreted in certain jurisdictions as a method of e.g. treatment of a mammal, comprising administering to a mammal in need of such e.g. treatment, an effective amount of a compound or composition 15 according to the invention.
In particular, the neurological and psychiatric disorders associated with glutamate dysfunction, include one or more of the following conditions or diseases: acute neurological and psychiatric disorders such as, for example, cerebral deficits subsequent to cardiac bypass surgery and grafting, stroke, cerebral ischemia, spinal 20 cord trauma, head trauma, perinatal hypoxia, cardiac arrest, hypoglycemic neuronal damage, dementia (including AIDS-induced dementia), Alzheimer's disease, Huntington's Chorea, amyotrophic lateral sclerosis, ocular damage, retinopathy, cognitive disorders, idiopathic and drug-induced Parkinson's disease, muscular spasms and disorders associated with muscular spasticity including tremors, epilepsy, 25 convulsions, migraine (including migraine headache), urinary incontinence, substance tolerance, substance withdrawal (including substances such as, for example, opiates, nicotine, tobacco products, alcohol, benzodiazepines, cocaine, sedatives, hypnotics, etc.), psychosis, schizophrenia, anxiety (including generalized anxiety disorder, panic disorder, and obsessive compulsive disorder), mood disorders (including depression, 30 mania, bipolar disorders), trigeminal neuralgia, hearing loss, tinnitus, macular degeneration of the eye, emesis, brain edema, pain (including acute and chronic states, severe pain, intractable pain, neuropathic pain, and post-traumatic pain), tardive dyskinesia, sleep disorders (including narcolepsy), attention deficit/hyperactivity disorder, and conduct disorder. tat-\ r-\ ^n/'Ar» WO 2008/107480 PCT/EP2008/052767 In particular, the present invention relates to the use of a compound of formula (I) for the manufacture of a medicament for treating or preventing, in particular for treating, a central nervous system disorder selected from the group of anxiety disorders, psychotic disorders, personality disorders, substance-related disorders, eating disorders, 5 mood disorders, migraine, epilepsy or convulsive disorders, childhood disorders, cognitive disorders, neurodegeneration, neurotoxicity and ischemia.
Preferably, the central nervous system disorder is an anxiety disorder, selected from the group of agoraphobia, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), panic disorder, posttraumatic stress disorder 10 (PTSD), social phobia and other phobias.
Preferably, the central nervous system disorder is a psychotic disorder selected from the group of schizophrenia, delusional disorder, schizoaffective disorder, schizophreniform disorder and substance-induced psychotic disorder Preferably, the central nervous system disorder is a personality disorder selected 15 from the group of obsessive-compulsive personality disorder and schizoid, schizotypal disorder.
Preferably, the central nervous system disorder is a substance-related disorder selected from the group of alcohol abuse, alcohol dependence, alcohol withdrawal, alcohol withdrawal delirium, alcohol-induced psychotic disorder, amphetamine 20 dependence, amphetamine withdrawal, cocaine dependence, cocaine withdrawal, nicotine dependence, nicotine withdrawal, opioid dependence and opioid withdrawal.
Preferably, the central nervous system disorder is an eating disorder selected from the group of anorexia nervosa and bulimia nervosa.
Preferably, the central nervous system disorder is a mood disorder selected from 25 the group of bipolar disorders (I & II), cyclothymic disorder, depression, dysthymic disorder, major depressive disorder and substance-induced mood disorder.
Preferably, the central nervous system disorder is migraine.
Preferably, the central nervous system disorder is epilepsy or a convulsive disorder selected from the group of generalized nonconvulsive epilepsy, generalized 30 convulsive epilepsy, petit mal status epilepticus, grand mal status epilepticus, partial epilepsy with or without impairment of consciousness, infantile spasms, epilepsy partialis continua, and other forms of epilepsy.
Preferably, the central nervous system disorder is attention-deficit/hyperactivity disorder. tat-\ r-\ ^n/'Ar» Preferably, the central nervous system disorder is a cognitive disorder selected from the group of delirium, substance-induced persisting delirium, dementia, dementia due to HIV disease, dementia due to Huntington's disease, dementia due to Parkinson's disease, dementia of the Alzheimer's type, substance-induced persisting dementia and 5 mild cognitive impairment.
Of the disorders mentioned above, the treatment of anxiety, schizophrenia, migraine, depression, and epilepsy are of particular importance.
At present, the fourth edition of the Diagnostic & Statistical Manual of Mental Disorders (DSM-IV) of the American Psychiatric Association provides a diagnostic 10 tool for the identification of the disorders described herein. The person skilled in the art will recognize that alternative nomenclatures, nosologies, and classification systems for neurological and psychiatric disorders described herein exist, and that these evolve with medical and scientific progresses.
Because such positive allosteric modulators of mGluR2, including compounds 15 of formula (I), enhance the response of mGluR2 to glutamate, it is an advantage that the present methods utilize endogenous glutamate.
Because positive allosteric modulators of mGluR2, including compounds of formula (I), enhance the response of mGluR2 to agonists, it is understood that the present invention extends to the treatment of neurological and psychiatric disorders 20 associated with glutamate dysfunction by administering an effective amount of a positive allosteric modulator of mGluR2, including compounds of formula (I), in combination with an mGluR2 agonist.
The compounds of the present invention may be utilized in combination with one or more other drugs in the treatment, prevention, control, amelioration, or reduction 25 of risk of diseases or conditions for which compounds of formula (I) or the other drugs may have utility, where the combination of the drugs together are safer or more effective than either drug alone.
Pharmaceutical compositions The invention also relates to a pharmaceutical composition comprising a pharmaceutically acceptable carrier or diluent and, as active ingredient, a therapeutically effective amount of a compound according to the invention, in particular a compound according to formula (I), including a stereochemically isomeric form thereof, or a pharmaceutically acceptable salt thereof or a solvate thereof. tat-\ r-\ ^n/'Ar» WO 2008/107480 PCT/EP2008/052767 The compounds according to the invention, in particular the compounds according to formula (I), including a stereochemically isomeric form thereof, or a pharmaceutically acceptable salt thereof or a solvate thereof, or any subgroup or combination thereof may be formulated into various pharmaceutical forms for 5 administration purposes. As appropriate compositions there may be cited all compositions usually employed for systemically administering drugs.
To prepare the pharmaceutical compositions of this invention, an effective amount of the particular compound, optionally in salt form, as the active ingredient is combined in intimate admixture with a pharmaceutically acceptable carrier or diluent, 10 which carrier or diluent may take a wide variety of forms depending on the form of preparation desired for administration. These pharmaceutical compositions are desirable in unitary dosage form suitable, in particular, for administration orally, rectally, percutaneously, by parenteral injection or by inhalation. For example, in preparing the compositions in oral dosage form, any of the usual pharmaceutical media 15 may be employed such as, for example, water, glycols, oils, alcohols and the like in the case of oral liquid preparations such as, for example, suspensions, syrups, elixirs, emulsions and solutions; or solid carriers such as, for example, starches, sugars, kaolin, diluents, lubricants, binders, disintegrating agents and the like in the case of powders, pills, capsules and tablets. Because of the ease in administration, oral administration is 20 preferred, and tablets and capsules represent the most advantageous oral dosage unit forms in which case solid pharmaceutical carriers are obviously employed. For parenteral compositions, the carrier will usually comprise sterile water, at least in large part, though other ingredients, for example, to aid solubility, may be included.
Injectable solutions, for example, may be prepared in which the carrier comprises 25 saline solution, glucose solution or a mixture of saline and glucose solution. Injectable suspensions may also be prepared in which case appropriate liquid carriers, suspending agents and the like may be employed. Also included are solid form preparations that are intended to be converted, shortly before use, to liquid form preparations. In the compositions suitable for percutaneous administration, the carrier optionally comprises 30 a penetration enhancing agent and/or a suitable wetting agent, optionally combined with suitable additives of any nature in minor proportions, which additives do not introduce a significant deleterious effect on the skin. Said additives may facilitate the administration to the skin and/or may be helpful for preparing the desired compositions. These compositions may be administered in various ways, e.g., as a transdermal patch, 35 as a spot-on, as an ointment.
It is especially advantageous to formulate the aforementioned pharmaceutical tat-\ r-\ ^n/'Ar» compositions in unit dosage form for ease of administration and uniformity of dosage. Unit dosage form as used herein refers to physically discrete units suitable as unitary dosages, each unit containing a predetermined quantity of active ingredient calculated to produce the desired therapeutic effect in association with the required 5 pharmaceutical carrier. Examples of such unit dosage forms are tablets (including scored or coated tablets), capsules, pills, powder packets, wafers, suppositories, injectable solutions or suspensions and the like, and segregated multiples thereof.
The exact dosage and frequency of administration depends on the particular compound of formula (I) used, the particular condition being treated, the severity of the 10 condition being treated, the age, weight, sex, extent of disorder and general physical condition of the particular patient as well as other medication the individual may be taking, as is well known to those skilled in the art. Furthermore, it is evident that said effective daily amount may be lowered or increased depending on the response of the treated subject and/or depending on the evaluation of the physician prescribing the 15 compounds of the instant invention.
Depending on the mode of administration, the pharmaceutical composition will comprise from 0.05 to 99 % by weight, preferably from 0.1 to 70 % by weight, more preferably from 0.1 to 50 % by weight of the active ingredient, and, from 1 to 99.95 % by weight, preferably from 30 to 99.9 % by weight, more preferably from 50 to 99.9 % 20 by weight of a pharmaceutically acceptable carrier, all percentages being based on the total weight of the composition.
As already mentioned, the invention also relates to a pharmaceutical composition comprising the compounds according to the invention and one or more other drugs in the treatment, prevention, control, amelioration, or reduction of risk of 25 diseases or conditions for which compounds of Formula (I) or the other drugs may have utility as well as to the use of such a composition for the manufacture of a medicament. The present invention also relates to a combination of a compound according to the present invention and a mGluR2 orthosteric agonist. The present invention also relates to such a combination for use as a medicine. The present invention also relates to a 30 product comprising (a) a compound according to the present invention, a pharmaceutically acceptable salt thereof or a solvate thereof, and (b) a mGluR2 orthosteric agonist, as a combined preparation for simultaneous, separate or sequential use in the treatment or prevention of a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory 35 effect of mGluR2 allosteric modulators, in particular positive mGluR2 allosteric modulators. The different drugs of such a combination or product may be combined in tat-\ r-\ ^n/'Ar» a single preparation together with pharmaceutically acceptable carriers or diluents, or they may each be present in a separate preparation together with pharmaceutically acceptable carriers or diluents.
The following examples are intended to illustrate but not to limit the scope of the present invention.
Experimental Part Several methods for preparing the compounds of this invention are illustrated in 10 the following Examples. Unless otherwise noted, all starting materials were obtained from commercial suppliers and used without further purification. Specifically, the following abbreviations may be used in the examples and throughout the specification : EtOAc (ethyl acetate) HPLC (High Pressure Liquid Chromatography) MeOH (methanol) DCM (dichloromethane) THF (tetrahydrofuran) ml (milliliters) min (minutes) mmol (millimol) DMF (dimethylformamide) P(=0)Br3 (Phosphoric tribromide) LCMS (Liquid Chromatography Mass Spectrum) g (grams) Et20 (diethyl ether) DMSO (dimethylsulfoxide) All references to brine refer to a saturated aqueous solution of NaCl. Unless otherwise indicated, all temperatures are expressed in °C (degrees Celsius). All reactions are conducted not under an inert atmosphere at room temperature, unless otherwise noted.
Microwave assisted reactions were performed in a single-mode reactor: 20 Emrys™ Optimizer microwave reactor (Personal Chemistry A.B., currently Biotage) or in a multimode reactor: MicroSYNTH Labstation (Milestone, Inc.). tat-\ r-\ ^n/'Ar» A. Preparation of the intermediates Example A. 1 l-Cyclopropylmethyl-4-methoxy-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (intermediate 1) O To a solution of 4-methoxy-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (12.2 g, 81.48 mmol) in acetonitrile (250 ml) were added (bromomethyl)cyclopropane (11 g, 81.48 mmol) and potassium carbonate (22.48 g, 162.9 mmol) and the mixture was heated at 110 °C for 24 hours. The mixture was cooled to room temperature and the solid was 10 filtered off. The filtrate was evaporated till dryness and the resulting crude residue was then triturated with diethylether to yield pure intermediate 1 (15.72 g, 94%) as a white Example A.2 l-Butyl-4-methoxy-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (intermediate 2) To a solution of 4-methoxy-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (20 g, 133 mmol) in acetonitrile (800 ml) were added 1-bromobutane (15.8 ml, 146 mmol) and potassium carbonate (36.7 g, 266 mmol) and the mixture was heated at 110 °C for 24 20 hours. The mixture was cooled to room temperature and the solid was filtered off. The filtrate was evaporated till dryness and the resulting crude residue was then triturated with diethylether to yield pure intermediate 2 (27.39 g, >99%) as a white solid.
Example A.3 l-Cyclopropylmethyl-4-hydroxy-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (intermediate 3) solid.
O O Intermediate 1 (15.7 g, 76.8 mmol) was added at room temperature to a IN aqueous solution of sodium hydroxide (300 ml) and THF (50 ml). The reaction mixture was tat-\ r-\ ^n/'Ar» heated at 140 °C (oil bath temperature) for 16 hours. The mixture was cooled to room temperature and the THF was mostly evaporated in vacuo. The aqueous layer was cooled to 0 °C and acidified by the addition of aqueous 2N HC1, adjusting the pH to about 3, at which point a white solid precipitated. The solid was filtered off, washed 5 with Et20 and dried in vacuo to yield intermediate 3 as a white solid (10.44 g, 71%) that was used without further purification.
Example A.4 l-Butyl-4-hydroxy-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (intermediate 4) Intermediate 2 (27.39 g, 133 mmol) was added at room temperature to a IN aqueous solution of sodium hydroxide (500 ml) and THF (100 ml). The reaction mixture was heated at 110 °C (oil bath temperature) for 24 hours. The mixture was cooled to room temperature and the solvent was evaporated in vacuo until the volume was reduced to approximately 250 ml. The aqueous layer was then cooled to 0 °C and acidified by the addition of aqueous 2N HC1, adjusting the pH to about 3, at which point a white solid precipitated. The solid was filtered off, washed with Et20 and dried in vacuo to yield intermediate 4 as a white solid (25 g, 98%) that was used without further purification.
Example A.5 4-Bromo-l-cyclopropylmethyl-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (intermediate 5) To a solution of intermediate 3 (10.4 g, 54.67 mmol) in DMF (250 ml) was added 25 phosphoric tribromide (31.3 g, 109.3 mmol) and the mixture was heated at 110 °C for 1.5 hours. After cooling in an ice bath the solution was partitioned between water and EtOAc. After three extractions with EtOAc the combined organic fractions were washed with brine, dried over MgSC>4 and the solvent evaporated in vacuo. The crude product was purified by column chromatography (silica gel; DCM as eluent). The 30 desired fractions were collected and evaporated in vacuo to yield intermediate 5 (8.83 O O g, 64 %). tat-\ r-\ ^n/'Ar» Example A.6 4-Bromo- l-butyl-2-oxo-1,2-dihydro-pyridine-3-carbonitrile (intermediate 6) O To a solution of intermediate 4 (39 g, 203 mmol) in DMF (600 ml) was added 5 phosphoric tribromide (116 g, 406 mmol) and the mixture was heated at 110 °C for 1.5 hours. After cooling in an ice bath the solution was partitioned between water and EtOAc. After three extractions with EtOAc the combined organic fractions were washed with brine, dried over Na2S04 and the solvent evaporated in vacuo. The crude product was purified by column chromatography (silica gel; DCM as eluent). The 10 desired fractions were collected and evaporated in vacuo to yield intermediate 6 (36.7 A mixture of 2-bromo-4,6-dimethylpyridine (1 g, 5.4 mmol), 4-bromo-3-fluoro-phenol (1.03 g, 5.4 mmol), and potassium carbonate (0.89 g, 6.4 mmol) was heated at 150 °C (oil bath temperature) in a sealed tube for 7 days. After cooling to room temperature the mixture was diluted with DCM and filtered through a diatomaceous earth pad. The 20 filtrate was evaporated till dryness and the crude product thus obtained was purified by column chromatography (silica gel; DCM as eluent). The desired fractions were collected and evaporated in vacuo to yield intermediate 7 (1.1 g, 53 %). g, 72 %).
Example A.7 2-(4-Bromo-3-fluoro-phenoxy)-4,6-dimethyl-pyridine (intermediate 7) F tat-\ r-\ ^n/'Ar» Example A. 8 2- [3-Fluoro-4-(4,4,5,5-tetramethyl- [ 1,3,2] dioxabor olan-2-yl)-phenoxy] -4,6-dimethyl-pyridine (intermediate 8) To a solution of intermediate 7 (0.5 g, 1.69 mmol) in 1,4-dioxane (9 ml) and DMF (1 ml) were added bis(pinacolato)diborane (0.643 g, 2.53 mmol) and potassium acetate (0.497 g, 5.06 mmol). The mixture was degassed and then [1,1'-bis(diphenylphosphino)-ferrocene]-dichloropalladium(II); complex with DCM (1:1) (0.0413 g, 0.05 mmol; CAS [95464-05-4]) was added. The reaction mixture was heated 10 at 150 °C for 40 minutes under microwave irradiation. After cooling to room temperature water was added and the mixture was extracted with EtOAc. The organic fraction was dried (Na2S04) and the solvent evaporated in vacuo to afford the desired intermediate 8 (0.6 g, 100%) as a crude product that was used without further purification.
To a room temperature solution of 2,6-dimethyl-3-pyridinol (3 g, 24.35 mmol) in THF 20 (30 ml) was added cesium carbonate (15.87 g, 48.71 mmol) and 3,4-difluoro-l-nitrobenzene (3.87 g, 24.35 mmol). The reaction mixture was heated at reflux for 2 hours. After cooling to room temperature the solids were filtered off and the filtrate was evaporated till dryness. The crude product was purified by column chromatography (silica gel; DCM to DCM/MeOH(NH3) up to 2% as eluent). The desired fractions were 25 collected and evaporated in vacuo to yield intermediate 9 (5.88 g, 92 %).
Example A.9 3-(2-Fluoro-4-nitro-phenoxy)-2,6-dimethyl-pyridine (intermediate 9) O i^n/'Ar4 WO 2008/107480 PCT/EP2008/052767 Example A. 10 4-(2,6-Dimethyl-pyridin-3-yloxy)-3-fluoro-phenylamine (intermediate 10) A solution of intermediate 9 (5.88 g, 22.44 mmol) in ethanol (200 ml) was hydrogenated at room temperature in the presence of palladium 10% on activated carbon (0.58 g) for 3 hours. The solids were filtered off and the filtrate was evaporated till dryness to yield intermediate 10 (5.20 g, >99 %) that was used without further purification.
Example A. 11 3-(4-Bromo-2-fluoro-phenoxy)-2,6-dimethyl-pyridine (intermediate 11) To a solution of intermediate 10 (7.7 g, 33.2 mmol) in HBr (75 ml, 48% aqueous), cooled to 0 °C, a solution of sodium nitrite (4.57 g, 66.3 mmol) in water (75 ml) was dropwise added over 45 minutes. The reaction mixture was warmed to room temperature and further stirred for 15 minutes. The mixture was cooled to 0 °C and copper (I) bromide (4.0 g, 28.4 mmol) was added portionwise. Stirring was continued for 15 minutes at 0 °C and then the mixture was warmed to room temperature and further stirred for 15 minutes. The reaction mixture was then heated at 140 °C for 1.5 hours. The mixture was cooled to room temperature and carefully neutralized with an aqueous saturated solution of potassium carbonate. EtOAc was then added and layers were separated. The organic phase was dried (Na2S04) and evaporated till dryness. The crude product was purified by column chromatography (silica gel; heptane to heptane/EtOAc up to 10% as eluent). The desired fractions were collected and evaporated in vacuo to yield intermediate 11 (8.75 g, 89 %). tat-\ r-\ ^n/'Ar» Example A. 12 3- [2-Fluoro-4-(4,4,5,5-tetramethyl- [ 1,3,2] dioxaborolan-2-yl)-phenoxy] -2,6-dimethyl-pyridine (intermediate 12) To a solution of intermediate 11 (1.5 g, 5.07 mmol) in 1,4-dioxane (9 ml) and DMF (3 ml) were added bis(pinacolato)diborane (3.86 g, 15.2 mmol) and potassium acetate (1.48 g, 15.2 mmol). The mixture was degassed and then [l,l'-bis(diphenylphosphino)-ferrocene]-dichloropalladium(II); complex with DCM (1:1) (0.16 g, 0.20 mmol; CAS [95464-05-4]) was added. The reaction mixture was heated at 150 °C for 10 minutes 10 under microwave irradiation. After cooling to room temperature water was added and the mixture was extracted with EtOAc. The organic fraction was dried (Na2S04) and the solvent evaporated in vacuo to afford the desired boronate intermediate 12 (1.74 g, 100%) as a crude product that was used without further purification.
Example A. 13 4-(4-Bromo-3-fluoro-phenoxy)-2-methyl-pyridine 1-oxide (intermediate 13) F O To a room temperature solution of 4-bromo-3-fluorophenol (6 g, 31.41 mmol) in N-methylpyrrolidone (20 ml) was added sodium hydride (1.34 g, 56 mmol, 60% in 20 mineral oil ) portionwise. After stirring for 10 minutes 4-nitro-2-picoline A-oxide (5.6 g, 36.12 mmol) was added. The reaction mixture was heated at 180 °C for 60 minutes under microwave irradiation. After cooling to room temperature the mixture was diluted with EtOAc (250 ml) and washed with water (250 ml). The solution was then extracted with additional EtOAc (2 x 150 ml).The combined organic extracts were 25 dried (Na2S04) and the solvent evaporated in vacuo. The crude product was purified by tat-\ r-\ ^n/'Ar» column chromatography (silica gel; DCM to DCM/MeOH(NH3) up to 2% as eluent). The desired fractions were collected and evaporated in vacuo to yield intermediate 13 To a solution of intermediate 13 (1.05 g, 3.52 mmol) in 1,4-dioxane (9 ml) and DMF (4 ml) were added bis(pinacolato)diborane (2.68 g, 10.56 mmol) and potassium acetate 10 (1.035 g, 10.56 mmol). The mixture was degassed and then [1,1'- bis(diphenylphosphino)-ferrocene]-dichloropalladium(II); complex with DCM (1:1) (0.115 g, 0.141 mmol; CAS [95464-05-4]) was added. The reaction mixture was heated at 150 °C for 15 minutes under microwave irradiation. After cooling to room temperature water was added and the mixture was extracted with EtOAc (20 ml). The 15 organic fraction was dried (Na2S04) and the solvent evaporated in vacuo to afford the desired boronate intermediate 14 (0.87 g, 100%) as a crude product that was used without further purification.
Example A. 15 4-(4-Bromo-2-fluoro-phenoxy)-2-methyl-pyridine 1-oxide (intermediate 15) To a room temperature solution of 4-bromo-2-fluorophenol (3.44 ml, 31.41 mmol) in N-mcthylpyrrolidonc (20 ml) was added sodium hydride (1.34 g, 56 mmol, 60% in mineral oil ) portionwise. After stirring for 20 minutes 4-nitro-2-picoline A'-oxidc (5.6 25 g, 36.12 mmol) was added The reaction mixture was heated at 180 °C for 60 minutes under microwave irradiation. After cooling to room temperature the mixture was diluted with EtOAc (250 ml) and washed with water (250 ml). The solution was then (3.61 g, 39 %).
Example A. 14 2-Fluoro-4-(2-methyl-4-pyridyloxy)phenyl boronic acid (intermediate 14) F OH O tat-\ r-\ ^n/'Ar» extracted with additional EtOAc (2 x 150 ml). The combined organic extracts were dried (Na2S04) and the solvent evaporated in vacuo. The crude product was purified by column chromatography (silica gel; DCM to DCM/MeOH(NH3) up to 2% as eluent). The desired fractions were collected and evaporated in vacuo to yield intermediate 15 5 (4.36 g, 47 %).
Example A. 16 3-Fluoro-4-(2-methyl-4-pyridyloxy)phenyl boronic acid (intermediate 16) OH i To a solution of intermediate 15 (1.05 g, 3.52 mmol) in 1,4-dioxane (9 ml) and DMF (4 ml) were added bis(pinacolato)diborane (2.68 g, 10.56 mmol) and potassium acetate (1.035 g, 10.56 mmol). The mixture was degassed and then [1,1'-bis(diphenylphosphino)-ferrocene]-dichloropalladium(II); complex with DCM (1:1) (0.115 g, 0.141 mmol; CAS [95464-05-4]) was added. The reaction mixture was heated 15 at 150 °C for 15 minutes under microwave irradiation. After cooling to room temperature water was added and the mixture was extracted with EtOAc (20 ml). The organic fraction was dried (Na2S04) and the solvent evaporated in vacuo to afford the desired boronate intermediate 16 (0.87 g, 100%) as a crude product that was used without further purification.
A mixture of 4-bromo-2,6-dimethyl-pyridine (1 g, 5.4 mmol), 4-bromo-3-fluoro-phenol 25 (0.59 g, 5.4 mmol), and potassium carbonate (0.89 g, 6.4 mmol) in xylenes (2 ml) was heated at 150 °C (oil bath temperature) in a sealed tube for 48 hours. After cooling to room temperature the mixture was diluted with EtOAc and filtered through a Example A. 17 4-(4-Bromo-3-fluoro-phenoxy)-2,6-dimethyl-pyridine (intermediate 17) F tat-\ r-\ ^n/'Ar» diatomaceous earth pad. The filtrate was evaporated till dryness and the crude product thus obtained was purified by column chromatography (silica gel; DCM to DCM/EtOAc up to 10% as eluent). The desired fractions were collected and evaporated in vacuo to yield intermediate 17 (1.18 g, 72 %).
Example A. 18 4- [3-Fluoro-4-(4,4,5,5-tetramethyl- [ 1,3,2] dioxaborolan-2-yl)-phenoxy] -2,6-dimethyl-pyridine (intermediate 18) To a solution of intermediate 17 (1 g, 3.37 mmol) in 1,4-dioxane (10.8 ml) and DMF (1.2 ml) were added bis(pinacolato)diborane (1.286 g, 5.06 mmol) and potassium acetate (0.994 g, 10.13 mmol). The mixture was degassed and then [1,1'-bis(diphenylphosphino)-ferrocene]-dichloropalladium(II); complex with DCM (1:1) (0.0827 g, 0.101 mmol; CAS [95464-05-4]) was added. The reaction mixture was 15 heated at 150 °C for 10 minutes under microwave irradiation. After cooling to room temperature water was added and the mixture was extracted with EtOAc. The organic fraction was dried (Na2S04) and the solvent evaporated in vacuo to afford the desired boronate intermediate 18 (1.14 g, 100%) as a crude product that was used without further purification.
A mixture of 4-bromo-2,6-dimethyl-pyridine (1 g, 5.4 mmol), 4-bromo-2-fluoro-phenol 25 (0.59 g, 5.4 mmol), and potassium carbonate (0.89 g, 6.4 mmol) in xylenes (2 ml) was heated at 150 °C (oil bath temperature) in a sealed tube for 48 hours. After cooling to room temperature the mixture was diluted with EtOAc and filtered through a Example A. 19 4-(4-Bromo-2-fluoro-phenoxy)-2,6-dimethyl-pyridine (intermediate 19) tat-\ r-\ ^n/'Ar» diatomaceous earth pad. The filtrate was evaporated till dryness and the crude product thus obtained was purified by column chromatography (silica gel; DCM to DCM/EtOAc up to 10% as eluent). The desired fractions were collected and evaporated in vacuo to yield intermediate 19 (1.28 g, 80 %).
Example A.20 4- [2-Fluoro-4-(4,4,5,5-tetramethyl- [ 1,3,2] dioxaborolan-2-yl)-phenoxy] -2,6-dimethyl-pyridine (intermediate 20) To a solution of intermediate 19 (1 g, 3.37 mmol) in 1,4-dioxane (10.8 ml) and DMF (1.2 ml) were added bis(pinacolato)diborane (1.286 g, 5.06 mmol) and potassium acetate (0.994 g, 10.13 mmol). The mixture was degassed and then [1,1'-bis(diphenylphosphino)-ferrocene]-dichloropalladium(II); complex with DCM (1:1) (0.0827 g, 0.101 mmol; CAS [95464-05-4]) was added. The reaction mixture was 15 heated at 150 °C for 10 minutes under microwave irradiation. After cooling to room temperature water was added and the mixture was extracted with EtOAc. The organic fraction was dried (Na2S04) and the solvent evaporated in vacuo to afford the desired boronate intermediate 20 (1.15 g, 100%) as a crude product that was used without further purification.
Example A.21 4-(4-Bromo-3-fluoro-phenoxy)-2,3-dimethyl-pyridine 1-oxide (intermediate 21) F O To a room temperature solution of 4-bromo-3-fluorophenol (15 g, 78.53 mmol) in 25 DMF (50 ml) was added sodium hydride (3.32 g, .85.67 mmol, 60% in mineral oil) tat-\ r-\ ^n/'Ar» portionwise. After stirring for 10 minutes 2,3-dimethyl-4-nitro-pyridine 1-oxide (1.05 g, 6.28 mmol) was added The reaction mixture was heated at 180 °C for 60 minutes under microwave irradiation. After cooling to room temperature the mixture was filtered through a diatomaceous earth pad and the filtrate was then diluted with EtOAc and washed with water. The solution was then extracted with additional EtOAc (2 x 150 ml). The organic layer was dried (Na2S04) and the solvent evaporated in vacuo. The crude product was purified by column chromatography (silica gel; DCM to DCM/MeOH up to 5% as eluent). The desired fractions were collected and evaporated in vacuo to yield intermediate 21 (3.44 g, 19 %).
Example A.22 2-Fluoro-4-(2,3-dimethyl-4-pyridyloxy) phenylboronic acid (intermediate 22) To a solution of intermediate 21 (0.40 g, 1.28 mmol) in 1,4-dioxane (2.6 ml) and DMF (0.8 ml) were added bis(pinacolato)diborane (0.97 g, 3.84 mmol) and potassium acetate (0.37 g, 3.84 mmol). The mixture was degassed and then [l,l'-bis(diphenylphosphino)-ferrocene]-dichloropalladium(II); complex with DCM (1:1) (0.042 g, 0.051 mmol; CAS [95464-05-4]) was added. The reaction mixture was heated at 150 °C for 15 minutes under microwave irradiation. After cooling to room temperature water was added and the mixture was extracted with EtOAc. The organic fraction was dried (Na2S04) and the solvent evaporated in vacuo to afford the desired boronate intermediate 22 (0.334 g, 100%) as a crude product that was used without further purification.
F OH tat-\ r-\ ^n/'Ar» Example A.23 4-(4-Bromo-2-fluoro-phenoxy)-2,3-dimethyl-pyridine 1-oxide (intermediate 23) O To a room temperature solution of 4-bromo-2-fluorophenol (1 g, 5.23 mmol) in N-5 methylpyrrolidone (10 ml) was added sodium hydride (0.27 g, .6.79 mmol, 60% in mineral oil ) portionwise. After stirring for 10 minutes 2,3-dimethyl-4-nitro-pyridine 1-oxide (1.05 g, 6.28 mmol) was added The reaction mixture was heated at 180 °C for 60 minutes under microwave irradiation. After cooling to room temperature the mixture was filtered through a diatomaceous earth pad and the filtrate was then diluted with 10 EtOAc and washed with water. The solution was then extracted with additional EtOAc (2 x 150 ml). The organic layer was dried (Na2S04) and the solvent evaporated in vacuo. The crude product was purified by column chromatography (silica gel; DCM to DCM/MeOH up to 3% as eluent). The desired fractions were collected and evaporated in vacuo to yield intermediate 23 (0.75 g, 46 %).
To a solution of intermediate 23 (0.420 g, 1.36 mmol) in 1,4-dioxane (6 ml) and DMF (2 ml) were added bis(pinacolato)diborane (1.025 g, 4.03 mmol) and potassium acetate (0.385 g, 4.03 mmol). The mixture was degassed and then [1,1'-bis(diphenylphosphino)-ferrocene]-dichloropalladium(II); complex with DCM (1:1) (0.044 g, 0.054 mmol; CAS [95464-05-4]) was added. The reaction mixture was heated 25 at 150 °C for 10 minutes under microwave irradiation. After cooling to room temperature water was added and the mixture was extracted with EtOAc. The organic Example A.24 4- [2-Fluoro-4-(4,4,5,5-tetramethyl- [ 1,3,2] dioxaborolan-2-yl)-phenoxy] -2,3-dimethyl-pyridine (intermediate 24) tat-\ r-\ ^n/'Ar» fraction was dried (Na2S04) and the solvent evaporated in vacuo to afford the desired boronate intermediate 24 (1.41 g, 100%) as a crude product that was used without further purification.
Example A.25 4-(4-Bromo-phenoxy)-2-methyl-pyridine (intermediate 25) To a solution of NaH (60 % in mineral oil) (0.13 g, 3.25 mmol) in DMF (5 ml) was added commercially available 4-bromophenol (0.50 g, 2.89 mmol) and the reaction was 10 stirred at room temperature for 10 minutes. Then, 4-chloro-2-picoline (0.30 g, 2.40 mmol) was added and the resulting reaction mixture was then micro waved at 150°C for 10 minutes. After cooling, the mixture was diluted with water and extracted with Et20. The combined organic layers were dried over Na2SC>4 and concentrated in vacuo. The residue thus obtained was purified by flash chromatography (DCM) to yield 15 intermediate 25 (0.52 g, 81%).
Example A.26 4- [4-(4,4,5,5-tetr amethyl- [ 1,3,2] dioxaborolan-2-yl)-phenoxy] -2-methyl-pyridine (intermediate 26) To a solution of intermediate 25 (0.50 g, 1.89 mmol) in DMSO (5 ml) was added bis(pinacolato)diboron (0.72 g, 2.84 mmol) and KOAc (0.56 g, 5.68 mmol), the solution was then degassed using a stream of nitrogen and then to the reaction mixture was added l,r-bis(diphenylphosphino)ferrocenepalladium (II) dichloride, DCM (0.05 g, 0.06 mmol). The reaction mixture was then heated at 110 °C under a nitrogen atmosphere for 16 hours. The reaction was then cooled to room temperature and diluted tat-\ r-\ ^n/'Ar» with water and the resulting solution was extracted with AcOEt. The organic fraction was then dried over Na2S04 and concentrated in vacuo to yield intermediate 26 (0.58 g, 100 %) used in the next reaction step without further purification.
B. Preparation of the final compounds Example B.l l-Cyclopropylmethyl-4-[4-(4,6-dimethyl-pyridin-2-yloxy)-2-fluoro-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 1) To a solution of intermediate 8 (1.42 mmol) in 1,4-dioxane (6 ml) and a saturated solution ofNaHCC>3 (5 ml) was added intermediate 5 (0.329 g, 1.3 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.15 mg, 0.13 mmol). The reaction was then microwaved in a sealed tube at 140 °C for 5 minutes. The resulting cooled reaction mixture was then diluted with 15 EtOAc and filtered through a pad of diatomaceous earth. The filtrate was washed with water, dried (Na2S04) and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/EtOAc up to 10% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 1 that was washed with diethyleter and dried in vacuum (0.207 g, 41%). 20 Melting point: 137.0 °C. tat-\ r-\ ^n/'Ar» Example B.2 l-Butyl-4-[4-(2,6-dimethyl-pyridin-3-yloxy)-3-fluoro-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 2) To a solution of intermediate 12 (2 mmol) in 1,4-dioxane (6 ml) and a saturated solution ofNaHCC>3 (6 ml) was added intermediate 6 (0.51 g, 2 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.231 mg, 0.2 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered through a pad of 10 diatomaceous earth and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/MeOH up to 3% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 2 (0.405 g, 52%).
Melting point: 156.4 °C.
Compounds 12, 14 and 16 (see Table 1) can be prepared according to the protocol described for compound 2.
Example B.3 l-Cyclopropylmethyl-4- [4-(2,6-dimethyl-pyridin-3-yloxy)-3-fluoro-phenyl] -2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 3) tat-\ r-\ ^n/'Ar» To a solution of intermediate 12 (2 mmol) in 1,4-dioxane (6 ml) and a saturated solution ofNaHCC>3 (6 ml) was added intermediate 5 (0.51 g, 2 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.231 mg, 0.2 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 5 minutes. The resulting cooled reaction mixture was filtered through a pad of diatomaceous earth and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/MeOH up to 3% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 3 (0.445 g, 58%).
Melting point: 152.7 °C.
Example B.4 l-Butyl-4-[2-fluoro-4-(2-methyl-pyridin-4-yloxy)-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 4) To a solution of intermediate 14 (1.77 mmol) in 1,4-dioxane (6 ml) and a saturated solution ofNaHCC>3 (6 ml) was added intermediate 6 (0.451 g, 1.77 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.204 mg, 0.177 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered through a pad of diatomaceous earth and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/MeOH up to 3% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 4 (0.45 g, 68%).
Melting point: 127.1 °C.
Compounds 13, 17, 19 and 20 (see Table 1) can be prepared according to the protocol described for compound 4. tat-\ r-\ ^n/'Ar» Example B.5 l-Butyl-4-[3-fluoro-4-(2-methyl-pyridin-4-yloxy)-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 5) O To a solution of intermediate 16 (1.77 mmol) in 1,4-dioxane (6 ml) and a saturated solution ofNaHCC>3 (6 ml) was added intermediate 6 (0.451 g, 1.77 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.204 mg, 0.177 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered through a 10 pad of diatomaceous earth and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/MeOH up to 3% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 5 (0.45 g, 68%).
Melting point: 125.4 °C.
Compound 15 (see Table 1) can be prepared according to the protocol described for compound 5.
Example B.6 l-Butyl-4-[4-(2,6-dimethyl-pyridin-4-yloxy)-2-fluoro-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 6) To a solution of intermediate 18 (1.078 mmol) in 1,4-dioxane (6 ml) and a saturated solution of NaHCOs (5 ml) was added intermediate 6 (0.25 g, 0.979 mmol). The 25 resulting solution was degassed using a stream of nitrogen and to this was added O tat-\ r-\ ^n/'Ar» Pd(PPh3)4 (0.113 mg, 0.098 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered through a pad of diatomaceous earth and the pad of diatomaceous earth was washed with EtOAc. The combined filtrates were washed with water and the organic layer was separated, 5 dried (Na2S04) and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/MeOH up to 2% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 6 that was precipitated from diethylether (0.220 g, 57%).
Melting point: 169.9 °C.
Example B.7 l-Butyl-4-[4-(2,6-dimethyl-pyridin-4-yloxy)-3-fluoro-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 7) To a solution of intermediate 20 (1.078 mmol) in 1,4-dioxane (6 ml) and a saturated solution of NaHCOs (5 ml) was added intermediate 6 (0.25 g, 0.979 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.113 mg, 0.098 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered through a 20 pad of diatomaceous earth and the pad of diatomaceous earth was washed with EtOAc. The combined filtrates were washed with water and the organic layer was separated, dried (Na2S04) and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/MeOH up to 2% as eluent). The desired fractions were collected and evaporated in vacuo to yield 25 compound 7 that was precipitated from diethylether (0.225 g, 59%).
Melting point: 205.4 °C. tat-\ r-\ ^n/'Ar» Example B.8 l-Cyclopropylmethyl-4-[4-(2,6-dimethyl-pyridin-4-yloxy)-2-fluoro-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 8) To a solution of intermediate 18 (1.05 mmol) in 1,4-dioxane (4.5 ml) and a saturated solution of NaHCC>3 (4.5 ml) was added intermediate 5 (0.22 g, 0.892 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.13 mg, 0.114 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered through a pad 10 of diatomaceous earth . The filtrate was diluted with EtOAc, and then it was washed with water, dried over Na2S04 and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/MeOH up to 5% as eluent). The desired fractions were collected and evaporated in vacuo to give a residue that was further purified by column chromatography (silica gel; DCM to 15 DCM/EtOAc up to 10% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 8 that was precipitated from diisopropylether (0.176 g, Melting point: decomposed 20 Example B.9 l-Cyclopropylmethyl-4-[4-(2,6-dimethyl-pyridin-4-yloxy)-3-fluoro-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 9) To a solution of intermediate 20 (1.066 mmol) in 1,4-dioxane (4.5 ml) and a saturated 25 solution of NaHCOs (4.5 ml) was added intermediate 5 (0.23 g, 0.906 mmol). The 51%). tat-\ r-\ ^n/'Ar» resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.12 mg, 0.106 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered through a pad of diatomaceous earth . The filtrate was diluted with EtOAc, and then it was washed 5 with water, dried (Na2S04) and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/EtOAc up to 50% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 9 that was precipitated from diethylether (0.144 g, 42%).
Melting point: 201.2 °C Example B.10 l-Cyclopropylmethyl-4-[4-(2,3-dimethyl-pyridin-4-yloxy)-2-fluoro-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 10) To a solution of intermediate 22 (0.34 g 1.321 mmol) in 1,4-dioxane (5.5 ml) and a saturated solution ofNaHCOs (5.5 ml) was added intermediate 5 (0.28 g, 1.123 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.15 mg, 0.132 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered 20 through a pad of diatomaceous earth. The filtrate was diluted with EtOAc, and then it was washed with water, dried (Na2S04) and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/AcOEt 1:1 as eluent). The desired fractions were collected and evaporated in vacuo to give a residue that was triturated with Et20 to yield compound 10 (0.068 g, 16%) tat-\ r-\ ^n/'Ar» Example B.l 1 l-Cyclopropylmethyl-4-[4-(2,3-dimethyl-pyridin-4-yloxy)-3-fluoro-phenyl]-2-oxo-l,2-dihydro-pyridine-3-carbonitrile (compound 11) N< ° N To a solution of intermediate 24 (1.769 mmol) in 1,4-dioxane (7 ml) and a saturated solution of NaHCC>3 (7 ml) was added intermediate 5 (0.38 g, 1.504 mmol). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.2 mg, 0.176 mmol). The reaction was then microwaved in a sealed tube at 150 °C for 10 minutes. The resulting cooled reaction mixture was filtered through a pad 10 of diatomaceous earth. The filtrate was diluted with EtOAc, and then it was washed with water, dried (Na2S04) and concentrated in vacuo. The crude reaction mixture was then purified by column chromatography (silica gel; DCM to DCM/MeOH up to 5% as eluent). The desired fractions were collected and evaporated in vacuo to yield compound 11 precipitated from diisopropylether (0.190 g, 32%).
Melting point: decomposed Example B12. 3-c\ano-l-but\l-4-[4-(2-meth\l-p\ridin-4-\loxy)-phenyl]-pyridine-2(l//)-one (compound 18) Intermediate 6 (0.48 g, 1.89 mmol) and intermediate 26 (0.59 g, 1.89 mmol) were mixed in 1,4-dioxane (4 ml) and a saturated solution of NaHCO;, (4 ml). The resulting solution was degassed using a stream of nitrogen and to this was added Pd(PPh3)4 (0.22 25 g, 0.19 mmol). The reaction was then microwaved into a sealed tube at 150 °C for 10 tat-\ r-\ ^n/'Ar» minutes. The resulting reaction mixture was then filtered through a pad of diatomaceous earth and washed with AcOEt. The filtrate was washed with brine. The combined organic layers were dried over MgS04 and concentrated in vacuo. The residue thus obtained was purified by flash chromatography (DCM / MeOH mixtures) 5 to yield compound 18 (0.16 g, 25 %).
Table 1 lists compounds of formula (I) that were prepared according to one of the above Examples (Ex. no.).
Table 1 Comp .no.
Ex. no.
-Ri R2 -A 1 B1 2-F 2 B2 3-F (j^y- 3 B3 3-F 4 B4 2-F Yf B5 3-F Yf 6 B6 2-F YT 7 B7 3-F Yf 8 B8 2-F Yf tat-\ r-\ ^n/'Ar» Comp .no.
Ex. no.
-Ri R2 -A 9 B9 ^7 3-F YT B10 ^7 2-F VY 11 Bll ^7 3-F VY 12 B2 3-F fY 13 B4 2-F YY N^> 14 B2 3-F fY B5 3,5-diF YY N^> 16 B2 H fY 17 B4 H YY 18 B12 H YY 19 B4 ^7 H CIYY" N^1 B4 H CI fV nY C. Analytical part For LCMS-characterization of the compounds of the present invention, the following method was used. tat-\ r-\ ^n/'Ar» WO 2008/107480 PCT/EP2008/052767 LCMS - general procedure The HPLC measurement was performed using a HP 1100 from Agilent Technologies comprising a pump (quaternary or binary) with degasser, an autosampler, a column oven, a diode-array detector (DAD) and a column as specified in the 5 respective methods below. Flow from the column was split to a MS detector. The MS detector was configured with an electrospray ionization source. Nitrogen was used as the nebulizer gas. The source temperature was maintained at 140 °C. Data acquisition was performed with MassLynx-Openlynx software.
Method 1 :In addition to the general procedure: Reversed phase HPLC was carried out on an XDB-C18 cartridge (1.8 jim, 2.1 x 30 mm) from Agilent, with a flow rate of 1 ml/min, at 60°C. The gradient conditions used are: 90 % A (0.5 g/1 ammonium acetate solution), 5 % B (acetonitrile), 5 % C (methanol) to 50 % B and 50 % C in 6.5 minutes, to 100 % B at 7 minutes and equilibrated to initial conditions at 7.5 minutes 15 until 9.0 minutes. Injection volume 2 jil. High-resolution mass spectra (Time of Flight, TOF) were acquired only in positive ionization mode by scanning from 100 to 750 in 0.5 seconds using a dwell time of 0.1 seconds. The capillary needle voltage was 2.5 kV and the cone voltage was 20 V. Leucine-Enkephaline was the standard substance used for the lock mass calibration.
Method 2: In addition to the general procedure: Reversed phase HPLC was carried out on a XDB-C18 cartridge (1.8 jim, 2.1 x 30 mm) from Agilent, with a flow rate of 1.0 ml/min, at 60°C. The gradient conditions used are: 90 % A (0.5 g/1 ammonium acetate solution), 25 10 % B (mixture of Acetonitrile/ Methanol, 1/1), to 100 % B in 6.5 minutes, kept till 7 minutes and equilibrated to initial conditions at 7.5 minutes until 9.0 minutes. Injection volume 2 jil. Low-resolution mass spectra (ZQ detector; quadrupole) were acquired by scanning from 100 to 1000 in 1.0 second using a dwell time of 0.3 second. The capillary needle voltage was 3 kV. The cone voltage was 20 V and 50 V for positive 30 ionization mode and 20 V for negative ionization mode. tat-\ r-\ ^n/'Ar» Method 3: In addition to general procedure B: Reversed phase HPLC was carried out on an ACE-CIS column (3.0 (im, 4.6 x 30 mm) from Advanced Chromatography Technologies, with a flow rate of 1.5 ml/min, at 40 °C. The gradient conditions used are: 80 % A (0.5 5 g/1 ammonium acetate solution), 10 % B (acetonitrile), 10 % C (methanol) to 50 % B and 50 % C in 6.5 minutes, to 100 % B at 7 minutes and equilibrated to initial conditions at 7.5 minutes until 9.0 minutes. Injection volume 5 jil. High-resolution mass spectra (Time of Flight, TOF) were acquired only in positive ionization mode by scanning from 100 to 750 in 0.5 seconds using a dwell time of 0.1 seconds. The 10 capillary needle voltage was 2.5 kV for positive ionization mode and the cone voltage was 20 V. Leucine-Enkephaline was the standard substance used for the lock mass calibration.
Melting point determination 15 Melting point determinations were performed on a Mettler FP62 apparatus.
Table 2: Analytical data (Rt means retention time in minutes; (MH)+ means the protonated mass of the compound (free base).
Comp. No. melting point (°C) (MH)+ Rt LCMS method 1 137 390 4.40 1 2 156.4 n.d. n.d. 1 3 152.7 n.d. n.d. 1 4 127.1 378 4.02 1 125.2 378 3.94 1 6 169.9 392 4.26 1 7 114 392 4.23 1 8 decomposes 390 3.99 1 9 201.2 390 3.97 1 decomposes 390 4.04 1 11 decomposes 390 4.06 1 12 104.8 378 4.00 1 13 110.7 390 3.99 1 tat-\ r-\ ^n/'Ar» WO 2008/107480 PCT/EP2008/052767 melting point (°C) LCMS Comp. No.
(MH)+ Rt method 14 145.8 390 3.89 2 172.2 396 4.10 1 16 136.7 360 3.96 1 17 n.d. 360 4.22 1 18 121 360 3.97 1 19 n.d. 378 4.00 3 n.d. 380 4.10 1 n.d.: not determined D. Pharmacological examples The compounds provided in the present invention are positive allosteric 5 modulators of mGluR2. These compounds appear to potentiate glutamate responses by binding to an allosteric site other than the glutamate binding site. The response of mGluR2 to a concentration of glutamate is increased when compounds of formula (I) are present. Compounds of formula (I) are expected to have their effect substantially at mGluR2 by virtue of their ability to enhance the function of the receptor. The 10 behaviour of positive allosteric modulators tested at mGluR2 using the [35S]GTP,yS binding assay method described below and which is suitable for the identification of such compounds, and more particularly the compounds according to formula (I), are shown in Table 3. r35S1GTPyS binding assay The [35S]GTPyS binding assay is a functional membrane-based assay used to study G-protein coupled receptor (GPCR) function whereby incorporation of a non-hydrolysable form of GTP, [35S]GTP'yS (guanosine 5'-triphosphate, labelled with gamma-emitting 35S), is measured. The G-protein y_ subunit catalyzes the exchange of 20 guanosine 5'-diphosphate (GDP) by guanosine triphosphate (GTP) and on activation of the GPCR by an agonist, [35S]GTPyS, becomes incorporated and cannot be cleaved to continue the exchange cycle (Harper (1998) Current Protocols in Pharmacology 2.6.1-10, John Wiley & Sons, Inc.). The amount of radioactive [35S]GTP'yS incorporation is a direct measure of the activity of the G-protein and hence the activity 25 of the agonist can be determined. mGluR2 receptors are shown to be preferentially coupled to Gyi-protein, a preferential coupling for this method, and hence it is widely tat-\ r-\ ^n/'Ar» WO 2008/107480 PCT/EP2008/052767 used to study receptor activation of mGluR2 receptors both in recombinant cell lines and in tissues (Schaffhauser et al 2003, Pinkerton et al, 2004, Mutel et al (1998) Journal ofNeurochemistry. 71:2558-64; Schaffhauser et al (1998) Molecular Pharmacology 53:228-33). Here we describe the use of the [35S]GTP'yS binding assay using 5 membranes from cells transfected with the human mGluR2 receptor and adapted from Schaffhauser et al ((2003) Molecular Pharmacology 4:798-810) for the detection of the positive allosteric modulation (PAM) properties of the compounds of this invention.
Membrane preparation CHO-cells were cultured to pre-confluence and stimulated with 5 mM butyrate for 24 hours, prior to washing in PBS, and then collection by scraping in homogenisation buffer (50 mM Tris-HCl buffer, pH 7.4, 4°C). Cell lysates were homogenized briefly (15s) using an ultra-turrax homogenizer. The homogenate was centrifuged at 23 500 x g for 10 minutes and the supernatant discarded. The pellet was 15 resuspended in 5 mM Tris-HCl, pH 7.4 and centrifuged again (30 000 x g, 20 min, 4°C). The final pellet was resuspended in 50 mM HEPES, pH 7.4 and stored at -80°C in appropriate aliquots before use. Protein concentration was determined by the Bradford method (Bio-Rad, USA) with bovine serum albumin as standard. [35S]GTPyS binding assay Measurement of mGluR2 positive allosteric modulatory activity of test compounds in membranes containing human mGluR2 was performed using frozen membranes that were thawed and briefly homogenised prior to pre-incubation in 96-well microplates (15 ug/assay well, 30 minutes, 30°C) in assay buffer (50 mM HEPES pH 7.4, 100 mM NaCl, 3 mM MgCl2, 50 jiM GDP, 10 ng/ml saponin,) with increasing concentrations of positive allosteric modulator (from 0.3 nM to 50 uM) and either a minimal pre-determined concentration of glutamate (PAM assay), or no added glutamate. For the PAM assay, membranes were pre-incubated with glutamate at EC25 concentration, i.e. a concentration that gives 25 % of the maximal response glutamate, and is in accordance to published data (Pin et al. (1999) Eur. J. Pharmacol. 375:277-294). After addition of [35S]GTP'yS (0.1 nM, f.c.) to achieve a total reaction volume of 200 ul, microplates were shaken briefly and further incubated to allow [35S]GTP'yS incorporation on activation (30 minutes, 30 °C). The reaction was stopped by rapid vacuum filtration over glass-fibre filter plates (Unifilter 96-well GF/B filter plates, Perkin-Elmer, Downers Grove, USA) microplate using a 96-well plate cell tat-\ r-\ ^n/'Ar» harvester (Filtermate, Perkin-Elmer, USA), and then by washing three times with 300 p,l of ice-cold wash buffer (Na2P04.2H20 10 mM, NaH2P04.H20 10 mM, pH = 7.4). Filters were then air-dried, and 40 ul of liquid scintillation cocktail (Microscint-O) was added to each well, and membrane-bound [35S]GTP,yS was measured in a 96-well 5 scintillation plate reader (Top-Count, Perkin-Elmer, USA). Non-specific [35S]GTP'yS binding is determined in the presence of cold 10 jiM GTP. Each curve was performed at least once using duplicate sample per data point and at 11 concentrations.
Data analysis The concentration-response curves of representative compounds of the present invention in the presence of added EC25 of mGluR2 agonist glutamate to determine positive allosteric modulation (PAM), were generated using the Prism GraphPad software (Graph Pad Inc, San Diego, USA). The curves were fitted to a four-parameter logistic equation (Y=Bottom + (Top-Bottom)/(l+10A((LogEC5o-X)*Hill Slope) 15 allowing determination of EC50 values. The EC50 is the concentration of a compound that causes a half-maximal potentiation of the glutamate response. This is calculated by subtracting the maximal responses of glutamate in presence of a fully saturating concentration of a positive allosteric modulator from the response of glutamate in absence of a positive allosteric modulator. The concentration producing the half-20 maximal effect is then calculated as EC50.
Table 3. Pharmacological data for compounds according to the invention.
All compounds were tested in presence of mGluR2 agonist, glutamate at a predetermined EC25 concentration, to determine positive allosteric modulation 25 (GTPyS-PAM). Values shown are averages of duplicate values of 11-concentration response curves, from at least one experiment. All tested compounds showed a pECso (-logECso) value of more than 5.0. The error of determination of a pECso value for a single experiment is estimated to be about 0.3 log-units.
Comp. No.
GTPgS -hR2 PAM pECso 1 6.09 2 6.86 tat-\ r-\ ^n/'Ar» Comp. No.
GTPgS - hR2 PAM pECso 3 6.34 4 6.41 6.36 6 6.36 7 6.46 8 6.10 9 6.15 6.43 11 6.17 12 6.27 13 6.38 14 6.42 6.15 16 6.36 17 6.0 18 6.4 19 6.8 6.2 E. Composition examples "Active ingredient" as used throughout these examples relates to a final 5 compound of formula (I), the pharmaceutically acceptable salts thereof, the solvates and the stereochemically isomeric forms thereof Typical examples of recipes for the formulation of the invention are as follows: 1. Tablets Active ingredient 5 to 50 mg Di-calcium phosphate 20 mg Lactose 30 mg Talcum 10 mg

Claims (40)

1. tat-\ r-\ ^n/'Ar» WO 2008/107480 -56- PCT/EP2008/052767 Magnesium stearate 5 mg Potato starch ad 200 mg In this Example, active ingredient can be replaced with the same amount of any of the compounds according to the present invention, in particular by the same amount of any 5 of the exemplified compounds.
2. Suspension An aqueous suspension is prepared for oral administration so that each 1 milliliter contains 1 to 5 mg of one of the active compounds , 50 mg of sodium carboxymethyl 10 cellulose, 1 mg of sodium benzoate, 500 mg of sorbitol and water ad 1 ml. 15
3. Injectable A parenteral composition is prepared by stirring 1.5 % by weight of active ingredient of the invention in 10% by volume propylene glycol in water.
4. Ointment Active ingredient 5 to 1000 mg Stearyl alcohol 3 g Lanoline 5 g 20 White petroleum 15 g Water ad 100 g In this Example, active ingredient can be replaced with the same amount of any of the compounds according to the present invention, in particular by the same amount 25 of any of the exemplified compounds. Reasonable variations are not to be regarded as a departure from the scope of the inventionIt will be obvious that the thus described invention may be varied in many ways by those skilled in the art. RECEIVED at IPONZ on 26 July 2011 -57- The claims defining the invention are as follows: 1A compound of formula including any stereochemically isomeric form thereof, wherein 5 Ri is C^alkyl, or Ci^alkyl substituted with C3-7cycloalkyl; R2 is hydrogen or halo; A is pyridinyl substituted with one or two substituents, each substituent independently selected from halo or Ci-4alkyl; n is an integer of value 1 or 2; 10 or a pharmaceutically acceptable salt or a solvate thereof; provided that if R2 is 2-fluoro then A is not 3-pyridinyl substituted with one or two substituents, each substituent independently selected from halo or Ci^alkyl. provided that the compound is other than ~R, R2 -A H Y^r H YY' "^v H civr CI 1 H irV N^J 15 RECEIVED at IPONZ on 26 July 2011 -58- 2A compound as claimed in claim 1 wherein A is pyridinyl substituted with one substituent, said substituent selected from halo or Ci^alkyl. 3A compound as claimed in claim lor 2 wherein Ri is C^alkyl. 4A compound as claimed in claim 3 wherein Ri is 1-butyl or 3-methyl-1-butyl.
5. A compound as claimed in claim 1 or 2 wherein Ri is Ci^alkyl substituted with C3-7cycloalkyl.
6. A compound as claimed in claim 5 wherein Ri is cyclopropylmethyl or 2-(cyclopropyl)-l-ethyl.
7. A compound as claimed in any one of the preceding claims wherein R2 is hydrogen or fluoro.
8. A compound as claimed in any one of claims 1 to 6 wherein R2 is halo.
9. A compound as claimed in claim 8 wherein R2 is fluoro.
10. A compound as claimed in any one of claims 1 to 6 wherein n is 1 and R2 is halo.
11. A compound as claimed in any one of claims 1 to 6 wherein n is 2 and R2 is halo.
12. A compound as claimed in any one of the preceding claims wherein the pyridinyl ring represented by A is substituted with one substituent selected from chloro or methyl.
13. A compound as claimed in any one of claims 1 to 11 wherein the pyridinyl ring represented by A is substituted with two substituents, each substituent independently being selected from chloro or methyl. RECEIVED at IPONZ on 26 July 2011 -59-
14. A compound as claimed in claim 1 wherein Ri is 1-butyl, 3-methyl-1-butyl, cyclopropylmethyl or 2-(cyclopropyl)-l-ethyl; R2 is hydrogen or fluoro; n is 1 or 2; A is pyridinyl substituted with one or two substituents, each substituent independently being selected from methyl or chloro.
15. A compound as claimed in claim 1 wherein the compound is selected from -R, R2 -A 2-F 3-F ""Y 3-F 2-F Yf 3-F Yf 2-F YY 3-F YV N yJ '•"V 2-F Yf Nys) -"V 3-F Yf RECEIVED at IPONZ on 26 July 2011 -60- -R, R2 -A 2-F >rV 3-F A 3-F 2-F YV 3-F 3,5-diF YY" H or a pharmaceutically acceptable salt thereof or a solvate thereof.
16. A compound as claimed in any one of claims 1 to 15 for use as a medicine.
17. A pharmaceutical composition comprising a therapeutically effective amount of a compound as claimed in any one of claims 1 to 15 and a pharmaceutically acceptable carrier or diluent.
18. A compound as claimed in any one of claims 1 to 15 or a pharmaceutical composition as claimed in claim 17 for treating or preventing a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of a positive allosteric modulator of mGluR2.
19. Use of a compound as claimed in any one of claims 1 to 15 or a pharmaceutical composition as claimed in claim 17 for the manufacture of a medicament for treating or preventing a condition in a mammal, including a human, the treatment or prevention of which is affected or facilitated by the neuromodulatory effect of a mGluR2 positive allosteric modulator. RECEIVED at IPONZ on 26 July 2011 -61 -
20. Use of a compound as claimed in any one of claims 1 to 15 or a pharmaceutical composition as claimed in claim 17 for the manufacture of a medicament for treating or preventing a central nervous system disorder selected from the group of anxiety disorders, psychotic disorders, personality disorders, substance-related disorders, eating disorders, mood disorders, migraine, epilepsy or convulsive disorders, childhood disorders, cognitive disorders, neurodegeneration, neurotoxicity and ischemia.
21. Use according to claim 20, wherein the central nervous system disorder is an anxiety disorder, selected from the group of agoraphobia, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), panic disorder, posttraumatic stress disorder (PTSD), social phobia and other phobias.
22. Use according to claim 20, wherein the central nervous system disorder is a psychotic disorder selected from the group of schizophrenia, delusional disorder, schizoaffective disorder, schizophreniform disorder and substance-induced psychotic disorder.
23. Use according to claim 20, wherein the central nervous system disorder is a personality disorder selected from the group of obsessive-compulsive personality disorder and schizoid, schizotypal disorder.
24. Use according to claim 20, wherein the central nervous system disorder is a substance-related disorder selected from the group of alcohol abuse, alcohol dependence, alcohol withdrawal, alcohol withdrawal delirium, alcohol-induced psychotic disorder, amphetamine dependence, amphetamine withdrawal, cocaine dependence, cocaine withdrawal, nicotine dependence, nicotine withdrawal, opioid dependence and opioid withdrawal.
25. Use according to claim 20, wherein the central nervous system disorder is an eating disorder selected from the group of anorexia nervosa and bulimia nervosa. 26. Use according to claim 20, wherein the central nervous system disorder is a mood disorder selected from the group of bipolar disorders (I & II), cyclothymic disorder, RECEIVED at IPONZ on
26.July 2011 -62- depression, dysthymic disorder, major depressive disorder and substance-induced mood disorder.
27. Use according to claim 20, wherein the central nervous system disorder is migraine. 5
28. Use according to claim 20, wherein the central nervous system disorder is epilepsy or a convulsive disorder selected from the group of generalized nonconvulsive epilepsy, generalized convulsive epilepsy, petit mal status epilepticus, grand mal status epilepticus, partial epilepsy with or without impairment of consciousness, infantile spasms, epilepsy 10 partialis continua, and other forms of epilepsy.
29. Use according to claim 20, wherein the central nervous system disorder is a childhood disorder. 15
30. Use according to claim 29 wherein the childhood disorder is attention-deficit/hyperactivity disorder.
31. Use according to claim 20, wherein the central nervous system disorder is a cognitive disorder selected from the group of delirium, substance-induced persisting delirium, 20 dementia, dementia due to HIV disease, dementia due to Huntington's disease, dementia due to Parkinson's disease, dementia of the Alzheimer's type, substance-induced persisting dementia and mild cognitive impairment.
32. Use according to claim 20, wherein the central nervous system disorder is selected from 25 the group of anxiety, schizophrenia, migraine, depression, and epilepsy.
33. Use of a compound as claimed in any one of claims 1 to 15 in combination with an orthosteric agonist of mGluR2 for the manufacture of a medicament for treating or preventing a condition as cited in any one of claims 19 to 32, in a mammal, including a 30 human. RECEIVED at IPONZ on 26 July 2011 -63 -
34. Use of a compound as claimed in any one of claims 1 to 15 in the preparation of a medicament for the treatment, prevention or prophylaxis of a condition or disorder as cited in any one of claims 19 to 32.
35. A process for preparing a compound as claimed in claim 1, characterized by reacting an intermediate of formula (II) wherein Y represents a group suitable for Pd mediated coupling with boronic acids or boronic esters, with an intermediate of formula (III) wherein R3 and R4 represent hydrogen or Ci-4alkyl, or wherein R3 and R4 may be taken together to form the bivalent radical of formula -CH2CH2-, -CH2CH2CH2-, or -C(CH3)2C(CH3)2", in a suitable reaction-inert solvent, in the presence of a suitable base and a suitable catalyst, under thermal conditions with Ri, R2, A and n as defined in claim 1; or, if desired, further converting compounds of formula (I) into each other following art-known transformations; or further, if desired, converting the compounds of formula (I), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or conversely, converting the acid addition salt form into the free base by treatment with alkali; or, if desired, preparing stereochemically isomeric forms thereof.
36. The compound prepared by the process of claim 35.
37. A compound according to claim 1, substantially as hereinbefore described, with reference to any one of the Examples.
38. A pharmaceutical composition according to claim 17, substantially as hereinbefore described, with reference to any one of the Examples. RECEIVED at IPONZ on 26 July 2011 -64-
39. The use according to any one of claims 19, 20, 33, 34 and 35, substantially as hereinbefore described, with reference to any one of the Examples.
40. The process according to claim 35 substantially as hereinbefore described, with reference to any one of the Examples.
NZ579989A 2007-03-07 2008-03-07 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mglur2 -receptor modulators NZ579989A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP07103654 2007-03-07
EP07052442 2007-03-15
EP07116402 2007-09-14
PCT/EP2008/052767 WO2008107480A1 (en) 2007-03-07 2008-03-07 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mglur2 -receptor modulators

Publications (1)

Publication Number Publication Date
NZ579989A true NZ579989A (en) 2011-09-30

Family

ID=40845781

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ579989A NZ579989A (en) 2007-03-07 2008-03-07 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mglur2 -receptor modulators

Country Status (3)

Country Link
AR (1) AR065623A1 (en)
CL (1) CL2008000672A1 (en)
NZ (1) NZ579989A (en)

Also Published As

Publication number Publication date
AR065623A1 (en) 2009-06-17
CL2008000672A1 (en) 2008-11-03

Similar Documents

Publication Publication Date Title
CA2680125C (en) 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mglur2-receptor modulators
CA2680104C (en) 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
US8252937B2 (en) 1,3-disubstituted 4-(aryl-X-phenyl)-1H-pyridin-2-ones
AU2008297877B2 (en) 1,3-disubstituted-4-phenyl-1 H-pyridin-2-ones
EP2134701A1 (en) 3-cyano-4-(4-phenyl-piperidin-1-yl)-pyridin-2-one derivatives
NZ579989A (en) 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive mglur2 -receptor modulators
NZ579986A (en) 3-cyano-4-(4-phenyl-piperidin-1-yl)-pyridin-2-one derivatives

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)
LAPS Patent lapsed