NZ577071A - Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors - Google Patents

Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors

Info

Publication number
NZ577071A
NZ577071A NZ577071A NZ57707107A NZ577071A NZ 577071 A NZ577071 A NZ 577071A NZ 577071 A NZ577071 A NZ 577071A NZ 57707107 A NZ57707107 A NZ 57707107A NZ 577071 A NZ577071 A NZ 577071A
Authority
NZ
New Zealand
Prior art keywords
disorder
pain
chromen
compound
group
Prior art date
Application number
NZ577071A
Inventor
Dan Peters
John Paul Redrobe
Gunnar M Olsen
Elsebet Ostergaard Nielsen
Original Assignee
Neurosearch As
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Neurosearch As filed Critical Neurosearch As
Priority claimed from PCT/EP2007/064130 external-priority patent/WO2008074797A1/en
Publication of NZ577071A publication Critical patent/NZ577071A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D451/00Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof
    • C07D451/02Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof
    • C07D451/04Heterocyclic compounds containing 8-azabicyclo [3.2.1] octane, 9-azabicyclo [3.3.1] nonane, or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane or granatane alkaloids, scopolamine; Cyclic acetals thereof containing not further condensed 8-azabicyclo [3.2.1] octane or 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring systems, e.g. tropane; Cyclic acetals thereof with hetero atoms directly attached in position 3 of the 8-azabicyclo [3.2.1] octane or in position 7 of the 3-oxa-9-azatricyclo [3.3.1.0<2,4>] nonane ring system
    • C07D451/06Oxygen atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/468-Azabicyclo [3.2.1] octane; Derivatives thereof, e.g. atropine, cocaine

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

Disclosed is a compound of formula (I), wherein Q represents a chromen-2-one-yl group, wherein the chromene group is substituted with one heteroaryl group, and the other substituents are as defined in the specification.  The compounds are monoamine neurotransmitter re-uptake inhibitors useful in the treatment of CNS disorders.

Description

<div class="application article clearfix" id="description"> <p class="printTableText" lang="en">New Zealand Paient Spedficaiion for Paient Number 577071 <br><br> WO 2008/074797 <br><br> 1 <br><br> PCT/EP2007/064130 <br><br> NOVEL CHROMEN-2-ONE DERIVATIVES AND THEIR USE AS MONOAMINE NEUROTRANSMITTER RE-UPTAKE INHIBITORS <br><br> TECHNICAL FIELD <br><br> 5 <br><br> This invention relates to novel chromen-2-one derivatives useful as monoamine neurotransmitter re-uptake inhibitors. <br><br> In other aspects the invention relates to the use of these compounds in a method for therapy and to pharmaceutical compositions comprising the compounds of 10 the invention. <br><br> BACKGROUND ART <br><br> Serotonin Selective Reuptake Inhibitors (SSRIs) currently provide efficacy in the 15 treatment of several CNS disorders, including depression and panic disorder. SSRIs are generally perceived by psychiatrists and primary care physicians as effective, well-tolerated and easily administered. However, they are associated with a number of undesirable features. <br><br> Thus, there is still a strong need for compounds with an optimised 20 pharmacological profile as regards the activity on reuptake of the monoamine neurotransmitters serotonin, dopamine and noradrenaline, such as the ratio of the serotonin reuptake versus the noradrenaline and dopamine reuptake activity. <br><br> WO 2006/035034 and WO 2007/093604 (both NeuroSearch A/S) disclose chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake 25 inhibitors. <br><br> SUMMARY OF THE INVENTION <br><br> It is an object of the invention to provide novel compounds which show activity as 30 monoamine neurotransmitter re-uptake inhibitors. <br><br> In its first aspect, the invention provides a compound of Formula I: <br><br> any of its stereoisomers or any mixture of its stereoisomers, or a pharmaceutical^ 35 acceptable salt thereof, <br><br> WO 2008/074797 PCT/EP2007/064130 <br><br> 2 <br><br> wherein R1 and Q are as defined below. <br><br> In its second aspect, the invention provides a pharmaceutical composition, comprising a therapeutically effective amount of a compound of the invention, any of its stereoisomers or any mixture of its stereoisomers, or a pharmaceutically acceptable 5 salt thereof, together with at least one pharmaceutically acceptable carrier, excipient or diluent. <br><br> In a further aspect, the invention provides the use of a compound of the invention, any of its stereoisomers or any mixture of its stereoisomers, or a pharmaceutically acceptable salt thereof, for the manufacture of a pharmaceutical 10 composition for the treatment, prevention or alleviation of a disease or a disorder or a condition of a mammal, including a human, which disease, disorder or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system. <br><br> In a still further aspect, the invention relates to a method for treatment, 15 prevention or alleviation of a disease or a disorder or a condition of a living animal body, including a human, which disorder, disease or condition is responsive to responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system, which method comprises the step of administering to such a living animal body in need thereof a therapeutically effective amount of a compound of the 20 invention, any of its stereoisomers or any mixture of its stereoisomers, or a pharmaceutically acceptable salt thereof. <br><br> Other objects of the invention will be apparent to the person skilled in the art from the following detailed description and examples. <br><br> 25 DETAILED DISCLOSURE OF THE INVENTION <br><br> Chromen-2-one derivatives <br><br> In its first aspect the present invention provides compounds of Formula I: <br><br> R1—N <br><br> —O <br><br> \ <br><br> Q <br><br> (I) <br><br> 30 any of its stereoisomers or any mixture of its stereoisomers, <br><br> or a pharmaceutically acceptable salt thereof, <br><br> wherein <br><br> Q represents a chromen-2-one-yl group; <br><br> which chromen-2-one-yl group is substituted with one heteroaryl group; <br><br> WO 2008/074797 <br><br> 3 <br><br> PCT/EP2007/064130 <br><br> which heteroaryl group is optionally substituted with one or more substituents independently selected from the group consisting of: <br><br> halo, trifluoromethyl, trifluoromethoxy, cyano, amino, nitro, <br><br> hydroxy, alkoxy, cycloalkoxy, methylenedioxy, ethylenedioxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl; <br><br> and which chromen-2-one-yl group is optionally further substituted with one or more substituents independently selected from the group consisting of: 5 halo, trifluoromethyl, trifluoromethoxy, cyano, amino, nitro, hydroxy, <br><br> alkoxy, cycloalkoxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl; <br><br> R1 represents hydrogen or alkyl; <br><br> which alkyl is optionally substituted with one or more substituents 10 independently selected from the group consisting of: <br><br> halo, trifluoromethyl, trifluoromethoxy, cyano, amino, nitro, hydroxy, alkoxy, cycloalkoxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl. <br><br> 15 In one embodiment of the compound of Formula I, R1 represents hydrogen or alkyl. In a special embodiment R1 represents hydrogen. <br><br> In a further embodiment of the compound of Formula I, Q represents a substituted chromen-2-one-7-yl group. <br><br> In a still further embodiment of the compound of Formula I, Q represents a 3-20 (optionally substituted heteroaryl)-chromen-2-one-yl group. <br><br> In a further embodiment of the compound of Formula I, Q represents a chromen-2-one-7-yl substituted with a furanyl or a benzofuranyl group. In a special embodiment, Q represents chromen-2-one-7-yl substituted with furanyl, such as furan-2-yl or furan-3-yl. In a further special embodiment, Q represents a chromen-2-one-7-yl 25 substituted with benzofuranyl, such as benzofuran-2-yl. <br><br> In a special embodiment the chemical compound of the invention is exo-7-[(1S,3S,5R)-(8-Aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-furan-2-yl-chromen-2-one; exo-7-[(1S,3S,5R)-(8-Aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-furan-3-yl-chromen-2-one; 30 exo-7-[(1 S,3S,5R)-(8-Aza-bicyclo[3.2.1 ]oct-3-yl)oxy]-3-benzofuran-2-yl-chromen-2-one; <br><br> or a pharmaceutically acceptable salt thereof. <br><br> Any combination of two or more of the embodiments as described above is considered within the scope of the present invention. <br><br> WO 2008/074797 <br><br> PCT/EP2007/064130 <br><br> 4 <br><br> Definition of substituents <br><br> In the context of this invention halo represents fluoro, chloro, bromo or iodo. <br><br> In the context of this invention an alkyl group designates a univalent saturated, straight or branched hydrocarbon chain. The hydrocarbon chain preferably contains of 5 from one to six carbon atoms (C-i-6-alkyl), including pentyl, isopentyl, neopentyl, tertiary pentyl, hexyl and isohexyl. In a preferred embodiment alkyl represents a Ci-4-alkyl group, including butyl, isobutyl, secondary butyl, and tertiary butyl. In another preferred embodiment of this invention alkyl represents a Ci-3-alkyl group, which may in particular be methyl, ethyl, propyl or isopropyl. <br><br> 10 In the context of this invention an alkenyl group designates a carbon chain containing one or more double bonds, including di-enes, tri-enes and poly-enes. In a preferred embodiment the alkenyl group of the invention comprises of from two to six carbon atoms (C2-6-alkenyl), including at least one double bond. In a most preferred embodiment the alkenyl group of the invention is ethenyl; 1 - or 2-propenyl; 1 -, 2- or 3-15 butenyl, or 1,3-butadienyl; 1 -, 2-, 3-, 4- or 5-hexenyl, or 1,3-hexadienyl, or 1,3,5-hexatrienyl. <br><br> In the context of this invention an alkynyl group designates a carbon chain containing one or more triple bonds, including di-ynes, tri-ynes and poly-ynes. In a preferred embodiment the alkynyl group of the invention comprises of from two to six 20 carbon atoms (C2-6-alkynyl), including at least one triple bond. In its most preferred embodiment the alkynyl group of the invention is ethynyl; 1 -, or 2-propynyl; 1 -, 2-, or 3-butynyl, or 1,3-butadiynyl; 1 -, 2-, 3-, 4-pentynyl, or 1,3-pentadiynyl; 1 -, 2-, 3-, 4-, or 5-hexynyl, or 1,3-hexadiynyl or 1,3,5-hexatriynyl. <br><br> In the context of this invention a cycloalkyl group designates a cyclic alkyl group, 25 preferably containing of from three to seven carbon atoms (C3-7-cycloalkyl), including cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl and cycloheptyl. <br><br> Alkoxy is O-alkyl, wherein alkyl is as defined above. <br><br> Cycloalkoxy means O-cycloalkyl, wherein cycloalkyl is as defined above. <br><br> Cycloalkylalkyl means cycloalkyl as above and alkyl as above, meaning for 30 example, cyclopropylmethyl. <br><br> Amino is NH2 or NH-alkyl or N-(alkyl)2, wherein alkyl is as defined above. <br><br> In the context of this invention a heteroaryl group designates an aromatic mono- or bicyclic heterocyclic group, which holds one or more heteroatoms in its ring structure. Preferred heteroatoms include nitrogen (N), oxygen (O), and sulphur (S). 35 Preferred monocyclic heteroaryl groups of the invention include aromatic 5- and <br><br> 6-membered heterocyclic monocyclic groups, including for example, but not limited to, oxazolyl, isoxazolyl, thiazolyl, isothiazolyl, tetrazolyl, 1,2,4-oxadiazolyl, 1,2,5-oxadiazolyl, 1,3,4-oxadiazolyl, triazolyl, 1,2,4-thiadiazolyl, 1,2,5-thiadiazolyl, imidazolyl, pyrrolyl, pyrazolyl, furanyl, thienyl, pyridyl, pyrimidyl, or pyridazinyl. <br><br> WO 2008/074797 <br><br> 5 <br><br> PCT/EP2007/064130 <br><br> Preferred bicyclic heteroaryl groups of the invention include for example, but not limited to, indolizinyl, indolyl, isoindolyl, indazolyl, benzofuranyl, benzo[£&gt;]thienyl, benzimidazolyl, benzoxazolyl, benzooxadiazolyl, benzothiazolyl, benzo[c/|isothiazolyl, purinyl, quinolinyl, isoquinolinyl, cinnolinyl, phthalazinyl, quinazolinyl, quinoxalinyl, 1,8-5 naphthyridinyl, pteridinyl, and indenyl. <br><br> Pharmaceutically acceptable salts <br><br> The chemical compound of the invention may be provided in any form suitable for the intended administration. Suitable forms include pharmaceutically (i.e. 10 physiologically) acceptable salts, and pre- or prodrug forms of the chemical compound of the invention. <br><br> Examples of pharmaceutically acceptable addition salts include, without limitation, the non-toxic inorganic and organic acid addition salts such as the hydrochloride, the hydrobromide, the nitrate, the perchlorate, the phosphate, the sulphate, 15 the formate, the acetate, the aconate, the ascorbate, the benzenesulphonate, the benzoate, the cinnamate, the citrate, the embonate, the enantate, the fumarate, the glutamate, the glycolate, the lactate, the maleate, the malonate, the mandelate, the methanesulphonate, the naphthalene-2-sulphonate, the phthalate, the salicylate, the sorbate, the stearate, the succinate, the tartrate, the toluene-p-sulphonate, and the 20 like. Such salts may be formed by procedures well known and described in the art. <br><br> Other acids such as oxalic acid, which may not be considered pharmaceutically acceptable, may be useful in the preparation of salts useful as intermediates in obtaining a chemical compound of the invention and its pharmaceutically acceptable acid addition salt. <br><br> 25 Examples of pharmaceutically acceptable cationic salts of a chemical compound of the invention include, without limitation, the sodium, the potassium, the calcium, the magnesium, the zinc, the aluminium, the lithium, the choline, the lysinium, and the ammonium salt, and the like, of a chemical compound of the invention containing an anionic group. Such cationic salts may be formed by procedures well known and 30 described in the art. <br><br> In the context of this invention the "onium salts" of N-containing compounds are also contemplated as pharmaceutically acceptable salts. Preferred "onium salts" <br><br> include the alkyl-onium salts, the cycloalkyl-onium salts, and the cycloalkylalkyl-onium salts. <br><br> 35 Examples of pre- or prodrug forms of the chemical compound of the invention include examples of suitable prodrugs of the substances according to the invention including compounds modified at one or more reactive or derivatizable groups of the parent compound. Of particular interest are compounds modified at a carboxyl group, a <br><br> WO 2008/074797 <br><br> 6 <br><br> PCT/EP2007/064130 <br><br> hydroxyl group, or an amino group. Examples of suitable derivatives are esters or amides. <br><br> The chemical compound of the invention may be provided in dissoluble or indissoluble forms together with a pharmaceutically acceptable solvent such as water, 5 ethanol, and the like. Dissoluble forms may also include hydrated forms such as the monohydrate, the dihydrate, the hemihydrate, the trihydrate, the tetrahydrate, and the like. In general, the dissoluble forms are considered equivalent to indissoluble forms for the purposes of this invention. <br><br> 10 Steric isomers <br><br> It will be appreciated by those skilled in the art that the compounds of the present invention may exist in different stereoisomeric forms - including enantiomers, diastereomers and cis-trans-isomers. <br><br> For example, the group -O-Q of Formula I may in particular be in the exo or 15 endo configuration relative to the azabicyclic ring. <br><br> The invention includes all such stereoisomers and any mixtures thereof including racemic mixtures. <br><br> Racemic forms can be resolved into the optical antipodes by known methods and techniques. One way of separating the enantiomeric compounds (including 20 enantiomeric intermediates) is - in the case the compound being a chiral acid - by use of an optically active amine, and liberating the diastereomeric, resolved salt by treatment with an acid. Another method for resolving racemates into the optical antipodes is based upon chromatography on an optical active matrix. Racemic compounds of the present invention can thus be resolved into their optical antipodes, 25 e.g., by fractional crystallisation of D- or L- (tartrates, mandelates, or camphor-sulphonate) salts for example. <br><br> The chemical compounds of the present invention may also be resolved by the formation of diastereomeric amides by reaction of the chemical compounds of the present invention with an optically active activated carboxylic acid such as that derived 30 from (+) or (-) phenylalanine, (+) or (-) phenylglycine, (+) or (-) camphanic acid or by the formation of diastereomeric carbamates by reaction of the chemical compound of the present invention with an optically active chloroformate or the like. <br><br> Additional methods for the resolving the optical isomers are known in the art. Such methods include those described by Jaques J, Collet A, &amp; Wilen S in 35 "Enantiomers. Racemates. and Resolutions". John Wiley and Sons, New York (1981). <br><br> Optical active compounds can also be prepared from optical active starting materials. <br><br> WO 2008/074797 <br><br> 7 <br><br> PCT/EP2007/064130 <br><br> Labelled compounds <br><br> The compounds of the invention may be used in their labelled or unlabelled form. In the context of this invention the labelled compound has one or more atoms replaced by an atom having an atomic mass or mass number different from the atomic 5 mass or mass number usually found in nature. The labelling will allow easy quantitative detection of said compound. <br><br> The labelled compounds of the invention may be useful as diagnostic tools, <br><br> radio tracers, or monitoring agents in various diagnostic methods, and for in vivo receptor imaging. <br><br> 10 The labelled compound of the invention preferably contains at least one radio nuclide as a label. Positron emitting radionuclides are all candidates for usage. In the context of this invention the radionuclide is preferably selected from 2H (deuterium), 3H (tritium), 11C, 13C, 14C, 131l, 125l, 123l, and 18F. <br><br> The physical method for detecting the labelled compound of the present 15 invention may be selected from Position Emission Tomography (PET), Single Photon Imaging Computed Tomography (SPECT), Magnetic Resonance Spectroscopy (MRS), Magnetic Resonance Imaging (MRI), and Computed Axial X-ray Tomography (CAT), or combinations thereof. <br><br> 20 Methods of preparation <br><br> The chemical compounds of the invention may be prepared by conventional methods for chemical synthesis, e.g. those described in the working examples. The starting materials for the processes described in the present application are known or may readily be prepared by conventional methods from commercially available 25 chemicals. <br><br> Also one compound of the invention can be converted to another compound of the invention using conventional methods. <br><br> The end products of the reactions described herein may be isolated by conventional techniques, e.g. by extraction, crystallisation, distillation, chromatography, 30 etc. <br><br> Biological activity <br><br> Compounds of the invention may be tested for their ability to inhibit reuptake of the monoamines dopamine, noradrenaline and serotonin in synaptosomes e.g. such as 35 described in WO 97/30997 (NeuroSearch A/S). Based on the balanced activity observed in these tests the compound of the invention is considered useful for the treatment, prevention or alleviation of a disease or a disorder or a condition of a mammal, including a human, which disease, disorder or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system. <br><br> WO 2008/074797 <br><br> PCT/EP2007/064130 <br><br> 8 <br><br> In a special embodiment, the compounds of the invention are considered useful for the treatment, prevention or alleviation of: mood disorder, depression, atypical depression, depression secondary to pain, major depressive disorder, dysthymic disorder, bipolar disorder, bipolar I disorder, bipolar II disorder, cyclothymic disorder, 5 mood disorder due to a general medical condition, substance-induced mood disorder, pseudodementia, Ganser's syndrome, obsessive compulsive disorder, panic disorder, panic disorder without agoraphobia, panic disorder with agoraphobia, agoraphobia without history of panic disorder, panic attack, memory deficits, memory loss, attention deficit hyperactivity disorder, obesity, anxiety, generalized anxiety disorder, eating 10 disorder, Parkinson's disease, parkinsonism, dementia, dementia of ageing, senile dementia, Alzheimer's disease, Down's syndrome, acquired immunodeficiency syndrome dementia complex, memory dysfunction in ageing, specific phobia, social phobia, social anxiety disorder, post-traumatic stress disorder, acute stress disorder, chronic stress disorder, drug addiction, drug abuse, drug abuse liability, cocaine 15 abuse, nicotine abuse, tobacco abuse, alcohol addiction, alcoholism, kleptomania, withdrawal symptoms caused by termination of use of addictive substances, pain, chronic pain, inflammatory pain, neuropathic pain, diabetic neuropathic pain, migraine pain, tension-type headache, chronic tension-type headache, pain associated with depression, fibromyalgia, arthritis, osteoarthritis, rheumatoid arthritis, back pain, cancer 20 pain, irritable bowel pain, irritable bowel syndrome, post-operative pain, post-mastectomy pain syndrome (PMPS), post-stroke pain, drug-induced neuropathy, diabetic neuropathy, sympathetically-maintained pain, trigeminal neuralgia, dental pain, myofacial pain, phantom-limb pain, bulimia, premenstrual syndrome, premenstrual dysphoric disorder, late luteal phase syndrome, post-traumatic syndrome, chronic 25 fatigue syndrome, persistent vegetative state, urinary incontinence, stress incontinence, urge incontinence, nocturnal incontinence, sexual dysfunction, premature ejaculation, erectile difficulty, erectile dysfunction, premature female orgasm, restless leg syndrome, periodic limb movement disorder, eating disorders, anorexia nervosa, sleep disorders, pervasive developmental disorders, autism, Asperger's disorder, 30 Rett's disorder, childhood disintegrative disorder, learning disabilities, motor skills disorders, mutism, trichotillomania, narcolepsy, post-stroke depression, stroke-induced brain damage, stroke-induced neuronal damage, Gilles de la Tourettes disease, tinnitus, tic disorders, body dysmorphic disorders, oppositional defiant disorder or post-stroke disabilities. In a preferred embodiment, the compounds are considered useful 35 for the treatment, prevention or alleviation of depression. <br><br> It is at present contemplated that a suitable dosage of the active pharmaceutical ingredient (API) is within the range of from about 0.1 to about 1000 mg API per day, more preferred of from about 10 to about 500 mg API per day, most preferred of from about 30 to about 100 mg API per day, dependent, however, upon the exact mode of <br><br> WO 2008/074797 <br><br> 9 <br><br> PCT/EP2007/064130 <br><br> administration, the form in which it is administered, the indication considered, the subject and in particular the body weight of the subject involved, and further the preference and experience of the physician or veterinarian in charge. <br><br> Preferred compounds of the invention show a biological activity in the sub-5 micromolar and micromolar range, i.e. of from below 1 to about 100 (iM. <br><br> Pharmaceutical compositions <br><br> In another aspect the invention provides novel pharmaceutical compositions comprising a therapeutically effective amount of the chemical compound of the 10 invention. <br><br> While a chemical compound of the invention for use in therapy may be administered in the form of the raw chemical compound, it is preferred to introduce the active ingredient, optionally in the form of a physiologically acceptable salt, in a pharmaceutical composition together with one or more adjuvants, excipients, carriers, 15 buffers, diluents, and/or other customary pharmaceutical auxiliaries. <br><br> In a preferred embodiment, the invention provides pharmaceutical compositions comprising the chemical compound of the invention, or a pharmaceutically acceptable salt or derivative thereof, together with one or more pharmaceutically acceptable carriers, and, optionally, other therapeutic and/or prophylactic ingredients, known and 20 used in the art. The carrier(s) must be "acceptable" in the sense of being compatible with the other ingredients of the formulation and not harmful to the recipient thereof. <br><br> Pharmaceutical compositions of the invention may be those suitable for oral, rectal, bronchial, nasal, pulmonal, topical (including buccal and sub-lingual), transdermal, vaginal or parenteral (including cutaneous, subcutaneous, intramuscular, intraperitoneal, 25 intravenous, intraarterial, intracerebral, intraocular injection or infusion) administration, or those in a form suitable for administration by inhalation or insufflation, including powders and liquid aerosol administration, or by sustained release systems. Suitable examples of sustained release systems include semipermeable matrices of solid hydrophobic polymers containing the compound of the invention, which matrices may be in form of 30 shaped articles, e.g. films or microcapsules. <br><br> The chemical compound of the invention, together with a conventional adjuvant, carrier, or diluent, may thus be placed into the form of pharmaceutical compositions and unit dosages thereof. Such forms include solids, and in particular tablets, filled capsules, powder and pellet forms, and liquids, in particular aqueous or non-aqueous solutions, 35 suspensions, emulsions, elixirs, and capsules filled with the same, all for oral use, suppositories for rectal administration, and sterile injectable solutions for parenteral use. Such pharmaceutical compositions and unit dosage forms thereof may comprise conventional ingredients in conventional proportions, with or without additional active compounds or principles, and such unit dosage forms may contain any suitable effective <br><br> WO 2008/074797 <br><br> 10 <br><br> PCT/EP2007/064130 <br><br> amount of the active ingredient commensurate with the intended daily dosage range to be employed. <br><br> The chemical compound of the present invention can be administered in a wide variety of oral and parenteral dosage forms. It will be obvious to those skilled in the art 5 that the following dosage forms may comprise, as the active component, either a chemical compound of the invention or a pharmaceutically acceptable salt of a chemical compound of the invention. <br><br> For preparing pharmaceutical compositions from a chemical compound of the present invention, pharmaceutically acceptable carriers can be either solid or liquid. Solid 10 form preparations include powders, tablets, pills, capsules, cachets, suppositories, and dispersible granules. A solid carrier can be one or more substances which may also act as diluents, flavouring agents, solubilizers, lubricants, suspending agents, binders, preservatives, tablet disintegrating agents, or an encapsulating material. <br><br> In powders, the carrier is a finely divided solid, which is in a mixture with the finely 15 divided active component. <br><br> In tablets, the active component is mixed with the carrier having the necessary binding capacity in suitable proportions and compacted in the shape and size desired. <br><br> The powders and tablets preferably contain from five or ten to about seventy percent of the active compound. Suitable carriers are magnesium carbonate, magnesium 20 stearate, talc, sugar, lactose, pectin, dextrin, starch, gelatin, tragacanth, methylcellulose, sodium carboxymethylcellulose, a low melting wax, cocoa butter, and the like. The term "preparation" is intended to include the formulation of the active compound with encapsulating material as carrier providing a capsule in which the active component, with or without carriers, is surrounded by a carrier, which is thus in association with it. Similarly, 25 cachets and lozenges are included. Tablets, powders, capsules, pills, cachets, and lozenges can be used as solid forms suitable for oral administration. <br><br> For preparing suppositories, a low melting wax, such as a mixture of fatty acid glyceride or cocoa butter, is first melted and the active component is dispersed homogeneously therein, as by stirring. The molten homogenous mixture is then poured 30 into convenient sized moulds, allowed to cool, and thereby to solidify. <br><br> Compositions suitable for vaginal administration may be presented as pessaries, tampons, creams, gels, pastes, foams or sprays containing in addition to the active ingredient such carriers as are known in the art to be appropriate. <br><br> Liquid preparations include solutions, suspensions, and emulsions, for example, 35 water or water-propylene glycol solutions. For example, parenteral injection liquid preparations can be formulated as solutions in aqueous polyethylene glycol solution. <br><br> The chemical compound according to the present invention may thus be formulated for parenteral administration (e.g. by injection, for example bolus injection or continuous infusion) and may be presented in unit dose form in ampoules, pre-filled <br><br> WO 2008/074797 <br><br> 11 <br><br> PCT/EP2007/064130 <br><br> syringes, small volume infusion or in multi-dose containers with an added preservative. The compositions may take such forms as suspensions, solutions, or emulsions in oily or aqueous vehicles, and may contain formulation agents such as suspending, stabilising and/or dispersing agents. Alternatively, the active ingredient may be in powder form, 5 obtained by aseptic isolation of sterile solid or by lyophilization from solution, for constitution with a suitable vehicle, e.g. sterile, pyrogen-free water, before use. <br><br> Aqueous solutions suitable for oral use can be prepared by dissolving the active component in water and adding suitable colorants, flavours, stabilising and thickening agents, as desired. <br><br> 10 Aqueous suspensions suitable for oral use can be made by dispersing the finely divided active component in water with viscous material, such as natural or synthetic gums, resins, methylcellulose, sodium carboxymethylcellulose, or other well known suspending agents. <br><br> Also included are solid form preparations, intended for conversion shortly before 15 use to liquid form preparations for oral administration. Such liquid forms include solutions, suspensions, and emulsions. In addition to the active component such preparations may comprise colorants, flavours, stabilisers, buffers, artificial and natural sweeteners, dispersants, thickeners, solubilizing agents, and the like. <br><br> For topical administration to the epidermis the chemical compound of the invention 20 may be formulated as ointments, creams or lotions, or as a transdermal patch. Ointments and creams may, for example, be formulated with an aqueous or oily base with the addition of suitable thickening and/or gelling agents. Lotions may be formulated with an aqueous or oily base and will in general also contain one or more emulsifying agents, stabilising agents, dispersing agents, suspending agents, thickening agents, or colouring 25 agents. <br><br> Compositions suitable for topical administration in the mouth include lozenges comprising the active agent in a flavoured base, usually sucrose and acacia or tragacanth; pastilles comprising the active ingredient in an inert base such as gelatin and glycerine or sucrose and acacia; and mouthwashes comprising the active ingredient in a 30 suitable liquid carrier. <br><br> Solutions or suspensions are applied directly to the nasal cavity by conventional means, for example with a dropper, pipette or spray. The compositions may be provided in single or multi-dose form. <br><br> Administration to the respiratory tract may also be achieved by means of an 35 aerosol formulation in which the active ingredient is provided in a pressurised pack with a suitable propellant such as a chlorofluorocarbon (CFC) for example dichlorodifluoromethane, trichlorofluoromethane, or dichlorotetrafluoroethane, carbon dioxide, or other suitable gas. The aerosol may conveniently also contain a surfactant such as lecithin. The dose of drug may be controlled by provision of a metered valve. <br><br> WO 2008/074797 <br><br> 12 <br><br> PCT/EP2007/064130 <br><br> Alternatively the active ingredients may be provided in the form of a dry powder, for example a powder mix of the compound in a suitable powder base such as lactose, <br><br> starch, starch derivatives such as hydroxypropylmethyl cellulose and polyvinylpyrrolidone (PVP). Conveniently the powder carrier will form a gel in the nasal cavity. The powder 5 composition may be presented in unit dose form for example in capsules or cartridges of, e.g., gelatin, or blister packs from which the powder may be administered by means of an inhaler. <br><br> In compositions intended for administration to the respiratory tract, including intranasal compositions, the compound will generally have a small particle size for 10 example of the order of 5 microns or less. Such a particle size may be obtained by means known in the art, for example by micronization. <br><br> When desired, compositions adapted to give sustained release of the active ingredient may be employed. <br><br> The pharmaceutical preparations are preferably in unit dosage forms. In such form, 15 the preparation is subdivided into unit doses containing appropriate quantities of the active component. The unit dosage form can be a packaged preparation, the package containing discrete quantities of preparation, such as packaged tablets, capsules, and powders in vials or ampoules. Also, the unit dosage form can be a capsule, tablet, cachet, or lozenge itself, or it can be the appropriate number of any of these in packaged form. 20 Tablets or capsules for oral administration and liquids for intravenous administration and continuous infusion are preferred compositions. <br><br> Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Maack Publishing Co., Easton, PA). <br><br> 25 A therapeutically effective dose refers to that amount of active ingredient, which ameliorates the symptoms or condition. Therapeutic efficacy and toxicity, e.g. ED5o and LD5o, may be determined by standard pharmacological procedures in cell cultures or experimental animals. The dose ratio between therapeutic and toxic effects is the therapeutic index and may be expressed by the ratio LD5o/ED5o. Pharmaceutical 30 compositions exhibiting large therapeutic indexes are preferred. <br><br> The dose administered must of course be carefully adjusted to the age, weight and condition of the individual being treated, as well as the route of administration, dosage form and regimen, and the result desired, and the exact dosage should of course be determined by the practitioner. <br><br> 35 The actual dosage depends on the nature and severity of the disease being treated, and is within the discretion of the physician, and may be varied by titration of the dosage to the particular circumstances of this invention to produce the desired therapeutic effect. However, it is presently contemplated that pharmaceutical compositions containing of from about 0.1 to about 500 mg of active ingredient per <br><br> WO 2008/074797 <br><br> 13 <br><br> PCT/EP2007/064130 <br><br> individual dose, preferably of from about 1 to about 100 mg, most preferred of from about 1 to about 10 mg, are suitable for therapeutic treatments. <br><br> The active ingredient may be administered in one or several doses per day. A satisfactory result can, in certain instances, be obtained at a dosage as low as 0.1 5 (ig/kg i.v. and 1 (ig/kg p.o. The upper limit of the dosage range is presently considered to be about 10 mg/kg i.v. and 100 mg/kg p.o. Preferred ranges are from about 0.1 (ig/kg to about 10 mg/kg/day i.v., and from about 1 (ig/kg to about 100 mg/kg/day p.o. <br><br> Methods of Therapy <br><br> 10 In another aspect the invention provides a method for the treatment, prevention or alleviation of a disease or a disorder or a condition of a living animal body, including a human, which disease, disorder or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system, and which method comprises administering to such a living animal body, including a human, in need 15 thereof an effective amount of a chemical compound of the invention. <br><br> It is at present contemplated that suitable dosage ranges are 0.1 to 1000 milligrams daily, 10-500 milligrams daily, and especially 30-100 milligrams daily, dependent as usual upon the exact mode of administration, form in which administered, the indication toward which the administration is directed, the subject 20 involved and the body weight of the subject involved, and further the preference and experience of the physician or veterinarian in charge. <br><br> EXAMPLES <br><br> 25 <br><br> The invention is further illustrated with reference to the following examples, which are not intended to be in any way limiting to the scope of the invention as claimed. <br><br> Preparatory Examples <br><br> 30 All reactions involving air sensitive reagents or intermediates were performed under nitrogen and in anhydrous solvents. Magnesium sulphate was used as drying agent in the workup-procedures and solvents were evaporated under reduced pressure. <br><br> WO 2008/074797 <br><br> 14 <br><br> PCT/EP2007/064130 <br><br> Example 1 <br><br> —N &gt; OH <br><br> —N &gt; ^ <br><br> endo-Benzoic acid 8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl ester <br><br> 5 Benzoylchloride (84.3 g, 600 mmol) was added during 30 min at &lt;30°C to a mixture of tropine (70.6 g, 500 mmol), potassium te/t-butoxide (67.3 g, 600 mmol) and THF (500 ml). The mixture was stirred at room temperature for 2 h. Water (1 L) was added followed by extraction with diethylether (2 x 500 ml). The organic phase was washed twice with water (2 x 200 ml) followed by a solution of saturated aqueous sodium 10 chloride (200 ml). The ether phase was dried and hydrochloric acid in ethanol (170 ml, 3 M) was added. The precipitated hydrochloride was filtered and washed with diethylether. The free base was obtained by adding an excess of aqueous ammonia followed by extraction with a mixture of ethylacetate and diethylether. Yield 66.8 g (54%). <br><br> endo-Benzoic acid 8-aza-bicyclo[3.2.1]oct-3-yl ester <br><br> 2,2,2-Trichloroethylchloroformate (75.0 ml, 544 mmol) was added dropwise to a mixture of endo-benzoic acid 8-methyl-8-aza-bicyclo[3.2.1]oct-3-yl ester (66.8 g, 272 20 mmol) and dry toluene (500 ml). The mixture was allowed to stir for 1 h at room temperature, followed by 15 h at 100°C. Water (250 ml) was added followed by stirring 1 h. The phases were separated and the organic phase was washed twice with water (2 x 200 ml). The mixture of the intermediate 3-benzoyloxy-8-aza-bicyclo[3.2.1]octane-8-carboxylic acid trichloromethyl ester, was dried and evaporated. Acetic acid (350 ml) 25 was added followed by addition of zinc (53.4 g, 817 mmol) over 3 h time period. Water (100 ml) was added, cooled by adding ice and made alkaline by adding concentrated aqueous ammonia (ca: 400 ml) and the mixture was extracted with dichloromethane (2 X 300 ml). Yield 44.5 g (61%). <br><br> 15 <br><br> WO 2008/074797 <br><br> 15 <br><br> PCT/EP2007/064130 <br><br> NBOC <br><br> N <br><br> »0 /= <br><br> o r\ // <br><br> "O /= <br><br> V- <br><br> o r \ // <br><br> encfo-3-Benzoyloxy-8-aza-bicyclo[3.2.1]octane-8-carboxylic acid ferf-butyl ester <br><br> Di-te/t-butyl-dicarbonate (39.9 g, 183 mmol) solved in THF (100 ml) was added to a stirred mixture of endo-benzoic acid 8-aza-bicyclo[3.2.1]oct-3-yl ester (44.5 g, 166.4 mmol), triethylamine (67.4 g, 666 mmol) and THF (250 ml) during 0.5 h at room temperature, followed by stirring for 1 h. Water (1 L) was added and the mixture was extracted with diethylether (2 x 300 ml). The collected ether phase was washed twice with water (2 x 200 ml), dried and evaporated. Yield 60.1 g (100%). <br><br> 10 <br><br> NBOC <br><br> NBOC <br><br> rfv <br><br> 'OH <br><br> encfo-3-Hydroxy-8-aza-bicyclo[3.2.1]octane-8-carboxylic acid ferf-butyl ester <br><br> A mixture of encfo-3-benzoyloxy-8-aza-bicyclo[3.2.1]octane-8-carboxylic acid tert-butyl ester (55.0 g, 166 mmol), potassium hydroxide (11.2 g 199 mmol) and ethanol (99%, 15 400 ml) was stirred for 3 days at room temperature. Potassium benzoate was separated by filtration and the filtrate was evaporated. Diethylether (200 ml) was added and remaining potassium benzoate was separated by filtration and the filtrate was evaporated. The product was triturated with petroleum. Yield 30.0 g (80%). Mp 139.5-140.8°C. <br><br> 20 <br><br> NBOC <br><br> NBOC <br><br> 'OH <br><br> exo-7-(8-ferf-Butoxycarbonyl-8-aza-bicyclo[3.2.1]oct-3-yloxy)-chromen-2-one <br><br> Triphenylphosphine (7.5 g, 28.6 mmol) was solved in dioxane (70 ml) and cooled to 8°C. Diethylazodicarboxylate (5.0 g, 28.6 mmol) was added to the mixture below 15°C, 25 followed by stirring for 15 minutes, endo-3-Hydroxy-8-aza-bicyclo[3.2.1] octane-8- <br><br> WO 2008/074797 <br><br> 16 <br><br> PCT/EP2007/064130 <br><br> carboxylic acid tert-butyl ester (5.0 g, 22.0 mmol) and 7-hydroxycoumarine (4.3 g, 26.4 mmol) was added to the mixture. The temperature raised due to an exothermic reaction. The mixture was allowed to stir for 15 h at room temperature. Water (200 ml) was added followed by extraction with diethylether (2 x 100 ml). The mixture was dried 5 and evaporated. Chromatography on silica gel with dichloromethane and 5% methanol as solvent. The crude product was solved in diethylether (200 ml) and washed with aqueous sodium hydroxide (3 x 200 ml, 1 M). The product was dried and evaporated. Yield 5.32 g (65%). <br><br> 10 exo-7-[(1 S,3S,5R)-(8-ferf-butoxycarbonyl-8-aza-bicyclo[3.2.1 ]oct-3-yl)oxy]-3-bromo-chromen-2-one <br><br> Bromine (1.38 ml, 27.0 mmol) was added to a mixture of exo-7-(8-te/t-butoxycarbonyl-8-aza-bicyclo[3.2.1]oct-3-yloxy)-chromen-2-one (7.8 g, 21.0 mmol), acetic acid (150 ml) and sodium acetate (5.2 g, 63.0 mmol). The mixture was stirred for 90 min at room-15 temperature. Water (100 ml) was added. The precipitation was filtered and washed with water (10 ml), methanol (5 ml) and diethylether (20 ml). Yield 7.5 g (79%). <br><br> Method A <br><br> exo-7-[(1S,3S,5R)-(8-Aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-furan-2-yl-chromen-2-one 20 hydrochloric acid salt <br><br> A mixture of exo-7-[(1S,3S,5R)-(8-te/t-butoxycarbonyl-8-aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-bromo-chromen-2-one (2.0 g, 4.0 mmol), 2-furanboronic acid (0.89 g, 8.0 mmol), potassium carbonate (1.66 g, 12.0 mmol), 1,2-dimethoxyethane (20 ml) and water (10 ml) was stirred and perfused with argon for 10 min. Palladacycle (94 mg, 0.1 25 mmol) and Pd(PPh3)4 (115 mg, 0.1 mmol) was added followed by stirring at reflux for 2 h. The mixture was allowed to cool to room temperature. Water (25 ml) was added and the precipitated solid was filtered. A mixture of the solid and hydrogen chloride in acetic acid (20 ml, 1 M) was stirred for 3 h. The mixture was made alkaline by adding aqueous ammonia. The product precipitated. Chromatography on silica gel with 30 dichloromethane, 10% methanol and 1 % aqueous ammonia as solvent gave the pure free base. The compound was converted to the corresponding salt by stirring in hydrogen chloride in acetic acid (5 ml, 1 M). Yield 150 mg (12%). LC-ESI-HRMS of [M+H]+ shows 338.1389 Da. Calc. 338.139234 Da, dev. -1 ppm. <br><br> 35 exo-7-[(1 S,3S,5R)-(8-Aza-bicyclo[3.2.1 ]oct-3-yl)oxy]-3-furan-3-yl-chromen-2-one hydrochloric acid salt <br><br> Was prepared according to method A from exo-7-[(1S,3S,5R)-(8-te/t-butoxycarbonyl-8-aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-bromo-chromen-2-one and 3-furanboronic acid. LC-ESI-HRMS of [M+H]+ shows 338.1406 Da. Calc. 338.139234 Da, dev. 4 ppm. <br><br></p> </div>

Claims (1)

  1. <div class="application article clearfix printTableText" id="claims"> <p lang="en"> WO 2008/074797<br><br> 17<br><br> PCT/EP2007/064130<br><br> exo-7-[(1S,3S,5R)-(8-Aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-benzofuran-2-yl-chromen-2-one hydrochloric acid salt<br><br> Was prepared according to method A from exo-7-[(1S,3S,5R)-(8-te/t-butoxycarbonyl-8-5 aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-bromo-chromen-2-one and 2-benzofuranboronic acid. LC-ESI-HRMS of [M+H]+ shows 388.1554 Da. Calc. 388.154884 Da, dev. 1.3 ppm.<br><br> Test Example<br><br> In vitro inhibition activity<br><br> 10 A number of compounds were tested for their ability to inhibit the reuptake of the monoamine neurotransmitters dopamine (DA), noradrenaline (NA) and serotonine (5-HT) in synaptosomes as described in WO 97/16451.<br><br> The test values are given as IC5o (the concentration (|iM) of the test substance which inhibits the specific binding of 3H-DA, 3H-NA, or 3H-5-HT by 50%).<br><br> 15 Test results obtained by testing selected compounds of the present invention appear from the below table:<br><br> Table 1<br><br> Test compound<br><br> 5-HT-uptake<br><br> DA-uptake<br><br> NA-uptake<br><br> IC50(uM)<br><br> ICsoOiM)<br><br> ICsoOiM)<br><br> 1st Compound of Method A:<br><br> exo-7-[(1 S,3S,5R)-(8-Aza-bicyclo[3.2.1 ]-<br><br> 0.0077<br><br> 0.034<br><br> 0.0043<br><br> oct-3-yl)oxyl-3-furan-2-yl-chromen-2-one<br><br> 2nd Compound of Method A:<br><br> exo-7-[(1 S,3S,5R)-(8-Aza-bicyclo[3.2.1 ]-<br><br> 0.010<br><br> 0.0099<br><br> 0.00048<br><br> oct-3-yl)oxy]-3-furan-3-yl-chromen-2-one<br><br> 3rd Compound of Method A:<br><br> exo-7-[(1 S,3S,5R)-(8-Aza-bicyclo[3.2.1 ]-<br><br> 0.0091<br><br> 0.70<br><br> 0.84<br><br> oct-3-yl)oxy]-3-benzofuran-2-yl-chromen-<br><br> 2-one<br><br> WO 2008/074797<br><br> PCT/EP2007/064130<br><br> 18<br><br> CLAIMS<br><br> A compound of Formula I:<br><br> FT—N<br><br> A<br><br> J<br><br> V<br><br> o<br><br> \<br><br> Q<br><br> 5 10<br><br> 15 20<br><br> 25 2.<br><br> 3.<br><br> 30<br><br> 4.<br><br> any of its stereoisomers or any mixture of its stereoisomers,<br><br> or a pharmaceutically acceptable salt thereof,<br><br> wherein<br><br> Q represents a chromen-2-one-yl group;<br><br> which chromen-2-one-yl group is substituted with one heteroaryl group; which heteroaryl group is optionally substituted with one or more substituents independently selected from the group consisting of:<br><br> halo, trifluoromethyl, trifluoromethoxy, cyano, amino, nitro, hydroxy, alkoxy, cycloalkoxy, methylenedioxy, ethylenedioxy alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl;<br><br> and which chromen-2-one-yl group is optionally further substituted with one or more substituents independently selected from the group consisting of: halo, trifluoromethyl, trifluoromethoxy, cyano, amino, nitro, hydroxy, alkoxy, cycloalkoxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl;<br><br> R1 represents hydrogen or alkyl;<br><br> which alkyl is optionally substituted with one or more substituents independently selected from the group consisting of:<br><br> halo, trifluoromethyl, trifluoromethoxy, cyano, amino, nitro, hydroxy, alkoxy, cycloalkoxy, alkyl, cycloalkyl, cycloalkylalkyl, alkenyl and alkynyl.<br><br> The chemical compound of claim 1, wherein R1 represents hydrogen or alkyl.<br><br> The chemical compound claims 1 or 2, wherein Q represents a substituted chromen-2-one-7-yl group.<br><br> The chemical compound of any one of claims 1-3, wherein Q represents a 3-(optionally substituted heteroaryl)-chromen-2-one-yl group.<br><br> WO 2008/074797<br><br> 19<br><br> PCT/EP2007/064130<br><br> 5. The chemical compound of any one of claims 1 -4, wherein<br><br> Q represents chromen-2-one-7-yl substituted with a furanyl or a benzofuranyl group.<br><br> 5 6. The chemical compound of claim 1, which is exo-7-[(1S,3S,5R)-(8-Aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-furan-2-yl-chromen-2-one; exo-7-[(1S,3S,5R)-(8-Aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-furan-3-yl-chromen-2-one; exo-7-[(1S,3S,5R)-(8-Aza-bicyclo[3.2.1]oct-3-yl)oxy]-3-benzofuran-2-yl-chromen-2-one;<br><br> 10 or a pharmaceutically acceptable salt thereof.<br><br> 7. A pharmaceutical composition, comprising a therapeutically effective amount of a compound of any one of claims 1-6, any of its stereoisomers or any mixture of its stereoisomers, or a pharmaceutically acceptable salt thereof, together with at<br><br> 15 least one pharmaceutically acceptable carrier, excipient or diluent.<br><br> 8. Use of the chemical compound of any one of claims 1 -6, any of its stereoisomers or any mixture of its stereoisomers, or a pharmaceutically acceptable salt thereof, for the manufacture of a medicament.<br><br> 20<br><br> 9. The use according to claim 8, for the manufacture of a pharmaceutical pharmaceutical composition for the treatment, prevention or alleviation of a disease or a disorder or a condition of a mammal, including a human, which disease, disorder or condition is responsive to inhibition of monoamine<br><br> 25 neurotransmitter re-uptake in the central nervous system.<br><br> 10. The use according to claim 9, wherein the disease, disorder or condition is mood disorder, depression, atypical depression, depression secondary to pain, major depressive disorder, dysthymic disorder, bipolar disorder, bipolar I disorder,<br><br> 30 bipolar II disorder, cyclothymic disorder, mood disorder due to a general medical condition, substance-induced mood disorder, pseudodementia, Ganser's syndrome, obsessive compulsive disorder, panic disorder, panic disorder without agoraphobia, panic disorder with agoraphobia, agoraphobia without history of panic disorder, panic attack, memory deficits, memory loss, attention deficit<br><br> 35 hyperactivity disorder, obesity, anxiety, generalized anxiety disorder, eating disorder, Parkinson's disease, parkinsonism, dementia, dementia of ageing, senile dementia, Alzheimer's disease, Down's syndrome, acquired immunodeficiency syndrome dementia complex, memory dysfunction in ageing, specific phobia, social phobia, social anxiety disorder, post-traumatic stress<br><br> Received at IPONZ on 4 July 2011<br><br> 20<br><br> disorder, acute stress disorder, chronic stress disorder, drug addiction, drug abuse, drug abuse liability, cocaine abuse, nicotine abuse, tobacco abuse,<br><br> alcohol addiction, alcoholism, kleptomania, withdrawal symptoms caused by termination of use of addictive substances, pain, chronic pain, inflammatory pain, 5 neuropathic pain, diabetic neuropathic pain, migraine pain, tension-type headache, chronic tension-type headache, pain associated with depression, fibromyalgia, arthritis, osteoarthritis, rheumatoid arthritis, back pain, cancer pain, irritable bowel pain, irritable bowel syndrome, post-operative pain, post-mastectomy pain syndrome (PMPS), post-stroke pain, drug-induced neuropathy, 10 diabetic neuropathy, sympathetically-maintained pain, trigeminal neuralgia, dental pain, myofacial pain, phantom-limb pain, bulimia, premenstrual syndrome, premenstrual dysphoric disorder, late luteal phase syndrome, post-traumatic syndrome, chronic fatigue syndrome, persistent vegetative state, urinary incontinence, stress incontinence, urge incontinence, nocturnal incontinence, 15 sexual dysfunction, premature ejaculation, erectile difficulty, erectile dysfunction,<br><br> premature female orgasm, restless leg syndrome, periodic limb movement disorder, eating disorders, anorexia nervosa, sleep disorders, pervasive developmental disorders, autism, Asperger's disorder, Rett's disorder, childhood disintegrative disorder, learning disabilities, motor skills disorders, mutism, 20 trichotillomania, narcolepsy, post-stroke depression, stroke-induced brain damage, stroke-induced neuronal damage, Gilles de la Tourettes disease, tinnitus, tic disorders, body dysmorphic disorders, oppositional defiant disorder or post-stroke disabilities.<br><br> 25 11. A compound of any one of claims 1-6, any of its stereoisomers or any mixture of its stereoisomers, or a pharmaceutically acceptable salt thereof, for use as a medicament.<br><br> 12. A compound of any one of claims 1 -6, any of its stereoisomers or any mixture of 30 its stereoisomers, or a pharmaceutically acceptable salt thereof, for use in the treatment, prevention or alleviation of a disease or a disorder or a condition of a mammal, including a human, which disease, disorder or condition is responsive to inhibition of monoamine neurotransmitter re-uptake in the central nervous system.<br><br> 35<br><br> 13. A compound according to claim 1 substantially as herein described or exemplified.<br><br> Received at IPONZ on 4 July 2011<br><br> 21<br><br> 14. A pharmaceutical composition according to claim 7 substantially as herein described or exemplified.<br><br> 15. A use according to claim 8 substantially as herein described or exemplified.<br><br> 5<br><br> </p> </div>
NZ577071A 2006-12-20 2007-12-18 Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors NZ577071A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US87580606P 2006-12-20 2006-12-20
DKPA200601678 2006-12-20
PCT/EP2007/064130 WO2008074797A1 (en) 2006-12-20 2007-12-18 Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors

Publications (1)

Publication Number Publication Date
NZ577071A true NZ577071A (en) 2011-07-29

Family

ID=40639626

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ577071A NZ577071A (en) 2006-12-20 2007-12-18 Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors

Country Status (12)

Country Link
KR (1) KR20090089439A (en)
CN (1) CN101563344B (en)
AR (1) AR064457A1 (en)
AT (1) ATE486868T1 (en)
BR (1) BRPI0719578A2 (en)
DE (1) DE602007010356D1 (en)
DK (1) DK2121677T3 (en)
NZ (1) NZ577071A (en)
PT (1) PT2121677E (en)
RU (1) RU2009119919A (en)
TW (1) TW200836732A (en)
ZA (1) ZA200903278B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023528547A (en) 2020-05-29 2023-07-04 テグ-キョンプク メディカル イノベーション ファウンデーション A 5-membered heteroaryl derivative containing at least one N, and a pharmaceutical composition for use in preventing or treating a psychiatric disorder containing the same as an active ingredient
EP4159725A4 (en) 2020-05-29 2023-12-20 Daegu-Gyeongbuk Medical Innovation Foundation Carboxamide derivative and pharmaceutical composition comprising same as active ingredient for preventing or treating mental illness
US20230212121A1 (en) 2020-05-29 2023-07-06 Daegu-Gyeongbuk Medical Innovation Foundation Sulfonamide derivative and pharmaceutical composition comprising same as active ingredient for preventing or treating mental illness

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ552919A (en) * 2004-09-30 2010-06-25 Neurosearch As Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors

Also Published As

Publication number Publication date
KR20090089439A (en) 2009-08-21
RU2009119919A (en) 2011-01-27
TW200836732A (en) 2008-09-16
ZA200903278B (en) 2010-07-28
BRPI0719578A2 (en) 2013-12-17
PT2121677E (en) 2011-01-25
AR064457A1 (en) 2009-04-01
CN101563344A (en) 2009-10-21
CN101563344B (en) 2011-11-16
DE602007010356D1 (en) 2010-12-16
ATE486868T1 (en) 2010-11-15
DK2121677T3 (en) 2011-02-07

Similar Documents

Publication Publication Date Title
EP2121678B1 (en) Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
EP1989202B1 (en) Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
EP2121677B1 (en) Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
NZ577071A (en) Novel chromen-2-one derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
US7687517B2 (en) 3,9-Diazabicyclo [3.3.1] nonane derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
EP1899303B1 (en) Novel 3-aza-spiro[5.5]undecane derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
US7638532B2 (en) 3-aryloxy-8-aza-bicyclo[3.2.1]oct-6-ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
EP1917264A1 (en) Novel 3,9-diaza-spiro[5.5]undecane derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
US8093388B2 (en) 3-aza spiro[5,5]undec-8-ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
WO2007054531A1 (en) 8-aza-bicyclo[3.2.1]octane derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
EP1937261A1 (en) Novel azabicyclo[3.2.1]oct-2-ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
WO2006131525A1 (en) 3 -aryloxy- 8 -aza-bicyclo [3.2.1.] oct- 6- ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors
WO2007000464A1 (en) Novel 3-aza-spiro[5.5]undec-8-ene derivatives and their use as monoamine neurotransmitter re-uptake inhibitors

Legal Events

Date Code Title Description
PSEA Patent sealed