NZ576812A - Humanized anti-factor d antibodies - Google Patents

Humanized anti-factor d antibodies

Info

Publication number
NZ576812A
NZ576812A NZ576812A NZ57681207A NZ576812A NZ 576812 A NZ576812 A NZ 576812A NZ 576812 A NZ576812 A NZ 576812A NZ 57681207 A NZ57681207 A NZ 57681207A NZ 576812 A NZ576812 A NZ 576812A
Authority
NZ
New Zealand
Prior art keywords
antibody
seq
factor
sequence
cdr
Prior art date
Application number
NZ576812A
Inventor
Herren Wu
Sanjaya Singh
Sek Chung Fung
Ling-Ling An
Henry Lowman
Robert F Kelley
Original Assignee
Genentech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=39345075&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=NZ576812(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Genentech Inc filed Critical Genentech Inc
Publication of NZ576812A publication Critical patent/NZ576812A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/36Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against blood coagulation factors
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/38Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against protease inhibitors of peptide structure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • A61K39/39533Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
    • A61K39/3955Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/02Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/08Plasma substitutes; Perfusion solutions; Dialytics or haemodialytics; Drugs for electrolytic or acid-base disorders, e.g. hypovolemic shock
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/40Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y304/00Hydrolases acting on peptide bonds, i.e. peptidases (3.4)
    • C12Y304/21Serine endopeptidases (3.4.21)
    • C12Y304/21046Complement factor D (3.4.21.46)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/20Immunoglobulins specific features characterized by taxonomic origin
    • C07K2317/24Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/54F(ab')2
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/55Fab or Fab'
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/50Immunoglobulins specific features characterized by immunoglobulin fragments
    • C07K2317/56Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
    • C07K2317/565Complementarity determining region [CDR]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/70Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
    • C07K2317/76Antagonist effect on antigen, e.g. neutralization or inhibition of binding
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2317/00Immunoglobulins specific features
    • C07K2317/90Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
    • C07K2317/92Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Pulmonology (AREA)
  • Neurology (AREA)
  • General Engineering & Computer Science (AREA)
  • Hematology (AREA)
  • Neurosurgery (AREA)
  • Microbiology (AREA)
  • Cardiology (AREA)
  • Diabetes (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Mycology (AREA)
  • Endocrinology (AREA)
  • Biotechnology (AREA)
  • Epidemiology (AREA)

Abstract

Provided is a murine anti-Factor D antibody or antibody fragment thereof having potent haemolytic inhibition activity, comprising specified six CDRs or specified heavy and light chain variable domains. The antibody can be used to treat various complement mediated disorders.

Description

Humanized Anti-Factor D Antibodies Background of the Invention id="p-1" id="p-1" id="p-1" id="p-1"
[0001] The complement system plays a central role in the clearance of immune complexes and the immune response to infectious agents, foreign antigens, virus-infected cells and tumor cells. However, complement is also involved in pathological inflammation and in autoimmune diseases. Therefore, inhibition of excessive or uncontrolled activation of the complement cascade could provide clinical benefit to patients with such diseases and conditions. id="p-2" id="p-2" id="p-2" id="p-2"
[0002] The complement system encompasses two distinct activation pathways, designated the classical and the alternative pathways (V.M. Holers, In Clinical Immunology: Principles and Practice, ed. R.R. Rich, Mosby Press; 1996, 363-391). The classical pathway is a calcium/magnesium-dependent cascade which is normally activated by the formation of antigen-antibody complexes. The alternative pathway is a magnesium-dependent cascade which is activated by deposition and activation of C3 on certain susceptible surfaces (e.g. cell wall polysaccharides of yeast and bacteria, and certain biopolymer materials). Activation of the complement pathway generates biologically active fragments of complement proteins, e.g. C3a, C4a and C5a anaphylatoxins and C5b-9 membrane attack complexes (MAC), which mediate inflammatory activities involving leukocyte chemotaxis, activation of macrophages, neutrophils, platelets, mast cells and endothelial cells, vascular permeability, cytolysis, and tissue injury. id="p-3" id="p-3" id="p-3" id="p-3"
[0003] Factor D is a highly specific serine protease essential for activation of the alternative complement pathway. It cleaves factor B bound to C3b, generating the C3b/Bb enzyme which is the active component of the alternative pathway C3/C5 convertases. Factor D may be a suitable target for inhibition, since its plasma concentration in humans is very low (1.8 M9/itiI), ar|d it has been shown to be the limiting enzyme for activation of the alternative complement pathway (P.H. Lesavre and H.J. Miiller-Eberhard. J. Exp. Med., 1978; 148: 1498-1510; J.E. Volanakis et al., New Eng. J. Med., 1985; 312: 395-401). id="p-4" id="p-4" id="p-4" id="p-4"
[0004] The down-regulation of complement activation has been demonstrated to be effective in treating several disease indications in animal models and in ex vivo studies, e.g. systemic lupus erythematosus and glomerulonephritis (Y. Wang et al., Proc. Natl. Acad. Scir, 1996, 93: 8563-8568), 1 rheumatoid arthritis (Y. Wang et al., Proc. Natl. Acad. Sci., 1995; 92: 8955-8959), cardiopulmonary bypass and hemodialysis (C.S. Rinder, J. Clin. Invest., 1995; 96: 1564-1572), hypercute rejection in organ transplantation (T.J. Kroshus etal., Transplantation, 1995; 60: 1194-1202), myocardial infarction (J. W. Homeister et al., J. Immunol., 1993; 150: 1055-1064; H.F. Weisman et al., Science, 1990; 249: 146-151), reperfusion injury (E.A. Amsterdam et al., Am. J. Physiol., 1995; 268: H448-H457), and adult respiratory distress syndrome (R. Rabinovici et al., J. Immunol., 1992; 149: 1744-1750). In addition, other inflammatory conditions and autoimmune/immune complex diseases are also closely associated with complement activation (V.M. Holers, ibid., B.P. Morgan. Eur. J. Clin. Invest., 1994: 24: 219-228), including thermal injury, severe asthma, anaphylactic shock, bowel inflammation, urticaria, angioedema, vasculitis, multiple sclerosis, myasthenia gravis, membranoproliferative glomerulonephritis, and Sjogren's syndrome. id="p-5" id="p-5" id="p-5" id="p-5"
[0005] There is a need for antibody therapeutics in the field of complement-mediated disorders and the humanized antibodies of the present invention provide high affinity antibodies useful to meet this need; and/or to at least provide the public with a useful choice.
Summary of the Invention id="p-6" id="p-6" id="p-6" id="p-6"
[0006] The present invention provides an anti-Factor D antibody or antibody fragment thereof, wherein the antibody has a variable light chain comprising a CDR-L1 having the sequence of SEQ ID NO: 16; a CDR-L2 having the sequence of SEQ ID NO: 17,21 or 24; and a CDR-L3 having the sequence of SEQ ID NO: 18, 19 or 22; and a variable heavy chain comprising a CDR-H1 having the sequence of SEQ ID NO: 13, 23 or 25; a CDR-H2 having the sequence of SEQ ID NO: 14, and a CDR-H3 having the sequence of SEQ ID NO: 15 or 20 with the proviso that the antibody or fragment does not comprise a heavy chain variable domain amino acid sequence of SEQ ID NO: 1 and a light chain variable domain amino acid sequence of SEQ ID NO: 2. id="p-7" id="p-7" id="p-7" id="p-7"
[0007] The invention also relates to an anti-Factor D antibody or antibody fragment thereof, wherein the antibody comprises a heavy chain variable domain amino acid sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12, and a light chain variable domain amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9 or SEQ ID NO: 11. 2 id="p-8" id="p-8" id="p-8" id="p-8"
[0008] The invention also relates to an anti-Factor D antibody or antibody fragment thereof, wherein the antibody has a variable light chain comprising a CDR-L1 having the sequence of SEQ ID NO: 16; a CDR-L2 having the sequence of SEQ ID NO: 17; and a CDR-L3 having the sequence of SEQ ID NO: 19; and a variable heavy chain comprising a CDR-H1 having the sequence of SEQ ID NO: 13; a CDR-H2 having the sequence of SEQ ID NO: 14; and a CDR-H3 having the sequence of SEQ ID NO: 20. id="p-9" id="p-9" id="p-9" id="p-9"
[0009] The invention also relates to an anti-Factor D antibody or antibody fragment thereof, wherein the antibody comprises a light chain variable domain having the amino acid sequence of SEQ ID NO: 7 and a heavy chain variable domain having the amino acid sequence of SEQ ID NO: 8. id="p-10" id="p-10" id="p-10" id="p-10"
[00010] The invention also relates to a variable domain of the anti-Factor D antibody of the invention. id="p-11" id="p-11" id="p-11" id="p-11"
[00011] The invention also relates to an isolated nucleic acid encoding the anti-Factor D antibody or fragment of the invention, or the variable domain of the invention. id="p-12" id="p-12" id="p-12" id="p-12"
[00012] The invention also relates to a vector comprising the nucleic acid of the invention. id="p-13" id="p-13" id="p-13" id="p-13"
[00013] The invention also relates to an isolated host cell comprising the vector of the invention. id="p-14" id="p-14" id="p-14" id="p-14"
[00014] The invention also relates to a composition comprising the anti-Factor D antibody or fragment of the invention, or the variable domain of the invention. id="p-15" id="p-15" id="p-15" id="p-15"
[00015] The invention also relates to use of an anti-Factor D antibody or antibody fragment of the invention, or the variable domain of the invention in the preparation of a medicament for the treatment of complement mediated disorders. id="p-16" id="p-16" id="p-16" id="p-16"
[00016] The invention also relates to a method of producing an anti-Factor D antibody or antibody fragment or a variable domain of an anti-Factor antibody, comprising culturing the host cell of the invention. id="p-17" id="p-17" id="p-17" id="p-17"
[00017] Also described are antibodies comprising the heavy and light chain variable domain sequences of murine antibody 166-32, which is an antibody capable of inhibiting biological activities associated with Factor D. For example, at a concentration of 18 (jg/ml (equivalent to about 1.5 times the molar concentration of human factor D in the blood; molar ratio of anti-Factor D antibody to Factor D of 3 about 1.5:1), significant inhibition of the alternative complement activity by the antibody can be observed (see, e.g., US Patent No. 6,956,107) id="p-18" id="p-18" id="p-18" id="p-18"
[00018] Also described are humanized antibodies of murine MAb 166-32, and the amino acid sequences of the variable heavy and light chain of the antibodies and their corresponding nucleic acid sequences. Another embodiment described herein includes the CDR sequences of these antibodies. id="p-19" id="p-19" id="p-19" id="p-19"
[00019] Another embodiment described herein includes compositions comprising an antibody. Another embodiment describes cell lines and vectors harboring the antibody sequences described herein. Also described are methods of making and using antibodies and compositions described herein. id="p-20" id="p-20" id="p-20" id="p-20"
[00020] Also described is the use of these humanized antibodies for the preparation of a medicament or composition for the treatment of disorders associated with excessive or uncontrolled complement activation. They include complement activation during cardiopulmonary bypass operations; complement activation due to ischemia-reperfusion following acute myocardial infarction, aneurysm, stroke, hemorrhagic shock, crush injury, multiple organ failure, hypobolemic shock, intestinal ischemia or other events causing ischemia. Complement activation has also been shown to be associated with inflammatory conditions such as severe burns, endotoxemia, septic shock, adult respiratory distress syndrome, hemodialysis; anaphylactic shock, severe asthma, angioedema, Crohn's disease, sickle cell anemia, poststreptococcal glomerulonephritis and pancreatitis. The disorder may be the result of an adverse drug reaction, drug allergy, IL-2 induced vascular leakage syndrome or radiographic contrast media allergy. It also includes autoimmune disease such as systemic lupus erythematosus, myasthenia gravis, rheumatoid arthritis, Alzheimer's disease and multiple sclerosis. Complement activation is also associated with transplant rejection.Complement activation is also associated with ocular diseases such as age-related macular degeneration, diabetic retinopathy. id="p-21" id="p-21" id="p-21" id="p-21"
[00021] Certain statements that appear below are broader than what appears in the statements of the invention above. These statements are provided in the interests of providing the reader with a better understanding of the invention and its practice. The reader is directed to the accompanying claim set which defines the scope of the invention. 4 Brief Description of the Figures id="p-22" id="p-22" id="p-22" id="p-22"
[00022] Figures 1A and 1B depict the amino acid sequence of the Murine MAb 166-32 Variable Heavy Chain (Figure 1A) and the Variable Light Chain (Figure 1B). id="p-23" id="p-23" id="p-23" id="p-23"
[00023] Figures 2A and 2B depict nucleic acid sequence of the Murine MAb 166-32 Variable Heavy Chain (Figure 2A) and the Variable Light Chain (Figure 2B). id="p-24" id="p-24" id="p-24" id="p-24"
[00024] Figure 3 depicts the comparison of the heavy chain of the murine MAb 166-32. id="p-25" id="p-25" id="p-25" id="p-25"
[00025] Figure 4 depicts the comparison of the light chain of the murine MAb 166-32. id="p-26" id="p-26" id="p-26" id="p-26"
[00026] Figure 5 depicts the amino acid sequences of the Variable Heavy Chain and the Variable Light Chain for each humanized antibody clone #56, #111, #250, and #416. id="p-27" id="p-27" id="p-27" id="p-27"
[00027] Figure 6 depicts the hemolytic assay results for humanized antibody Fab clone #56, #111,# 250, and #416. id="p-28" id="p-28" id="p-28" id="p-28"
[00028] Figure 7 depicts the inhibition of the alternative complement activity by humanized antibody Fab clones #56, #111,# 250, and #416.
Figure 8A-B (variable heavy (VH) consensus frameworks) and Figure 9A-B (variable light (VL) consensus frameworks) depict exemplary acceptor human consensus framework sequences that can be with sequence identifiers as follows: (Figure 8A-B) human VH subgroup I consensus framework minus Kabat CDRs (SEQ ID NO: 28), human VH subgroup I consensus framework minus extended hypervariable regions (SEQ ID NOs: 29-31), human VH subgroup II consensus framework minus Kabat CDRs (SEQ ID NO: 32), human VH subgroup II consensus framework minus extended hypervariable regions (SEQ ID NOs: 33-35), human VH subgroup III consensus framework minus Kabat CDRs (SEQ ID NO: 36), human VH subgroup III consensus framework minus extended hypervariable regions (SEQ ID NOs: 37-39), human VH subgroup VII consensus framework minus Kabat CDRs (SEQ ID NO: 55), human VH subgroup VII consensus framework minus extended hypervariable regions (SEQ ID NOs: 56-58), human VH acceptor framework minus Kabat CDRs (SEQ ID NO: 40), human VH acceptor framework minus extended hypervariable regions (SEQ ID NOs: 41-42), human VH acceptor 2 framework minus Kabat CDRs (SEQ ID NO: 43) and human VH acceptor 2 framework minus extended hypervariable regions (SEQ ID NOs: 44-46) and (Figure 9A-B) human VL kappa subgroup I consensus framework (SEQ ID NO: 47), human VL kappa subgroup II consensus framework (SEQ ID NO: 48), human kappa subgroup III consensus framework (SEQ ID NO: 49) and human kappa subgroup IV consensus framework (SEQ ID NO: 50). Detailed Description of the Invention Definitions id="p-29" id="p-29" id="p-29" id="p-29"
[00029] Terms used throughout this application are to be construed with ordinary and typical meaning to those of ordinary skill in the art. However, Applicants desire that the following terms be given the particular definition as defined below. id="p-30" id="p-30" id="p-30" id="p-30"
[00030] The phrase "substantially identical" with respect to an antibody chain polypeptide sequence may be construed as an antibody chain exhibiting at least 70%, or 80%, or 90% or 95% sequence identity to the reference polypeptide sequence. The term with respect to a nucleic acid sequence may be construed as a sequence of nucleotides exhibiting at least about 85%, or 90%, or 95% or 97% sequence identity to the reference nucleic acid sequence. id="p-31" id="p-31" id="p-31" id="p-31"
[00031] The term "identity" or "homology" shall be construed to mean the percentage of amino acid residues in the candidate sequence that are identical with the residue of a corresponding sequence to which it is compared, after aligning the sequences and introducing gaps, if necessary to achieve the maximum percent identity for the entire sequence, and not considering any conservative substitutions as part of the sequence identity. Neither N- or C-terminal extensions nor insertions shall be construed as reducing identity or homology. Methods and computer programs for the alignment are well known in the art. Sequence identity may be measured using sequence analysis software. id="p-32" id="p-32" id="p-32" id="p-32"
[00032] The term "antibody" is used in the broadest sense, and specifically covers monoclonal antibodies (including full length monoclonal antibodies), polyclonal antibodies, and multispecific antibodies (e.g., bispecific antibodies). Antibodies (Abs) and immunoglobulins (Igs) are glycoproteins having the same structural characteristics. While antibodies exhibit binding specificity to a specific target, immunoglobulins include both antibodies and other antibody-like molecules which lack target specificity. Native antibodies and immunoglobulins are usually heterotetrameric glycoproteins of about 150,000 daltons, composed of two 6 identical light (L) chains and two identical heavy (H) chains. Each heavy chain has at one end a variable domain (VH) followed by a number of constant domains. Each light chain has a variable domain at one end (Vl) and a constant domain at its other end. id="p-33" id="p-33" id="p-33" id="p-33"
[00033] As used herein, "anti-human Factor D antibody" means an antibody which specifically binds to human Factor D in such a manner so as to inhibit or substantially reduce complement activation. id="p-34" id="p-34" id="p-34" id="p-34"
[00034] The term "variable" in the context of variable domain of antibodies, refers to the fact that certain portions of the variable domains differ extensively in sequence among antibodies and are used in the binding and specificity of each particular antibody for its particular target. However, the variability is not evenly distributed through the variable domains of antibodies. It is concentrated in three segments called complementarity determining regions (CDRs) also known as hypervariable regions (HVRs) both in the light chain and the heavy chain variable domains. The more highly conserved portions of variable domains are called the framework (FR). The variable domains of native heavy and light chains each comprise four FR regions, largely a adopting a /?-sheet configuration, connected by three CDRs, which form loops connecting, and in some cases forming part of, the yS-sheet structure. The CDRs in each chain are held together in close proximity by the FR regions and, with the CDRs from the other chain, contribute to the formation of the target binding site of antibodies (see Kabat et al.). As used herein, numbering of immunoglobulin amino acid residues is done according to the immunoglobulin amino acid residue numbering system of Kabat et al., (Sequences of Proteins of Immunological Interest, National Institute of Health, Bethesda, Md. 1987), unless otherwise indicated. id="p-35" id="p-35" id="p-35" id="p-35"
[00035] The term "hypervariable region", "HVR", or "HV", when used herein refers to the regions of an antibody variable domain which are hypervariable in sequence and/or form structurally defined loops. Generally, antibodies comprise six hypervariable regions; three in the VH (H1, H2, H3), and three in the VL (L1, L2, L3). A number of hypervariable region delineations are in use and are encompassed herein. The Kabat Complementarity Determining Regions (CDRs) are based on sequence variability and are the most commonly used (Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991)). Chothia refers instead to the 7 location of the structural loops (Chothia and Lesk J. Mol. Biol. 196:901-917 (1987)). The AbM hypervariable regions represent a compromise between the Kabat CDRs and Chothia structural loops, and are used by Oxford Molecular's AbM antibody modeling software. The "contact" hypervariable regions are based on an analysis of the available complex crystal structures. The residues from each of these hypervariable regions are noted below.
Loop Kabat AbM Chothia Contact L1 L24-L34 L24-L34 L26-L32 L30-L36 L2 L50-L56 L50-L56 L50-L52 L46-L55 L3 L89-L97 L89-L97 L91-L96 L89-L96 H1 H31-H35B H26-H35B H26-H32 H30-H35B (Kabat Numbering) H1 H31-H35 H26-H35 H26-H32 H30-H35 (Chothia Numbering) H2 H50-H65 H50-H58 H53-H55 H47-H58 H3 H95-H102 H95-H102 H96-H101 H93-H101 id="p-36" id="p-36" id="p-36" id="p-36"
[00036] Hypervariable regions may comprise "extended hypervariable regions" as follows: 24-36 or 24-34 (L1), 46-56 or 50-56 (L2) and 89-97 (L3) in the VL and 26-35 (H1), 50-65 or 49-65 (H2) and 93-102, 94-102 or 95-102 (H3) in the VH. The variable domain residues are numbered according to Kabat eta!., supra for each of these definitions. id="p-37" id="p-37" id="p-37" id="p-37"
[00037] "Framework" or "FR" residues are those variable domain residues other than the hypervariable region residues or CDR residues herein defined. id="p-38" id="p-38" id="p-38" id="p-38"
[00038] The term "variable domain residue numbering as in Kabat" or "amino acid position numbering as in Kabat", and variations thereof, refers to the numbering system used for heavy chain variable domains or light chain variable domains of the compilation of antibodies in Kabat et al., Sequences of Proteins of Immunological Interest, 5th Ed. Public Health Service, National Institutes of Health, Bethesda, MD. (1991). Using this numbering system, the actual linear amino acid sequence may contain fewer or additional amino acids corresponding to a shortening of, or insertion into, a FR or CDR of the variable domain. For 8 example, a heavy chain variable domain may include a single amino acid insert (residue 52a according to Kabat) after residue 52 of H2 and inserted residues (e.g. residues 82a, 82b, and 82c, etc according to Kabat) after heavy chain FR residue 82. The Kabat numbering of residues may be determined for a given antibody by alignment at regions of homology of the sequence of the antibody with a "standard" Kabat numbered sequence. id="p-39" id="p-39" id="p-39" id="p-39"
[00039] The Kabat numbering system is generally used when referring to a residue in the variable domain (approximately residues 1-107 of the light chain and residues 1-113 of the heavy chain) (e.g, Kabat et al., Sequences of Immunological Interest. 5th Ed. Public Health Service, National Institutes of Health, Bethesda, Md. (1991)). The "EU numbering system" or "EU index" is generally used when referring to a residue in an immunoglobulin heavy chain constant region (e.g., the EU index reported in Kabat et al., supra; hinge region in constant domain of heavy chain is approximately residues 216-230 (EU numbering) of the heavy chain). The "EU index as in Kabat" refers to the residue numbering of the human lgG1 EU antibody. Unless stated otherwise herein, references to residue numbers in the variable domain of antibodies means residue numbering by the Kabat numbering system. Unless stated otherwise herein, references to residue numbers in the constant domain of antibodies means residue numbering by the EU numbering system (e.g., see United States Provisional Application No. 60/640,323, Figures for EU numbering). id="p-40" id="p-40" id="p-40" id="p-40"
[00040] The term "antibody fragment" refers to a portion of a full-length antibody, generally the target binding or variable region. Examples of antibody fragments include Fab, Fab', F(ab')2 and Fv fragments. The phrase "functional fragment or analog" of an antibody is a compound having qualitative biological activity in common with a full-length antibody. For example, a functional fragment or analog of an anti-human Factor D antibody is one which can bind to Factor D in such a manner so as to prevent or substantially reduce the complement activation. As used herein, "functional fragment" with respect to antibodies, refers to Fv, F(ab) and F(ab')2 fragments. An "Fv" fragment is the minimum antibody fragment which contains a complete target recognition and binding site. This region consists of a dimer of one heavy and one light chain variable domain in a tight, non-covalent association (VH -VL dimer). It is in this configuration that the 9 three CDRs of each variable domain interact to define an target binding site on the surface of the VH -VL dimer. Collectively, the six CDRs confer target binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an target) has the ability to recognize and bind target. "Single-chain Fv" or "sFv" antibody fragments comprise the VH and Vl domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains which enables the sFv to form the desired structure for target binding. [00041 ] The Fab fragment contains the constant domain of the light chain and the first constant domain (CH1) of the heavy chain. Fab' fragments differ from Fab fragments by the addition of a few residues at the carboxyl terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region. F(ab') fragments are produced by cleavage of the disulfide bond at the hinge cysteines of the F(ab')2 pepsin digestion product. Additional chemical couplings of antibody fragments are known to those of ordinary skill in the art. [00042] The term "monoclonal antibody" as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single targetic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations which typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the target. In addition to their specificity, monoclonal antibodies are advantageous in that they may be synthesized by the hybridoma culture, uncontaminated by other immunoglobulins. The modifier "monoclonal" indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method. For example, the monoclonal antibodies described herein may be isolated from phage antibody libraries using the well known techniques. The parent monoclonal antibodies may be made by the hybridoma method first described by Kohler and Milstein, Nature 256, 495 (1975), or may be made by recombinant methods. id="p-43" id="p-43" id="p-43" id="p-43"
[00043] "Humanized" forms of non-human (e.g. murine) antibodies are chimeric immunoglobulins, immunoglobulin chains or fragments thereof (such as Fv, Fab, Fab', F(ab')2 or other target-binding subsequences of antibodies) which contain minimal sequence derived from non-human immunoglobulin. In general, the humanized antibody will comprise substantially all of at least one, and typically two, variable domains, in which all or substantially all of the CDR regions correspond to those of a non-human immunoglobulin and all or substantially all of the FR regions are those of a human immunoglobulin consensus sequence. The humanized antibody may also comprise at least a portion of an immunoglobulin constant region (Fc), typically that of a human immunoglobulin template chosen. id="p-44" id="p-44" id="p-44" id="p-44"
[00044] Methods for humanizing non-human antibodies are well known in the art. Generally, a humanized antibody has one or more amino acid residues introduced into it from a source which is non-human. These non-human amino acid residues are often referred to as "import" residues, which are typically taken from an "import" variable domain. Humanization can be essentially performed following the method of Winter and co-workers [Jones et al., Nature. 321:522-525 (1986); Riechmann et al., Nature. 332:323-327 (1988); Verhoeyen et al., Science. 239:1534-1536 (1988)], by substituting rodent CDRs or CDR sequences for the corresponding sequences of a human antibody. Accordingly, such "humanized" antibodies are chimeric antibodies (U.S. Patent No. 4,816,567), wherein substantially less than an intact human variable domain has been substituted by the corresponding sequence from a non-human species. In practice, humanized antibodies are typically human antibodies in which some CDR residues and possibly some FR residues are substituted by residues from analogous sites in rodent antibodies. id="p-45" id="p-45" id="p-45" id="p-45"
[00045] The choice of human variable domains, both light and heavy, to be used in making the humanized antibodies can in some instances be important to reduce antigenicity and/or HAMA response (human anti-mouse antibody) when the antibody is intended for human therapeutic use. Reduction or elimination of a HAMA response is generally a significant aspect of clinical development of suitable therapeutic agents. See, e.g., Khaxzaeli et al., J. Natl. Cancer Inst. (1988), 80:937; Jaffers et al., Transplantation (1986), 41:572; Shawler et al., J. Immunol. (1985), 135:1530; Sears et al., J. Biol. Response Mod. (1984), 3:138; Miller et al., Blood (1983), 62:988; Hakimi et al., J. Immunol. (1991), 147:1352; 11 Reichmann et al., Nature (1988), 332:323; Junghans et al., Cancer Res. (1990), 50:1495. Described herein, are antibodies that are humanized such that HAMA response is reduced or eliminated. Variants of these antibodies can further be obtained using routine methods known in the art, some of which are further described below. According to the so-called "best-fit" method, the sequence of the variable domain of a rodent antibody is screened against the entire library of known human variable domain sequences. The human V domain sequence which is closest to that of the rodent is identified and the human framework region (FR) within it accepted for the humanized antibody (Sims et al., J. Immunol. 151:2296(1993); Chothia et al., J. Mol. Biol.. 196:901 (1987)). Another method uses a particular framework region derived from the consensus sequence of all human antibodies of a particular subgroup of light or heavy chains. The same framework may be used for several different humanized antibodies (Carter et al., Proc. Natl. Acad. Sci. USA. 89:4285 (1992); Presta etal., J. Immunol. 151:2623 (1993)). id="p-46" id="p-46" id="p-46" id="p-46"
[00046] For example, an amino acid sequence from an antibody as described herein can serve as a starting (parent) sequence for diversification of the framework and/or hypervariable sequence(s). A selected framework sequence to which a starting hypervariable sequence is linked is referred to herein as an acceptor human framework. While the acceptor human frameworks may be from, or derived from, a human immunoglobulin (the VL and/or VH regions thereof), the acceptor human frameworks may be from, or derived from, a human consensus framework sequence as such frameworks have been demonstrated to have minimal, or no, immunogenicity in human patients. An "acceptor human framework" for the purposes herein is a framework comprising the amino acid sequence of a VL or VH framework derived from a human immunoglobulin framework, or from a human consensus framework. An acceptor human framework "derived from" a human immunoglobulin framework or human consensus framework may comprise the same amino acid sequence thereof, or may contain pre-existing amino acid sequence changes. Where pre-existing amino acid changes are present, preferably no more than 5 and preferably 4 or less, or 3 or less, pre-existing amino acid changes are present. In one embodiment, the VH acceptor human framework is identical in sequence to the VH human immunoglobulin framework sequence or human consensus framework 12 sequence. In one embodiment, the VL acceptor human framework is identical in sequence to the VL human immunoglobulin framework sequence or human consensus framework sequence. A "human consensus framework" is a framework which represents the most commonly occurring amino acid residue in a selection of human immunoglobulin VL or VH framework sequences. Generally, the selection of human immunoglobulin VL or VH sequences is from a subgroup of variable domain sequences. Generally, the subgroup of sequences is a subgroup as in Kabat et al. In one embodiment, for the VL, the subgroup is subgroup kappa I as in Kabat et al. In one embodiment, for the VH, the subgroup is subgroup III as in Kabat etal. id="p-47" id="p-47" id="p-47" id="p-47"
[00047] Where the acceptor is derived from a human immunoglobulin, one may optionally select a human framework sequence that is selected based on its homology to the donor framework sequence by aligning the donor framework sequence with various human framework sequences in a collection of human framework sequences, and select the most homologous framework sequence as the acceptor. The acceptor human framework may be from or derived from human antibody germline sequences available in the public databases. id="p-48" id="p-48" id="p-48" id="p-48"
[00048] In one embodiment, human consensus frameworks herein are from, or derived from, VH subgroup VII and/or VL kappa subgroup I consensus framework sequences. id="p-49" id="p-49" id="p-49" id="p-49"
[00049] In one embodiment, the human framework template used for generation of an anti-Factor D antibody may comprise framework sequences from a template comprising a combination of Vl-4.1b+ (VH7 family) and JH4d for VH chain (Figure 3) and/or a combination of DPK4 (VkI family) and JK2 for VL chain (Figure 4). id="p-50" id="p-50" id="p-50" id="p-50"
[00050] Thus, the VH acceptor human framework may comprise one, two, three or all of the following framework sequences: FR1 comprising QX1QLVQSGX2ELKKPGASVKVSCKAS (amino acids 1-25 of SEQ ID NO: 27), wherein X1 is I or V, X2 is P or S; FR2 comprising WVX3QAPGQGLE (amino acids 36-46 of SEQ ID NO: 27), wherein X3 is K or R; FR3 comprising RFVFSLDTSVSTAYLQISSLKAEDTAX4YYCX5R (amino acids 67-98 of SEQ ID NO: 27), wherein X4 is T or V, X5 is E or A; FR4 comprising WGQGTLVTVSS 13 (amino acids 105-115 of SEQ ID NO: 8 or amino acids 105-115 of SEQ ID NO: 27) id="p-51" id="p-51" id="p-51" id="p-51"
[00051] Examples of VH consensus frameworks include: human VH subgroup I consensus framework minus Kabat CDRs (SEQ ID NO: 28); human VH subgroup I consensus framework minus extended hypervariable regions (SEQ ID NOs: 29-31); human VH subgroup II consensus framework minus Kabat CDRs (SEQ ID NO: 32); human VH subgroup II consensus framework minus extended hypervariable regions (SEQ ID NOs: 33-35); human VH subgroup III consensus framework minus Kabat CDRs (SEQ ID NO: 36); human VH subgroup III consensus framework minus extended hypervariable regions (SEQ ID NO: 37-39); human VH subgroup VII consensus framework minus Kabat CDRs (SEQ ID NO: 55); human VH subgroup VII consensus framework minus extended hypervariable regions (SEQ ID NO: 56-58); human VH acceptor framework minus Kabat CDRs (SEQ ID NO: 40); human VH acceptor framework minus extended hypervariable regions (SEQ ID NOs: 41-42); human VH acceptor 2 framework minus Kabat CDRs (SEQ ID NO: 43); or human VH acceptor 2 framework minus extended hypervariable regions (SEQ ID NOs: 44-45). id="p-52" id="p-52" id="p-52" id="p-52"
[00052] In one embodiment, the VH acceptor human framework comprises one, two, three or all of the following framework sequences: FR1 comprising QVQLVQSGPELKKPGASVKVSCKAS (amino acids 1-25 of SEQ ID NO: 8), FR2 comprising WVRQAPGQGLE (amino acids 36-46 of SEQ ID NO: 8), FR3 comprising RFVFSLDTSVSTAYLQISSLKAEDTAVYYCER (amino acids 67-98 of SEQ ID NO: 8), RFVFSLDTSVSTAYLQISSLKAEDTAVYYCE (amino acids 67-97 of SEQ ID NO: 8), 14 RFVFSLDTSVSTAYLQISSLKAEDTAVYYC (amino acids 67-96 of SEQ ID NO: 8), RFVFSLDTSVSTAYLQISSLKAEDTAVYYCS (SEQ ID NO: 51), or RFVFSLDTSVSTAYLQISSLKAEDTAVYYCSR (SEQ ID NO: 52) FR4 comprising WGQGTLVTVSS (amino acids 105-115 of SEQ ID NO: 8 or amino acids 105-115 of SEQ ID NO: 27). id="p-53" id="p-53" id="p-53" id="p-53"
[00053] The VL acceptor human framework may comprise one, two, three or all of the following framework sequences: FR1 comprising DIQX6TQSPSSLSX7SVGDRVTITC (amino acids 1-23 of SEQ ID NO: 26), wherein X6 is V or M, X7 is M or A; FR2 comprising WYQQKPGKX8PKLLIX9 (amino acids 35-49 of SEQ ID NO: 26), wherein X8 is P or V, Xg is S or Y; FR3 comprising GVPSRFSXioSGSGXnDFTLTISSLQPEDVATYYC (amino acids 57-88 of SEQ ID NO: 26), wherein Xi0 is S or G, Xn is A or T; FR4 comprising FGQGTKX12EIK (SEQ ID NO: 54), wherein X12 is V or L. id="p-54" id="p-54" id="p-54" id="p-54"
[00054] Examples of VL consensus frameworks include: human VL kappa subgroup I consensus framework (SEQ ID NO: 47); human VL kappa subgroup II consensus framework (SEQ ID NO: 48); human VL kappa subgroup III consensus framework (SEQ ID NO: 49); or human VL kappa subgroup IV consensus framework (SEQ ID NO: 50) id="p-55" id="p-55" id="p-55" id="p-55"
[00055] In one embodiment, the VL acceptor human framework may comprise one, two, three or all of the following framework sequences: FR1 comprising DIQVTQSPSSLSASVGDRVTITC (amino acids 1-23 of SEQ ID NO: 7), FR2 comprising WYQQKPGKVPKLLIS (amino acids 35-49 of SEQ ID NO: 7), FR3 comprising GVPSRFSGSGSGTDFTLTISSLQPEDVATYYC (amino acids 57-88 of SEQ ID NO: 7), FR4 comprising FGQGTKLEIK (amino acids 98-107 of SEQ ID NO: 7), or FGQGTKVEIK (SEQ ID NO: 53). id="p-56" id="p-56" id="p-56" id="p-56"
[00056] While the acceptor may be identical in sequence to the human framework sequence selected, whether that be from a human immunoglobulin or a human consensus framework, it is contemplated that the acceptor sequence may comprise pre-existing amino acid substitutions relative to the human immunoglobulin sequence or human consensus framework sequence. These preexisting substitutions are preferably minimal; usually four, three, two or one amino acid differences only relative to the human immunoglobulin sequence or consensus framework sequence. id="p-57" id="p-57" id="p-57" id="p-57"
[00057] Hypervariable region residues of the non-human antibody are incorporated into the VL and/or VH acceptor human frameworks. For example, one may incorporate residues corresponding to the Kabat CDR residues, the Chothia hypervariable loop residues, the Abm residues, and/or contact residues. Optionally, the extended hypervariable region residues as follows are incorporated: 24-34 (L1), 50-56 (L2) and 89-97 (L3), 26-35 (H1), 50-65 or 49-65 (H2) and 93-102, 94-102, or 95-102 (H3). id="p-58" id="p-58" id="p-58" id="p-58"
[00058] Described is an antibody comprising at least one, two, three, four, five or six HVRs selected from (a) an HVR-H1 comprising the amino acid sequence selected from SEQ ID NO: 13, SEQ ID NO: 23and SEQ ID NO: 25; (b) an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 14; (c) an HVR-H3 comprising the amino acid sequence selected from SEQ ID NO: 15 and SEQ ID NO: 20; (d) an HVR-L1 comprising the amino acid sequence of SEQ ID NO: 16; (e) an HVR-L2 comprising the amino acid sequence selected from SEQ ID NO: 17, SEQ ID NO; 21 and SEQ ID NO: 24; and (f) an HVR-L3 comprising the amino acid sequence selected from SEQ ID NO: 18, SEQ ID NO: 22 and SEQ ID NO: 19. id="p-59" id="p-59" id="p-59" id="p-59"
[00059] Also described is an anti-Factor D antibody comprising at least one, two, three, four, five or six HVRs selected from (a) an HVR-H1 comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to an amino acid sequence selected from SEQ ID NO: 13 and SEQ ID NO: 25; (b) an HVR-H2 comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to an amino acid sequence of SEQ ID NO: 14; (c) an HVR-H3 comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to an amino acid sequence 16 selected from SEQ ID NO: 15 and SEQ ID NO: 20; (d) an HVR-L1 comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to an amino acid sequence of SEQ ID NO: 16; (e) an HVR-L2 comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to an amino acid sequence selected from SEQ ID NO: 17, SEQ ID NO; 21 and SEQ ID NO: 24; and (f) an HVR-L3 comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to an amino acid sequence selected from SEQ ID NO: 18, SEQ ID NO: 22 and SEQ ID NO: 19. In some embodiments, an HVR having an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity contains substitutions, insertions, or deletions relative to the reference sequence, but an antibody comprising that amino acid sequence retains the ability to bind to Factor D. In some embodiments, a total of 1 to 10 amino acids have been substituted, inserted, or deleted in the reference sequence selected from the group consisting of SEQ ID NO: 13, SEQ ID NO: 25, SEQ ID NO: 14, SEQ ID NO: 15, SEQ ID NO: 20, SEQ ID NO: 16, SEQ ID NO: 17, SEQ ID NO; 21, SEQ ID NO: 23, SEQ ID NO: 18, SEQ ID NO: 19, SEQ ID NO: 22 and SEQ ID NO: 24. In some embodiments, there is described an antibody comprising at least one, two, three, four, five or six HVRs selected from (a) an HVR-H1 comprising the amino acid sequence selected from SEQ ID NO: 13 and SEQ ID NO: 25; (b) an HVR-H2 comprising the amino acid sequence of SEQ ID NO: 14; (c) an HVR-H3 comprising the amino acid sequence selected from SEQ ID NO: 15 and SEQ ID NO: 20; (d) an HVR-L1 comprising the amino acid sequence of SEQ ID NO: 16; (e) an HVR-L2 comprising the amino acid sequence selected from SEQ ID NO: 17, SEQ ID NO; 21 and SEQ ID NO: 24; and (f) an HVR-L3 comprising the amino acid sequence selected from SEQ ID NO: 18, SEQ ID NO: 22 and SEQ ID NO: 19. id="p-60" id="p-60" id="p-60" id="p-60"
[00060] Described is an antibody comprising a heavy chain variable domain selected from SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10, SEQ ID NO: 12.
Also described is an antibody comprising a light chain variable domain selected from SEQ ID NO; 5, SEQ ID NO: 7, SEQ ID NO: 9 and SEQ ID NO: 11. Also described is an antibody comprising a heavy chain variable domain comprising SEQ ID NO: 6. Also described is an antibody comprising a light chain variable 17 domain comprising SEQ ID NO: 5. Also described is an antibody comprising a heavy chain variable domain comprising SEQ ID NO: 6 and a light chain variable domain comprising SEQ ID NO: 5. Also described is an antibody comprising a heavy chain variable domain comprising SEQ ID NO: 8. Also described is an antibody comprising a light chain variable domain comprising SEQ ID NO: 7. Also described is an antibody comprising a heavy chain variable domain comprising SEQ ID NO: 8 and a light chain variable domain comprising SEQ ID NO: 7. Also described is an antibody comprising a heavy chain variable domain comprising SEQ ID NO: 10. Also described is an antibody comprising a light chain variable domain comprising SEQ ID NO: 9. Also described is an antibody comprising a heavy chain variable domain comprising SEQ ID NO: 10 and a light chain variable domain comprising SEQ ID NO: 9. Also described is an antibody comprising a heavy chain variable domain comprising SEQ ID NO: 12. Also described is an antibody comprising a light chain variable domain comprising SEQ ID NO: 11.
Also described is an antibody comprising a heavy chain variable domain comprising SEQ ID NO: 12 and a light chain variable domain comprising SEQ ID NO: 11. id="p-61" id="p-61" id="p-61" id="p-61"
[00061] Described is an anti-Factor D antibody comprising a heavy chain variable domain comprising an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 6, 8, 10 and 12. In some embodiments, an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity contains substitutions, insertions, or deletions relative to the reference sequence, but an antibody comprising that amino acid sequence retains the ability to bind to Factor D. In some embodiments, a total of 1 to 10 amino acids have been substituted, inserted, or deleted in a sequence selected from the group consisting of SEQ ID NO: 6, 8, 10 or 12. In some embodiments, the substitutions, insertions or deletions occur in regions outside the HVRs (i.e., in the FRs). In some embodiments, an anti-Factor D antibody comprises a heavy chain variable domain comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 6, 8, 10 or 12. id="p-62" id="p-62" id="p-62" id="p-62"
[00062] In some embodiments, there is described an anti-Factor D antibody comprising a light chain variable domain comprising an amino acid sequence 18 having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity to an amino acid sequence selected from the group consisting of SEQ ID NO: 5, 7, 9 and 11. In some embodiments, an amino acid sequence having at least 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98% or 99% sequence identity contains substitutions, insertions, or deletions relative to the reference sequence, but an antibody comprising that amino acid sequence retains the ability to bind to Factor D. In some embodiments, a total of 1 to 10 amino acids have been substituted, inserted, or deleted in a sequence selected from the group consisting of SEQ ID NO: 5, 7, 9 and 11. In some embodiments, the substitutions, insertions or deletions occur in regions outside the HVRs (i.e., in the FRs). In some embodiments, an anti-Factor D antibody comprises a light chain variable domain comprising an amino acid sequence selected from the group consisting of SEQ ID NO: 5, 7, 9 and 11. id="p-63" id="p-63" id="p-63" id="p-63"
[00063] An anti-Factor D antibody may comprise any suitable framework variable domain sequence, provided that the antibody retains the ability to bind Factor D. For example, in some embodiments, anti-Factor D antibodies described herein comprise a heavy chain variable domain framework sequence that is a combination of Vl.4.1 b+ and JH4d (See Figure 3). In some embodiments, anti-Factor D antibodies described herein comprise a human subgroup VII heavy chain framework consensus sequence. In some embodiments, anti-Factor D antibodies described herein comprise a heavy chain variable domain framework sequence comprising FR1 comprising amino acids 1-25 of SEQ ID NO: 8, FR2 comprising amino acids 36-46 of SEQ ID NO: 8, FR3 comprising amino acids 67-98 of SEQ ID NO: 8 and FR4 comprising amino acids 105-115 of SEQ ID NO: 8 In one embodiment of these antibodies, the heavy chain variable domain sequence comprises substitution(s) at position 40 and/or 88 (Kabat numbering). In one embodiment of these antibodies, position 40 is cysteine (C) or alanine (A) and/or position 88 is cysteine (C) or alanine (A). In some embodiments, anti-Factor D antibodies described herein comprise a light chain variable domain framework sequence that is a combination of DPK4 and JK2 (See Figure 4). In some embodiments, anti-Factor D antibodies described herein comprise a human kappa I (id) light chain framework consensus sequence. In some embodiments, anti-Factor D antibodies described herein comprise a light chain variable domain 19 framework sequence comprising FR1 comprising amino acids 1-23 of SEQ ID NO: 7, FR2 comprising amino acids 35-49 of SEQ ID NO: 7, FR3 comprising amino acids 57-88 of SEQ ID NO: 7 and FR4 comprising amino acids 98-107 of SEQ ID NO: 7. In one embodiment of these antibodies, the light chain variable framework sequence comprises one or more substitution(s) at position 15, 43 and/or 104 (Kabat numbering). In one embodiment of these antibodies, position 15 is cysteine (C) or valine (V), position 43 is cysteine (C) or alanine (A) and/or position 104 is valine (V) or leucine (L). id="p-64" id="p-64" id="p-64" id="p-64"
[00064] Further, an anti-Factor D antibody may comprise any suitable constant domain sequence, provided that the antibody retains the ability to bind Factor D. For example, in some embodiments, anti-Factor D antibodies described herein comprise at least a portion of a heavy chain constant domain. In one embodiment, anti-Factor D antibodies described herein comprise a heavy chain constant domain of either one or a combination of an a, 5, £, y, or |j heavy chain. Depending on the amino acid sequence of the constant domain of their heavy chains (Ch), immunoglobulins can be assigned to different classes or isotypes. There are five classes of immunoglobulins: IgA, IgD, IgE, IgG, and IgM, having heavy chains designated a, 5, £, y, and |j, respectively. The y and a classes are further divided into subclasses on the basis of relatively minor differences in CH sequence and function, e.g., humans express the following subclasses: lgG1, lgG2, lgG3, lgG4, lgA1, and lgA2. In one embodiment, anti-Factor D antibodies described herein comprise a heavy chain constant domain comprising substitutions at amino acid positions that results in a desired effect on effector function (e.g.. binding affinity). In one embodiment, anti-Factor D antibodies described herein comprise a heavy chain constant domain comprising substitutions at amino acid positions that do not result in an effect on effector function (e.g.. binding affinity). In one embodiment, anti-Factor D antibodies described herein comprise a heavy chain constant domain of the IgG type (e.g. lgG1, lgG2, lgG3 or lgG4) and further comprise a substitution at position 114 (Kabat numbering; equivalent to 118 in EU numbering), 168 (Kabat numbering; equivalent to 172 in EU numbering), 172 (Kabat numbering; equivalent to 176 in EU numbering) and/or 228 (EU numbering). In one embodiment, anti-Factor D antibodies described herein comprise a heavy chain constant domain of the IgG (e.g. lgG1, lgG2, lgG3 or lgG4) type and further comprise a substitution at position 114 wherein position 114 is a cysteine (C) or alanine (A), position 168 is cysteine (C) or alanine (A), position 172 is a cysteine (C) or alanine (A) and/or position 228 is a proline (P), arginine (R) or serine (S). id="p-65" id="p-65" id="p-65" id="p-65"
[00065] Further, for example, in some embodiments, anti-Factor D antibodies described herein comprise at least a portion of a light chain constant domain. In one embodiment, anti-Factor D antibodies described herein comprise a light chain constant domain of either one or a combination of a kappa or a lambda light chain, as the light chain from any vertebrate species can be assigned to one of two clearly distinct types, called kappa and lambda, based on the amino acid sequences of their constant domains. In one embodiment, anti-Factor D antibodies described herein comprise a light chain constant domain comprising substitutions at amino acid positions that results in a desired effect on effector function (e.g.. binding affinity). In one embodiment, anti-Factor D antibodies described herein comprise a light chain constant domain comprising substitutions at amino acid positions that do not result in an effect on effector function (e.g., binding affinity). In one embodiment, anti-Factor D antibodies described herein comprise a light chain constant domain of the kappa type and further comprise a substitution at position 110, 144, 146 and/or 168 (Kabat numbering). In one embodiment, anti-Factor D antibodies described herein comprise a light chain constant domain of the kappa type and further comprise a substitution at position 110 wherein 110 is a cysteine (C) or valine (V), at position 144 wherein 144 is a cysteine (C) or alanine (A), at position 146 wherein 146 is a isoleucine (I) or valine (V) and/or at position 168 wherein 168 is a cysteine (C) or serine (S). id="p-66" id="p-66" id="p-66" id="p-66"
[00066] Described are antibodies that compete with murine antibody 166-32 and/or humanized anti-Factor D antibody clone #56, #111, #250 or #416, and/or an antibody comprising variable domain or HVR sequences of humanized anti-Factor D antibody clone #56, #111, #250 or #416. Antibodies that bind to the same epitope as murine antibody 166-32 and/or humanized anti-Factor D antibody clone #56, #111, #250 or #416, and/or an antibody comprising variable domain or HVR sequences of humanized anti-Factor D antibody clone #56, #111, #250 or #416 are also described. id="p-67" id="p-67" id="p-67" id="p-67"
[00067] Also described is an anti-Factor D antibody wherein the monovalent affinity of the antibody to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is lower, for example at least 1-fold or 2-fold lower than the 21 monovalent affinity of a chimeric antibody (e.g. affinity of the cihmeric antibody as a Fab fragment to Factor D), comprising, consisting or consisting essentially of a light chain variable domain of SEQ ID NO: 2 and heavy chain variable domain of SEQ ID NO: 1. id="p-68" id="p-68" id="p-68" id="p-68"
[00068] In one embodiment, there is described an anti-Factor D antibody wherein the bivalent affinity of the antibody to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is lower, for example at least 1-fold or 2-fold lower than the bivalent affinity of a chimeric antibody (e.g. affinity of the cihmeric antibody as an IgG to Factor D), comprising, consisting or consisting essentially of a light chain variable domain of SEQ ID NO: 2 and heavy chain variable domain of SEQ ID NO: 1. id="p-69" id="p-69" id="p-69" id="p-69"
[00069] In another embodiment, there is described an anti-Factor D antibody wherein the monovalent affinity of the antibody to FactorD (e.g., affinity of the antibody as a Fab fragment to Factor D) is greater, for example at least 1-fold or 2-fold greater than the monovalent affinity of a chimeric antibody (e.g. affinity of the chimeric antibody as a Fab fragment to Factor D), comprising, consisting or consisting essentially of a light chain variable domain of SEQ ID NO: 2 and heavy chain variable domain of SEQ ID NO: 1. id="p-70" id="p-70" id="p-70" id="p-70"
[00070] In another embodiment, there is described an anti-Factor D antibody wherein the bivalent affinity of the antibody to FactorD (e.g., affinity of the antibody as an IgG to Factor D) is greater, for example at least 1-fold or 2-fold greater than the bivalent affinity of a chimeric antibody (e.g. affinity of the chimeric antibody as an IgG to Factor D), comprising, consisting or consisting essentially of a light chain variable domain of SEQ ID NO: 2 and heavy chain variable domain of SEQ ID NO: 1. id="p-71" id="p-71" id="p-71" id="p-71"
[00071] In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is 1.0 nM (1.0x10"9 M) or better. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is 0.5 nM (0.5x10"9 M) or better. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is 1.0 pM (1.0x10"12 M) or better. In 22 another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is 0.5 pM (0.5x10"12 M) or better. id="p-72" id="p-72" id="p-72" id="p-72"
[00072] In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is 1.0 nM (1.0x10"9M) or better. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is 0.5 nM (0.5x10"9 M) or better. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is 1.0 pM (1.0x10"12 M) or better. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is 0.5 pM (0.5x10"12 M) or better. id="p-73" id="p-73" id="p-73" id="p-73"
[00073] In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is between 0.5 mM (0.5x10"6 M) and 0.5 pM (0.5x10"12 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is between 15 nM (15x10"9M) and 0.1 nM (0.1x10"9M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is between 5.5 nM (5.5x10"9M) and 1 nM (1x10"9M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is between 0.5 pM (0.5x10"12 M) and 2 pM (2x10"12 M). id="p-74" id="p-74" id="p-74" id="p-74"
[00074] In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is between 0.5 mM (0.5x10"6 M) and 0.5 pM (0.5x10"12 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is between 10 nM (10x10"9 M) and 23 0.05 nM (0.05x10"9 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is between 5.5 nM (5.5x10"9 M) and 1 nM (1x10"9M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is between 0.5 pM (0.5x10"12 M) and 2 pM (2x10"12 M). id="p-75" id="p-75" id="p-75" id="p-75"
[00075] In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 0.37 nM (3.7x10"10 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 0.33 nM (3.3x10"10 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 0.51 nM (5.1x10"10 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 2.7 nM (2.7x10"9 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 1.4 nM (1.4x10"9 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 1.4 pM (1.4x10"12 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as a IgG to Factor D) is about 1.1 pM (1.1x10"12 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 0.19 nM (0.19x10"9 M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as a IgG to Factor D) is about 0.08 nM (0.08x10"9 M). In another embodiment, there is described an anti-Factor D antibody wherein the 24 affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 12.3 nM (12.3x10"9M). In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as a IgG to Factor D) is about 9.0 nM (9.0x10"9 M). id="p-76" id="p-76" id="p-76" id="p-76"
[00076] In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 1.4 pM (1.4x10"12 M) +/-0.5. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as an IgG to Factor D) is about 1.1 pM (1.1 x10"12 M) +/- 0.6. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 0.19 nM (0.19x10"9M) +/- .01. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as a IgG to Factor D) is about 0.08 nM (0.08x10"9 M) +/- 0.01. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 12.3 nM (12.3x10"9M) +/- 2. In another embodiment, there is described an anti-Factor D antibody wherein the affinity of the antibody in its bivalent form to Factor D (e.g., affinity of the antibody as a IgG to Factor D) is about 9.0 nM (9.0x10"9 M) +/-1. id="p-77" id="p-77" id="p-77" id="p-77"
[00077] In another embodiment, an anti-Factor D antibody may have an affinity in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) of about 3.7 nM (3.7x10"9 M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) of about 3.3 nM (3.3x10"9M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) of about 5.1 nM (5.1x10"9 M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) of about 2.7 nM (2.7x10"9 M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) of about 1.4 nM (1.4x10"9 M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) of about 1.4 pM (1.4x10"12 M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its bivalent form to Factor D (e.g., affinity of the antibody as a IgG to Factor D) of about 1.1 pM (1.1x10"12M)+/-2. In another embodiment, an anti-Factor D antibody may have an affinity in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 0.19 nM (0.19x10"9 M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its bivalent form to Factor D (e.g., affinity of the antibody as a IgG to Factor D) is about 0.08 nM (0.08x10"9 M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its monovalent form to Factor D (e.g., affinity of the antibody as a Fab fragment to Factor D) is about 12.3 nM (12.3x10"9 M) +/- 2. In another embodiment, an anti-Factor D antibody may have an affinity in its bivalent form to Factor D (e.g., affinity of the antibody as a IgG to Factor D) is about 9.0 nM (9.0x10"9 M) +/- 2. id="p-78" id="p-78" id="p-78" id="p-78"
[00078] As is well-established in the art, binding affinity of a ligand to its receptor can be determined using any of a variety of assays, and expressed in terms of a variety of quantitative values. Accordingly, in one embodiment, the binding affinity is expressed as Kd values and reflects intrinsic binding affinity (e.g., with minimized avidity effects). Generally and preferably, binding affinity is measured in vitro, whether in a cell-free or cell-associated setting. As described in greater detail herein, fold difference in binding affinity can be quantified in terms of the ratio of the monovalent binding affinity value of a humanized antibody (e.g., in Fab form) and the monovalent binding affinity value of a reference/comparator antibody (e.g., in Fab form) (e.g., a murine antibody having donor hypervariable region sequences), wherein the binding affinity values are determined under similar assay conditions. Thus, in one embodiment, the fold difference in binding affinity is determined as the ratio of the Kd values of the humanized antibody in Fab form and said reference/comparator Fab antibody. For example, in one embodiment, if an antibody of the invention (A) has an affinity that is "3-fold lower" than the affinity of a reference antibody (M), then if the Kd value for A is 3x, the Kd value of M would be 1x, and the ratio of Kd of A to Kd of M would be 3:1. 26 Conversely, in one embodiment, if an antibody of the invention (C) has an affinity that is "3-fold greater" than the affinity of a reference antibody (R), then if the Kd value for C is 1x, the Kd value of R would be 3x, and the ratio of Kd of C to Kd of R would be 1:3. Any of a number of assays known in the art, including those described herein, can be used to obtain binding affinity measurements, including, for example, Biacore, radioimmunoassay (RIA) and ELISA. id="p-79" id="p-79" id="p-79" id="p-79"
[00079] Further, Kd values for an antibody of the invention may vary depending on conditions of the particular assay used. For example, in one embodiment, binding affinity measurements may be obtained in an assay wherein the Fab or antibody is immobilized and binding of the ligand, i.e. Factor D, is measured or alternatively, the ligand, i.e. Factor D, for the Fab or antibody is immobilized and binding of the Fab or antibody is measured. In one embodiment, the binding affinity measurements may be obtained in an assay wherein the regeneration conditions may comprise (1) 10mM glycein or 4M MgCh at pH 1.5, and (2) pH between pH of 1.0 and pH of 7.5, including pH of 1.5, pH of 5.0, pH of 6.0 and pH of 7.2. In one embodiment, the binding affinity measurements may be obtained in an assay wherein the binding conditions may comprise (1) PBS or HEPES-buffered saline and (2) Tween-20, i.e. 0.1% Tween-20. In one embodiment, the binding affinity measurements may be obtained in an assay wherein the source of the ligand, i.e Factor D, may be from commercially available sources. In one embodiment, binding affinity measurements may be obtained in an assay wherein (1) the Fab or antibody is immobilized and binding of the ligand, i.e. Factor D is measured, (2) the regeneration conditions comprise 4M MgChat pH 7.2 and (3) the binding conditions comprise HEPES-buffered saline, pH 7.2 containing 0.1% Tween-20. In one embodiment, binding affinity measurements may be obtained in an assay wherein (1) the ligand, i.e. Factor D, is immobilized and binding of the Fab or antibody is measured, (2) the regeneration conditions comprise 10mM glycine at pH 1.5 and (3) the binding conditions comprise PBS buffer. id="p-80" id="p-80" id="p-80" id="p-80"
[00080] The terms "cell", "cell line" and "cell culture" include progeny. It is also understood that all progeny may not be precisely identical in DNA content, due to deliberate or inadvertent mutations. Variant progeny that have the same function or biological property, as screened for in the originally transformed cell, 27 are included. The "host cells" used herein generally are prokaryotic or eukaryotic hosts. id="p-81" id="p-81" id="p-81" id="p-81"
[00081] The term "vector" means a DNA construct containing a DNA sequence which is operably linked to a suitable control sequence capable of effecting the expression of the DNA in a suitable host. Such control sequences include a promoter to effect transcription, an optional operator sequence to control such transcription, a sequence encoding suitable mRNA ribosome binding sites, and sequences which control the termination of transcription and translation. The vector may be a plasmid, a phage particle, or simply a potential genomic insert. Once transformed into a suitable host, the vector may replicate and function independently of the host genome, or may in some instances, integrate into the genome itself. In the present specification, "plasmid" and "vector" are sometimes used interchangeably, as the plasmid is the most commonly used form of vector. However, the invention is intended to include such other forms of vectors which serve equivalent function as and which are, or become, known in the art. id="p-82" id="p-82" id="p-82" id="p-82"
[00082] The word "label" when used herein refers to a detectable compound or composition which can be conjugated directly or indirectly to a molecule or protein, e.g., an antibody. The label may itself be detectable (e.g., radioisotope labels or fluorescent labels) or, in the case of an enzymatic label, may catalyze chemical alteration of a substrate compound or composition which is detectable. id="p-83" id="p-83" id="p-83" id="p-83"
[00083] As used herein, "solid phase" means a non-aqueous matrix to which the antibody of the present invention can adhere. Example of solid phases encompassed herein include those formed partially or entirely of glass (e.g. controlled pore glass), polysaccharides (e.g., agarose), polyacrylamides, polystyrene, polyvinyl alcohol and silicones. In certain embodiments, depending on the context, the solid phase can comprise the well of an assay plate; in others it is a purification column (e.g. an affinity chromatography column).
GENERATION OF ANTIBODIES SELECTION AND TRANSFORMATION OF HOST CELLS id="p-84" id="p-84" id="p-84" id="p-84"
[00084] Suitable host cells for cloning or expressing the DNA in the vectors herein are prokaryotic, yeast, or higher eukaryotic cells. Suitable prokaryotes for this purpose include both Gram-negative and Gram-positive organisms, for example, Enterobacteria such as E. coli, Eriterobacter, Erwinia, Klebsiella, 28 Proteus, Salmonella, Serratia, and Shigella, as well as Bacilli, Pseudomonas, and Streptomyces. One preferred E. coli cloning host is E. coli 294 (ATCC 31,446), although other strains such as E. coli B, E. coli X1776 (ATCC 31,537), and E. coli W3110 (ATCC 27,325) are suitable. These examples are illustrative rather than limiting. id="p-85" id="p-85" id="p-85" id="p-85"
[00085] In addition to prokaryotes, eukaryotic microbes such as filamentous fungi or yeast are suitable cloning or expression hosts for antibody-encoding vectors. Saccharomyces cerevisiae is the most commonly used among lower eukaryotic host microorganisms. However, a number of other genera, species, and strains are commonly available and useful herein, such as Schizosaccharomyces pombe; Kluyveromyces; Candida; Trichoderma; Neurospora crassa; and filamentous fungi such as e.g., Neurospora, Penicillium, Tolypocladium, and Aspergillus hosts, such as A. nidulans and A. niger. id="p-86" id="p-86" id="p-86" id="p-86"
[00086] Suitable host cells for the expression of glycosylated antibodies are derived from multicellular organisms. In principal, any higher eukaryotic cell culture is workable, whether from vertebrate or invertebrate culture. Examples of invertebrate cells include plant and insect cells, Luckow et al., Bio/Technology 6, 47-55 (1988); Miller et al., Genetic Engineering, Setlow et al. eds. Vol. 8, pp. 277-279 (Plenam publishing 1986); Mseda et al., Nature 315, 592-594(1985). Numerous baculoviral strains and variants and corresponding permissive insect host cells from hosts such as Spodoptera frugiperda (caterpillar), Aedes (mosquito), Drosophila melanogaster (fruitfly), and Bombyx mori have been identified. A variety of viral strains for transfection are publicly available, e.g., the L-1 variant of Autographa californica NPV and the Bm-5 strain of Bombyx mori NPV, and such viruses may be used as the virus herein described, particularly for transfection of Spodoptera frugiperda cells. Moreover, plant cells cultures of cotton, corn, potato, soybean, petunia, tomato, and tobacco and also be utilized as hosts. id="p-87" id="p-87" id="p-87" id="p-87"
[00087] Vertebrate cells, and propagation of vertebrate cells, in culture (tissue culture) has become a routine procedure. See Tissue Culture, Academic Press, Kruse and Patterson, eds. (1973). Examples of useful mammalian host cell lines are monkey kidney; human embryonic kidney line; baby hamster kidney cells; Chinese hamster ovary cells/-DHFR (CHO, Urlaub et al., Proc. Natl. Acad. Sci. USA 77: 4216 (1980)); mouse Sertoli cells; human cervical carcinoma cells 29 (HELA); canine kidney cells; human lung cells; human liver cells; mouse mammary tumor; and NSO cells. id="p-88" id="p-88" id="p-88" id="p-88"
[00088] Host cells are transformed with the above-described vectors for antibody production and cultured in conventional nutrient media modified as appropriate for inducing promoters, selecting transformants, or amplifying the genes encoding the desired sequences. id="p-89" id="p-89" id="p-89" id="p-89"
[00089] The host cells used to produce the antibody variant of this invention may be cultured in a variety of media. Commercially available media such as Ham's F10 (Sigma), Minimal Essential Medium (MEM, Sigma), RPMI-1640 (Sigma), and Dulbecco's Modified Eagle's Medium (DMEM, Sigma) are suitable for culturing host cells. In addition, any of the media described in Ham et al., Meth. Enzymol. 58: 44 (1979), Barnes et al., Anal. Biochem. 102: 255 (1980), U.S. Pat. Nos. 4,767,704; 4,657,866; 4,560,655; 5,122,469; 5,712,163; or 6,048,728 may be used as culture media for the host cells. Any of these media may be supplemented as necessary with hormones and/or other growth factors (such as insulin, transferrin, or epidermal growth factor), salts (such as X-chlorides, where X is sodium, calcium, magnesium; and phosphates), buffers (such as HEPES), nucleotides (such as adenosine and thymidine), antibiotics (such as GENTAMYCIN.TM. drug), trace elements (defined as inorganic compounds usually present at final concentrations in the micromolar range), and glucose or an equivalent energy source. Any other necessary supplements may also be included at appropriate concentrations that would be known to those skilled in the art. The culture conditions, such as temperature, pH, and the like, are those previously used with the host cell selected for expression, and will be apparent to the ordinarily skilled artisan.
ANTIBODY PURIFICATION id="p-90" id="p-90" id="p-90" id="p-90"
[00090] When using recombinant techniques, the antibody can be produced intracellular^, in the periplasmic space, or directly secreted into the medium. If the antibody variant is produced intracellular^, as a first step, the particulate debris, either host cells or lysed fragments, may be removed, for example, by centrifugation or ultrafiltration. Carter et al., Bio/Technology 10: 163-167 (1992) describe a procedure for isolating antibodies which are secreted to the periplasmic space of E. coli. Briefly, cell paste is thawed in the presence of sodium acetate (pH 3.5), EDTA, and phenylmethylsulfonylfluoride (PMSF) over about 30 minutes.
Cell debris can be removed by centrifugation. Where the antibody variant is secreted into the medium, supernatants from such expression systems are generally first concentrated using a commercially available protein concentration filter, for example, an Amicon or Millipore Pellicon ultrafiltration unit. A protease inhibitor such as PMSF may be included in any of the foregoing steps to inhibit proteolysis and antibiotics may be included to prevent the growth of adventitious contaminants. id="p-91" id="p-91" id="p-91" id="p-91"
[00091] The antibody composition prepared from the cells can be purified using, for example, hydroxylapatite chromatography, gel elecrophoresis, dialysis, and affinity chromatography, with affinity chromatography being the preferred purification technique. The suitability of protein A as an affinity ligand depends on the species and isotype of any immunoglobulin Fc domain that is present in the antibody variant. Protein A can be used to purify antibodies that are based on human lgG1, lgG2 or lgG4 heavy chains (Lindmark et al., J. Immunol Meth. 62: 1-13 (1983)). Protein G is recommended for all mouse isotypes and for human lgG3 (Guss et al., EMBO J. 5: 1567-1575(1986)). The matrix to which the affinity ligand is attached is most often agarose, but other matrices are available. Mechanically stable matrices such as controlled pore glass or poly(styrenedivinyl)benzene allow for faster flow rates and shorter processing times than can be achieved with agarose. Where the antibody variant comprises a CH3 domain, the Bakerbond ABXTM resin (J. T. Baker, Phillipsburg, N.J.) is useful for purification. Other techniques for protein purification such as fractionation on an ion-exchange column, ethanol precipitation, Reverse Phase HPLC, chromatography on silica, chromatography on heparin SEPHAROSE™ chromatography on an anion or cation exchange resin (such as a polyaspartic acid column), chromatofocusing, SDS-PAGE, and ammonium sulfate precipitation are also available depending on the antibody variant to be recovered. id="p-92" id="p-92" id="p-92" id="p-92"
[00092] Following any preliminary purification step(s), the mixture comprising the antibody variant of interest and contaminants may be subjected to low pH hydrophobic interaction chromatography using an elution buffer at a pH between about 2.5-4.5, preferably performed at low salt concentrations (e.g., from about 0-0.25M salt). 31 PHARMACEUTICAL FORMULATIONS id="p-93" id="p-93" id="p-93" id="p-93"
[00093] Therapeutic formulations of the polypeptide or antibody may be prepared for storage as lyophilized formulations or aqueous solutions by mixing the polypeptide having the desired degree of purity with optional "pharmaceutically-acceptable" carriers, excipients or stabilizers typically employed in the art (all of which are termed "excipients"). For example, buffering agents, stabilizing agents, preservatives, isotonifiers, non-ionic detergents, antioxidants and other miscellaneous additives. (See Remington's Pharmaceutical Sciences, 16th edition, A. Osol, Ed. (1980)). Such additives must be nontoxic to the recipients at the dosages and concentrations employed. id="p-94" id="p-94" id="p-94" id="p-94"
[00094] Buffering agents help to maintain the pH in the range which approximates physiological conditions. They are preferably present at concentration ranging from about 2 mM to about 50 mM. Suitable buffering agents for use with the present invention include both organic and inorganic acids and salts thereof such as citrate buffers (e.g., monosodium citrate-disodium citrate mixture, citric acid-trisodium citrate mixture, citric acid-monosodium citrate mixture, etc.), succinate buffers (e.g., succinic acid-monosodium succinate mixture, succinic acid-sodium hydroxide mixture, succinic acid-disodium succinate mixture, etc.), tartrate buffers (e.g., tartaric acid-sodium tartrate mixture, tartaric acid-potassium tartrate mixture, tartaric acid-sodium hydroxide mixture, etc.), fumarate buffers (e.g., fumaric acid-monosodium fumarate mixture, etc.), fumarate buffers (e.g., fumaric acid-monosodium fumarate mixture, fumaric acid-disodium fumarate mixture, monosodium fumarate-disodium fumarate mixture, etc.), gluconate buffers (e.g., gluconic acid-sodium glyconate mixture, gluconic acid-sodium hydroxide mixture, gluconic acid-potassium glyuconate mixture, etc.), oxalate buffer (e.g., oxalic acid-sodium oxalate mixture, oxalic acid-sodium hydroxide mixture, oxalic acid-potassium oxalate mixture, etc.), lactate buffers (e.g., lactic acid-sodium lactate mixture, lactic acid-sodium hydroxide mixture, lactic acid-potassium lactate mixture, etc.) and acetate buffers (e.g., acetic acid-sodium acetate mixture, acetic acid-sodium hydroxide mixture, etc.). Additionally, there may be mentioned phosphate buffers, histidine buffers and trimethylamine salts such as Tris. id="p-95" id="p-95" id="p-95" id="p-95"
[00095] Preservatives may be added to retard microbial growth, and may be added in amounts ranging from 0.2%-1% (w/v). Suitable preservatives for use 32 with the present invention include phenol, benzyl alcohol, meta-cresol, methyl paraben, propyl paraben, octadecyldimethylbenzyl ammonium chloride, benzalconium halides (e.g., chloride, bromide, iodide), hexamethonium chloride, alkyl parabens such as methyl or propyl paraben, catechol, resorcinol, cyclohexanol, and 3-pentanol. id="p-96" id="p-96" id="p-96" id="p-96"
[00096] Isotonicifiers sometimes known as "stabilizers" may be added to ensure isotonicity of liquid compositions of the present invention and include polhydric sugar alcohols, preferably trihydric or higher sugar alcohols, such as glycerin, erythritol, arabitol, xylitol, sorbitol and mannitol. id="p-97" id="p-97" id="p-97" id="p-97"
[00097] Stabilizers refer to a broad category of excipients which can range in function from a bulking agent to an additive which solubilizes the therapeutic agent or helps to prevent denaturation or adherence to the container wall. Typical stabilizers can be polyhydric sugar alcohols (enumerated above); amino acids such as arginine, lysine, glycine, glutamine, asparagine, histidine, alanine, ornithine, L-leucine, 2-phenylalanine, glutamic acid, threonine, etc., organic sugars or sugar alcohols, such as lactose, trehalose, stachyose, mannitol, sorbitol, xylitol, ribitol, myoinisitol, galactitol, glycerol and the like, including cyclitols such as inositol; polyethylene glycol; amino acid polymers; sulfur containing reducing agents, such as urea, glutathione, thioctic acid, sodium thioglycolate, thioglycerol, .alpha.-monothioglycerol and sodium thio sulfate; low molecular weight polypeptides (i.e. <10 residues); proteins such as human serum albumin, bovine serum albumin, gelatin or immunoglobulins; hydrophylic polymers, such as polyvinylpyrrolidone monosaccharides, such as xylose, mannose, fructose, glucose; disaccharides such as lactose, maltose, sucrose and trisaccacharides such as raffinose; polysaccharides such as dextran. Stabilizers may be present in the range from 0.1 to 10,000 weights per part of weight active protein. id="p-98" id="p-98" id="p-98" id="p-98"
[00098] Non-ionic surfactants or detergents (also known as "wetting agents") may be added to help solubilize the therapeutic agent as well as to protect the therapeutic protein against agitation-induced aggregation, which also permits the formulation to be exposed to shear surface stressed without causing denaturation of the protein. Suitable non-ionic surfactants include polysorbates (20, 80, etc.), polyoxamers (184, 188 etc.), Pluronic.RTM. polyols, polyoxyethylene sorbitan monoethers (Tween.RTM.-20, Tween.RTM.-80, etc.). Non-ionic surfactants may 33 be present in a range of about 0.05 mg/ml to about 1.0 mg/ml, preferably about 0.07 mg/ml to about 0.2 mg/ml. id="p-99" id="p-99" id="p-99" id="p-99"
[00099] Additional miscellaneous excipients include bulking agents, (e.g. starch), chelating agents (e.g. EDTA), antioxidants (e.g., ascorbic acid, methionine, vitamin E), and cosolvents. The formulation herein may also contain more than one active compound as necessary for the particular indication being treated, preferably those with complementary activities that do not adversely affect each other. For example, it may be desireable to further provide an immunosuppressive agent. Such molecules are suitably present in combination in amounts that are effective for the purpose intended. The active ingredients may also be entrapped in microcapsule prepared, for example, by coascervation techniques or by interfacial polymerization, for example, hydroxymethylcellulose or gelatin-microcapsule and poly-(methylmethacylate) microcapsule, respectively, in colloidal drug delivery systems (for example, liposomes, albumin micropheres, microemulsions, nano-particles and nanocapsules) or in macroemulsions. Such techniques are disclosed in Remington's Pharmaceutical Sciences, 16th edition, A. Osal, Ed. (1980). id="p-100" id="p-100" id="p-100" id="p-100"
[000100] The formulations to be used for in vivo administration must be sterile. This is readily accomplished, for example, by filtration through sterile filtration membranes. Sustained-release preparations may be prepared. Suitable examples of sustained-release preparations include semi-permeable matrices of solid hydrophobic polymers containing the antibody variant, which matrices are in the form of shaped articles, e.g., films, or microcapsules. Examples of sustained-release matrices include polyesters, hydrogels (for example, poly(2-hydroxyethyl-methacrylate), or poly(vinylalcohol)), polylactides (U.S. Pat. No. 3,773,919), copolymers of L-glutamic acid and ethyl-L-glutamate, non-degradable ethylene-vinyl acetate, degradable lactic acid-glycolic acid copolymers such as the LUPRON DEPOT™ (injectable microspheres composed of lactic acid-glycolic acid copolymer and leuprolide acetate), and poly-D- (-)-3-hydroxybutyric acid. While polymers such as ethylene-vinyl acetate and lactic acid-glycolic acid enable release of molecules for over 100 days, certain hydrogels release proteins for shorter time periods. When encapsulated antibodies remain in the body for a long time, they may denature or aggregate as a result of exposure to moisture at 37° C resulting in a loss of biological activity and possible changes in immunogenicity. 34 Rational strategies can be devised for stabilization depending on the mechanism involved. For example, if the aggregation mechanism is discovered to be intermolecular S-S bond formation through thio-disulfide interchange, stabilization may be achieved by modifying sulfhydryl residues, lyophilizing from acidic solutions, controlling moisture content, using appropriate additives, and developing specific polymer matrix compositions. [000101 ] The amount of therapeutic polypeptide, antibody or fragment thereof which will be effective in the treatment of a particular disorder or condition will depend on the nature of the disorder or condition, and can be determined by standard clinical techniques. Where possible, it is desirable to determine the dose-response curve and the pharmaceutical compositions of the invention first in vitro, and then in useful animal model systems prior to testing in humans. id="p-102" id="p-102" id="p-102" id="p-102"
[000102] In a preferred embodiment, an aqueous solution of therapeutic polypeptide, antibody or fragment thereof is administered by subcutaneous injection. Each dose may range from about 0.5 jjg to about 50 jjg per kilogram of body weight, or more preferably, from about 3 jjg to about 30 jjg per kilogram body weight. id="p-103" id="p-103" id="p-103" id="p-103"
[000103] The dosing schedule for subcutaneous administration may vary form once a month to daily depending on a number of clinical factors, including the type of disease, severity of disease, and the subject's sensitivity to the therapeutic agent.
USES FOR THE HUMANIZED ANTIBODY id="p-104" id="p-104" id="p-104" id="p-104"
[000104] The humanized antibodies of the present invention are useful in diagnostic assays, e.g., for detecting expression of a target of interest in specific cells, tissues, or serum. For diagnostic applications, the antibody variant typically will be labeled with a detectable moiety. Numerous labels are available. Techniques for quantifying a change in fluorescence are described above. The chemiluminescent substrate becomes electronically excited by a chemical reaction and may then emit light which can be measured (using a chemiluminometer, for example) or donates energy to a fluorescent acceptor. Examples of enzymatic labels include luciferases (e.g., firefly luciferase and bacterial luciferase; U.S. Pat. No. 4,737,456), luciferin, 2,3-dihydrophthalazinediones, malate dehydrogenase, urease, peroxidase such as horseradish peroxidase (HRPO), alkaline phosphatase, .beta.-galactosidase, glucoamylase, lysozyme, saccharide oxidases (e.g., glucose oxidase, galactose oxidase, and glucose-6-phosphate dehydrogenase), heterocyclic oxidases (such as uricase and xanthine oxidase), lactoperoxidase, microperoxidase, and the like. Techniques for conjugating enzymes to antibodies are described in O'Sullivan et al., Methods for the Preparation of Enzyme-Antibody Conjugates for Use in Enzyme Immunoassay, in Methods in Enzym. (Ed. J. Langone & H. Van Vunakis), Academic press, New York, 73: 147-166 (1981). id="p-105" id="p-105" id="p-105" id="p-105"
[000105] Sometimes, the label is indirectly conjugated with the antibody variant. The skilled artisan will be aware of various techniques for achieving this. For example, the antibody variant can be conjugated with biotin and any of the three broad categories of labels mentioned above can be conjugated with avidin, or vice versa. Biotin binds selectively to avidin and thus, the label can be conjugated with the antibody variant in this indirect manner. Alternatively, to achieve indirect conjugation of the label with the antibody variant, the antibody variant is conjugated with a small hapten (e.g. digloxin) and one of the different types of labels mentioned above is conjugated with an anti-hapten antibody variant (e.g. anti-digloxin antibody). Thus, indirect conjugation of the label with the antibody variant can be achieved. id="p-106" id="p-106" id="p-106" id="p-106"
[000106] In another embodiment, the antibody variant need not be labeled, and the presence thereof can be detected using a labeled antibody which binds to the antibody variant. id="p-107" id="p-107" id="p-107" id="p-107"
[000107] The antibodies of the present invention may be employed in any known assay method, such as competitive binding assays, direct and indirect sandwich assays, and immunoprecipitation assays. Zola, Monoclonal Antibodies: A Manual of Techniques, pp. 147-158 (CRC Press, Inc. 1987). id="p-108" id="p-108" id="p-108" id="p-108"
[000108] Competitive binding assays rely on the ability of a labeled standard to compete with the test sample for binding with a limited amount of antibody variant. The amount of target in the test sample is inversely proportional to the amount of standard that becomes bound to the antibodies. To facilitate determining the amount of standard that becomes bound, the antibodies generally are insolubilized before or after the competition. As a result, the standard and test sample that are bound to the antibodies may conveniently be separated from the standard and test sample which remain unbound. 36 id="p-109" id="p-109" id="p-109" id="p-109"
[000109] Sandwich assays involve the use of two antibodies, each capable of binding to a different immunogenic portion, or epitope, or the protein to be detected. In a sandwich assay, the test sample to be analyzed is bound by a first antibody which is immobilized on a solid support, and thereafter a second antibody binds to the test sample, thus forming an insoluble three-part complex. See e.g., U.S. Pat. No. 4,376,110. The second antibody may itself be labeled with a detectable moiety (direct sandwich assays) or may be measured using an antiimmunoglobulin antibody that is labeled with a detectable moiety (indirect sandwich assay). For example, one type of sandwich assay is an ELISA assay, in which case the detectable moiety is an enzyme. id="p-110" id="p-110" id="p-110" id="p-110"
[000110] For immunohistochemistry, the tumor sample may be fresh or frozen or may be embedded in paraffin and fixed with a preservative such as formalin, for example. id="p-111" id="p-111" id="p-111" id="p-111"
[000111] The antibodies may also be used for in vivo diagnostic assays. Generally, the antibody variant is labeled with a radionucleotide (such as .sup.111 In, .sup.99 Tc, .sup.14 C, .sup.131 I, .sup.3 H, .sup.32 P or .sup.35 S) so that the tumor can be localized using immunoscintiography. For example, a high affinity anti-lgE antibody described herein may be used to detect the amount of IgE present in, e.g., the lungs of an asthmatic patient. id="p-112" id="p-112" id="p-112" id="p-112"
[000112] The antibody of the present invention can be provided in a kit, i.e., packaged combination of reagents in predetermined amounts with instructions for performing the diagnostic assay. Where the antibody variant is labeled with an enzyme, the kit may include substrates and cofactors required by the enzyme (e.g., a substrate precursor which provides the detectable chromophore or fluorophore). In addition, other additives may be included such as stabilizers, buffers (e.g., a block buffer or lysis buffer) and the like. The relative amounts of the various reagents may be varied widely to provide for concentrations in solution of the reagents which substantially optimize the sensitivity of the assay. Particularly, the reagents may be provided as dry powders, usually lyophilized, including excipients which on dissolution will provide a reagent solution having the appropriate concentration.
IN VIVO USES FOR THE ANTIBODY id="p-113" id="p-113" id="p-113" id="p-113"
[000113] It is contemplated that the antibodies of the present invention may be used to treat a mammal. In one embodiment, the antibody is administered to a 37 nonhuman mammal for the purposes of obtaining preclinical data, for example. Exemplary nonhuman mammals to be treated include nonhuman primates, dogs, cats, rodents and other mammals in which preclinical studies are performed.
Such mammals may be established animal models for a disease to be treated with the antibody or may be used to study toxicity of the antibody of interest. In each of these embodiments, dose escalation studies may be performed on the mammal. id="p-114" id="p-114" id="p-114" id="p-114"
[000114] The antibody or polypeptide is administered by any suitable means, including parenteral, subcutaneous, intraperitoneal, intrapulmonary, and intranasal, and, if desired for local immunosuppressive treatment, intralesional administration. Parenteral infusions include intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous administration. In addition, the antibody variant is suitably administered by pulse infusion, particularly with declining doses of the antibody variant. Preferably the dosing is given by injections, most preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic. id="p-115" id="p-115" id="p-115" id="p-115"
[000115] For the prevention or treatment of disease, the appropriate dosage of the antibody or polypeptide will depend on the type of disease to be treated, the severity and course of the disease, whether the antibody variant is administered for preventive or therapeutic purposes, previous therapy, the patient's clinical history and response to the antibody, and the discretion of the attending physician. id="p-116" id="p-116" id="p-116" id="p-116"
[000116] Depending on the type and severity of the disease, about 0.1 mg/kg to 150 mg/kg (e.g., 0.1-20 mg/kg) of antibody is an initial candidate dosage for administration to the patient, whether, for example, by one or more separate administrations, or by continuous infusion. A typical daily dosage might range from about 1 mg/kg to 100 mg/kg or more, depending on the factors mentioned above. For repeated administrations over several days or longer, depending on the condition, the treatment is sustained until a desired suppression of disease symptoms occurs. However, other dosage regimens may be useful. The progress of this therapy is easily monitored by conventional techniques and assays. An exemplary dosing regimen is disclosed in WO 94/04188. id="p-117" id="p-117" id="p-117" id="p-117"
[000117] The antibody compositions may be formulated, dosed and administered in a manner consistent with good medical practice. Factors for 38 consideration in this context include the particular disorder being treated, the particular mammal being treated, the clinical condition of the individual patient, the cause of the disorder, the site of delivery of the agent, the method of administration, the scheduling of administration, and other factors known to medical practitioners. The "therapeutically effective amount" of the antibody to be administered will be governed by such considerations, and is the minimum amount necessary to prevent, ameliorate, or treat a disease or disorder. The antibody need not be, but is optionally formulated with one or more agents currently used to prevent or treat the disorder in question. The effective amount of such other agents depends on the amount of antibody present in the formulation, the type of disorder or treatment, and other factors discussed above. These are generally used in the same dosages and with administration routes as used hereinbefore or about from 1 to 99% of the heretofore employed dosages. id="p-118" id="p-118" id="p-118" id="p-118"
[000118] The antibodies of the present invention which recognize Factor D as their target may be used to treat complement-mediated disorders. These disorders are associated with excessive or uncontrolled complement activation. They include: Complement activation during cardiopulmonary bypass operations; complement activation due to ischemia-reperfusion following acute myocardial infarction, aneurysm, stroke, hemorrhagic shock, crush injury, multiple organ failure, hypobolemic shock and intestinal ischemia. These disorders can also include disease or condition is an inflammatory condition such as severe burns, endotoxemia, septic shock, adult respiratory distress syndrome, hemodialysis; anaphylactic shock, severe asthma, angioedema, Crohn's disease, sickle cell anemia, poststreptococcal glomerulonephritis and pancreatitis. The disorder may be the result of an adverse drug reaction, drug allergy, IL-2 induced vascular leakage syndrome or radiographic contrast media allergy. It also includes autoimmune disease such as systemic lupus erythematosus, myasthenia gravis, rheumatoid arthritis, Alzheimer's disease and multiple sclerosis. Complement activation is also associated with transplant rejection. Recently there has been a strong correlation shown between complement activation and ocular diseases such as age-related macular degeneration, diabetic retinopathy.
EXAMPLES id="p-119" id="p-119" id="p-119" id="p-119"
[000119] The following examples are offered by way of illustration and not by way of limitation. 39 Example 1: Humanization of Factor D Murine MAb 166-32 id="p-120" id="p-120" id="p-120" id="p-120"
[000120] The sequences of the heavy chain variable region (VH) and the light chain variable region (Vl) of murine mAb 166-32 were compared with human antibody germline sequences available in the public databases. Several criteria were used when deciding on a template as described in step 1 above, including overall length, similar CDR position within the framework, overall homology, size of the CDR, etc. All of these criteria taken together provided a result for choosing the optimal human template as shown in the sequence alignment between 166-32 MAb heavy and light chain sequences and the respective human template sequences depicted in Figures 3 and 4. id="p-121" id="p-121" id="p-121" id="p-121"
[000121] In this case, more than one human framework template was used to design this antibody. The human template chosen for the VH chain was a combination of Vl-4.1b+ (7-04.1 locus)(access# X62110)(VH7 family) and JH4d (See Figure 3). The human template chosen for the VL chain was a combination of DPK4 (VK I family) combined with JK2 (See Figure 4). id="p-122" id="p-122" id="p-122" id="p-122"
[000122] Once the template was chosen, a Fab library was constructed by DNA synthesis and overlapping PCR. The library was composed of synthesized MAb 166-32 CDRs synthesized with the respective chosen human templates. The overlapping nucleotides encoding partial VH and VL sequences were synthesized in the range of about 63 to about 76 nucleotides with 18 to 21 nucleotide overlaps. Vectors expressing a library of humanized Fabs against Factor D antigen were constructed, and transformed into E. coli DH10B then plated on XL-1B bacterial lawn. id="p-123" id="p-123" id="p-123" id="p-123"
[000123] Library quality was evaluated for the size (the number of independent clones) and the diversity (the distribution of the mutations). The individual clones with double insertion of both light and heavy chain was about 14 out of 20 sequenced. Framework wobble mutations were evenly distributed. id="p-124" id="p-124" id="p-124" id="p-124"
[000124] PCR amplification of VL and VH gene was performed using a biotinylated forward primer containing the specific sequence to the framework region FR1 and an overhanging sequence annealed to the end of leader sequence (Genelll) and a reverse primer from the conserved constant region (Ck or CH1) under standard PCR conditions. The PCR product was purified by agarose gel electrophoresis, or by commercial PCR purification kit to remove unincorporated biotinylated primers and non-specific PCR. 40 EXAMPLE 2: Library Screening id="p-125" id="p-125" id="p-125" id="p-125"
[000125] Capture Filter Lift was used for primary screening. The actual screening sized is more than 3 times larger than the theoretic library size. The candidates were further screened by single-point ELISA assay. The best binders were further confirmed by direct antigen titration using Factor D based on Fab concentration id="p-126" id="p-126" id="p-126" id="p-126"
[000126] Capture lift screening id="p-127" id="p-127" id="p-127" id="p-127"
[000127] Capture Filter Lift Assay was used for primary screening for the binding of Fab to Factor D. High titer phage were plated and incubated at 37°C till use (about 6-8 hr). Goat anti-human kappa was diluted to 10ug/ml in 10 ml PBST; Nitrocellulose filters for lifting plaques were prepared according to standard plaque lifting procedures and then immersed in10ml blocking buffer for 2 hrs on a shaker. The filters were rinsed 3x with PBST. The filters were applied to a plaque lawn and incubated at RT for approximately 15-24 hours. The filters were then removed from the plates and rinsed with TBST 3x. id="p-128" id="p-128" id="p-128" id="p-128"
[000128] Factor D (50ug/ml) was diluted in PBST to 0.1ug/ml and 4ml per filter was added. The filters were incubated in the solution for 2hr on a shaker at RT followed by rinsing 3x, each time 5min. Diluted 166-222-HRP (1:10, 000 with PBST) was added at a volume of 4 ml per filter and the filters were incubated for 1 hr on a shaker. The filters were rinsed 4x. The filters were dried and then immersed in TMB substrate followed by immersion in water to stop the reaction. Positive clones were identified.
EXAMPLE 3: Single-Point ELISA screening id="p-129" id="p-129" id="p-129" id="p-129"
[000129] Single-Point ELISA assay was used for the secondary screening. Immulon II plates were coated with goat anti-human Fab (1:12,000, 50ul/well) over night at RT. The next day the plates were washed 4x with a plate washer.
Blocking buffer was added at a volume oflOOul per well and plates incubated for 1 hr at RT. The plates were then washed 4x. id="p-130" id="p-130" id="p-130" id="p-130"
[000130] Each Fab to be screened was added at a volume of 50ul per well (either from 15ml periplasmic preparation or supernatant) and incubated 1 hr at RT. Plates were washed 4x followed by the addition of 50ul/well biotinylated factor D at 0.01ug/ml. Plates were incubated for 1 hr at RT and then washed 4x. StreptAvidin-HRP was added (1:10,000 in PBST) and incubated for 1 hr at RT. Plates were washed 5x and then developed by adding TMB substrate at 50ul/well. 41 Stop buffer was added at a volume of 50ul when it is well-developed (10-45 min) and the plates were read at 450nm.
Example 4: Sequencing of Humanized anti-Factor D clones id="p-131" id="p-131" id="p-131" id="p-131"
[000131] Sixteen humanized clones with good binding affinity for human Factor D were sequenced (see Table 1). Among these, position 2 (100% human) and 49 (100% mouse) in the light chain, and position 93 (100% mouse) in the heavy chain are highly conserved indicating that they are important in maintaining antibody binding ability.
Table 1. Amino acid sequence analysis of humanized clones from the humanization library VK 2 4 13 43 49 64 69 VH 2 9 38 93 97 Mouse T V M P S S A I P K T E Human I M A V Y G T V S R V A 7 I M M V S S T I P K V E I V A V S S A V P K T E 45 I V M V S G A I S R V E 46 I V M V S S T I S R V E 47 I V A V S S T I S R V E 48 I V M V S S T V P R V E 50 I V M V S G A V P R T E 51 I M M V S G T I S K T E 56 I V A V s G T V P K T E 57 I M M V s S A V s R V E 58 I V M p s G A V p R V E 59 I V A p s S T V p K V E 60 I V M p s G T V p R V E 63 I V M V s S T V s R T E 74 I V M V s S T I s R V E id="p-132" id="p-132" id="p-132" id="p-132"
[000132] Clone #56 was evaluated by BIAcore analysis and hemolytic inhibition assay. BIAcore analysis showed that clone #56 has a similar affinity to human Factor D as chimeric 166-32 Fab (see Table 4). Hemolytic inhibition assay 42 showed that clone #56 is somewhat more potent than chimeric 166-32 Fab (see Figure 6). Clone # 56 contains two murine residues in the framework of light chain and four murine residues in the heavy chain, (see Table 1). Based on these results, further optimization was carried out.
Table 2. Amino acid sequence analysis of optimized antibodies from the humanization/CDR3s optimization library VK Positions 2 4 13 43 49 64 69 CDR-L3 92 93 97 166-32 T V M P S S A D N T Human Template I M A V Y G T 104 I V M P S S T D S T 109 I V A V S G A M N T 111 I V A V S G T D S T 112 I V A V S G T D S T 114 I V A V S G T D C T 121 I V A V S S A D N T 125 I V A P S S T D N T 130 I V A V S S T D N S VH Positions 2 9 38 93 97 CDR-H3 98 99 100 166-32 I P K T E V D N Human Template V S R V A 104 V S R V E V D T 109 V S R V E V N N 111 V S R V E V N N 112 V S R V E V N N 114 V S K V E V N N 121 I S R V E V N T 125 V S R V E P D N 130 V S R V E V D H id="p-133" id="p-133" id="p-133" id="p-133"
[000133] Clone #111 and #114 were characterized by BIAcore analysis (see Table 4). Clone #104, #111, #114 and #130 were also characterized by 43 hemolytic inhibition assay (see Figure 6). These clones have higher affinities than chimeric 166-32, and are more potent than chimeric Fab in inhibiting the alternative pathway as shown by hemolytic inhibition assay (Figure 7). Clone #111 contains the same two murine residues in the light chain (position 4 and 49) as clone # 56. It also contains the conserved murine residue in the heavy chain position 97 as found in clone #56. There is one beneficial mutation in both light and heavy chain CDR3 in clone #111. From two independent libraries screened (humanization library, and humanization/CDR3s optimization library), we found that the best clones have similar consensus residues. id="p-134" id="p-134" id="p-134" id="p-134"
[000134] To further optimize the affinity of clone #111, an antibody library was constructed by introducing single mutations into the CDR-H1 and CDR-L2 simultaneously. In brief, site-directed mutagenesis approach was used to construct such libraries by annealing oligonucleotides encoding single mutations to the template of clone #111. A total of 24 clones with very high affinity to human Factor D were sequenced. Among those 24 clones, several redundant beneficial mutations were identified. Clones #250, #315, #345 and #416 were selected for BIAcore analysis (see Table 4). BIAcore data showed that these clones have higher affinity to human Factor D than initial clone #111. Clone #250, #315, #348 and #416 were also tested in the hemolytic inhibition assay (see Figure 6) and inhibition of the alternative pathway (Figure 7).
Example 5: AP Hemolysis Assay id="p-135" id="p-135" id="p-135" id="p-135"
[000135] Biological function of the humanized clones was determined using hemolytic inhibition assay and BIAcore analysis (See Example 6 below).
Hemolytic assay was performed according to the following procedure. 20 ul of 1:20 diluted rabbit red blood cells (RRBC) (0.5 ml + 9.5 ml GVB/Mg-EGTA buffer) in 20 ml Saline (0.9% NaCI) at approximately 1 : 2x104 dilution were counted by Coulter Counter. The cell concentration was then adjusted to about 2-5 x104 cells/ml. Each plate received about 500x106 / plate RRBC or about 1 ml RRBC/plate (500x106 / 2-5 x104 ). id="p-136" id="p-136" id="p-136" id="p-136"
[000136] Cells were diluted in 6 ml GVB/Mg-EGTA buffer/plate, mixed and washed 3 times by spinning at 1360 rpm x 4 min at 4 °C. The RRBC pellet is suspended in 3 ml GVB/Mg-EGTA buffer/plate and kept on ice. 44 id="p-137" id="p-137" id="p-137" id="p-137"
[000137] Human serum from -80°C freezer was thawed just prior to use. The serum was diluted to a concentration of 20 % serum in GVB/Mg-EGTA buffer, 5 ml/plate (final is 10 %) and kept on ice. 45 Table 3 SB GVB/Mg-EGTA: 50 ul \ 50 ul \ 50 ul 50 ul 50 ul mAb: 50 ul mix 50 ul ——^ 50 ul ——^ 50 ul % Hu serum: 50 ul 50 ul 50 ul 50 ul 50 ul ^ Shake 30 sec at 5-6°. then keep at RT for 7 min. .
Rabbit RBC: 30ul 30 ul 30 ul 30 ul id="p-138" id="p-138" id="p-138" id="p-138"
[000138] Samples were shaken for 30 sec at 5-6°C and then for 40 minutes at 37 °C. Samples were cooled to 5-6°C while shaking and then centrifuged at 2,000 rpm x 3 min at 4 °C. Approximately 80 ul supernatant was transferred to a flat-bottom 96 well plate and the OD value at 590 nm was read using a standard plate reader. The percent inhibition was calculated as follows: % Inhibition = {[(S-SB) - (U-SB)] / (S-SB)} x 100%. (U = sample 1, 2 or 3 (columns 1, 2 or 3 of Table 3, respectively).
Example 6: Kinetic Analysis of anti-Human Factor D Fab by BiaCore id="p-139" id="p-139" id="p-139" id="p-139"
[000139] Immobilization- Human factor D (Advanced Research Inc, 0.1 mg/ml) was directly immobilized onto the CM5 chip (BiaCore) using amine-coupling method. The procedure is briefly described as following: (1) Constant flow (PBS) is at 5 pl/min. (2) Injection of 35 pi EDC/NHS (1:1). (3) Injection of 35 pi of human factor D in acetate buffer, pH 4.5. (4) Block the activated group by injection of 35 pi etholamine. (5) Clean-up the surface by 5 pMO mM Glycine pH 1.5. The ligand (human factor D) immobilization level is about 1,000 RU. Test run using a-human factor D (huDi, 40 pi, 31.5 pg/ml) yielded a relative response around 900 RU. id="p-140" id="p-140" id="p-140" id="p-140"
[000140] Kinetic analysis- All anti-human factor D Fabs were diluted in PBS buffer. Each sample was prepared in a series of concentrations: 12.5 nM, 25 nM, 50 nM, 75nM, 100 nM, 125 nM, and 150 nM, with 40 pi injection pulse at high acquisition rate. Regeneration was accomplished by applying 5 pi pulse of 10 mM Glycine at pH 1.5. Kinetic parameters were obtained by fitting Fabs binding traces to 1:1 binding model under pseudo-first order kinetic using BIAvaluation version 46 3.0. The results are presented in Table 4 below. All data are obtained by global fitting routine.
Table 4 BIAcore Results Fab Clone ka (M-1s-1) kd (s-1) Kd (M) Anti-factor D Fab 315 7.1x105 2.7x10"4 3.7x10"10 Anti-factor D Fab 416 8.2x105 1.8x10"4 3.3x10"10 Anti-factor D Fab 345 6.8x105 3.5x10"4 .1x10"10 Anti-factor D Fab 250 .7x105 1.9x10"4 3.3x10"10 Anti-factor D Fab 56 3.6x105 9.8x10"4 2.7x10"9 chimeric 4.4x105 1.2x10"3 2.7x10"9 Anti-factor D Fab 111 3.3x105 3.7x10"4 1.14x10"9 id="p-141" id="p-141" id="p-141" id="p-141"
[000141] Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the invention described herein. Such equivalents are intended to be encompassed by the following claims. id="p-142" id="p-142" id="p-142" id="p-142"
[000142] The term 'comprising' as used in this specification and claims means 'consisting at least in part of. When interpreting statements in this specification and claims which includes the 'comprising', other features besides the features prefaced by this term in each statement can also be present. Related terms such as 'comprise' and 'comprised' are to be interpreted in similar manner. id="p-143" id="p-143" id="p-143" id="p-143"
[000143] In this specification where reference has been made to patent specifications, other external documents, or other sources of information, this is generally for the purpose of providing a context for discussing the features of the invention. Unless specifically stated otherwise, reference to such external documents is not to be construed as an admission that such documents, or such sources of information, in any jurisdiction, are prior art, or form part of the common general knowledge in the art. 47

Claims (39)

WHAT WE CLAIM IS:
1. An anti-Factor D antibody or antibody fragment thereof, wherein the antibody has a variable light chain comprising a CDR-L1 having the sequence of SEQ ID NO: 16; a CDR-L2 having the sequence of SEQ ID NO: 17, 21 or 24; and a CDR-L3 having the sequence of SEQ ID NO: 18, 19 or 22; and a variable heavy chain comprising a CDR-H1 having the sequence of SEQ ID NO: 13, 23 or 25; a CDR-H2 having the sequence of SEQ ID NO: 14; and a CDR-H3 having the sequence of SEQ ID NO: 15 or 20 with the proviso that the antibody or fragment does not comprise a heavy chain variable domain amino acid sequence of SEQ ID NO: 1 and a light chain variable domain amino acid sequence of SEQ ID NO: 2.
2. The anti-Factor D antibody or fragment of claim 1, wherein the antibody has a variable light chain comprising a CDR-L1 having the sequence of SEQ ID NO: 16; a CDR-L2 having the sequence of SEQ ID NO: 21 or 24; and a CDR-L3 having the sequence of SEQ ID NO: 18, 19 or 22; and a variable heavy chain comprising a CDR-H1 having the sequence of SEQ ID NO: 13, 23 or 25; a CDR-H2 having the sequence of SEQ ID NO: 14; and a CDR-H3 having the sequence of SEQ ID NO: 15 or 20.
3. The anti-Factor D antibody or fragment of claim 1, wherein the antibody has a variable light chain comprising a CDR-L1 having the sequence of SEQ ID NO: 16; a CDR-L2 having the sequence of SEQ ID NO: 17, 21 or 24; and a CDR-L3 having the sequence of SEQ ID NO: 19 or 22, and a variable heavy chain comprising a CDR-H1 having the sequence of SEQ ID NO: 13, 23 or 25; a CDR-H2 having the sequence of SEQ ID NO: 14; and a CDR-H3 having the sequence of SEQ ID NO: 15 or 20.
4. The anti-Factor D antibody or fragment of claim 1, wherein the antibody has a variable light chain comprising a CDR-L1 having the sequence of SEQ ID NO: 16; a CDR-L2 having the sequence of SEQ ID NO: 17, 21 or 24; and a CDR-L3 having the sequence of SEQ ID NO: 18, 19 or 22; and a variable heavy chain comprising a CDR-H1 having the sequence of SEQ ID NO: 23 or 25; a CDR-H2 having the sequence of SEQ ID NO: 14; and a CDR-H3 having the sequence of SEQ ID NO: 15 or 20. 48
5. The anti-Factor D antibody or fragment of claim 1, wherein the antibody has a variable light chain comprising a CDR-L1 having the sequence of SEQ ID NO: 16; a CDR-L2 having the sequence of SEQ ID NO: 17, 21 or 24; and a CDR-L3 having the sequence of SEQ ID NO: 18, 19 or 22; and a variable heavy chain comprising a CDR-H1 having the sequence of SEQ ID NO: 13, 23 or 25; a CDR-H2 having the sequence of SEQ ID NO: 14; and a CDR-H3 having the sequence of SEQ ID NO: 20.
6. The anti-Factor D antibody or fragment of claim 1, wherein the antibody comprises a heavy chain variable domain amino acid sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12.
7. The anti-Factor D antibody or fragment of claim 6, wherein the antibody comprises a heavy chain variable domain amino acid sequence of SEQ ID NO: 8.
8. The anti-Factor D antibody or fragment of claim 1, wherein the antibody comprises a light chain variable domain amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9 or SEQ ID NO: 11.
9. The anti-Factor D antibody or fragment of claim 8, wherein the antibody comprises a light chain variable domain amino acid sequence of SEQ ID NO: 7.
10. An anti-Factor D antibody or antibody fragment thereof, wherein the antibody comprises a heavy chain variable domain amino acid sequence of SEQ ID NO: 6, SEQ ID NO: 8, SEQ ID NO: 10 or SEQ ID NO: 12, and a light chain variable domain amino acid sequence of SEQ ID NO: 5, SEQ ID NO: 7, SEQ ID NO: 9 or SEQ ID NO: 11.
11. The anti-Factor D antibody or fragment of claim 10, wherein the antibody comprises the variable domain sequence of SEQ ID NO: 5 and the variable domain sequence of SEQ ID NO: 6.
12. The anti-Factor D antibody or fragment of claim 10, wherein the antibody comprises the variable domain sequence of SEQ ID NO: 7 and the variable domain sequence of SEQ ID NO: 8. 49
13. The anti-Factor D antibody or fragment of claim 10, wherein the antibody comprises the variable domain sequence of SEQ ID NO: 9 and the variable domain sequence of SEQ ID NO: 10.
14. The anti-Factor D antibody or fragment of claim 10, wherein the antibody comprises the variable domain sequence of SEQ ID NO: 11 and the variable domain sequence of SEQ ID NO: 12.
15. The anti-Factor D antibody or fragment of claim 1, wherein the antibody comprises a polypeptide comprising the following amino acid sequence: QX1QLVQSGX2E LKKPGASVKV SCKASGYTFT SYGMNWVX3QA PGQGLEWMGW INTYTGETTYADDFKGRFVF SLDTSVSTAY LQISSLKAED TAX4YYCX5REG GVNNWGQGTL VTVSS (SEQ ID NO: 27), wherein X1 is I or V; X2 is P or S; X3 is K or R; X4 is T or V; and X5 is E or A.
16. The anti-Factor D antibody or fragment of claim 1, wherein the antibody comprises a polypeptide comprising the following amino acid sequence: DIQX6TQSPSSLSX7SVGDRVTITCITSTDIDDDMNWYQQKPGKX8PK LLIX9DGNTLRPGVPSRFSX10SGSGX11DFTLTISSLQPEDVATYYCLQSDSLPYTFG QGTKLEIK (SEQ ID NO: 26), wherein X6 is V or M; X7 is M or A; X8 is P or V; X9 is S or Y; X10 is S or G and Xn is A or T.
17. The anti-Factor D antibody or fragment of claim 15, wherein the antibody further comprises a polypeptide comprising the amino acid sequence of SEQ ID NO: 26, wherein X6 is V or M; X7 is M or A; X8 is P or V; X9 is S or Y; X10 is S or G and Xn is A or T.
18. The anti-Factor D antibody or fragment of claim 16 or 17, wherein the amino acid residue at position 104 of SEQ ID NO: 26 is a valine or a leucine.
19. An anti-Factor D antibody or antibody fragment thereof, wherein the antibody has a variable light chain comprising a CDR-L1 having the sequence of SEQ ID NO: 16; a CDR-L2 having the sequence of SEQ ID NO: 17; and a CDR-L3 having the sequence of SEQ ID NO: 19; and a variable heavy chain comprising a CDR-H1 having the sequence of SEQ ID NO: 13; a CDR-H2 having the sequence of SEQ ID NO: 14; and a CDR-H3 having the sequence of SEQ ID NO: 20. 50
20. An anti-Factor D antibody or antibody fragment thereof, wherein the antibody comprises a light chain variable domain having the amino acid sequence of SEQ ID NO: 7 and a heavy chain variable domain having the amino acid sequence of SEQ ID NO: 8.
21. The anti-Factor D antibody or fragment of any one of claims 8, 9, 10, 12 and 20, wherein the amino acid residue at position 104 of SEQ ID NO: 7 is a valine or a leucine.
22. The anti-Factor D antibody or fragment of any one of claims 1-21, wherein the antibody is humanized antibody.
23. A variable domain of the anti-Factor D antibody of any one of claims 1 -22.
24. An isolated nucleic acid encoding the anti-Factor D antibody or fragment of any one of claims 1 -22, or the variable domain of claim 23.
25. A vector comprising the nucleic acid of claim 24.
26. An isolated host cell comprising the vector of claim 25.
27. A composition comprising the anti-Factor D antibody or fragment of any one of claims 1 -22, or the variable domain of claim 23.
28. Use of an anti-Factor D antibody or antibody fragment as claimed in any one of claims 1-22, or the variable domain of claim 23 in the preparation of a medicament for the treatment of complement mediated disorders.
29. The use according to claim 28, wherein the disorder is an ocular disease
30. The use according to claim 29, wherein the ocular disease is age-related macular degeneration or diabetic retinopathy.
31. A method of producing an anti-Factor D antibody or antibody fragment or a variable domain of an anti-Factor D antibody, comprising culturing the host cell of claim 24. 51
32. An anti-Factor D antibody or antibody fragment thereof as claimed in any one of claims 1-22, substantially as herein described with reference to any example thereof.
33. A variable domain as claimed in claim 23, substantially as herein described with reference to any example thereof.
34. An isolated nucleic acid as claim in claim 24, substantially as herein described with reference to any example thereof.
35. A vector as claimed in claim 25, substantially as herein described with reference to any example thereof.
36. A host cell as claimed in claim 26, substantially as herein described with reference to any example thereof.
37. A composition as claimed in claim 27, substantially as herein described with reference to any example thereof.
38. A use as claimed in any one of claims 28 to 30, substantially as herein described with reference to any example thereof.
39. A method as claimed in claim 31, substantially as herein described with reference to any example thereof. 52
NZ576812A 2006-11-02 2007-10-31 Humanized anti-factor d antibodies NZ576812A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US85650506P 2006-11-02 2006-11-02
PCT/US2007/083172 WO2008055206A2 (en) 2006-11-02 2007-10-31 Humanized anti-factor d antibodies

Publications (1)

Publication Number Publication Date
NZ576812A true NZ576812A (en) 2011-11-25

Family

ID=39345075

Family Applications (3)

Application Number Title Priority Date Filing Date
NZ609813A NZ609813A (en) 2006-11-02 2007-10-31 Humanized anti-factor d antibodies and uses thereof
NZ596042A NZ596042A (en) 2006-11-02 2007-10-31 Humanized anti-factor d antibodies
NZ576812A NZ576812A (en) 2006-11-02 2007-10-31 Humanized anti-factor d antibodies

Family Applications Before (2)

Application Number Title Priority Date Filing Date
NZ609813A NZ609813A (en) 2006-11-02 2007-10-31 Humanized anti-factor d antibodies and uses thereof
NZ596042A NZ596042A (en) 2006-11-02 2007-10-31 Humanized anti-factor d antibodies

Country Status (35)

Country Link
US (10) US8067002B2 (en)
EP (4) EP2097455B1 (en)
JP (6) JP2010508819A (en)
KR (6) KR20170110727A (en)
CN (7) CN106188304A (en)
AR (2) AR063760A1 (en)
AU (1) AU2007313685C1 (en)
BR (1) BRPI0716299A2 (en)
CA (2) CA2939806A1 (en)
CL (1) CL2007003161A1 (en)
CO (1) CO6190543A2 (en)
CR (1) CR10827A (en)
DK (2) DK2097455T3 (en)
EC (1) ECSP099379A (en)
ES (2) ES2700609T3 (en)
HK (4) HK1138018A1 (en)
HR (1) HRP20181969T1 (en)
IL (3) IL198512A (en)
LT (1) LT2907827T (en)
MA (1) MA30962B1 (en)
MX (1) MX2009004665A (en)
MY (2) MY157948A (en)
NO (1) NO20092121L (en)
NZ (3) NZ609813A (en)
PE (2) PE20121034A1 (en)
PH (1) PH12015501763A1 (en)
PL (2) PL2097455T3 (en)
PT (2) PT2097455E (en)
RS (1) RS58233B1 (en)
RU (3) RU2474589C9 (en)
SI (2) SI2907827T1 (en)
TW (5) TW201843170A (en)
UA (2) UA116614C2 (en)
WO (1) WO2008055206A2 (en)
ZA (2) ZA200903088B (en)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60136272D1 (en) * 2000-04-29 2008-12-04 Univ Iowa Res Found DIAGNOSTICS AND THERAPEUTICS FOR MACULAR DEGENERATION DISEASES
UA99591C2 (en) 2005-11-04 2012-09-10 Дженентек, Инк. Use of complement pathway inhibitors to treat ocular diseases
CA2656063C (en) 2006-06-21 2016-10-18 Musc Foundation For Research Development Targeting complement factor h for treatment of diseases
PL2097455T3 (en) 2006-11-02 2015-04-30 Genentech Inc Humanized anti-factor d antibodies
AR066660A1 (en) * 2007-05-23 2009-09-02 Genentech Inc PREVENTION AND TREATMENT OF EYE CONDITIONS ASSOCIATED WITH THEIR COMPLEMENT
CR20170001A (en) * 2008-04-28 2017-08-10 Genentech Inc ANTI FACTOR D HUMANIZED ANTIBODIES
US20100260668A1 (en) * 2008-04-29 2010-10-14 Abbott Laboratories Dual Variable Domain Immunoglobulins and Uses Thereof
EP2282769A4 (en) * 2008-04-29 2012-04-25 Abbott Lab Dual variable domain immunoglobulins and uses thereof
EP2297209A4 (en) * 2008-06-03 2012-08-01 Abbott Lab Dual variable domain immunoglobulins and uses thereof
JP5723769B2 (en) * 2008-06-03 2015-05-27 アッヴィ・インコーポレイテッド Dual variable domain immunoglobulins and uses thereof
EP2321422A4 (en) * 2008-07-08 2013-06-19 Abbvie Inc Prostaglandin e2 dual variable domain immunoglobulins and uses thereof
US8918657B2 (en) 2008-09-08 2014-12-23 Virginia Tech Intellectual Properties Systems, devices, and/or methods for managing energy usage
JP2012516153A (en) 2009-01-29 2012-07-19 アボット・ラボラトリーズ IL-1 binding protein
AU2010266127B2 (en) 2009-07-02 2015-11-05 Musc Foundation For Research Development Methods of stimulating liver regeneration
TW201109438A (en) * 2009-07-29 2011-03-16 Abbott Lab Dual variable domain immunoglobulins and uses thereof
KR20110020642A (en) 2009-08-24 2011-03-03 삼성전자주식회사 Apparatus and method for providing gui interacting according to recognized user approach
SG178602A1 (en) * 2009-09-01 2012-04-27 Abbott Lab Dual variable domain immunoglobulins and uses thereof
RU2012119788A (en) * 2009-10-15 2013-11-20 Эбботт Лэборетриз BINDING IL-1 PROTEINS
WO2011047262A2 (en) * 2009-10-15 2011-04-21 Abbott Laboratories Dual variable domain immunoglobulins and uses thereof
UY32979A (en) 2009-10-28 2011-02-28 Abbott Lab IMMUNOGLOBULINS WITH DUAL VARIABLE DOMAIN AND USES OF THE SAME
US20110165648A1 (en) 2009-11-04 2011-07-07 Menno Van Lookeren Campagne Co-crystal structure of factor D and anti-factor D antibody
EP2496259B1 (en) 2009-11-05 2017-02-22 Alexion Pharmaceuticals, Inc. Treatment of paroxysmal nocturnal hemoglobinuria
US9650447B2 (en) 2010-05-14 2017-05-16 The Regents Of The University Of Colorado, A Body Corporate Complement receptor 2 (CR2) targeting groups
EA201291328A1 (en) 2010-06-22 2013-10-30 Дзе Риджентс Оф Дзе Юниверсити Оф Колорадо, Э Боди Корпорейт ANTIBODIES TO C3d FRAGMENT OF COMPONENT 3
JP2013537415A (en) 2010-08-03 2013-10-03 アッヴィ・インコーポレイテッド Dual variable domain immunoglobulins and uses thereof
CA2809433A1 (en) 2010-08-26 2012-03-01 Abbvie Inc. Dual variable domain immunoglobulins and uses thereof
BR112013015944A2 (en) 2010-12-21 2018-06-19 Abbvie Inc Bispecific double-domain alpha and beta variable domain immunoglobulins and their uses.
KR20140027090A (en) 2011-01-04 2014-03-06 노파르티스 아게 Indole compounds or analogues thereof useful for the treatment of age-related macular degeneration (amd)
US9120870B2 (en) 2011-12-30 2015-09-01 Abbvie Inc. Dual specific binding proteins directed against IL-13 and IL-17
US9487483B2 (en) 2012-06-28 2016-11-08 Novartis Ag Complement pathway modulators and uses thereof
EP2867224B1 (en) 2012-06-28 2017-07-26 Novartis AG Pyrrolidine derivatives and their use as complement pathway modulators
WO2014002054A1 (en) 2012-06-28 2014-01-03 Novartis Ag Pyrrolidine derivatives and their use as complement pathway modulators
US9815819B2 (en) 2012-06-28 2017-11-14 Novartis Ag Complement pathway modulators and uses thereof
WO2014002052A1 (en) 2012-06-28 2014-01-03 Novartis Ag Pyrrolidine derivatives and their use as complement pathway modulators
US9550755B2 (en) 2012-07-12 2017-01-24 Novartis Ag Complement pathway modulators and uses thereof
US9670276B2 (en) 2012-07-12 2017-06-06 Abbvie Inc. IL-1 binding proteins
US10413620B2 (en) 2012-08-17 2019-09-17 The Regents Of The University Of Colorado, A Body Corporate Light-emitting versions of the monoclonal antibody to C3D (MAB 3D29) for imaging
WO2014028865A1 (en) 2012-08-17 2014-02-20 The Regents Of The University Of Colorado, A Body Corporate Compositions and methods for detecting complement activation
SI2898086T1 (en) 2012-09-19 2019-03-29 F. Hoffmann-La Roche Ag Methods and compositions for preventing norleucine misincorporation into proteins
BR112015009961B1 (en) 2012-11-01 2020-10-20 Abbvie Inc. binding protein capable of binding to dll4 and vegf, as well as a composition comprising it as a composition comprising it
WO2014144280A2 (en) 2013-03-15 2014-09-18 Abbvie Inc. DUAL SPECIFIC BINDING PROTEINS DIRECTED AGAINST IL-1β AND / OR IL-17
EP3290922A1 (en) 2013-08-07 2018-03-07 Alexion Pharmaceuticals, Inc. Atypical hemolytic uremic syndrome (ahus) biomarker proteins
KR20180021234A (en) * 2013-08-12 2018-02-28 제넨테크, 인크. Compositions and method for treating complement-associated conditions
CA2944712A1 (en) 2014-05-01 2015-11-05 Genentech, Inc. Anti-factor d antibody variants and uses thereof
US9840553B2 (en) 2014-06-28 2017-12-12 Kodiak Sciences Inc. Dual PDGF/VEGF antagonists
WO2016094881A2 (en) 2014-12-11 2016-06-16 Abbvie Inc. Lrp-8 binding proteins
TW201710286A (en) 2015-06-15 2017-03-16 艾伯維有限公司 Binding proteins against VEGF, PDGF, and/or their receptors
CA3003647A1 (en) * 2015-10-30 2017-05-04 Genentech, Inc. Anti-factor d antibody formulations
JP2018534930A (en) * 2015-10-30 2018-11-29 ジェネンテック, インコーポレイテッド Anti-factor D antibodies and conjugates
EP3368682B1 (en) 2015-10-30 2019-12-11 H. Hoffnabb-La Roche Ag Methods of measuring factor d activity and potency of factor d inhibitors
US10654932B2 (en) 2015-10-30 2020-05-19 Genentech, Inc. Anti-factor D antibody variant conjugates and uses thereof
US10421821B2 (en) 2015-10-30 2019-09-24 Genentech, Inc. Anti-HtrA1 antibodies and methods of use thereof
IL260323B1 (en) 2015-12-30 2024-09-01 Kodiak Sciences Inc Antibodies and conjugates thereof
AU2017210042B2 (en) 2016-01-20 2021-01-21 396419 B.C. Ltd. Compositions and methods for inhibiting Factor D
WO2017184619A2 (en) 2016-04-18 2017-10-26 Celldex Therapeutics, Inc. Agonistic antibodies that bind human cd40 and uses thereof
PL3476399T3 (en) * 2016-06-23 2022-06-20 Jiangsu Hengrui Medicine Co. Ltd. Lag-3 antibody, antigen-binding fragment thereof, and pharmaceutical application thereof
EP3526248A4 (en) 2016-10-17 2020-07-08 Musc Foundation for Research Development Compositions and methods for treating central nervous system injury
WO2018136827A1 (en) 2017-01-20 2018-07-26 Vitrisa Therapeutics, Inc. Stem-loop compositions and methods for inhibiting factor d
EP3580241A4 (en) 2017-02-10 2021-01-06 The Trustees Of The University Of Pennsylvania Anti-factor d antibodies and uses thereof
CN106905431B (en) * 2017-04-10 2020-01-17 旭华(上海)生物研发中心有限公司 Monoclonal antibody against human complement factor D and use thereof
AU2018250695A1 (en) * 2017-04-14 2019-11-07 Kodiak Sciences Inc. Complement factor D antagonist antibodies and conjugates thereof
FR3071483B1 (en) * 2017-09-27 2020-11-27 Airbus Operations Sas TURNING MONITORING SYSTEM OF A LANDING GEAR WHEEL OF AN AIRCRAFT
WO2019109238A1 (en) * 2017-12-05 2019-06-13 Lyvgen Biopharma Co., Ltd. Anti-cd137 antibodies and uses thereof
GB201800620D0 (en) 2018-01-15 2018-02-28 Univ Manchester C3b Binding Polypeptide
US12071476B2 (en) 2018-03-02 2024-08-27 Kodiak Sciences Inc. IL-6 antibodies and fusion constructs and conjugates thereof
GB2583560A (en) 2018-12-11 2020-11-04 Admirx Inc Fusion protein constructs for complement associated disease
US11166910B2 (en) 2019-01-25 2021-11-09 Nordiccan A/S Cannabinoid chewing gum with sugar alcohols
CN110240652B (en) * 2019-06-05 2022-09-06 百奥泰生物制药股份有限公司 Anti-complement factor D antibodies and uses thereof
US11912784B2 (en) 2019-10-10 2024-02-27 Kodiak Sciences Inc. Methods of treating an eye disorder

Family Cites Families (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3773919A (en) 1969-10-23 1973-11-20 Du Pont Polylactide-drug mixtures
US4376110A (en) 1980-08-04 1983-03-08 Hybritech, Incorporated Immunometric assays using monoclonal antibodies
US4560655A (en) 1982-12-16 1985-12-24 Immunex Corporation Serum-free cell culture medium and process for making same
US4657866A (en) 1982-12-21 1987-04-14 Sudhir Kumar Serum-free, synthetic, completely chemically defined tissue culture media
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4767704A (en) 1983-10-07 1988-08-30 Columbia University In The City Of New York Protein-free culture medium
US4737456A (en) 1985-05-09 1988-04-12 Syntex (U.S.A.) Inc. Reducing interference in ligand-receptor binding assays
GB8607679D0 (en) 1986-03-27 1986-04-30 Winter G P Recombinant dna product
US5256642A (en) * 1988-04-01 1993-10-26 The Johns Hopkins University Compositions of soluble complement receptor 1 (CR1) and a thrombolytic agent, and the methods of use thereof
US6048728A (en) 1988-09-23 2000-04-11 Chiron Corporation Cell culture medium for enhanced cell growth, culture longevity, and product expression
CA2018228C (en) 1989-06-05 1996-02-27 Nancy L. Parenteau Cell culture systems and media
US5122469A (en) 1990-10-03 1992-06-16 Genentech, Inc. Method for culturing Chinese hamster ovary cells to improve production of recombinant proteins
LU91067I2 (en) 1991-06-14 2004-04-02 Genentech Inc Trastuzumab and its variants and immunochemical derivatives including immotoxins
US5456909A (en) * 1992-08-07 1995-10-10 T Cell Sciences, Inc. Glycoform fractions of recombinant soluble complement receptor 1 (sCR1) having extended half-lives in vivo
AU687755B2 (en) 1992-08-21 1998-03-05 Genentech Inc. Method for treating an LFA-1-mediated disorder
US5861156A (en) * 1993-01-08 1999-01-19 Creative Biomolecules Methods of delivering agents to target cells
US5856300A (en) * 1994-05-12 1999-01-05 T Cell Sciences, Inc. Compositions comprising complement related proteins and carbohydrates, and methods for producing and using said compositions
US5679546A (en) * 1993-09-24 1997-10-21 Cytomed, Inc. Chimeric proteins which block complement activation
US5627264A (en) * 1994-03-03 1997-05-06 Alexion Pharmaceuticals, Inc. Chimeric complement inhibitor proteins
AU2191795A (en) * 1994-03-23 1995-10-09 Alexion Pharmaceuticals, Inc. Method for reducing immune and hemostatic dysfunctions during extracorporeal circulation
US5534615A (en) * 1994-04-25 1996-07-09 Genentech, Inc. Cardiac hypertrophy factor and uses therefor
US6074642A (en) 1994-05-02 2000-06-13 Alexion Pharmaceuticals, Inc. Use of antibodies specific to human complement component C5 for the treatment of glomerulonephritis
US5679564A (en) * 1994-10-05 1997-10-21 Antex Biologics, Inc. Methods for producing enhanced antigenic campylobacter bacteria and vaccines
WO2002008284A2 (en) 2000-07-20 2002-01-31 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
US20050197285A1 (en) * 1997-03-07 2005-09-08 Rosen Craig A. Human secreted proteins
US6472520B2 (en) * 1997-03-21 2002-10-29 The Trustees Of Columbia University In The City Of New York Rat PEG-3 promoter
WO1999027098A2 (en) 1997-11-21 1999-06-03 Genentech, Inc. A-33 related antigens and their pharmacological uses
ATE335511T1 (en) * 1997-08-26 2006-09-15 Amgen Fremont Inc A METHOD FOR INHIBITING COMPLEMENT ACTIVATION VIA AN ALTERNATIVE PATHWAY
US6410708B1 (en) * 1997-11-21 2002-06-25 Genentech, Inc. Nucleic acids encoding A-33 related antigen polypeptides
US8007798B2 (en) * 1997-11-21 2011-08-30 Genentech, Inc. Treatment of complement-associated disorders
US8088386B2 (en) 1998-03-20 2012-01-03 Genentech, Inc. Treatment of complement-associated disorders
US7419663B2 (en) * 1998-03-20 2008-09-02 Genentech, Inc. Treatment of complement-associated disorders
US7192589B2 (en) * 1998-09-16 2007-03-20 Genentech, Inc. Treatment of inflammatory disorders with STIgMA immunoadhesins
US7282565B2 (en) * 1998-03-20 2007-10-16 Genentech, Inc. PRO362 polypeptides
AU2577799A (en) 1998-02-09 1999-08-23 Human Genome Sciences, Inc. 45 human secreted proteins
US7112327B2 (en) * 1998-02-20 2006-09-26 Tanox, Inc. Inhibition of complement activation
US6956107B2 (en) 1998-02-20 2005-10-18 Tanox, Inc. Inhibitors of complement activation
ES2488819T3 (en) * 1998-02-20 2014-08-29 Genentech, Inc. Inhibitors of complement activation
PT1490386E (en) 1998-03-10 2008-11-24 Genentech Inc Novel polypeptide and nucleic acids encoding the same
AU5587799A (en) 1998-08-27 2000-03-21 Incyte Pharmaceuticals, Inc. Protein transport-associated molecules
EP1141285A2 (en) 1998-12-16 2001-10-10 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
JP3993746B2 (en) 1998-12-22 2007-10-17 ジェネンテック・インコーポレーテッド Compositions and methods for inhibiting neoplastic cell growth
KR101155191B1 (en) 1999-01-15 2012-06-13 제넨테크, 인크. Polypeptide Variants with Altered Effector Function
CA2362427A1 (en) 1999-03-08 2000-09-14 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
CZ303128B6 (en) 1999-03-11 2012-04-18 Laboratoires Serono Sa Confluency Regulated Adhesion Molecule 1 CRAM-1, encoding nucleic acid thereof, antibody and use
US6642353B1 (en) * 1999-03-17 2003-11-04 Chugai Seiyaku Kabushiki Kaisha Peptide ligands for the erythropoietin receptor
AU2883900A (en) 1999-07-07 2001-01-30 Genentech Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
JP2003514541A (en) 1999-11-19 2003-04-22 ヒューマン ジノーム サイエンシーズ, インコーポレイテッド 18 human secreted proteins
EP1690872A3 (en) 1999-12-01 2006-08-23 Genentech, Inc. Composition and methods for the diagnosis of tumours
ATE435873T1 (en) * 2000-03-23 2009-07-15 Genentech Inc ANTI-C2/C2A INHIBITORS FOR COMPLEMENT ACTIVATION
DE60136272D1 (en) * 2000-04-29 2008-12-04 Univ Iowa Res Found DIAGNOSTICS AND THERAPEUTICS FOR MACULAR DEGENERATION DISEASES
CA2412211A1 (en) 2000-06-23 2002-01-03 Genetech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP2113516B1 (en) * 2000-10-10 2014-05-21 Genentech, Inc. Antibodies against C5 inhibiting type II endothelial cell activation
WO2002030986A2 (en) 2000-10-13 2002-04-18 Biogen, Inc. HUMANIZED ANTI-LT-β-R ANTIBODIES
EP1425042B2 (en) * 2001-08-17 2016-02-10 Genentech, Inc. Complement pathway inhibitors binding to c5 and c5a without preventing the formation of c5b
TWI323265B (en) 2002-08-06 2010-04-11 Glaxo Group Ltd Antibodies
US20040152105A1 (en) * 2002-09-06 2004-08-05 Cytos Biotechnology Ag. Immune modulatory compounds and methods
US7816497B2 (en) * 2002-10-30 2010-10-19 University Of Kentucky Compositions and methods for inhibiting drusen complement components C3a and C5a for the treatment of age-related macular degeneration
RU2232991C1 (en) * 2003-04-09 2004-07-20 Государственное учреждение "Московский научно-исследовательский институт эпидемиологии и микробиологии им. Г.Н. Габричевского" Method for assay of functional activity of human complement factor d
US7709610B2 (en) 2003-05-08 2010-05-04 Facet Biotech Corporation Therapeutic use of anti-CS1 antibodies
WO2005014849A2 (en) * 2003-07-03 2005-02-17 Euro-Celtique, S.A. Genes associated with responses to neuropathic pain
WO2005025509A2 (en) 2003-09-11 2005-03-24 Board Of Regents, The University Of Texas System Methods and materials for treating autoimmune diseases and conditions
US20050169921A1 (en) * 2004-02-03 2005-08-04 Leonard Bell Method of treating hemolytic disease
US7794713B2 (en) 2004-04-07 2010-09-14 Lpath, Inc. Compositions and methods for the treatment and prevention of hyperproliferative diseases
ES2375490T3 (en) 2004-11-18 2012-03-01 Yale University METHODS AND COMPOSITIONS FOR DIAGNOSING MACULAR DEGENERATION RELATED TO AGE.
WO2006071856A2 (en) 2004-12-23 2006-07-06 Glycofi, Inc. Immunoglobulins comprising predominantly a man5glcnac2 glycoform
CN103920142A (en) 2005-02-14 2014-07-16 爱荷华大学研究基金会 Methods And Reagents For Treatment Of Age-related Macular Degeneration
FI118793B (en) * 2005-07-11 2008-03-31 Olli Friman Roller skate wheel roller bearing protection plate
PL1951279T3 (en) 2005-10-08 2017-12-29 Apellis Pharmaceuticals, Inc. Compstatin and analogs thereof for eye disorders
UA99591C2 (en) 2005-11-04 2012-09-10 Дженентек, Инк. Use of complement pathway inhibitors to treat ocular diseases
US20070190057A1 (en) 2006-01-23 2007-08-16 Jian Wu Methods for modulating mannose content of recombinant proteins
US7941135B2 (en) 2006-03-22 2011-05-10 Alcatel-Lucent Usa Inc. Methods of performing live monitoring of a wireless communication network
PL2097455T3 (en) * 2006-11-02 2015-04-30 Genentech Inc Humanized anti-factor d antibodies
AR066660A1 (en) 2007-05-23 2009-09-02 Genentech Inc PREVENTION AND TREATMENT OF EYE CONDITIONS ASSOCIATED WITH THEIR COMPLEMENT
CR20170001A (en) * 2008-04-28 2017-08-10 Genentech Inc ANTI FACTOR D HUMANIZED ANTIBODIES

Also Published As

Publication number Publication date
NO20092121L (en) 2009-07-24
RU2019102393A (en) 2020-07-29
EP2097455A2 (en) 2009-09-09
UA116614C2 (en) 2018-04-25
RU2474589C2 (en) 2013-02-10
MA30962B1 (en) 2009-12-01
RU2009120699A (en) 2010-12-10
EP2097455B1 (en) 2014-10-22
ECSP099379A (en) 2009-07-31
TWI472535B (en) 2015-02-11
EP2907827B1 (en) 2018-09-19
JP2017200492A (en) 2017-11-09
AR100225A2 (en) 2016-09-21
US20160002353A1 (en) 2016-01-07
CN106188299A (en) 2016-12-07
CN106188304A (en) 2016-12-07
US8193329B2 (en) 2012-06-05
NZ596042A (en) 2013-06-28
CN106188303A (en) 2016-12-07
US8187604B2 (en) 2012-05-29
HRP20181969T1 (en) 2019-02-08
US20110165622A1 (en) 2011-07-07
HK1213920A1 (en) 2016-07-15
CO6190543A2 (en) 2010-08-19
US20110123528A1 (en) 2011-05-26
TW201211063A (en) 2012-03-16
ES2700609T3 (en) 2019-02-18
US20160002352A1 (en) 2016-01-07
US8067002B2 (en) 2011-11-29
CA2939806A1 (en) 2008-05-08
KR20160092061A (en) 2016-08-03
AR063760A1 (en) 2009-02-18
CR10827A (en) 2009-09-07
TWI391401B (en) 2013-04-01
KR20140101873A (en) 2014-08-20
TW201716437A (en) 2017-05-16
JP2013027404A (en) 2013-02-07
US20080118506A1 (en) 2008-05-22
TW201843170A (en) 2018-12-16
LT2907827T (en) 2018-12-10
MY183804A (en) 2021-03-16
PE20081259A1 (en) 2008-10-31
PT2097455E (en) 2015-02-05
BRPI0716299A2 (en) 2013-08-13
CN101589063A (en) 2009-11-25
DK2907827T3 (en) 2019-01-02
TW201534620A (en) 2015-09-16
JP2013017490A (en) 2013-01-31
SI2907827T1 (en) 2019-02-28
UA101603C2 (en) 2013-04-25
MY157948A (en) 2016-08-30
CN105085682A (en) 2015-11-25
AU2007313685C1 (en) 2015-09-17
HK1138018A1 (en) 2010-08-13
IL198512A (en) 2015-05-31
WO2008055206A9 (en) 2008-07-17
KR101645144B1 (en) 2016-08-03
ZA200903088B (en) 2013-05-29
EP2471818A1 (en) 2012-07-04
ES2525477T3 (en) 2014-12-23
PT2907827T (en) 2018-12-04
AU2007313685A1 (en) 2008-05-08
JP2010508819A (en) 2010-03-25
SI2097455T1 (en) 2015-03-31
JP5918794B2 (en) 2016-05-18
PL2907827T3 (en) 2019-03-29
IL238517A0 (en) 2015-06-30
NZ609813A (en) 2015-01-30
MX2009004665A (en) 2009-06-18
PE20121034A1 (en) 2012-08-25
AU2007313685A8 (en) 2009-06-18
AU2007313685B2 (en) 2013-01-24
EP3466971A1 (en) 2019-04-10
CL2007003161A1 (en) 2008-05-30
HK1215712A1 (en) 2016-09-09
US20140303355A1 (en) 2014-10-09
KR20190003860A (en) 2019-01-09
PH12015501763A1 (en) 2019-04-29
IL254137A0 (en) 2017-10-31
HK1226417A1 (en) 2017-09-29
CN101589063B (en) 2016-08-31
IL238517B (en) 2018-05-31
TW200827373A (en) 2008-07-01
JP2014110810A (en) 2014-06-19
EP2907827A1 (en) 2015-08-19
KR20150046389A (en) 2015-04-29
KR20170110727A (en) 2017-10-11
KR20090078364A (en) 2009-07-17
CA2667997A1 (en) 2008-05-08
US20150376295A1 (en) 2015-12-31
ZA201300949B (en) 2016-05-25
JP2015214591A (en) 2015-12-03
US8372403B2 (en) 2013-02-12
RS58233B1 (en) 2019-03-29
RU2012147286A (en) 2014-05-20
CN106084055A (en) 2016-11-09
RU2678802C2 (en) 2019-02-01
DK2097455T3 (en) 2014-12-15
IL198512A0 (en) 2011-08-01
JP5474158B2 (en) 2014-04-16
CA2667997C (en) 2016-10-11
CN106084054A (en) 2016-11-09
RU2474589C9 (en) 2019-08-15
PL2097455T3 (en) 2015-04-30
US20170166630A1 (en) 2017-06-15
US8753826B2 (en) 2014-06-17
WO2008055206A2 (en) 2008-05-08
US20130171070A1 (en) 2013-07-04
WO2008055206A3 (en) 2008-09-04
US20120230985A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
NZ576812A (en) Humanized anti-factor d antibodies
AU2013200988B2 (en) Humanized anti-Factor D antibodies
AU2018202360A1 (en) Humanized anti-Factor D antibodies

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)
S38C Proceedings under section 38 (amendment of specification with leave of commissioner): specification amended
S38C Proceedings under section 38 (amendment of specification with leave of commissioner): specification amended
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 3 YEARS UNTIL 31 OCT 2017 BY THOMSON REUTERS

Effective date: 20140912

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 31 OCT 2018 BY THOMSON REUTERS

Effective date: 20170919

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 31 OCT 2019 BY THOMSON REUTERS

Effective date: 20180917

LAPS Patent lapsed