NZ572518A - Anchor bolt and C-shaped grooved expansion sleeve - Google Patents

Anchor bolt and C-shaped grooved expansion sleeve

Info

Publication number
NZ572518A
NZ572518A NZ572518A NZ57251807A NZ572518A NZ 572518 A NZ572518 A NZ 572518A NZ 572518 A NZ572518 A NZ 572518A NZ 57251807 A NZ57251807 A NZ 57251807A NZ 572518 A NZ572518 A NZ 572518A
Authority
NZ
New Zealand
Prior art keywords
expansion sleeve
anchor bolt
sleeve member
concrete
concrete substrate
Prior art date
Application number
NZ572518A
Inventor
Robert G Kobetsky
Michael Starozhitsky
Matthew J Reiter
Donald Broomfield
Original Assignee
Illinois Tool Works
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/598,025 external-priority patent/US7811037B2/en
Application filed by Illinois Tool Works filed Critical Illinois Tool Works
Priority to NZ596329A priority Critical patent/NZ596329A/en
Publication of NZ572518A publication Critical patent/NZ572518A/en

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Dowels (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

Disclosed is an anchor assembly adapted to be anchored within a borehole defined within a concrete substrate so as to be capable of meeting cracked concrete testing standards. The anchor assembly includes an anchor bolt with an enlarged head portion and an expansion sleeve member annularly disposed around the anchor bolt member. The expansion sleeve is formed from a sheet member rolled upon itself so as to have a C-shaped cross-sectional configuration. The expansion sleeve has a number of annular grooves disposed only upon a forward external portion. A rearward external portion of the expansion sleeve member is non-grooved and solid. In use the anchor bolt member is moved axially rearwardly through the expansion sleeve member and the enlarged head portion of the anchor bolt member will progressively expand the forward portion of the expansion sleeve member so that the annular grooves will be progressively forced into engagement with internal side wall portions of a borehole defined within a concrete substrate. Subsequently, the enlarged head portion of the anchor bolt member will progressively expand the rearward portion of the expansion sleeve member so that the non-grooved solid portion of the expansion sleeve member will be progressively forced into engagement with the internal side wall portions of the borehole. A method of performing cracked concrete testing using the anchor assembly is also disclosed.

Description

ANCHOR BOLT AND ANNULARLY GROOVED EXPANSION SLEEVE ASSEMBLY EXHIBITING HIGH PULL-OUT RESISTANCE, PARTICULARLY UNDER CRACKED CONCRETE TEST CONDITIONS CROSS-REFERENCE TO RELATED PATENT APPLICATION This patent application is related to, based upon, and effectively a utility patent application conversion from United States Provisional Patent Application Serial Number 60/810,627, which was filed on 10 June 5, 2006,- the filing date benefits of which are hereby incorporated by reference.
FIELD OF THE INVENTION The present invention relates generally to wedge 15 type anchors for use within concrete boreholes, and more particularly to a new and improved cracked concrete wedge type anchor assembly comprising an axially oriented anchor bolt and an annularly threaded or grooved expansion sleeve or clip annularly disposed around the axially oriented 20 anchor bolt, wherein the annularly threaded or grooved expansion sleeve or clip has a continuous array of annularly oriented threads, grooves, or teeth, which comprises a predetermined number of threads, grooves, or teeth disposed about the forward external peripheral 25 surface portion of the annularly threaded or grooved expansion sleeve or clip, and wherein the annularly threaded or grooved expansion sleeve or clip is fabricated from a metal sheet or plate and formed into the annularly threaded or grooved expansion sleeve or clip so as to have 30 a substantially C-shaped cross-sectional configuration which enables the annularly threaded or grooved expansion sleeve or clip to be expanded by effectively being opened as the axially oriented anchor bolt is pulled therethrough.
The internal peripheral surface of the annularly grooved expansion sleeve or clip, within the leading end 5 portion thereof, and the external peripheral surface of the axially oriented anchor bolt, within the leading end portion thereof, have predetermined inclined slopes, all of which features effectively combine and contribute to the achievement of the maximum interference area (M.I.A.) 10 or the maximum interference volume (M.I.V.) as developed between the axially oriented anchor bolt and the annularly threaded or grooved expansion sleeve or clip so as to, in turn, develop the maximum interference area (M.I.A.) or the maximum interference volume (M.I.V.) between the 15 annularly threaded or grooved expansion sleeve or clip and the internal peripheral side wall portions of a borehole formed within a concrete substrate or substructure so as ■ to force the annularly threaded or grooved expansion sleeve or clip into its anchored disposition within the 20 concrete borehole formed within the concrete substrate or substructure, and wherein further, each one of the annular threads, teeth, or grooves of the annularly threaded or grooved expansion sleeve or clip has a predetermined depth dimension so as to effectively ensure its engagement and 25 retention within the side wall portions of the borehole despite any slight expansion or contraction of the concrete substrate or substructure.
BACKGROUND OF THE INVENTION Anchoring assemblies, for use within boreholes that have been pre-drilled, for example, within concrete substructures or substrates, are of course well known in 2 the art and industry. Examples of such anchoring assemblies are disclosed, for example, within United States Patent 5,911,550 which issued to Popp et al. on June 15, 1999, United States Patent 4,929,134 which issued 5 to Bergner on May 29, 1990, United States Patent 4,904,135 which issued to Bar-thomeuf et al. on February 27, 1990, United States Patent 4,720,224 which issued to Peterken on January 19, 1988, United States Patent 1,115,205 which issued to Johnson on October 27, 1914, and United States 10 Patent 1,000,715 which issued to Caywood on August 15, 1911. Obviously, in connection with the use of such anchoring assemblies within the concrete substructures of substrates, it is desirable to develop and use anchoring assemblies wherein the same are characterized by means of 15 structural components or features which will effectively ensure the fact that the holding capabilities, or the pull-out resistance characteristics, of the anchoring assemblies will not be compromised whereby the anchoring assemblies will remain solidly affixed, or stably 20 embedded, within the concrete substrates or substructures for long periods of time despite the presence, existence, or development of various, varying, or volatile external environmental conditions. In this manner, not only will the anchoring assemblies exhibit desirably long service 25 lives, but in addition, the structural components, which have been secured to the concrete substructures or substrates by means of such anchoring assemblies, will be solidly and reliably affixed or secured to the underlying concrete substrates or substructures.
One means for effectively determining or testing the performance capabilities of such anchoring assemblies comprises an industrially accepted operational technique 3 known as cracked concrete testing which basically simulates real-world conditions, in a compressed timeframe, under laboratory testing conditions. In accordance with such operational testing, and with reference being 5 made to FIGURE 1, a block of concrete 10 has a plurality of transversely oriented rebars 12 fixedly embedded therein. A hydraulic pump 14 is operatively connected to each one of first end portions 16 of the plurality of rebars 12 by means of suitable hydraulic connectors 18, 10 and crack initiators 20, which may comprise, for example, wedge-type devices, plates, hydraulic expansion tubes, or the like, are incorporated within the concrete block 10 at predetermined locations along-the transverse extent of the concrete block 10 so as to effectively cause or initiate 15 the development or propagation of longitudinally oriented cracks 22 within the concrete block 10, at a plurality of transversely spaced locations, when the hydraulic pump 14 is operatively cycled between pulling and pushing modes of operation whereby pulling and pushing forces are 20 alternatively exerted upon the first end portions 16 of the rebars 12. In this manner, the rebars 12 effectively undergo expansion and contraction whereby, in turn, the cracks 22 are caused to be cyclically expanded or contracted between OPEN and CLOSED positions. A plurality 25 of first linearly variable displacement transformers (LVDTs) 24 are operatively associated with each one of the longitudinally extending cracks 22 so as to in fact measure the size of each crack 22 as each one of the cracks 22 is cyclically expanded or contracted between its 30 OPEN and CLOSED positions as a result of the exertion of the pulling and pushing forces upon the first end portions 16 of the rebars 12 by means of the hydraulic pump 14. 4 Continuing still further, and with reference being made to FIGURE 2, when the pump 14 is operated so as to be disposed in its mode whereby pushing forces are exerted upon the first end portions 16 of the rebars 12 so 5 as to effectively cause the cracks 22 to be disposed in their CLOSED positions, a hole 26 is drilled or bored within each one of the cracked regions 22 of the concrete block 10, and an anchor assembly 28 is installed within each one of the boreholes 26. Each one of the anchor 10 assemblies 28 is subsequently torqued to its specifications, and a predetermined sustained load, as schematically illustrated by means of the arrow L, is then applied to each one of the anchor assemblies 28 by means of a suitable spring-loaded or hydraulic pump load 15 assembly or bracket 30 that has a suitable load cell mechanism, not illustrated, operatively associated therewith so as to in fact measure the extent of the load impressed upon each one of the anchor assemblies 28. Subsequently, the hydraulic pump 14 is cyclically operated 20 so as to cause each one of the cracks 22 to be OPENED and CLOSED, by means of a predetermined amount, such as, for example, 0.012 inches (0.012") for one thousand (1000) cycles over the course of a predetermined period of time, such as, for example, three or four hours, during which 25 time each one of the anchor assemblies 28 is effectively required to exhibit sufficient pull-out resistance so as not to be permitted to move upwardly within, or relative to, the concrete block 10 by means of a distance of more than 0.120 inches (0.120") or else the particular anchor 30 assembly 28 will be considered to be a failure and therefore unacceptable for its intended usage. In connection with the monitoring of the movements of each one of the anchor assemblies 28, a second linearly variable displacement transformer (LVDT) 32, which may be operatively connected to the spring-loaded or hydraulic pump load assembly or bracket 30, may be employed to 5 measure the distance that each one of the anchor assemblies 28 may move within the concrete block 10. It is to be appreciated, for example, that the cyclic testing of the anchor assemblies 28 within the concrete block 10, wherein the cracked regions 22 of the concrete block 10 10 are cyclically OPENED and CLOSED during the one thousand (1000) times or cycles, is designed to simulate, for example, environmental conditions wherein, for example, concrete substructures or substrates may expand and contract due to variances in ambient temperature 15 conditions.
While it is noted that the aforenoted United States Patents 5,911,550, 4,929,134, 4,904,135, 4,720,224,1,115,205, and 1,000,715, which respectively issued to Popp et al., Bergner, Barthomeuf et al., 20 Peterken, Johnson, and Caywood, are directed toward and disclose various anchoring assemblies for use within concrete or similar boreholes, it is additionally noted that none of the disclosed anchoring assemblies are directed toward an anchoring assembly which is 25 specifically structured so as to assuredly satisfy or meet the requirements of the aforenoted cracked concrete testing procedures in order to ensure that not only will each anchoring assembly not exhibit failure and will in fact desirably exhibit high pull-out resistance and long 30 service lives, but in addition, that the structural components, which have been secured to the concrete substrates or substructures by means of such anchoring 6 RECEIVED at IPONZ on 8 November 2011 C AMRForiblTOGEJLU91W 22_1 .PQCVW11 «011 assemblies, will be solidly and reliably affixed or secured to the underlying concrete substrate or substructure foundations. A need therefore exists in the art for a new and improved anchoring assembly which is specifically 5 structured so as to assuredly satisfy or meet the requirements of the aforenoted cracked concrete testing procedures in order to ensure that not only will such anchoring assemblies not exhibit failure and will in fact desirably exhibit high pull-out resistance and long service 10 lives, but in addition, that the structural components, which have been secured to the concrete substrates or substructures by means of such anchoring assemblies, will be solidly and reliably affixed or secured to the underlying concrete substrates or substructures.
SUMMARY OF THE INVENTION According to one aspect of the present invention, there is provided an anchor assembly adapted to be anchored within a borehole defined within a concrete substrate so as to be 20 capable of meeting cracked concrete testing standards, comprising: an anchor bolt member having a longitudinal axis and an enlarged head portion disposed upon a forward end portion of said anchor bolt member; an expansion sleeve member having a longitudinal axis and annularly disposed 25 around said anchor bolt member and comprising a sheet member rolled upon itself so as to have a substantially C-shaped cross-sectional configuration; and a plurality of annular grooves disposed only upon a forward external peripheral portion of said expansion sleeve member, while a rearward 30 external peripheral portion of said expansion sleeve member is non-grooved and solid, such that when said anchor bolt member is moved axially rearwardly through said expansion 7 RECEIVED at IPONZ on 8 November 2011 C,\NRPurfM\DCOEJL\39 J4922_ I JXXT'7/l 1/2011 sleeve member, said enlarged head portion of said anchor bolt member will initially progressively expand said forward portion of said expansion sleeve member so that said plurality of annular grooves will be progressively forced 5 into engagement with internal peripheral side wall portions of a borehole defined within a concrete substrate so as to progressively define a progressively increased area and volume of interference with the internal peripheral side wall portions of the borehole defined within the concrete 10 substrate, and subsequently, said enlarged head portion of said anchor bolt member will progressively expand said rearward portion of said expansion sleeve member so that said non-grooved solid portion of said expansion sleeve member will be progressively forced into engagement with the 15 internal peripheral side wall portions of the borehole defined within the concrete substrate so as to achieve a maximum area and volume of interference with the internal peripheral side wall portions of the borehole defined within the concrete substrate so as to enhance the holding power 20 and pull-out resistance of said anchor assembly with respect to the borehole defined within the concrete substrate.
According to another aspect of the present invention, there is provided a method of performing cracked concrete testing within a borehole, defined within a concrete 25 substrate, using an anchor assembly, comprising the steps of: forming at least one cracked region within a concrete substrate; providing means within said concrete substrate so as to cause said at least one cracked region of said concrete substrate to be expanded and contracted between 30 OPEN and CLOSED positions; inserting an anchor bolt assembly within a borehole defined within said at least one cracked region of said concrete substrate, wherein said anchor bolt 7A RECEIVED at IPONZ on 8 November 2011 C W4S22J OOC-7/11/201 1 assembly comprises an anchor bolt member having a longitudinal axis and an enlarged head portion disposed upon a forward end portion of said anchor bolt member, an expansion sleeve member annularly disposed around said 5 anchor bolt member and comprising a sheet member rolled upon itself so as to have a substantially C-shaped cross-sectional configuration, and a plurality of annular grooves disposed only upon a forward external peripheral portion of said expansion sleeve member, while a rearward external 10 peripheral portion of said expansion sleeve member is non-grooved and solid; torquing said anchor bolt assembly to a predetermined level by moving said anchor bolt member axially rearwardly through said expansion sleeve member whereby said enlarged head portion of said anchor bolt 15 member will initially progressively expand said forward portion of said expansion sleeve member so that said plurality of annular grooves will be progressively forced into engagement with internal peripheral side wall portions of said borehole defined within said concrete substrate so 20 as to progressively define a progressively increased area and volume of interference with said internal peripheral side wall portions of said borehole defined within said concrete substrate, and subsequently, said enlarged head portion of said anchor bolt member will progressively expand 25 said rearward portion of said expansion sleeve member so that said non-grooved solid portion of said expansion sleeve member will be progressively forced into engagement with said internal peripheral side wall portions of said borehole defined within said concrete substrate so as to achieve a 30 maximum area and volume of interference with said internal peripheral side wall portions of said borehole defined within said concrete substrate so as to enhance the holding 7B RECEIVED at IPONZ on 8 November 2011 CWRP«IM®CCffiJUM?4M2_l.DOC«^l t/2021 power and pull-out resistance of said anchor assembly with respect to said borehole defined within said concrete substrate; applying a predetermined load to said anchor bolt assembly; operating said means disposed within said concrete 5 substrate so as to cyclically expand and contract said at least one cracked region of said concrete substrate between said OPEN and CLOSED positions for a predetermined number of cycles and for a predetermined period of time; and measuring the movement of said anchor bolt assembly within said at 10 least one cracked region of said concrete substrate while said at least one cracked region of said concrete substrate is cyclically expanded and contracted.
An improved wedge type anchoring assembly of preferred embodiments of the invention comprises an axially oriented 15 anchor bolt and an annularly threaded or grooved expansion sleeve or clip annularly disposed around the axially oriented anchor bolt. The annularly threaded or grooved expansion sleeve or clip has a continuous array of annularly oriented grooves, threads, or teeth, comprising a 20 predetermined number of grooves, threads, or teeth, which are disposed about the forward end external peripheral surface portion of the expansion sleeve or clip so as not to extend throughout the entire axial length of the expansion sleeve or clip. In addition, the annularly threaded or 25 grooved expansion sleeve or clip is fabricated 7C from a metal sheet or plate which is formed into the annularly grooved expansion sleeve or clip so as to have a substantially C-shaped cross-sectional configuration that enables the annularly grooved expansion sleeve or clip to 5 be expanded by effectively being opened as the axially oriented anchor bolt is pulled therethrough.
It is also noted that each one of the annular teeth, threads, or grooves of the expansion sleeve or clip has a predetermined depth dimension, as measured between 10 the root and crest portions thereof, which is larger than the distance that the cracked regions of the concrete block are opened during the cracked concrete testing technique or procedures so as to ensure the fact that the grooves, threads, or teeth of the expansion sleeve or clip 15 effectively remain embedded within the side wall portions of the borehole formed within the concrete block. In addition, the internal peripheral surface portion of the annularly grooved expansion sleeve or clip, within the leading end portion thereof, and the external peripheral 20 surface of the axially oriented anchor bolt, within the leading end portion thereof, have predetermined inclined slopes. All of these various features characteristic of the new and improved expansion sleeve or clip of the present invention effectively combine and contribute to 25 the achievement of a maximum interference area (M.I.A.) or maximum interference volume (M.I.V.) as developed between the axially oriented anchor bolt and the annularly grooved expansion sleeve or clip, so as to, in turn, be developed between the annularly grooved expansion sleeve or clip and 30 the internal peripheral side wall portions of the borehole formed within the concrete substrate or substructure so as to force the annularly grooved expansion clip or sleeve 8 RECEIVED at IPONZ on 8 November 2011 C:WmiM^O£HJ49?492MJX>C-7fl 1/2011 into its solidly affixed anchored disposition within a concrete borehole, to be formed within a concrete substrate or substructure, whereby the expansion sleeve or clip component will exhibit enhanced pull-out resistance 5 properties.
BRIEF DESCRITPION OF THE DRAWINGS The invention will now be described by way of example only with reference to the accompanying drawings in which: 10 FIGURE 1 is a schematic view of a concrete block having various structural components operatively connected thereto so as to permit the concrete block to undergo cracked concrete test ing; FIGURE 2 is a schematic view of a portion of the 15 concrete block, as illustrated within FIGURE 1, wherein an anchor bolt and expansion sleeve assembly has been inserted into one of the boreholes formed within one of the cracked concrete regions so as to be ready for performance of the cracked concrete testing procedures; FIGURE 3 is a side elevational view of a new and improved anchor bolt and expansion sleeve assembly which has been constructed in accordance with the principles and teachings of the present invention and which discloses the cooperative parts thereof; FIGURE 4 is a side elevational view of the anchor bolt component, of the new and improved anchor bolt and expansion sleeve assembly as has been illustrated 9 within FIGURE 3, illustrating in detail the various structural features characteristic of the anchor bolt component of the new and improved anchor bolt and expansion sleeve assembly of the present invention; FIGURE 5 is a side elevational view of a sheet or plate from which the new and improved expansion sleeve component, of the new and improved anchor bolt and expansion sleeve assembly as has been illustrated within FIGURE 3, can be fabricated by rolling or forming the 10 sheet or plate in such manner that the finished expansion sleeve component has a substantially tubular configuration wherein the opposite side edge portions of the sheet or plate will be mated together along a longitudinally or axially oriented seam portion; FIGURE 6 is a top plan view of the sheet or plate, as illustrated within FIGURE 5, wherein the sheet or plate is being rolled or formed in such a manner that the opposite side edge portions of the sheet or plate will be mated together along the longitudinally or axially 20 oriented seam portion whereby the resulting, new and improved expansion sleeve component, of the new and improved anchor bolt and expansion sleeve assembly, will have its substantially tubular configuration; FIGURE 7 is an end elevational view of the sheet 25 or plate, as illustrated within FIGURE 5, before the sheet or plate is rolled or formed into the new and improved expansion sleeve component of the new and improved anchor bolt and expansion sleeve assembly, showing the various structural features thereof; FIGURE 8 is an enlarged, end elevational view of the sheet or plate, as illustrated within FIGURE 7, before the sheet or plate is rolled or formed into the new and improved expansion sleeve component of the new and improved anchor bolt and expansion sleeve assembly, more clearly showing the details of the various structural 5 features thereof; FIGURE 8a is a side elevational view, similar to that of FIGURE 5, showing, however, a second embodiment of a sheet or plate from which the new and improved expansion sleeve component, of the new and improved anchor bolt and 10 expansion sleeve assembly as has been illustrated within FIGURE 3, can be fabricated by rolling or forming the sheet or plate in such manner that the finished expansion sleeve component has a substantially tubular configuration wherein the opposite side edge portions of the sheet or 15 plate will be mated together along a longitudinally or axially oriented seam portion, and wherein the plurality of circumferentially spaced, triangularly configured barbs are angularly offset with respect to the longitudinal axis of the sheet or plate from which the new and improved 20 expansion sleeve component is to be fabricated; FIGURES 9a-9k are schematic views showing the progressive incremental movement of the anchor bolt component, of the new and improved anchor bolt and expansion sleeve assembly of the present invention as 25 illustrated within FIGURE 3, relative to the expansion sleeve component of the new and improved anchor bolt and expansion sleeve assembly, whereby as the anchor bolt component is incrementally moved with respect to the new and improved expansion sleeve component, different amounts 30 of interference area, as developed between the anchor bolt component and the new and improved expansion sleeve component, are achieved; and 11 FIGURE 10 is a graph illustrating the progressive interference area, that is developed between the anchor bolt component and the new and improved expansion sleeve component, and which will, in turn, be 5 developed between the annularly grooved expansion sleeve or clip and the internal peripheral side wall portions of the borehole formed within the concrete substrate or substructure, as a function of the incremental displacement of the anchor bolt component with respect to 10 the new and improved expansion sleeve component, as the anchor bolt component is progressively drawn through the new and improved expansion sleeve component in an incremental manner, as has been illustrated within FIGURES 9a-9k.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings, and more particularly to FIGURE 3 thereof, a new and improved anchor bolt and expansion sleeve assembly, which has been 20 constructed in accordance with the principles and teachings of the present invention, and which is disclosed and generally indicated by the reference character 110, is seen to comprise an anchor bolt or threaded stud component 112 and an expansion sleeve component 114. More 25 particularly, and as can be appreciated with reference being additionally made to FIGURE 4, the anchor bolt or threaded stud component 112 is seen to comprise a shank portion 116 and a head portion 118. The rearward half of the shank portion 116 of the anchor bolt component 112 is 30 externally threaded as at 120 so as to serve as a load- bearing or load-application member in a well-known manner, while the forward half of the shank portion 116 of the 12 anchor bolt component 112 is non-threaded and comprises a stepped configuration comprising a relatively large-diameter rearwardly disposed section 122 and a relatively small-diameter forwardly disposed section 124. An annular 5 flange member 126 is provided at the juncture of the relatively large-diameter rearwardly disposed section 122 and the relatively small-diameter forwardly disposed section 124 so as to effectively define an annular shoulder portion against or upon which the rear end 10 portion of the expansion sleeve component 114 is adapted to be seated, prior to the expanded installation of the expansion sleeve component 114 within the borehole of a concrete substrate or substructure, as is illustrated within FIGURE 3 and as will become more apparent 15 hereinafter. Still further, it is seen that the head portion 118 of the anchor bolt component comprises a cylindrically configured forwardmost section 128, and a frusto-conically configured wedge-type section 130 that is interposed between, and integrally connects together, the 20 cylindrically configured forwardmost section 128 of the head portion 118 and the relatively small-diameter forwardly disposed section 124 of the shank portion 116. It is lastly noted that the external annular or peripheral surface portion of the frusto-conically configured wedge-25 type section 130 of the head portion 118 of the anchor bolt component 112 is substanitally smooth, continuous, and planar, and has an angular inclination with respect to the longitudinal axis 132 of the anchor bolt component 112, as denoted by means of the arrow A, of approximately 30 10°, the purpose of which will be discussed more fully hereinafter, although it is to be noted still further that this particular angle is for use upon, or in connection 13 with, a one-half inch (0.500") diameter anchor, whereby other angled surfaces may be used in connection with otherwise dimensioned anchors.
With reference now being made to FIGURES 5-8, it 5 is seen that the expansion sleeve component 114 is adapted to be fabricated from a metal sheet or plate having a thickness dimension of approximately 0.058 inches (0.058"), wherein, again, such dimensions are for use upon, or in connection with, a one-half inch (0.500") 10 diameter anchor, however, other expansion sleeve components, having other thickness dimensions, may be used in connection with otherwise dimensioned anchors. The expansion sleeve component 114 may be fabricated, for example, from a suitable low-carbon steel with a zinc 15 plating. This fabrication of the expansion sleeve component 114, from the metal material having the aforenoted thickness dimension, permits the expansion sleeve component 114 to be rolled into an annular or tubular structure, under the influence of forces 20 schematically illustrated by means of the arrows F,F as shown, for example, within FIGURE 6, whereby the oppositely disposed side edge portions 134,136 of the expansion sleeve component 114 will be brought toward and into near proximity or substantial contact with each other 25 so as to create a longitudinally or axially oriented seam portion. Alternatively, the expansion bolt may be fabricated from a suitable carbon steel composition which is, in turn, plated with a zinc-tin plating. The zinc-tin plating permits the expansion sleeve component 114 to 30 exhibit a desired amount of friction with respect to the borehole of the concrete substrate or substructure and yet permits the anchor bolt or threaded stud component 112 to 14 move in a desirably controlled manner with respect to the expansion sleeve component 114.
The formation of the expansion sleeve component 114 as the tubular structure having, in effect, a 5 substantially C-shaped cross-sectional configuration, as opposed to a solid tubular or annular expansion sleeve component, is a desirable feature characteristic of the new and improved expansion sleeve component 114 of the present invention because such structure permits the 10 expansion sleeve component 114 to open immediately and undergo radially outward expansion when the anchor bolt component 112 of the new and improved anchor bolt and expansion sleeve assembly 110 is moved relative to the expansion sleeve component 114. This relative movement of 15 the anchor bolt component 112 relative to the expansion sleeve component 114 causes the head portion 118 of the anchor bolt component 112 to forcefully expand the expansion sleeve component 114 into interference contact with, and the crushing of, the internal peripheral surface 20 portion of the concrete wall defining the borehole within the concrete substrate or substructure, as will be discussed and illustrated in more detail hereinafter.
This is to be contrasted with a typical solid tubular or annular expansion sleeve component which must initially 25 undergo plastic deformation, by means of the anchor bolt component, prior to achieving interference contact with, and the crushing of, the internal peripheral surface portion of the concrete wall defining the borehole within the concrete substrate or substructure.
Continuing further, it is also to be appreciated from FIGURE 5 that the expansion sleeve component 114 has a longitudinal or axial length dimension L which may comprise, for example, 0.866 inches (0.866"), again, when being used upon or in connection with a one-half inch (0.500") diameter anchor, and that a plurality of annular grooves, teeth, or threads 138, as can also be clearly 5 seen and appreciated from FIGURES 7 and 8, are provided upon the forwardmost external surface portion of the expansion sleeve component 114. More particularly, it is seen that the plurality of annular teeth, grooves, or threads 138 comprises, for example, five, contiguously 10 disposed annularly oriented grooves, teeth, or threads 138, and that the five, contiguously disposed, annularly oriented grooves, teeth, or threads 138 are only provided upon the forwardmost one-quarter portion of the expansion sleeve component 114 such that the five, contiguously 15 disposed, annularly oriented grooves, teeth, or threads 138 extend over a longitudinal or axial extent portion of approximately 0.200 inches (0.200"). The provision of the five, contiguously disposed, annularly oriented grooves, teeth, or threads 138, only upon the forwardmost one-20 quarter portion of the expansion sleeve component 114, as opposed to having such annularly oriented grooves, teeth, or threads formed upon the expansion sleeve component 114 throughout the entire longitudinal or axial length thereof, also comprises another desirable structural 25 feature characteristic of the new and improved annular expansion sleeve component 114 in that, as will be discussed and illustrated more fully in detail hereinafter, such structure enables the new and improved annular expansion sleeve component 114 to achieve a 30 predetermined maximum interference area with, and to effectively crush, the internal peripheral surface portion 16 of the concrete wall defining the borehole formed within the concrete substrate or substructure.
As can also be seen from FIGURES 5-7, a plurality of circumferentially spaced, triangularly 5 configured barbs 140 are provided upon the rearwardmost external surface portion of the expansion sleeve component 114. In this manner, as the anchor bolt and expansion sleeve assembly 110 is inserted into the borehole defined within the concrete substrate or substructure, the 10 plurality of barbs 140 will effectively bite into, or become embedded within, the internal peripheral surface portion of the concrete wall defining the borehole within the concrete substrate or substructure so as to thereby prevent rotation and reverse movement of the expansion 15 sleeve component 114 with respect to the borehole defined within the concrete substrate or substructure. Alternatively, as can be appreciated from FIGURE 8a, a second embodiment of a sheet or plate, from which a new and improved expansion sleeve component 214, of the new 20 and improved anchor bolt and expansion sleeve assembly as has been illustrated within FIGURE 3, can be fabricated by rolling or forming the sheet or plate in such manner that the finished expansion sleeve component has a substantially tubular configuration wherein the opposite 25 side edge portions of the sheet or plate will be mated together along a longitudinally or axially oriented seam portion, is disclosed. It is to be appreciated that the second embodiment expansion sleeve component 214 is substantially the same as the first embodiment expansion 30 sleeve component 114 as disclosed within, for example, FIGURE 5, except as will be described shortly hereinafter, and accordingly, those component parts of the second 17 embodiment expansion sleeve component 214, which correspond to the component parts of the first embodiment expansion sleeve component 114, will be designated by corresponding reference characters except that they will 5 be within the 200 series.
More particularly, it is to be appreciated that the only significant difference between the second embodiment expansion sleeve component 214 and the first embodiment expansion sleeve component 114 resides in the 10 orientation or disposition of the barbs 140,240 upon the respective sheet or plate from which the expansion sleeve components 114,214 are to be fabricated. More specifically, while the plurality of circumferentially spaced, triangularly configured barbs 140 of the first 15 embodiment expansion sleeve component 114 have their primary longitudinal axes 142 substantially aligned with or disposed parallel to the longitudinal axis 144 of the sheet or plate from which the expansion sleeve component 114 is to be fabricated, the plurality of 20 circumferentially spaced, triangularly configured barbs 24 0 of the second embodiment expansion sleeve component 214 have their axes 242 angularly offset or disposed at a predetermined angle A, such as, for example, 20°, with respect to the longitudinal axis 244 of the sheet or plate 25 from which the expansion sleeve component 214 is to be fabricated.
The reason for this is that as the anchor bolt and expansion sleeve assembly is inserted into the borehole defined within the concrete substrate or 30 substructure, the plurality of angularly offset barbs 240 will not only effectively bite into, or become embedded within, the internal peripheral surface portion of the 18 concrete wall defining the borehole within the concrete substrate or substructure so as to thereby prevent rotation and reverse movement of the expansion sleeve component 214 with respect to the borehole defined within 5 the concrete substrate or substructure, as was the case with the plurality of barbs 140, but in addition, since such angularly offset barbs 240 will in effect form grooves within the borehole of the concrete substrate or substructure which will be disposed at an angle to the 10 longitudinal axis of the borehole, the tendency of the expansion sleeve component 214 to effectively back itself, and the anchor bolt and expansion sleeve assembly, out of the borehole, is significantly negated because the expansion sleeve component 214 would have to effectively 15 undergo reverse angular rotation which is not normally going to occur under natural forces attendant an embedded anchor bolt and expansion sleeve assembly within a borehole of a concrete substrate or substructure. Accordingly, the anchor bolt and expansion sleeve assembly 20 will exhibit enhanced pull-out resistance characteristics.
As can also be appreciated with reference being additionally being made to FIGURE 8, it is seen that each one of the plurality of annularly oriented grooves, teeth, or threads 138 have forwardly and rearwardly disposed 25 flank surface portions that are disposed at an angle of approximately 60° with respect to each other, and that the pitch P of the grooves, teeth, or threads 138, as defined between successive ones of the plurality of grooves, teeth, or threads, as measured, for example, between 30 successive root portions of the plurality of grooves, teeth, or threads 138, is approximately 0.039 inches (0.039") in view of the fact that the grooves, teeth, or 19 threads 138 have been machined into the expansion sleeve component 114 in accordance with twenty-eight (28) threads per inch thread formation techniques. While twenty-eight (28) threads per inch is preferred, threads within the 5 range of twenty (20) to thirty-two (32) may be employed. In addition, it is to be further appreciated that, in accordance with another desirable feature which is characteristic of the present invention, each one of the annularly oriented teeth, grooves, or threads 138 has a 10 radial depth dimension D, as measured between the root portion of the particular tooth, groove, or thread, and the crest portion of the particular groove, tooth, or thread, that is within the range of 0.015-0.050 inches (0.015-0.050"). The significance of such depth dimensions 15 is that when, for example, the new and improved anchor bolt and expansion sleeve assembly 110 is inserted within a borehole defined within a concrete substrate or concrete substructure, and when the aforenoted cracked concrete testing procedures are subsequently conducted in 20 connection with the new and improved anchor bolt and expansion sleeve assembly 110 wherein, for example, as has been noted herein-before, the cracked concrete is cycled between its OPEN and CLOSED states, comprising, for example, the predetermined amount or distance of 0.012 25 inches(0.012"), the annularly oriented grooves, teeth, or threads 138 will in fact remain embedded within the internal peripheral side wall portions of the boreholes which have been previously formed within the concrete substrate or substructure. As has also been noted 30 hereinbefore, such testing procedures have been designed to simulate real-world conditions so as to ensure that anchor assemblies used within on-site locations will exhibit satisfactory performance characteristics and will not exhibit or experience failure.
Alternatively, it is to be noted that different ones of the annularly oriented grooves, teeth, or threads 5 138 may have different radial depth dimensions D, as measured between the root portion of the particular tooth, groove, or thread, and the crest portion of the particular groove, tooth, or thread, however, the radial depth dimension would still be sufficiently large so as to 10 ensure the fact that the teeth, grooves, or threads not only remain embedded within the internal side wall portions of the concrete block 10 during the cracked concrete testing procedures, but just as importantly, that the teeth, grooves, or threads would remain embedded 15 within the internal side wall portions of the concrete substrate or substructure during real variable environmental conditions during which the concrete substrate or substructure would undergo expansion and contraction. It is also noted that the radially outward 20 extents or crest portions of the plurality of annularly oriented grooves, threads, or teeth 138 do not extend beyond the outside diametrical extent of the body portion of the new and improved expansion sleeve component 114. This comprises another desirable feature characteristic of 25 the new and improved expansion sleeve component 114 in view of the fact that when the new and improved anchor bolt and expansion sleeve assembly 110 is inserted into the borehole defined within the concrete substrate or substructure, the radially outward extents or crest 30 portions of the plurality of annularly oriented grooves, teeth, or threads 138 will not adversely, deleteriously, and undesirably gouge or abrade the internal side wall 21 surface portions of the borehole defined within the concrete substrate or substructure.
Continuing further, it is also seen that the internal peripheral surface portion of the new and 5 improved expansion sleeve component 114 is inclined radially outwardly at the forwardmost end portion thereof, as considered in the longitudinal or axial direction extending from the rearward or upstream end portion of the expansion sleeve component 114 to the forward or 10 downstream end portion of the expansion sleeve component 114, as illustrated at 146. More particularly, it is noted that the inclined internal peripheral surface portion 14 6 of the expansion sleeve component 114 is disposed at an angular inclination with respect to a line 15 or plane parallel to the longitudinal axis of the expansion sleeve component 114, as denoted by means of the arrow B, of approximately 10° which is, as will be recalled, substantially the same angular inclination of the external peripheral surface portion of the frusto-20 conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112 with respect to the longitudinal axis 132 of the anchor bolt component 112. Accordingly, the inclined internal peripheral surface portion 146 of the expansion sleeve component 114 25 and the external peripheral surface portion of the frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112 together define mating surface portions which have substantially or approximately matching inclinations.
In addition, as was the case with the external peripheral surface portion of the frusto-conically configured wedge-type section 130 of the head portion 118 22 of the anchor bolt component 112, the internal peripheral surface portion 146 of the expansion sleeve component 114 is substantially smooth, continuous, and planar so that, together, the external peripheral surface portion of the 5 frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112, and the internal peripheral surface portion 146 of the expansion sleeve component 114, define or comprise the largest possible common conical surface area throughout their 10 longitudinal and angular extents. The significance of the foregoing, which will be appreciated even more fully hereinafter, resides in the fact that when the expansion sleeve component 114 and the anchor bolt component 112 are assembled together so as to form the new and improved 15 anchor bolt and expansion sleeve assembly 110 as disclosed within FIGURE 3, and when the anchor bolt component 112 is subsequently moved axially with respect to the expansion sleeve component 114 so as to cause the radially outward expansion of the expansion sleeve component 114 with 20 respect to the internal side wall portions of the borehole within which the new and improved anchor bolt and expansion sleeve assembly 110 is disposed, the external peripheral surface portion of the frusto-conically configured wedge-type section 130 of the head portion 118 25 of the anchor bolt component 112 will immediately cause the radially outward expansion of the expansion sleeve component 114 with respect to the internal side wall portions of the borehole within which the new and improved anchor bolt and expansion sleeve assembly 110 is disposed.
It is to be appreciated that if the angular inclination B of the internal peripheral surface portion 146 of the expansion sleeve component 114 was 23 significantly less than the angular inclination A of the external peripheral surface portion of the frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112 so as to be 5 substantially mismatched, then it may be somewhat difficult to initially properly seat the expansion sleeve component 114 upon the anchor bolt component 112 as illustrated within FIGURE 3, or, in other words, the external peripheral surface portion of the frusto-10 conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112 would have to initially cause some radially outward deformation of the leading end portion 146 of the expansion sleeve component 114. Alternatively, if the angular inclination B of the 15 internal peripheral surface portion 14 6 of the expansion sleeve component 114 was significantly greater than the angular inclination A of the external peripheral surface portion of the frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt 20 component 112, then the anchor bolt component 112 would have to undergo substantially more axial displacement in the rearward direction, with respect to the expansion sleeve component 114, before, for example, engaged contact, between the external peripheral surface portion 25 of the frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112 and the internal peripheral surface portion 14 6 of the expansion sleeve component 114, could be established.
With reference lastly being made to FIGURES 9a-30 9k and FIGURE 10, the operational attributes and advantages that are characteristic, or exhibited by means, of the new and improved anchor bolt and expansion sleeve 24 assembly 110 of the present invention will now be disclosed and described as a function of the installation of the new and improved anchor bolt and expansion sleeve assembly 110 within a borehole defined or formed within a 5 concrete substrate or substructure. More particularly, FIGURES 9a-9k schematically disclose or illustrate the new and improved anchor bolt and expansion sleeve assembly 110 as the anchor bolt component 112 of the new and improved anchor bolt and expansion sleeve assembly 110 is axially 10 moved, in increments of tenths of an inch, in a sequential manner with respect to the expansion sleeve component 114 of the new and improved anchor bolt and expansion sleeve assembly 110, while FIGURE 10 graphically illustrates the total interference area generated between a section of the 15 anchor bolt component 112, of the new and improved anchor bolt and expansion sleeve assembly 110, and the expansion sleeve component 114 of the new and improved anchor bolt and expansion sleeve assembly 110, and correspondingly, or in turn, the total interference area that will be 20 generated between the expansion sleeve component 114 of the new and improved anchor bolt and expansion sleeve assembly 110 and the internal peripheral side walls of the borehole defined or formed within the concrete substrate or substructure, as a function of the axial displacement 25 of the anchor bolt component 112 of the new and improved anchor bolt and expansion sleeve assembly 110 with respect to the expansion sleeve component 114 of the new and improved anchor bolt and expansion sleeve assembly 110.
More particularly, still further, it can be 30 appreciated that when the installation process is initiated, the expansion sleeve component 114 of the new and improved anchor bolt and expansion sleeve assembly 110 will be disposed upon the anchor bolt component 112 of the new and improved anchor bolt and expansion sleeve assembly 110 such that the rearward or upstream end portion of the expansion sleeve component 114 will be seated upon, or 5 disposed in abutment with, the annular collar or flanged shoulder member 126 of the new and improved anchor bolt component 112. At this point in time, the inclined or sloped internal peripheral surface portion 146 of the expansion sleeve component 114 will be seated upon, or 10 disposed in substantial surface contact with, the similarly inclined or sloped external peripheral surface portion 130 of the anchor bolt component 112.
Accordingly, no interference area forces are as yet effectively generated. However, as the anchor bolt 15 component 112 begins to be moved axially rearwardly with respect to the expansion sleeve component 114, the larger diameter forwardly disposed or downstream sections of the inclined or sloped external peripheral surface portion 130 of the anchor bolt component 112 will begin to, and will 20 progressively, engage the inclined or sloped internal peripheral surface portion 146 of the expansion sleeve component 114 so as to initially and progressively cause the C-shaped expansion sleeve component 114 to be OPENED and expanded radially outwardly. At this point in time, 25 several unique and novel features, characteristic of the new and improved anchor bolt and expansion sleeve assembly 110, are to be appreciated.
Firstly, it is to be noted and appreciated that as the anchor bolt component 112 progressively engages the 30 inclined or sloped internal peripheral surface portion 14 6 of the expansion sleeve component 114 during the incremental movements of the anchor bolt component 112, 26 between its starting point, as disclosed within FIGURE 9a, and the point at which the anchor bolt component 112 has been axially moved, relative to the expansion sleeve component 114 through means of the axial distance of, for 5 example, 0.600 inches (0.600"), which would again be characteristic of a one-half inch (0.050") diameter anchor, both the larger diameter forwardly disposed or downstream sections of the inclined or sloped external peripheral surface portion of the frusto-conically 10 configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112, and the larger diameter forwardly disposed or downstream sections of the cylindrically configured forwardmost section 128 of the head portion 118 of the anchor bolt component 112, will 15 cause progressively more axially located annular portions of the annularly grooved, threaded, or toothed portion 138 of the expansion sleeve component 114 to be expanded radially outwardly and into engagement with the internal peripheral side wall portions of the borehole defined 20 within the concrete substrate or substructure.
Accordingly, the total area interference, as taken along a single axially oriented plane, as generated between the anchor bolt component 112 of the new and improved anchor bolt and expansion sleeve assembly 110, and the expansion 25 sleeve component 114 of the new and improved anchor bolt and expansion sleeve assembly 110, as well as between the expansion sleeve component 114 and the internal peripheral side wall portions of the borehole formed or defined within the concrete substrate or substructure will be 30 constantly increased as schematically illustrated by means of the blackened areas A within FIGURES 9b-9k and as graphically illustrated within FIGURE 10. 27 The reason for the aforenoted phenomena resides in the fact that as the larger diameter forwardly disposed or downstream sections of the inclined or sloped external peripheral surface portion of the frusto-conically 5 configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112, as well as the larger diameter forwardly disposed or downstream sections of the cylindrically configured forwardmost section 128 of the head portion 118 of the anchor bolt component 112 of the 10 new and improved anchor bolt and expansion sleeve assembly 110, encounter and engage the forwardly disposed or downstream end portion of the expansion sleeve component 114, upon which the annularly grooved, threaded, or toothed portions 138 of the expansion sleeve component 114 15 are disposed, progressively more.and more annular, axially located, radially oriented cross-sections of the annularly grooved, threaded, or toothed portions 138 of the expansion sleeve component 114 will be expanded radially outwardly and into engagement with the internal peripheral 20 side wall portions of the borehole defined within the concrete substrate or substructure. This ever-increasing volumetric interference is effectively graphically illustrated within FIGURE 10. More particularly, it is to be appreciated that FIGURE 10 actually graphically 25 illustrates the total interference area defined between those annularly grooved, threaded, or toothed portions 138 of the expansion sleeve component 114 and the internal side wall portions of the borehole defined within the concrete substrate or substructure, as taken along only 30 one axially oriented plane. However, the total volumetric interference can of course be readily obtained or calculated from the entire three-dimensional 360° expanse 28 of the expansion sleeve component 114 when considered with respect to the entire internal peripheral side wall portions of the borehole defined within the concrete substrate or substructure.
Continuing still further, it is secondly noted that as a result of providing the forwardly disposed or downstream end portion of the expansion sleeve component 114 with only the predetermined number of annularly grooved, threaded, or toothed portions 138, that is, for 10 example, three to eight annularly grooved, toothed, or threaded portions 138, with five annularly grooved, toothed, or threaded portions 138 being preferred, the ever-increasing interference area or. interference volume, as defined between the annularly grooved, threaded, or 15 toothed portions 138 of the expansion sleeve component 114 and the internal peripheral side wall portions of the borehole defined within the concrete substrate or substructure, and as graphically illustrated in FIGURE 10, has a predeterminedly desired slope whereby the maximum 20 interference area (M.I.A.) or maximum interference volume (M.I.V.) is ultimately achieved when the anchor bolt component 112, of the new and improved anchor bolt and expansion sleeve assembly 110, has been axially moved approximately 0.600 inches (0.600") with respect to the 25 expansion sleeve component 114 of the new and improved anchor bolt and expansion sleeve assembly 110. The reason for this is that when the anchor bolt component 112 has been axially moved approximately 0.600 inches(0.600") with respect to the expansion sleeve component 114, the larger 30 diameter forwardly disposed or downstream sections of the inclined or sloped external peripheral surface portion of the frusto-conically configured wedge-type section 130 of 29 the head portion 118 of the anchor bolt component 112, followed by the larger diameter forwardly disposed or downstream sections of the cylindrically configured forwardmost section 128 of the head portion 118 of the 5 anchor bolt component 112 will now engage the rearward or upstream solid, non-grooved, non-threaded, non-toothed portions of the expansion sleeve component 114.
More particularly, it is to be appreciated that such solid, non-grooved, non-threaded, non-toothed 10 portions of the new and improved expansion sleeve component 114 define a larger or greater area or volume of solid material comprising the expansion sleeve component 114 than the area or volume of solid material defined within the annularly grooved, threaded, or toothed regions 15 138 of the expansion sleeve component 114, and accordingly, a larger or greater area or volume of the internal peripheral side wall portions of the borehole, defined within the concrete substrate or substructure, will be engaged and effectively crushed by means of the 20 expansion sleeve component 114. Therefore, the maximum interference area (M.I.A.), or the maximum interference volume (M.I.V.), as defined between the expansion sleeve component 114 and the internal peripheral side wall portions of the borehole defined within the concrete 25 substructure or substrate, is able to be achieved.
Continuing further, this maximum interference area (M.I.A.) and maximum interference volume (M.I.V.) continues until the anchor bolt component 112 has effectively been moved rearwardly with respect to the 30 expansion sleeve component 114 through means of an axial distance of approximately eight-tenths of an inch (0.800") because at that point in time, as can be best appreciated from a comparison of FIGURES 9i and 9j, the rearward or upstream end portion of the frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112 is just ready, and begins, to 5 exit from the rearward or upstream end portion of the expansion sleeve component 114. Accordingly, the maximum amount of solid material, comprising the frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112, and the larger diameter 10 forwardly disposed or downstream sections of the cylindrically configured forwardmost section 128 of the head portion 118 of the anchor bolt component 112, which had previously been disposed in forceful, contact engagement with the solid portion of the expansion sleeve 15 component 114 will no longer be so disposed. To the contrary, only a reduced amount of the solid material, comprising the frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112, and the larger diameter forwardly disposed 20 or downstream sections of the cylindrically configured forwardmost section 128 of the head portion 118 of the anchor bolt component 112, will now be disposed in forceful, contact engagement with the solid portion of the expansion sleeve component 114. In fact, the amount of 25 solid material, comprising the frusto-conically configured wedge-type section 130 of the head portion 118 of the anchor bolt component 112, and the larger diameter forwardly disposed or downstream sections of the cylindrically configured forwardmost section 128 of the 30 head portion 118 of the anchor bolt component 112, that will be disposed in forceful, contact engagement with the solid portion of the expansion sleeve component 114, will 31 be progressively reduced as the anchor bolt component 112 continues to move axially rearwardly with respect to the expansion sleeve component 114 whereby the amount of interference area, or interference volume, is 5 progressively reduced and tapers off as can be appreciated from FIGURES 9j,9k, and FIGURE 10.
In connection with the aforenoted generation of the interference area and interference volume, as defined between the anchor bolt component 112 and the expansion 10 sleeve component 114 of the new and improved anchor bolt and expansion sleeve assembly 110, as well as between the expansion sleeve component 114 and the internal peripheral side wall portions of the borehole defined within the concrete substrate or substructure, it is to be 15 appreciated that if a significantly smaller number than, for example, three to eight, annular grooves, teeth, or threads 138, were used, that is, if only one or two annular threads, grooves, or teeth were used, then while the slope of the graphical plot would effectively be 20 steeper than that as illustrated within FIGURE 10, indicating, in effect, that the maximum interference area (M.I.A.) or maximum interference volume (M.I.V.) would effectively be achieved in a shorter amount of time, that is, as a result of a smaller axial stud displacement in 25 view of the fact that the solid, non-grooved, non- threaded, or non-toothed portions of the expansion sleeve component 114 would effectively come into play and engage the internal peripheral side wall portions of the borehole, defined within the concrete substrate or 30 substructure, sooner, the ability to actually embed a sufficient number of the annular teeth, grooves, or threads within the internal peripheral side wall portions 32 of the borehole, defined within the concrete substrate or substructure, would not be sufficient in order to provide the necessary or requisite holding power or pull-out resistance requireed in connection with the cracked 5 concrete testing procedures.
Alternatively, if a significantly larger number than, for example, three to eight annular grooves, teeth, or threads 138, were used, then the slope of the graphical plot would be shallower than that as illustrated within 10 FIGURE 10 thereby indicating, in effect, that it would effectively take longer to achieve the desired and maximum interference area (M.I.A.) or maximum interference volume (M.I.V.), whereby, again, the ability to provide the necessary or requisite holding power or pull-out 15 resistance required in connection with the cracked concrete testing procedures might not be able to be achieved. More particularly, if this last scenario was carried to the extreme wherein the external surface portion of the expansion sleeve component 114 was entirely 20 characterized by means of annular grooves, teeth, or threads, and was therefore entirely devoid of the aforenoted non-grooved, non-toothed, or non-threaded solid portions within the upstream end regions thereof, then the aforenoted crushed engagement of the internal peripheral 25 side wall portions of the borehole, defined within the concrete substrate or substructure, would never be achieved so that, in turn, the maximum interference area (M.I.A.) or maximum interference volume (M.I.V.) would never be achieved because the internal peripheral side 30 wall portions of the borehole would never be encountered by non-grooved, non-toothed, or non-threaded solid portions of the expansion sleeve component 14. 33 Thus, it may be seen that in accordance with the principles and teachings of the present invention, there has been disclosed a new and improved anchor assembly which comprises an axially oriented anchor bolt or 5 threaded stud and an annularly grooved expansion sleeve or clip annularly disposed around the axially oriented anchor bolt or threaded stud wherein the annularly grooved expansion sleeve or clip has a continuous array of annularly oriented grooves, teeth, or threads, with the 10 array comprising a predetermined number of grooves, threads, or teeth which are disposed about the forward end external peripheral surface portion of the expansion sleeve or clip so as not to extend throughout the entire axial length of the expansion sleeve or clip. In 15 addition, the annularly grooved expansion sleeve or clip is fabricated from a metal sheet or plate which is formed into the annularly grooved expansion sleeve or clip so as to have a substantially C-shaped cross-sectional configuration that enables the annularly grooved expansion 20 sleeve or clip to be expanded by effectively being opened as the axially oriented anchor bolt is pulled therethrough. In addition, each one of the annular teeth, threads, or grooves of the expansion clip or sleeve has a predetermined depth dimension, as measured between the 25 root and crest portions thereof, that is larger than the distance that the cracked regions of the concrete block are opened during the cracked concrete testing technique or procedures so as to ensure the fact that the teeth, grooves, or threads of the expansion sleeve or clip 30 effectively remain embedded within the side wall portions of the borehole formed within the concrete block during 34 cracked concrete testing procedures or simulated environmental expansion and contraction conditions.
Still further, the internal peripheral surface portion of the annularly grooved expansion sleeve or clip, 5 within the leading end portion thereof, and the external peripheral surface of the axially oriented anchor bolt, within the leading end portion thereof, have predetermined mating inclined slopes. All of these various features characteristic of the new and improved expansion sleeve or 10 clip of the present invention effectively combine and contribute to the achievement of a maximum interference area (M.I.A.) or maximum interference volume (M.I.V.) as developed between the axially oriented anchor bolt and the annularly grooved expansion sleeve or clip, so as to, in 15 turn, be developed between the annularly grooved expansion sleeve or clip and the internal peripheral side wall portions of the borehole formed within the concrete substrate or substructure so as to force the annularly grooved expansion clip or sleeve into its solidly affixed 20 anchored disposition within a concrete borehole, to be formed within a concrete substrate or substructure, whereby the expansion sleeve or clip component will exhibit enhanced holding power and pull-out resistance properties. ' Obviously, many variations and modifications of the present invention are possible in light of the above teachings. For example, the number of annular grooves, teeth, or threads, the number of threads per inch, the depth of the annular grooves, threads, or teeth, the 30 particular angles of the mating inclined slopes of the forward, internal peripheral surface portion of the expansion sleeve component and the external peripheral RECEIVED at IPONZ on 8 November 2011 cwwtmwcoirAmnmj ooc.'7/i 1/2011 surface portion of the frusto-conically configured wedge-type section of the head portion of the anchor bolt component, and the diameter of the anchor bolt or threaded stud, can be varied, the ultimate objective being the 5 achievement of the maximum interference area {M.I.A.) and the maximum interference volume (M.I.V.) as defined between the anchor bolt component and the expansion sleeve component of the new and improved anchor bolt and expansion sleeve assembly, as well as between the expansion sleeve component 10 and the internal peripheral side wall portions of the borehole defined within the concrete substructure or substrate. It is therefore to be understood that within the scope of the appended claims, the present invention may be practiced otherwise than as specifically described herein. 15 The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that that prior publication (or information derived from it) or 20 known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word "comprise", and variations such as "comprises" and 25 "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. 36

Claims (15)

RECEIVED at IPONZ on 8 November 2011 CANRTertbRDCOBJ LU9M92 1 DOC-7/11/30! J THE CLAIMS DEFINING THE INVENTION ARE AS FOLLOWS:
1. An anchor assembly adapted to be anchored within a borehole defined within a concrete substrate so as to be 5 capable of meeting cracked concrete testing standards, comprising: an anchor bolt member having a longitudinal axis and an enlarged head portion disposed upon a forward end portion of said anchor bolt member; 10 an expansion sleeve member having a longitudinal axis and annularly disposed around said anchor bolt member and comprising a sheet member rolled upon itself so as to have a substantially C-shaped cross-sectional configuration; and a plurality of annular grooves disposed only upon a 15 forward external peripheral portion of said expansion sleeve member, while a rearward external peripheral portion of said expansion sleeve member is non-grooved and solid, such that when said anchor bolt member is moved axially rearwardly through said expansion sleeve member, said enlarged head 20 portion of said anchor bolt member will initially progressively expand said forward portion of said expansion sleeve member so that said plurality of annular grooves will be progressively forced into engagement with internal peripheral side wall portions of a borehole defined within a 25 concrete substrate so as to progressively define a progressively increased area and volume of interference with the internal peripheral side wall portions of the borehole defined within the concrete substrate, and subsequently, said enlarged head portion of said anchor bolt member will 30 progressively expand said rearward portion of said expansion sleeve member so that said non-grooved solid portion of said expansion sleeve member will be progressively forced into engagement with the internal peripheral side wall portions 37 RECEIVED at IPONZ on 8 November 2011 C;V«rortW\DmFJI.VJ9HS2lJ DOC-7/1 U»l i of the borehole defined within the concrete substrate so as to achieve a maximum area and volume of interference with the internal peripheral side wall portions of the borehole defined within the concrete substrate so as to enhance the 5 holding power and pull-out resistance of said anchor assembly with respect to the borehole defined within the concrete substrate.
2. The anchor assembly as set forth in Claim 1, wherein: 10 the number of plurality of annular grooves disposed upon said forward external peripheral portion of said expansion sleeve member is within the range of three to eight. 15
3. The anchor assembly as set forth in Claim 1, wherein: the plurality of annular grooves disposed upon said forward external peripheral portion of said expansion sleeve member have a predetermined pitch defined between successive adjacent grooves as based upon the number of grooves per 20 inch which is within the range of twenty to thirty-two grooves per inch.
4. The anchor assembly as set forth in Claim 1, wherein: the depth of each one of said plurality of annular 25 grooves disposed upon said forward external peripheral portion of said expansion sleeve member is within the range of 0.015-0.050 inches (0.015-0.050").
5. The anchor assembly as set forth in Claim 4, wherein: 30 all of said plurality of annular grooves disposed upon said forward external peripheral portion of said expansion sleeve member have the same depth dimension within said range of 0.015-0.050 inches {0.015-0.050"). 38 RECEIVED at IPONZ on 8 November 2011 C \hWorftW3CCCJtVi974922.I.DOC-l/l 1001 I
6. The anchor assembly as set forth in Claim 4, wherein: said plurality of annular grooves disposed upon said forward external peripheral portion of said expansion sleeve 5 member have different depth dimensions within said range of 0.015-0.050 inches (0.015-0.050").
7. The anchor assembly as set forth in Claim 1, wherein: a forward, internal peripheral surface portion of said 10 expansion sleeve member, and an external peripheral surface portion of said anchor bolt member, have substantially matching angular orientations as considered with respect to said longitudinal axis of said anchor bolt member. 15
8. The anchor assembly as set forth in Claim 7, wherein: said substantially matching angular orientations of said forward, internal peripheral surface portion of said expansion sleeve member, and said external peripheral surface portion of said anchor bolt member, is approximately 20 10°.
9. The anchor assembly as set forth in Claim 1, wherein: said annular expansion sleeve member is fabricated from metal. 25
10. The anchor assembly as set forth in Claim 9, wherein: said metal comprises low-carbon steel plated with zinc.
11. The anchor assembly as set forth in Claim 9, wherein: 30 said metal comprises carbon-steel plated with a zinc- tin composition.
12. The anchor assembly as set forth in Claim 1, wherein: 39 RECEIVED at IPONZ on 8 November 2011 CANRPon^JJCCO-,1,^74^2 J. IDOC-T/l 1/201J said expansion sleeve member, annularly disposed around said anchor bolt member, has a rearwardly disposed body portion having a predetermined external diametrical extent; and 5 said plurality of annular grooves, disposed only upon said forward external peripheral portion of said expansion sleeve member, do not extend radially beyond said external diametrical extent of said rearwardly disposed body portion of said expansion sleeve member so as not to gouge internal 10 peripheral side wall portions of the borehole defined within the substrate during installation of said anchor assembly into the borehole defined within the substrate.
13. A method of performing cracked concrete testing within 15 a borehole, defined within a concrete substrate, using an anchor assembly, comprising the steps of: forming at least one cracked region within a concrete substrate; providing means within said concrete substrate so as to 20 cause said at least one cracked region of said concrete substrate to be expanded and contracted between OPEN and CLOSED positions; inserting an anchor bolt assembly within a borehole defined within said at least one cracked region of said 25 concrete substrate, wherein said anchor bolt assembly comprises an anchor bolt member having a longitudinal axis and an enlarged head portion disposed upon a forward end portion of said anchor bolt member, an expansion sleeve member annularly disposed around said anchor bolt member and 30 comprising a sheet member rolled upon itself so as to have a substantially C-shaped cross-sectional configuration, and a plurality of annular grooves disposed only upon a forward external peripheral portion of said expansion sleeve member, 40 RECEIVED at IPONZ on 8 November 2011 C:\NRPcnbl'HCC£fl.0974922_l.D0C-7/] 1/20} 1 while a rearward external peripheral portion of said expansion sleeve member is non-grooved and solid; torquing said anchor bolt assembly to a predetermined level by moving said anchor bolt member axially rearwardly 5 through said expansion sleeve member whereby said enlarged head portion of said anchor bolt member will initially progressively expand said forward portion of said expansion sleeve member so that said plurality of annular grooves will be progressively forced into engagement with internal 10 peripheral side wall portions of said borehole defined within said concrete substrate so as to progressively define a progressively increased area and volume of interference with said internal peripheral side wall portions of said borehole defined within said concrete substrate, and 15 subsequently, said enlarged head portion of said anchor bolt member will progressively expand said rearward portion of said expansion sleeve member so that said non-grooved solid portion of said expansion sleeve member will be progressively forced into engagement with said internal 20 peripheral side wall portions of said borehole defined within said concrete substrate so as to achieve a maximum area and volume of interference with said internal peripheral side wall portions of said borehole defined within said concrete substrate so as to enhance the holding 25 power and pull-out resistance of said anchor assembly with respect to said borehole defined within said concrete substrate; applying a predetermined load to said anchor bolt assembly; 30 operating said means disposed within said concrete substrate so as to cyclically expand and contract said at least one cracked region of said concrete substrate between 41 RECEIVED at IPONZ on 8 November 2011 C:WRJ^UDCC\E1L\3S14M3J AOC-M1/2011 said OPEN and CLOSED positions for a predetermined number of cycles and for a predetermined period of time; and measuring the movement of said anchor bolt assembly within said at least one cracked region of said concrete 5 substrate while said at least one cracked region of said concrete substrate is cyclically expanded and contracted.
14. An anchor assembly adapted to be anchored within a borehole defined within a concrete substrate so as to be 10 capable of meeting cracked concrete testing standards substantially as hereinbefore described with reference to the drawings and/or Examples.
15. A method of performing cracked concrete testing within 15 a borehole, defined within a concrete substrate, using an anchor assembly substantially as hereinbefore described with reference to the drawings and/or Examples. 42
NZ572518A 2006-06-05 2007-05-11 Anchor bolt and C-shaped grooved expansion sleeve NZ572518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ596329A NZ596329A (en) 2006-06-05 2007-05-11 Anchor bolt with a tin-zinc plated expansion sleeve member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US81062706P 2006-06-05 2006-06-05
US11/598,025 US7811037B2 (en) 2006-06-05 2006-11-13 Anchor bolt and annularly grooved expansion sleeve assembly exhibiting high pull-out resistance, particularly under cracked concrete test conditions
PCT/US2007/011357 WO2007145753A2 (en) 2006-06-05 2007-05-11 Anchor bolt and annularly grooved expansion sleeve assembly exhibiting high pull-out resistance, particularly under cracked concrete test conditions

Publications (1)

Publication Number Publication Date
NZ572518A true NZ572518A (en) 2011-12-22

Family

ID=44765885

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ572518A NZ572518A (en) 2006-06-05 2007-05-11 Anchor bolt and C-shaped grooved expansion sleeve

Country Status (2)

Country Link
NZ (1) NZ572518A (en)
TW (1) TWI448621B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502658B (en) * 2012-05-07 2016-01-20 技术发明和探索公司Spit Expansion sleeve locating stud

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3731819A1 (en) * 1987-09-22 1989-03-30 Hilti Ag SPREADING DOWEL

Also Published As

Publication number Publication date
TW200804688A (en) 2008-01-16
TWI448621B (en) 2014-08-11

Similar Documents

Publication Publication Date Title
AU2007259322B2 (en) Anchor bolt and annularly grooved expansion sleeve assembly exhibiting high pull-out resistance, particularly under cracked concrete test conditions
AU2009217599B2 (en) Anchor bolt and annularly grooved expansion sleeve assembly exhibiting high pull-out resistance, particularly under cracked concrete test conditions
US8974163B2 (en) Wedge-type drop-in anchor assembly
US8262331B2 (en) Integrated expanding sleeve hole filling threaded fastener
MXPA05010779A (en) Torque resistant fastening element.
CA2917775C (en) Wood screw with front tapering intermediate thread portions
WO2004074636A3 (en) Radially deformed anchorage bolt
NZ572518A (en) Anchor bolt and C-shaped grooved expansion sleeve
CA2505824C (en) Frictional mining bolt
AU2014201855B2 (en) Anchor bolt and annularly grooved expansion sleeve assembly exhibiting high pull-out resistance, particularly under cracked concrete test conditions
AU2012202124B2 (en) Anchor bolt and annularly grooved expansion sleeve assembly exhibiting high pull-out resistance, particularly under cracked concrete test conditions
AU2010201525A1 (en) Double collar wedge anchor
ZA200109220B (en) Improved fixing device and method.
JP2024516535A (en) Multi-piece fastener, multi-piece fastener installation device, and fastening method
Li Load bearing capacity of torque-controlled expansion anchors
NAKANO et al. STUDY ON THE STRUCTURAL PERFORMANCE OF POST-INSTALLED ANCHORS EMBEDDED IN SUPER-HIGH STRENGTH CONCRETE (150MPA)
Mackay-Sim Limit State Design: Fastening to Concrete
Eng Comparison of Slender Dowel-Type Fasteners for Slotted-in Steel Plate Connections under Monotonic and Cyclic Loading

Legal Events

Date Code Title Description
PSEA Patent sealed
RENW Renewal (renewal fees accepted)
RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 3 YEARS UNTIL 11 MAY 2017 BY COMPUTER PACKAGES INC

Effective date: 20140528

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 11 MAY 2018 BY COMPUTER PACKAGES INC

Effective date: 20170419

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 11 MAY 2019 BY COMPUTER PACKAGES INC

Effective date: 20180418

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 11 MAY 2020 BY COMPUTER PACKAGES INC

Effective date: 20190418

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 11 MAY 2021 BY COMPUTER PACKAGES INC

Effective date: 20200418

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 11 MAY 2022 BY COMPUTER PACKAGES INC

Effective date: 20210418

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 11 MAY 2023 BY COMPUTER PACKAGES INC

Effective date: 20220417

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 11 MAY 2024 BY COMPUTER PACKAGES INC

Effective date: 20230417

RENW Renewal (renewal fees accepted)

Free format text: PATENT RENEWED FOR 1 YEAR UNTIL 11 MAY 2025 BY COMPUTER PACKAGES INC

Effective date: 20240417