<div class="application article clearfix" id="description">
<p class="printTableText" lang="en">New Zealand Paient Spedficaiion for Paient Number 525365 <br><br>
5253 65 <br><br>
-i- <br><br>
LACTAM COMPOUND <br><br>
Field of the Invention . The-,present invention relates to the field of pharmaceutical and organic chemistry and is concerned with a compound which inhibits P~amyloid peptide release and/or its synthesis. <br><br>
Background of the ""Invention Certain lactams, which inhibit f}-amyloid peptide release and/or its synthesis, and accordingly, are useful for treating Alzheimer's disease, are described in PCT Application No. PCT/US97/22986, published as W098/28268. <br><br>
The present invention provides novel crystalline (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-1-amino-3-methyl-2,3,4, 5-tetrahydro-lH-3-benzazepin-2-one dihydrate, compositions thereof, methods of using the same, and processes for making the same, and processes for making intermediates thereof. The crystalline dihydrate of the present invention is useful for inhibiting P-amyloid peptide release and/or its synthesis, and, accordingly, is useful in treating Alzheimer's disease. <br><br>
Since (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one is useful for treating Alzheimer's disease, <br><br>
there is the need to produce it as pure, stable, and crystalline form in order to fulfill exacting phaimaceutical requirements and specifications. The novel crystalline dihydrate of this invention has suitable properties to be conveniently formulated on a commercial scale in, for example, tablets for oral administration. <br><br>
The process by which the (N)-((S)-2-hydroxy-3-methyl-butyryl) -1- (L-alaninyl) - (S) -l-amino-3-methyl- 2, 3,4,5-tetrahydro-lH-3-benzazepin-2-one is produced also needs to intellectual property office OP. MX <br><br>
17 feb 2005 received <br><br>
-2- (followed by 2a) <br><br>
15 <br><br>
be one which is convenient to operate on a plant scale. In addition, the product should be in a form that is readily filtered, easily dried, and conveniently stored. <br><br>
Furthermore, the- present -crystalline dihydrate has suitable 5 processing and storage properties. <br><br>
It has been discovered that (N)-((S)-2-hydroxy-3-methyl-butyryl)-1- (L-alaninyl)- (S) -l-amino-3-methyl- 2,3,4,5-tetrahydro-lH-3-benzazepin-2-one can be prepared in a dihydrate form having advantageous "properties and the 10 manufacturing process for the new form fulfills the desirable feature described above, or at least provides the public with a useful choice. <br><br>
Described but not claimed herein is a method for inhibiting (3-amyloid peptide release and/or its synthesis comprising administering to a patient in need thereof an effective amount of (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate. <br><br>
In particular, a method for treating Alzheimer's disease comprising administering to a patient in need thereof an effective amount of (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate is described. <br><br>
Further described, but not claimed herein, is a method for preventing or inhibiting the progression of Alzheimer's disease comprising administering to a patient in need thereof an effective amount of (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4, 5-tetrahydro-lH-3-benzazepin-2-one dihydrate. <br><br>
20 <br><br>
25 <br><br>
intellectual property office of nx <br><br>
17 feb 2005 recetved <br><br>
-2a- <br><br>
Suiranary of the Invention <br><br>
10 <br><br>
15 <br><br>
20 <br><br>
In a first aspect, the present invention provides N—(((S)—2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate: <br><br>
3 dihydrate. <br><br>
In a further aspect, the present invention provides a pharmaceutical composition comprising N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate: <br><br>
dihydrate and a pharmaceutically acceptable diluent. <br><br>
In a yet further aspect, the present invention provides a process for preparing the crystalline N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate of Claim 1 further characterized by the X-ray powder diffraction pattern comprising a peak at 8.36, 12.43, 15.34, 19.22, 20.50, or 20.63 (20 + 0.2°), comprising crystallizing N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-1-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one: <br><br>
jnttllectual phuhtku ulhcel <br><br>
17 feb 2005 received. <br><br>
-2b- <br><br>
from an aqueous solvent. <br><br>
In a still further aspect, the present invention provides a process for preparing a lactam of formula I: <br><br>
5 formula I <br><br>
wherein <br><br>
Ri is alkyl, alkenyl, alkynyl, cycloalkyl, <br><br>
cycloalkenyl, substituted alkyl, substituted alkenyl, substituted alkynyl, substituted cycloalkyl, substituted 10 cycloalkenyl, aryl, heteroaryl and heterocyclic; <br><br>
R2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclic; <br><br>
R3 is alkyl, <br><br>
15 Xi is hydrogen, hydroxy or fluoro, <br><br>
X2 is hydrogen, hydroxy or fluoro, or Xi and X2 together form an oxo group; and V is from 1 to 3 groups independently selected from the group consisting of hydrogen, hydroxy, acyl, acyloxy, alkyl, 20 substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amino, aminoacyl, alkaryl, aryl, aryloxy, carboxyl, carboxylalkyl, <br><br>
INTELLECTUAL VMUPERTY Ui-HOt <br><br>
I T- NZ. <br><br>
1 7 feb 2005 1 pfcf.ived <br><br>
-2c- <br><br>
cyano, halo, nitro, heteroaryl, thioalkoxy, substituted thioalkoxy, and trihalomethyl; <br><br>
comprising: <br><br>
(al) resolving a lactam of formula (4): <br><br>
h n f/ \ <br><br>
o r. <br><br>
5 <br><br>
(4) <br><br>
wherein R3 and V are as defined for the compound of formula I, by crystallization as an acid addition salt of an acid selected from the group consisting of di-p-tolyl-L-tartaric acid, (R)-(-)-10-camphorsulfonic acid, and (D)—(—)— 10 mandelic acid to give a compound of formula (10): <br><br>
(b) coupling a compound of formula (10) with an amino-protected amino acid of formula PgNH-CHR2-C(0)-A wherein R2 is as defined for the compound of formula I and A is an 15 activating group and Pg is an amine protecting group to give a compound of formula (11): <br><br>
(c) deprotecting a compound of formula (11) to give a compound of formula (12): <br><br>
v v <br><br>
(11) o X <br><br>
intellectual property office of n.z. <br><br>
17 feb 2005 <br><br>
received <br><br>
- 2d - <br><br>
v <br><br>
and <br><br>
(d) coupling a compound of formula (12) with an compound of formula RiCXiX2-C (0) Ai wherein Ri, Xi, and X2 are 5 as defined for the compound of formula I and Ai is an activating group; or <br><br>
(a2) coupling a compound of formula (10) with a compound of the formula RiCXiX2-C (0) NH-CHR2-C (0) -A wherein Ri, R2, Xi, and X2 are as defined for the compound of formula 10 I and A is an activating group. <br><br>
In another aspect, the present invention provides a process for preparing N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one: <br><br>
15 <br><br>
comprising: <br><br>
1 7 feb 2005 <br><br>
-2 e - <br><br>
crystallizing l-amino-3-methyl-2, 3, 4, 5-tetrahydro-lH-3-benzazepin-2-one: <br><br>
as an acid addition salt of an acid selected from the group consisting of di-p-tolyl-L-tartaric acid, (R)—(—)—10— camphorsulfonic acid, and (D)-(-)-mandelic acid; coupling the (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one: <br><br>
to an amino-protected L-alanine residue, to give an amino-protected 1-(L-alaninyl)-(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one; deprotecting to give 1-(L-alaninyl)-(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one; and coupling with (S)-2-hydroxy-3-methyl-butyric acid. <br><br>
In another aspect, the present invention provides a process for preparing N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one: <br><br>
H2N <br><br>
-2f- <br><br>
10 <br><br>
comprising: <br><br>
crystallizing l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one: <br><br>
O v >3 <br><br>
as an acid addition salt of an acid selected from the group consisting of di-p-tolyl-L-tartaric acid, (R)-(-)-10-camphorsulfonic acid, and (D)-(-)-mandelic acid; coupling the (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one: <br><br>
to a (S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl) residue. <br><br>
10 <br><br>
15 <br><br>
- 2g - <br><br>
In another aspect, the present invention provides a process for preparing a substantially pure lactam of formula (10) : <br><br>
v wherein <br><br>
R3 is alkyl, and <br><br>
V is from 1 to 3 groups independently selected from the group consisting of hydrogen, hydroxy, acyl, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amino, aminoacyl, alkaryl, aryl, aryloxy, carboxyl, carboxylalkyl, cyano, halo, nitro, heteroaryl, thioalkoxy, substituted thioalkoxy, and trihalomethyl; <br><br>
comprising: <br><br>
crystallization of a compound of formula (4): <br><br>
20 <br><br>
to give a compound of formula (10) as an acid addition salt of an acid selected from the group consisting of di-p-tolyl-L-tartaric acid, (R)-(-)-10-camphorsulfonic acid, and (D)-(-)-mandelic acid. <br><br>
-2h- <br><br>
In another aspect, the present invention provides a process for preparing a lactam of formula I: <br><br>
Ri is alkyl, alkenyl, alkynyl, cycloalkyl, <br><br>
cycloalkenyl, substituted alkyl, substituted alkenyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; <br><br>
R2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclic; <br><br>
R3 is alkyl, <br><br>
Xi is hydrogen, hydroxy or fluoro, <br><br>
X2 is hydrogen, hydroxy or fluoro, or Xi and X2 together form an oxo group; and V is from 1 to 3 groups independently selected from the group consisting of hydrogen, hydroxy, acyl, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amino, aminoacyl, alkaryl, aryl, aryloxy, carboxyl, carboxylalkyl, cyano, halo, nitro, heteroaryl, thioalkoxy, substituted thioalkoxy, and trihalomethyl; <br><br>
comprising: <br><br>
formula I <br><br>
wherein <br><br>
(5) : <br><br>
- 2i - <br><br>
a) coupling a phenyl acetic acid derivative of formula v <br><br>
wherein <br><br>
V is as defined for the compound of formula I and A2 is an activated group selected from the group consisting of -OH, -CI, or -Br, with an acetal of formula (6): <br><br>
R5O <br><br>
r5o <br><br>
10 <br><br>
15 <br><br>
(6) <br><br>
n-r, h 3 <br><br>
wherein <br><br>
R3 is as defined for the compound of formula I and R5 is a C1-C4 alkyl, to give a compound of formula (7): <br><br>
v b) cyclizing a compound of formula (7) in an acid selected from the group consisting of sulfuric acid and trifluoromethanesulfonic acid to give a compound of formula (8) : <br><br>
2j <br><br>
c) reacting a compound of formula (8) in an oxime forming reaction to give a compound of formula (9): <br><br>
v <br><br>
d) reducing a compound of formula (9) to give a compound of formula (4): <br><br>
V <br><br>
e) resolving a lactam of formula (4) by fractional crystallization to give a compound of formula (10): <br><br>
rX^ <br><br>
10 <br><br>
as an acid addition salt of an acid selected from the group consisting of di-p-tolyl-L-tartaric acid, (R)-(-)-10-camphorsulfonic acid, and (D)-(-)-mandelic acid; <br><br>
Intellectual property office of n.z. <br><br>
17 feb 2005 received, <br><br>
-2k- <br><br>
f) coupling a compound of formula (10) with an amino-protected amino acid of formula PgNH-CHR2-C(0)-A wherein R2 is as defined for the compound of formula I and A is an activating group and Pg is an amine protecting group to give 5 a compound of formula (11): <br><br>
g) deprotecting a compound of formula (11) to give a compound of formula (12): <br><br>
10 and h) coupling a compound of formula (12) with an compound of formula RiCXiX2-C (0) Ai wherein Ri, Xi, and X2 are as defined for the compound of formula I and Ai is an activating group; or 15 i) coupling a compound of formula (10) with a compound of the formula RiCXiX2-C (0) NH-CHR2-C (0) -A wherein Ri, R2, Xi, and X2 are as defined for the compound of formula I and A is an activating group. <br><br>
-21- <br><br>
10 <br><br>
15 <br><br>
20 <br><br>
In another aspect, the present invention provides a process for preparing a lactam of formula (4): <br><br>
v wherein <br><br>
R3 is alkyl, and <br><br>
V is from 1 to 3 groups independently selected from the group consisting of hydrogen, hydroxy, acyl, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amino, aminoacyl, alkaryl, aryl, aryloxy, carboxyl, carboxylalkyl, cyano, halo, nitro, heteroaryl, thioalkoxy, substituted thioalkoxy, and trihalomethyl; <br><br>
comprising: <br><br>
a) coupling a phenyl acetic acid derivative of formula <br><br>
(5) : <br><br>
v wherein <br><br>
V is as defined for the compound of formula I and A2 is an activated group selected from the group consisting of -OH, -CI, or -Br, with an acetal of formula (6): <br><br>
r5o r5o n-r, <br><br>
(6) <br><br>
thtewectum. <br><br>
I m <br><br>
1 7 feb 2005 bpceivep <br><br>
- 2m - <br><br>
wherein <br><br>
R3 is as defined for the compound of formula I and R5 is a C1-C4 alkyl, to give a compound of formula (7): <br><br>
b) cyclizing a compound of formula (7) in an acid selected from the group consisting of sulfuric acid and trifluoromethanesulfonic acid to give a compound of formula (8) : <br><br>
v <br><br>
10 <br><br>
c) reacting a compound of formula (8) in an oxime forming reaction to give a compound of formula (9): <br><br>
15 <br><br>
d) reducing a compound of formula (9). <br><br>
In another aspect, the present invention provides a compound of the invention for use as a pharmaceutical. <br><br>
In another aspect, the present invention provides a compound of the invention for use in the treatment of Alzheimer's disease. <br><br>
intellectual property ofbct of m.z. <br><br>
1 7 feb 2005 received <br><br>
2n - <br><br>
10 <br><br>
15 <br><br>
20 <br><br>
25 <br><br>
In another aspect, the present invention provides a compound of the invention for use in the prevention of Alzheimer's disease. <br><br>
In another aspect, the present invention provides a compound of the invention for use in inhibiting (3-amyloid peptide release and/or its synthesis. <br><br>
In another aspect, the present invention provides a compound according of the invention for use in inhibiting the progression of Alzheimer's disease. <br><br>
In another aspect, the present invention provides the use of a compound of the invention for the manufacture of a medicament for inhibiting p-amyloid peptide release and/or its synthesis, including the treating of Alzheimer's disease. <br><br>
In another aspect, the present invention provides the use of a compound of the invention for the manufacture of a medicament for preventing Alzheimer's disease and/or inhibiting the progression of Alzheimer's disease. <br><br>
In another aspect, the present invention provides the use of N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate: <br><br>
3 dihydrate in the preparation of a medicament for inhibiting p-amyloid peptide release and/or synthesis in a patient in need thereof. <br><br>
In another aspect, the present invention provides the use of N- ( ( (S) -2-hydroxy-3-methyl-butyryl) -1- (L-al^^^!),^ prqperty uh-llbl of n.z. <br><br>
1 7 feb 2005 <br><br>
RECEIVED— <br><br>
10 <br><br>
15 <br><br>
- 2o - <br><br>
(S) -l-amino-3-methyl-2, 3, 4, 5-tetrahydro-lH-3-benzazepin-2-one dihydrate: <br><br>
3 dihydrate in the preparation of a medicament for treating Alzheimer's disease in a patient in need thereof. <br><br>
In another aspect, the present invention provides the use of N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate: <br><br>
3 dihydrate in the preparation of a medicament for preventing Alzheimer's disease in a patient in need thereof. <br><br>
In another aspect, the present invention provides the use of crystalline N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate: <br><br>
- 2p - <br><br>
dihydrate in the preparation of a medicament for inhibiting the progression of Alzheimer's disease in a patient in need thereof. <br><br>
In another aspect, the present invention provides crystalline N-(((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate: <br><br>
3 dihydrate <br><br>
10 when prepared by a process of the invention. <br><br>
In another aspect, the present invention provides a lactam of formula I, as defined above, when prepared by a process of the invention. <br><br>
In another aspect, the present invention provides N-15 { ( (S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl))-(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one when prepared by a process of the invention. <br><br>
In another aspect, the present invention provides a substantially pure lactam of formula (10), as defined above, 20 when prepared by a process of the invention. <br><br>
intellectual property gffi op n.z. <br><br>
1 7 feb 2005 received <br><br>
" 2q - <br><br>
In another aspect, the present invention provides a lactam of formula I, as defined above, when prepared by a process of the invention. <br><br>
In another aspect, the present invention provides a lactam of formula (4), as defined above, when prepared by a process of the invention. <br><br>
intellectual property opflcl •n* n.Z <br><br>
1 7 feb 2005 received <br><br>
DETAILED DESCRIPTION OP THE INVENTION <br><br>
As used herein, the terms below have the meanings indicated: <br><br>
■She term *ee* or "enantiomeric excess" refers to the percent by which one enantiomer, Ei, is in excess in a mixture of both enantiomers (Ei + E2), as calculated by the equation ((Ei - E2) + (Ei + E2)) x 100% = ee. As is well known in the art, enatiomeric excess can be determined by capillary electrophoresis and by chiral HPLC of the compounds or derivatives thereof. <br><br>
Herein, the Cahn-Prelog-Ingold designations of (R) - and (S)- and the designations of L- and D- for stereochemistry <br><br>
-4- <br><br>
relative to the isomers of glyceraldehyde are used to refer to specific isomers. <br><br>
The present invention provides (N) - ((S) -2-hydroxy-3-methyl-butyryl) -1- (L-alaninyl) - (S) -l-amino-3 -methyl- 2,3,4,5-5 tetrahydro-lH-3-benzazepin-2-one dihydrate, and in particular, a crystalline (N)- ((S)-2-hydroxy-3-methyl-butyryl) -1- (L-alaninyl) - (S) -l-amino-3-methyl- 2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate. <br><br>
A number of methods are available to characterize 10 crystalline forms of organic compounds. For example methods include differential scanning calorimetry, solid state NMR spectrometry, infra-red spectroscopy, and X-ray powder diffraction. Among these X-ray powder diffraction and solid state NMR spectroscopy are very useful for 15 identifying and distinguishing between crystalline forms. <br><br>
X-ray powder diffraction analysis were performed as follows. Either with or without lightly grinding the sample with an agate mortar and pestle, the sample is loaded into a sample holder for the X-ray powder diffraction measurement. 20 The X-ray powder diffraction patterns were measured using a Siemens D5000 X-ray powder diffractometer equipped with a CuKa source (X = 1.54056A) operated at 50 kV and 40 mA using divergence slit size of 1 mm, receiving slit of 1 mm, and detector slit of 0.1 mm. Each sample was scanned between 4 25 and 35° (20) with a step size of 0.02° and a maximum scan rate of 3 sec/step. Data is collected using a Kevex solid-state silicon lithium detector. Optimally, a silicon standard is run routinely to check the instrument alignment It is well known in the crystallography art that, for 30 any given crystal form, the relative intensities and peak widths of the diffraction peaks may vary due to a number of factors, including the effects of preferred orientation and/or particle size. Where the effects of preferred orientation and/or particle size are present, peak <br><br>
O <br><br>
Intellectual proptwv owce of n.z. <br><br>
17 feb 2005 i received <br><br>
-5- <br><br>
intensities may be altered, but the characteristic peak positions of the polymorph are unchanged. See, e.g., The United States Pharmacopoeia #24, National Formulary #19, pages 184-3-1844,-2000. - <br><br>
5 Grinding was used to minimize intensity variations for the peak intensities of some of the diffractogram disclosed herein. However, if grinding significantly altered the diffractogram or alters the crystalline state of the sample, then the diffractogram of the unground sample should be 10 used. Grinding was done in a small agate mortar and pestle. The mortar was held during the grinding and light pressure was applied to the pestle. <br><br>
Peak position was obtained in 20 values and peak intensities for the most prominent features (relative 15 intensities greater than 20%) were measured using a double-derivative peak picking method. <br><br>
Accordingly, the present invention is directed to crystalline (N) - ((S) -2-hydroxy-3-methyl-butyry 1) -1- (L-alaninyl)-(S)-l-amino-3-methyl-2,3,4, 5-tetrahydro-iH-3-20 benzazepin-2-one dihydrate characterized by the X-ray powder diffraction patterns in Table 1, which lists the 20 values and relative intensities (Io/I100) greater than 20%, measured for an unground sample and for a samples after 5 and 10 minutes of grinding and using the methodology described 25 above with CuKa radiation: <br><br>
-6- <br><br>
Table 1 <br><br>
unground <br><br>
5 min grinding <br><br>
10 min grinding <br><br>
20 (°) <br><br>
20 (°) <br><br>
VW*) <br><br>
20 (°) <br><br>
Io/Il00(%) <br><br>
8.361 <br><br>
100 <br><br>
8.349 <br><br>
87.6 <br><br>
.8.367 <br><br>
88.7 <br><br>
12.433 ' <br><br>
" 51.4 ' <br><br>
12.429 " <br><br>
78.5 <br><br>
12.424 <br><br>
91.6 <br><br>
13.24 <br><br>
27.9 <br><br>
13.254 <br><br>
30.4 <br><br>
15.344 <br><br>
49.8 <br><br>
15.336 <br><br>
100 <br><br>
15.352 <br><br>
100 <br><br>
16.858 <br><br>
28.5 <br><br>
16.88 <br><br>
28.3 <br><br>
19.224 <br><br>
27.9 <br><br>
19.233 <br><br>
47.8 <br><br>
19.24 <br><br>
52 <br><br>
20.495 <br><br>
27.5 <br><br>
20.48 <br><br>
44.4 <br><br>
20.63 <br><br>
38.8 <br><br>
20.644 <br><br>
43 <br><br>
20.601 <br><br>
48.9 <br><br>
22.254 <br><br>
. 19.5 <br><br>
22.045 <br><br>
21.6 <br><br>
22.63 <br><br>
27.6 <br><br>
22.654 <br><br>
34.9 <br><br>
24.388 <br><br>
26.4 <br><br>
23.388 <br><br>
19.7 <br><br>
24.387 <br><br>
28.2 <br><br>
27.744 <br><br>
19 <br><br>
22.237 <br><br>
21.2 <br><br>
The intensities of the samples ground for 5 and 10 minutes are more representative of the diffraction pattern 5 where attempts were made to minimize the effects of preferred orientation and/or particle size. It should also be noted that the computer-generated, unrounded numbers are listed in this table. <br><br>
Thus, a properly prepared sample crystalline of (N)-10 ((S)-2-hydroxy-3-methyl-butyry1)-1-(L-alaninyl)-(S)-1-amino- <br><br>
3-methyl-2, 3, 4, 5-tetrahydro-lH-3-benzazepin-2-one dihydrate may be characterized by X-ray diffraction pattern in 20 values using CuKa radiation having peaks as described in Table 1, and in particular having a peak at 8.36, 12.43, 15 15.34, 19.22, 20.50, or 20.63; more particularly having a peak at 8.36, 12.43, or 15.34; peaks at 8.36 and 12.43; 8.36 and 1-5.34; 8.36, 12.43, and 15.34; or at 8.36, 12.43, 15.34, 19.22, 20.50, and 20.63. <br><br>
Crystalline (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-20 alaninyl) - (S) -l-amino-3-methyl- 2, 3, 4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate may also be characterized by solid state NMR spectroscopy. Solid state 13C chemical hntf' i fpjuat proper ^ <br><br>
I 1 7 feb 2005 1 received . <br><br>
WO 02/40451 PCT/US01/27795 <br><br>
-7- <br><br>
shifts reflect not only the molecular structure of but also the electronic environment of the molecule in the crystal. <br><br>
Solid state NMR (13C) analysis can be carried out using 13C Cross polarization/magic angle spinning (CP/MAS) . NMR 5 (solid-state NMR or SSNMR) spectra were obtained using a <br><br>
Varian Unity 400 MHz spectrometer operating at a carbon frequency of 100.580 MHz, equipped with a complete solids accessory and Varian 7 mm VT CP/MAS probe. Acquisition parameters were are follows: 90° proton r.f. pulse width 10 4.0 (As / contact time 1.0 ms, pulse repetition time 5 s, MAS frequency 7.0 kHz, spectral width 50 kHz, and acquisition time 50 ms. Chemical shifts were referenced to the methyl group of external hexamethylbenzene (8 = 17.3 ppm), that is, by sample replacement with hexamethylbenzene. 15 Chemical shift data for (N)-((S)-2-hydroxy-3-methyl- <br><br>
butyryl) -1- (L-alaninyl) - (S) -l-amino-3-methyl- 2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate (based on the peak assignments, below) are shown in Table 2. <br><br>
INTELLECTUAL PROPERTY OFFICE OF N.Z <br><br>
1 7 feb 2005 received <br><br>
-8- <br><br>
Site <br><br>
Solution <br><br>
Dihydrate <br><br>
in DMSO <br><br>
(solid) <br><br>
2, 13, 16 <br><br>
169.27, 171.73, 172.89 <br><br>
169.9*,174.1*.176.7* <br><br>
3, 11, 14 <br><br>
51.45, 47.05, 47.72 <br><br>
46.9, 51.3 <br><br>
4 <br><br>
134.14 <br><br>
134.8* <br><br>
5, 6 <br><br>
124.18, 125.99 <br><br>
124.0 <br><br>
7 <br><br>
127.19 <br><br>
127.9, 128.9 <br><br>
8 <br><br>
130.38 <br><br>
132.1 <br><br>
9 <br><br>
135.32' <br><br>
136.9* <br><br>
10, 18 <br><br>
30.73, 31.29 <br><br>
31.1 <br><br>
17 <br><br>
75.01 <br><br>
75.6 <br><br>
19, 20, 22 <br><br>
15.99, 18.66, 19.13 <br><br>
16.6*. 21.4* <br><br>
21 <br><br>
34.18 <br><br>
35.3* <br><br>
Asterisks (*) denote peaks appearing in the interrupted 5 decoupling spectrum. <br><br>
Thus, crystalline (N) - ((S) -2 -hydroxy-3 -methyl-butyryl) -1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate may be characterized by solid state 13C nuclear magnetic resonance having chemical shift 10 (ppm) of 16.6; 176.7, 174.1, 169.9, 136.9, 134.8, 132.1, <br><br>
127.9, 128.9, 124.0, 75.6, 51.3, 46.9, 35.3, 31.1, 21.4, or 16.6; more particularly, 75.6, 35.3, 21.4, or 16.6; any two of 75.6, 35.3, 21.4, and 16.6; 75.6, 35.3, 21.4, and 16.6; or at 176.7, 174.1, 169.9, 136.9, 134.8, 132.1, 127.9, 15 128.9, 124.0, 75.6, 51.3, 46.9, 35.3, 31.1, 21.4, and 16.6. <br><br>
In another embodiment this invention provides a process for making (N) - ((S) -2-hydroxy-3-methyl-butyryl) -1- (L-alaninyl) - (S) -l-amino-3-methyl- 2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate comprising crystallizing (N)-20 ((S) -2-hydroxy-3-methyl-butyryl) -1- (L-alaninylJ- (S)--l-amino- <br><br>
Tntellectual proper iy urnut i Of N2. <br><br>
17 feb 2005 aPCglVED <br><br>
-9- <br><br>
3-methyl-2, 3,4, 5'-tetrahydro-:lH-3-benzazepin-2-one from aqueous solvents under conditions which yield (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl*- 2,3,4, 5-tetrahydro-lH-3-benzazepin-2-one dihydrate. <br><br>
5 The precise conditions under which (N) - ((S) -2-hydroxy- <br><br>
3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3, 4,5-tetrahydro-iH~3-benzazepin-2-one dihydrate is formed may be empirically determined and it is only possible to give a number of methods which have been found to be 10 suitable in practice. <br><br>
Thus, for example, (N)-((S)-2-hydroxy-3-methyl-butyryl) -1-(L-alaninyl)-(S)-l-amino-3-methyl- 2, 3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate may be prepared by crystallization under controlled conditions. 15 Crystallization from a solution and slurrying techniques, are contemplated to be within the scope of the present process. In particular, the dihydrate of the present invention can be prepared by crystallization from an aqueous solvent. An suitable solvent is one that is capable of containing 20 sufficient water, at the concentrations used, to form the present dihydrate. Preferred solvents are those that are water miscible, such as acetone, lower alcohols (like methanol, ethanol, and isopropanol), acetic acid, and acetonitrile. In practice, it has been found-that aqueous 25 acetone is preferred. For a given aqueous solvent the amount of water used will depend on the relative solubility of (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one in the solvent compared to water and whether a crystallization 30 or slurrying technique is used. <br><br>
A crystallization is generally carried out by dissolving, (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl) - (S) - l-amino-3-methyl- 2,3,4,5-tetrahydro-lH-3-benzazepin-2-one in an aqueous solvent and then allpwing the iHTCi I PCTllAL ^PROPER1 Y <br><br>
1 7 feb 2005 aefipVED <br><br>
-10- <br><br>
10 <br><br>
15 <br><br>
20 <br><br>
25 <br><br>
solution to cool, with or without the addition of more water, to give a solid. Typically, the crystallization is carried out at initial temperatures of about 40°C to reflux temperature of -the selected aqueous-solvent.< The mixture is then cooled to give the crystalline dihydrate. Seeding may be advantageous. Preferably the crystallization solution is cooled slowly. The crystallization is most conveniently cooled to temperatures of ambient temperature to about -20°C. <br><br>
In still another embodiment this invention provides a processes for making lactams, including (N)-((S)-2-hydroxy-3-methyl-butyryl) -1- (L-alaninyl) - (S) -1 - amino - 3 -me thy 1 -2,3,4,5 -tetrahydro-lH-3-benzazepin-2-one and processes for making intermediates therefor. <br><br>
More specifically, in one process embodiment, the present invention provides a process for making lactams of formula I <br><br>
v formula I <br><br>
wherein <br><br>
Ri is alkyl, alkenyl, alkynyl, cycloalkyl, cycloalkenyl, substituted alkyl, substituted alkenyl, substituted alkynyl, substituted cycloalkyl, substituted cycloalkenyl, aryl, heteroaryl and heterocyclic; <br><br>
R2 is alkyl, substituted alkyl, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, cycloalkyl, aryl, heteroaryl and heterocyclic; <br><br>
R3 is alkyl, <br><br>
Xi is hydrogen, hydroxy or fluoro, <br><br>
intellectual property office of nx <br><br>
1 7 feb 2005 received <br><br>
WO 02/40451 <br><br>
PCT/USO1/27795 <br><br>
-11- <br><br>
X2 is hydrogen, hydroxy or fluoro, or Xi and X2 together form an oxo group; and • V is from 1 to 3 groups independently selected from the group .consisting of hydrogen,..hydroxy, acyl,. acyloxy, alkyl, 5 substituted alkyl, alkoxy, substituted alkoxy, alkenyl, <br><br>
substituted alkenyl, alkynyl, substituted alkynyl, amino, aminoacyl, alkaryl, aryl, aryloxy, carboxyl, carboxylalkyl, cyano, halo, nitro, heteroaryl, thioalkoxy, substituted thioalkoxy, and trihalomethyl; <br><br>
10 comprising: <br><br>
(al) resolution of a lactam of formula (4) <br><br>
wherein R3 and V are as described for the compound of formula I, by fractional crystallization of its by 15 fractional crystallization of its dibenzoyltartrate, (R)-(- <br><br>
)-10-camphorsulfonic acid, and (D)-(-)-mandelic acid salts to give a compound of formula (10) <br><br>
(b) coupling with an appropriate amino-protected amino 20 acid of formula the PgNH-CHR2-C (0)-A wherein R2 is as defined for the compound of formula I and A is an activating group, for example -OH, -Br, or -CI, and Pg is an amine protecting group to give a compound of formula (11) <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-12- <br><br>
V. <br><br>
r><^ <br><br>
V1. ' <br><br>
(11) o/ n, <br><br>
(c) deprotection of a compound of formula (11) to* give a compound of formula (12); and <br><br>
(d) coupling a compound of formula (12) with an appropriate compound of formula RiCXjXs-C(0)Ai wherein Ri, Xi, and X2 are as described for the compound of formula I and Ai is an activating group, for example -OH, -Br, or -Cl; .or <br><br>
(a2) coupling a compound of formula (10) with a compound of the formula R1CX1X2-C (O) NH-CHR2-C (O) -A wherein Ri, R2, Xi, and X2 are as defined for the compound of formula I and A is an activating group, for example -OH, -Br, or <br><br>
As used herein, the terms below have the meanings indicated: <br><br>
"Alkyl" refers to monovalent alkyl groups preferably having from 1 to 10 carbon atoms and more preferably 1 to 6 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, n-hexyl, and the like. <br><br>
The term "C1-C4 alkyl" refers to monovalent alkyl groups preferably having from 1 to 4 carbon atoms. This term is exemplified by groups such as methyl, ethyl, n- <br><br>
-Cl. <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-13- <br><br>
propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, and tert-butyl. <br><br>
"Substituted alkyl" refers to an alkyl group, <br><br>
preferably of from.JL -to-10 carbon.atoms, having- from 1 to 5 substituents, and preferably 1 to 3 substituents, selected from the group consisting of alkoxy, substituted alkoxy, cycloalkyl, substituted cycloalkyl, cycloalkenyl, <br><br>
substituted cycloalkenyl, acyl, acylamino, acyloxy, amino, aminoacyl, aminoacyloxy, cyano, halogen, hydroxyl, carboxyl, keto, thioketo, carboxylalkyl, thiol, thioalkoxy, <br><br>
substituted thioalkoxy, aryl, aryloxy, heteroaryl, heteroaryloxy, heterocyclic, hydroxyamino, alkoxyamino, nitro, -SO-alkyl, -SO-substituted alkyl, -SO-aryl, -SO-heteroaryl, -S02-alkyl, -SO2-substituted alkyl, -S02-aryl,-S02-heteroaryl, and mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-heteroarylamino, mono- and di-heterocyclic amino, and unsymmetric di-substituted amines having different substituents selected from alkyl, substituted alkyl, aryl, heteroaryl and heterocyclic. <br><br>
"Alkylene" refers to divalent alkylene groups preferably having from 1 to 10 carbon atoms and more preferably 1 to 6 carbon atoms. This term is exemplified by groups such as methylene (-CH2-) , ethylene (-CH2CH2-) , the propylene isomers (e.g., -CH2CH2CH2- and -CH (CH3) CH2-) and the like. <br><br>
"Substituted alkylene" refers to an alkylene group, preferably of from 1 to 10 carbon atoms, having from 1 to 3 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, aminoacyl, aminoacyloxy, cyano, halogen, hydroxyl, carboxyl, keto, thioketo, carboxylalkyl, thiol, thioalkoxy, <br><br>
substituted thioalkoxy, aryl, heteroaryl, heterocyclic, nitro, and mono- and di-alkylamino, mono- and di- <br><br>
WO 02/40451 PCT/USO1/27795 <br><br>
-14- <br><br>
(substituted alkyl)amino, mono- and di-arylamino, mono- and di-heteroarylamino, mono- and di-heterocyclic amino, and unsymmetric di-substituted amines having different substituents.selected-from alkyl, -substituted alkyl, aryl, 5 heteroaryl and heterocyclic. Additionally, such substituted alkylene groups include those where 2 substituents on the alkylene group are fused to form one or more cycloalkyl, <br><br>
aryl, heterocyclic or heteroaryl groups fused to the alkylene group. Preferably such fused cycloalkyl groups 10 contain from 1 to 3 fused ring structures. <br><br>
"Alkenylene" refers to divalent alkenylene groups ■preferably having from 2 to 10 carbon atoms and more preferably 2 to 6 carbon atoms. This term is exemplified by groups such as ethenylene (-CH=CH-), the propenylene isomers 15 (e.g., -CH2CH=CH- and -C(CH3)=CH-) and the like. <br><br>
"Substituted alkenylene" refers to an alkenylene group, preferably of from 2 to 10 carbon atoms, having from 1 to 3 substituents selected' from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, 20 aminoacyl, aminoacyloxy, cyano, halogen, hydroxyl, carboxyl, keto, thioketo, carboxylalkyl, thiol, thioalkoxy, <br><br>
substituted thioalkoxy, aryl, heteroaryl, heterocyclic, nitro, and mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and 25 di-heteroarylamino, mono- and di-heterocyclic amino, and unsymmetric di-substituted amines having different substituents selected from alkyl, substituted alkyl, aryl, heteroaryl and heterocyclic. Additionally, such substituted alkylene groups include those where 2 substituents on the 30 alkylene group are fused to form one or more cycloalkyl, aryl, heterocyclic or heteroaryl groups fused to the alkylene group. <br><br>
"Alkaryl" refers to -alkylene-aryl groups preferably having from 1 to 8 carbon atoms in the alkylene moiety and <br><br>
WO 02/40451 <br><br>
PCTAJS01/27795 <br><br>
-15- <br><br>
from 6 to 10 carbon atoms in the aryl moiety. Such alkaryl groups are exemplified by benzyl, phenethyl and the like. <br><br>
"Alkoxy" refers to the group "alkyl-0-". Preferred alkoxy-groups- include, by-way of example,-methoxy, ethoxy, n-propoxy, iso-propoxy, n-butoxy, tert-butoxy, sec-butoxy, n-pentoxy, n-hexoxy, 1,2-dimethylbutoxy, and the like. <br><br>
"Substituted alkoxy" refers to the group "substituted alkyl-0-" where substituted alkyl is as defined above. <br><br>
"Alkylalkoxy" refers to the group "-alkylene-O-alkyl" which includes by way of example, methylenemethoxy {-CH2OCH3) , ethylenemethoxy (-CH2CH2OCH3) , n-propylene-iso-propoxy (-CH2CH2CH2OCH(CH3)2) , methylene-t-butoxy (-CH2-0-C{CH3)3) and the like. <br><br>
"Alkylthioalkoxy" refers to the group "-alkylene-S-alkyl" which includes by way of example, <br><br>
methylenethiomethoxy {-CH2SCH3) , ethylenethiomethoxy (-CH2CH2SCH3) , n-propylene-thio-iso-propoxy (-CH2CH2CH2SCH (CH3) 2) , methylenethio-t-butoxy (-CH2SC (CH3) 3) and the like. <br><br>
"Alkenyl" refers to alkenyl groups preferably having from 2 to 10 carbon atoms and more preferably 2 to 6 carbon atoms and having at least 1 and preferably from 1-2 sites of alkenyl unsaturation. Preferred alkenyl groups include ethenyl (-CH=CH2) , n-propenyl (-CH2CH=CH2) , iso-propenyl (-C(CH3) =CH2), and the like. <br><br>
"Substituted alkenyl" refers to an alkenyl group as defined above having from 1 to 3 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, acylamino, acyloxy, amino, aminoacyl, aminoacyloxy, cyano, halogen, hydroxyl, carboxyl, keto, thioketo, carboxylalkyl, thiol, thioalkoxy, substituted thioalkoxy, aryl, heteroaryl, heterocyclic, nitro, -SO-alkyl, -SO-substituted alkyl, -SO-aryl, -SO-heteroaryl, -S02-alkyl, -S02-substituted alkyl, <br><br>
WO 02/40451 PCT/USO1/27795 <br><br>
-16- <br><br>
-S02-aryl, -S02-heteroaryl, and mono- and di-alkylamino, <br><br>
mono- and di- (substituted alkyl) amino, mono- and di-arylamino, mono- and di-heteroarylamino, mono- and di-heterocyclic-amino-, and unsymmetric di-substituted. amines 5 having different substituents selected from alkyl, <br><br>
substituted alkyl, aryl, heteroaryl and heterocyclic. <br><br>
"Alkynyl" refers to alkynyl groups preferably having from 2 to 10 carbon atoms and more preferably 2 to 6 carbon atoms and having at least 1 and preferably from 1-2 sites of 10 alkynyl unsaturation. Preferred alkynyl groups include ethynyl (-CH=CH2) , propargyl (-CH2C=CH) and the like. <br><br>
"Substituted alkynyl" refers to an alkynyl group as defined above having from 1 to 3 substituents selected from the group consisting of alkoxy, substituted alkoxy, acyl, 15 acylamino, acyloxy, amino, aminoacyl, aminoacyloxy, cyano, halogen, hydroxyl,■ carboxyl, keto, thioketo, carboxylalkyl, thiol, thioalkoxy, substituted thioalkoxy, aryl, heteroaryl, heterocyclic, nitro, -SO-alkyl, -SO-substituted alkyl, -SO-aryl, -SO-heteroaryl, -S02-alkyl, -S02-substituted alkyl, -20 S02-aryl, -S02-heteroaryl, and mono- and di-alkylamino, <br><br>
mono- and di-(substituted alkyl)amino, mono- and di-arylamino, mono- and di-heteroarylamino, mono- and di-heterocyclic amino, and unsymmetric di-substituted amines having different substituents selected from alkyl, 25 substituted alkyl, aryl, heteroaryl and heterocyclic. <br><br>
"Acyl" refers to the groups alkyl-C(O)-, substituted alkyl-C(O)-, cycloalkyl-C(0)-, substituted cycloalkyl-C(0)-, aryl-C(O)-, heteroaryl-C(0)- and heterocyclic-C(0)- where alkyl, substituted alkyl, cycloalkyl, substituted 30 cycloalkyl, aryl, heteroaryl and heterocyclic are as defined herein. <br><br>
"Acylamino" refers to the group -C(O)NRR where each R is independently hydrogen, alkyl, substituted alkyl, aryl, heteroaryl, or heterocyclic wherein alkyl, substituted <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-17- <br><br>
alkyl, aryl, heteroaryl and heterocyclic are as defined herein. <br><br>
"Aminoacyl" refers to the group -NRC(0)R where-each R is independently hydrogen, alkyl,■substituted alkyl, aryl, 5 heteroaryl, or heterocyclic wherein alkyl, substituted alkyl, aryl, heteroaryl and heterocyclic are as defined herein. <br><br>
"Aminoacyloxy" refers to the group -NRC(0)OR where each R is independently hydrogen, alkyl, substituted alkyl, aryl, 10 heteroaryl, or heterocyclic wherein alkyl, substituted alkyl, aryl, heteroaryl and heterocyclic are as defined herein. <br><br>
"Acyloxy" refers to the groups alkyl-C(0}0-, <br><br>
substituted alkyl-C(0)0-, cycloalkyl-C(0)0-, aryl-C(0)0-, 15 heteroaryl-C(0)0-, and heterocyclic-C(0)0- wherein alkyl, substituted alkyl, cycloalkyl, aryl, heteroaryl, and heterocyclic are as defined herein. <br><br>
"Aryl" refers to an unsaturated aromatic carbocyclic group of from 6 to 14 carbon atoms having a single ring 20 (e.g., phenyl) or multiple condejnsed (fused) rings (e.g., <br><br>
naphthyl or anthryl). Preferred aryls include phenyl, naphthyl and the like. <br><br>
Unless otherwise constrained by the definition for the aryl substituent, such aryl groups can optionally be 25 substituted with from 1 to 5 substituents selected from the group consisting of acyloxy, 1 to 5 and preferably 1 to 3 substituents selected from the group consisting of hydroxy, acyl, alkyl, alkoxy, alkenyl, alkynyl, substituted alkyl, substituted alkoxy, substituted alkenyl, substituted 30 alkynyl, amino, aminoacyl, acylamino, alkaryl, aryl, <br><br>
aryloxy, azido, carboxyl, carboxylalkyl, cyano, halo, nitro, heteroaryl, heterocyclic, aminoacyloxy, oxyacylamino, thioalkoxy, substituted thioalkoxy, thioaryloxy, thioheteroaryloxy, -SO-alkyl, -SO-substituted alkyl, -SO- <br><br>
WO 02/40451 <br><br>
PCT/USO1/27795 <br><br>
-18- <br><br>
aryl, -SO-heteroaryl,- -S02-alkyl, -S02-substituted alkyl, -S02-aryl, -S02-heteroaryl, trihalomethyl, mono- and di-alkylamino, mono- and di-(substituted alkyl)amino, mono- and di-arylamino,-mono^-and di-heteroarylamino, mono- and di-heterocyclic amino, and unsymmetric di-substituted amines having different substituents selected from alkyl, substituted alkyl, aryl, heteroaryl and heterocyclic, and the like. Preferred substituents include alkyl, alkoxy, <br><br>
halo, cyano, nitro, trihalomethyl, and thioalkoxy. <br><br>
"Aryloxy" refers to the group aryl-O- wherein the aryl group is as defined above including optionally substituted aryl groups as also defined above. <br><br>
"Carboxyalkyl" refers to the group "-C(0)Oalkyl" where alkyl is as defined above. <br><br>
"Cycloalkyl" refers to cyclic alkyl groups of from 3 to 12 carbon atoms having a single cyclic ring or multiple condensed rings, including fused, bridged and spiro bicyclic or multicyclic compounds. Such cycloalkyl groups include, by way of example, single ring structures such as cyclopropyl, cyclobutyl, cyclopentyl, cyclooctyl, and the like, or multiple ring structures such as adamantanyl, and the like. <br><br>
"Substituted cycloalkyl" refers to cycloalkyl groups having from 1 to 5 (preferably 1 to 3) substituents selected from the group consisting of hydroxy, acyl, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amino, aminoacyl, alkaryl, aryl, aryloxy, keto, thioketo, carboxyl, carboxylalkyl, cyano, halo, nitro, heteroaryl, thioalkoxy, substituted thioalkoxy, trihalomethyl and the like. <br><br>
"Cycloalkenyl" refers to cyclic alkenyl groups of from 4 to 8 carbon atoms having a single cyclic ring and at least one point of internal unsaturation. Examples of suitable <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-19- <br><br>
cycloalkenyl groups include, for instance, cyclobut-2-enyl, cyclopent-3-enyl, cyclooct-3-enyl and the like. <br><br>
"Substituted cycloalkenyl" refers to cycloalkenyl groups having-from I-to 5 substituents selected from the group consisting of hydroxy, acyl, acyloxy, alkyl, substituted alkyl, alkoxy, substituted alkoxy, alkenyl, substituted alkenyl, alkynyl, substituted alkynyl, amino, aminoacyl, alkaryl, aryl, aryloxy, carboxyl, keto, thioketo, carboxylalkyl, cyano, halo, nitro, heteroaryl, thioalkoxy, substituted thioalkoxy, trihalomethyl and the like. <br><br>
"Halo" or "halogen" refers to fluoro, chloro, bromo and iodo and preferably is either fluoro or chloro. <br><br>
"Heteroaryl" refers to an aromatic carbocyclic group of from 1 to 15 carbon atoms and 1 to 4 heteroatoms selected from oxygen, nitrogen and sulfur within at least one ring {if there is more than one ring). <br><br>
Unless otherwise constrained by the definition for the heteroaryl substituent, such heteroaryl groups can be optionally substituted with 1 to 5 substituents selected from the group consisting of alkyl, substituted alkyl, <br><br>
alkoxy, substituted alkoxy, aryl, aryloxy, halo, nitro, heteroaryl, thiol, thioalkoxy, substituted thioalkoxy, thioaryloxy, trihalomethyl and the like. Such heteroaryl groups can have a single ring (e.g., pyridyl or furyl) or multiple condensed rings (e.g., indolizinyl or benzothienyl), including fused, bridged and spiro bicyclic or multicyclic compounds. Preferred heteroaryls include pyridyl, pyrrolyl and furyl. <br><br>
"Heterocycle" or "heterocyclic" refers to a monovalent saturated or unsaturated group having a single ring or multiple condensed rings, including fused, bridged and spiro bicyclic or multicyclic compounds, having from 1 to 15 carbon atoms and from 1 to 4 hetero atoms selected from nitrogen, sulfur or oxygen within the ring. <br><br>
WO 02/40451 PCT/US01/27795 <br><br>
-20- <br><br>
Unless otherwise constrained by the definition for the heterocyclic substituent, such heterocyclic groups can be optionally substituted with 1 to 5 substituents selected from -the-group consisting of alkyl, substituted alkyl, 5 alkoxy, substituted alkoxy, aryl, aryloxy, halo, nitro, heteroaryl, thiol, thioalkoxy, substituted thioalkoxy, thioaryloxy, trihalomethyl, and the like. Such heterocyclic groups can have a single ring or multiple condensed rings. Preferred heterocyclics include morpholino, piperidinyl, and 10 the like. <br><br>
Examples of nitrogen heterocycles and heteroaryls include, but are not limited to, pyrrole, imidazole, pyrazole, pyridine, pyrazine, pyrimidine, pyridazine, indolizine, isoindole, indole, indazole, purine, 15 quinolizine, isoquinoline, quinoline, phthalazine, <br><br>
naphthylpyridine, quinoxaline, quinazoline, cinnoline, pteridine, carbazole, carboline, phenanthridine, acridine, phenanthroline, isothiazole, phenazine, isoxazole, phenoxazine, phenothiazine, imidazolidine, imidazoline, 20 piperidine, piperazine, indoline, morpholino, piperidinyl, <br><br>
tetrahydrofuranyl, and the like as well as N-alkoxy-nitrogen containing heterocycles. <br><br>
"Oxyacylamino" refers to the group -0C(0)NRR where each R is independently hydrogen, alkyl, substituted alkyl, aryl, 25 heteroaryl, or heterocyclic wherein alkyl, substituted alkyl, aryl, heteroaryl and heterocyclic are as defined herein. <br><br>
"Thiol" refers to the group -SH. <br><br>
"Thioalkoxy" refers to the group -S-alkyl. 30 "Substituted thioalkoxy" refers to the group -S- <br><br>
substituted alkyl. <br><br>
"Thioaryloxy" refers to the group aryl-S- wherein the aryl group is as defined above including optionally substituted aryl groups also defined above. <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-21- <br><br>
"Heteroary1oxy" refers to the group heteroaryl-o-wherein the heteroaryl group is as defined above including optionally substituted aryl groups as also defined above. <br><br>
,In.particular process embodiments the present inventions provide methods for making a compound of formula (4) as described in Schemes 1 and .2. In the Schemes below, all substituents, unless otherwise indicated, are as previously defined and all reagents are well known and appreciated in the art. <br><br>
In Scheme 1, step 1, an appropriate N-alkylphenethylamine of formula (1) is acylated with a suitable bisalkoxycarbonylacetate transfer reagent to give a compound of formula (2}. An appropriate N-alkylphenethylamine of formula (1) is one in which V and K3 are as desired in the final product of formula I. Such N-alkylphenethylamines are readily prepared by the reaction of a 2-bromo or 2-chloroethylbenzene, under conditions well known and appreciated in the art, with an amine of the formula H2N-R3. A suitable bisalkoxycarbonylacetate <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-22- <br><br>
transfer reagent is one in which R4 is C1-C4 alkyl and transfers a bisalkoxycarbonylacetyl group to the compound of formula (1), such as, bisalkoxycarbonylacetic acids and bisalkoxycarbonylacetyl chlorides. (See Ben-Ishai, 5 Tetrahedron, 43, 439-450 (1987)). <br><br>
For example, an appropriate N-alkylphenethylamine of formula (1) is contacted with a suitable bisalkoxycarbonylacetic acid to give a compound of formula (2). Such coupling reactions are common in peptide 10 synthesis and synthetic methods used therein can be employed. For example, well known coupling reagents such as carbodiimides with or without the use of well known additives such as N-hydroxysuccinimide, 1-hydroxybenzotriazole, etc. can be used to facilitate this 15 acylation. Such coupling reactions often use a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, triethylamine, N,N-diisopropylethylamine, N-methylmorpholine and the like. The reaction is conventionally conducted in an inert aprotic 20 polar diluent such as dimethylformamide, methylene chloride, chloroform, acetonitrile, tetrahydrofuran and the like. Typically the reaction is carried out at temperatures of from about 0°C to about 60°C and typically require from about 1 to about 24 hours. Upon reaction completion, the 25 product of formula (2) is recovered by conventional methods including extraction, precipitation, chromatography, filtration, trituration, crystallization and the like. <br><br>
Alternatively, for example, an appropriate N-alkylphenethylamine of formula (1) is contacted with a 30 suitable bisalkoxycarbonylacetyl chloride to give a compound of formula (2). Such acid chlorides are readily prepared from the corresponding acids by methods well known in the art, such as by the action of phosphorous trichloride, phosphorous oxychloride, phosphorous pentachloride, thionyl 35 chloride, or oxalyl chloride, with or without a small amount <br><br>
WO 02/40451 PCT/USO1/27795 <br><br>
-23- <br><br>
of dime thylformamide, in an inert solvent such as, toluene, methylene chloride, or chloroform; at temperatures of from about 0-80°C. The reaction is typically carried out for a period, of time ranging from lhour to 24.hours. The acid 5 chloride can be isolated and purified or can often be used directly, that is, with or without isolation and/or purification. Such acylation reactions generally use a suitable base to scavenge the acid generated during the reaction. Suitable bases include, by way of example, 10 pyridine, triethylamine, N,N-diisopropylethylamine, N-methylmorpholine and the like. The reaction is conventionally conducted in an inert aprotic polar diluent such as methylene chloride, chloroform, tetrahydrofuran and the like. Typically the reaction is carried out at 15 temperatures of from about -20°C to about 80°C and typically require from about 1 to about 24 hours. Upon reaction completion, the product of formula (2) is recovered by conventional methods including extraction, precipitation, chromatography, filtration, trituration, crystallization and 20 the like. <br><br>
In Scheme 1, step 2, a compound of formula (2) is cyclized to give a compound of formula (3). <br><br>
For example, a compound of formula (2) is contacted with a acid, such as trifluoromethanesulfonic acid or 25 sulfuric acid. The reaction is typically carried out using the selected acid as a solvent. Typically the reactants are initially mixed at temperatures of from about -20°C to about 0°C and then allowed to warm to temperatures of about ambient temperature to about 60°C. The cyclization reaction 30 typically require from about 12 to about 72 hours. Upon reaction completion, the product of formula (2) is recovered by conventional methods including extraction, precipitation, chromatography, filtration, trituration, crystallization and the like. <br><br>
WO 02/40451 <br><br>
PCT/USO1/27795 <br><br>
-24- <br><br>
In Scheme 1, step 3, a compound of formula (3) is deprotected to give a compound of formula (4). <br><br>
The removal of such alkoxycarbonyl amine protecting groups is-well-known and appreciated in-the art: For example see, Protecting Groups in Organic Synthesis, Theodora Greene (1st and 2nd Editions, Wiley-Interscience) and Ben-Ishai, Tetrahedron, 43, 439-450 (1987). <br><br>
Scheme 2 <br><br>
step 1 <br><br>
flo <br><br>
10 <br><br>
In Scheme 2, step 1, an appropriate phenyl acetic acid derivative of formula (5) is coupled with an appropriate acetal of formula (6) to give a compound of formula (7). An <br><br>
WO 02/40451 <br><br>
PCT/USO1/27795 <br><br>
-25- <br><br>
appropriate phenyl acetic acid derivative of formula (5) is one in which V is as desired in the final product of formula I and A2 is an activated group, for example, -OH, -CI, or -Br. An appropriate acetalof formula•(6) is one in which R3 5 is as desired in the final product of formula I and R5 is a C1-C4 alkyl. Such coupling reactions are common in peptide synthesis and synthetic methods.used therein can be employed as are described in Scheme 1, step 1. <br><br>
Also, the coupling depicted in Scheme 2, step 2, can be 10 carried out under Schotten-Baumann conditions using an acid halide of appropriate phenyl acetic acid of formula (5) and an appropriate acetal of formula (6) in a mixed solvent, <br><br>
such as, methyl t-butyl ether, ethyl acetate, tetrahydrofuran, acetone, or diethyl ether and water. Such 15 reaction are carried out using a suitable base, such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, or potassium bicarbonate. Typically the reaction is stirred or agitated vigorously and is carried out at temperatures of from about 20 -20°C to about 80°C and typically require from about 1 to about 24 hours. Upon reaction completion, the product of formula (7) is recovered by conventional methods including extraction, precipitation, chromatography, filtration, trituration, crystallization and the like. 25 In Scheme 2, step 2, a compound of formula (7) is cyclized to give a compound of formula (8). Such cyclization reactions are carried out in a acid, such as sulfuric acid. Typically the acid is used as the solvent. In general, the reaction is carried out at temperatures of 30 from about -20°C to about 150°C and typically require from about 1 to about 24 hours. Upon reaction completion, the product of formula (8) is recovered by conventional methods including extraction, precipitation, chromatography, filtration, trituration, crystallization and the like. <br><br>
WO 02/40451 PCT/USO1/27795 <br><br>
-26- <br><br>
In Scheme 2, step 3, a compound of formula (8) <br><br>
undergoes an amine transfer reaction to give a coitpound of formula (9). In Scheme 2 an oximation is depicted. Such oximation are accomplished by., contacting the enolate of a 5 compound of formula (8) with an oxime transfer reagents, <br><br>
such as an alkyl nitrite ester. The enolate of a compound of formula (8) can be prepared by reacting the compound of formula (8) with a suitable base, such as potassium t-butoxide, lithium diisopropylamide, lithium 10 hexamethyldisilazide, sodium hexamethyldisilazide, potassium hexamethyldisilazide, and the like. Such oximinations are exemplified by Wheeler, et al., Organic Syntheses, Coll. Vol. VI, p. 840 which describes the reaction of isoamyl nitrite with a ketone to prepare the desired oxime. The 15 reaction is typically carried out in a solvent, such as tetrahydrofuran. In general, the reaction is carried out at temperatures of from about -20°C to about 50°C and typically require from about 1 to about 24 hours. Upon reaction completion, the product of formula (8) is recovered by 20 conventional methods including extraction, precipitation, <br><br>
chromatography, filtration, trituration, crystallization and the like. <br><br>
Alternately, such an amine transfer reaction can be accomplished through the azide. An azide can be formed by 25 the reaction of the enolate of a compound of formula (8) <br><br>
with an azide transfer reagent, such as toluenesulfonyl azide and triisopropylbenzenesulfonyl azide. Such reaction are exemplified in Evans, et al., J. Am. Chem. Soc., 112:4011-4030 (1990)41. The reaction is typically carried 30 out in a solvent, such as tetrahydrofuran. In general, the reaction is carried out at temperatures of from about -20°C to about 50°C and typically require from about 1 to about 24 hours. Upon reaction completion, the product of formula (8) having an azide instead of an oxime is recovered by 35 conventional methods including extraction, precipitation, <br><br>
-27- <br><br>
chromatography, filtration, trituration, crystallization and the like. <br><br>
As depicted in Scheme 2, step 4, an oxime is reduced <br><br>
I <br><br>
to the compound of formula (4) . . Such ..reductions are 5 accomplished by treatment with hydrogen and a suitable catalyst, such as Raney-nickel or palladium catalysts, such as palladium-on-carbon. The reaction is typically carried out in a solvent, such as tetrahydrofuran, ethyl acetate, or lower alcohols, such as methanol, ethanol, and isopropanol, 10 acetic acid, water, aqueous ammonia, and the like, and mixtures thereof. The reaction generally carried out at hydrogen pressures ranging from atmospheric pressure to about 600 psi (4137 kPa). In general, the reaction is carried out at temperatures of from abqut 20°C to about 15 100°C and typically require from about 1 to about 24 hours. Upon reaction completion, the product of formula (4) is recovered by conventional methods including extraction, precipitation, chromatography, filtration, trituration, crystallization and the like. <br><br>
20 Alternately, where the amine is transferred via an azide, the azido group is reduced. Such reductions are carried out by hydrogenation as described above. <br><br>
In a further embodiment, the present invention provides stereo specific processes for making lactams, compounds of 25 formula I, including (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-{S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one, and processes of making chiral intermediates thereof. Such processes are described in Scheme A. <br><br>
INTELLECTUAL PROPERTY OFFICE i* N.Z. <br><br>
1 7 feb 2005 received <br><br>
-28- <br><br>
10 <br><br>
step 4 <br><br>
(12) O R3 <br><br>
Scheme A, step 1, depicts the stereochemical resolution of an appropriate lactam of formula (4) to give a lactam, of formula (10). As will be appreciated by the.skilled artisan, the present processes are not necessarily limited to the preparation of a single isomer. Rather the present processes are capable of preparing either of the specific enantiomers of the lactams and is particularly suited to preparing the isomers of l-amino-3-alkyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-ones. <br><br>
Because of the greater biological activity associated with the (S)-isomer at the 2,3, 4,5-tetrahydro-lH-3-benzazepin-2-one moiety, the present invention is most useful as a preparation of a substantially pure (S)-isomer. <br><br>
oil ice | <br><br>
17 feb 2005 <br><br>
receives. <br><br>
-29- <br><br>
As used herein the term "substantially pure" refers to enantiomeric purity of (R)- or (S)-lactam, and particularly (R)- and (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-^-'One.-Accordingly to the present invention 5 substantially pure (S)-l-amino-3-alkyl-2,3,4,5'r-tetrahydro-lH-3-benzazepin-2-one can be prepared comprising the (S)-enantiomer which is greater than 80%, preferably greater than 90%, more preferably greater than 95%, most preferably greater than 97%. <br><br>
10 For example, the individual isomers of the compound of formula (4) can be resolved by fractional crystallization of dibenzoyltartrate, (R) -(-)-10-camphorsulfonic acid, and (D)-(-)-mandelic acid salts. It is expected that a wide variety of dibenzolytartarates are suitable for this purpose. In 15 particular, the dibenzoyl esters having a para substituent selected from the group consisting of hydrogen, halogen, Ci-C4 alkyl, and C1-C4 alkoxy are preferred with di-p-toluoyl-tartrate being most preferred. Di-p-toluoyl-L-tartrate is used to obtain the (S)-isomer. <br><br>
20 In a preferred embodiment of Scheme A, step 1, the coitpound of formula (4) is one in which V is hydrogen and R3 is Ci-C4alkyl, including methyl, ethyl, propyl, iso-propyl, butyl, iso-butyl, and sec-butyl; and most preferred is the use of compounds of formula (4) in which V is hydrogen and 25 R3 is methyl. <br><br>
According to the present process, the coitpound of formula (4) is contacted with the selected acid. Generally, from about 0.4 molar equivalents to a large excess of the selected acid can be used with about 0.4 to 1.5 molar 30 equivalents being preferred and with about 0.5 to 1.1 molar equivalents being more preferred. <br><br>
The process is typically carried out by crystallizing the acid addition salt from a solution. In particular, solvents such as lower alcohols, including methanol, <br><br>
INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br>
1 7 feb 2005 <br><br>
received <br><br>
WO 02/40451 <br><br>
PCT/USO1/27795 <br><br>
-30- <br><br>
ethanol, n-propanol, isopropanol, butanol, sec-butanol, iso-butanol, t-butanol, amyl alcohol, iso-amyl alcohol, t-amyl alcohol, hexanol, cyclopentanol, and cyclohexanol are suitable, -wi-th methanol, ethanol, and isopropanol being 5 preferred. The use of an anti-solvent may be advantageous. As used herein, the term "anti-solvent" refers to a solvent in which the salt is significantly less soluble compared to solvent. Preferably, when an anti-solvent is used it is miscible with the selected solvent. Suitable anti-solvents 10 include ethers, such as diethyl ether, methyl t-butyl ether, and the like, and lower alkyl acetates, such as methyl acetate, ethyl acetate, iso-propyl acetate, propyl acetate, iso-butyl acetate, sec-butyl acetate, butyl acetate, amyl acetate, iso-amyl acetate, and the like, and alkanes, such 15 as pentane, hexane, heptane, cyclohexane, and the like. <br><br>
When the present process is carried out by crystallizing the acid addition salt from the racemic mixture, care must be taken in using an anti-solvent to avoid crystallization of the salt of the undesired diastereomeric salt. 20 Typically, the crystallization is carried out at initial temperatures of about 40°C to reflux temperature of the selected solvent(s) and at initial concentrations of from about 0.05 molar to about 0.25 molar. The mixture is then cooled to give the salt. Seeding may be advantageous. 25 Stirring of the initial precipitate for from about 4 to 48 hours may be advantageous. Preferably the crystallization solution is cooled slowly. The crystallization is most conveniently cooled to temperatures of ambient temperature to about -20°C. The salt can be collected using techniques 30 that are well known in the art, including filtration, <br><br>
decanting, centrifuging, evaporation, drying, and the like. The compound of formula (10) can be used directly as the acid addition salt of the selected acid. Alternately, <br><br>
before use the compound of formula (10) can be isolated as <br><br>
-31- <br><br>
another acid addition salt after acid exchange or can by-isolated as the base by extraction under basic conditions as is well known and appreciated in the art. <br><br>
•In a-preferred embodiment -the present invention 5 provides a dynamic resolution of (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one of substantial enantiomeric purity comprising crystallizing 1-amino-3-methyl-2,3,4, 5-tetrahydro-lH-3-benzazepin-2-one as its acid addition salt of an acid selected from the group consisting 10 of di-p-tolyl-L-tartaric acid, (R)-(-)-10-camphorsulfonic acid, and (D)-(-)-mandelic acid as a dynamic process in the presence of an aromatic aldehyde. The dynamic process has the advantage that the l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one undergoes conversion to a single 15 isomer during the crystallization, thus, improving the yield and avoiding a waste stream which includes an undesired isomer. <br><br>
It is expected that a wide variety of aldehydes are suitable for the present process, we have found that a 20 number of aldehydes are particularly suitable in practice. Specifically, we have found that salicylic acids are preferred and salicylaldehyde, 5-nitrosalicylaldehyde, and 3,5-dichlorosalicylaldehyde are more preferred in the present dynamic resolution process. <br><br>
25 Accordingly, when the present process is carried out as a dynamic resolution, l-amino-3-methyl-2,3,4,5-tetrahydro-lH:-3-benzazepin-2-one is contacted with the selected acid in the presence of an aldehyde. Generally, for the dynamic resolution from about 0.9 to 1.2 molar equivalents of acid 30 are used, with about 1 molar equivalents being preferred. The aldehyde is generally used in a catalytic amount. Typically, about 0.5 to 0.001 molar equivalents of aldehyde are used, with about 0.1 to about 0.01 molar equivalents being preferred. <br><br>
INTELLECTUAL PROPERTY OFFICE nt N.Z. <br><br>
1 7 feb 2005 BPTFIN/ED <br><br>
-32- <br><br>
The dynamic process is typically carried out in a solvent or a solvent without an anti-solvent as described above. The mixture of l-amino-3-methyl-2,3,4,5-tetrahydro-1H-3-Jbenzazepin-2-one, the selected acid, and aldehyde are 5 stirred to allow conversion to the desired isomer. <br><br>
Generally this conversion is carried out at temperatures of from ambient temperature to the refluxing temperature of the solvent. Generally conversion requires 6 to 48 hours. <br><br>
As will be appreciated by the skilled artisan, when the 10 present process is carried out as a dynamic resolution, use of the acid addition salt of (S)-l-amino-3-methyl-2,3, 4,5-tetrahydro-lH-3-benzazepin-2-one can be complicated by the presence of a small amount of aldehyde in the isolated product. Thus, after dynamic resolution it is preferred 15 that (S)-l-amino-3-methyi-2, 3, 4, 5-tetrahydro-lH-3- <br><br>
benzazepin-2-one be isolated by salt exchange, preferably as the hydrochloride salt, before its use or formation of base. <br><br>
As will be appreciated by those skilled in the art, the compounds of formula (10) can be used in a variety of 20 processes to prepare compounds useful for the treatment of Alzheimer's disease. These processes are described in PCT Application No. PCT/US97/22986, filed 22 December 1997 and are described below. The processes of the present invention are characterized in that they produce the compounds of 25 formula I by taking advantage of the resolution depicted in Scheme A, step 1. <br><br>
Scheme A, step 2, depicts the coupling reaction of an appropriate amino-protected amino acid of formula the PgNH-CHRa-C (0) -A and an appropriate lactam of formula (10). 30 Appropriate amino-protected amino acids are ones in which Pg is an amine protecting group, R2 is as desired in the final product of formula I, and A is an activating group, for example -OH or -CI, capable of coupling with the amino group of the compound of formula (10) . Such amino-protected amino <br><br>
17 feb 2005 received <br><br>
WO 02/40451 PCT/US01/27795 <br><br>
-33- <br><br>
acids are readily available to the person skilled in the art. <br><br>
Preferred amino-protected amino acid of formula the PgNH-CHRa-JC (O)-A are-those in which Pg is -t-butoxycarbonyl 5 and benzyloxycarbonyl, R2 is methyl, and those having the stereochemistry of an L-amino acid. <br><br>
The coupling reaction depicted in Reaction Scheme A, step 2, involves a reaction which is conventionally conducted for peptide synthesis and synthetic methods used 10 therein can also be employed. Such methods are described in detail in Scheme 1, step 1. <br><br>
Reaction Scheme A, step 3, depicts the deprotection of a compound of formula (11) to give a coitpound of formula (12). Such deprotections of amino protecting groups is well 15 known and appreciated in the art. <br><br>
Reaction Scheme A, step 4, depicts the coupling reaction of an appropriate compound of formula (13), <br><br>
R1CX1X2-C (0)Ai and a compound of formula (12) to give a compound of formula I. Appropriate compounds of formula 20 (13) are compounds in which Ri, Xi, and X2 are as desired in the final product of formula I and are well known in the art, including PCT Application No. PCT/US97/22986, filed 22 December 1997, and as described herein. An appropriate compound of formula (13) may also have the stereochemistry 25 that is desired in the final compound of formula I. The coupling reaction depicted in step 3 is carried out using the acid of formula (13) (compounds in which Ai is -OH) or the acid halide derived therefrom (compounds in which Ai is -Cl or -Br), in a manner similar to those taught in Scheme 30 1, step 1. <br><br>
An alternative method for preparing the compounds of formula I is depicted in Scheme A, step 5, which shows the coupling reaction of an appropriate compound of formula (10) and an appropriate compound of formula (14), <br><br>
-34- <br><br>
RiCXiX2-C(0)-NH-CHR2-C(0)A2, to directly give a compound or formula I. An appropriate compound of formula (10) is as described in step 2. An appropriate compound of formula (14) -is -one-in which Ri,-Xi, • X2, and R2 are as desired in the 5 final product of formula I. An appropriate compound of formula (14) is also one in which the stereochemistry is as desired in the final product of formula I. <br><br>
Compounds of formula (14) are readily prepared by coupling carboxy-protected amino acids, H2N-CHR2-C(0)0Pgi, 10 with compounds of formula (13) as described above. Again such coupling reactions are well known in the art and afford a product, which after deprotection, provides a compound of formula (14) . <br><br>
The present invention is further illustrated by the 15 following examples and preparations. These examples and <br><br>
• preparations are illustrative only and are not intended to limit the invention in any way. <br><br>
The terms used in the examples and preparations have their normal meanings unless otherwise designated. For 20 example "0CM refers to degrees Celsius; "mmol" refers to millimole or millimoles; "g" refers to gram or grams; "mL" refers milliliter or milliliters; "brine" refers to a saturated aqueous sodium chloride solution; "THF" refers to tetrahydrofuran; "HPLC" refers to high pressure liquid 25 chromatography; etc. <br><br>
Example 1 <br><br>
Synthesis of 1 - amino - 3 -me thy 1 - 2,3,.4, 5 -tetrahydro-lH-3-benzazepin-2-one <br><br>
To a slurry of sodium hydride (1.1 eq) in 15 mL of dry 30 DMF was added 2,3,4, 5 -tetrahydro-lH-3-benzazepin-2-one <br><br>
(0.0042 moles) as a solution in 10 mL of DMF. Methyl iodide (about 2 eq.) was then added. When complete by TLC, the reaction mixture was poured over ice and extracted into ethyl acetate. The organic layer was washed with water, <br><br>
^CTUVSU11' <br><br>
17 FEB 2005 ocr.FIVEP, <br><br>
-35- <br><br>
followed by brine. The organic layer was then dried over Na2S04, filtered, and concentrated under reduced pressure. <br><br>
The residue was purified by HPLC (LC 2000), eluting with an ethyl acetate/hexane system to give 3-methyl-2,3,4,5-5 tetrahydro-lH-3-benzazepin-2-one. <br><br>
3-Methyl- 2,3, 4,5-tetrahydro-lH-3-benzazepin-2-one (1 eq.) was dissolved in THF and isoamylnitrite (1.2 eq.) was added. The mixture was cooled to 0°C in an ice bath. NaHMDS (1.1 eq., 1M in THF) was added dropwise. After stirring for 10 1 hour or until the reaction was complete, the mixture was concentrated then acidified with IN aqueous hydrochloric acid solution and extracted with ethyl acetate. The organic portion was dried and concentrated to yield a crude product which was purified by silica gel chromatography to give 1-15 hydroxyimino-3-methyl-2, 3, 4, 5- tetrahydro-lH-3 -benzazepin-2 -one: Mass spectroscopy (M+H) + , 205.1. <br><br>
l-Hydroxyimino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one was dissolved in EtOH/NH3 (20:1)'and hydrogenated in a bomb using Raney nickel and hydrogen (500 20 psi/3447kPa) at 100°C for 10 hours. The resulting mixture was filtered and concentrated to provide an oil which was purified by silica gel chromatography to yield the title compound. <br><br>
Example 2 <br><br>
25 Synthesis of l-amino-3-methyl-2,3,4, 5-tetrahydro~lH-3- <br><br>
benzazepin-2-one <br><br>
To a 20 L Morton flask was added MTBE (5.52 L, 7 <br><br>
volumes) and (N-methylamino) -acetaldehyde dimethyl acetal <br><br>
(614 g, 5 mol) to form a solution at room temperature. A <br><br>
30 solution of sodium bicarbonate prepared by the addition of sodium bicarbonate (546g, 6.5 mol) and water (6.31 L, 8 <br><br>
volume) was added to the Morton reaction flask. The mixture was cooled to less than 10°C and a MTBE .(789 mL) solution of phenylacetyl chloride (789 g, 5 mol) was added dropwise to <br><br>
HNTELIECTUAL PHUHtHH UFFICE 1 OFNi <br><br>
17 feb 2005 received. <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-36- <br><br>
the cooled reaction mixture over a 1 h period. After addition, the reaction mixture was stirred at room temperature for 1 h. At this stage an HPLC analysis indicated that the. reaction.was completed. Extractive 5 workup with MTBE (4 volumes), anhydrous magnesium sulfate drying followed by concentration on the rotary evaporator provided 1.187 kg (98%) of N-methyl-N-(2,2-dimethoxyethyl)phenylacetamide as a liquid, (M+H) + = 237.9. To a 5 L Morton flask under a strong nitrogen atmosphere was 10 added H2S04, (1.42 L) and N-methyl-N-(2,2- <br><br>
dimethoxyethyl)phenylacetamide (712 g, 3 mol) was added dropwise to the reaction flask which caused an exotherm (22 to 78°C). The resulting reaction was then heated to 110°C for 3 h then cooled to room temperature and transferred to a 15 20 L Morton flask. At less than 10°C, the reaction mixture was quenched with aqueous sodium hydroxide (9.18 L, 5 N) . Extractive workup with ethyl acetate (2 X 2.85 L), drying with sodium sulfate followed by concentratina to a solid, provided 520 g (73.5%) of 3-methyl-4,5-dihydro-lH-3-20 . benzazepin-2-one as a solid. This material may be recrystallized from MTBE for added purity to give a solid, np = 81-82*C; (M+H)+ =174.2. <br><br>
A THF (0.5 L) solution of 3-methyl-4,5-dihydro-lH-3- <br><br>
benzazepin-2-one (113.8 g, 0.657 mol) was cooled to 0°C and 25 isoamyl nitrite (100.75 g, 0.86 mol) was added dropwise. To the resulting mixture was added LiHMDS (IN THF solution, 854 mL, 0.854 mol) at a rate such that the temperature remained below 10°C. After addition, the reaction was allowed to stir at room temperature for 2-3 h while 30 monitoring for the reaction progress by HPLC. Upon completion of the reaction, the mixture was cooled to 0°C, and the pH adjusted from 12 to 2-3 using aqueous HCl (2N) . The resulting precipitate was stirred for 12-16 h before <br><br>
INTELLECTUAL PROPERTY OFFICE HF N.Z. <br><br>
1 7 feb 2005 REC£*ved_ <br><br>
-37- <br><br>
isolation by filtration and drying to provide 86.3g (64.9 %) <br><br>
of l-hydroxyimino-3-methyl-4,5-dihydro-lH-3-benzazepin-2- <br><br>
one; mp = 225-226°C; (M+H)* = 203.0. <br><br>
•An ethanol (525 mL) -solution of 1-hydroxyimino-3-5 methyl-4,5-dihydro-lH-3-benzazepin-2-one (35 g, 0.173 mol) was added to an autoclave along with palladium on carbon (10%, 3.5 g) as a dilute HCl (concentrated aqueous, 17.5 g in 17 mL water) slurry. The resulting mixture was hydrogenated at 50°C and 250 psi (1723 kPa) until the 10 reaction was completed. The reaction mixture was filtered over a pad of celite using ethanol as solvent and the filtrate concentrated to 90 mL. Water (350 mL) was added to the concentrate and the resulting solution further concentrated to about 200 mL. Dichloromethane (350 mL) was 15 added to the aqueous solution before adjusting the pH to 11-11.5 with aqueous sodium hydroxide (IN). The organic portion was separated and the aqueous portion extracted with dichloromethane (175 mL) . The combined extracts were concentrated to a residue that crystallized upon standing to 20 give the title compound: mp - 69-81°C; (M+H)+ = 191.0. <br><br>
Example 3 <br><br>
Synthesis of l-&mino-3-methyl-2/3,4,5-tetrahydro-lH-3-benzazepin-2-one <br><br>
25 To a 22 L Morton flask was added dichloromethane (4.73 <br><br>
L, 8 volumes), N-methylphenethylamine (591 g, 4.33 mol), and aqueous sodium bicarbonate (436.7 g, 5.2 mol in 4.73 L of water). The mixture was cooled to less than 5°C e»nd dichloromethane (887 mL) solution of chloroacetyl chloride 30 (513.7 g, 4.55 mol) was added dropwise to the cooled reaction mixture over a 70 min period. After addition, an HPLC analysis indicated that the reaction was completed. The layers were separated and the aqueous layer was <br><br>
INTELLECTUAL PROPERTY OFFICE OF N.Z. <br><br>
v7 feb 2005 <br><br>
received <br><br>
-38- <br><br>
extracted with dichloromethane. Conibined organic layers were dried over anhydrous magnesium sulfate and concentrated on the rotary evaporator to provide 915.7 g (99.8%) of N-methyl-N-(2's-phenylethyl)-.1-chloroacetamide: (M+H) = 212.1. <br><br>
5 To a 12 L flask under a nitrogen atmosphere was added <br><br>
N-methyl-N-(2-phenylethyl).-l-chloroacetamide (883.3 g, 4.17 mol) and ortho-dichlorobenzene (6.18 L). Add aluminum chloride (1319 g, 10.13 mol) which caused an exotherm (22 to 50°C) . The resulting reaction was then heated to 165°C for 10 2.5 h then cooled to room temperature over about 14 hours. <br><br>
The reaction mixture was cooled to about 0°C, and was added to cold water (8.86 L, about 5°C) in four portions in order to keep exotherm to about 40°C. The layers were separated and aqueous layer was extracted with dichloromethane (7.07 15 L) and the layers separated. The organic layers were conibined and extracted with aqueous hydrochloric acid (8.83 L, IN) and then a saturated aqueous sodium bicarbonate solution (7.07 L), dried over magnesium sulfate, combined with silica gel (883 g) and applied to a column of silica 20 gel (3.53 kg, in a sintered glass funnel, packed as a slurry in dichloromethane) . The column was eluted with dichloromethane until 25 L were collected and then with ethyl acetate to provide the product. The product containing fraction were evaporated to 3-methyl-2,3,4,5-25 tetrahydro-lH-3-benzazepin-2-one as a tan solid, 608 g . (83%). <br><br>
In a 22 L flask, under nitrogen, was 3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one (606 g, 3.46 mol) and isoamyl nitrite (543 g, 4.5 mol) in THF (7.88 L). The 30 mixture was cooled to about 0°C before LiHMDS (1 N THF <br><br>
solution, 4.5 L, 04.5 mol) was added at a rate such that the temperature remained below about 7°C. After addition, the reaction was allowed to stir at room temperature for about 2 <br><br>
INTELLECTUAL PROPERTY OFFICE 0C HI. <br><br>
17 feb 2005 received <br><br>
-39- <br><br>
h while monitoring for the reaction progress by HPLC. Upon completion of the reaction, the mixture was cooled to about 0°C, and the pH adjusted from 12 to about 2-1 using aqueous HCl (2N) . -The resulting precipitate was stirred'for about 6 5 h before isolation by filtration and drying to provide 1- <br><br>
hydroxyimino-3-methyl-2,3, 4,5-tetrahydro-lH-3-benzazepin-2-one 604.7 g (85.6%). <br><br>
l-Hydroxyimino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one (625 g, 3.06 mol) and 3A ethanol (15.6 L), 10 as a dilute HCl (concentrated aqueous hydrochloric acid (312 g in 320 mL water), slurry was added to an autoclave along with palladium on carbon (10%, 120 g) . The resulting mixture was hydrogenated at 50°C and 250 psi (1723 kPa) with vigorous agitation until the reaction was completed (about 4 15 hours). The reaction mixture was filtered over a pad of celite using ethanol as solvent and the filtrate concentrated give a solid. The solid was treated with dichloromethane (6 L) and IN aqueous sodium hydroxide solution was added until the pH to of the aqueous layer was 20 between 11-11.5. The mixture was agitated, the layers were separated, and the aqueous layer was extracted with, dichloromethane (2 L). The organic layers were dried over magnesium sulfate, filtered, and evaporated in a rotary evaporator to give the title compound 477 g (81.9%). <br><br>
25 <br><br>
Example 4 <br><br>
Synthesis of (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one l-Amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-30 one (1.544g, 8.12 mmol) was heated gently in 15 mL methanol to form a solution. In-another flask, di-p-toluoyl-1-tartaric acid (3.12 g, 8.08 mmol) was dissolved in 15 mL methanol and added via pipette to the warm amine solution. The mixture was heated as solids precipitated. An additional intellectual property office r\r n.z <br><br>
17 feb 2005 <br><br>
nr^CIV/Pn <br><br>
-40- <br><br>
30 mL of methanol was added to achieve a solution, which was refluxed for 30-40 minutes and then slowly cooled to ambient temperature to give a solid. After stirring for about 18 hours,- the-solid was collected by- filtration and rinsed with 5 a small amount of cold methanol to give 2.24 g of (S)-l- <br><br>
amino-3-methyl-^ 3,4,5-tetrahydro-lH-3-benzazepin-2-one di-p-toluoyl-L-tartaric acid salt (96% yield, 94.7% ee). <br><br>
(S)-l-Amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one di-p-toluoyl-L-tartaric acid salt (11.83 g, 10 20.5 mmol) was dissolved in 45 mL of aqueous 1.0 N sodium hydroxide solution and extracted with methylene chloride (3 X 25mL). The combined methylene chloride layers were washed with 35 mL aqueous 1.0 N sodium hydroxide solution, then brine solution, and dried over anhydrous MgS04. Removal of 15 solvent under vacuum gave the title compound (3.38 g) as a colorless oil (87% yield, 93.2% ee). <br><br>
Example 5 <br><br>
Synthesis of (S)-l-amino-3-methyl-2,3,4. 5-tetrahydro~lH-3-20 benzazepin- 2 -one l-Amino-3 -methyl-2,3,4, 5 - tetrahydro-lH-3 -benzazepin-2 -one (6.0 g, 31.5 mmol) was heated gently in 75 mL methanol to form a solution and combined with a solution of di-p-toluoyl-L-tartaric acid (12.2 g, 31.5 mmol) in 75 mL of warm 25 methanol. The solution was seeded and a solid formed. An additional 100 mL of methanol was added and the mixture was allowed to stir. After stirring for about 18 hours, the solid was collected by filtration and rinsed with a small amount of cold methanol to give 6.7 g of a solid. The solid 30 was combined with methanol (200 mL) ,and stirred. After 18 <br><br>
hours, the solid was collected to give (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one di-p-toluoyl-L-tartaric acid salt (4.4 g). Isolation of the base by the <br><br>
-41- <br><br>
procedure described in Example 4 gave the title compound (96% ee). <br><br>
. , • Example 6 <br><br>
5 Synthesis of (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one <br><br>
In a 22 L vessel, under nitrogen, l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one (438 g, 2.3 mol) was heated (about 40°C) to provide a solution in methanol 10 (4.38 mL). In another flask, di-p-toluoyl-l-tartaric acid <br><br>
(889.7 g, 2.3 mol) was dissolved in 4.38 L of methanol and heated to about 40°C before the solution of l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one was added. The heating was continued and an additional 6.13 L of 15 methanol was added before the mixture was refluxed for about 45 minutes and then slowly cooled to ambient temperature to give a solid. After stirring for about 18 hours, the solid was collected by filtration and rinsed with a small amount of mother liquors, and after air drying, with about 2 L of 20 ethyl acetate to give 561.6 g of (S)-l-amino-3-methyl- <br><br>
2,3,4,5 -tetrahydro-lH-3-benzazepin-2-one di-p-toluoyl-L-tartaric acid salt. Combine (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one di-p-toluoyl-L-tartaric acid salt, dichloromethane (6.57 L) and IN aqueous sodium 25 hydroxide solution (6.57 L) and agitate. Separate the layers and extract the organic layer twice with and IN aqueous sodium hydroxide solution (3.28 L), once with brine (2.46 L) before drying over magnesium sulfate, filtering, and evaporating on a rotary evaporator to give the title 30 compound 250 g (57.4%, 94.1% ee). <br><br>
-42- <br><br>
Example 7 <br><br>
Synthesis of (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one hydrochloric acid salt <br><br>
. l-rAmino-3-methyl- 2, 3, 4,5-tetrahydro-?lH-3-benzazepin-2-5 one (31.9g, 168 mmol) was slurried in about 300 mL isopropyl acetate and heated to 45°C. In a separate flask, (R)-(-)-D-mandelic acid (25.Og, 164 mmol) was heated in about 130 mL of isopropyl alcohol until a solution formed and was added to the l-amino-3-methyl—2,3,4,5-tetrahydro-lH-3-benzazepin-10 2- one/isopropyl acetate slurry obtained above to give a solution from which a precipitate quickly formed. The mixture was stirred at 45°C for about 3 hours. 5-Nitrosalicylaldehyde (2-hydroxy-5-nitrobenzaldehyde) (1.40 g, 8.38 mmol, 5 mol%) was added to the warm solution and the 15 mixture was stirred at45°C. After about 14 hours, the slurry was cooled to ambient temperature and stirred for 2 hours before the solids were collected by filtration and rinsed with 70 mL of cold isopropyl acetate, and dried in the vacuum oven at 40°C to obtain 46.62 g of (S)-l-amino-3-20 methyl-2/3,4,5-tetrahydro-lH-3-benzazepin-2-one (R)-mandelic acid salt (82.9% yield, 98.4% ee). <br><br>
(S)-l-Amino-3-methy1-2,3,4, 5-tetrahydro-lH-3-benzazepin-2-one (R)-mandelic acid salt (2.42g, 7.06 mmol, 98.4% ee) was slurried in 25 mL ethyl acetate at ambient 25 temperature. Concentrated aqueous hydrochloric acid (1.1 mL, about 11.2 mmol) was added and the mixture was heated to 50°C with vigorous stirring for 3.5 hours. The slurry was cooled to ambient temperature and filtered, rinsed with the methyl t-butyl ether (about 10 mL) to give 1.48g of the 30 title compound (92.5% yield, 97.9% ee). <br><br>
intellectual property office of n.z. <br><br>
17 feb 2005 received <br><br>
-43- <br><br>
Example 8 <br><br>
Synthesis of (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one ... . . <br><br>
A round bottom flask was charged with N-t-Boc-L-alanine (1.0 eq.), hydroxybenzotriazole hydrate (about 1.1 eq.) and (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one (1.0 eq.) in THF -under nitrogen atmosphere. Hunig's base (n,n-diisopropylethylamine, 1.1 eq.) was added to the well stirred mixture followed by EDC (1.1 eq.). After stirring from 4 to 17 hours at ambient temperature the solvent was removed at reduced pressure, the residue taken up in ethyl acetate and water, washed with saturated aqueous sodium bicarbonate solution, 1 N aqueous HCl, brine, dried over anhydrous sodium sulfate, filtered, and the solvent removed at reduced pressure to provide 1-(N-t-Boc-L-alaninyl)amino-3-methyl-2,3,4, 5-tetrahydro-lH-3-benzazepin-2-one: mass spectroscopy (M+H)+, 362.3. <br><br>
A stream of anhydrous HCl gas was passed through a stirred solution of 1-(N-t-Boc-L-alaninyl)amino-3-methyl-2,3,4, 5-tetrahydro-lH-3-benzazepin-2-one in 1,4-dioxane(0.03-0.09 M), chilled in a ice bath to about 10°C under NZ, for 10-15 minutes. The solution was capped, then the cooling bath removed, and the solution was allowed to warm to ambient temperature with stirring for 2-8 hours, <br><br>
monitoring 1.0 by TLC for the consumption of starting material. The solution was concentrated to give 1-(L-alaninyl)-(S)-amino-3-methyl~2,3,4,5-tetrahydro-lH-3-benzazepin-2-one which was used without further purification. <br><br>
1-(L-Alaninyl)-(S)-amino-3-methyl-2,3,4,5-tetrahydro-3-methyl-lH-3-benzazepin-2-one (1.0 eq.), hydroxybenzotriazole hydrate (1.1 eq.) and (S)-2-hydroxy-3-methyl-butyric acid (1.0 eq.) in THF under nitrogen atmosphere. Hunig's base intellectual property office of N2. <br><br>
1 7 feb 2005 received <br><br>
-44- <br><br>
(N,N-diisopropylethylamine, 1.1 eq.) was added to the well stirred mixture followed by EDC (1.1 eq.). After stirring from 4 to 17 hours at ambient temperature the solvent was removed at- reduced pressure, the residue.taken up in ethyl 5 acetate (or similar solvent) and water, washed with saturated aqueous sodium bicarbonate solution, 1 N HCl, brine, dried over anhydrous sodium sulfate and the solvent removed at reduced pressure to provide the title compound. <br><br>
10 Example 9 <br><br>
Synthesis of (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl) - (S) -amino-3-methyl-2,3, 4,5 -tetrahydro-lH-3-benzazepin-2-one <br><br>
A round bottom flask was charged with N-t-Boc-L-alanine 15 (249.5 g, 1.32 mol), hydroxybenzotriazole hydrate (232.2 g, <br><br>
1.52 mol), and (S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one (250.8 g, 1.32 mol) in THF (3.76 L) tinder nitrogen atmosphere. The mixture was cooled to less than 5°C before adding Hunig's base (N,N-diisopropylethylamine, 188.4 20 g, 1.45 mol) followed by EDC (283.7 g, 1.45 mol). After stirring 6 hours the reaction mixture was warmed to ambient temperature and stirred for about 14 hours.' The solvent was removed at reduced pressure, the residue taken up in ethyl acetate [3.76 L) and water (1.76 L), the layers were 25 separated, the organic layer extracted with water (1.76 L), the aqueous layers combined and extracted with ethyl acetate (1.76 L). The organic layers were combined, extracted with saturated aqueous sodium bicarbonate solution (1.76 L), <br><br>
dried over anhydrous sodium sulfate, filtered, and 30 evaporated in on a rotary evaporator to provide 1-(N-t-Boc-L-alaninyl) amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one 463 g (97.2%). <br><br>
An ethyl acetate solution of HCl was prepared by passing anhydrous HCl gas, using a subsurface dispersion v 7 feb 2005 received <br><br>
-45- <br><br>
tube, through ethyl acetate (1.76 L) cooled to about 0°C. The ethyl acetate solution of HCl prepared above was added to a vigorously stirred slurry of 1-(N-t-Boc-L-alaninyl )amino-3-methyl-2,3, 4,5-tetrahydro-lH-3-benzazepin-5 2-one (462 g, 1.28 mol) in ethyl acetate (3.7 L). An additional amount of ethyl acetate (1 L) was added and the reaction mixture was allowed to warm to room temperature and stirred for 22 h. The reaction mixture was filtered to give a solid. The solid was slurryed with acetonitrile (5 L), 10 heated to reflux and then cooled to about 60°C before filtering and drying to give 1-(L-alaninyl)-(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one 389.8 g (94.7%). <br><br>
1-(L-Alaninyiy-(S)-amino-3-methyl-2,3,4,5-tetrahydro-3-15 methyl-ih-3-benzazepin-2-one (369.5 g, 1.18 mol), <br><br>
hydroxybenzotriazole hydrate (207.6 g, 1.36 mol), Hunig's base (N,N-diisopropylethylamine, 352.2 g, 2.71 mol), and (S)-2-hydroxy-3-methyl-butyric acid (140.6 g, 1.18 mol) in THF (4.8 L) were combined under a nitrogen atmosphere and 20 cooled to less than 5°C. EDC (253.7 g, 1.3 mol) was added and the reaction mixture was allowed to warm to ainbient temperature and to stir. After about 25 hours the reaction mixture was diluted with dichloromethane (5.54 L) and extracted with water (2.22 L). The organic layer was 25 extracted with water (2.22 L), the aqueous layers were combined and extracted with dichloromethane (5.54 L). The organic layers were combined, extracted twice with water (2.22 L), with saturated aqueous sodium bicarbonate solution (2.22 L), dried over anhydrous sodium sulfate, filtered, and 30 evaporated in on a rotary evaporator to provide the title compound 428 g (100%). <br><br>
-46-Example 10 <br><br>
Synthesis of (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-sone dihydrate <br><br>
(N) - ((S) -2-Hydroxy-3-methyl-butyryl) -1- (L-alaninyl) -(S)-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one solid was taken up in acetone (3.42 L) and water (0.856 L) <br><br>
with slight warming (40°C). The solution was split into ~2 L portions and to each was added water (7.19 L) while warming the hazy solution to 50°C. Upon complete addition of water the hazy solution was allowed to cool to ambient to give a solid which was stirred as a slurry at ambient temperature for about 14 hours before filtering and drying to give the title compound 310.6 g (66.2%). <br><br>
When employed as a pharmaceutical the present invention is usually administered in the form of a pharmaceutical composition. Thus, in another embodiment, the present invention provides pharmaceutical compositions comprising an effective amount of crystalline N-((S)-2-hydroxy-3-methyl-butyryl) -1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate and a pharmaceutically acceptable diluent. Such compositions are used for inhibiting p-amyloid peptide release and/or its synthesis, including the treatment of Alzheimer' disease. <br><br>
Thus, the present invention encompasses the use of crystalline (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-iH-3-benzazepin-2-one dihydrate for the manufacture of a medicament for inhibiting P-amyloid peptide release and/or its synthesis, and specifically including, treating Alzheimer's disease. <br><br>
Crystalline (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2/3, 4, 5-tetrahydro-lH-3-benzazepin-2-one dihydrate can be administered by a variety <br><br>
"jfftffifr.tiial property office of n.z <br><br>
1 7 feb 2005 RFREIVED <br><br>
WO 02/40451 PCT/USO1/27795 <br><br>
-47- <br><br>
of routes. The present compound can be administered in any form or mode which makes the compound bioavailable in an effective amount, including oral and parenteral routes. For example,.the present compound can be administered orally, 5 by inhalation, subcutaneously, intramuscularly, <br><br>
intravenously, transdermally, intranasally, rectally, occularly, topically, sublingually, buccally, and the like. <br><br>
In making the compositions of this invention, the active ingredient is usually mixed with an excipient, 10 diluted by an excipient or enclosed within such a carrier which can be in the form of a capsule, sachet, paper or other container. The compound of the present invention can be administered alone or in the form of a pharmaceutical composition, that is, combined with pharmaceutically 15 acceptable diluents, such as carriers or excipients, the proportion and nature of which are determined by the solubility and chemical properties of the present compound, the chosen route of administration, and standard pharmaceutical practice. (Remington's Pharmaceutical 20 Sciences, 18th Edition, Mack Publishing Co. (1990)). <br><br>
The present pharmaceutical compositions are prepared in a manner well known in the pharmaceutical art. The carrier or excipient may be a solid, semi-solid, or liquid material which can serve as a vehicle or medium for the active 25 ingredient. Suitable carriers or excipients are well known in the art. The pharmaceutical composition may be adapted for oral, inhalation, parenteral, or topical use and may be administered to the patient' in the form of tablets, <br><br>
capsules, aerosols, inhalants, suppositories, solution, 30 suspensions, or the like. <br><br>
For the purpose of oral therapeutic administration, the compounds may be incorporated with excipients and used in the form of tablets, troches, capsules, elixirs, <br><br>
suspensions, syrups, wafers, chewing gums and the like. <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-48- <br><br>
These preparations should contain at least 4% of the compound of the present invention, the active ingredient, but may be varied depending upon the particular form and may conveniently ..be between -2% to about 90% of. the weight of the unit. The amount of the compound present in compositions is such that a suitable dosage will be obtained. Preferred compositions and preparations according to the present invention may be determined by a person skilled in the art. <br><br>
The tablets, pills, capsules, troches, and the like may also contain one or more of the following adjuvants: binders such as microcrystalline cellulose, gum tragacanth or gelatin; excipients such as starch or lactose, disintegrants such as alginic acid, Primogel, corn starch and the like; lubricants such as magnesium stearate, silicon oil, or Sterotex; glidants such as colloidal silicon dioxide; and sweetening agents such as sucrose or saccharin may be added or a flavoring agent such as peppermint, methyl salicylate or orange flavoring. When the dosage unit form is a capsule, it may contain, in addition to materials of the above type, a liquid carrier such as polyethylene glycol or a fatty oil. Other dosage unit forms may contain other various materials which modify the physical form of the dosage unit, for example, as coatings. Thus, tablets or pills may be coated with sugar, shellac, or other coating agents. A syrup may contain, in addition to the present compounds, sucrose as a sweetening agent and certain preservatives, dyes and colorings and flavors. Materials used in preparing these various compositions should be pharmaceutically pure and non-toxic in the amounts used. <br><br>
For the purpose of parenteral administration, the coitpound of the present invention may be incorporated into a solution or suspension. These preparations typically contain at least 0.1% of the compound of the invention, but may be varied to be. between 0.1 and about 90% of the weight <br><br>
WO 02/40451 PCT/USO1/27795 <br><br>
-49- <br><br>
thereof. The amount of the compound present in such compositions is such that a suitable dosage will be obtained. The solutions or suspensions may also include one or more of -the following adjuvants: sterile diluents such as 5 water for injection, saline solution, fixed oils, <br><br>
polyethylene glycols, glycerine, propylene glycol or other synthetic solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylene 10 diaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. The parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. Preferred compositions 15 and preparations are able to be determined by one skilled in the art. <br><br>
The compound of the present invention may also be administered topically, and when done so the carrier may suitably comprise a solution, ointment, or gel base. The 20 base, for example, may comprise one or more of the following: petrolatum, lanolin, polyethylene glycols, bees wax, mineral oil, diluents such as water and alcohol, and emulsifiers, and stabilizers. Topical formulations may contain a concentration of the formula I or its 25 pharmaceutical salt from about 0.1 to about 10% w/v (weight per unit volume). <br><br>
Another preferred formulation of the present invention employs transdermal delivery devices ("patches"). Such transdermal patches may be used to provide continuous or 30 discontinuous infusion of the compound of the present invention in controlled amounts. The construction and use of transdermal patches for the delivery of pharmaceutical agents is well known in the art. See, e.g., U.S. Patent 5,023,252, issued June 11, 1991, herein incorporated by <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-50- <br><br>
reference. Such patches may be constructed for continuous, pulsatile, or on demand delivery of pharmaceutical agents. <br><br>
In order to more fully illustrate the operation of this invention, - typical, pharmaceutical •■compositions are described 5 below. The examples are illustrative only, and are not intended to limit the scope of the invention in any way. <br><br>
Formulation Example 1 Hard gelatin capsules containing the following 10 ingredients are prepared: <br><br>
Ingredient Quantity(mg/capsule) <br><br>
Active Ingredient 30.0 <br><br>
Starch 305.0 <br><br>
15 Magnesium stearate 5.0 <br><br>
The above ingredients are mixed and filled into hard gelatin capsules in 340 mg quantities. <br><br>
Formulation Example 2 20 A tablet formula is prepared using the ingredients below: <br><br>
Ingredient Quantity(mg/tablet) <br><br>
Active Ingredient 25.0 <br><br>
Cellulose, microcrystalline 200.0 <br><br>
25 Colloidal silicon dioxide 10.0 <br><br>
Stearic acid 5.0 <br><br>
The components are blended and compressed to form tablets, each weighing 240 mg. <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-51- <br><br>
Formulation Example 3 A dry powder inhaler formulation is prepared containing the following components: <br><br>
The active ingredient is mixed with the lactose and the mixture is added to a dry powder inhaling appliance. <br><br>
Formulation Example 4 Tablets, each containing 30 mg of active ingredient, are prepared as follows: <br><br>
Ingredient Quantity(mg/tablet) <br><br>
Active Ingredient 30.0 mg <br><br>
Starch 45.0 mg <br><br>
Microcrystalline cellulose 35.0 mg <br><br>
Polyvinylpyrro1idone <br><br>
(as 10% solution in sterile water) 4.0 mg Sodium carboxymethyl starch 4. 5 mg <br><br>
Magnesium stearate 0.5 mg <br><br>
Talc 1.0 mg <br><br>
Total 120 mg <br><br>
The active ingredient, starch and cellulose are passed through a No. 20 mesh U.S. sieve and mixed thoroughly. The solution of polyvinyl-pyrrolidone is mixed with the resultant powders, which are then passed through a 16 mesh U.S. sieve. The granules so produced are dried at 50° to ! 60°C and passed through a 16 mesh U.S. sieve. The sodium carboxymethyl starch, magnesium stearate, and talc, previously passed through a No. 30 mesh U.S. sieve, are then added to the granules which, after mixing, are compressed on a tablet machine to yield tablets each weighing 150 mg. <br><br>
Ingredient Active Ingredient Lactose <br><br>
Weight % 5 <br><br>
95 <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-52- <br><br>
Formulation Example 5 Capsules, each containing 40 mg of medicament are made as follows: <br><br>
The active ingredient, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 150 mg quantities. <br><br>
Formulation Example 6 Suppositories, each containing 25 mg of active ingredient are made as follows: <br><br>
Ingredient. Amount <br><br>
Active Ingredient 25 mg <br><br>
Saturated fatty acid glycerides to 2,000 mg <br><br>
The active ingredient is passed through a No. 60 mesh U.S. sieve and suspended in the saturated fatty acid glycerides previously melted using the minimum heat necessary. The mixture is then poured into a suppository mold of nominal 2.0 g capacity and allowed to cool. <br><br>
Ingredient Active Ingredient Starch <br><br>
Magnesium stearate Total <br><br>
Quantity(mg/capsule) <br><br>
40.0 mg 109.0 mg 1.0 mg 150.0 mg <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-53- <br><br>
Formulation Example 7 Suspensions, each containing 50 mg of medicament per 5.0 ml dose are made as follows: <br><br>
•Ingredient -. , Amount <br><br>
5 Active Ingredient 50.0 mg <br><br>
Xanthan gum 4 . 0 mg <br><br>
Sodium carboxymethyl cellulose (11%) <br><br>
Microcrystalline cellulose (89%) 50.0 mg <br><br>
Sucrose 1.75 g <br><br>
10 Sodium benzoate 10.0 mg <br><br>
Flavor and Color q.v. <br><br>
Purified water to 5.0 ml <br><br>
The active ingredient, sucrose and xanthan gum are blended, passed through a No. 10 mesh U.S. sieve, and then 15 mixed with a previously made solution of the microcrystalline cellulose and sodium carboxymethyl cellulose in water. The sodium benzoate, flavor, and color are diluted with some of the water and added with stirring. Sufficient water is then added to produce the required 2 0 volume. <br><br>
Formulation Example 8 Capsules, each containing 15 mg of medicament are made as follows: <br><br>
25 Ingredient Quantity(mg/capsule) <br><br>
Active Ingredient 15.0 mg <br><br>
Starch 407.0 mg <br><br>
Magnesium stearate 3 .0 mg <br><br>
Total 425.0 mg <br><br>
30 The active ingredient, starch, and magnesium stearate are blended, passed through a No. 20 mesh U.S. sieve, and filled into hard gelatin capsules in 560 mg quantities. <br><br>
-54- <br><br>
Formulation Example 9 A subcutaneous formulation may be prepared as follows: <br><br>
Ingredient Quantity <br><br>
Active-Ingredient ... !.,o mg <br><br>
5 corn oil 1 ml <br><br>
Depending on the solubility of the active ingredient in corn oil, up to about 5.0 mg or more of the active ingredient may be employed in this formulation, if desired). <br><br>
10 Formulation Example 10 <br><br>
A topical formulation may be prepared as follows: <br><br>
Ingredient Quantity <br><br>
Active Ingredient 1-10 g <br><br>
Emulsifying Wax 30 g <br><br>
15 Liquid Paraffin 20 g <br><br>
White Soft Paraffin to 100 g <br><br>
The white soft paraffin is heated until molten. The liquid paraffin and emulsifying wax are incorporated and stirred until dissolved. The active ingredient is added and 20 stirring is continued until dispersed. The mixture is then cooled until solid. <br><br>
Described, but not claimed herein, is a method for inhibiting P-amyloid peptide release and/or its synthesis comprising administering to a 25 patient in need thereof with an effective amount of crystalline (N)-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl) - (S) -l-amino-3-methyl-2/ 3,4,5 -tetrahydro-lH-3-benzazepin-2-one dihydrate. <br><br>
Particularly described is a method for 30 treating Alzheimer's disease comprising administering to a patient in need thereof with an effective amount of crystalline (N)— ((S)-2-hydroxy-3-methvl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2/3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate. <br><br>
u"«i 1 7 feb 2005 <br><br>
-55- <br><br>
It is also recognized that one skilled in the art may affect the Alzheimer's disease by treating a patient presently afflicted with the disease or by prophylactically treating a patient at risk to develop the disease. Thus, 5 the terms "treatment" and "treating" are intended to refer to all processes wherein there may be a slowing, <br><br>
interrupting, arresting, controlling, or stopping of the progression of Alzheimer's disease, but does not necessaxily indicate a total elimination of all symptoms. As such, the 10 present methods include for preventing the onset of <br><br>
Alzheimer's disease in a patient at risk for developing Alzheimer's disease, inhibiting the progression of Alzheimer's disease, and treatment of advanced Alzheimer's disease. <br><br>
15 As used herein, the term "patient" refers to a warm blooded animal, such as a mammal, which is afflicted with a disorder associated with increase P-amyloid peptide release and/or its synthesis, including Alzheimer's disease. It is understood that guinea pigs, dogs, cats, rats, mice, horses, 20 cattle, sheep, and humans are examples of animals within the scope of the meaning of the term. Patients in need of such treatment are readily diagnosed. <br><br>
As used herein, the term "effective amount" of a coitpound of formula I refers to an amount which is effective 25 in inhibiting P-amyloid peptide release and/or its synthesis, and specifically, in treating Alzheimer's disease. <br><br>
An effective amount can be readily determined by the attending diagnostician, as one skilled in the art, by the 30 use of conventional techniques and by observing results obtained under analogous circumstances. In determining an effective amount, the dose of crystalline N-((S)-2-hydroxy- <br><br>
3-methyl-butyryl) -1- (L-alaninyl) - (S)-l-amino-3-methyl- , <br><br>
.--...i punpFRTY UFFlCE <br><br>
2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate,|WTQ£&mBe;£. NZ <br><br>
17 feb 2005 occeived <br><br>
-56- <br><br>
of factors are considered by the attending diagnostician, including, but not limited to: the potency and characteristics of N- ((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl) -.(S) r-l-.amino5-3-meth.yl-2, 3,4,5~-tetrahydro-lH-3-5 benzazepin-2-one; the species of patient; its size, age, and general health; the degree of involvement or the severity of the disease; the response of the individual patient; the mode of administration; the bioavailability characteristics of the preparation administered; the dose regimen selected; 10 the use of other concomitant medication; and other relevant circumstances. <br><br>
An effective amount of crystalline N-((S)-2-hydroxy-3-methyl-butyryl)-1-(L-alaninyl)-(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-one dihydrate is expected to 15 vary from about 0.1 milligram per kilogram of body weight per day (mg/kg/day) to about 100 mg/kg/day. Preferred amounts are able to be determined by one skilled in the art. <br><br>
The N- ((S) -2-hydroxy-3-methyl-butyryl)-1- (L-alaninyl) -(S)-l-amino-3-methyl-2,3,4,5-tetrahydro-lH-3-benzazepin-2-20 one dihydrate of the present invention can be tested in various biological systems including the following. <br><br>
Example A <br><br>
Cellular Screen for the Detection of Inhibitors of P-Amyloid Production 25 Numerous compounds of formula I above were assayed for their ability to inhibit P-amyloid production in a cell line possessing the Swedish mutation. This screening assay employed cells (K293 = human kidney cell line) which were stably transfected with the gene for amyloid precursor 30 protein 751 (APP751) containing the double mutation <br><br>
Lys65iMet652 to Asn65iLeu652 (APP751 numbering) in the manner described in International Patent Application Publication No. 94/105698 and Citron et al.12. This mutation is commonly called the Swedish mutation and the cells, designated as 35 "293 751 SWE", were plated in Corning 96-well plates at 2-4 <br><br>
intellectual property office i of nz t 7 FEB 2005 received i <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-57- <br><br>
x 104 cells per well in Dulbecco's minimal essential media (Sigma, St. Louis, MO) plus 10% fetal bovine serum. Cell number is important in order to achieve P-amyloid ELISA results within the linear range of the assay (~0.2 to 2.5 ng 5 per mL). <br><br>
Following overnight incubation at 37°C in an incubator equilibrated with 10% carbon dioxide, media were removed and replaced with 200 QL of a compound of formula I (drug) containing media per well for a two hour pretreatment period 10 and cells were incubated as above. Drug stocks were prepared in 100% dimethyl sulfoxide such that at the final drug concentration used in the treatment, the concentration of dimethyl sulfoxide did not exceed 0.5% and, in fact, usually equaled 0.1%. <br><br>
15 At the end of the pretreatment period, the media were again removed and replaced with fresh drug containing media as above and cells were incubated for an additional two hours. After treatment, plates were centrifuged in a Beckman GPR at 1200 rpm for five minutes at room temperature 20 to pellet cellular debris from the conditioned media. From each well, 100 (iL of conditioned media or appropriate dilutions thereof were transferred into an ELISA plate precoated with antibody 266 [P. Seubert, Nature (1992) 359:325-327] against amino acids 13-28 of p-amyloid peptide 25 as described in International Patent Application Publication No. 94/105698 and stored at 4°C overnight. An ELISA assay employing labeled antibody 3D6 [P. Seubert, Nature (1992) 359:325-327] against amino acids 1-5 of p-amyloid peptide was run the next day to measure the amount of p-amyloid 30 peptide produced. <br><br>
Cytotoxic effects of the compounds were measured by a modification of the method of Hansen, et al. To the cells remaining in the tissue culture plate was added 25 (XL of a 3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide 35 (MTT) (Sigma, St. Louis, MO) stock solution (5 mg/mL) to a final concentration of 1 mg/mL. Cells were incubated at 37DC for one hour; and cellular activity was stopped by the <br><br>
WO 02/40451 PCT/US01/27795 <br><br>
-58- <br><br>
addition of an equal volume of MTT lysis buffer {20% w/v sodium dodecylsulfate in 50% dime thy lformamide, pH 4.7). Complete extraction was achieved by overnight shaking at room temperature. The. difference in the ODgsanm and the 5 OD650mn was measured in a Molecular Device' s microplate reader as an indicator of the cellular viability. <br><br>
The results of the P-amyloid peptide ELISA were fit to a standard curve and expressed as ng/mL P-amyloid peptide. In order to normalize for cytotoxicity, these results were 10 divided by the MTT results and expressed as a percentage of the results from a drug free control. All results are the mean and standard deviation of at least six replicate assays. <br><br>
15 Example B <br><br>
In Vivo Suppression of P~Amyloid Release and/or Synthesis This example illustrates how the compounds of this invention could be tested for in vivo suppression of P~ amyloid release and/or synthesis. For these experiments, 3 20 to 4 month old PDAPP mice are used [Games et al., (1995) <br><br>
Nature 373:523-527] . Depending upon which compound is being tested, the compound is usually formulated at between 1 and 10 mg/mL. Because of the low solubility factors of the compounds, they may be formulated with various vehicles, 25 such as corn oil (Safeway, South San Francisco, CA); 10% <br><br>
ethanol in corn oil; 2-hydroxypropyl-P-cyclodextrin (Research Biochemicals International, Natick MA); and carboxy-methyl-cellulose (Sigma Chemical Co., St. Louis MO). The mice are dosed subcutaneously with a 26 gauge 30 needle and 3 hours later the animals are euthanized via CO2 narcosis and blood is taken by cardiac puncture using a 1 cc 25G 5/8" tuberculin syringe/needle coated with solution of 0.5 M EDTA, pH 8.0. The blood is placed in a Becton-Dickinson vacutainer tube containing EDTA and spun down for 35 15 minutes at 1500 xg at 5°C. The brains of the mice are then removed and the cortex and hippocampus are dissected out and placed on ice. <br><br>
WO 02/40451 <br><br>
PCT/US01/27795 <br><br>
-59- <br><br>
1. Brain Assay <br><br>
To prepare hippocampal and cortical tissue for enzyme-linked immunosorbent assays (ELISAs) each brain region is homogenized in 10 volumes of ice cold guanidine buffer (5.0 M guanidine-HCl, 50 iriM Tris-HCl, pH 8.0) using a Kontes motorized pestle (Fisher, Pittsburgh PA). The homogenates are gently rocked on a rotating platform for three to four hours at room temperature and stored at -20°C prior to quantitation of P-amyloid. <br><br>
The brain homogenates are diluted 1:10 with ice-cold casein buffer [0.25% casein, phosphate buffered saline (PBS), 0.05% sodium azide, 20 jug/ml aprotinin, 5 mM EDTA, pH 8.0, 10 ixg/ral leupeptin], thereby reducing the final concentration of guanidine to 0.5 M, before centrifugation at 16,000 xg for 20 minutes at 4°C. Samples are further diluted, if necessary, to achieve an optimal range for the ELISA measurements by the addition of casein buffer with 0.5 M guanidine hydrochloride added. The P-amyloid standards (1-40 or 1-42 amino acids) were prepared such that the final composition equaled 0.5 M guanidine in the presence of 0.1% bovine serum albumin (BSA) . <br><br>
The total P-amyloid sandwich ELISA, quantitating both P-amyloid (aa 1-40) and P-amyloid (aa 1-42) consists of two monoclonal antibodies (mAb) to p-amyloid. The capture antibody, 266 [P. Seubert, Nature (1992) 359:325-327], is specific to amino acids 13 - 28 of p-amyloid. The antibody 3D6 [Johnson-Wood et al., PNAS USA (1997) 94:1550-1555], which is specific to amino acids 1 - 5 of P-amyloid, is biotinylated and served as the reporter antibody in the assay. The 3D6 biotinylation procedure employs the manufacturer's (Pierce, Rockford IL) protocol for NHS-biotin labeling of immunoglobulins except that 100 mM sodium bicarbonate, pH 8.5 buffer is used. The 3D6 antibody does not recognize secreted amyloid precursor protein (APP) or full-length APP but detects only p-amyloid species with an amino terminal aspartic acid. The assay has a lower limit of sensitivity of ~50 pg/ml (11 pM) and shows no cross- <br><br>
WO 02/40451 PCT/US01/27795 <br><br>
-60- <br><br>
reactivity to the endogenous murine p-amyloid peptide at concentrations up to 1 ng/ml. <br><br>
The configuration of the sandwich ELISA quantitating the level of p-amyloid (aa 1-42). employs the mAb 21F12 5 [Johnson-Wood et al., PNAS USA (1997) 94:1550-1555] (which recognizes amino acids 33-42 of P-amyloid) as the capture antibody. Biotinylated 3D6 is also the reporter antibody in this assay which has a lower limit of sensitivity of -125 pg/ml (28 pM) . <br><br>
10 The 266 and 21F12 capture mAbs are coated at 10 jug/ml into 96 well immunoassay plates (Costar, Cambidge MA) overnight at room temperature. The plates are then aspirated and blocked with 0.25% human serum albumin in PBS buffer for at least 1 hour at room temperature, then stored 15 desiccated at 4°C until use. The plates are rehydrated with wash buffer (Tris-buffered saline, 0.05% Tween 20) prior to use. The samples and standards are added to the plates and incubated overnight at 4°C. The plates are washed 3 times with wash buffer between each step of the assay. The 20 biotinylated 3D6, diluted to 0.5 /ig/ml in casein incubation buffer (0.25% casein, PBS, 0.05% Tween 20, pH 7.4) is incubated in the well for 1 hour at room temperature. Avidin-HRP (Vector, Burlingame CA) diluted 1:4000 in casein incubation buffer is added to the wells for 1 hour at room 25 temperature. The colormetric substrate, Slow TMB-ELISA <br><br>
(Pierce, Cambridge MA), is added and allowed to react for 15 minutes, after which the enzymatic reaction is stopped with addition of 2 N H2SO4. Reaction product is quantified using a Molecular Devices Vmax (Molecular Devices, Menlo Park CA) 30 measuring the difference in absorbance at 450 nm and 650 nm. 2. Blood Assay <br><br>
The EDTA plasma is diluted 1:1 in specimen diluent (0.2 gm/1 sodium phosphate*1120 (monobasic), 2.16 gm/1 sodium phosphate• 7H2O (dibasic), 0.5gm/l thimerosal, 8.5 gm/1 35 sodium chloride, 0.5 ml Triton X-405, 6.0 g/1 globulin-free bovine serum albumin; and water) . The samples and standards <br><br></p>
</div>