NZ330257A - Refrigerated merchandiser with electronic evaporator pressure regulating valve to control flow from evaporator coils - Google Patents

Refrigerated merchandiser with electronic evaporator pressure regulating valve to control flow from evaporator coils

Info

Publication number
NZ330257A
NZ330257A NZ330257A NZ33025796A NZ330257A NZ 330257 A NZ330257 A NZ 330257A NZ 330257 A NZ330257 A NZ 330257A NZ 33025796 A NZ33025796 A NZ 33025796A NZ 330257 A NZ330257 A NZ 330257A
Authority
NZ
New Zealand
Prior art keywords
valve
evaporator
eepr
mode
preselected
Prior art date
Application number
NZ330257A
Inventor
John A Behr
Original Assignee
Hussmann Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hussmann Corp filed Critical Hussmann Corp
Priority claimed from NZ304969A external-priority patent/NZ304969A/en
Publication of NZ330257A publication Critical patent/NZ330257A/en

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

New Zealand No. 330257 International No. PCT/ TO BE ENTERED AFTER ACCEPTANCE AND PUBLICATION Priority dates: 14.03.1995; Complete Specification Filed: 21.02.1996 Classification:^) F25D29/00; A47F3/04 Publication date: 28 July 1998 Journal No.: 1430 NEW ZEALAND PATENTS ACT 1953 COMPLETE SPECIFICATION Title of Invention: Refrigerated merchandiser with eepr control Name, address and nationality of applicant(s) as in international application form: HUSSMANN CORPORATION, a United States corporation of 12999 St. Charles Rock Road, Bridgeton, MO 63044, United State of America ■5302 57 Under the provisions of Regulation 23 (1) the CQf/ieJe. pecificatlon has been ante-dated to 19 ZL PATENTS FORM NO. 5 Fee No. 1 &4: $340.00 Initials PATENTS ACT 1953 COMPLETE SPECIFICATION DIVISIONAL PATENT APPLICATION FROM NZ 304969 James & Wells Ref: 23923/5 HW REFRIGERATED MERCHANDISER WITH EEPR CONTROL WE HUSSMANN CORPORATION, a United States Company of 12999 St. Charles Rock Road, Bridgeton, MO 63044, United States of America hereby declare the invention, for which We pray that a patent may be granted to me/us, and the method by which it is to be performed to be particularly described in and by the following statement: INTELLECTUAL PROPERTY OFFICE OF N.Z. 2 2 APR 1998 1 (followedby la) RECEIVED P:\WPD0CS\AMK\SPEC\1 Hill. -Mt98 330257 - lex* REFRIGERATED MERCHANDISER WITH EEPR CONTROL DIVISIONAL PATENT APPLICATION PROM NZ 304969 5 BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates generally to the commercial refrigeration art, and more particularly to improvements in food product merchandisers and temperature control systems therefor. 2. Description of Prior Art Great advances have been made in the last forty years in the field of commercial food merchandising with the improved insulation materials, better refrigerants, more efficient air handlers and condensing unit systems, better lighting and the universal use of ambient air temperature and humidity control in food stores and the like. A long checklist of important 20 factors influence the construction and manufacture of food merchandisers including refrigeration requirements and performance, structural engineering for strength, durability and safety as well as insulation effect, servicing capability, product merchandising potential, and both manufacturing and operating costs.
In today's marketplace a wide variety of food merchandisers are used to best market 25 different types of food products as well as meet their cooling needs. In the low temperature field, frozen food merchandisers maintain product display temperatures at about 0°F and 33 0 2 57 2 ice cream cases operate at about -5°F to -10°F. Frozen foods are best protected in reach-in coolers (with glass front doors), but open front, multi-deck merchandisers best display various food products. Similarly, in the medium temperature field of 28 °F to 50 °F product temperature range, glass front deli merchandisers are generally preferred for the marketing of freshly cut meats, cheeses, salads and other deli items, but open front multideck merchandisers are widely used for packaged meat and dairy products and single deck cases are preferred for fresh produce. Thus, even with some industry standardization at eight (8*) foot and twelve (121) foot lengths for merchandisers, the manufacture of each commercial refrigerator fixture has remained a hand built operation.
In the past, most commercial merchandisers have utilized evaporator coils of the fin and tube type, which extend the full length of the merchandiser to best achieve uniform air cooling from end-to-end throughout the length. In some applications the evaporator coil was divided into two or more full length sections connected in series refrigerant flow relationship and typically arranged in tandem in the bottom section and/or immediately adjacent in the lower back wall of the merchandiser cabinet. Such coils and the control valving therefor were generally accessible only from the inner lower well area of the product zone for maintenance or 3*0257 3 service. Furthermore, although such a location does not interfere with the structural soundness of a coffin-type merchandiser, it has been discovered that a back wall evaporator coil location limits the structural support capability for internal vertical frames in multi-deck merchandisers, and the cantilever suspension of glass front panels in a deli merchandiser. The commonly assigned co-pending application Serial No. 08/057,980 of Michael Grassmuck discloses improvements in hinging and structural supports for glass front panels for deli and reach-in merchandisers, and accommodated the development of the air cooling and control system of the present invention.
Also in the past, pressure regulating valves have been interposed in the evaporator-to-compressor suction line to regulate the refrigerant vapor out-flow from the evaporator coil and for the purpose of establishing and maintaining a certain evaporator suction pressure (relative to the compressor) and producing a corresponding saturated refrigeration temperature within the evaporator coil. One class of these valves have generally only been responsive to the evaporator pressure, or the pressure differential between the evaporator and the compressor - and, additionally, many prior art valves have been controlled by a second pilot valve. Representative of such prior art are: Hanson 3,303,664 P:\WrDOCS\AMK\SPlIC\lIIIII • 7/4/W 330257 Another class of back pressure regulating valves have been responsive to temperature - as it affects pressure sensors and triggers pressure responsive diaghragm control of a valve element. Representative of such valves are: Quick 3,316,731 Another class of evaporator pressure regulating valves have been designed to be responsive to both temperature and pressure acting through a pilot valve.
Representative of this class are: Pritchard 2,161,312 Dube 2,401,144 Boyle 2,993,348 Miller 3,242,688 SUMMARY OF THE INVENTION In accordance with the invention, there is provided an air cooling system in a commercial refrigerated merchandiser having an insulated cabinet with a product zone, 15 comprising: evaporator means constructed and arranged for cooling air flow therethrough in a refrigeration mode for maintaining a preselected product zone temperature, liquid refrigerant metering means for controlling the flow of liquid refrigerant to the high side of said evaporator means, and means for circulating air flow through said evaporator means and said 20 product zone; and other refrigerant metering means constructed and arranged on the low side of said evaporator means for controlling the suction pressure thereof, said other metering means comprising electronic evaporator pressure regulating (EEPR) valve means for controlling the refrigerant vapour flow from said evaporator means.
In another aspect, there is provided a method of controlling the exit air temperature from the evaporator coil in a commercial refrigerated merchandiser for food products, in which the evaporator coil has a refrigeration mode and a defrost mode and the suction side of the evaporator coil has an electronic evaporator pressure regulator (EEPR) valve operated 30 by a valve controller circuit, said control means comprising the steps of: P:\WPDOCS\AMK\SPnC\f 11*11- 7/4/98 330257 (a) sensing the exit air temperature from the evaporator coil and generating a signal corresponding thereto; (b) operating the EEPR valve in the refrigeration mode of the evaporator coil by modulating refrigerant vapour flow therethrough to maintain a preselected exit air temperature; ® operating the EEPR valve in the defrost mode of the evaporator coil by closing the EEPR valve during a preselected de-icing period of said evaporator coil.
These and still other objects and advantages will become more apparent hereinafter.
PESCRymON OF THE DRAWINGS In the accompanying drawings which form a part of this specification and wherein like numerals refer to like parts wherever they occur: Fig.l is a vertical cross-sectional view - in extended fragmentary perspective -illustrating a glass front deli merchandiser environment for the present invention, 15 Fig. 2 is a fragmentary perspective view taken substantially along line 2-2 of Fig. 1 and showing an example of modular evaporator coil.
Fig. 3 is a diagrammatic representation of the Fig. 2 modular coil and the EEPR control therefor, Fig. 4 is a perspective view, partly broken away, illustrating an open front, multideck 20 merchandiser environment for the present invention, Fig. 5 is an exploded view of the insulated cabinet and air control components of Fig. 4 and showing another example of the modular coil and the EEPR control invention, Fig. 6 is a diagrammatic representation of the Fig. 4 and 5 embodiment, Fig. 7 is a cross-sectional view - with diagrammatically extended control circuit -25 showing the EEPR valve control of the present invention, Fig. 8 is a diagrammatic flow chart of the controller operation for the EEPR valve, Fig. 9 is a graphic representation of a defrost control function, Fig. 10 is a diagrammatic front elevational representation of a typical twelve foot merchandiser, Fig. 11 is a diagrammatic depiction of the modified air cooling system of Fig. 10, P:\WPDOCSVAMK\SPECW 11111 - 7W98 Fig. 12 is a diagrammatic perspective view of a multiple unit island display case illustrating another modified multiple evaporator and EEPR control of the present invention, and Fig. 13 is a diagrammatic depiction of the air control system of Fig. 12.
DESCRIPTION OF THE PREFERRED EMBODIMENTS For disclosure purposes different embodiments of the modular evaporator coil and electronic evaporator pressure regulator (EEPR) control of the present invention are shown in different commercial food display cases or merchandisers as may be. installed in a typical supermarket. Such display cases are generally fabricated in standard eight (8') foot and 10 twelve (12') foot lengths, but may be arranged in a multiple case line-up of several merchandisers operating in the same general temperature range. Low temperature refrigeration to maintain display area temperatures of about 0°F for frozen foods requires coil temperatures generally in the range of -5°F to -20°F to achieve exit air temperatures at about -3°F to -11°F; and medium temperature refrigeration to maintain fresh food product area 15 temperatures in the range of 34°F (red meat) to 46°F (produce) requires coil temperatures generally in the range of about 15 °F to 24°F with corresponding exit air temperatu^ J at about 24°F to 37°F. It is clear that a "closed" front case, such as a deli or reach-in having glass panels, will be easier to refrigerate than an open front, multideck merchandiser and that the nature and amount of insulation are also major design factors.
Also for disclosure purposes it will be understood that various commercial refrigeration systems may be employed to operate the air cooling and control systems of the present invention. For instance, conventional closed refrigeration systems of the "back room" type having multiplexed compressors may be used, or merchandisers of the present invention may be operated by strategically placed condensing units located in the shopping arena - of 25 the type disclosed and claimed in commonly assigned, co-pending patent application Serial No. 08/057,617 (now U.S. Patent 5,440,894). In either event, the general operation of refrigeration systems will be understood and readily apparent to those skilled in the art, and various refrigerant terms such as "high side" and "low side" and "exit air" will be used in their conventional refrigeration sense.
Referring to Figs. 1-3 illustrating one embodiment of the invention, a closed deli 330257 P:\WPDOCS\AMK\SPEC\l Mill- 7/4/98 330257 merchandiser DM basically comprises a cabinet 10 mounted on a lower base section 11 housing air circulation means 12 and having an upper cabinet or display section 13. Typically, the upper cabinet section 13 has a sloping rear service wall 14 constructed and arranged to provide sliding access service doors 14a, a short horizontal top wall 15, end walls 5 16 and double-curved glass front panels 17 conforming generally to the configuration of the end wall front margin and which all together define a refrigerated product display zone 18 having shelf means 19 therein. The lower section 11 and the rear, top and end walls of the upper section 13 will be insulated as needed to maintain optimum refrigerated conditions in the display area 18. The glass panels 17 normally close the product area 18 from ambient but 10 are hinged, at 19a, for opening movement for stocking, cleaning or service. The weight of these panels 17 is translated to the base 11 through struts 20, which are spaced apart and accommodate the sliding doors 14a therebetween. The air circulating means 12 comprises a plenum chamber 12a in the bottom of the cabinet 13, and plural fans 12B to re-circulate air through the cabinet and display area 18.
A feature of the invention is in the refrigeration control for the merchandiser DM, which includes a high side liquid control or metering means in the form of a thermostatic expansion valve 23 and also includes a low side suction control or metering means in the form of an EEPR valve 24 and electronic controller 25 therefor, as will be described in greater detail hereinafter.
Referring to Fig. 3 wherein a typical refrigeration system 26 is illustrated, it will be seen that the expansion valve 23 receives high pressure liquid refrigerant from the system receiver 27 through liquid line 27a and metres liquid through a distributor (not shown) and feed lines 23a to the modular coils 22 in response to suction temperature/pressure sensed by bulb 28 in a conventional manner. The suction lines 24a from the modular coils 22 are 25 constructed and arranged with the EEPR valve 24 on the low side to return superheated refrigerant vapour to the suction side of the system compressor means 30 through main suction line 30a. The compressor means 30 discharges high pressure vaporous refrigerant through discharge line 31a to condenser 31, in which the refrigerant is cooled and condensed to a liquid state and discharged through line 31b to the receiver 27 to complete the circuit. 30 As indicated by the arrows at the liquid and suction lines 27a, 30a, the refrigeration system P:\WPDOCSVAMK\SPEOI I 111! • 7M/98 330257 26 may operate additional food merchandisers in the same temperature range.
Each type of commercial refrigerated merchandiser in the past largely has been individually designed for its own food display or storage purpose, and fabrication generally has been a custom assembly process. These prior art merchandiser have had solid, bulky 5 internal frames with heavy insulation therebetween and ful'y supporting inner cabinets with full length evaporator coils to achieve even, balanced air flow from end-to-end of the display area. It has been discovered that modular internal-external support frame structures can effectively support most commercial merchandiser cabinets - whether single deck as in deli and produce types, or 2-5 multideck cases for frozen foods, meat or dairy which have the 10 greater shelf weight incident thereto. The modularity of the evaporator coil concept of the present invention accommodates the use of novel cabinet frame members that carry the weight of insulated panels, shelving and duct forming members and translate it to an external frame assembly.
Thus, the modular evaporator coils 22 of the invention - while of conventional fin and 15 tube configuration - constitute an advance in the commercial merchandiser field in several respects. The modular coils 22 are standardized in four (4') foot lengths to accommodate mere flexibility in placement and facilitate the use of modular framing, as disclosed more fully in a commonly assigned co-pending patent application Serial No. 08/404,036 (now-U.S. Patent 5,517,826). The shorter modular coil 22 has continuous serpentine coil tubes without 20 end joints or the like thereby virtually eliminating coil leaks. The tubing is of smaller diameter than feasible for eight or twelve foot coils and reduces the total amount of refrigerant charge needed. The fins of the coil are more closely spaced than is conventional but with the use of smaller tubing still produce a larger volumetric air space through the coil for more efficient heat exchange and cooling of air recirculated by the fans 12b without added 25 air side resistance. For instance, prior art coils used either 3/4" O.D. tubing with tube spacing at 2" from center-to-center, or 5/8" O.D. tubing with tube spacing at 1-3/8". It has been discovered that 7/16" O.D. tubing can be spaced at 1.2" and still produce 50% more heat transfer fin surface than conventional coils. The result is better coil performance, use of less material and smaller refrigerant change, few joints and less leakage, and better defrost 30 capability.
P:\WPOOCS\AMK\SPEC\I 11111 • 7/4/98 ^0257 Thus, still referring to Figs. 1-3, a plurality of modular coils 22 embodying these features are constructed and arranged in horizontally spaced, end-to-end (i.e , collinear) relationship. Fig. 2 indicates that the deli merchandiser DM of Fig. 1 is a twelve foot case, and thus has three equal sized coil sections 22 which are disposed between the structural struts 5 20 in this closed-type merchandiser. In the embodiment showi. best in Figs. 2 and 3, the high side liquid metering means comprises a single thermostatic expansion valve 23 arranged to deliver equal amounts of refrigerant to each coil section 22, and thus the feed lines 23a are constructed and arranged to be the same length from the valve outlet to the inlets of the respective coil sections 22. The placement of the expansion valve 23 at the center coil 22 10 means that the feed line 23a thereto has to be bent or otherwise arranged to accommodate the extra length relative to the shorter direct distance between the valve 23 and center coil inlet.
Referring now to Figs. 3 and 7, the EEPR valve 24 of the present invention is disposed in the suction line exiting die coil sections 22 and within the merchandiser, and it is between the modular coils 22 and the compressor suction. The EEPR valve 24 has a valve 15 body section 36 and a control head 37, which has a stepper motor 38. The valve body section 36 lias an inlet chamber 39 with an inlet 39a connected to the suction lines 24a of the coil sections, and an outlet chamber 40 with an outlet 40a connected to compressor suction line 30a. An annular valve seat 41 is formed between the chamber 39, 40 and a valve element 42 is axially movable relative to the valve seat 41 between a fully closed position (as shown) 20 and a fully open position. The position of the valve element 42 is controls' by the stepper motor 38, as operated from the controller 25 in response to sensed air temperatures exiting the modular coils 22. At least one air temperature sensor 43 is strategically located on the downstream (exit) side of a coil section 22 and communicates to the controller 25, as will be described. In the preferred embodiment, a sensor 43 is provided for each coil section 22, and 25 the controller averages the readings from the multiple sensors for use in determining control strategy for the EEPR valve.
It will be understood that air temperature control for the product zone of a closed single deck deli merchandiser DM is more easily accomplished than for the product zone of an open front, multideek merchandiser, such as the four deck meat merchandiser MM of 30 Figs. 4-6. As seen, the single expansion valve 23 may be used in the 330257 deli case DM, and a single sensor 43 may be employed in the control of the EEPR valve 24. Therefore, alternate embodiments of the modular coil feature will be disclosed before a detailed explanation of the EEPR valve control.
Referring to Figs. 4-6, the open front multideck merchandiser MM is described with reference numerals in the "100" series. The merchandiser MM has lower structural base frame 111 and an external vertical structural frame 111a that carry an upper cabinet section 10 113 with a rear panel 114, a top wall 115, end walls (not shown) and together defining a refrigerated product display zone 118 having a front opening 117. Suitable shelving (not shown) or other product display means (i.e. pegboard) are mounted in the display zone 118. The 15 exploded view of Fig. 5 illustrates that the upper cabinet. 113 is comprised of an outer insulated panel 104 having a vertical back section 114a and top section 115a, and an inner panel or liner 105 having a vertical section 114b and a horizontal top section 115b. These outer and ^^0 inner panels 104 and 105 are assembled in spaced relation by spaced internal frame members 106 to define connecting rear and top air distribution ducts (not shown). A lower cabinet panel 107 covers an air duct 112a which connects with air circulating plenums 112 having fans 112b.
Modular coil sections 122 are disposed in horizontal end-to-end relationship between the internal frames 106 and communicate with the air circulating means 112 to 330257 cool the air flow to produce design exit air temperatures for product cooling in the display zone 118.
In the embodiment of Figs. 4-6, the liquid metering means comprises a separate expansion valve 123 for each coil section, and is operated independently in response to its own sensing bulb (128) and preset condition. The EEPR valve 124 and its controller 125 are positioned within the merchandiser and employ separate air temperature sensors 143 downstream of the respective coils 122. It is also a feature of the invention to employ separate EEPR valves 124 for each evaporator section 122, but with a single controller 125.
Metering of refrigerant through the evaporators 22, 122 for refrigeration of the merchandiser product zone 18, 118 is carried out by one or more expansion valves.-23, 123 and one or more EEPR valves 24, 124.
Various configurations of expansion valves and EEPR valves are possible according to the nature of the merchandiser and its refrigeration requirements. The configuration shown in Fig. 3 comprises a single expansion valve 23 and a single EEPR valve 24. In Fig. 6, there is shown one expansion valve 123 for each evaporator 122 in the merchandiser MM and a single EEPR valve 124 on their common suction line. To control one coil at a different temperature than the other coils, its suction side may have its own EEPR valve, as shown in Fig. 11. 330257 The amount of refrigeration carried out by the evaporators 22, 122 is controlled by operation of the EEPR valves '/A. The function of the expansion valves 23, 123 is to optimize the refrigeration operation by maintaining an optimal refrigerant superheat value (e.g., 5°F) on the suction side of the evaporators, not to achieve temperature control. Thus, each expansion valve 23, 123 is modulated solely in response to the temperature of the refrigerant detected by sensing bulb 10 28, 128 located on the outlet end of its corresponding evaporator. The expansion valve can be made relatively inexpensively and preset for operating in a predetermined manner in response to the temperature detected by its sensing bulb. It is not believed to be necessary in most 15 instances to readjust the expansion valve after installation.
The expansion valves 23, 123 and their corresponding sensing bulbs 28, 128 can be arranged in several different configurations, the following 20 descriptions of which are not intended to be exhaustive.
For instance, the single expansion valve 23 used for all » * three evaporators, as shown in Fig. 3, is controlled by the sensing bulb 28 located on the suction line just downstream of the last evaporator. As shown in Fig. 6, 25 each evaporator 122 has its own dedicated expansion valve 123 which is operated by the sensing bulb 128 located adjacent to the outlet of that evaporator. Substantially 330257 the same arrangement of expansion valves and sensing bulbs is shown in Fig. 11, to be described.
The present invention is to be contrasted with evaporator temperature control in a merchandiser (not shown) by expansion valves which are modulated in response to detected exit air temperature from the evaporators. Exit air temperature control for a particular evaporator by operation of an expansion valve at a substantially constant suction pressure will result 10 in variations in the superheat of the refrigerant leaving the evaporator. For example, when the exit air temperature is too cold, the expansion valve throttles down and reduces the refrigerant flow entering the evaporator. As a result, all of the refrigerant in the 15 evaporator is completely vaporized well prior to reaching the outlet of the evaporator. Failure to keep the evaporator substantially full of boiling refrigerant ^ causes a loss in efficiency, non-uniform frost build up on the evaporator requiring more frequent defrost cycles, 20 and additional dehumidification. Accordingly, the present invention closely controls saturated evaporator temperature by locating the EEPR valve 24 near the evaporator, preferably in the merchandiser itself, and the expansion valve functions to make sure that the 25 evaporator operates efficiently by maintaining a substantially constant superheat. 330257 Operation of the EEPR valve 24, 124 is controlled by the controller 25, 125 mounted in the merchandiser and connected to a valve circuit of the EEPR valve for selectively activating its stepper motor 38 to 5 open, close or modulate the valve opening, at 41. The temperature sensor 43, 143 located next to the evaporators detects the exit air temperature from the corresponding evaporator. These sensors are capable of generating signals corresponding to the temperature 10 detected and transmitting them to the controller 25, 125.
The controller uses an average of the sensed temperature values in the control of the EEPR valve 24, 124, as described more fully below. It is to be understood that a greater or lesser number of temperature sensors could 15 be used, that sensors for detecting parameters other than temperatures could be used and that the signals from the sensors could be processed differently for use in controlling the EEPR valve without departing from the scope of the present invention. !20 In order to achieve the necessary accuracy in the position of the EEPR valve element 42, the controller is configured to compensate for the inherent looseness or lost motion in the gearing arrangement (not shown) connecting the stepper motor 37 to the valve element 42. 25 The correspondence between the position of the stepper motor and the position of the valva element might normally be lost in making fine adjustments. Such loss 330257 could occur when the direction of motion of the motor 37 changes, such as when the motor first moves the valve element 42 to a more open position in chamber 39 and then attempts ';o reversely move the valve element by a small amount to a more closed position. When the direction of motion changes/ the looseness in t;>e gears may result in no motion of the valve element, even though the stepper motor moves to a position which should correspond to a new valve position. To overcome this inherent 10 inaccuracy, the controller 25, 125 operates so that the movement of the valve element 42 to the final position called for by the controller always occurs from the same direction as the previous movement. More specifically, the valve element is always moved to its final position 15 in a valve opening direction, which permits the use of refrigerant pressure to keep the gears tight. For example, the valve element may be at a position corresponding to 1000 steps of the stepper motor 37 when the control algorithm calls for the valve to be at a 20 position of 950 steps (corresponding to a more closed position of the valve) . The controller activates the valve circuit to run the motor to a position of 940 steps - i.e., past the position called for by the control algorithm - and then to the final set position of 950 25 steps. The position will be highly accurate because the refrigerant pressure in the suction line tends to push 330257 the valve element open so that any slack in the gears is removed by action of the pressure.
Referring now to the flow chart of Fig. 8, the operation of the EEPR valve 24, 124 is schematically 5 shown to include a start sequence 80 which incorporates special operations (not illustrated in detail) both upon start up of the refrigeration system and initial operation of the controller 25, 125 for the EEPR valve. The operation of the EEPR valve will be described in 10 terms of the merchandiser MM illustrated in Figs. 4-6 having an eight (8') foot length with two evaporators 122 and one temperature sensor 143 associated with each evaporator. Activation of the controller 125 energizes the circuit to run the stepper motor (137) to a position 15 well past the closed position of the valve element (142).
The position of the stepper motor is then stored by the controller as a reference "close" position for future £ operations. In addition, when the refrigeration system 126 is first activated (or re-activated after being shut 20 down) the controller 125 is programmed to rapidly pull down the temperature of the merchandiser MM by moving the EEPR valve element (142) to a fully open position until such time as the temperature sensors 143 detect an average temperature T which is less than or equal to the 25 temperature set point Tset for the merchandiser.
Upon leaving the start sequence 80, the controller enters into a refrigeration mode including a 330257 control routine 82 toward maintaining the exit air temperature T from the evaporators (122) at Tset by modulation of the EEPR valve 124. The refrigeration mode 82 includes modulation of the valve opening (by changing the position of the valve element) in response to the temperature T detected by the sensors, as well as periodic checks 83 to determine the start of a defrost mode, and data storage of valve reference positions (85) such as represented by the valve position which 10 maintained average exit air temperature T generally equal to Tset during the normal refrigeration mode. The valve reference position is used as an initial setting for the EEPR valve at the beginning of the next normal refrigeration mode following a defrost mode. 15 The controller is preprogrammed with a default valve reference position for use in setting the EEPR valve during the first refrigeration mode following start up of the system. A new valve reference position will be stored by the controller at a scheduled later time 20 sufficiently far removed from initial operation in the refrigeration mode so that the EEPR valve has time to settle into a reasonably stable operating mode (i.e. position) for maintaining exit air temperature at Tset. Thus upon initiation of the refrigeration mode, the 25 controller (at 81) first sets a valve reference position storage time tj equal to a store time period tstore. In a preferred embodiment, tstore equals 60 minutes. A timer in 330257 the controller begins counting down the time tj from tstore until tj reaches zero (see 84). The controller then stores the valve reference or average position (see 85) of the EEPR valve element as a reference for the next refrigeration mode.
Throughout the refrigeration mode, the controller is receiving temperature signals from the temperature sensors 143 associated with the evaporators 122. The controller averages the detected temperatures T and uses a control algorithm (e.g., a PID control algorithm) to process the average temperature and produce a control signal for the stepper motor to modulate the valve opening. In this way, the EEPR valve is operated to change the suction pressure seen by the evaporator so as to change the temperature of the evaporator. Although not illustrated, the controller includes various alarms to detect failures in the air cooling system.
Initiation of a defrost cycle could be controlled by a timer within the controller, by a master defrost timer located externally of the merchandiser and controlling the refrigeration and defrost cycles for a number of merchandisers in the system 126, or by detection of some parameter other than time. The defrost method may be by off-time (closing off the high side liquid feed) or by electric defrost, and the air circulating means 21 continue to operate to acceleratc the heat distribution through the evaporators. It should 330257 also be recognized that a typical defrost is typically carried out on a time line that has two components; namely, a de-icing period to fully melt the ice accumulation from the fins 34 and tubing 33 of the coil 5 (which achieves a drip temperature) and a drip period to permit the water to run off the evaporator to prevent a re-freeze condition. It is contemplated that hot or latent gas defrost may also be used as an alternative, in ^ which case the fans 12a would be turned off during the de-icing period of defrost. In any event, when the controller is informed that it is time for defrost (83a), it enters the defrost mode.
Defrost of the evaporators begins by the controller activating the valve circuit to fully close 15 (86) the EEPR valve, stopping the normal refrigeration mode in the merchandiser. The temperature of the exit air from the evaporators begins to rise, and the controller periodically averages the temperatures from ft ^ the sensors 143 and, at 87, determines if the averaged temperature equals or exceeds a drip time temperature T^p stored in the controller. In the preferred embodiment, the drip time temperature T^p is empirically selected to be an exit air temperature above 32°F as detected at the end of the de-ice period when all of the ice on the 25 evaporators is gone. The beginning of drip time may be initiated by detection of the absence of ice on the evaporators. One way of accomplishing this is by first 330257 de-tecting a plateau in exit air temperature rise during the defrost mode which indicates that the thermal energy in air passing over the evaporators is being employed in melting the ice. The controller then looks for a exit air temperature rise following the plateau, which indicates the ice is gone and the thermal energy in the merchandiser again goes to heating the air. This rise in exit air temperature signals that de-icing is complete and that drip time has begun (see Fig. 9). In the 10 preferred embodiment following detection of T^jp, a drip time t2 is reset (88) to a time period t^p and the controller partially opens the EEPR valve to meter refrigerant flow through the evaporators, see 89. The controller then modulates the EEPR valve in response to 15 the averaged sensed temperature to refrigerate the merchandiser at T^p. At the same time refrigeration is begun at T^p, a timer 90 in the controller is started to p count down drip time t2 from tjrjp to zero. Thus, as shown in Fig. 9, refrigeration at T^rip permits the condensate 20 remaining on the evaporators following de-icing to drip off the evaporators while limiting the rise in air temperature in the merchandiser during this final defrost period, thereby minimizing air temperature rise in the product zone 118 and exposure of product to air 25 temperatures substantially greater than T^p while also shortening the subsequent pull-down time. 330257 The controller halts refrigeration at T^jp when it finds that the drip time t2 equals zero, indicating the period for drip time t^^ has expired. The controller then enters a pull-down mode by fully opening the EEPR valve (91) and holds it open without regard to the detected exit air temperatures T from the temperature sensors 143 until such time as the average detected temperature first equals or goes below Tset (92). Overriding the normal modulation of the EEPR valve during 10 the pull-down period following defrost and holding the valve in its fully open position accelerates the pull-down to the refrigeration set point. After the sensed temperature first crosses TSfit, the valve is immediately set to the valve reference position 93 stored 15 from the last operation of the controller in the refrigeration mode. The valve reference position storage time tj is reset to ts^ore (81) and the refrigeration mode, described above, begins again.
The effect on exit air temperature caused by 20 operation of the controller and EEPR valve as described is graphically illustrated in Fig. 9 in comparison to a prior art defrost cycle. The de-ice period of defrost in the merchandiser produces a similar exit air temperature rise as occurs during a prior art defrost cycle. The 25 exit air temperature reaches a plateau around (and generally somewhat above) freezing. During this time the ice melts from the evaporators. The exit air temperature 330257 begins to rise again when the ice is gone, but defrost does not end because condensate remains on the evaporators. In the prior art, the exit air temperature (illustrated by a dashed line) is permitted to rise for the entire drip time while the condensate is permitted to drip off of the evaporators to produce a clean coil. In practice it is not uncommon for the exit air temperature to exceed 41°F, resulting in an undesirable warming of the product zone in the prior art merchandiser. In contrast, the merchandiser of the present invention limits the exit air temperature to about 35°F during the drip time, so that the product zone and air duct system remain cooler during the last portion of defrost.
The rapid pull down achieved by holding the EEPR valve in a fully open position results in exit air temperature declining in a steep slope to the set point Tse(.. In contrast, if normal prior art modulation of an EPR-type valve is permitted following the end of the defrost period, the exit air temperature approaches the set point Tget asymptotically. The reason for this is that the control algorithm causes refrigeration to slow as the set point is approached. Therefore, the set point Tset is not reached as quickly in the prior art as with the present invention.
Referring now to Figs. 10 and 11 of the drawings, another modified embodiment of the air cooling system invention is shown with reference to open front 330257 merchandi.ser PM of twelve foot length and having a cabinet 210 with three product cooling zones 218a, 218b and 218c. The product zones 218a and 218b are typical of the merchandiser MM shown and described with reference to Figs. 4-6 in that these zones 218a and 218b have multiple shelves 219 for holding fresh foods requiring medium temperature refrigeration. However, the product zone 218c represents a pegboard-type back panel (205} for the refrigerated display of pre-packaged products, such as cheese and cold cuts. It is known that the air distribution characteristics may differ between adjacent zones of shelving and pegboard or the like, and it may result that the air temperatures may be higher in one zone than desired. In the prior art the solution was to operate the entire case at a lower evaporator temperature. With the modular coil invention, adjustment can be achieved between adjacent zones such as by operating the evaporator coil (222c) at a lower temperature to provide colder exit air temperatures. It is contemplated that, in addition to the temperature sensors 243a, 243b and 243c for the respective coils (222), product zone temperature sensors 209a, 209b and 209c may be provided and the data used by the controller 225 to achieve the operational balance desired.
Referring particularly to Fig. 11, one EEPR valve 224b may be used to control two coil sections 222a and 222b 330257 • -24- and another EEPR valve 224c used for the colder operating coil 222c.
Referring to Figs. 12 and 13, an island or "well" type merchandiser IM may be used for low 5 temperature or medium temperature refrigeration. Such cases frequently are designed with plural product holding areas, and Fig. 12 shows a triple cabinet 310 having two parallel product areas 318a and 318b with collinear zones and an end zone 318c that extends laterally or angularly 10 of the other zones. Typically, the two parallel areas 318a and 318b are arranged back-to-back with a common center wall 308 forming an internal air duct (not shown), and the end section 318c has an independent air circulating system. As shown best in Fig. 13, in one 15 form of the invention each cooling zone (318) is refrigerated by evaporator coils (322a for zone 318a; 322b for zone 318b; and 322c for zone 318c). The suction from the multiple coils may be controlled by a single EEPR valve 324. The controller 325 operates the EEPR k20 valve in response to exit air temperatures sensed by at least one sensor 343 for each air circulating system 312a, 312b and 312c. It will be understood that only a single evaporator coil (322c) may be required in some shorter island merchandiser cabinet sections. 25 The scope of the invention is intended to encompass such changes and modifications as will be P:WPDOCS\AMK\SPEC\ll Mil. -8/4/98 apparent to those skilled in the art, and is only to be limited by the scope of the appended claims.
Throughout this specification and the claims which follow, unless the context requires 5 otherwise, the word "comprise", and variations such as "comprises" and "comprising", will be understood to imply the inclusion of a stated integer or step or group of integers or steps but not the exclusion of any other integer or step or group of integers or steps. 330257

Claims (13)

P:\WPDOCSVAMK\SPec\llllll -7/4/98 -26- 33 0 2 57
1.The claims defining the invention are as follows: 5 1. An air cooling system in a commercial refrigerated merchandiser having an insulated cabinet with a product zone, comprising: evaporator means constructed and arranged for cooling air flow therethrough in a refrigeration mode for maintaining a preselected product zone temperature, liquid refrigerant metering means for controlling the flow of liquid refrigerant to the high side of said 10 evaporator means, and means for circulating air flow through said evaporator means and said product zone; and other refrigerant metering means constructed and arranged on the low side of said evaporator means for controlling the suction pressure thereof, said other metering means comprising electronic evaporator pressure regulating (EEPR) valve means for controlling the 15 refrigerant vapour flow from said evaporator means.
2. The air cooling system of claim 1, in which said other refrigerant metering means includes means for sensing exit air temperatures downstream of said evaporator means, and 20 controller means responsive to said sensing means for operating said EEPR valve means int he refrigeration mode and in a defrost mode.
3. The air cooling system of claim 2, in which said controller means is constructed and 25 arranged for closing said EEPR valve means during an initial de-icing period to the defrost mode, and is also arranged for modulating the EEPR 33 0257 valve means in an open position during a drip time period of the defrost mode.
4. The air cooling system of claim 3, in which the EEPR valve means is modulated in an ofon position and is responsive to sensed exit air temperatures exceeding a preset value whereby to provide a refrigerating condition at the preset value for the remaining drip time of the defrost mode.
5. The air cooling system of claim 2, in which said evaporator means has a pull-down mode following the drip time period, and said EEPR valve is moved to its full open position until a preselected exit air temperature is detected.
6. The air cooling system of claim 5, in which said controller means operates the EEPR valve in a refrigeration mode upon detecting the preselected exit air temperature.
7. The method of controlling the exit air temperature from the evaporator coil in a commercial refrigerated merchandiser for food products, in which the evaporator coil has a refrigeration mode and a defrost mode and the suction side of the evaporator coil has an electronic evaporator pressure regulator (EEPR) valve operated by a valve controller circuit, said control means comprising the steps of: (a) sensing the exit air temperature from the evaporator coil and generating a signal corresponding thereto 330257 -28- (b) operating the EEPR valve in the refrigeration mode of the evaporator coil by modulating refrigerant vapor flow therethrough to maintain a preselected exit air temperature; (c) operating the EEPR valve in the defrost mode of the evaporator coil by closing the EEPR valve during a preselected de-icing period of said evaporator coil.
8. The control method of claim 7, in which the defrost mode step (c) continues in its de-icing period until a predetermined drip temperature is reached, and in which the defrost mode includes the further step of: (1) activating the valve controller circuit in response to detection of exit air temperatures exceeding a preselected value during a final drip period to provide limited refrigeration to maintain the preselected temperature during the remainder of the defrost mode.
9. A control method as set forth in claim 8, in which the evaporator has a pull down mode, the control method further comprising the step of: (d) operating the EEPR valve in the pull down mode of the evaporator coil, (1) by first moving the EEPR valve to its full open position, (2) holding the EEPR valve in its full open position until the preselected exit air temperature is detected. 330257 -29-
10. A control method as set forth in claim 7 wherein step (b) of operating the EEPR valve in the refrigeration mode further comprises the steps of: (1) monitoring the position of the EEPR valve, (2) timing a preselected period following the onset of operation of the EEPR valve in the refrigeration mode, the time period being selected to permit the valve to substantially stabilize in a position which maintains the exit air temperature at a set point, (3) saving a reference position of the valve at a time when the preselected period is timed out.
11. A control method as set forth in claim 10 in which the evaporator coil has a pull down mode, the control method further comprising the step of: (d) operating the EEPR valve in the pull down mode of the evaporator coil, (1) by first moving the EEPR valve to its full open position, (2) holding the EEPR valve in its full open position until the preselected exit air temperature is detected.
12. A control method as set forth 'n claim 11 wherein the step of operating the EEPR valve in the pull down mode further comprises the step, following detection of the preselected exit air temperature, of: -30- 330257 (3) setting the EEPR valve at the valve reference position stored in the valve controller circuit during operation of the EEPR valve in the refrigeration mode.
13. A method of controlling the exit air temperature from an evaporator coil in a commercial refrigerated merchandiser, substantially as hereinbefore described with reference to the drawings.
NZ330257A 1995-03-14 1996-02-21 Refrigerated merchandiser with electronic evaporator pressure regulating valve to control flow from evaporator coils NZ330257A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40767695A 1995-03-14 1995-03-14
NZ304969A NZ304969A (en) 1995-03-14 1996-02-21 Refrigerated merchandiser having modular evaporator coils

Publications (1)

Publication Number Publication Date
NZ330257A true NZ330257A (en) 1998-07-28

Family

ID=26651706

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ330257A NZ330257A (en) 1995-03-14 1996-02-21 Refrigerated merchandiser with electronic evaporator pressure regulating valve to control flow from evaporator coils

Country Status (1)

Country Link
NZ (1) NZ330257A (en)

Similar Documents

Publication Publication Date Title
AU692698B2 (en) Refrigerated merchandiser with modular evaporator coils and EEPR control
US5924297A (en) Refrigerated merchandiser with modular evaporator coils and "no defrost" product area
AU2002254641B2 (en) Evaporator for medium temperature refrigerated merchandiser
US10330369B2 (en) Control system for a refrigerated merchandiser
EP0832404A1 (en) Strategic modular secondary refrigeration
JP2003028556A (en) Article demonstration freezing system
CN1165734C (en) Operation method of commercial refrigeration system
US20090133416A1 (en) Refrigeration device control system
CN100449230C (en) Business-use refrigrating system
AU697909B2 (en) Refrigerated merchandiser with EEPR control
NZ330257A (en) Refrigerated merchandiser with electronic evaporator pressure regulating valve to control flow from evaporator coils
MXPA96005553A (en) Exhibitor of refrigerated goods, with modular evaporating coils and control
CN1153551A (en) Refrigerated merchandiser with modular evaporator coils and EEPR control
JPH10160313A (en) Cooler
JP2004078356A (en) Vending machine
JP2020060328A (en) Freezing/refrigerating showcase

Legal Events

Date Code Title Description
RENW Renewal (renewal fees accepted)