NZ276234A - An attenuated replicating non pathogenic flavivirus (bovine viral diarrhoea virus - bvdv) vaccine - Google Patents
An attenuated replicating non pathogenic flavivirus (bovine viral diarrhoea virus - bvdv) vaccineInfo
- Publication number
- NZ276234A NZ276234A NZ276234A NZ27623494A NZ276234A NZ 276234 A NZ276234 A NZ 276234A NZ 276234 A NZ276234 A NZ 276234A NZ 27623494 A NZ27623494 A NZ 27623494A NZ 276234 A NZ276234 A NZ 276234A
- Authority
- NZ
- New Zealand
- Prior art keywords
- virus
- gene
- bvdv
- bhv
- plasmid
- Prior art date
Links
- 241000700605 Viruses Species 0.000 title claims description 141
- 229960005486 vaccine Drugs 0.000 title claims description 42
- 230000002238 attenuated effect Effects 0.000 title claims description 25
- 241000283690 Bos taurus Species 0.000 title claims description 21
- 230000003362 replicative effect Effects 0.000 title claims description 12
- 230000001717 pathogenic effect Effects 0.000 title claims description 9
- 206010051511 Viral diarrhoea Diseases 0.000 title description 3
- 241000710831 Flavivirus Species 0.000 title 1
- 108090000623 proteins and genes Proteins 0.000 claims description 126
- 241000701083 Bovine alphaherpesvirus 1 Species 0.000 claims description 80
- 241000710780 Bovine viral diarrhea virus 1 Species 0.000 claims description 75
- 101000984570 Enterobacteria phage T4 Baseplate wedge protein gp53 Proteins 0.000 claims description 67
- 101000997743 Escherichia phage Mu Serine recombinase gin Proteins 0.000 claims description 67
- 239000013612 plasmid Substances 0.000 claims description 53
- 108010076504 Protein Sorting Signals Proteins 0.000 claims description 45
- 108010006025 bovine growth hormone Proteins 0.000 claims description 29
- 201000010099 disease Diseases 0.000 claims description 27
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 27
- 230000008488 polyadenylation Effects 0.000 claims description 26
- 108020004414 DNA Proteins 0.000 claims description 22
- 108020004440 Thymidine kinase Proteins 0.000 claims description 21
- 238000000034 method Methods 0.000 claims description 20
- 102000006601 Thymidine Kinase Human genes 0.000 claims description 19
- 241001465754 Metazoa Species 0.000 claims description 15
- 108010008529 bovine viral diarrhea virus gp53 Proteins 0.000 claims description 15
- 210000002966 serum Anatomy 0.000 claims description 14
- 101150003725 TK gene Proteins 0.000 claims description 13
- 238000012217 deletion Methods 0.000 claims description 12
- 230000037430 deletion Effects 0.000 claims description 12
- 239000012634 fragment Substances 0.000 claims description 11
- 108090000288 Glycoproteins Proteins 0.000 claims description 9
- 102000003886 Glycoproteins Human genes 0.000 claims description 9
- 230000003612 virological effect Effects 0.000 claims description 9
- 108020005202 Viral DNA Proteins 0.000 claims description 8
- 208000015181 infectious disease Diseases 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 7
- 206010062016 Immunosuppression Diseases 0.000 claims description 6
- 241000701093 Suid alphaherpesvirus 1 Species 0.000 claims description 6
- 230000001506 immunosuppresive effect Effects 0.000 claims description 6
- 238000012224 gene deletion Methods 0.000 claims description 5
- 241000700585 Bovine alphaherpesvirus 2 Species 0.000 claims description 3
- 241000701822 Bovine papillomavirus Species 0.000 claims description 3
- 101000830028 Escherichia phage Mu Uncharacterized protein gp25 Proteins 0.000 claims description 3
- 101800000385 Transmembrane protein Proteins 0.000 claims description 3
- 238000004519 manufacturing process Methods 0.000 claims description 3
- 208000035473 Communicable disease Diseases 0.000 claims description 2
- 238000002955 isolation Methods 0.000 claims description 2
- 241000701161 unidentified adenovirus Species 0.000 claims description 2
- PPBOKXIGFIBOGK-BDTUAEFFSA-N bvdv Chemical compound C([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)C(C)C)[C@@H](C)CC)C1=CN=CN1 PPBOKXIGFIBOGK-BDTUAEFFSA-N 0.000 claims 7
- 239000003814 drug Substances 0.000 claims 1
- 238000002649 immunization Methods 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 35
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 description 31
- 102000004169 proteins and genes Human genes 0.000 description 28
- 235000018102 proteins Nutrition 0.000 description 27
- 230000014509 gene expression Effects 0.000 description 18
- 239000000523 sample Substances 0.000 description 16
- 241000701022 Cytomegalovirus Species 0.000 description 12
- 244000309466 calf Species 0.000 description 10
- 239000002299 complementary DNA Substances 0.000 description 9
- 239000000427 antigen Substances 0.000 description 8
- 108091007433 antigens Proteins 0.000 description 8
- 102000036639 antigens Human genes 0.000 description 8
- 230000028993 immune response Effects 0.000 description 8
- 238000003780 insertion Methods 0.000 description 8
- 230000037431 insertion Effects 0.000 description 8
- 241000283707 Capra Species 0.000 description 6
- 108091034117 Oligonucleotide Proteins 0.000 description 6
- 230000000120 cytopathologic effect Effects 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 230000002265 prevention Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000001890 transfection Methods 0.000 description 6
- 239000013598 vector Substances 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- 101710145752 Serine recombinase gin Proteins 0.000 description 5
- 150000001413 amino acids Chemical group 0.000 description 5
- 230000000692 anti-sense effect Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 229940031551 inactivated vaccine Drugs 0.000 description 5
- 230000001404 mediated effect Effects 0.000 description 5
- 108020004707 nucleic acids Proteins 0.000 description 5
- 102000039446 nucleic acids Human genes 0.000 description 5
- 150000007523 nucleic acids Chemical class 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 241000588724 Escherichia coli Species 0.000 description 4
- 101150054371 UL24 gene Proteins 0.000 description 4
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 108700025694 p53 Genes Proteins 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 239000013605 shuttle vector Substances 0.000 description 4
- 238000002741 site-directed mutagenesis Methods 0.000 description 4
- 241000894007 species Species 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 206010012735 Diarrhoea Diseases 0.000 description 3
- 241001494479 Pecora Species 0.000 description 3
- 108010076039 Polyproteins Proteins 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000001114 immunoprecipitation Methods 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 238000006386 neutralization reaction Methods 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 125000003729 nucleotide group Chemical group 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 239000013600 plasmid vector Substances 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000000241 respiratory effect Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 239000013603 viral vector Substances 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- 108090000565 Capsid Proteins Proteins 0.000 description 2
- 102100023321 Ceruloplasmin Human genes 0.000 description 2
- 208000032170 Congenital Abnormalities Diseases 0.000 description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 2
- 101710121417 Envelope glycoprotein Proteins 0.000 description 2
- 101000911390 Homo sapiens Coagulation factor VIII Proteins 0.000 description 2
- 101001038300 Homo sapiens Protein ERGIC-53 Proteins 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- 101800000021 N-terminal protease Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 101000933973 Salmonella phage Felix O1 (isolate Felix O1-VT1) Major capsid protein Proteins 0.000 description 2
- 238000002105 Southern blotting Methods 0.000 description 2
- 241000282898 Sus scrofa Species 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229940031567 attenuated vaccine Drugs 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 239000003937 drug carrier Substances 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 210000003754 fetus Anatomy 0.000 description 2
- 108010074605 gamma-Globulins Proteins 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 102000057593 human F8 Human genes 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- 238000013507 mapping Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 229940047431 recombinate Drugs 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 208000023504 respiratory system disease Diseases 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 241001529453 unidentified herpesvirus Species 0.000 description 2
- 229940125575 vaccine candidate Drugs 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 101150072531 10 gene Proteins 0.000 description 1
- 101150110188 30 gene Proteins 0.000 description 1
- 101150066375 35 gene Proteins 0.000 description 1
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- APKFDSVGJQXUKY-KKGHZKTASA-N Amphotericin-B Natural products O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1C=CC=CC=CC=CC=CC=CC=C[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-KKGHZKTASA-N 0.000 description 1
- WOVKYSAHUYNSMH-UHFFFAOYSA-N BROMODEOXYURIDINE Natural products C1C(O)C(CO)OC1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-UHFFFAOYSA-N 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 206010008631 Cholera Diseases 0.000 description 1
- 241000710777 Classical swine fever virus Species 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 206010010356 Congenital anomaly Diseases 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 241000701024 Human betaherpesvirus 5 Species 0.000 description 1
- LKDRXBCSQODPBY-AMVSKUEXSA-N L-(-)-Sorbose Chemical compound OCC1(O)OC[C@H](O)[C@@H](O)[C@@H]1O LKDRXBCSQODPBY-AMVSKUEXSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 235000019687 Lamb Nutrition 0.000 description 1
- 108010090054 Membrane Glycoproteins Proteins 0.000 description 1
- 102000012750 Membrane Glycoproteins Human genes 0.000 description 1
- 206010028034 Mouth ulceration Diseases 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 108700026244 Open Reading Frames Proteins 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 241000364057 Peoria Species 0.000 description 1
- 102100040252 Protein ERGIC-53 Human genes 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 206010039101 Rhinorrhoea Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical class O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 1
- 108700009124 Transcription Initiation Site Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 108020000999 Viral RNA Proteins 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- 206010000210 abortion Diseases 0.000 description 1
- 231100000176 abortion Toxicity 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 229960003942 amphotericin b Drugs 0.000 description 1
- 230000000454 anti-cipatory effect Effects 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007698 birth defect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 108010079058 casein hydrolysate Proteins 0.000 description 1
- 210000004671 cell-free system Anatomy 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 201000005332 contagious pustular dermatitis Diseases 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000007123 defense Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000012894 fetal calf serum Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 101150055782 gH gene Proteins 0.000 description 1
- 101150034374 gin gene Proteins 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000002744 homologous recombination Methods 0.000 description 1
- 230000006801 homologous recombination Effects 0.000 description 1
- 230000000521 hyperimmunizing effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000010369 molecular cloning Methods 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 208000010753 nasal discharge Diseases 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 230000003114 pinocytic effect Effects 0.000 description 1
- 210000002826 placenta Anatomy 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000009290 primary effect Effects 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 208000009305 pseudorabies Diseases 0.000 description 1
- 230000009103 reabsorption Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 210000001944 turbinate Anatomy 0.000 description 1
- 241000701447 unidentified baculovirus Species 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 230000017613 viral reproduction Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/85—Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
- C12N15/86—Viral vectors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16641—Use of virus, viral particle or viral elements as a vector
- C12N2710/16643—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24311—Pestivirus, e.g. bovine viral diarrhea virus
- C12N2770/24322—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Virology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Pharmacology & Pharmacy (AREA)
- Physics & Mathematics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Veterinary Medicine (AREA)
- Gastroenterology & Hepatology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- Communicable Diseases (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Toxicology (AREA)
- Immunology (AREA)
- Mycology (AREA)
- Epidemiology (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Peptides Or Proteins (AREA)
Description
New Zealand No. 276234 International No.
TO BE ENTERED AFTER ACCEPTANCE AND PUBLICATION
Priority dates: 05.11.1993;
Complete Specification Filed: 31.10.1994
Classification:^) C12N7/01; C12N15/40; A61K39/12
Publication date: 26 January 1998
Journal No.: 1424
NEW ZEALAND PATENTS ACT 1953
COMPLETE SPECIFICATION
Title of Invention:
Viral vector with bovine viral diarrhea virus (BVDV) antigens
Name, address and nationality of applicant(s) as in international application form:
PHARMACIA & UPJOHN COMPANY, a company organised under the laws of the United States of America of 301 Henrietta Street, Kalamazoo, Michigan 49001, United States of America
New Zealand No. International No.
276234
NEW ZEALAND PATENTS ACT 1953 COMPLETE SPECIFICATION
Title of Invention:
Viral vector with bovine viral diarrhea virus (BVDV) antigens
Name, address and nationality of applicant(s) as in international application form:
THE UPJOHN COMPANY, of 301 Henristta Street, Kalamazoo, Ml 49001, United States of America
two 95/12682 PCTAJS94/12198
276234
VIRAL VECTOR WITH BOVINE VIRAL DIARRHEA VIRUS (BVDV) ANTIGB35
BACKGROUND OF THE INVENTION
Field of the Invention 5 Thin invention relates to the field of Bovine Viral Diarrhea Virus (BVDV).
and vaccines for the treatment thereof.
Information PiBclosure van Zyl, ILetal. Live Attenuated Pseudorabies Virus Expressing Envelope Glycoprotein El of Hog Cholera Virus Protects Swine against both Pseudorabies and 10 Hog Cholera, Jounwl ofVirolog", VoL 65, No. 5, pp. 2761-2765 (1991). U.S. patent 4,703,011, Kit, M., an* 311,3., Thymidine Kinase Deletion Mutants of Bovine Herpesvirus-1, issued 27 October 1987. U.S. patent 4,824,667, Eat, M,, and Kit, S. Thymidine Kinase Deletion Mutants of Bovine Herpesvirus-1, Vaccines Against Infectious Bovine Khinotracheitis Containing Same and Methods for the Production 15 and Use of Same, issued 25 April, 1989. Collett, M.S., et al., Proteins Encoded by Bovine Viral Diarrhea Virus: The Genomic Organization of a Pestivirus, Virology, Vol. 165 pp. 200-208 (1988). Collett, M.S., et al., Molecular Cloning and Nucleotide Sequence of the Pestivirus Bovine Viral Diarrhea Virus, Virology, VoL 165 pp. 191-199 (1988).
TWlrfn-mipd
Bovine viral diarrhea virus (BVDV) is a Pestivirus belongii % to the family of the Flaviviridae. It causes a number of different conditions in sheep, goats, and especially cattle. The symptoms depend upon the age, physiological and virological state of the animal. In young susceptible calves and young adults it causes a 25 disease which is characterized by high morbidity and low mortality. The symptoms can include fever, depression, occulo-nasal discharges, diarrhea and occasionally oral ulcerations. Apart from these primary effects the virus also causes immunosuppression. Although primary BVDV infections are normally relatively mild, the virus may potentiate or enhance the pathogenicity of other co-infecting 30 microorganisms.
In older or susceptible animals, BVDV causes similar symptoms to those described above for younger susceptible calves. In addition, in pregnant animals the virus has the ability to cross the placenta and infect the fetus. The outcome of this infection depends upon the age of the fetus and whether it is at a stage where its 35 imTmiTiA eystem is fully competent The possible outcome of infections include fetal
reabsorption, abortion, mummification, congenital defects, birth defects, calves bom which are persistently infected with BVDV and completely normal calves. Calves born which are persistently infected with BVDV, represent the most important segment of this BVDV pathogenesis complex. Persistently infected animals shed 5 large amounts of virus into their environment which can infect susceptible animaic Furthermore, even though persistently infected animals are ixnmunotolerant to the virus which infected them in utero, they do develop disease when infected with other closely related BVDV biotypes. These infections are characterized by low morbidity (because relatively speaking there will not be many pregnant animals infected at the 10 right during pregnancy to produce BVDV persistently infected normal calves), but high mortality. This disease syndrome is known as mucosal disease and often manifests itself as a peracute condition with calves dying of a profuse watery diarrhea which contains large amounts of fresh blood.
The importance of this virus and it's widespread presence in the cattle 15 population has led to the development of many vaccines in the attempt to try to prevent BVDV infection. These vaccines have been built on the traditional concepts of inactivation or attenuation but, because of the behavior of BVDV, they have many significant drawbacks.
It is generally accepted that inactivated vaccine preparations are not as 20 effective as attenuated live vaccines. Inactivated antigen from inactivated vaccine preparation undergoes exogenous processing. After injection into the the antigen becomes part of Hie animal's soluble protein mileau. The antigen enters antigen presenting cells through pinocytotic mechanisms and this usually produces antibodies. Unfortunately, because antibodies cannot gain entry into cells, they 25 normally only interrupt viral life cycles when mature virus is released from the cell. On the other hand, antigen from live virus which replicates inside cells, undergoes endogenous processing and this mechanism produces the preferred cell mediated immune responses. Cell mediated immune responses can recognize cells infected with viruses and have the potential of interrupting the virus life cycle at a much SO earlier stage. Cell mediated responses are thus thought to be extremely important in the immunological defense to many viral infections.
Because of the cell mediated response, attenuated live products such as vaccines should induce good cell mediated responses. With BVDV, attenuation of the virus to produce the live vaccine does not always prevent that vaccine virus from 35 causing the immunosuppression normally associated with field isolates. Roth J A.
WO 95/12682 PCT/US94/12198
and Kaeberle M.L., Suppression of Neutrophil and Lymphocyte Function Induced by a Vaccinal Strain of Bovine Viral Diarrhea Virus With or Without the Administration of ACTH, American Journal of Veterinary Research, Vol. 44 pp. 2366-2372 (1983). The failure of the vaccine to stop the immunosuppression response 5 creates a serious drawback to the vaccine. An animal owner may be vaccinating HTiimala to protect against a disease but because of the properties of the vaccine the owner provides an opportunity for other diseases to afflict the animals. This forces the owner to use inactivated BVDV vaccines, which because of the way in which the immune system operates, are not particularly effective.
In summary, inactivated vaccines are safe but not particularly effective while the attenuated live vaccines are more effective but under certain conditions may not be very safe.
This invention combines the effectiveness of the attenuated live vaccines with the safety of the inactivated vaccines. Bovine herpesvirus type 1(BHV-1) is another 15 major pathogen of cattle which produces respiratory disease. Thus, in common with BVDV, BHV-1 also replicates at a mucosal surface We take the gene which codes for gp53, a mqjor glycoprotein of the BVDV virus and against which the host produces substantial immune responses, and express it in bovine herpes virus -1 (BHV-1), this recombinant virus (BHWBVDVgp53) is used as a vaccine against 20 BVDV. Donis, R.O. and Dubovi, E.J., Glycoproteins of Bovine Viral Diarrhoea-
Mucosal Disease Virus in Infected Bovine Cells, Journal of General Virology, VoL 68, pp. 1607-1616 (1987) and Magar, R., et al., Bovine Viral Diarrhea Virus Proteins: Heterogeneity of Cytopathogenic and Noncytopathogenic Strains and Evidence of 53K Glycoprotein Neutralization Epitope, Veterinary Microbiology, VoL 16, pp. 303-25 314. Cited references are incorporated herein by reference.
SUMMARY OF THE INVENTION.
A replicating nonpathogenic virus, for preventing disease caused by Bovine Viral Diarrhea Virus (BVDV), where said replicating nonpathogenic virus comprises: a gene or gene combination taken from a BVDV virus, and said replicating 30 nonpathogenic virus functionally expresses said gene or gene combination.
Embodiments of this invention include the following: A virus where said replicating nonpathogenic virus is attenuated, is selected from attenuated Bovine Herpes Virus type 1 (BHV-" auated adenoviruses, attenuated bovine mammillitis virus, attenuated bovine papillomavirus, or attenuated pseudorabies virus. A virus where 35 said replicating nonpathogenic virus is attenuated and contains and expresses any
WO 95/12682 PCT/US94/12198
combination of the following genes: the genes that code for gp48, gp25, pl4 capsid protein, p20 N-terminal protease ard pl26/p80 protein. A virus where the attenuation is created by rnairing the thymidine kinase (tk) gene nonfimctionaL A virus where a signal peptide is inserted proceeding the gene or gene 5 combination that codes for gp53 in said Bovine; Herpes Virus type 1 (BHV-1). A virus where said gene that codes for gp53 is inserted into the inactivated thymidine kinase (tk) gene site. A virus where the functionally expressing gene or gene combination, used to create the virus, comprises a recombined plasmid with intact viral DNA, said plaamid comprising: a) a BHV-1 genomic DNA fragment containing 10 the thymidine kinase (tk) gene and having a deletion to the thymidine kinase (tk) gene, b) a promoter/polyadenylation signal inserted in the thymidine kinase (tk) gene deletion, c) a signal peptide gene sequence preceding a gp53 gene or gene combination all of which is inserted between the promoter and the polyadenylation signal A virus where said plasmid is made from a plasmid having the 15 characteristics of plasmid pHAS4. A virus where said signal peptide gene sequence is taken from any well characterized signal peptide sequences such as any of the thirty-nine examples of well characterized signal peptide sequences found in Perlman, D., et aL, J. Mai. BioL VoL 167 pp. 391-409 (1983), incorporated by reference. A virus where said signal peptide gene sequence is taken from 20 Psuedorabies Virus gin gene (PRV) and/or Bovine Growth Hormone (BGH).
A \iru8 where a plasmid is selected from the following plasmids, a) pBHVtkex-l::BGH/p5S; b) pBHVtkex-l::gIII/p53; c) pBHVtkex-3::BGH/p53; or d) pBHVtkex-3: :gm/u53. A virus that produces the product of a functionally expressing gene or gene combination is selected from one of the following viruses, 25 Tll-3, Tll-6, or Tll-8. A virus where the functionally expressing gene or gene combination, used to create the virus, comprises a recombined plasmid with intact viral DNA, said plasmid comprising: a) a BHV-1 genomic DNA fragment containing the thymidine kinase (tk) gene and having a deletion to the thymidine kinase (tk) gene, b) a promoter/polyadenylation signal inserted in the thymidine kinase (tk) 30 gene deletion, c) a gp53 gene or gene combination inserted between the promoter and the polyadenylation signaL A virus where the plasmid is pBHVtkex-3::p53. A virus selected from one of the following viruses, T2-3#3 or T2-2#5. A vaccine for preventing disease caused by Bovine Viral Diarrhea Virus (BDVD) comprising a pharmaceutically effective amount of the viruses described herein and a carrier. 35 A vaccine as described above for preventing disease caused by Bovine Viral
4748.P CP
27 6 2 3 4
Diarrhea Virus (BDVD) comprising a pharmaceutically effective amount of a virus described above and a carrier, said carrier comprising any physiological buffered medium, i.e. about pH 7.0 to 7.4 containing firom about 2.5 to 15% serum which does not contain antibodies to BHV.
A method of Immunizing a non-human animal against Infectious disease caused, by Bovine Viral Diarrhea Virus (BDVD) comprising administering to an animal a pharmaceutically effective amount of a virus or vaccine described herein.
A process of preparing a virus described herein comprising: a) isolation of a functionally expressing gene or gene combination that causes BVDV, b) inserting said gene or gene combination into a replicating nonpathogenic virus, c) selecting a live-virus that functionally expresses the product of said gepe or gene combination.
A method of preparing a virus described herein where the functionally expressing gene or gene combination, used to create the virus, is produced by a process comprising the recombination of a plasmid with intact viral DNA, said plasmid comprising: a) a BHV-1 genomic DNA fragment containing the thymidine kinase (tk) gene and having a deletion to the thymidine kinase (tk) gene, b)
inserting into the thymidine kinase (tk) gene deletion of said plasmid a promoter/polyadenylation signal, c) inserting a gp53 gene or gene combination between the promoter and the polyadenylation signal, d) transfecting cells with said plasmid to produce a recombinate virus containing said functional gene or gene combination inserted into a live virus that does not cause immunosuppression in the usual host and expressing said functional gene or gene combination.
A method of preparing a virus described herein where the functionally expressing gene or gene combination, used to create the virus, is produced by a process comprising the recombination of a plasmid with intact viral DNA, said plasmid comprising: a) a BHV-1 genomic DNA fragment containing the thymidine kinase (tk) gene and having a deletion to the thymidine kinase (tk) gene, b)
inserting into the thymidine kinase (tk) gene deletion of said plasmid a promoter/polyadenylation signal, c) inserting a gp53 gene or gene combination preceded by a signal peptide gene sequence between the promoter and the polyadenylation signal, d) transfecting cells with said plasmid to produce a recombinate virus containing said functional gene or gene combination inserted into a live virus that does not cause immunosuppression in the usual host and expressing said functional gene or gene combination.
WO 95/12682 PCT/US94/12198
BRIEF DESCRIPTION OF THE DRAWINGS.
Figure 1. Construction of the shuttle vectors for inserting foreign genes into BHV-1. Figure 2. Strategy for appending signal peptide sequences to the BVDV gp53 gene. Figure 3. Maps of the five shuttle plasmids for inserting gp53 into BHV-1 5 a. EXAMPLE L pBHVtkex-3::p53.
b. EXAMPLE 2: pBHVtkex-l::BGH/p53
c. EXAMPLE 3: pBHVtkex-l::gIII/p53
d. EXAMPLE 4: pBHVtkex-3::BGH/p53
e. EXAMPLE 5:pBHVtkex-3::gEI3/p53
Figure 4. Predicted transcript maps of the BHV-l/gp53 recombinant viruses.
Figure 5. Northern blots showing transcription of gp53 messenger RNAs in the BHV-1 recombinants.
Figure 6. Immunoprecipitations showing expression of gp53 protein in the BHV-1 recombinants.
DESCRIPTION OF THE PREFERRED EMBODIMENTS.
All of the terms used below will be readily understood by one skilled in the art In many places the name of the manufacturer of equipment or reagents are provided in parenthesis after the equipment or reagent is named. Commonly used terms, reagents and buffers such as "plasmids," "Klenow Fragments," "religating 20 blunt ends," "Tris," chelating buffers Buch as EDTA and EGTA, and commonly used chromatography columns are referred to without further explanation.
In the descriptions of the construction of the compounds used in this invention, standard molecular biological techniques were used and are briefly named or described here. Detailed explanations of these techniques can be found in 25 standard laboratory manuals such as "Molecular Cloning: a Laboratory Manual" (1989), Sambrook, et. al., Cold Spring Harbor Press, Cold Spring Harbor, New York, or "Current Protocols in Molecular Biology" (1991), Ausubel, F. M., et al., eds., Wiley Intersdence, New York.
This invention combines the effectiveness of the attenuated live vaccines with 30 the safety of the inactivated vaccines. We take the gene which codes for gp53, a major glycoprotein of the BVDV virus and against which the host produces substantial immune responses, and express it in bovine herpesvirus -1 (BHV), this recombinant virus (BHV/BVDVgp53) is used as a vaccine against BVDV.
Bovine herpesvirus (BHV) is another mqjor pathogen of cattle which produces 35 respiratory disease. Thus, in common with BVDV, BHV also replicates at a mucosal
WO 95/12682 PCT/US94/12198
surface. With BVDV, replication is mainly at the gut mucosal interface with less replication at the respiratory interface. With BHV it is the respiratory interface which dominates. The common mucosal immune system ensures that immune responses produced at one surface will be effective at other surfaces. Thus the 5 recombinant virus of this invention, BHV/BVDVgp53, will, when administered to cows, sheep or goats, preferably via the intranasal route, replicate in the respiratory mucosae and produce an immune response.
Prior to the expression of the BVDVgp53 gene in BHV, the thymidine kinase gene was deleted from the BHV virus using a process known to attenuate the virus. 10 The BHV, a live attenuated virus, will replicate and produce a cell mediated response. As part of that replicative process, the BVDV gp53 gens will be expressed and, because the virus is inside the cell, the correct processing for a cell mediated response to the BVDV gp53 part of the recombinant virus will also occur. Most importantly, this response will occur without the possible side effects of 15 immunosuppression, as only part of the BVDV virus is present. Thus, the invention combines the efficacy of an attenuated live virus vaccine for BVDV, with the safety of an inactivated preparation.
The examples in the procedures section are provided for illustrative purposes and are in no way intended to limit the scope of the present invention. All media 20 and buffer solutions were made up in glass distilled water unless otherwise indicated.
Compositfong Administrations - A pharmaceutically effective amount of the vaccine of the present invention can be employed along with a pharmaceutically acceptable carrier or diluent as a vaccine against BHV-1 and BVDV in animals, such 25 as bovine, sheep and goats.
Examples of pharmaceutically acceptable carriers or diluents useful in the present invention include any physiological buffered medium, ie., about pH 7.0 to 7.4, containing from about 2.5 to 15% serum which does not contain antibodies to BHV, ie., is seronegative for BHV. Serum which, does not contain gamma globulin 30 is preferred to serum which contains gamma globulin. Examples of serum to be employed in the present invention include fetal calf serum, lamb serum, horse serum, swine serum, and goat serum. Serum protein such as porcine albumin or bovine serum albumin (hereinafter "BSA") in an amount of from about 0.5 to 3.0% can be employed as a substitute for the serum. However, it is desirable to avoid the 35 use of foreign proteins in the carrier or diluent which will induce allergic responses
WO 95/12682 PCT/US94/12198
in the animal being vaccinated.
The virus may be diluted in any of the conventional stabilizing solutions containing phosphate buffer, glutamate, casitone, and sucrose or sorbose, or containing phosphate buffer, lactose, dextran and glutamate.
It is preferred that the vaccine viruses of the present invention be stored at a titer of at least 105 to 10® PFU/ml at -70°C to -90°G or in a lyophilized state at 2°C to 7°C. The lyophilized virus may be reconstituted for use with sterile distilled water or ""fag an aqueous diluent containing preservatives such as gentamidn and amphotericin B or penicillin and streptomycin.
The useful dosage to be administered will vary depending upon the age,
weight and species of the afiimal vaccinated and the mode of administration. A suitable dosage can be, for example, about 104,5 to 107 PFU/animal, preferably about lO4,5 to lO5*5 PFU.
The vaccines of the present invention can be administered intranasally, 15 intravaginally or intramuscularly. Intranasally is the preferred mode of administration.
Utility of the Invention - This invention is intended to provide the user with an effective vaccine for prevention of BVDV caused disease, where the vaccine can be safely and efficaciously administered intramuscularly, intranasally, or 20 intravaginally. Intranasally may be the preferred route of administration.
The vaccines of this invention are created with the intention of treating disease, preferably through prevention. By prevent or prevention applicant means to keep the host from developing symptoms of the disease or to mitigate the effects of the disease, that is to avert the typical diseased state. Prevention implies decisive 25 action to stop, impede or delay the onset of disease. Prevention can include the following concepts: to hinder, frustrate, to obstruct; to intercept, possibly prohibit, impede or preclude. Preclude would suggest the onset of the disease state either does not occur or the disease pathogen is largely ineffectual in causing the disease state. Prevent or prevention can indicate the disease state is forBtalled, meaning SO that anticipatory action to prevent or hinder the disease has occurred but the conditions creating the disease have not been eliminated.
The usefulness cf this invention will be illustrated by the ability of the vaccine to provide effective protection against the spread of BVDV disease in its various manifestations. Because the vaccine uses gp53, a major glycoprotein of 35 BVDV, and one against which the host produces a substantial immune response, the
vaccine will confer substantial benefits upon the treated potential host. Another object of the invention is to provide a BVDV vaccine which can be administered safely to calves and to pregnant cows in all stages of pregnancy.
Measures of Activity - The vaccine uses gp53, a mqjor glycoprotein of BVDV, 5 and one against which the host should produces a substantial immune response. Others have shown that gp53 is highly immunogenic. Donis, R.O. and Dubovi, E.J., Glycoproteins of Bovine Viral Diarrhoea-Mucosal Disease Virus in Infected Bovine Cells, Journal of General Virology, VoL 68, pp. 1607-1616 (1987). It is well known that agents that produce substantial immune responses can make effective vaccines. 10 Magar, R, et al., Bovine Viral Diarrhea Virus Proteins: Heterogeneity of
Cytopathogenic and Nonqytopathogenic Strains and Evidence of 53K Glycoprotein Neutralization Epitope, Veterinary Microbiology, VoL 16, pp. 303-314. The vaccines of this invention contain genes that express large quantities of gp53, this is shown in figure 5. Because of the expression of large quantities of gp53 the vaccines of this 15 invention will confer substantial benefits upon the treated potential host
Preferred Compounds - Any BHV-1 virus attenuated with a tk deletion and carrying the gp53 gene, the gp53 gene being preceded by a signal peptide, that expresses abundant amounts of gp53, should be a preferred suitable vaccine candidate. It appears the signal peptide sequence may be taken from any suitable 20 source. We chose to examine two different signal peptides to ensure the best localization of the gp53 protein in vivo. We chose two candidates we call "Tll-6", embodied in Example 2, and "Tll-S", embodied in "^xample 3 for vaccine trials. The former virus was deposited to the ATCC under the designation UC VR-58. The latter, Tll-S" plasmid was also deposited. The virus we labeled "Tll-S" might 25 contain truncated forms of the tk transcript and this might suggest, but does not necessarly mean, that it would be less attractive as a vaccine candidate. A large number of existing cell lines are persistently infected with non-cytopathic BVDV from passage in media containing fetal bovine serum taken from infected calves. For this invention, it is imperative that viruses used as live, attenuated vaccines are free 30 of contaminating BVDV.
Preparation of the Compounds
Construction of expression shuttle vectors for gene insertion into Bovine herpesvirus type-1 (BHV-1).
We constructed two shuttle vectors to allow insertion of foreign genes into 35 BHV-1. Although this inventioti showB the utility of BHV-1 as a vector for BVDV
WO 95/12682 PCT/US94/12198
genes many other viruses could fill the same role. Other examples from cattle,
sheep and goats would include cow, goat and sheep pox viruseadenoviruses,
bovine mammillitis virus, bovine papillomavirus, and pseudorabies virus. A nonpathogenic virus refers to any virus which has the ability to replicate in one of its 5 host species but does not produce any signs of disease in that species. Such nonpathogenic viruses might arise from pathogenic parent viruses by natural mutation, might be mutagenized by, for instance, chemicals or light to produce a nonpathogenic virus, or could be rendered non-pathogenic through the use of recombinant DNA technologies. See, 1) Mapping Neutralization Domains of Viruses, 10 E.Wimmer, EA Tfonini, and D.C. Diamondand 2) Immunogenidty of Vaccine Products and Neutralizing Antibodies, E Norrby. Both articles are in Edited by Notions and Oldstone Published by Springer-Verlag New York Inc. 1986.
Since we intended to attenuate BHV-1 by inactivating the viral thymidine kinase (tkXM. Kit, et aL, US Patent 4,703,011, (1983 )), we decided to use the BHV-15 1 tk gene for the site of insertion. This approach not only insured the complete inactivation of the viral tk, but als" allowed us to select recombinant, tk-negative virus by established methods. M. F. Shih, et aL, Proc Natl Acad Sd USA, 81:5867-5870 (1984). Other methods to attenuate BHV-1, such as deletion of other non-essential genes would also be applicable to this particular invention. We started 20 with plasmid pHAS4 which contains a 2.7kb Sail subfragment of the BHV-1
HindTII-A fragment cloned into plasmid pUC18. E. Petrovkis, unpublished data. M. Engels, et aL, Virus Res, 6:57-73 (1986); J. E. Mayfield, et aL, J Virol, 47:259-264 (1983); A. L. Meyer, et aL, Biochim Biophye Acta, 1090:267-9 (1991). As shown in Fig. 1, this Sail fragment contained the entire tk gene, as well as a portion of the 25 upstream gene homologous to the HSV-1UL24 gene, and a portion of the glycoprotein H gene. L. J. Bello, et aL, Virology, 189:407-414 (1992); J. G. Jacobson, et aL, J Virol, 63:1839-1843 (1989); M. Kit, et aL, US Patent 4,703,011, (1983); A. L. Meyer, et aL, Biochim Biophys Acta, 1090:267-9 (1991).
A 424bp deletion was introduced into the tk gene by digesting pHAS4 with 30 BglH and Xhol, filling in the ends with the Klenow Fragment of DNA polymerase I (Klenow) and religating the resulting blunt ended fragments. This manipulation restored the BglH recognition site, but not the Xhol site (Fig. 1). The resulting plasmid was named pHAS4ABX. This deletion was chosen because it does not impede on the previously identifed transcription initiation sites for the UL24 • 35 homolog which overlaps the 5' end of the tk gene. L. J. Bello, et aL, Virology,
WO 95/12682 PCT/US94/12198
189:407-414 (1992); J. G. Jacobson, et aL, J Virol, 63:1839-1843 (1989 ). Numerous other deletions within the BHV-1 tk gene would be possible. To facilitate later dnning manipulations, we eliminated the Hindm site in the pUC18 vector by digesting pHAS4ABX with Hindlll, filling in the cohesive ends with Klenow, and 5 religating the blunt ends.
We obtained a 1775bp cassette containing the Human cytomegalovirus (CMV) major immediate early promoter and the bovine growth hormone polyadenylation sequence. R. J. Brideau, et aL, J Qen Virol, 74:471-477 (1993 ). These gene expression signals are commonly used for high levels of expression of foreign genes 10 in a number of different systems, but other promoter/polyadenylation signal pairs could also be used in this context The cassette, in vector pSCL-DHFR, is bounded by unique EcoRI and BglH sites and contains, between the promoter and the polyadenylation signal, unique TTinflTTT and Sail restriction sites for cloning of foreign genes. The pSCLrDHFR vector was digested with EcoRI, then filled in and 15 ligated to a BamHI linker (New England Biolabs, Beverly, Massachusetts). This manipulation regenerated the EcoRI site. The construct was then digested with BamHI and BglH and the released cassette was ligated into the Bglll site of pHAS4ABX (Fig. 1). The li 'ons were transformed into E. coli strain DHSa. We isolated recombinant plasmids that contained the p3CL insert in both orientations 20 relative to the BHV-1 tk gene by mapping of asymmetric restriction sites. These two constructs, designated pHAS4ABXex-l and pHAS4ABXex-3 (Fig. 1), contained then, a strong promoter and polyadenylation signal bounded by the BHV-1 tic gene and flanking regions to allow homologous recombination into the BHV-1 genome.
Figure 1. Construction of shuttle vectors for inserting foreign genes into 25 BHV-1. FHAS4 is a 2.7kb subfragment from the BHV-1 HindllT-A fragment. The BglH/XhoI subfragment to be deleted is shown. The deletion derivative of pHAS4 is pHAS4ABX. The deleted thymidine kinase (tk) gene is shown as a dark stippled box. The cassette containing the promoter and polyadenylation signal is shown just below pHASiABX. The CMV immediate early promoter is shown as a light stippled 30 box, and the Bovine Growth Hormone (BGH) polyadenylation signal is shown as a striped box. Finally, the inserts of the two expression shuttle plasmids, pHAS4ABXexl and pHAS4ABXex3 are shown.
Addition of Signal Peptide Sequences to BVDV gp53 gene.
A cDNA containing the BVDV gp53 gene from strain 2724, a noncytopathic 35 strain, has been previously described. Kennedy, M et al, abstracts of the American
WO 95/12682 PCT/US94/12198
College of Veterinary Microbiologists, 1992 workshop. Since the BVDV RNA genome is normally translated as one long polyprotein and then post-translationally modified into the various viral proteins, the gp53 portion of the BVDV genome does not contain the usual signal peptide required for translocation of the protein to the cell 5 membrane, where the protein is normally expressed. Nonetheless, the cDNA was successfully expressed in both cell-free systems and baculovirus, and the protein appeared to be translocated, glycosylated and anchored in both systems, despite the lack of a conventional signal peptide. We decided, however, to evaluate expression of gp53 in BHV-1 both with and without various signal peptides.
In order to attach nucleotide sequences encoding signal peptides to the gp53
gene, we introduced a BamHI Bite into 5' end of the p53 gene by site directed mutagenesis, as follows: The p53 gene was blunt-end ligated into the filled-in BamHI site of plasmid pSP72 (Promega Corp., Madison, Wisconsin), thus removing all BamHI sites from the resulting plasmid. We introduced a single base change, a 15 C to a G, 11 bases in from the initiation codon used by the cDNA, using a synthetic oligonucleotide and the "Double Take" site directed mutagenesis kit (Stratagene, La Jolla CA) according to the manufacturer's instructions. This base change introduced a unique BamHI site into the gene without altering the gp53 amino acid sequence (Fig. 2 section B). The base change was verified by nucleotide sequencing, and the 20 resulting plasmid was called pP53mut We inserted, into pP53mut sequences, encoding signal peptides from the PRV gUI gene (A K Bobbins, et aL, J Virol, 58:339-347 (1986)) and from Bovine growth hormone. R. P. Woychik, et aL, Nucl Acids Res, 10:7197-7210 (1982). (Figure 2 section A) Complentary oligonucleotides encoding the two signal peptides were synthesized such that annealed oligos had 25 Sail cohesive ends 5* and BamHI cohesive ends 3' (Fig 2 section A). These signal peptide cassettes were ligated into pP53mut digested with BamHI and Sail, and. transformed into DH5o. We confirmed the correct insertion of the signal peptide cassettes by nucleotide sequencing.
Complementary oligonucleotides encoding any well characterized signal 30 peptide can be used in this invention. Thirty-nine examples of well characterized signal peptide sequences found in Perlman, D., et aL, J. Mol. Biol VoL 167 pp. 391-409 (1983). Incorporated by reference. These and any other well characterized signal peptides should be suitable for use as embodiments of this invention.
Figure 2. Strategy for appending signal peptide sequences to the BVDV 35 gp53 gene. Section A: Synthetic oligonucleotides corresponding to the signal
WO 95/12682 PCT/DS94/12198
peptide sequences of Bovine Growth Hormone (BGH), and Pseudorabies virus gill (PRV glH). Complementary oligonucleotides were synthesized such that the annealed pairs had Sallsites on th^ 5' ends and BamHI sites on the 3* ends. The deduced amino acid sequences of the signal peptides are also shown. In each case 5 the predicted cleavage sites for the signal peptides are just after the alanine (A), three amino acids from the ends. Codons for two amino add residues (FJ? in BGH; P,S in glH) firom the original native proteins were left on the signal peptide sequences to ensure correct clf&vage.
Section B: Site directed Mutagenesis of the cDNA encoding the BVDV gp53 10 gene. The first 60 nudeotides of the gp53 cDNA and the corresponding amino acid sequence are shown. A single base pair, shown by the arrow, was changed to create a BamHI restriction site in the sequence, shown in the box. This change does not change the amino add sequence. The cDNA was then digested with BamHI as shown, allowing in frame ligation to either of the signal peptide sequences shown in 15 section A.
Other expression gene fragments in addition to gp53.
Expression of other BVDV gene or gene combinations in a live virus vector are also embodiments of this invention. This would include any and all BVDV proteins to which a vaccinated animal could elicit an immune response. Examples 20 indude, but are not limited to, the other two BVDV surface glycoproteins, gp48 and gp25 (Collett, M.S., et al., Virology 165:200-208 (1988)), the pl4 capsid protein (Thiel, H.J., et aL, J. Virol. 65:4705-4712 (1991)), and the p20 N-terminal protease. Wiskerchen, M., et al., J. ViroL 65:4508-4514 (1991). This group of proteins, along with the gp53 gene, can be expressed together from a single cDNA molecule, the 25 expressed polyprotein will process itself correctly into the separate proteins.
Another BVDV protein candidate to express in a vaccine is the nonstructural pl25/p80 protein (Deregt, D., et &L, Can. J. Microbiol. 37:815-122 (1991)), which elidts a significant antibody response in infected cows.
Insertion of the BVDV gp53 gene into the BHV-1 expression vectors. 30 The p53 gene, either with or without added Bignal peptide sequences, was ligated into the HindTII insertion sites of pHAS4ABXex-l and pHAS4ABXex-3 by filling in all the respective cohesive ends of vectors and inserts followed by blunt end ligation. The ligations were transformed in E. coli strain DH5a. We wanted to eventually evaluate the expression of gp53 in BHV-1 in various orientations and •35 with at least two different signal peptides to ensure that we achieved the most
efficient expression. The transformed colonies were screened by colony hybridization using as a probe the p53 insert labelled with Digaxygenin-dUTP. The "Genius" DNA hybridization system (Boeringer Mannheim Biochemicals (BMB), Indianapolis, IN) was used for this and all other DNA hybridizations described in the characterization 5 of this invention. Positive recombinants were then screened by restriction analysis for those carrying the gp53 gene in the proper orientation relative to the CMV promoter and BgH polyadenylation signal. Five plasmids were isolated, which are schematically depicted in Figs. 3A-E. Their descriptions are as follows.
EXAMPLE 1. pBHVtkex-3::p5S: contains the BVDV gp53 gene inserted 10 between the CMV promoter and the BGH polyadenylation signal of pHAS4ABXex-3 with no added signal peptide. In this construct the original gp53 gene, PRIOR to site directed mutagenesis, was inserted. See Fig. 3A This plasmid was then used to construct the virus T2-3#.
EXAMPLE 2. pBHVtkex-l::BGH/p53: contains the mutagenized gp53 gene 15 preceded by the BGH signal peptide sequence inserted into pHAS4ABXex-
1. See Fig. SB. This plasmid was used to create the virus Tll-6. This virus was deposited.
EXAMPLE 3. pBHVtkex-l::gIH/p53: contains the mutagenized gp53 gene preceded by the PRV gin signal peptide sequence inserted into 20 pHAS4ABXex-l. See Fig. SC. This plasmid was used the create the virus
Tll-3. This plasmid was deposited.
EXAMPLE 4. pBHVtkex-3::BGH/p53: contains the mutagenized gp53 gene preceded by the BGH signal peptide sequence inserted into pHAS4ABXex-3. See Fig. SD.
EXAMPLE 5. pBHVtkex-3::glIFp53: contains the mutagenized gp53 gene preceded by the FRV glH signal peptide sequence inserted into pHAS4ABXex-3. See Fig. 3E. This plasmid was used to create the virus Tll-8. This plasmid was deposited.
Figures 3A-E. Complete maps of the five shuttle plamids for inserting gp53 30 into BHV-1. The gp53 gene is shown as a solid band, th* BHV-1 sequences are shown as dark stippled bands, the CMV promoter region is shown as a light stippled band, and the BGH polyadenylation signal region is shown as a striped band. The plasmid vector, pUC18, is shown as a thin line. In each case the direction of transcription of gp53 relative to the original direction of transcription of BHV-1 tk is 35 shown. The various signal peptide sequences are indicated.
WO 95/12682 PCT/US94/12198
a. EXAMPLE 1. pBHVtkex-3::p53.
b. EXAMPLE 2. pBHVtkex-l::BGH/p53
c. EXAMPLE 3. pBHVtkex-l::gIII/p53
d. EXAMPLE 4. pBHVtkex-3::BGH/p53 5 e. EXAMPLE 5. pBHVtkex-3::gIII/p53
These, and all other possible insertions of the BVDV gp53 gene into the BHV-1 tk gene are embodiments of this invention. These plasmids and any plasmids created in this manner are known as "Principal Plasmid Vectors" and are the plasmid vectors used to create the virus vaccines of this invention. 10 Introduction of the gpffS gene into BHV-1 Iowa".
The five expression shuttle plasmids carrying gp53 were linearized by Xbal and cotransfected into Bovine Turbinate (BT) cells with unit length DNA from BHV-1 strain Iowa (tk positive) by the standard CaP04 method (R. L. Graham, et al., Virology, 52:456-467 (1973 )) as modified by Cai (W. Cai, et aL, J Virol, 61:714-721 15 (1987 )). The cells were obtained from ATCC. The transfections were then subjected to two rounds of selection either on 143tk" cells (S. K. Mittal, et aL, J Gen Virol, 70:(1989)), or on Rab (BU) cells (S. Kit, et aL, Virology, 130:381-389 (1983 )) in the presence of lOOug/ml 5-Bromo-2'-Deoxyuridine (BDUR, Sigma Chemical Company, St Louis, Missouri) to isolate virus no longer expressing tk. This is a standard 20 procedure described previously. M. Kit, et aL, US Patent 4,703,011, (1983). Other tk' cell lines permissive for growth of BHV-1 can also be used. After the two rounds of BDUR passage, transfections that still showed cytopathic effect were infected onto BT cells under complete media with 1% low melting agarose to obtain single plaques. Multiple single plaques were picked from each transfection and the viral 25 DNAs were screened for the p53 gene by dot-blot DNA hybridization. Although not all transfections survived the BDUR passages (particularly those on the 143 tk'
cells, as these cells are only marginally permissive for BHV-1 viral growth), those that did survive yielded 100% recombinant virus. Four different recombinant viruses were isolated and further characterized:
SO EXAMPLE 1. T2-3#3 and T2-2#5 (two identical, but independently isolated viral clones): BHV-1 "Iowa" into which the insert sequences contained in pBHVtkex-8::p53 recombined Contains the BVDV gp53 gene with no added signal peptide sequence situated between the CMV promoter and the BGH polyadenlyation signal, with transcriptional orientation in the 35 same direction as the BHV-ltk gene.
WO 95/12682 PCT/US94/12198
EXAMPLE 2. Ti.1-6 (This virus was submitted to ATCC tinder the designation UC VR-58): BHV-1 "Iowa" into which the insert sequences contained in pBHVtkex-l::BGH/p53 recombined. Contains the BVDV gp53 gene with the BGH signal peptide sequence situated between the 5 CMV promoter and the BGH polyadenlyation signal, with transcriptional orientation in the opposite direction relative to the BHV-1 tk gene.
EXAMPLE 3. Tll-3: BHV-1 "Iowa" into which the insert sequences contained in pBHVtkex-l::gm/p53 recombined. Contains the BVDV gp53 gene with the PRV gin signal peptide sequence Bituated between the 10 CMV promoter and the BGH polyadenlyation signal, with transcriptional orientation in the opposite direction relative to the BHV-1 tk gene.
EXAMPLE 5. Tll-8: BHV-1 "Iowa" into which the insert sequences contained in pBHVtkex-3::gin/p53 recombined. Contains the BVDV gp53 gene with the PRV gin signal peptide sequence situated between the 15 CMV promoter and the BGH polyadenlyation signal, with transcriptional orientation in the same direction as the BHV-1 tk gene.
A virus was not isolated firom cotransfections with "Iowa" DNA and plasmid pBHVtkex3:-3GH/p53, EXAMPLE 4, but this prophetic virus, could be easily created, it and any other BHV-1 viruses containing the BVDVgp53 gene inserted 20 into thymidine kinase gene are embodiments of this invention. We purified DNA from each of these viruses and checked for the proper insertions in the proper orientations by Southern Hybridization using both the gp58 gene and the CMV promoter/BgH polyadenylation cassette as probes (data not shown). All four of the viruses cairied the complete promoter/gene/polyadenylation cassettes in the BHV-1 25 tk gene, deleted as predicted, based on restriction fragment sizes. As a control, with these transfections, we also transfected the pHAS4ABX plasmid with BHV-1 "Iowa" unit length DNA and isolated a tk-negative progeny carrying the 424bp deletion in tk (also verified by Southern Hybridization). This virus is named IowaABX. All of these viruses were plaque purified twice by limiting dilution on BT cells. 30 A large number of existing cell lines are persistently infected with non-
cytopathic BVDV from passage in media containing fetal bovine serum taken from infected calves. For this invention, it is imperative that viruses used ao live, attenuated vaccines are free of contaminating BVDV. In order to ensure that the BHV-1 viruses carrying the BVDV sequences were not contaminated with non-35 cytopathic BVD virus, we prepared DNA from each of the viruses (including the
WO 95/12682 PCT/US94/12198
parent strain Iowa and lowaABX) and subjected the DNA preps to extensive RNAse treatment using a cloned RNAse (RNAse ONE, Fromega Corporation, Madison, Wisconsin). Since BVDV has only RNA as its genetic material, this manipulation should eliminate any possible contaminating BVDV sequences firom the viral DNA 5 preps. We then transfected these RNAsed viral DNAs into certified BVD-free MDBK ftftlln (ATCC) and picked virus plaques from the transfections to use in further manipulations.
Transcriptional analysis of the gp58 recombinants*
We prepared RNA firom each of the recombinant viruses and the parent BHV-10 1 strain Iowa and evaluated transcription of gp53 by Northern hybridization. A diagram of the possible message species and the probes used is shown in Fig. 4.
Figure 4. Predicted transcripts of the BHV-l/gp53 recombinant viruses later shown in Figure. 6. The two probes are 1) the gp53 cDNA and 2) the Sall/BglTI portion of pHAS4 (Bhown above the maps). The first map shows the predicted 15 transcripts from viruses Tll-3 and Tll-6, and the second map Bhows the predicted transcripts from Tll-8. The sites of transcript initiation for tk and UL24 are shown for reference.
All of the gp53 recombinant viruses made a 1.6kb message that hybridized with a 32P-labelled gp53 probe, the size predicted for transcription initiation at the 20 CMV promoter and termination at the BgH polyadenylation site, fig. 6, probe 1. The T2-3#3 and T2-2#f< virus are not shown. As additional major bands, Tll-S and Tll-6 made an 8.5kb transcript and Tll-8 and T2-3#S made a 5.6kb transcript. These transcripts were unique to the recombinant viruses, and were consistent with messages initiating at the CMV promoter, reading through the BgH poly adenylation 25 signal and terminating at the UL24 or tk/gH polyadenylation signals, respectively.
Hybridization with the upstream and downstream probes confirmed the identity of these longer messages. The p53 probe did not hybridize to Iowa, IaABX or mock infected RNAs. As a quantitation control we used probe pHAS6, an 867bp sail fragment that maps downstream of the tk open reading frame and is internal to SO the gH gene. A. L. Meyer, et aL, Biochim Biophys Acta, 1090:267-9 (1991). All of the viruses made equivalent amounts of the S.lkb gH message (data not shown). This probe also hybridized to the longer p53 messages in Tll-8 and T2-3-3, and to the 4.3kb tk message in Iowa, which is 3' coterminal with the gH transcript. L. J. Bello, et aL, Virology, 189:407-414 (1992).
To examine the transcription patterns upstream of the gp53 insertions, we
used a probe that consisted of the pHAS4 fragment from the upstream Sail site to the Bglll site in the tk gene, the beginning of the deletion in the recombinant viruses (probe 2). All of the viruses made a message of approximately 4.4kb which we deduced to be UL24 (Fig. 5, probe 2). This message, however, was smaller than 5 the 5.2kb UL24 message in BHV-1 strain Cooper described by Bello, et al (L. J. Bello, et al., Virology, 189:407-414 (1992 )) and comigrated with the tk message in the wild-type strain Iowa. Although we did not evaluate these comigrating messages further by single stranded probes, we detected a tk transcript of 4.2 kb only in the Iowa DNA with probe pHAS6 and we detected similarly sized 10 transcripts in all the viral RNAs with the upstream probe, even though these other viruses cannot be making a wild-type sized tk transcript In Tll-8 and Tll-6, the upstream probe did not detect any truncated forms of tk message and hybridzed to only the UL24 message and the the 8.5kb p53 message. In Tll-8, on the other hand, the probe hybridized to four additional (minor) bands of approximately 5.0, 15 3.7,1.8, and l.Okb.
Figure 5. Northern blots showing transcription of gp53 messenger RNAs in the BHV-1 recombinant viruses. The first panel shows transcripts hybridizing to probe 1, the pg5S cDNA, and the second panel shows transcripts hybridizing to probe 2, the Sall/Bgll subfragment of pHAS4. KEY: M«Mock infected cells, I»BHV-20 1 "Iowa" infected cells, 3,6,8*Tll-3, Tll-6 and Tll-8 infected cells. RNA size standards, in kilobases (kB) are given to the left of each panel Expression of BVDV gp53 protein In BHV-1.
We evaluated expression of gp53 protein in the BHV-1 recombinants by immunoprecipitation (IP). Detailed procedures for IPs can be found in standard 25 references such as "Current Protocols in Molecular Biology", Ausubel, F. M., et aL, eds., Wiley Interscience, New York. BT cells infected with the BHV-1 recombinants were metabolically labelled with ^S-methionine (Amersham, Arlington Heights, Illinois). The viral infected cells were lysed and soluble proteins were reacted with hyperimmune serum from bovine or goat against BVDV. VMRD, Pullman, 30 Washington. Antigen/antibody complexes were precipitated staph A
(Immunopredpitin, Gibco/BRL, Gaithersburg, Maryland,) or protein A sepharose 4B (Pharmacia, Uppsala, Sweden). Immunoreactive proteins were resolved by SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) and fluorography.
Figure 6 shows that all three of the recombinant viruses carrying the gp53 35 gene preceded by a signal peptide sequence made significant amounts of the protein.
WO 95/12682 PCT/US94/12198
We did not detect any expression of gp53 from T2-3#3, or T2-2#5 the viruses carrying the gp53 gene, but lacking a signal peptide, even though this virus synthesized considerable amounts of gp53 messenger RNA. The: clones t2-3#3 and T2-2#5 are independently isolated clones, which rules out the possibility that one 5 particular virus had a defect that precluded gp53 expression (data not shown). The possiblity remains that gp53 is being synthesized from T2-3, but is rapidly degraded, or that our antibody does not detect unprocessed forms of the protein.
Figure 6. Immunopredpitated proteins showing expression of gp53 in the BHV-1 recombinants. Labelled proteins were precipitated with polyclonal bovine-10 anti-BVDV serum, this serum also had minor reactivity with BHV-1 antigens. KEY: 3,6,8=Tll-3, Tll-6, and Tll-8 infected cell proteins, IA=BHV-1 "Iowa" infected cell proteins, M«Mock infected cell proteins. MW«approximate protein molecular weight standards, in Kilodaltons.
The gp53 protein bands in Tll-3, Tll-6 and Tll-8 were broad, suggesting 15 that the proteins were processed, and they appeared to be equivalent but not identical in size to the gp53 protein in NADL (data not shown). Removal of the N-linked sugars from the BVDV-NADL and BHV-1 expressed gp53 proteins by digestion with N-glycansase (Genzyme, Cambridge, Massachusetts) did not resolve the size difference in the proteins, but the proportional reduction in size of the 20 proteins suggested that the native and recombinant forms of gp53 were processed similarly. The slight size difference between the recombinant and native proteins could be due to the fact that the gp53 gene in the BHV-1 viruses came from a different BVD strain which could have a gp53 of a slightly different size, or the dDNA gp53 clone might not contain the exact amino acids processed from the BVDV 25 polyprotein into native gp53.
The present invention is not to be limited in scope by the cell lines deposited or the embodiments disclosed herein which are intended as single illustrations of one aspect of the invention and any which are functionally equivalent are within the scope of the invention. Indeed, various modifications of the invention, in addition to 30 those shown and described herein, will become apparent to those skilled in the art from the foregoing description. Such modifications are intended to fall within the scope of the appended claims.
It is also to be understood that all base pair and amino acid residue numbers and sizes given for nucleotides and peptides are approximate and used for the 35 purposes of description.
WO 95/12682 PCT/US94/12198
All documents cited herein are incorporated by reference.
Deposit of Genetic
One skilled in the art should be able to reconstruct all the various embodiments of this invention by utilizing only the written description. However, 5 for the sake of completeness, to ensure enablement, and to provide every opportunity for others to malcA and use this invention, certain genetic constructs of this invention have been deposited at recognized depositories in accordance with the Budapest Treaty.
A virus was deposited with the American Type Culture Collection, 12301 10 Parklawn Drive, Rockville, Maryland, zip code 20852, USA. That deposit was designated UC VR-58 by the Upjohn Company and given the following number by the depository, ATCC No. VR2436, it corresponds to the virus described herein as "Tll-6," also known as "Example 2." This deposit was received by the American Type Culture Collection depository on 28 October 1993.
Several plasmids were deposited with the Agricultural Research Service
Culture Collection (NRRL), of the U.S. Department of Agriculture, at 1815 North University Street, Peoria, Blinds, zip code 61604, USA One plasmid was given the Upjohn designation, pUC 1564, E. coli culture UC 15085, referring to pBHVtkex-l::gin\p53, it corresponds to the plasmid used to create the virus described herein 20 as *111-3," also known as "Example 3." This plasmid was given the following number by the depository, NRRL B-21350. Another deposit was given the Upjohn designation, pUC 1565, E. coli culture UC 15086, referring to pBHVtkex-8::gIII\p53, it corresponds to the plasmid used to create the virus described herein as, "T-ll-8," also known as "Example 5." This plasmid was given the following number by the 25 depository, NRRL B-21351. Both of the plasmids were received by the Agricultural Research Service Culture Collection depository on 26 October 1994.
45
55
65
SEQUENCE LISTING
(1) GENERAL INFORMATION:
(i) APPLICANT: The Upjohn Company
INVENTORS (For U.S. purposes only): Wardley, Richard C. and Haane8, Elizabeth J.
(ii) TITLE OF INVENTION: A Replicating Nonpathogenic Virus Expressing
Envelope Glycoproteins from Bovine Viral Diarrhea Virus (BVDV)
(iii) NUMBER OF SEQUENCES: 2
(iv) CORRESPONDENCE ADDRESS:
(A) ADDRESSEE: Thomas A Woottoo (1920-32-1), The Upjohn
Company
(B) STREET: 7000 Portage Road
(C) CITY: Kalamazoo 20 (D) STATE: Michigan
(E) COUNTRY: U.S.A
(F) ZIP: 49001-0199
(V) COMPUTER READABLE FORM:
(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: Patently Release *1.0, Version *1.25
(vi) CURRENT APPLICATION DATA:
(A) APPLICATION NUMBER:
(B) FILING DATE:
(C) CLASSIFICATION:
(Viii) ATTORNEY/AGENT INFORMATION:
(A) NAME: Wootton, Thomas A.
(B) REGISTRATION NUMBER: 35,004
(C) REFERENCE/DOCKET NUMBER: 4748
40 (ix) TELECOMMUNICATION INFORMATION:
(A) TELEPHONE: 616 385-7914
(B) TELEFAX: 616 385-6897
(C) TELEX: 224 401 UPJOHN
(2) INFORMATION FOR SEQ ID NO:l:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8083 base pairs 50 (B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO
60 (vi) ORIGINAL SOURCE:
(A) ORGANISM: Bovine viral diarrhea virus
(B) STRAIN: 2724
(C) INDIVIDUAL ISOLATE: pBHVtkex-3::p53
(Xi) SEQUENCE DESCRIPTION: SEQ ID NO:l:
40
50
60
65
GCGCCCAATA
CGCAAACCGC
CTCTCCCCGC
GCGTTGGCCG
ATTCATTAAT
GCAGCTGGCA
uO
CGACAGGTTT
CCCGACTGGA
AAGCGGGCAG
TGAGCGCAAC
GCAATTAATG
TGAGTTAGCT
120
CACTCATTAG
GCACCCCAGG
CTTTACACTT
TATGCTTCCG
GCTCGTATGT
TGTGTGGAAT
180
TGTGAGCGGA
TAACAATTTC
ACACAGGAAA
CAGCTATGAC
CATGATTACG
CCAAGCTAGC
240
TTGCATGCCT
GCAGGTCGAC
TTCCGCGCCC
GCGGCGTCTG
CCTTCGCCAG
CAGGTTGTCC
300
GCGGCCGCTG
CCGGCCTGGT
TCCGCGCCCG
CCGCCTCGCG
GCCAGCTCCC
GCGCGGGCGC
360
GTCCGCGTCC
CCAACTCCGC
GCGAAGACGG
GCTCGTCCCA
GAAGCGCAGC
GGAAAGGCCG
420
GCGTATAAAA
TTTCGCTCGT
CCGGTACAAA GACGCGGTCC
GCGACTGCGT
GGATGTCCAC
480
GCCCAGGCAA
GCAAACTCTA
AACGCCCGAG
CGCCATGGCC
CCGATGCCGC
CACAAAGAGC
540
GCCGAAATTT
CGCCCAGGCA
CGCCGCGCCG
CCCGACGCGT
CTTTAGCGCA
CCCGCCGGCG
600
CTGTTGCCCG
CGTGCCTGCT
GGCCGCCCAC
CGGCGGCCGC
TGTCCCCGGC
CTCAGCAGGG
660
CCGGGGTCGC
CGGCGGGCGG
CCGCGGGGTG
CGGCCACAGC
CGCCCTTTTG
CCCGTAGCCA
720
GGGGAAGCGG
CTGCCCCTTC
TGCCGCCGCG
GCCGCGGTTG
CTCGGCTTXG
CGTTTGCCCC
780
GCGGCGATCG
CCCCGCTCGC
CGCGAACGCG
CGCGCGCGAA
TGGGGCGTAC
TCGGCGAGCC
840
CGGCTATTAT
AGCCTCAAGG
CGCGCCGCGT
TGCTAGCGAT
CGTCTGGGCC
GGCAGGCGCG
900
TCACTCTGAG
CACGCGCATG
CCCCGCTGGG AGACGAACAC
CTGCACCGGC
GCTAGGACCA
960
CCGGGTCTGG
GCCCGGGGGG
GCGAGATCGC
GCACAAGCCG
GGCCGAGTCG
CGCAGCTGCC
1020
GCAGCCCCCC
GAGGCGCTGG
TCCATCTTGC
TGGGCGTGTT
CATGTTCGTT
GAAAAACGGC
1080
ACGTCTTCAG
CTCCACGATA
AGACAGACGG
CCCGGGCGTG
CCCTGCCTCC
GCGACCCGGA
1140
GTAGGCACAC
GCAATCGGGC
CGCCGGCTTT
GCAGGTTTAC
CTCAAAGCTC
AGAGACACGC
1200
CCACGACCTG
CTTAAAAACC
TCCGGGGCGC
CAAACTTGCC
CAAAAGCTGG
GCGAGGCGCG
1260
GGCGCAGCTT
CTGCGCGCCA
ACCGCCGCGC
GTGCGTCGCA
AGCCAGCGCC
TCGTAAAAGC
1320
GGCTGTGGCA
CCGGATCCCG
GCGCGCAGGC
GCGCACGTCG
GTCGCGGTCG
CGCGCCATGG
1380
CCGAGCCCGC
GCGCGCTCTC
CGCGTCGTGC GTATCTACCT
GGACGGCGCG
CACGGGCAGG
1440
GAAAGACAAC
AACGGGCCGC
GCGCTCGCGG CCGCTTCCAC
CGCTGGGGAG
GGCGTGCTCT
1500
TTTTCCCGGA
GCCGATGGCG
TACTGGCGCA CGATGTTTGG
TACGGACGCC
TTAAGTGGGA
1560
TCCTCGCGGC
GTCTGCGCGA
TGCGCCGCAG
CCTCGCACGG
GAGCGCACGC
GCGCGGCGGG
1620
CCGGCGCACC
GCGCAGACGC
GGACGCGGCG
GGCCTGGTTG
CGTACTACCA
GGCCAGGTTC
1680
GCGGCCCCGT
ACTTAATTTT
GCACGCGCGT
GTCCGCGCTG
CTGCGCCGCC
TGGGCCGGCG
1740
CCGGGCGGCG
AGCTGGTGGA
CCCTCGTGTT
CGACCGCCAC
CCCGTGGCGC
GCGTGCCTCT
1800
GCTACCCCTT
CGCCCGCTAC
TGCCTCCGCG AGATCAACGC
GGAAGATCCG
AATTCCTCGA
1860
CCTGCAGTGA
ATAATAAAAT
GTGTGTTTGT
CCGAAATACG
CGTTTGAGAT
TTCTGTCCCG
1920
ACTAAATTCA
TGTCGCGCGA
TAGTGGTGTT
TATCGCCGAT
AGAGATGGCG
ATATTGGAAA
1980
AATCGATATT
TGAAAATATG
GCATATTGAA
AATGTCGCCG
ATGTGAGTTT
CTGTGTAACT
2040
gatatcgcca tttttccaaa atatcgttta cgggggatgg 5 caaatatcgc agtttcgata gacatcaagc tggcacatgg ttagccatat tattcattgg
acgttgtatc catatcataa tgttgacatt gattattgac 15 agcccatata tggagttccg cccaacgacc cccgcccatt gggactttcc attgacgtca
catcaagtgt atcatatgcc gcctggcatt atgcccagta 25 gtattagtca tcgctattac tagcggtttg actcacgggg ttttggcacc aaaatcaacg
caaatgggcg gtaggcgtgt cgtcagatcg cctggagacg 35 cgatccagcc tccgcggcaa gctactactg ataacagggg catagccagg aatgatagaa
40
ggattactca catgaaatga taagtttaca tacctctcaa 45 aagagccttg cagaccagtg aacatttgaa atggctgacg agtaagaggg aagttcaata
50
tataggatgg acaggaactg agtagtgcgt gtgtataaga 55 aagaactctg ggggaggatc tggggaccag ctacaataca attccaaaaa agtgaggggt
60
gactggctac agatttgtag acaaggattg gtaaagtgta 65 caaacttggg cctatgcctt . aaagacggca- tgcaccttca agttgatttt tgggcatacg cg/ltagacgc ctttggtgac taggtgacag acgatatgag ccaatgcata tcgatctata ttatatagca taaatcaata tatgtacatt tatattggct tagttattaa tagtaatcaa cgttacataa cttacggtaa gacgtcaata atgacgtatg atgggtggag tatttacggt aagtacgccc cctattgacg catgacctta tgggactttc catggtgatg cggttttggc atttccaagt ctccacccca ggactttcca aaatgtcgta acggtgggag gtctatataa ccatccacgc tgttttgacc gctgatccgt caggggccag tacaagggga cattgactgc ttggcccatt aggagctgaa agctggaaga cacaatggtc gotgcacaag agaaactaga tggtattcaa aaaacttttc actttgaatt tggactctgc caacactgct aaacggaccg tgagctgtat gttagctaat ggtccaaacc attcccttat tctataactg tgatcttgga caggaggccc tgtcgaatct tgccacacta ccccatcggc acggcaccac ttgcaacaga agataggaga cacaatcgta gcaagccata tgagatcata actacacgag gacattaaaa cgatatctgg cgatacgctt
2100
ttgggcgatt ctgtgtgtcg
2160
gctatatcgc cgatagaggc
2220
cattgaatca atattggcca
2280
ttggctattg gccattgcat
2340
catgtccaac attaccgcca
2400
ttacggggtc attagttcat
2460
atggcccgcc tggctgaccg
2520
ttcccatagt aacgccaata
2580
aaactgccca cttggcagta
2640
tcaatgacgg taaatggccc
2700
ctacttggca gtacatctac
2760
agtacatcaa tgggcgtgga
2820
ttgacgtcaa tgggagtttg
2880
acaactccgc cccattgacg
2940
gcagagctcg tttagtgaac
3000
tccatagaag acaccgggac
3060
atggtacagg gcatcctatg
3120
aaacctgaac actcatacgc
3180
ggcctcacca ctgtttggaa
3240
atagcttggt gcaaagacgg
3300
tatcttgcaa ttctgcattc
3360
gaggggcaaa ggcaagggga
3420
ccatgcgatg ccaatcccgt
3480
gccttccaga tggtatgccc
3540
agggacaccc tagacacagc
3600
agacaaggtt gtatcaccca
3660
gggaattgga cttgtgtgac
3720
tgcaagtggt gtggttataa
3780
aagtgtaggt tgaagaatga
3840
gagggtgtag ccatagtacc
3900
caggtcatag ctcttgacac
3960
ccaagtgagg ggcctgtaga
4020
aataaatatt ttgagcccag
4080
WO 9S/12682
40
45
50
55
60
65
agacagttac ttccagcaat acatgctaaa aggagattat caatactggt tcgacctgga
41«u ggtcactgac catcatcggg attacttcgc cgagtccata ttggtggtgg tggtagcttt
4200
actgggtgga agatacgtgc tctggttact ggtaacatac atggtcctat cagaacaaaa
4260
ggccttgggg acccaatatg gggcagggga agtggtgatg atgggtaact tgctaacaca
4320
tgacagtatt gaagtggtga catatttctt gttgttatac ctactgctaa gagaggaggc
4380
tgtaaagaag tgggtcttac tcttatacca ccttgattga ttgaggatca gcttatccag
4440
ggtcgacctc aggcatgcaa gctcagatcc gctgtgcctt ctagttgcca gccatctgtt
4500
gtttgcccct cccccgtgcc ttccttgacc ctggaaggtg ccactcccac tgtcctttcc
4560
taataaaatg aggaaattgc atcgcattgt ctgagtaggt gtcattctat tctggggggt
4620
ggggtggggc aggacagcaa gggggaggat tgggaagaca atagcaggca tgctggggat
4680
gcggtgggct ctatgggtac ccaggtgctg aagaattgac ccggttcctc ctgggccaga
4740
aagaagcagg cacatcccct tctctgtgac acaccctgtc cacgcccctg gttcttagtt
4800
ccagccccac tcataggaca ctcatagctc aggagggctc cgcttcaatc ccacccgcta
4860
aagtacttgg agcggtctct ccctccctca tcagcccacc aaaccaaacc tagcctccaa
4920
gagtgggaag aaattaaagc aagataggct attaagtgca gagggagaga aaatgcctcc
4980
aacatgtgag gaagtaatga tagaaatcat agaattgaga tctcgaggtg ttcgtgctgg
5040
acgtgtccgc ggcgccagac gcgtgcgcgg ccgccgtact ggacatgcgg cccgccatgc
5100
aggccgcttg cgcggacggg gcggcgggcg cgacgctggc gaccctggcg cgtcagttcg
5160
cgctagagat ggcgggggag gccacggcgg gccctagggg actataaagc tgcccctgcg
5220
ctcgctcgct cgctgcattt gcgccccgat cgccttacgg ggactcggcg ctcggcggat
5280
cccctcccgg ccccgccgcg aagcaggccg ccagacaaaa aaatgcggcg cccgctctgc
5340
gcggcgctat tggcagcggc tgtcctcgcg ctcgccgcgg gcgcccccgc cgccgcccgc
5400
ggcgggggcg ccgaagccag ggcagcacag agacgcccga tacgaaatcg aagagtggga
5460
aatggtggtc ggagccgggc cggccgtgca cacgttcacc atccgctgcc tcgggccgcg
5520
gggcattgag cgcgtggccc acattgcaaa cctcagccgg ctgctggacg ggtacatagc
5580
ggtccacgtt gacgttgcgc gcacctctgg cctgcgggac gccatgtttt tcctgccgcg
5640
cgcggccgtc gactctagag gatccccggg taccgagctc gaattcactg gccgtcgttt
5700
tacaacgtcg tgactgggaa aaccctggcg ttacccaact taatcgcctt gcagcacatc
5760
cccctttcgc cagctggcgt aatagcgaag aggcccgcac cgatcgccct tcccaacagt
5820
tgcgcagcct gaatggcgaa tggcgcctga tgcggtattt tctccttacg catctgtgcg
5880
gtatttcaca ccgcatatgg tgcactctca gtacaatctg ctctgatgcc gcatagttaa
5940
gccagccccg acacccgcca acacccgctg acgcgccctg acgggcttgt ctgctcccgg
6000
catccgctta cagacaagct gtgaccgtct ccgggagctg catgtgtcag aggttttcac
6060
cgtcatcacc-
gaaacgcgcg agacgaaagg gcctcgtgat acgcctattt ttataggtta
6120
40
45
50
55
60
65
atgtcatgat aataatggtt tcttagacgt caggtggcac ttttcgggga aatgtgcgcg
6180
gaacccctat ttgtttattt ttctaaatac attcaaatat gtatccgctc atgagacaat
6240
aaccctgata aatgcttcaa taatattgaa aaaggaagag tatgagtatt caacatttcc
6300
gtgtcgccct tattcccttt tttgcggcat tttgccttcc tgtttttgct cacccagaaa
6360
cgctggtgaa agtaaaagat gotgaagatc agttgggtgc acgagtgggt tacatcgaac
6420
tggatctcaa cagcggtaag atccttgaga gttttcgccc cgaagaacgt tttccaatga
6480
tgagcacttt taaagttctg ctatgtggcg cggtattatc ccgtattgac gccgggcaag
6540
agcaactcgg tcgccgcata cactattctc agaatgactt ggttgagtac tcaccagtca
6600
cagaaaagca tcttacggat ggcatgacag taagagaatt atgcagtgct gccataacca
6660
tgagtgataa cactgcggcc aacttacttc tgacaacgat cggaggaccg aaggagctaa
6720
ccgctttttt gcacaacatg ggggatcatg taactcgcct tgatcgttgg gaaccggagc
6780
tgaatgaagc cataccaaac gacgagcgtg acaccacgat gcctgtagca atggcaacaa
6840
cgttgcgcaa actattaact ggcgaactac ttactctagc ttcccggcaa caattaatag
6900
actggatgga ggcggataaa gttgcaggac cacttctgcg ctcggccctt ccggctggct
6960
ggtttattgc tgataaatct ggagccggtg agcgtgggtc tcgcggtatc attgcagcac
7020
tggggccaga tggtaagccc tcccgtatcg tagttatcta cacgacgggg agtcaggcaa
7080
ctatggatga acgaaataga cagatcgctg agataggtgc ctcactgatt aagcattggt
7140
aactgtcaga ccaagtttac tcatatatac tttagattga tttaaaactt catttttaat
7200
ttaaaaggat ctaggtgaag atcctttttg ataatctcat gaccaaaatc ccttaacgtg
7260
agttttcgtt ccactgagcg tcagaccccg tagaaaagat caaaggatct tcttgagatc
7320
ctttttttct gcgcgtaatc tgctgcttgc aaacaaaaaa accaccgcta ccagcggtgg
7380
tttgtttgcc ggatcaagag ctaccaactc tttttccgaa ggtaactggc ttcagcagag
7440
cgcagatacc aaatactgtc cttctagtgt agccgtagtt aggccaccac ttcaagaact
7500
ctgtagcacc gcctacatac ctcgctctgc taatcctgtt accagtggct gctgccagtg
7560
gcgataagtc gtgtcttacc gggttggact caagacgata gttaccggat aaggcgcagc
7620
ggtcgggctg aacggggggt tcgtgcacac agcccagctt ggagcgaacg acctacaccg
76b0
aactgagata cctacagcgt gagctatgag aaagcgccac gcttcccgaa gggagaaagg
7740
cggacaggta tccggtaagc ggcagggtcg gaacaggaga gcgcacgagg gagcttccag
7800
ggggaaacgc ctggtatctt tatagtcctg tcgggtttcg ccacctctga cttgagcgtc
7860
gatttttgtg atgctcgtca ggggggcgga gcctatggaa aaacgccagc aacgcggcct
7920
ttttacggtt cctggccttt tgctggcctt ttgctcacat gttctttcct gcgttatccc
7980
ctgattctgt ggataaccgt attaccgcct ttgagtgagc tgataccgct cgccgcagcc
8040
gaacgaccga gcgcagcgag tcagtgagcg aggaagcgga aga
8083
(2) INFORMATION FOR SEQ ID NO:2:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8149 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS. double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO
(Vi) ORIGINAL SOURCE:
(A) ORGANISM: Bovine viral diarrhea virus
(B) STRAIN: 2724
(C) INDIVIDUAL ISOLATE: pBHVtkex-1::gBGH/p53
(Xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:
GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG ATTCATTAAT GCAGCTGGCA 60
CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCGCAAC GCAATTAATG TGAGTTAGCT 120
CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT 180
TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG CCAAGCTAGC 240
TTGCATGCCT GCAGGTCGAC TTCCGCGCCC GCGGCGTCTG CCTTCGCCAG CAGGTTGTCC 300
GCGGCCGCTG CCGGCCTGGT TCCGCGCCCG CCGCCTCGCG GCCAGCTCCC GCGCGGGCGC 360
GTCCGCGTCC CCAACTCCGC GCGAAGACGG GCTCGTCCCA GAAGCGCAGC GGAAAGGCCG 420
GCGTATAAAA TTTCGCTCGT CCGGTACAAA GACGCGGTCC GCGACTGCGT GGATGTCCAC 480
GCCCAGGCAA GCAAACTCTA AACGCCCGAG CGCCATGGCC CCGATGCCGC CACAAAGAGC 540
40
GCCGAAATTT CGCCCAGGCA CGCCGCGCCG CCCGACGCGT CTTTAGCGCA CCCGCCGGCG 600
CTGTTGCCCG CGTGCCTGCT GGCCGCCCAC CGGCGGCCGC TGTCCCCGGC CTCAGCAGGG 660
45 CCGGGGTCGC CGGCGGGCGG CCGCGGGGTG CGGCCACAGC CGCCCTTTTG CCCGTAGCCA 720
GGGGAAGCGG CTGCCCCTTC TGCCGCCGCG GCCGCGGTTG CTCGGCTTTG CGTTTGCCCC 780
GCGGCGATCG CCCCGCTCGC CGCGAACGCG CGCGCGCGAA TGGGGCGTAC TCGGCGAGCC 840
50
CGGCTATTAT AGCCTCAAGG CGCGCCGCGT TGCTAGCGAT CGTCTGGGCC GGCAGGCGCG 900
TCACTCTGAG CACGCGCATG CCCCGCTGGG AGACGAACAC CTGCACCGGC GCTAGGACCA 960
55 CCGGGTCTGG GCCCGGGGGG GCGAGATCGC GCACAAGCCG GGCCGAGTCG CGCAGCTGCC 1020
GCAGCCCCCC GAGGCGCTGG TCCATCTTGC TGGGCGTGTT CATGTTCGTT GAAAAACGGC 1080
ACGTCTTCAG CTCCACGATA AGACAGACGG CCCGGGCGTG CCCTGCCTCC GCGACCCGGA 1140
60
GTAGGCACAC GCAATCGGGC CGCCGGCTTT GCAGGTTTAC CTCAAAGCTC AGAGACACGC 1200
CCACGACCTG CTTAAAAACC TCCGGGGCGC CAAACTTGCC CAAAAGCTGG GCGAGGCGCG 1260
65 GGCGCAGCTT CTGCGCGCCA ACCGCCGCGC GTGCGTCGCA AGCCAGCGCC TCGTAAAAGC 1320
GGCTGTGGCA CCGGATCCCG GCGCGCAGGC GCGCACGTCG GTCGCGGTCG CGCGCCATGG 1380
40
45
50
55
60
65
ccgagcccgc gcgcgctctc cgcgtcgtgc
GTATCTACCT
ggacggcgcg cacgggcasg
1440
GAAAGACAAC
aacgggccgc gcgctcgcgg
CCGCTTCCAC
cgctggggag
GGCGTGCTCT
1500
TTTTCCCGGA
gccgatggcg tactggcgca
CGATGTTTGG
tacggacgcc ttaagtggga
1560
tcctcgcggc gtctgcgcga tgcgccgcag cctcgcacgg gagcgcacgc gcgcggcggg
1620
ccggcgcacc gcgcagacgc ggacgcggcg
GGCCTGGTTG
cgtactacca ggccaggttc
1680
GCGGCCCCGT
acttaatttt gcacgcgcgt
GTCCGCGCTG
ctgcgccgcc
TGGGCCGGCG
1740
ccgggcggcg agctggtgga ccctcgtgtt cgaccgccac cccgtggcgc gcgtgcctct
1800
gctacccctt cgcccgctac tgcctccgcg agatcaacgc ggaagatctc aattctatga
1860
tttctatcat tacttcctca catgttggag gcattttctc tccctctgca cttaatagcc
1920
tatcttgctt taatttcttc ccactcttgg aggctaggtt tggtttggtg ggctgatgag
1980
ggagggagag accgctccaa gtactttagc gggtgggatt gaagcggagc cctcctgagc
2040
tatgagtgtc ctatgagtgg ggctggaact aagaaccagg ggcgtggaca gggtgtgtca
2100
cagagaaggg gatgtgcctg cttctttctg gcccaggagg aaccgggtca attcttcagc
2160
acctgggtac ccatagagcc caccgcatcc ccagcatgcc tgctattgtc ttcccaatcc
2220
tcccccttgc tgtcctgccc caccccaccc cccagaatag aatgacacct actcagacaa
2280
tgcgatgcaa tttcctcatt ttattaggaa aggacagtgg gagtggcacc ttccagggtc
2340
aaggaaggca cgggggaggg gcaaacaaca gatggctggc aactagaagg cacagcggat
2400
CTGAGCTTGC
atgcctgagg tcgaccctgg ataagctgat cctcaatcaa tcaaggtggt
2460
ATAAGAGTAA
gacccacttc tttacaocct cctctcttag cagtaggtat aacaacaaga
2520
aatatgtcac cacttcaata ctgtcatgtg ttagcaagtt acccatcatc accacttccc
2580
ctgccccata ttgggtcccc aaggcctttt gttctgatag gaccatgtat gttaccagta
2640
accagagcac gtatcttcca cccagtaaag ctaccaccac caccaatatg gactcggcga
2700
agtaatcccg atgatggtca gtgacctcca ggtcgaacca gtattgataa tctcctttta
2760
gcatgtattg ctggaagtaa ctgtctctgg gctcaaaata tttatttttt aatgtcctcg
2820
tgtagttgaa ggtgcatgcc gtcttttcta caggcccctc acttggtatg atctcatatg
2880
gcttgcaagg cataggccca agtttggtgt caagagctat gacctgtacg attgtgtctc
2940
ctatcttaca ctttaccaat ccttgtggta ctatggctac accctctctg ttgcaagtgg
3000
tgccgtctac aaatctgtag ccagtctcat tcttcaacct acacttgccg atggggtagt
3060
gtggcaaccc ctcacttttt tggaatttat aaccacacca cttgcaagat tcgacagggc
3120
ctcctgtgta ttgtagctgg tccccagtca cacaagtcca attccctcca agatcacagt
3180
tatagagatc ctcccccaga gttctttggg tgatacaacc ttgtctataa gggaatggtt
3240
tggacctctt atacacacgc actactgctg tgtctagggt gtccctatta gctaacatac
3300
agctcacagt tcctgtccat cctatagggc ataccatctg gaaggccggt ccgtttagca
3360
gtgttgtatt gaacttccct cttactacgg gattggcatc gcatgggcag agtccaaatt
3420
40
45
50
55
60
65
caaagtcgtc agccatttca aatgtttccc cttgcctttg cccctcgaaa agttttttga
34t>o ataccacact ggtctgcaag gctcttgaat gcagaattgc aagatatcta gtttctcttg
3540
tgcaccttga gaggtatgta aacttaccgt ctttgcacca agctatgacc attgtgtctt
3600
ccagcttcat ttcatgtgag taatccttcc aaacagtggt gaggccttca gctcctaatg
3660
ggccaattct atcattcctg gctatggcgt atgagtgttc aggtttgcag tcaatgtccc
3720
cttgtacccc tgttatcagt agtagccata ggatccctgg gaaggcgccc accacctgag
3780
tccagggcag gcagagcagg gcgaaagcca ggagcaggga ggtccggggg cctgcagcca
3840
tcatgtcgaa gcttgccgcg gaggctggat cggtcccggt gtcttctatg gaggtcaaaa
3900
cagcgtggat ggcgtctcca ggcgatctga cggttcacta aacgagctct gcttatatag
3960
acctcccacc gtacacgcct accgcccatt tgcgtcaatg gggcggagtt gttacgacat
4020
tttggaaagt cccgttgatt ttggtgccaa aacaaactcc cattgacgtc aatggggtgg
4080
agacttggaa atccccgtga gtcaaaccgc tatccacgcc cattgatgta ctgccaaaac
4140
cgcatcacca tggtaatagc gatgactaat acgtagatgt actgccaagt aggaaagtcc
4200
cataaggtca tgtactgggc ataatgccag gcgggccatt taccgtcatt gacgtcaata
4260
gggggcgtac ttggcatatg atacacttga tgtactgcca agtgggcagt ttaccgtaaa
4320
tactccaccc attgacgtca atggaaagtc cctattggcg ttactatggg aacatacgtc
4380
attattgacg tcaatgggcg gggjtcgttg ggcggtcagc caggcgggcc atttaccgta
4440
agttatgtaa cgcggaactc catatatggg ctatgaacta atgaccccgt aattgattac
4500
tattaataac tagtcaataa tcaatgtcaa catggcggta atgttggaca tgagccaata
4560
taaatgtaca tattatgata tggatacaac gtatgcaatg gccaatagcc aatattgatt
4620
tatgctatat aaccaatgaa taat-itggct aatggccaat attgattcaa tgtatagatc
4680
gatatgcatt ggccatgtgc cagcttgatg tcgcctctat cggcgatata gcctcatatc
4740
gtctgtcacc tatatcgaaa ctgcgatatt tgcgacacac agaatcgccc aagtcaccaa
4800
aggcgtctat cgccatcccc cgtaaacgat ataagcgtat cgccagatat cgcgtatgcc
4860
caaaaatcaa cttttggaaa aatggcgata tcagttacac agaaactcac atcggcgaca
4920
ttttcaatat gccatatttt caaatatcga tttttccaat atcgccatct ctatcggcga
4980
taaacaccac tatcgcgcga catgaattta gtcgggacag aaatctcaaa cgcgtatttc
5040
ggacaaacac acatttzatt attcactgca ggtcgaggaa ttcggatctc gaggtgttcg
5100
tgctggacgt gtccgcggcg ccagacgcgt gcgcggccgc cgtactggac atgcggcccg
5160
ccatgcaggc cgcttgcgcg gacggggcgg cgggcgcgac gctggcgacc ctggcgcgtc
5220
agttcgcgct agagatggcg ggggaggcca cggcgggccc taggggacta taaagctgcc
5280
cctgcgctcg ctcgctcgct gcatttgcgc cccgatcgcc ttacggggac tcggcgctcg
5340
gcggatcccc tcccggcccc gccgcgfcagc aggccgccag acaaaaaaat gcggcgcccg
5400
ctctgcgcgg cgctattggc agcggctgtc ctcgcgctcg ccgcgggcgc ccccgccgcc
5460
WO 95/12682 PCT/US94/12198
GCCCGCGGCG GGGGCGCCGA AGCCAGGGCA GCACAGAGAC GCCCGATACG AAATCGAAGA 5520
GTGGGAAATG GTGGTCGGAG CCGGGCCGGC CGTGCACACG TTCACCATCC GCTGCCTCGG 5580
GCCGCGGGGC ATTGAGCGCG TGGCCCACAT TGCAAACCTC AGCCGGCTGC TGGACGGGTA 5640
CATAGCGGTC CACGTTGACG TTGCGCGCAC CTCTGGCCTG CGGGACGCCA TGTTTTTCCT 5700
GCCGCGCGCG GCCGTCGACT CTAGAGGATC CCCGGGTACC GAGCTCGAAT TCACTGGCCG 5760
TCGTTTTACA ACGTCGTGAC TGGGA&AACC CTGGCGTTAC CCAACTTAAT CGCCTTGCAG 5820
CACATCCCCC TTTCGCCAGC TGGCGTAATA GCGAAGAGGC CCGCACCGAT CGCCCTTCCC 5880
AACAGTTGCG CAGCCTGAAT GGCGAATGGC GCCTGATGCG GTATTTTCTC CTTACGCATC 5940
TGTGCGGTAT TTCACACCGC ATATGGTGCA CTCTCAGTAC AATCTGCTCT GATGCCGCAT 6000
AGTTAAGCCA GCCCCGACAC CCGCCAACAC CCGCTGACGC GCCCTGACGG GCTTGTCTGC 6060
TCCCGGCATC CGCTTACAGA CAAGCTGTGA CCGTCTCCGG GAGCTGCATG TGTCAGAGGT 6120
TTTCACCGTC ATCACCGAAA CGCGCGAGAC GAAAGGGCCT CGTGATACGC CTATTTTTAT 6180
AGGTTAATGT CATGATAATA ATGGTTTCTT AGACGTCAGG TGGCACTTTT CGGGGAAATG 6240
TGCGCGGAAC CCCTATTTGT TTATTTTTCT AAATACATTC AAATATGTAT CCGCXCATGA 6300
GACAATAACC CTGATAAATG CTTCAATAAT ATTGAAAAAG GAAGAGTATG AGTATTCAAC 6360
ATTTCCGTGX CGCCCTTATT CCCTTTTTTG CGGCATTTTG CCTTCCTGTT TTTGCTCACC 6420
CAGAAACGCT GGTGAAAGTA AAAGATGCTG AAGATCAGTT GGGTGCACGA GTGGGTTACA 6480
TCGAACTGGA TCTCAACAGC GGTAAGATCC TTGAGAGTTT TCGCCCCGAA GAACGTTTTC 6540
CAATGATGAG CACTTTTAAA GTTCTGCTAT GTGGCGCGGT ATTATCCCGT ATTGACGCCG 6600
GGCAAGAGCA ACTCGGTCGC CGCATACACT ATTCTCAGAA TGACTTGGTT GAGTACTCAC 6660
40
CAGTCACAGA AAAGCATCTT ACGGATGGCA TGACAGTAAG AGAATTATGC AGTGCTGCCA 6720
TAACCATGAG TGATAACACT GCGGCCAACT TACTTCTGAC AACGATCGGA GGACCGAAGG 6780
45 AGCTAACCGC TTTTTTGCAC AACATGGGGG ATCATGTAAC TCGCCTTGAT CGTTGGGAAC 6840
CGGAGCTGAA TGAAGCCATA CCAAACGACG AGCGTGACAC CACGATGCCT GTAGCAATGG 6900
CAACAACGTT GCGCAAACTA TTAACTGGCG AACTACTTAC TCTAGCTTCC CGGCAACAAT 6960
50
TAATAGACTG GATGGAGGCG GATAAAGTTG CAGGACCACT TCTGCGCTCG GCCCTTCCGG 7020
CTGGCTGGTT TATTGCTGAT AAATCTGGAG CCGGTGAGCG TGGGTCTCGC GGTATCATTG 7080
55 CAGCACTGGG GCCAGATGGT AAGCCCTCCC GTATCGTAGT TATCTACACG ACGGGGAGTC 7140
AGGCAACTAT GGATGAACGA AATAGACAGA TCGCTGAGAT AGGTGCCTCA CTGATTAAGC 7200
ATTGGTAACT GTCAGACCAA GTTTACTCAT ATATACTTTA GATTGATTTA AAACTTCATT 7260
60
TTTAATTTAA AAGGATCTAG GTGAAGATCC TTTTTGATAA TCTCATGACC AAAATCCCTT 7320
AACGTGAGTT TTCGTTCCAC TGAGCGTCAG ACCCCGTAGA AAAGATCAAA GGATCTTCTT 7380
65 GAGATCCTTT TTTTCTGCGC GTAATCTGCT GCTTGCAAAC AAAAAAACCA CCGCTACCAG 7440
CGGTGGTTTG TTTGCCGGAT CAAGAGCTAC CAACTCTTTT TCCGAAGGTA ACTGGCTTCA 7500
PCTAJS94/12198
GCAGAGCGCA
GATACCAAAT
ACTGTCCTTC
TAGTGTAGCC
GTAGTTAGGC
CACCACTTCA
75uo
AGAACTCTGT
AGCACCGCCT
ACATACCTCG
CTCTGCTAAT
CCTGTTACCA
GTGGCTGCTG
7620
CCAGTGGCGA
TAAGTCGTGT
CTTACCGGGT
TGGACTCAAG
ACGATAGTTA
CCGGATAAGG
7680
CGCAGCGGTC
GGGCTGAACG
GGGGGTTCGT
GCACACAGCC
CAGCTTGGAG
CGAACGACCT
7740
ACACCGAACT
GAGATACCTA
CAGCGTGAGC
TATGAGAAAG
CGCCACGCTT
CCCGAAGGGA
7800
GAAAGGCGGA
CAGGTATCCG
GTAAGCGGCA
GGGTCGGAAC
AGGAGAGCGC
ACGAGGGAGC
7860
TTCCAGGGGG
AAACGCCTGG
TATCTTTATA
GTCCTGTCGG
GTTTCGCCAC
CTCTGACTTG
7920
AGCGTCGATT
TTTGTGATGC
TCGTCAGGGG
GGCGGAGCCT
ATGGAAAAAC
GCCAGCAACG
7980
CGGCCTTTTT
ACGGTTCCTG
GCCTTTTGCT
GGCCTTTTGC
TCACATGTTC
TTTCCTGCGT
8040
TATCCCCTGA
TTCTGTGGAT
AACCGTATTA
CCGCCTTTGA
GTGAGCTGAT
ACCGCTCGCC
8100
GCAGCCGAAC
GACCGAGCGC
AGCGAGTCAG
TGAGCGAGGA
AGCGGAAGA
8149
(2) INFORMATION FOR SEQ ID NO:3:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8135 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
(iii) HYPOTHETICAL: NO 35 (iv) ANTI-SENSE: NO
(Vi) ORIGINAL SOURCE:
(A) ORGANISM: Bovine viral diarrhea virus
(B) STRAIN: 2724
40 <C) INDIVIDUAL ISOLATE: pBHVtkex-1::gIII/p53
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:
45 GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG ATTCATTAAT GCAGCTGGCA 60
CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCGCAAC GCAATTAATG TGAGTTAGCT 120
CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT 180
50
TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG CCAAGCTAGC 240
TTGCATGCCT GCAGGTCGAC TTCCGCGCCC GCGGCGTCTG CCTTCGCCAG CAGGTTGTCC 300
55 GCGGCCGCTG CCGGCCTGGT TCCGCGCCCG CCGCCTCGCG GCCAGCTCCC GCGCGGGCGC 360
GTCCGCGTCC CCAACTCCGC GCGAAGACGG GCTCGTCCCA GAAGCGCAGC GGAAAGGCCG 420
GCGTATAAAA TTTCGCTCGT CCGGTACAAA GACGCGGTCC GCGACTGCGT GGATGTCCAC 480
60
GCCCAGGCAA GCAAACTCTA AACGCCCGAG CGCCATGGCC CCGATGCCGC CACAAAGAGC 540
GCCGAAATTT CGCCCAGGCA CGCCGCGCCG CCCGACGCGT CTTTAGCGCA CCCGCCGGCG 600
65 CTGTTGCCCG CGTGCCTGCT GGCCGCCCAC CGGCGGCCGC TGTCCCCGGC CTCAGCAGGG 660
CCGGGGTCGC CGGCGGGCGG CCGCGGGGTG CGGCCACAGC CGCCCTTTTG CCCGTAGCCA 720
WO 95/12682 PCT/TJS94/12198
GGGGAAGCGG CTGCCCCTTC TGCCGCCGCG GCCGCGGTTG CTCGGCTTTG CGTTTGCCCC 780
GCGGCGATCG CCCCGCTCGC CGCGAACGCG CGCGCGCGAA TGGGGCGTAC TCGGCGAGCC 840
CGGCTATTAT AGCCTCAAGG CGCGCCGCGT TGCTAGCGAT CGTCTGGGCC GGCAGGCGCG 900
TCACTCTGAG CACGCGCATG CCCCGCTGGG AGACGAACAC CTGCACCGGC GCTAGGACCA 960
CCGGGTCTGG GCCCGGGGGG GCGAGATCGC GCACAAGCCG GGCCGAGTCG CGCAGCTGCC 1020
GCAGCCCCCC GAGGCGCTGG TCCATCTTGC TGGGCGTGTT CATGTTCGTT GAAAAACGGC 1080
ACGTCTTCAG CTCCACGATA AGACAGACGG CCCGGGCGTG CCCTGCCTCC GCGACCCGGA 1140
lb GTAGGCACAC GCAATCGGGC CGCCGGCTTT GCAGGTTTAC CTCAAAGCTC AGAGACACGC 1200
CCACGACCTG CTTAAAAACC TCCGGGGCGC CAAACTTGCC CAAAAGCTGG GCGAGGCGCG 1260
GGCGCAGCTT CTGCGCGCCA ACCGCCGCGC GTGCGTCGCA AGCCAGCGCC TCGTAAAAGC 1320
GGCTGTGGCA CCGGATCCCG GCGCGCAGGC GCGCACGTCG GTCGCGGTCG CGCGCCATGG 1380
CCGAGCCCGC GCGCGCtCTC CGCGTCGTGC GTATCTACCT GGACGGCGCG CACGGGCAGG 1440
GAAAGACAAC AACGGGCCGC GCGCTCGCGG CCGCTTCCAC CGCTGGGGAG GGCGTGCTCT 1500
TTTTCCCGGA GCCGATGGCG TACTGGCGCA CGATGTTTGG TACGGACGCC TTAAGTGGGA 1560
TCCTCGCGGC GTCTGCGCGA TGCGCCGCAG CCTCGCACGG GAGCGCACGC GCGCGGCGGG 1620
CCGGCGCACC GCGCAGACGC GGACGCGGCG GGCCTGGTTG CGTACTACCA GGCCAGGTTC 1680
GCGGCCCCGT ACTTAATTTT GCACGCGCGT GTCCGCGCTG CTGCGCCGCC TGGGCCGGCG 1740
CCGGGCGGCG AGCTGGTGGA CCCTCGTGTT CGACCGCCAC CCCGTGGCGC GCGTGCCTCT 1800
GCTACCCCTT CGCCCGCTAC TGCCTCCGCG AGATCAACGC GGAAGATCTC AATTCTATGA 1860
TTTCTATCAT TACTTCCTCA CATGTTGGAG GCATTTTCTC TCCCTCTGCA CTTAATAGCC 1920
40
TATCTTGC2T TAATTTCTTC CCACTCTTGG AGGCTAGGTT TGGTTTGGTG GGCTGATGAG 1980
GGAGGGAGAG ACCGCTCCAA GTACTTTAGC GGGTGGGATT GAAGCGGAGC CCTCCTGAGC 2040
45 TATGAGTGTC CTATGAGTGG GGCTGGAACT AAGAACCAGG GGCGTGGACA GGGTGTGTCA 2100
CAGAGAAGGG GATGTGCCTG CTTCTTTCTG GCCCAGGAGG AACCGGGTCA ATTCTTCAGC 2160
ACCTGGGTAC CCATAGAGCC CACCGCATCC CCAGCATGCC TGCTATTGTC TTCCCAATCC 2220
50
TCCCCCTTGC TGTCCTGCCC CACCCCACCC CCCAGAATAG AATGACACCT ACTCAGACAA 2280
TGCGATGCAA TTTCCTCATT TTATTAGGAA AGGACAGTGG GAGTGGCACC TTCCAGGGTC 2340
55 AAGGAAGGCA CGGGGGAGGG GCAAACAACA GATGGCTGGC AACTAGAAGG CACAGCGGAT 2400
CTGAGCTTGC ATGCCTGAGG TCGACCCTGG ATAAGCTGAT CCTCAATCAA TCAAGGTGGT 2460
ATAAGAGTAA GACCCACTTC TTTACAGCCT CCTCTCTTAG CAGTAGGTAT AACAACAAGA 2520
60
AATATGTCAC CACTTCAATA CTGTCATGTG TTAGCAAGTT ACCCATCATC ACCACTTCCC 2580
CTGCCCCATA TTGGGTCCCC AAGGCCTTTT GTTCTGATAG GACCATGTAT GTTACCAGTA 2640
65 ACCAGAGCAC GTATCTTCCA CCCAGTAAAG CTACCACCAC CACCAATATG GACTCGGCGA 2700
AGTAATCCCG ATGATGGTCA GTGACCTCCA GGTCGAACCA GTATTGATAA TCTCCTTTTA 2760
GCATGTATTG CTGGAAGTAA CTGTCTCTGG GCTCAAAATA TTTATTTTTT AATGTCCTCG 28^0
TGTAGTTGAA GGTGCATGCC GTCTTTTCTA CAGGCCCCTC ACTTGGTATG ATCTCATATG 2880
GCTTGCAAGG CATAGGCCCA AGTTTGGTGT CAAGAGCTAT GACCTGTACG ATTGTGTCTC 2940
CTATCTTACA CTTTACCAAT CCTTGTGGTA CTATGGCTAC ACCCTCTCTG TTGCAAGTGG 3000
TGCCGTCTAC AAATCTGTAG CCAGTCTCAT TCTTCAACCT ACACTTGCCG ATGGGGTAGT 3060
GTGGCAACCC CTCACTTTTT TGGAATTTAT AACCACACCA CTTGCAAGAT TCGACAGGGC 3120
CTCCTGTGTA TTGTAGCTGG TCCCCAGTCA CACAAGTCCA ATTCCCTCCA AGATCACAGT 3180
TATAGAGATC CTCCCCCAGA GTTCTTTGGG TGATACAACC TTGTCTATAA GGGAATGGTT 3240
TGGACCTCTT ATACACACGC ACTACTGCTG TGTCTAGGGT GTCCCTATTA GCTAACATAC 3300
AGCTCACAGT TCCTGTCCAT CCTATAGGGC ATACCATCTG GAAGGCCGGT CCGTTTAGCA 3360
GTGTTGTATT GAACTTCCCT CTTACTACGG GATTGGCATC GCATGGGCAG AGTCCAAATT 3420
CAAAGTCGTC AGCCATTTCA AATGTTTCCC CTTGCCTTTG CCCCTCGAAA AGTTTTTTGA 3480
ATACCACACT GGTCTGCAAG GCTCTTGAAT GCAGAATTGC AAGATATCTA GTTTCTCTTG 3540
TGCACCTTGA GAGGTATGTA AACTTACCGT CTTTGCACCA AGCTATGACC ATTGTGTCTT 3600
CCAGCTTCAT TTCATGTGAG TAATCCTTCC AAACAGTGGT GAGGCCTTCA GCTCCTAATG 3660
GGCCAATTCT ATCATTCCTG GCTATGGCGT ATGAGTGTTC AGGTTTGCAG TCAATGTCCC 3720
CTTGTACCCC TGTTATCAGT AGTAGCCATA GGATCCCCGA CGGCGCCGCG GCGATGGCCG 3780
CCGCGTAGAG CGCCAGCAGA GCGAGCATCG CACGCGCGAG CGAGGCCATG GTCGAAGCTT 3840
GCCGCGGAGG CTGGATCGGT CCCGGTGTCT TCTATGGAGG TCAAAACAGC GTGGATGGCG 3900
TCTCCAGGCG ATCTGACGGT TCACTAAACG AGCTCTGCTT ATATAGACCT CCCACCGTAC 3960
40
ACGCCTACCG CCCATTTGCG TCAATGGGGC GGAGTTGTTA CGACATTTTG GAAAGTCCCG 4020
TTGATTTTGG TGCCAAAACA AACTCCCATT GACGTCAATG GGGTGGAGAC TTGGAAATCC 4080
45 CCGTGAGTCA AACCGCTATC CACGCCCATT GATGTACTGC CAAAACCGCA TCACCATGGT 4140
AATAGCGATG ACTAATACGT AGATGTACTG CCAAGTAGGA AAGTCCCATA AGGTCATGTA 4200
CTGGGCATAA TGCCAGGCGG GCCATTTACC GTCATTGACG TCAATAGGGG GCGTACTTGG 4260
50
CATATGATAC ACTTGATGTA CTGCCAAGTG GGCAGTTTAC CGTAAATACT CCACCCATTG 4320
ACGTCAATGG AAAGTCCCTA TTGGCGTTAC TATGGGAACA TACGTCATTA TTGACGTCAA 4380
55 TGGGCGGGGG TCGTTGGGCG GTCAGCCAGG CGGGCCATTT ACCGTAAGTT ATGTAACGCG 4440
GAACTCCATA TAl-GGGCTAT GAACTAATGA CCCCGTAATT GATTACTATT AATAACTAGT 4500
CAATAATCAA TGTCAACATG GCGGTAATGT TGGACATGAG CCAATATAAA TGTACATATT 4560
60
ATGATATGGA TACAACGTAT GCAATGGCCA ATAGCCAATA TTGATTTATG CTATATAACC 4620
AATGAATAAT ATGGCTAATG GCCAATATTG ATTCAATGTA TAGATCGATA TGCATTGGCC 4680
65 ATGTGCCAGC TTGATGTCGC CTCTATCGGC GATATAGCCT CATATCGTCT GTCACCTATA 4740
TCGAAACTGC GATATTTGCG ACACACAGAA TCGCCCAAGT CACCAAAGGC GTCTATCGCC 4800
atcccccgta aacgatataa tggaaaaatg gcgatatcag 5 tattttcaaa tatcgatttt gcgcgacatg aatttagtcg tttattattc actgcaggtc
gcggcgccag acgcgxgcgc tgcgcggacg gggcggcggg 15 atggcggggg aggccacggc ctcgctgcat ttgcgccccg ggccccgccg cgaagcaggc
attggcagcg gctgtcctcg cgccgaagcc agggcagcac 25 tcggagccgg gccggccgtg agcgcgtggc ccacattgca ttgacgttgc gcgcacctct
tcgactctag aggatccccg cgtgactggg aaaaccctgg 35 gccagctggc gtaatagcga ctgaatggcg aatggcgcct caccgcatat ggtgcactct
40
cgacacccgc caacacccgc tacagacaag ctgtgaccgt 45 ccgaaacgcg cgagacgaaa ataataatgg tttcttagac atttgtttat ttttctaaat
50
taaatgcttc aataatattg cttattccct tttttgcggc 55 aaagtaaaag atgctgaaga aacagcggta agatccttga tttaaagttc tgctatgtgg
60
ggtcgccgca tacactattc catcttacgg atggcatgac 65 aacactgcgg ccaacttact ttgcacaaca tgggggatca
GCGTATCGCC
AGATATCGCG
TTACACAGAA
ACTCACATCG
TCCAATATCG
CCATCTCTAT
GGACAGAAAT
CTCAAACGCG
GAGGAATTCG
GATCTCGAGG
GGCCGCCGTA
CTGGACATGC
CGCGACGCTG
GCGACCCTGG
GGGCCCTAGG
GGACTATAAA
ATCGCCTTAC
GGGGACTCGG
CGCCAGACAA
AAAAATGCGG
CGCTCGCCGC
GGGCGCCCCC
AGAGACGCCC
GATACGAAAT
CACACGTTCA
CCATCCGCTG
AACCTCAGCC
GGCTGCTGGA
GGCCTGCGGG
ACGCCATGTT
GGTACCGAGC
TCGAATTCAC
CGTTACCCAA
CTTAATCGCC
AGAGGCCCGC
ACCGATCGCC
GATGCGGTAT
TTTCTCCTTA
CAGTACAATC
TGCTCTGATG
TGACGCGCCC
TGACGGGCTT
CTCCGGGAGC
TGCATGTGTC
GGGCCTCGTG
ATACGCCTAT
GTCAGGTGGC
AC1TTTCGGG
ACATTCAAAT
ATGTATCCGC
AAAAAGGAAG
AGTATGAGTA
ATTTTGCCTT
CCTGTTTTTG
TCAGTTGGGT
GCACGAGTGG
GAGTTTTCGC
CCCGAAGAAC
CGCGGTATTA
TCCCGTATTG
TCAGAATGAC
TTGGTTGAGT
AGTAAGAGAA
TTATGCAGTG
TCTGACAACG
ATCGGAGGAC
TGTAACTCGC
CTTGATCGTT
TATGCCCAAA
AATCAACTTT
4860
GCGACATTTT
CAATATGCCA
4920
CGGCGATAAA
CACCACTATC
4980
TATTTCGGAC
AAACACACAT
5040
TGTTCGTGCT
GGACGTGTCC
5100
GGCCCGCCAT
GCAGGCCGCT
5160
CGCGTCAGTT
CGCGCTAGAG
5220
GCTGCCCCTG
CGCTCGCTCG
5280
CGCTCGGCGG
ATCCCCTCCC
5340
CGCCCGCTCT
GCGCGGCGCT
5400
GCCGCCGCCC
GCGGCGGGGG
5460
CGAAGAGTGG
GAAATGGTGG
5520
CCTCGGGCCG
CGGGGCATTG
5580
CGGGTACATA
GCGGTCCACG
5640
TTTCCTGCCG
CGCGCGGCCG
5700
TGGCCGTCGT
TTTACAACGT
5760
TTGCAGCACA
TCCCCCTTTC
5820
CTTCCCAACA
GTTGCGCAGC
5880
CGCATCTGTG
CGGTATTTCA
5940
CCGCATAGTT
AAGCCAGCCC
6000
GTCTGCTCCC
GGCATCCGCT
6060
AGAGGTTTTC
ACCGTCATCA
6120
TTTTATAGGT
TAATGTCATG
6180
GAAATGTGCG
CGGAACCCCT
6240
TCATGAGACA
ATAACCCTGA
6300
TTCAACATTT
CCGTGTCGCC
6360
CTCACCCAGA
AACGCTGGTG
6420
GTTACATCGA
ACTGGATCTC
6480
GTTTTCCAAT
GATGAGCACT
6540
ACGCCGGGCA
AGAGCAACTC
6600
ACTCACCAGT
CACAGAAAAG
6650
CTGCCATAAC
CATGAGTGAT
6720
CGAAGGAGCT
AACCGCTTTT
6780
GGGAACCGGA
GCTGAATGAA
6840
gccataccaa acgacgagcg tgacaccacg atgcctgtag caatggcaac aacgttgcgc
690u
aaactattaa ctggcgaact acttactcta gcttcccggc aacaattaat agactggatg
6960
gaggcggata aagttgcagg accacttctg cgctcggccc ttccggctgg ctggtttatt
7020
gctgataaat ctggagccgg tgagcgtggg tctcgcggta tcattgcagc actggggcca
7080
gatggtaagc cctcccgtat cgtagttatc tacacgacgg ggagtcaggc aactatggat
7140
gaacgaaata gacagatcgc tgagataggt gcctcactga ttaagcattg gtaactgtca
7200
gaccaagttt actcatatat actttagatt gatttaaaac ttcattttta atttaaaagg
7260
atctaggtga agatcctttt tgataatctc atgaccaaaa tcccttaacg tgagttttcg
7320
ttccactgag cgtcagaccc cgtagaaaag atcaaaggat cttcttgaga tccttttttt
7380
ctgcgcgtaa tctgctgctt gcaaacaaaa aaaccaccgc taccagcggt ggtttgtttg
7440
ccggatcaag agctaccaac tctttttccg aaggtaactg gcttcagcag agcgcagata
7500
ccaaatactg tccttctagt gtagccgtag ttaggccacc acttcaagaa ctctgtagca
7560
ccgcctacat acctcgctct gctaatcctg ttaccagtgg ctgctgccag tggcgataag
7620
tcgtgtctta ccgggttgga ctcaagacga tagttaccgg ataaggcgca gcggtcgggc
7680
tgaacggggg gttcgtgcac acagcccagc ttggagcgaa cgacctacac cgaactgaga
7740
tacctacagc gtgagctatg agaaagcgcc acgcttcccg aagggagaaa ggcggacagg
7800
tatccggtaa gcggcagggt cggaacagga gagcgcacga gggagcttcc agggggaaac
7860
gcctggtatc tttatagtcc tgtcgggttt cgccacctct gacttgagcg tcgatttttg
7920
tgatgctcgt caggggggcg gagcctatgg aaaaacgcca gcaacgcggc ctttttacgg
7980
40
ttcctggcct tttgctggcc ttttgctcac atgttctttc ctgcgttatc ccctgattct
8040
gtggataacc gtattaccgc ctttgagtga gctgataccg ctcgccgcag ccgaacgacc
8100
gagcgcagcg agtcagtgag cgaggaagcg gaaga
8135
45
(2) information for seq id no:4:
(1) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8149 base pairs
(B) TYPE: nucleic acid 50 (C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic)
55 (iii) HYPOTHETICAL: NO
(iv) ANTI-SENSE: NO
(Vi) ORIGINAL SOURCE:
60 (A) ORGANISM: Bovine viral diarrhea virus
(B) STRAIN: 2724
(C) INDIVIDUAL ISOLATE: pBHVtkex-3: :BGH/p53 65 (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:
40
45
50
55
60
65
GCGCCCAATA
CGCAAACCGC
CTCTCCCCGC
GCGTTGGCCG
ATTCATTAAT
GCAGCTGGCA
60
CGACAGGTTT
CCCGACTGGA
AAGCGGGCAG
TGAGCGCAAC
GCAATTAATG
TGAGTTAGCT
120
CACTCATTAG
GCACCCCAGG
CTTTACACTT
TATGCTTCCG
GCTCGTATGT
TGTGTGGAAT
180
TGTGAGCGGA
TAACAATTTC
ACACAGGAAA
CAGCTATGAC
CATGATTACG
CCAAGCTAGC
240
TTGCATGCCT
GCAGGTCGAC
TTCCGCGCCC
GCGGCGTCTG
CCTTCGCCAG
CAGGTTGTCC
300
GCGGCCGCTG
CCGGCCTGGT
TCCGCGCCCG
CCGCCTCGCG
GCCAGCTCCC
GCGCGGGCGC
360
GTCCGCGTCC
CCAACTCCGC
GCGAAGACGG
GCTCGTCCCA
GAAGCGCAGC
GGAAAGGCCG
420
GCGTATAAAA
TTTCGCTCGT
CCGGTACAAA
GACGCGGTCC
GCGACTGCGT
GGATGTCCAC
480
GCCCAGGCAA
GCAAACTCTA
AACGCCCGAG
CGCCATGGCC
CCGATGCCGC
CACAAAGAGC
540
GCCGAAATTT
CGCCCAGGCA
CGCCGCGCCG
CCCGACGCGT
CTTTAGCGCA
CCCGCCGGCG
600
CTGTTGCCCG
CGTGCCTGCT
GGCCGCCCAC
CGGCGGCCGC
TGTCCCCGGC
CTCAGCAGGG
660
CCGGGGTCGC
CGGCGGGCGG
CCGCGGGGTG
CGGCCACAGC
CGCCCTTTTG
CCCGTAGCCA
720
GGGGAAGCGG
CTGCCCCTTC
TGCCGCCGCG
GCCGCGGTTG
CTCGGCTTTG
CGTTTGCCCC
780
GCGGCGATCG
CCCCGCTCGC
CGCGAACGCG
CGCGCGCGAA
TGGGGCGTAC
TCGGCGAGCC
840
CGGCTATTAT
AGCCTCAAGG
CGCGCCGCGT
TGCTAGCGAT
CGTCTGGGCC
GGCAGGCGCG
900
TCACTCTGAG
CACGCGCATG
CCCCGCTGGG
AGACGAACAC
CTGCACCGGC
GCTAGGACCA
960
CCGGGTCTGG
GCCCGGGGGG
GCGAGATCGC
GCACAAGCCG
GGCCGAGTCG
CGCAGCTGCC
1020
GCAGCCCCCC
GAGGCGCTGG
TCCATCTTGC
TGGGCGTGTT
CATGTTCGTT
GAAAAACGGC
1080
ACGTCTTCAG
CTCCACGATA
AGACAGACGG
CCCGGGCGTG
CCCTGCCTCC
GCGACCCGGA
1140
GTAGGCACAC
GCAATCGGGC
CGCCGGCTTT
GCAGGTTTAC
CTCAAAGCTC
AGAGACACGC
1200
CCACGACCTG
CTTAAAAACC
TCCGGGGCGC
CAAACTTGCC
CAAAAGCTGG
GCGAGGCGCG
1260
GGCGCAGCTT
CTGCGCGCCA
ACCGCCGCGC
GTGCGTCGCA
AGCCAGCGCC
TCGTAAAAGC
1320
GGCTGTGGCA
CCGGATCCCG
GCGCGCAGGC
GCGCACGTCG
GTCGCGGTCG
CGCGCCATGG
1380
CCGAGCCCGC
GCGCGCTCTC
CGCGTCGTGC
GTATCTACCT
GGACGGCGCG
CACGGGCAGG
1440
GAAAGACAAC
AACGGGCCGC
GCGCTCGCGG
CCGCTTCCAC
CGCTGGGGAG
GGCGTGCTCT
1500
TTTTCCCGGA
GCCGATGGCG
TACTGGCGCA
CGATGTTTGG
TACGGACGCC
TTAAGTGGGA
1560
TCCTCGCGGC
GTCTGCGCGA
TGCGCCGCAG
CCTCGCACGG
GAGCGCACGC
GCGCGGCGGG
1620
CCGGCGCACC
GCGCAGACGC
GGACGCGGCG
GGCCTGGTTG
CGTACTACCA
GGCCAGGTTC
1680
GCGGCCCCGT
ACTTAATTTT
GCACGCGCGT
GTCCGCGCTG
CTGCGCCGCC
TGGGCCGGCG
1740
CCGGGCGGCG
AGCTGGTGGA
CCCTCGTGTT
CGACCGCCAC
CCCGTGGCGC
GCGTGCCTCT
1800
GCTACCCCTT
CGCCCGCTAC
TGCCTCCGCG
AGATCAACGC
GGAAGATCCG
AATTCCTCGA
1860
CCTGCAGTGA
ATAATAAAAT
GTGTGTTTGT
CCGAAATACG
CGTTTGAGAT
TTCTGTCCCG
1920
ACTAAATTCA
TGTCGCGCGA
TAGTGGTGTT
TATCGCCGAT
AGAGATGGCG
ATATTGGAAA
1980
AATCGATATT
TGAAAATATG
GCATATTGAA
AATGTCGCCG
ATGTGAGTTT
CTGTGTAACT
2040
GATATCGCCA TTTTTCCAAA AXATCGTTTA CGGGGGATGG 5 CAAATATCGC AGTTTCGATA GACATCAAGC TGGCACATGG TTAGCCATAT TATTCATTGG
ACGTTGTATC CATATCATAA TGTTGACATT GATTATTGAC 15 AGCCCATATA TGGAGTTCCG CCCAACGACC CCCGCCCATT GGGACTTTCC ATTGACGTCA
CATCAAGTGT ATCATATGCC GCCTGGCATT ATGCCCAGTA 25 GTATTAGTCA TCGCTATTAC TAGCGGTTTG ACTCACGGGG TTTTGGCACC AAAATCAACG
CAAATGGGCG GTAGGCGTGT CGTCAGATCG CCTGGAGACG 35 CGATCCAGCC TCCGCGGCAA CCTGGCTTTC GCCCTGCTCT CCTATGGCTA CTACTGATAA
40
ATACGCCATA GCCAGGAATG TTGGAAGGAT TACTCACATG 45 AGACGGTAAG TTTACATACC GCATTCAAGA GCCTTGCAGA AGGGGAAACA TTTGAAATGG
50
TCCCGTAGTA AGAGGGAAGT ATGCCCTATA GGATGGACAG 55 CACAGCAGTA GTGCGTGTGT CACCCAAAGA ACTCTGGGGG TGTGACTGGG GACCAGCTAC
60
TTATAAATTC CAAAAAAGTG GAATGAGACT GGCTACAGAT 65 AGTACCACAA GGATTGGTAA TGACACCAAA CTTGGGCCTA
AGTTGATTTT
TGGGCATACG
CGATAGACGC
CTTTGGTGAC
TAGGTGACAG
ACGATATGAG
CCAATGCATA
TCGATCTATA
TTATATAGCA
TAAATCAATA
TATGTACATT
TATATTGGCT
TAGTTATTAA
TAGTAATCAA
CGTTACATAA
CTTACGGTAA
GACGTCAATA
ATGACGTATG
ATGGGTGGAG
TATTTACGGT
AAGTACGCCC
CCTATTGACG
CATGACCTTA
TGGGACTTTC
CATGGTGATG
CGGTTTTGGC
ATTTCCAAGT
CTCCACCCCA
GGACTTTCCA
AAATGTCGTA
ACGGTGGGAG
GTCTATATAA
CCATCCACGC
TGTTTTGACC
GCTTCGACAT
GATGGCTGCA
GCCTGCCCTG
GACTCAGGTG
CAGGGGTACA
AGGGGACATT
ATAGAATTGG
CCCATTAGGA
AAATGAAGCT
GGAAGACACA
TCTCAAGGTG
CACAAGAGAA
CCAGTGTQGT
ATTCAAAAAA
CTGACGACTT
TGAATTTGGA
TCAATACAAC
ACTGCTAAAC
GAACTGTGAG
CTGTATGTTA
ATAAGAGGTC
CAAACCATTC
AGGATCTCTA
TAACTGTGAT
AATACACAGG
AGGCCCTGTC
AGGGGTTGCC
ACACTACCCC
TTGTAGACGG
CACCACTTGC
AGTGTAAGAT
AGGAGACACA
TGCCTTGCAA
GCCATATGAG
CGATATCTGG
CGATACGCTT
2100
TTGGGCGATT
CTGTGTGTCG
2160
GCTATATCGC
CGATAGAGGC
2220
CATTGAATCA
ATATTGGCCA
2280
TTGGCTATTG
GCCATTGCAT
2340
CATGTCCAAC
ATTACCGCCA
2400
TTACGGGGTC
ATTAGTTCAT
2460
ATGGCCCGCC
TGGCTGACCG
2520
TTCCCATAGT
AACGCCAATA
2580
AAACTGCCCA
CTTGGCAGTA
2640
TCAATGACGG
TAAATGGCCC
2700
CTACTTGGCA
GTACATCTAC
2760
AGTACATCAA
TGGGCGTGGA
2820
TTGACGTCAA
TGGGAGTTTG
2880
ACAACTCCGC
CCCATTGACG
2940
GCAGAGCTCG
TTTAGTGAAC
3000
TCCATAGAAG
ACACCGGGAC
3060
GGCCCCCGGA
CCTCCCTGCT
3120
GTGGGCGCCT
TCCCAGGGAT
3180
GACTGCAAAC
CTGAACACTC
3240
GCTGAAGGCC
TCACCACTGT
3300
ATGGTCATAG
CTTGGTGCAA
3360
ACTAGATATC
TTGCAATTCT
3420
CTTTTCGAGG
GGCAAAGGCA
3480
CTCTGCCCAT
GCGATGCCAA
3540
GGACCGGCCT
TCCAGATGGT
3600
GCTAATAGGG
ACACCCTAGA
3660
CCTTATAGAC
AAGGTTGTAT
3720
CTTGGAGGGA
ATTGGACTTG
3780
GAATCTTGCA
AGTGGTGTGG
3840
ATCGGCAAGT
GTAGGTTGAA
3900
AACAGAGAGG
GTGTAGCCAT
3960
ATCGTACAGG
TCATAGCTCT
4020
ATCATACCAA
GTGAGGGGCC
4080
TGTAGAAAAG ACGGCATGCA CCTTCAACTA CACGAGGACA TTAAAAAATA AATATTTTGA 4140
GCCCAGAGAC AGTTACTTCC AGCAATACAT GCTAAAAGGA GATTATCAAT ACTGGTTCGA 4200
CCTGGAGGTC ACTGACCATC ATCGGGATTA CTTCGCCGAG TCCATATTGG TGGTGGTGGT 4260
AGCTTTACTG GGTGGAAGAT ACGTGCTCTG GTTACTGGTA ACATACATGG TCCTATCAGA 4320
ACAAAAGGCC TTGGGGACCC AATATGGGGC AGGGGAAGTG GTGATGATGG GTAACTTGCT 4380
AACACATGAC AGTATTGAAG TGGTGACATA TTTCTTGTTG TTATACCTAC TGCTAAGAGA 4440
GGAGGCTGTA AAGAAGTGGG TCTTACTCTT ATACCACCTT GATTGATTGA GGATCAGCTT 4500
ATCCAGGGTC GACCTCAGGC ATGCAAGCTC AGATCCGCTG TGCCTTCTAG TTGCCAGCCA 4560
TCTGTTGTTT GCCCCTCCCC CGTGCCTTCC TTGACCCTGG AAGGTGCCAC TCCCACTGTC 4620
CTTTCCTAAT AAAATGAGGA AATTGCATCG CATTGTCTGA GTAGGTGTCA TTCTATTCTG 4680
GGGGGTGGGG TGGGGCAGGA CAGCAAGGGG GAGGATTGGG AAGACAATAG CAGGCATGCT 4740
GGGGATGCGG TGGGCTCTAT GGGTACCCAG GTGCTGAAGA ATTGACCCGG TTCCTCCXGG 4800
GCCAGAAAGA AGCAGGCACA TCCCCTTCTC XGXGACACAC CCTGTCCACG CCCCTGGXXC 4860
XXAGXICCAG CCCCACICAT AGGACACTCA XAGCICAGGA GGGCICCGCI TCAAICCCAC 4920
CCGCXAAAGI ACXXGGAGCG GTCTCTCCCT CCCICATCAG CCCACCAAAC CAAACCIAGC 4980
CXCCAAGAGX GGGAAGAAAX XAAAGCAAGA XAGGCTAXXA AGIGCAGAGG GAGAGAAAAT 5040
GCCTCCAACA XGXGAGGAAG TAATGATAGA AAXCATAGAA XTGAGAXCXC GAGGIGXICG 5100
XGCXGGACGX GTCCGCGGCG CCAGACGCGX GCGCGGCCGC CGIACXGGAC AIGCGGCCCG 5160
CCAXGCAGGC CGCXXGCGCG GACGGGGCGG CGGGCGCGAC GCXGGCGACC CXGGCGCGXC 5220
AGXXCGCGCX AGAGATGGCG GGGGAGGCCA CGGCGGGCCC XAGGGGACXA TAAAGCTGCC 5280
40
CCTGCGCTCG CTCGCTCGCT GCATTTGCGC CCCGATCGCC TTACGGGGAC TCGGCGCTCG 5340
GCGGATCCCC TCCCGGCCCC GCCGCGAAGC AGGCCGCCAG ACAAAAAAAT GCGGCGCCCG 5400
45 CTCXGCGCGG CGCTATTGGC AGCGGCTGTC CTCGCGCTCG CCGCGGGCGC CCCCGCCGCC 5460
GCCCGCGGCG GGGGCGCCGA AGCCAGGGCA GCACAGAGAC GCCCGATACG AAATCGAAGA 5520
GTGGGAAATG GTGGTCGGAG CCGGGCCGGC CGTGCACACG TTCACCATCC GCTGCCTCGG 5580
50
GCCGCGGGGC ATXGAGCGCG TGGCCCACAT TGCAAACCTC AGCCGGCTGC TGGACGGGTA 5640
CATAGCGGTC CACGTTGACG TTGCGCGCAC CTCTGGCCTG CGGGACGCCA TGTTTTTCCT 5700
55 GCCGCGCGCG GCCGTCGACT CTAGAGGAXC CCCGGGTACC GAGCTCGAAT TCACTGGCCG 5760
TCGTTTTACA ACG7CGTGAC TGGGAAAACC CTGGCGTTAC CCAACTTAAT CGCCTTGCAG 5820
CACATCCCCC TTTCGCCAGC TGGCGTAATA GCGAAGAGGC CCGCACCGAT CGCCCTTCCC 5880
60
AACAGTTGCG CAGCCTGAAT GGCGAATGGC GCCTGATGCG GTATTTTCTC CTTACGCATC 5940
TGTGCGGTAT TTCACACCGC ATATGGTGCA CTCTCAGTAC AATCTGCTCT GATGCCGCAT 6000
65 AGTTAAGCCA GCCCCGACAC CCGCCAACAC CCGCTGACGC GCCCTGACGG GCTTGTCTGC 6060
. TCCCGGCATC CGCTTACAGA CAAGCTGTGA CCGTCTCCGG GAGCTGCATG TGTCAGAGGT 6120
tttcaccgtc atcaccgaaa aggttaatgt catgataata 5 tgcgcggaac ccctatttgt gacaataacc ctgataaatg atttccgtgt cgcccttatt
cagaaacgct ggtgaaagta tcgaactgga tctcaacagc 15 caatgatgag cacttttaaa ggcaagagca actcggtcgc cagtcacaga aaagcatctt
taaccatgag tgataacact agctaaccgc ttttttgcac 25 cggagctgaa tgaagccata caacaacgtt gcgcaaacta taatagactg gatggaggcg
ctggctggtt tattgctgat cagcactggg gccagatggt 35 aggcaactat ggatgaacga attggtaact gtcagaccaa tttaatttaa aaggatctag
40
aacgtgagtt ttcgttccac gagatccttt ttttctgcgc 45 cggtggtttg tttgccggat gcagagcgca gataccaaat agaactctgt agcaccgcct
50
ccagtggcga taagtcgtgt cgcagcggtc gggctgaacg 55 acaccgaact gagataccta gaaaggcgga caggtatccg ttccaggggg aaacgccvgg
60
agcgtcgatt tttgtgatgc cggccttttt acggttcctg 65 tatcccctga ttctgtggat gcagccgaac- gaccgagcgc cgcgcgagac gaaagggcct atggtttctt agacgtcagg ttatttttct aaatacattc cttcaataat attgaaaaag cccttttttg cggcattttg aaagatgctg aagatcagtt ggtaagatcc ttgagagttt gttctgctat gtggcgcggt cgcatacact attctcagaa acggatggca tgacagtaag gcggccaact tacttctgac aacatggggg atcatgtaac ccaaacgacg agcgtgacac ttaactggcg aactacttac gataaagttg caggaccact aaatctggag ccggtgagcg aagccctccc gtatcgtagt aatagacaga tcgctgagat gtttactcat atatacttta gtgaagatcc tttttgataa tgagcgtcag accccgtaga gtaatctgct gcttgcaaac caagagctac caactctttt actgtccttc tagtgtagcc
I
o %
ctctgctaat cttaccgggt tggactcaag gggggttcgt gcacacagcc cagcgtgagc tatgagaaag gtaagcggca gggtcggaac tatctttata gtcctgtcgg tcgtcagggg ggcggagcct gccttttgct ggccttttgc aaccgtatta ccgcctttga agcgagtcag tgagcgagga
PCX/US94/12198
cgtgatacgc ctatttttat
61fa.
tggcactttt cggggaaatg
6240
aaatatgtat ccgctcatga
6300
gaagagtatg agtattcaac
6360
ccttcctgtt tttgctcacc
6420
gggtgcacga gtgggttaca
6480
tcgccccgaa gaacgttttc
6540
attatcccgt attgacgccg
6600
tgacttggtt gagtactcac
6660
agaattatgc agtgctgcca
6720
aacgatcgga ggaccgaagg
6780
tcgccttgat cgttgggaac
6840
cacgatgcct gtagcaatgg
6900
tctagcttcc cggcaacaat
6960
tctgcgctcg gcccttccgg
7020
tgggtc'fcgc ggtatcattg
7080
tatctacacg acggggagtc
7140
aggtgcctca ctgattaagc
7200
gattgattta aaacttcatt
7260
tctcatgacc aaaatccctt
7320
aaagatcaaa ggatcttctt
7380
aaaaaaacca ccgctaccag
7440
tccgaaggta actggcttca
7500
gtagttaggc caccacttca
7560
cctgttacca gtggctgctg
7620
acgatagtta ccggataagg
7680
cagcttggag cgaacgacct
7740
cgccacgctt cccgaaggga
7800
aggagagcgc acgagggagc
7860
gtttcgccac ctctgacttg
7920
atggaaaaac gccagcaacg
7980
tcacatgttc tttcctgcgt
8040
gtgagctgat accgctcgcc
8100
agcggaaga
8149
(2) INFORMATION FOR SEQ ID NO:5:
(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 8135 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: double
(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: DNA (genomic) (iii) HYPOTHETICAL: NO (iv) ANTI-SENSE: NO
(vi) ORIGINAL SOURCE:
(A) ORGANISM: Bovine viral diarrhea virus
(B) STRAIN: 2724
(C) INDIVIDUAL ISOLATE: pBHVtkex-3::gIII/p53
(Xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:
GCGCCCAATA CGCAAACCGC CTCTCCCCGC GCGTTGGCCG ATTCATTAAT GCAGCTGGCA 60
CGACAGGTTT CCCGACTGGA AAGCGGGCAG TGAGCGCAAC GCAATTAATG TGAGTTAGCT 120
CACTCATTAG GCACCCCAGG CTTTACACTT TATGCTTCCG GCTCGTATGT TGTGTGGAAT 180
TGTGAGCGGA TAACAATTTC ACACAGGAAA CAGCTATGAC CATGATTACG CCAAGCTAGC 240
TTGCATGCCT GCAGGTCGAC TTCCGCGCCC GCGGCGTCTG CCTTCGCCAG CAGGTTGTCC 300
GCGGCCGCTG CCGGCCTGGT TCCGCGCCCG CCGCCTCGCG GCCAGCTCCC GCGCGGGCGC 360
GTCCGCGTCC CCAACTCCGC GCGAAGACGG GCTCGTCCCA GAAGCGCAGC GGAAAGGCCG 420
GCGTATAAAA TTTCGCTCGT CCGGTACAAA GACGCGGTCC GCGACTGCGT GGATGTCCAC 480
GCCCAGGCAA GCAAACTCTA AACGCCCGAG CGCCATGGCC CCGATGCCGC CACAAAGAGC 540
40
GCCGAAATTT CGCCCAGGCA CGCCGCGCCG CCCGACGCGT CTTTAGCGCA CCCGCCGGCG 600
CTGTTGCCCG CGTGCCTGCT GGCCGCCCAC CGGCGGCCGC TGTCCCCGGC CTCAGCAGGG 66D
45 CCGGGGTCGC CGGCGGGCGG CCGCGGGGTG CGGCCACAGC CGCCCTTTTG CCCGTAGCCA 720
GGGGAAGCGG CTGCCCCTTC TGCCGCCGCG GCCGCGGTTG CTCGGCTTTG CGTTTGCCCC 780
GCGGCGATCG CCCCGCTCGC CGCGAACGCG CGCGCGCGAA TGGGGCGTAC TCGGCGAGCC 840
50
CGGCTATTAT AGCCTCAAGG CGCGCCGCGT TGCTAGCGAT CGTCTGGGCC GGCAGGCGCG 900
TCACTCTGAG CACGCGCATG CCCCGCTGGG AGACGAACAC CTGCACCGGC GCTAGGACCA 960
55 CCGGGTCTGG GCCCGGGGGG GCGAGATCGC GCACAAGCCG GGCCGAGTCG CGCAGCTGCC 1020
GCAGCCCCCC GAGGCGCTGG TCCATCTTGC TGGGCGTGTT CATGTTCGTT GAAAAACGGC 1080
ACGTCTTCAG CTCCACGATA AGACAGACGG CCCGGGCGTG CCCTGCCTCC GCGACCCGGA 1140
60
GTAGGCACAC GCAATCGGGC CGCCGGCTTT GCAGGTTTAC CTCAAAGCTC AGAGACACGC 1200
CCACGACCTG CTTAAAAACC TCCGGGGCGC CAAACTTGCC CAAAAGCTGG GCGAGGCGCG 1260
65 GGCGCAGCTT CTGCGCGCCA ACCGCCGCGC GTGCGTCGCA AGCCAGCGCC TCGTAAAAGC 1320
GGCTGTGGCA CCGGATCCCG GCGCGCAGGC GCGCACGTCG GTCGCGGTCG CGCGCCATGG 1380
CCGAGCCCGC GCGCGCTCTC CGCGTCGTGC GAAAGACAAC AACGGGCCGC GCGCTCGCGG 5 TTTTCCCGGA GCCGATGGCG TACTGGCGCA TCCTCGCGGC GTCTGCGCGA TGCGCCGCAG CCGG-GCACC GCGCAGACGC GGACGCGGCG
GCGGCCCCGT ACTTAATTTT GCACGCGCGT CCGGGCGGCG AGCTGGTGGA CCCTCGTGTT 15 GCTACCCCTT CGCCCGCTAC TGCCTCCGCG CCTGCAGTGA ATAATAAAAT GTGTGTTTGT ACTAAATTCA TGTCGCGCGA TAGTGGTGTT
AATCGATATT TGAAAATATG GCATATTGAA GATATCGCCA TTTTTCCAAA AGTTGATTTT 25 ATATCGTTTA CGGGGGATGG CGATAGACGC CAAATATCGC AGTTTCGATA TAGGTGACAG GACATCAAGC TGGCACATGG CCAATGCATA
TTAGCCATAT TATTCATTGG TTATATAGCA ACGTTGTATC CATATCATAA TATGTACATT 35 TGTTGACATT GATTATTGAC TAGTTATTAA AGCCCATATA TGGAGTTCCG CGTTACATAA CCCAACGACC CCCGCCCATT GACGTCAATA
40
GGGACTTTCC ATTGACGTCA ATGGGTGGAG CATCAAGTGT ATCATATGCC AAGTACGCCC 45 GCCTGGCATT ATGCCCAGTA CATGACCTTA GTATTAGTCA TCGCTATTAC CATGGTGATG TAGCGGTTTG ACTCACGGGG ATTTCCAAGT
50
TTTTGGCACC AAAATCAACG GGACTTTCCA CAAATGGGCG GTAGGCGTGT ACGGTGGGAG 55 CGTCAGATCG CCTGGAGACG CCATCCACGC CGATCCAGCC TCCGCGGCAA GCTTCGACCA TGCTGGCGCT CTACGCGGCG GCCATCGCCG
60
TGATAACAGG GGTACAAGGG GACATTGACT GGAATGATAG AATTGGCCCA TTAGGAGCTG 65 CACATGAAAT GAAGCTGGAA GACACAATGG CATACCTCTC AAGGTGCACA AGAGAAACTA
GTATCTACCT
GGACGGCGCG
CACGGGCAGG
144u
CCGCTTCCAC
CGCTGGGGAG
GGCGTGCTCT
1500
CGATGTTTGG
TACGGACGCC
TTAAGTGGGA
1560
CCTCGCACGG
GAGCGCACGC
GCGCGGCGGG
1620
GGCCTGGTTG
CGTACTACCA
GGCCAGGTTC
1680
GTCCGCGCTG
CTGCGCCGCC
TGGGCCGGCG
1740
CGACCGCCAC
CCCGTGGCGC
GCGTGCCTCT
1800
AGATCAACGC
GGAAGATCCG
AATTCCTCGA
1860
CCGAAATACG
CGTTTGAGAT
TTCTGTCCCG
1920
TATCGCCGAT
AGAGATGGCG
ATATTGGAAA
1980
AATGTCGCCG
ATGTGAGTTT
CTGTGTAACT
2040
TGGGCATACG
CGATATCTGG
CGATACGCTT
2100
CTTTGGTGAC
TTGGGCGATT
CTGTGTGTCG
2160
ACGATATGAG
GCTATATCGC
CGATAGAGGC
2220
TCGATCTATA
CATTGAATCA
ATATTGGCCA
2280
TAAATCAATA
TTGGCTATTG
GCCATTGCAT
2340
TATATTGGCT
CATGTCCAAC
ATTACCGCCA
2400
TAGTAATCAA
TTACGGGGTC
ATTAGTTCAT
2460
CTTACGGTAA
ATGGCCCGCC
TGGCTGACCG
2520
ATGACGTATG
TTCCCATAGT
AACGCCAATA
2580
TATTTACGGT
AAACTGCCCA
CTTGGCAGTA
2640
CCTATTGACG
TCAATGACGG
TAAATGGCCC
2700
TGGGACTTTC
CTACTTGGCA
GTACATCTAC
2760
CGGTTTTGGC
AGTACATCAA
TGGGCGTGGA
2820
CTCCACCCCA
TTGACGTCAA
TGGGAGTTTG
2880
AAATGTCGTA
ACAACTCCGC
CCCATTGACG
2940
GTCTATATAA
GCAGAGCTCG
TTTAGTGAAC
3000
TGTTTTGACC
TCCATAGAAG
ACACCGGGAC
3060
TGGCCTCGCT
CGCGCGTGCG
ATGCTCGCTC
3120
CGGCGCCGTC
GGGGATCCTA
TGGCTACTAC
3180
GCAAACCTGA
ACACTCATAC
GCCATAGCCA
3240
AAGGCCTCAC
CACTGTTTGG
AAGGATTACT
3300
TCATAGCTTG
GTGCAAAGAC
GGTAAGTTTA
3360
GATATCTTGC
AATTCTGCAT
TCAAGAGCCT
3420
PCTAJS94/12198
TGCAGACCAG TGTGGTATTC AAAAAACTTT TCGAGGGGCA AAGGCAAGGG GAAACATTTG 3480
AAATGGCTGA CGACTTTGAA TTTGGACTCT GCCCATGCGA TGCCAATCCC GTAGTAAGAG 3540
GGAAGTTCAA TACAACACTG CTAAACGGAC CGGCCTTCCA GATGGTATGC CCTATAGGAT 3600
GGACAGGAAC TGTGAGCTGT ATGXTAGCTA ATAGGGACAC CCTAGACACA GCAGTAGTGC 3660
GTGTGTATAA GAGGTCCAAA CCAITCCCTT ATAGACAAGG TTGTATCACC CAAAGAACTC 3720
TGGGGGAGGA TCTCTATAAC TGTGATCTTG GAGGGAATTG GACTTGTGTG ACTGGGGACC 3780
AGCTACAATA CACAGGAGGC CCTGTCGAAT CTTGCAAGTG GTGTGGTTAT AAATTCCAAA 3840
AAAGTGAGGG GTTGCCACAC TACCCCATCG GCAAGTGTAG GTTGAAGAAT GAGACTGGCT 3900
ACAGATTTGT AGACGGCACC ACTTGCAACA GAGAGGGTGT AGCCATAGTA CCACAAGGAT 3960
TGGTAAAGTG TAAGATAGGA GACACAATCG TACAGGTCAT AGCTCTTGAC ACCAAACTTG 4020
GGCCTATGCC TTGCAAGCCA TATGAGATCA TACCAAGTGA GGGGCCTGTA GAAAAGACGG 4080
CATGCACCTT CAACTACACG AGGACATTAA AAAATAAATA TTTTGAGCCC AGAGACAGXT 4140
ACTTCCAGCA ATACATGCTA AAAGGAGATT ATCAATACTG GTTCGACCTG GAGGTCACTG 4200
ACCATCATCG GGATTACTTC GCCGAGTCCA TATTGGTGGT GGTGGTAGCT TTACTGGGTG 4260
GAAGATACGT GCTCTGGTTA CTGGTAACAT ACATGGTCCT ATCAGAACAA AAGGCCTTGG 4320
GGACCCAATA TGGGGCAGGG GAAGTGGTGA TGATGGGTAA CTTGCTAACA CATGACAGTA 4380
TTGAAGTGGT GACATATTTC TXGTTGTTAT ACCTACTGCT AAGAGAGGAG GCTGTAAAGA 4440
AGTGGGTCTX ACTCTTATAC CACCTTGATT GATTGAGGAT CAGCTTATCC AGGGTCGACC 4500
TCAGGCATGC AAGCTCAGAT CCGCTGTGCC TTCTAGTTGC CAGCCATCTG TTGTTTGCCC 4560
CTCCCCCGTG CCTTCCTTGA CCCTGGAAGG TGCCACXCCC ACXGTCCTTT CCTAATAAAA 4620
40
TGAGGAAATT GCATCGCATT GTCTGAGTAG GTGTCATTCT ATTCTGGGGG GTGGGGTGGG 4680
GCAGGACAGC AAGGGGGAGG ATTGGGAAGA CAATAGCAGG CATGCTGGGG ATGCGGTGGG 4740
45 CTCTATGGGT ACCCAGGTGC TGAAGAATTG ACCCGGTTCC TCCTGGGCCA GAAAGAAGCA 4800
GGCACATCCC CTTCTCTGTG ACACACCCTG TCCACGCCCC TGGTTCTTAG TTCCAGCCCC 4860
ACTCATAGGA CACTCATAGC TCAGGAGGGC TCCGCTTCAA TCCCACCCGC TAAAGTACTT 4920
50
GGAGCGGTCT CTCCCTCCCT CAXCAGCCCA CCAAACCAAA CCTAGCCTCC AAGAGTGGGA 4980
AGAAATTAAA GCAAGATAGG CTATTAAGTG CAGAGGGAGA GAAAATGCCT CCAACATGTG 5040
55 AGGAAGTAAT GATAGAAATC ATAGAATTGA GATCTCGAGG TGTTCGTGCT GGACGTGTCC 5100
GCGGCGCCAG ACGCGTGCGC GGCCGCCGTA CTGGACATGC GGCCCGCCAT GCAGGCCGCT 5160
TGCGCGGACG GGGCGGCGGG CGCGACGCTG GCGACCCTGG CGCGTCAGTT CGCGCTAC AG 5220
60
ATGGCGGGGG AGGCCACGGC GGGCCCTAGG GGACTATAAA GCTGCCCCTG CGCTCGCTCG 5280
CTCGCTGCAT TTGCGCCCCG ATCGCCTTAC GGGGACTCGG CGCTCGGCGG ATCCCCTCCC 5340 65 GGCCCCGCCG CGAAGCAGGC CGCCAGACAA AAAAATGCGG CGCCCGCTCT GCGCGGCGCT 5400 ATTGGCAGCG GCTGTCCTCG CGCTCGCCGC GGGCGCCCCC GCCGCCGCCC GCGGCGGGGG 5460
40
45
50
55
60
65
CGCCGAAGCC
AGGGCAGCAC
AGAGACGCCC
GATACGAAAT
CGAAGAGTGG GAAATGGTGG
55^0
TCGGAGCCGG
GCCGGCCGTG
CACACGTTCA
CCATCCGCTG
CCTCGGGCCG CGGGGCATTG
5580
AGCGCGTGGC
Cf „„*TGCA
AACCTCAQCC
GGCTGCTGGA
CGGGTACATA GCGGTCCACG
5640
TTGACGTTGC
GCGCACCTCT
GGCCTGCQGG
ACGCCATGTT
TTTCCTGCCG CGCGCGGCCG
5700
TCGACTCTAG
AGGATCCCCG
GGTACCGAGC
TCGAATTCAC
TGGCCGTCGT TTTACAACGT
5760
CGTGACTGGG
AAAACCCTGG
CGTTACCCAA
CTTAATCGCC
TTGCAGCACA TCCCCCTTTC
5820
GCCAGCTGGC
GTAATAGCGA
AGAGGCCCGC
ACCGATCGCC
CTTCCCAACA GTTGCGCAGC
5880
CTGAATGGCG
AATGGCGCCT
GATGCGGTAT
TTTCTCCTTA
CGCATCTGTG CGGTATTTCA
5940
CACCGCATAT
GGTGCACTCT
CAGTACAATC
TGCTCTGATG
CCGCATAGTT AAGCCAGCCC
6000
CGACACCCGC
CAACACCCGC
TGACGCGCCC
TGACGGGCTT
GTCTGCTCCC GGCATCCGCT
6060
TACAGACAAG
CTGTGACCGT
CTCCGGGAGC
TGCATGTGTC
AGAGGTTTTC ACCGTCATCA
6120
CCGAAACGCG
CGAGACGAAA
GGGCCTCGTG
ATACGCCTAT
TTTTATAGGT TAATGTCATG
6180
ATAATAATGG
TTTCTTAGAC
GTCAGGTGGC
ACTTTTCGGG
GAAATGTGCG CGGAACCCCT
6240
ATTTGTTTAT
TTTTCTAAAT
ACATTCAAAT
ATGTATCCGC
TCATGAGACA ATAACCCTGA
6300
TAAATGCTTC
AATAATATTG
AAAAAGGAAG
AGTATGAGTA
TTCAACATTT CCGTGTCGCC
6360
CTTATTCCCT
TTTTTGCGGC
ATTTTGCCTT
CCTGTTTTTG
CTCACCCAGA AACGCTGGTG
6420
AAAGTAAAAG
ATGCTGAAGA
TCAGTTGGGT
GCACGAGTGG
GTTACATCGA ACTGGATCTC
6480
AACAGCGGTA
AGATCCTTGA
GAGTTTTCGC
CCCGAAGAAC
GTTTTCCAAT GATGAGCACT
6540
TTTAAAGTTC
TGCTATGTGG
CGCGGTATTA
TCCCGTATTG
ACGCCGGGCA AGAGCAACIC
6600
GGTCGCCGCA
TACACTATTC
TCAGAATGAC
TTGGTTGAGT
ACTCACCAGT CACAGAAAAG
6660
CATCTTACGG
ATGGCATGAC
AGTAAGAGAA
TTATGCAGTG
CTGCCATAAC CATGAGTGAT
6720
AACACTGCGG
CCAACTTACT
TCTGACAACG
ATCGGAGGAC
CGAAGGAGCT AACCGCTTTT
6780
TTGCACAACA
TGGGGGATCA
TGTAACTCGC
CTTGATCGTT
GGGAACCGGA GCTGAATGAA
6840
GCCATACCAA
ACGACGAGCG
TGACACCACG
ATGCCTGTAG
CAATGGCAAC AACGTTGCGC
6900
AAACTATTAA
CTGGCGAACT
ACTTACTCTA
GCTTCCCGGC
AACAATTAAT AGACTGGATG
6960
GAGGCGGATA
AAGTTGCAGG
ACCACTTCTG
CGCTCGGCCC
TTCCGGCTGG CTGGTTTATT
7020
GCTGATAAAT
CTGGAGCCGG
TGAGCGTGGG
TCTCGCGGTA
TCATTGCAGC ACTGGGGCCA
7080
GATGGTAAGC
CCTCCCGTAT
CGTAGTTATC
TACACGACGG
GGAGTCAGGC AACTATGGAT
7140
GAACGAAATA
GACAGATCGC
TGAGATAGGT
GCCTCACTGA
TTAAGCATTG GTAACTGTCA
7200
GACCAAGTTT
ACTCATATAT
ACTTTAGATT
GATTTAAAAC
TTCATTTTTA ATTTAAAAGG
7260
ATCTAGGTGA
AGATCCTTTT
TGATAATCTC
ATGACCAAAA
TCCCTTAACG TGAGTTTTCG
7320
TTCCACTGAG
CGTCAGACCC
CGTAGAAAAG
ATCAAAGGAT
CTTCTTGAGA TCCTT3TTTT
7380
CTGCGCGTAA
TCTGCTGCTT
GCAAACAAAA
AAACCACCGC
TACCAGCGGT GGTTTGTTTG
7440
CCGGATCAAG
AGCTACCAAC
TCTTTTTCCG
AAGGTAACTG
GCTTCAGCAG AC*3CAGATA
7500
WO 95/12682 PCT/US94/12198
i
"■ i '
CCAAATACTG
TCCTTCTAGT
GTAGCCGTAG
TTAGGCCACC
ACTTCAAGAA
CTCTGTAGCA
7560
CCGCCTACAT
ACCTCGCTCT
GCTAATCCTG
TTACCAGTGG
CTGCTGCCAG
TGGCGATAAG
7620
TCGTGTCTTA
CCGGGTTGGA
CTCAAGACGA
TAGTTACCGG
ATAAGGCGCA
GCGGTCGGGC
7680
TGAACGGGGG
GTTCGTGCAC
ACAGCCCAGC
TTGGAGCGAA
CGACCTACAC
CGAACTGAGA
7740
TACCTACAGC
GTGAGCTATG
AGAAAGCGCC
ACGCTTCCCG
AAGGGAGAAA
GGCGGACAGG
7800
TATCCGGTAA
GCGGCAGGGT
CGGAACAGGA
GAGCGCACGA
GGGAGCTTCC
AGGGGGAAAC
7860
GCCTGGTATC
TTTATAGTCC
TGTCGGGTTT
CGCCACCTCT
GACTTGAGCG
TCGATTTTTG
7920
TGATGCTCGT
CAGGGGGGCG
GAGCCTATGG
AAAAACGCCA
GCAACGCGGC
CTTTTTACGG
7980
TTCCTGGCCT
TTTGCTGGCC
TTTTGCTCAC
ATGTTCTTTC
CTGCGTTATC
CCCTGATTCT
8040
GTGGATAACC
GTATTACCGC
CTTTGAGTGA
GCTGATACCG
CTCGCCGCAG
CCGAACGACC
8100
GAGCGCAGCG
AGTCAGTGAG
CGAGGAAGCG
GAAGA
8135
» • •
• t • • •
• *
• • • •
♦ • •
• • • «•
- * * • «
• • • •
• t •
■ »• w •• ••*
276234
• • • • • • ii
44
Claims (24)
1. An attenuated replicating non-pathogenic virus, for preventing disease caused by Bovine Viral L-arrhoea Virus (BVDV), which comprises a gene or gene combination from a 5 BVDV virus, which functionally expresses the BVDV glycoprotein gp53, gp48 or gp25, or any combination thereof.
2. A virus of claim 1, which is selected from attenuated Bovine Herpes Virus type 1 (BHV-1), attenuated 10 adenoviruses, attenuated bovine mammillitis virus, attenuated bovine papillomavirus or attenuated pseudorabies virus.
3. A virus of claim 1 or claim 2, which is attenuated because the thymidine kinase (tk) gene is non-functional. 15
4. A virus of claim 3, which is attenuated BHV-1.
5. A virus of claim 4, which contains and expresses the gene that codes for BVDV gp53.
6. A virus of claim 5, where a signal peptide is inserted preceding the gene or gene combination that codes for gp53 20 in BHV-1.
7. A virus of claim 5 or claim 6, where the gene that codes for gp53 is inserted into the inactivated tk gene site.
8. A virus* of claim 7, where the gene or gene combination 25 comprises a recombined plasmid with intact viral DNA, said plasmid comprising: a) a BHV-1 genomic DNA fragment containing the tk gene and having a deletion to the tk gene; b) a promoter/polyadenylation signal inserted in the 30 tk gene deletion; and c) a signal peptide gene sequence preceding a gp53 gene or gene combination, all of which is inserted between the promoter and the polyadenylation signal.
9. A virus of claim 8, where the signal peptide gene 35 sequence is any of the thirty-nine examples of well- characterised.signal peptide sequences found in Perlman et al, J. Mol. Biol., Vol. 167:391-409 (1983). amended sheet N-Z. PATENT OrncE 2 1 MAR 1996 RECElVrn 10 IS 20 25 30 UJ o Ll. u_ O Ir— 2 uj £ N Z 3 I a Cfc" ■Sft C.i, s: u UJ £T «M «» ft % • • • • * • • % » • I 45 • ••• •• «U Mta- || 27623* ♦ • I • I IM • • • • • •
10. A virus of claim 9, where the signal peptide gene sequence is taken from Pseudorabies Virus gill gene and/or Bovine Growth Hormone.
11. A virus of claim 10, where the plasmid is selected from a) pBHVtkex-a::BGH/p53; b) pBHVtkex-1::gIII/p53; c) pBHVtlex-3::BGH/p53; and d) pBHVtkex-3::gIII/p53.
12. A virus of claim 11, selected from Tll-3, Tll-6 and Tll-8, e.g. Tll-6.
13. A virus of claim 7, where the gene or gene combination comprises a recombined plasmid with intact viral DNA, said plasmid comprising: a) a BHV-1 genomic DNA fragment as defined in claim 8; b) a promoter/polyadenylation signal as defined in claim 8; and c) a gp53 gene or gene combination inserted between the promoter and the polyadenylation signal.
14. A virus of claim 13, where the plasmid is made from a plasmid having the characteristics of plasmid pHAS4, e.g. pBHVtkex-3::p53.
15. A virus of claim 14, where the virus is T2-3/3 or T2-2/5.
16. A vaccine for preventing disease caused by BVDV, comprising a virus of claim 1 and a carrier.
17. A vaccine as claimed in claim 16, where the carrier comprises a physiological buffered medium, pH 7.0 to 7.4, containing 2.5 to 15% serum which does not contain antibodies to BHV.
18. A process of preparing a virus of claim 1, comprising: a) isolation of a functionally expressing gene or gene combination that causes BVDV; b) inserting the gene or gene combination into a replicating non-pathogenic virus; and c) selecting a live virus that functionally expresses the product of said gene or gene combination.
19. A method of preparing a virus of claim 8, comprising transfecting cells with the plasmid to produce a Amended sheet 46 27 6 2 3 4 recombinant virus containing the functional gene or gene combination inserted into a live virus th^t does not cause immunosuppression in the usual host and expresses the functional gene or gene combination.
20. An attenuated replicating non-pathogenic virus as claimed in claim 1 substantial]y as herein described with reference to any example thereof.
21. A vaccine for preventing disease caused by BVDV comprising a virus as claimed in claim 20 and a carrier.
22. A process for preparing a virus as claimed in any one of claims 1 to 15 and 20 substantially as herein described with reference to any example thereof.
23. Use of a virus of any one of claims 1 to 15 and 20, for the manufacture of a medicament for use in immunisation against a disease caused by BVDV.
24. A method of immunising a non-human animal against infectious disease caused by BVDV comprising administering to the animal a pharmaceuti ;ally-effective amount of a virus of any one of claims 1 to 15 and 20. end of claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14781093A | 1993-11-05 | 1993-11-05 | |
PCT/US1994/012198 WO1995012682A2 (en) | 1993-11-05 | 1994-10-31 | Viral vector with bovine viral diarrhea virus (bvdv) antigens |
Publications (1)
Publication Number | Publication Date |
---|---|
NZ276234A true NZ276234A (en) | 1998-01-26 |
Family
ID=22522990
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NZ276234A NZ276234A (en) | 1993-11-05 | 1994-10-31 | An attenuated replicating non pathogenic flavivirus (bovine viral diarrhoea virus - bvdv) vaccine |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0725831A1 (en) |
JP (1) | JPH09504435A (en) |
KR (1) | KR960705944A (en) |
CN (1) | CN1134175A (en) |
AU (1) | AU688819B2 (en) |
CA (1) | CA2172815A1 (en) |
MX (1) | MXPA94008605A (en) |
NZ (1) | NZ276234A (en) |
WO (1) | WO1995012682A2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6060457A (en) * | 1996-06-20 | 2000-05-09 | Universite De Montreal | DNA plasmid vaccine for immunization of animals against BVDV |
EP1026252A1 (en) * | 1999-02-02 | 2000-08-09 | Akzo Nobel N.V. | Synthetic gene of bovine viral diarrhoea virus |
EP1104676A1 (en) * | 1999-11-30 | 2001-06-06 | Boehringer Ingelheim Vetmedica Gmbh | Safe attenuated bovine viral diarrhea viruses for use in pregnant cows |
KR100331176B1 (en) * | 1999-12-15 | 2002-04-06 | 대한민국(관리청:특허청장, 승계청:국립수의과학검역원장) | A diagnostic method of bovine viral diarrhea using recombination protein as an antigen |
EP2365082A1 (en) * | 2000-06-27 | 2011-09-14 | Pfizer Animal Health S.A. | BVDV virus-like particles |
NZ538394A (en) | 2002-08-26 | 2008-06-30 | Pfizer Prod Inc | Vaccine for respiratory and reproductive system infections in cattles |
EP1708742A4 (en) * | 2003-12-05 | 2008-11-05 | Becton Dickinson Co | Methods of enhancing immune response in the intradermal compartment and compounds useful thereof |
KR101876535B1 (en) * | 2012-06-14 | 2018-07-09 | 베트올 (주) | Antibody for detecting of bovine viral diarrhea virus(bvdv), bvdv antigen detecting method and test kit using thereof |
JP2016512841A (en) | 2013-03-15 | 2016-05-09 | ゾエティス・サービシーズ・エルエルシー | B. Multivalent vaccine Interference effect of cattle on trehaloci infection |
CN113913461A (en) * | 2021-11-15 | 2022-01-11 | 贵州大学 | Construction method of bovine viral diarrhea E0-E2 gene recombinant adenovirus vaccine |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1237668A (en) * | 1983-02-25 | 1988-06-07 | Novagene Inc. | Thymidine kinase-negative temperature resistant bovine herpes-virus-1 mutant as vaccine |
GB8818415D0 (en) * | 1988-08-03 | 1988-09-07 | Animal Health Inst | Vaccine |
FR2693472B1 (en) * | 1992-06-26 | 1994-12-23 | Rhone Merieux | Mutants of the infectious bovine rhinotracheitis virus, deleted in one of the genes of minor glycoproteins, vaccines prepared from these strains, production methods and methods of use. |
SE9002060D0 (en) * | 1990-06-08 | 1990-06-08 | Statens Veterinaermedicinska A | A METHOD OF DETECTING AN INFECTION CAUSED BY A SPECIFIC TYPE OF VIRUSES, PRIMERS, TESTS AND A TEST KIT |
-
1994
- 1994-10-31 AU AU10423/95A patent/AU688819B2/en not_active Ceased
- 1994-10-31 NZ NZ276234A patent/NZ276234A/en unknown
- 1994-10-31 JP JP7513263A patent/JPH09504435A/en active Pending
- 1994-10-31 WO PCT/US1994/012198 patent/WO1995012682A2/en not_active Application Discontinuation
- 1994-10-31 CN CN94193978A patent/CN1134175A/en active Pending
- 1994-10-31 KR KR1019960702343A patent/KR960705944A/en not_active Application Discontinuation
- 1994-10-31 CA CA002172815A patent/CA2172815A1/en not_active Abandoned
- 1994-10-31 EP EP95901037A patent/EP0725831A1/en not_active Withdrawn
- 1994-11-07 MX MXPA94008605A patent/MXPA94008605A/en unknown
Also Published As
Publication number | Publication date |
---|---|
EP0725831A1 (en) | 1996-08-14 |
WO1995012682A2 (en) | 1995-05-11 |
AU688819B2 (en) | 1998-03-19 |
MXPA94008605A (en) | 2004-11-11 |
KR960705944A (en) | 1996-11-08 |
JPH09504435A (en) | 1997-05-06 |
WO1995012682A3 (en) | 1995-07-06 |
AU1042395A (en) | 1995-05-23 |
CN1134175A (en) | 1996-10-23 |
CA2172815A1 (en) | 1995-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5747039A (en) | Recombinant herpes simplex gB-gD vaccine | |
CA2447450C (en) | Corona-virus-like particles comprising functionally deleted genomes | |
US8986707B2 (en) | gM-negative EHV-mutants without heterologous elements | |
JPH10506782A (en) | Recombinant turkey herpesvirus and uses thereof | |
AU688819B2 (en) | Viral vector with bovine viral diarrhea virus (BVDV) antigens | |
CN104023745B (en) | For inoculating the second filial generation virus-like particle (VLP) from Epstein-Barr virus of purpose | |
FI116851B (en) | Expression vector, its uses and process for its preparation and products containing it | |
KR20100120140A (en) | Glycosylation in avians | |
CN109069668A (en) | Gene therapy for eye disease | |
EP0289550B1 (en) | Vaccine for use in the therapeutic treatment of hsv | |
JPH05508538A (en) | Equine herpesvirus-4 TK ̄ vaccine | |
JP4044131B2 (en) | Herpesvirus vaccine | |
EP0277773A1 (en) | Hybrid cytomegalovirus (CMV) and vaccine | |
JP3529134B2 (en) | Recombinant feline herpesvirus vector vaccine | |
JP2007246531A (en) | Vaccine for therapeutic treatment of hsv | |
ES2312170T3 (en) | EPISOMAL VECTOR AND USES OF THE SAME. | |
JPH08294392A (en) | Dna arrangement for coding simple herpesvirus protein | |
RU2736472C2 (en) | Chimeric protein, a synthetic dna which codes said protein, an expression vector, a synthetic dna producing strain and a method of producing plasmid dna | |
EP1539808B1 (en) | gM-NEGATIVE EHV-MUTANTS WITHOUT HETEROLOGOUS ELEMENTS | |
US20060240034A1 (en) | Vaccine against infections caused by oncoviruses such as the feline leucosis virus of cats | |
JPH10507066A (en) | Chicken infectious anemia virus vaccine | |
Manservigi et al. | Constitutive expression in human cells of herpes simplex virus type 1 glycoprotein B gene cloned in an episomal eukaryotic vector | |
AU604753B2 (en) | Tissue-specific viral vectors based on LPV, and their use | |
WO2023245159A1 (en) | Recombinant herpes simplex virus 2 (hsv-2) vectors and engineered transgenic vero cell lines | |
AU762034B2 (en) | Episomal vector and uses thereof |