NZ253386A - Use of insulin growth factors i and ii (igf-i and ii) - Google Patents

Use of insulin growth factors i and ii (igf-i and ii)

Info

Publication number
NZ253386A
NZ253386A NZ25338693A NZ25338693A NZ253386A NZ 253386 A NZ253386 A NZ 253386A NZ 25338693 A NZ25338693 A NZ 25338693A NZ 25338693 A NZ25338693 A NZ 25338693A NZ 253386 A NZ253386 A NZ 253386A
Authority
NZ
New Zealand
Prior art keywords
igf
human
pancreatic
growth
artificial
Prior art date
Application number
NZ25338693A
Inventor
Peter David Gluckman
David James Mellor
Original Assignee
Pharmacia Ab Substituted For K
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pharmacia Ab Substituted For K filed Critical Pharmacia Ab Substituted For K
Priority to NZ25338693A priority Critical patent/NZ253386A/en
Publication of NZ253386A publication Critical patent/NZ253386A/en

Links

Landscapes

  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Fodder In General (AREA)

Description

New Zealand Paient Spedficaiion for Paient Number £53386 253586 New Zealand No. 25338 6 International No. PCT/SE93/00502 TO BE ENTERED AFTER ACCEPTANCE AND PUBUCATION Priority dates: International filing date: Classification: Publication date: » Journal No.: Priority Complete Specification Filed: ..7:. A. Class: (6) Publication Date: 2.1.. DEC..1995 Ip.O. Journal No: $7?.:.
NEW ZEALAND PATENTS ACT 1953 COMPLETE SPECIFICATION Title of invention: Use of growth factor IGF-I and/or IGF-II SE.C110N h ' r . O Q4ame, address and nationality or applicant(s) as in. international application form: PHARMAGift-AB-, a Swedish company, of S-7 51 82 Uppsala, Sweden. wo 93/25226 1 PCT /SE93/00502 253386 USE OF GROWTH FACTOR IGF-I AND/OR IGF-II The present invention relates to the use of IGF-I and/or IGF-II or effective analogues thereof for the manufacture of a medicament adopted for oral or any gastrointestinal route of administration for prevention or treatment of pancreatic disorders and insufficiency. It also relates to composition comprising exogenous human or animal IGF-I and/ or IGF-II or effective analogues thereof comprising foodstuff for oral administration, preferably in admixture with artificial or natural milk or colostrum. The invention may be applied both in man and in animals.
INTRODUCTION AND PRIOR ART Insulin-like growth factorl (IGF-I) and insulin-like growth factor 2 (IGF-II) are peptides present in plasma and other body fluids. They show 64 % homology of their primary sequences and comprise 70 and 67 amino acids respectively, including 3 disulphide bonds. They can stimulate growth of a wide range of cell types. IGF-I but not IGF-II mediates the effects of growth hormone on skeletal growth. Both IGF-I and IGF-II have been purified from human plasma and their complete amino acid sequences are known. Sequences with extensive homologies to human IGF-I and IGF-II are present in IGF-I and IGF-II purified from plasma of other species. IGF-I and IGF-II have both systemic and local effects and appear mostly associated with different specific binding problems, six of which are sequenced and are termed IGFBP1, IGFBP2, IGFBP3, IGFBP4, IGFBP5 and IGFBP6. These appear to modulate the biological functions and availability of IGF-I and IGF-II in both a positive and negative manner. Analogues with changed affinities for the binding proteins have been produced and changes of biological activities related to sequence variation have been found. Both IGF-l and IGF-II appear to act mainly by interactions with the IGF-type 1 receptor exposed on 0 93/25226 PCT/SE93/00502 253 386 the outer surface of plasma membranes in many different cell types - however relative specificity of action may be found because of the influence of binding proteins. Further IGF-II may have distinct actions as it alone binds to a distinct and unrelated type 2 receptor also found on cell membranes. Further binding of both IGF-I and IGF-II to insulin receptors also seems to be of importance.
Because of the scarcity of purified plasma IGF-I and IGF-II there was a great necessity to develop methodology for the commercial scale production of IGF-I and IGF-II. Nowadays such large scale production can readily be achieved by using recombinant DNA techniques. As a result of studies with preparations of recombinant DNA derived IGF-I it has been demonstrated that it promotes skeletal growth and skeletal muscle protein synthesis. Moreover IGF-I is also effective for the treatment or prevention of catabolic states (Swedish patent application SE 9002731-9). IGF-II has also been shown to antagonise some metabolic actions of IGF-I (Koea et al Endocrinology (1992). 130, 2423-2425).
Ballard et al , WO 91/12018 have disclosed the therapeutic use of IGF-I for gastrointestinal disease or the treatment of the shortened gut after surgery. Ballard provides no evidence of activity or effects on pancreatic size or growth following oral administration.
It has previously been demonstrated that both type 1 and type 2 IGF receptors are present in the gastrointestinal tract and that oral IGF-I and IGF-II affect jejunal enzymes following repeated administration in older suckling rats, but no effect on intestinal growth was observed. (Young et al. Digestion 46 , 1990, Suppl. 2, 240-252). It has also been reported that systemically (i.e. subcutaneous or intramuscular or intravenous) administered IGF-I can increase gastrointestinal weight, but pancreatic growth was not assessed.
PCT/S E93/00502 253386 Heinze-Erian et al, Endocrinology, Vol 129, No 4, 1769, 1991 reports that there is an essential role for both IGF receptors in the regulation of cell mitogenesis and growth.
Rivard N et al, Regul-Pept 1991, Jun 11, Vol 34(1), 13-23 reports that intravenous injected IGF-I may have an effect on pancreatic and duodenal cell content of somatostatin and Grey V et al, Mol-Cell-Endocrinol, 1991, Mar, Vol 75 (3), 221-7 suggest that IGF-II/M6P receptor levels are altered in the intestinal epithelium following gut resection.
Earlier studies have shown that there are IGF as well as insulin receptors on the pancreas cells, but as there are IGF receptors on all cell types, this does not in any way suggest an action or a potential specificity of action.
There was thus not a priori reason to believe that IGF-I or IGF-II might be efficacious in the growth of the pancreas.
No effect of IGF-I or II on exocrine pancreatic function has been previously suggested and no studies of the effects of oral administration of the IGF's on pancreas have been previously suggested.
There is a need for a medicament adopted for oral or any gastrointestinal route of administration for prevention or treatment of pancreatic disorders and which also can be used for promoting pancreatic growth which is abnormal in the growth retarded animal.
It has now surprisingly been found that IGF-I and/or IGF-II or effective analogues thereof can be used for the manufacture of such a medicament.
WO 93/25226 PCT/SE93/00502 253 38 4 THE INVENTION The invention relates to the use of IGF-I and/or IGF-II or effective analogues thereof for the manufacture of a medicament adopted for oral or any gastrointestinal route of administration for prevention or treatment of pancreatic disorders.
The medicament also promotes pancreatic growth and is useful in the treatment of pancreatic insufficiency such as in intrauterine growth retardation, post partial pancreatectomy, cystic fibrosis and following pancreatitis.
Human or animal IGF-I or IGF-II can be used and may be given singly or in combination with each other or with other growth factors such as epidermal growth factor (EGF) for enhancing or improving the desired effect(s) of IGF-I, IGF-II or its effective analogues.
The invention relates to a composition comprising exogenous human or animal IGF-I and/ or IGF-II or effective analogues thereof comprising foodstuff for oral administration, preferable artificial or natural milk or colostrum.
In animal either recombinant human IGF-I and/or IGF-II or IGF-I or IGF-II of other species (e.g. bovine, porcine) may be used either as an oral drench or as a supplement to artificial liquid or solid feeds.
Regarding the use for prevention or treatment of pancreatic disorders, the following uses are pointed out: 1) Promotion of pancreatic growth in man.
In diseases associated with inadequate exocrine pancreatic function leading to fat malabsorption e.g. cystic fibrosis or in infants following partial/complete pancreatectomy for islet cell hyperplasia. In growth retarded infants who have disproportionately reduced pancreatic size. 2) Treatment of exocrine pancreatic deficiency In diseases such as cystic fibrosis, postpancreatectomy. 3) Promotion of pancreatic development in growth retarded newbor.
WO 93/25226 PCT/SE93/00502 253386 4) Treatment in animals Promotion of growth of the pancreas to restore intestinal function of the growth retarded animals.
Preferably in man human IGF-I or IGF-II singly or in combination is used. The dose given could be 1 to 100 jig/kg/body weight per day in man and 1-1000 jig/kg, per day in animals. The preferred route of administration is by mouth either in aqueous buffer or other pharmacological composition or added to artificial feed, artificial or natural milk. Alternatively it may be installed more distally in the gastrointestinal tract for example by nasogastric tube or by duodenal tube.
In animal either recombinant human IGF-I or IGF-II of other species (e.g. bovine, porcine) may be used either as an oral drench or as a supplement to artificial liquid or solid feeds.
The claimed composition can be used as a supplement to foodstuff. The foodstuff is preferably milk for the prevention or treatment of pancreatic disorders and for the promotion of pancreatic growth.
Such a composition will at the same time promote nutrition, growth and reduce the impact of gastrointestinal infection.
This is desirable in human infants with growth failure, prematurity of where there is difficulty in establishing oral feeding.
The use is particularly desirable in infant animals from large litters, on artificial feeds or where there is growth retardation present.
The invention also extends to a nutritionally acceptable composition for the supplementation of natural or artificial milk formula for human or animal use such that similar amounts of IGF-I and/or IGF-II or analogue are provided.
The peptide may be present in amounts sufficient to provide a dose rate of approximately 1 to 100 |ig/kg body weight per day, preferably 1-10 jig/kg per day in man and 1-1000jag/kg per day in animals.
PCT/S E93/00502 6 253 3 DETAILED DESCRIPTION OF THE INVENTION The preferred form of the invention will now be described with reference to the following non-limiting example.
EXAMPLE 1 In a study 11 pigs not otherwise treated, pancreatic chemistry was ascertained after sacrifice immediately after birth. 6 of these were of normal size and 5 were intra uterine growth retarded (IUGR) at birth (Table 1). IUGR piglets were defined as those at least 2 standard deviations (SD) below the mean, whereas normal piglets had at birth weight within 1 SD of the mean.
Chemical composition of the pancreas of the normal and growth retarded neonatal pig at birth (mean + SEM) Table 1 Normal (n-6) IUGR (n = 5) Pancreatic weight (g) 1.60 ± 0.10 Pancreatic Wtibody Wt 0.57 ± 0.04 (g/kg) Protein (mg/g tissue) RNA (mg/g tissue) DNA (mg/g tissue) Total DNA (mg) Protein:DNA (mg/mg) RNA:DNA ration (mg/mg) 1.21 ± 0.05 170 ± 4.7 6.20 ± 0.37 6.81 ± 0.71 .8 + 0.9 .9 + 1.7 0.93 ± 0.06 0.96 ± 0.04* 160.8 ± 11 6.05 ± 0.33 7.66 ± 0.51 4.3 ± 0.3* 21.0 ± 0.4 0.80 ± 0.06 * p < 0.05 93/25226 7 253 386 Results presented in this table show that the pancreas was disproportionately smaller in IUGR piglets than that in normal piglets. The retardation of pancreatic development observed in the IUGR piglets was mainly due to hypoplasia less cell number as total pancreatic DNA content was lower in those animals. Histological examination showed reduction in all cell types.
EXAMPLE 2 Studies were performed in newborn piglets, that were raised for 24 hours following birth with a commercial infant milk formula (SMA Gold Cap; John Wyeth & Bro (NZ) Ltd) containing undetectable (<1 ng/ml) levels of IGF-I or IGF-II or with the same formula supplemented with either 2 jj.g/ml of recombinant human IGF-I or recombinant human IGF-II (provided Kabi Pharmacia AB, Sweden). 7 piglets recieved each treatment. The piglets were from 7 litters and each litter provided on one formula fed, one formula plus IGF-I fed and one formula plus IGF-II fed piglet. The piglets had statistically similar birth weights. After birth the piglets were fed by bottle 20 ml/kg every 2 hours for the first 12 hours, then 40 ml/kg every 4 hours thereafter until slaughter. Prior to slaughter the animals were injected with BDRU to enable calculation of cellular mitotic rate. The animals were thereafter slaughtered at 24 hours after birth for histological evaluation. 253386 Iabls.2 Mean body-weight and weights and physical dimensions of digestive organs in 24 hour old piglets raised on an infant formula with or without addition of IGF-I or IGF-II. (n=7) Control IGF-I IGF-II Birth Weight (kg) 1.286 1.317 1.295 Final Weight (kg) 1.318 1.328 1.320 Stomach weight (g/kg)# 5.02 5.11 4.99 Pancreas weight (g/kg)# 1.23 1.41** 1.37* Small intestine Weight (g/kg)# 29 32 29 Length (cm/kg)# 310 293 323 Mitotic index 6.93 9.09*** 8.63** (cells/crypt labelled) Large intestine Weight (g/kg)# 6.2 6.3 6.4 Length (cm/kg)# 6 9 66 7 2 # Adjusted for the birth weight. * p < 0.05; ** p < 0.01: ** * p < 0.001 253386 Table 3 Chemical compositions of the pancreas and the proximal jejunal mucosa.
Pancreas: (n=7) Weight (g/kg)# Protein (mg/kg)# RNA (mg/kg)# DNA (mg/kg)# Protein: DNA RNA: DNA ratio (mg/mg) Control I.23 153 II.6 4.4 .3 2.67 IGF-I 1 .41** 182** 14.2* 6.1* 31.5 2.43 IGF-II 1.37* 1 82* 13.5* 5.9* 32.0 2.40 Proximal jejunal mucosa: (n=5) Weight (g/kg)# 5.712 Protein (mg/kg)# 583 RNA (mg/kg)# 28.9 DNA (mg/kg)# 25.0 Protein: DNA 23.0 RNA: DNA ratio 1.14 (mg/mg) 6.754 623 33.7 .4 .5 1.12 6.147 559 31.0 28.1 20.0 1.11 # Adjusted for the birth weight. * p < 0.05 ** p < 0.01 WO 93/25226 PCT/SE93/00502 253386 1 0 These observations provide clear evidence that in neonatal animals oral administration of IGF-I and IGF-II are selectively active to promote growth of the pancreas.
Histological examination showed the hyperplasia (increase of number of cells) of the pancreas involved the exocrine pancreas. The effect on the pancreas was particularly marked compared to other aspects of the gastrointestial system. The increase in pancreatic size is due to an increase in cell number but not the cell size as the DNA content increases but protein:DNA ratio remained constant. These observations show clearly that oral IGF-I or IGF-II promotes pancreatic hyperplasia.
Light microscopy showed this was due to an increase in pancreatic exocrine cells dominant cell of the pancreas responsible for the production of fluids and enzymes necessary for absorption.
The data clearly show activity of oral administred IGF-I or IGF-II even in the presence of artificial milk.
Evidence suggests differential effects of IGF-I and IGF-II such that specific effects will be possible by selection of a suitable dose and preferential use of IGF-I or IGF-II or their admixture.
EXAMPLE 3 Further histological data was obtained from the histological examination of sections of the pancreases obtained for example 2.
The cellular features of the same pancreases from the control and the IGF-I and IGF-II treatment groups were therefore evaluted quantitatively. All cell counts related to the area of the visual field minus connective tissue, blood vessels etc. The features examined were (1) with regard to all cells, total cells per unit area, mean area per cell and the BrdU (bromdeoxyuridine, a marker for DNA synthesis) mitotic index, 253386 (2) with regard to endocrine cells, the numbers per unit area of insulin, glucagon and somatostatin secreting cells per unit area, and the total for the threee types, and (3) by difference, the number of exocrine cells per unit area. Endocrine cells of different types were identified by standard immunohistochemical techniques employing specific antibodies for insulin, glucagon and somatostatin. The total number of endocrine cells was determined in each case by adding the numbers for insulin, glucagon and somatostatin stained cells.
Results 1. There was a 14.6% increase in pancreatic weight with IGF-I (P<0.01); associated with that was a 6 % increase in mean cell size and an 11 % increase in mitotic index. This suggests that both hypertrophy and hyperplasia was induced by IGF-I. 2. There was an 11.4% increase in pancreatic weight with IGF-II (P<0.05); associated with this was a 5% increase in mean cell size but no increase in mitotic index. This suggests IGF-II induces hypertrophy alone.
The results from the histological examination are presented in Table 4. 1 1 'O 93/25226 1 2 Table 4 Features of the pancreas (x±SEM) 2 5 3 3 8 6 Control IGF-I IGF- Total cells Cells/unit area 9942±493 9373±354 9443±347 (no/mm2) Area/cell 102±5.4 108±4.7 107±3.5 (jiml2/cell) BrdU index 14.8±3 16.5±2.7 14.9±1.8 (no/mm2) Endocrine cells Insulin 692±73 741±68 633±112 (no/mm2) Glucagon 1015±90 960±83 1065±108 (no/mm2) Somatostatin < 57±13 69±17 48+10 (no/mm2) Total Endocrine cells 1765±109 1770±91 1746±174 (no/mm2) 13 253386

Claims (11)

WHAT WE CLAIM IS:
1. A composition comprising human or non-human IGF-1 and/or IGF-2 or effective analogues thereof in a therapeutically effective amount together with foodstuff for oral administration, with the proviso that when IGF-2 is present the foodstuff for oral administration is not artificial or natural milk or colostrum.
2. A composition according to claim 1 comprising human or non-human IGF-1 and artificial or natural milk or colostrum.
3. A composition according to claim 1 for prevention or treatment of pancreatic disorders and insufficiency.
4. A composition according to claim 1 intended for promoting pancreatic development in growth retarded human children or non-human animals.
5. A method for manufacturing a medicament for prevention or treatment of pancreatic disorders and insufficiency characterized by mixing human or non-human IGF-1 and/or IGF-2 or effective analogues thereof with a carrier in foodstuffs.
6. A method according to claim 5 in which the foodstuff is artificial or natural milk or colostrum.
7. A method according to claim 5 or 6 in which the medicament promotes pancreatic development in growth retarded human children or non-human animals.
8. A method according to any one of claims 5-7 in which human or non-human IGF-1 is used.
9. A method according to any one of claims 5-7 in which human or non-human IGF-2 is used.
10. A composition as claimed in any one of claims 1 to 4 substantially as hereinbefore described with reference to any example thereof.
11. The method as claimed in any one of claims 5-9 substantially as hereinbefore described with reference to any example thereof. \
NZ25338693A 1992-06-08 1993-06-07 Use of insulin growth factors i and ii (igf-i and ii) NZ253386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ25338693A NZ253386A (en) 1992-06-08 1993-06-07 Use of insulin growth factors i and ii (igf-i and ii)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NZ24307092 1992-06-08
NZ25338693A NZ253386A (en) 1992-06-08 1993-06-07 Use of insulin growth factors i and ii (igf-i and ii)

Publications (1)

Publication Number Publication Date
NZ253386A true NZ253386A (en) 1995-12-21

Family

ID=26651079

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ25338693A NZ253386A (en) 1992-06-08 1993-06-07 Use of insulin growth factors i and ii (igf-i and ii)

Country Status (1)

Country Link
NZ (1) NZ253386A (en)

Similar Documents

Publication Publication Date Title
US5534493A (en) Use of growth factor IGF-I or IGF-II
Odle et al. Intestinal effects of milkborne growth factors in neonates of agricultural importance
Donovan et al. Growth factors in milk as mediators of infant development
Froetschel Bioactive peptides in digesta that regulate gastrointestinal function and intake
JP3576170B2 (en) Chimeric fat body pro-GRF analogs with increased biological activity
Xu Development of the newborn GI tract and its relation to colostrum/milk intake: a review
JPH06505235A (en) Combination of IGF-I and IGFBP for anabolism
Collier et al. Regulation of bovine mammary growth by peptide hormones: involvement of receptors, growth factors and binding proteins
EP0289314B1 (en) Use of IGF-II in the treatment of bone disorders
MacDonald The role of insulin-like growth factors in small intestinal cell growth and development
MX2008015657A (en) Stabilized insulin-like growth factor polypeptides.
JPS63501567A (en) growth factors
Prosser Insulin-like growth factors in milk and mammary gland
CN101678083A (en) pharmaceutical formulations of ghrh molecules
Graber et al. Human growth and growth hormone: from antiquity to the recominant age to the future
Glasscock et al. Effects of continuous infusion of insulin-like growth factor I and II, alone and in combination with thyroxine or growth hormone, on the neonatal hypophysectomized rat.
Harrell et al. Ontogenic maturation of the somatotropin/insulin-like growth factor axis
EP0602211B1 (en) Use of growth factor igf-ii for the treatment of gastrointestinal disorders
Morgan et al. Characterization of IGF-I receptors in the porcine small intestine during postnatal development
WO1996033216A1 (en) Truncated igf-i
WO1997048412A1 (en) Long-acting galenical formulation for grf peptides
KR20040039187A (en) Administration of nucleic acid sequence to female animal
AU642871B2 (en) Somatotropin for increasing fertility in animals
NZ253386A (en) Use of insulin growth factors i and ii (igf-i and ii)
Donovan et al. The neonatal piglet as a model to study insulin like growth factor mediated intestinal growth and function

Legal Events

Date Code Title Description
RENW Renewal (renewal fees accepted)