NZ247209A - Undulating screen plate with screen openings: turbulence bar disposed at every fifth undulation - Google Patents

Undulating screen plate with screen openings: turbulence bar disposed at every fifth undulation

Info

Publication number
NZ247209A
NZ247209A NZ24720991A NZ24720991A NZ247209A NZ 247209 A NZ247209 A NZ 247209A NZ 24720991 A NZ24720991 A NZ 24720991A NZ 24720991 A NZ24720991 A NZ 24720991A NZ 247209 A NZ247209 A NZ 247209A
Authority
NZ
New Zealand
Prior art keywords
screen
screen plate
undulations
turbulence
basket
Prior art date
Application number
NZ24720991A
Inventor
William Anthony Gero
Frank Joseph Paskowski
Original Assignee
Beloit Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US07/462,686 external-priority patent/US5041212A/en
Application filed by Beloit Corp filed Critical Beloit Corp
Publication of NZ247209A publication Critical patent/NZ247209A/en

Links

Description

2-. A-AO Cos"; .< . ; n^-.T.: Qaa.O^lOfc.-;. . GO \ DSlJp^ . . .
Under the provfsfons of Rfcg»-lation 23 (1) the j Public.",'/^:-- , | P.C. Juurnri, !vc: - Specification has been ante-dated ry"* ;to ki 19 ill ;?6.AU6 I993 .... J ;. ,!.V1 I ;NEW ZEALAND PATENTS ACT, 1953 ;No.: Divided out of No. 236690 ;Date: *" c-x.
Filed 4 January -19^1 ♦A COMPLETE SPECIFICATION £ ■ : " f V' "IMPROVED EFFICIENCY SCREEN PLATE FOR SCREENING PULP" We, BELOIT CORPORATION, a Delaware Corporation, United States of America, of 1 Saint Lawrence Avenue, Beloit, Wisconsin 53511, United States of America hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement:- - 1 -(followed by page la) The present invention pertains to improvements in pulp screening apparatus and pertains particularly to an improved efficiency screen basket for use in pressure screens wherein the basket configuration provides a higher level of efficiency than existing designs.
In the papermaking process, screens are used to separate acceptable papermaking fiber from unacceptable constituents of a slurry of pulp fiber, in preparing the pulp slurry to be made into paper. In typical wood pulp screens, a slurry of pulp flows through a perforate, cylindrical screen plate or basket which may be smooth, or which may have a contoured surface facing toward the stock flowing through the screen, to increase the effective screening area. It is known to utilize different hole, slot or hole and slot combinations for optimizing screening performance.
To aid in passing the acceptable pulp through the screen plate, and to reduce plugging, pulsations are generated in the slurry, such as by passing a hydrofoil-shaped member past the screen plate. It is also known to use blunt, turbulence generating members on a screen rotor, to agitate the stock near the screen surface and improve screening efficiency. Such rotors generally operate effectively to screen pulp at one percent to two percent consistency, but do not work effectively at higher consistencies. US patent 4 855 038 discloses a pulp screen rotor which generates both turbulence and pulse and has been found to work effectively at three percent to four percent consistencies and higher. In many applications, the higher consistencies, referred to as medium consistency, are preferred for process reasons.
To provide sufficient strength to the screen plate, which generally is a basket-shaped member surrounding the rotor, to withstand the pressure experienced in the pressurized screen, and to increase 2 4 7 2 2 the screening capacity by presenting increased screening area, it has been the accepted practice in all pressure pulp screens to provide a thickly-walled screen plate which is machined to present the desired surface. Such machining is a time-consuming and expensive process. As a result of the manufacturing restrictions in the machining process, which are imposed at least in part by limitations of the machine tools themselves, the total available open accepts flow area in the screen plate has been limited, and the final shape of the screen plate has been a compromise between the limitations of machining and the desired optimum screening shape.
Since the machined screen plates are a single, integral piece, wear or damage in a small area has required replacement of the entire screen plate; including the screening surfaces, mounting surfaces, and support members. When the wear or damage occurs prematurely, the expense of operating such a screen increases significantly.
In US Patent No. 4,954,249, a modular screen basket is disclosed wherein relatively thin, sheet-like material is formed into the desired shape or contour. Stamping, pressing, and bending techniques are taught to form the screen plate, which does not require machining. The holes or slots are taught to be created during, before, or after formation of the undulations in the sheet-like material, with suggested forming techniques including laser beam cutting and punching. Utilizing a punch die as part of the forming process is suggested as a simplified, cost-effective manner for forming the openings. The modular basket has sufficient strength for pressure screening applications, including medium consistency screening.
In US Patent No. 4,954,249, it is suggested that numerous different undulating configurations, slot and hole combinations and other V 3 (followed by page 3a) features can be utilized. The basket forming technique disclosed in us Patent No. 4,954,249 allows greater control of formation, both of the undulating surface and of the slot or hole openings. It has now been discovered that 5 if various parameters are followed with respect to the physical characteristics of the basket, the basket will operate more efficiently, resulting in optimum screen performance, even at higher consistencies.
It is, therefore, one of the primary objects 10 of the present invention to provide an improved efficiency screen plate for screening pulp in a pressurized screening apparatus.
Another object of the present invention is to provide design parameter for physical features in a 15 screen basket resulting in optimum screen performance.
Still another object of the present invention is to provide an optimized screen basket for improving screen performance when medium consistency slurries are processed.
These and other objects are achieved in the present invention by providing a screen basket made of thin, sheet-like material formed into an undulating pattern, and provided with slots or hole openings for the passage of pulp. Five or less undulations are 25 provided per inch of basket circumference, and the slot openings are provided at top dead inside center of the undulation, plus or minus 90 degrees to the direction of the flow. Turbulence bars are provided in at least every third undulation, which turbulence bars protrude above 30 the undulations no more than about .187 inch.
Further objects and advantages will be apparent from the following detailed description and the accompanying drawings.
SUMMARY OF THE INVENTION In a first aspect, the subject of New Zealand Patent Specification No. 236690, the invention consists 3a in a screen plate for use in a paper pulp pressure screening apparatus having a rotor operating near the screen plate, the plate being a screen formed of a relatively thin, sheet-like material of substantially uniform thickness therethrough, said material being formed into an undulating shape and having screen openings formed therethrough, wherein said undulating shape comprises not more than five undulations per circumferential 2.54 cm (inch) of basket.
In a second aspect, the subject of New Zealand Patent Specification No. 247208, the invention consists in a screen plate for use in a paper pulp pressure screening apparatus having a rotor operating near the screen plate, the plate comprising a screen formed of a relatively thin, sheet-like material of substantially uniform thickness therethrough, said material being formed into an undulating shape and having screen openings formed therethrough, wherein said screen openings are formed in the undulations nearest the rotor in areas between about 30 degrees upstream from top dead center of the undulations to about 45 ~ degrees downstream from top dead center of the undulations.
In a third aspect, the subject of this specification, the invention consists in a screen plate for use in a paper pulp pressure screening apparatus having a rotor operating near the screen plate, the plate comprising a screen formed of a relatively thin, sheet-like material of substantially uniform thickness therethrough, said material being formed into an undulating shape and having screen openings formed therethrough, wherein turbulence bars are disposed in at least about one of every five undulations. ivj; BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a perspective view, with portions broken away, illustrating a pulp screen structure utilizing a modular screen basket made of thin-walled material manufactured according to the present invention, to provide improved screening efficiency.
Figure 2 is an enlarged fragmentary sectional view taken substantially along line II-II of Figure 1.
Figure 3 is an enlarged cross-sectional view of a portion of screen basket shown in the previous figures, which has been constructed in accordance with the design parameters of the present invention, to result in increased screen efficiency.
Figure 4 is a graph illustrating test results performed with screen baskets of various corrugation frequencies.
Figure 5 is a graph illustrating test results from tests conducted on baskets having various slot locations.
Figures 6, 7, 8, 9 and 10 illustrate, respectively, screen baskets having, respectively, slot locations are zero degrees, plus 180 degrees, plus 30 degrees, minus 30 degrees, and plus 45 degrees.
Figure 11 is a graph illustrating the results of tests conducted on baskets having various turbulence bar locations.
Figure 12 is a graph illustrating test results conducted on baskets having various turbulence bar heights.
Referring now more specifically to the drawings, and to Figure 1 in particular, numeral 8 designates a screening apparatus wherein previously treated pulp is screened to remove foreign elements such as shives, bark, knots, dirt, glass, plastic, and the like. A screen plate assembly is shown at 10, and defines in the apparatus 8 an interior chamber 11 where the pulp slurry to be screened enters the apparatus and an exterior chamber 12 where the screened pulp slurry flows out of the apparatus after passing through the screen plate assembly. The assembly is enclosed in a housing 13 which includes an end plate 13a secured by-bolts 13b. The housing has an inlet, not shown, for admitting pulp into the interior chamber 11, and an outlet, not shown, leading from the chamber 11 for the foreign material to flow out of the apparatus, which foreign material has not passed through the screen plate assembly 10 from the interior chamber 11 to the exterior chamber 12. The accepted pulp, which has flowed from the interior chamber 11 through the screen plate assembly 10 to the exterior chamber 12, flows out of the screen apparatus 8 through the accepts outlet 14.
The screen plate assembly 10 is stationary within the housing 13, and a rotor 18 is mounted for rotation within the cylindrical screen plate assembly, for aiding passage of the pulp slurry through the screen plate, and to help inhibit plugging. The rotor is rotational about a rotary-driven shaft 19 which rotates in a clock-wise direction, as viewed in Figure 1. The rotor shown is merely illustrative of a suitable type, and it should be understood that the present invention can be used for screen plates of various types for various pulse, turbulence, and combination pulse and turbulence generating rotors, particularly those most suitable for medium consistency screening.
The screen plate assembly 10 includes cylindrical screen sections 16 and 17 which, without support, are essentially flexible and would not withstand normal screen pressures. The screen sections, therefore, require rigidifying or strengthening for use in the pressurized environment of screen apparatus 8. The necessary support and strengthening is provided by end rings 20 and 20a, and an intermediate support ring 21. Each of the rings has grooves, such as illustrated by the grooves 23 and 24 in the ring 21 shown in Figure 2. The grooves 23 and 24 are circular, to hold the screen sections in a substantially cylindrical shape. The grooves 23 and 24 have a radial dimension substantially equal to the radial thickness of the shaped screen plates.
The screen plates are formed from relatively-thin, sheet-like material compared to the heretofore known machined screen plates. The thin material is formed into various shapes or contours, generally undulated, so as to present a substantial amount of screening area to the stock.
During assembly, each of the shaped screen plates is positioned into the grooves in the end rings 20 or 20a and the intermediate ring 21, and the rings are pulled together to force the screen plates into the grooves. For this purpose, axially extending rods 22 are provided, spaced circumferentially from each other, and the rods are provided at their ends with threads and r.uts 22a, so that the nuts can be tightened to pull the end rings towards each other and force the ends of the screen plates into the grooves. The grooves are preferably tapered so that the slot becomes narrower in an inward direction toward the bottom of the groove. When the rods are tightened, the screen plates are pushed tightly into the tapered grooves, so that the screen plates are held firmly in a fixed position circumferentially. It should be recognized that the screen assemblies can be made of different lengths, longer or shorter, or even greater in number, and additional reinforcing intermediate rings, such as 21, may be employed between the ends of each of the adjacent screens.
Screen openings such as holes 25 or slots 26, as shown in Figure 2, extend through the thin screen material, providing a path from the interior chamber 11 to the exterior chamber 12. It has been found that when holes 25 are provided, the material can be of about 0.088 cm (.035 inch) thickness. For elongated openings, such as slots 26, material of about 0.12 cm (.048 inch) thickness can be used. It will be recognized that. 7 depending of the formation technique utilized, other sheet thicknesses may be employed.
The thin material of the screen sections may be stainless steel or similar sheet material which is formed in a generally cylindrical shape having undulations extending around the circumference of the screen. In a simplified form, the undulations may take the form of a series of upright and inverted U-shaped sections 27 and 28, or, in other words, the screen essentially consists of a series of deep corrugations. An undulation height of about 1.14 cm (.45 inch) has been found to be acceptable. A suitable apparatus and method for forming the corrugations can be found in us Patent No. 4,954,249.
As taught therein, the shape or pattern formed can be changed by modifying the shape of the forming tool used, and the thin, sheet-like material can be readily shaped or formed into the desired pattern, with the hole or slot opening being accurately located with a punching or lancing tool utilizing in conjunction with the forming process, or by laser beam cutting. When slots are formed, coining or prestressing at the ends of the slots may be used to minimize crack formation and propagation, thereby increasing the wear life of the basket.
The modular screen basket of formed, thin, sheet-like material has made available a great variety of basket configurations, including the location of openings. It has now been discovered that, within certain parameters for slot location, corrugation frequency and the like, an increase in overall screen operation efficiency can be realized, particularly in screening medium consistency pulp slurry. Screen performance is greatly enhanced when the design parameters are followed.
In forming the corrugations or undulations with the thin, sheet-like material, it is possible to 8 form the corrugations spaced relatively closely together or relatively far apart. All that is required is the proper formation tool. It has been found, however, that baskets having more than five undulations or corrugations per circumferential 2.54 cm (inch) of the basket result in reduced screen capacity. Therefore, the thin, sheet-like material should be formed with five or less corrugations per 2.54 cm (inch), and preferably at three corrugations per 2.54 cm (inch). In a basket operated with the rotor of US patent 4 855 038 on pulp at four percent consistency, six corrugations per 2.54 cm (inch) yielded a capacity of approximately 120 tons per day, while five corrugations per 2.54 cm (inch) yielded a capacity of approximately 185 tons per day. Three corrugations per 2.54 cm (inch) yielded a capacity of 275 tons per day. The results of these tests are shown in the graph of Figure 4.
Utilizing the preferred corrugation frequency of three corrugations per 2.54 cm (inch), further tests were run with the same rotor to determine the optimum slot location. The results of these tests are indicated in Figure 5. From these tests, it has been determined that the slot openings should be provided on the inside of the basket, that is on the corrugations or ridges closest to the rotor. In the graph of Figure 5, zero degrees refers to that location at top dead center of the corrugations nearest the rotor, as illustrated in Figure 6, and +180 degrees indicates the bottom dead center in the trough or corrugation farthest from the rotor, as illustrated in Figure 7. At zero degrees or top dead center, the screen capacity was approximately 60 tons per day, while at 180 degrees or bottom dead center, capacity was 50 tons per day. At +30 degrees, which is 30 degrees downstream from the top dead center location, as shown in Figure 8, the screen capacity was 180 tons per day. At -30 degrees, which is 30 degrees upstream from top dead center, as illustrated in Figure 9, screen capacity was 120 tons per day. At +45 degrees, which is 45 degrees downstream from top dead center, as illustrated in Figure 10, screen capacity was approximately 220 tons per day. Thus, slot location at +45 degrees is preferred, and the optimum range is from -30 to +45 degrees.
It was further discovered that the use of turbulence or wear bars can increase screen capacity. Figure 11 illustrates the results of tests run to determine the preferred number of turbulence bars, when screening four percent pulp. When no turbulence bars where utilized, screen capacity was approximately 210 tons per day. When one turbulence bar was provided in every ninth corrugation, the screen capacity was 225 tons per day. When one turbulence bar was provided in every fifth corrugation, screen capacity was 270 tons per day. When one turbulence bar was provided in each third corrugation, a capacity of 270 tons per day was also experienced.
The effect of turbulence bar height was also investigated, and Figure 12 displays in graphic form those results. The tests were again conducted with the rotor of US patent 4 855 038 in a screen having about 1.27 cm (one-half inch) rotor-to-basket spacing. Medium consistency pulp was used. When the turbulence bar was in height equal to the depth of the corrugation in which it was placed, screen capacity was approximately 215 tons per day. When the turbulence bar was provided to extend above the corrugation by 0.32 cm (one-eighth inch), the screen capacity increased to 250 tons per day. However, when the turbulence bar was provided to extend above the corrugation by 0.635 cm (one-quarter inch), screen capacity dropped to 120 tons per day.
Figure 3 illustrates a preferred basket arrangement. The basket includes a series of undulations or corrugations having rotor side peaks 27 closest to the rotor, and valleys 28 farthest away. The corrugations are provided at a frequency of less than five corrugations per 2.54 cm (inch) of basket circumference. Turbulence bars 50 are provided in every third corrugation, and project above the corrugations a 5 distance 52 no more than about 0.475 cm (.187 inch).
Slots 26 are provided oriented 45 degrees in the downstream direction from top dead center of the corrugation.
An optimized screen basket configuration has 10 been shown and described in detail herein. It should be recognized, however, that various changes may be made without departing from the scope of the present invention as defined in the appended claims. 2 0 9 11

Claims (3)

WHAT WE CLAIM IS:
1 . A screen plate for use in a paper pulp pressure screening apparatus having a rotor operating near the screen plate, the plate comprising a screen formed of a relatively thin, sheet-like material of substantially uniform thickness therethrough, said material being formed into an undulating shape and having screen openings formed therethrough, wherein turbulence bars are disposed in at least substantially one of every five undulations. in which said turbulence bars extend above adjacent peaks of undulations by a dimension not more than substantially 0.635 cm (one-fourth inch). in which said turbulence bars extend above adjacent peaks of undulations by a dimension not more than substantially 0.32 cm (one-eighth inch). 4. The screen plate as defined in claim 1, in which said turbulence bars extend above adjacent - peaks of undulations by a dimension not more than substantially one-half the distance of rotor-to-screen spacing. 5. A screen plate as defined in any one of claims 1 to 4, substantially as herein described. 6. A paper pulp pressure screening apparatus having a screen plate as claimed in any one of the preceding claims.
2. The screen plate as defined in claim 1,
3. The screen plate as defined in claim *\ , A. J. PARK & SONT per agents' WJUl r7j.
NZ24720991A 1990-01-02 1991-01-04 Undulating screen plate with screen openings: turbulence bar disposed at every fifth undulation NZ247209A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US07/462,686 US5041212A (en) 1990-01-02 1990-01-02 Efficiency screen plate for screening pulp
NZ236690A NZ236690A (en) 1990-01-02 1991-01-04 Undulating perforated sheet screen: undulation pitch greater than 5mm

Publications (1)

Publication Number Publication Date
NZ247209A true NZ247209A (en) 1993-08-26

Family

ID=26650943

Family Applications (2)

Application Number Title Priority Date Filing Date
NZ24720991A NZ247209A (en) 1990-01-02 1991-01-04 Undulating screen plate with screen openings: turbulence bar disposed at every fifth undulation
NZ24720891A NZ247208A (en) 1990-01-02 1991-01-04 Undulating screen plate with screen openings between 30 o and 45 o from top dead center of the undulations

Family Applications After (1)

Application Number Title Priority Date Filing Date
NZ24720891A NZ247208A (en) 1990-01-02 1991-01-04 Undulating screen plate with screen openings between 30 o and 45 o from top dead center of the undulations

Country Status (1)

Country Link
NZ (2) NZ247209A (en)

Also Published As

Publication number Publication date
NZ247208A (en) 1993-08-26

Similar Documents

Publication Publication Date Title
US5139154A (en) Wear screen plate and method of manufacture thereof
AU631557B2 (en) Wave screen plate and manufacturing methods
US5791495A (en) Paper pulp screen cylinder
US5147543A (en) Rotating element for a screening apparatus with a contour surface produced by a plurality of protrusions in the direction of the axial length of the cylindrical rotor
US5023986A (en) Method of manufacturing a wave screen plate
CA2240101C (en) Modular screen cylinder and a method for its manufacture
CA2118410C (en) Apparatus for treating fiber suspension
US5041212A (en) Efficiency screen plate for screening pulp
US5041214A (en) Wave screen plate
EP0504161B1 (en) Basket profile for screens
US5285560A (en) Method for repairing a screen plate assembly
NZ247209A (en) Undulating screen plate with screen openings: turbulence bar disposed at every fifth undulation
EP0651091A1 (en) Finely perforated undulating screen cylinder
EP1184509B2 (en) Screening apparatus for fiber suspension
GB1593479A (en) Mechanism for screening a stock slurry
US6425486B1 (en) Cylindrical screen and a method of manufacturing it