NZ234416A - Reforming naphtha with boron-containing large-pore zeolites - Google Patents

Reforming naphtha with boron-containing large-pore zeolites

Info

Publication number
NZ234416A
NZ234416A NZ234416A NZ23441690A NZ234416A NZ 234416 A NZ234416 A NZ 234416A NZ 234416 A NZ234416 A NZ 234416A NZ 23441690 A NZ23441690 A NZ 23441690A NZ 234416 A NZ234416 A NZ 234416A
Authority
NZ
New Zealand
Prior art keywords
accordance
pore
zeolite
boron
ssz
Prior art date
Application number
NZ234416A
Inventor
Stacey I Zones
Dennis L Holtermann
Andrew Rainis
Original Assignee
Chevron Res & Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chevron Res & Tech filed Critical Chevron Res & Tech
Publication of NZ234416A publication Critical patent/NZ234416A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/085Catalytic reforming characterised by the catalyst used containing platinum group metals or compounds thereof
    • C10G35/09Bimetallic catalysts in which at least one of the metals is a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G35/00Reforming naphtha
    • C10G35/04Catalytic reforming
    • C10G35/06Catalytic reforming characterised by the catalyst used
    • C10G35/065Catalytic reforming characterised by the catalyst used containing crystalline zeolitic molecular sieves, other than aluminosilicates

Description

<div id="description" class="application article clearfix"> <p lang="en" class="printTableText">New Zealand Paient Spedficaiion for Paient Number £34416 <br><br> 234416 <br><br> Compteta Sp&amp;clilcsilof <br><br> Class: (5)...C.10..■/]&gt;., <br><br> P\iD5iC9t!£&gt;n P.O. JoUKiaf. <br><br> li <br><br> EALAND <br><br> PATENTS ACT, 1953 <br><br> (|Q <br><br> ^fiNTfOFftOE <br><br> No.: Date: <br><br> COMPLETE SPECIFICATION <br><br> "REFORMING NAPHTHA WITH BORON-CONTAINING LARGE-PORE ZEOLITES" <br><br> spy We CHEVRON RESEARCH AND TECHNOLOGY COMPANY, a corporation duly organised under the laws of the State of Delaware, USA, of 100 West Tenth Street, Wilmington, Delaware, USA, and having a place of business at 555 Market Street, San Francisco, CA, USA <br><br> hereby declare the invention for which 5T"/ we pray that a patent may be granted to -pas/us, and the method by which it is to be performed, to be particularly described in and by the following statement; - <br><br> - 1 - <br><br> (followed by page la) <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 2 <br><br> 3 <br><br> 4 <br><br> 4 <br><br> 1 <br><br> 6 <br><br> REFORMING NAPHTHA WITH BORON-CONTAINING <br><br> LARGE-PORE ZEOLITES <br><br> BACKGROUND OF THE INVENTION <br><br> Catalytic reforming is a process for treating naphtha fractions of petroleum distillates to improve their octane rating by producing aromatic components and isomerizing paraffins from components present in naphtha feedstocks. Included among the hydrocarbon reactions occurring in reforming processes are: dehydrogenation of naphthenes to aromatics, dehydrocyclization of paraffins to aromatics, and hydrocracking of paraffins to lighter gases with a lower boiling point than gasoline. Hydrocracking reactions which produce light paraffin gases are not desirable as they reduce the yield of products in the gasoline range. <br><br> Natural and synthetic zeolitic crystalline aluminosilicates and borosilicates are useful as catalysts. The use of ZSM-type catalysts and processes are described in U.S. <br><br> Patent Nos. 3,546,102, 3,679,575, 4,018,711 and 3,574,092. Zeolite L is also used in reforming processes as described in U.S. Patent Nos. 4,104,320, 4,447,316, 4,347,394 and 4, 434 , 311 . <br><br> Borosilicate zeolites are especially useful in catalytic reforming. Methods for preparing high silica content zeolites that contain framework boron are described in U.S. Patent No. 4,269,813. <br><br> The use of intermediate pore borosilicate zeolites for catalytic reforming is described in European Patent Application No. 188,913. In this application, ZSM-5, <br><br> -lea <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 234416 <br><br> ZSM-l1, ZSM-12, ZSM-23, ZSM-35, ZSM-38, ZSM-48 and zeolite beta have been identified as intermediate pore borosilicate zeolites. <br><br> A method for controlling catalytic activity of large-pore <br><br> According to the present invention, a process is provided for catalytic reforming. The process comprises contacting a hydrocarbon feedstream under catalytic reforming conditions with a composition comprising large-pore borosilicate zeolites having a pore size between 6 and 8 angstroms. Preferably, the large-pore borosilicate zeolites are boron beta zeolite, (B)SSZ-24, SSZ-31 and SSZ-33. <br><br> Boron beta zeolite is described in commonly assigned <br><br> New Zealand Patent Application No. 234,405, <br><br> and entitled <br><br> "Low-Aluminum Boron Beta Zeolite", the disclosure of which is incorporated herein by reference. <br><br> Patent Application No. 234,403, <br><br> and entitled "Zeolite (B)SSZ-24", the disclosure of which is incorporated herein by reference. <br><br> SSZ-33 is described in commonly assigned New Zealand Patent Application No. 233,714, <br><br> and entitled "Zeolite SSZ-33", the disclosure of which is incorporated herein by reference. <br><br> boron-containing zeolites is described in European Patent Application No. 234,759. <br><br> SUMMARY OF INVENTION <br><br> (B)SSZ-24 is described in commonly assigned New_Zealand <br><br> -2- <br><br> &gt;344 <br><br> 6 <br><br> SSZ-31 is described in commonly assigned co-pending ®2&lt;T application U.S. Serial No. 471158 (Docket No. B-3986 ), filed concurrently herewith, and entitled "New Zeolite <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 28 <br><br> 29 <br><br> 32 <br><br> 33 <br><br> SSZ-31", the disclosure of which is incorporated herein by refe rence. <br><br> According to a preferred embodiment, the large-pore borosilicate zeolites may be used in a multi-stage catalytic reforming process. These zeolites may be located in one or more of the reactors, with conventional platinum and rhenium <br><br> H catalysts located in the remaining reactors. <br><br> 12 <br><br> 1 3 <br><br> The reforming process may be accomplished by using fixed beds, fluid beds or moving beds for contacting the hydrocarbon feedstream with the catalysts. <br><br> 16 <br><br> n Among other factors, the present invention is based on our finding that large-pore borosilicates including boron beta zeolite [(B)Beta], SSZ-33, (B)SSZ-24 and SSZ-31 have 2® unexpectedly outstanding reforming properties. These <br><br> 21 include high sulfur tolerance, high catalyst stability, and <br><br> 22 high catalyst activity. <br><br> DETAILED DESCRIPTION OF THE INVENTION <br><br> The present invention relates to reforming processes 27 employing large-pore borosilicate zeolites. A large-pore zeolite is defined herein as a zeolite having a pore size between 6 and 8 angstroms. A method of determining this <br><br> 30 pore size is described in Journal of Catalysis (1986); <br><br> 31 Vol. 99, p. 335 (D. S. Santilli). A large-pore zeolite may be identified by using the pore probe technique described in Journal of Catalysis (1986); Vol. 99, p. 335 (D. ,S. Santilli). This method allows measurement of the <br><br> -3- <br><br> ;/'V <br><br> v 5APR 1992 •' / <br><br> -?V? p | <br><br> 23 4 4 1 <br><br> 01 <br><br> steady-state concentrations of compounds within the pores of <br><br> 02 materials. 2,2-dimethylbutane (22DMB) enters the large <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> [U 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> pores and the concentration in the pores is measured using this technique. <br><br> According to preferred embodiments of our invention, SSZ-33, (B)SSZ-24, SSZ-31 and low-aluminum boron beta zeolite [(B)beta] are large-pore borosilicate zeolites with high catalyst activity in the reforming process. <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 SSZ-33 is defined as a zeolite having a mole ratio of an <br><br> 12 oxide selected from silicon, germanium oxide and mixtures <br><br> 13 thereof to an oxide selected from boron oxide or mixtures of 1^ boron oxide with aluminum oxide, gallium oxide or iron <br><br> 15 oxide, greater than about 20:1 and having the X-ray <br><br> 16 diffraction lines of Table 1. The X-ray diffraction lines <br><br> 17 of Table 1 correspond to the calcined SSZ-33. <br><br> 18 <br><br> 19 Table 1 <br><br> 20 <br><br> 21 <br><br> 2 e d/n <br><br> 100 x I/I <br><br> 0 <br><br> 7.86 <br><br> 11.25 <br><br> 90 <br><br> 20.48 <br><br> 4.336 <br><br> 100 <br><br> 21.47 <br><br> 4.139 <br><br> 40 <br><br> 22.03 <br><br> 4.035 <br><br> 90 <br><br> 23.18 <br><br> 3.837 <br><br> 64 <br><br> 26.83 <br><br> 3.323 <br><br> 40 <br><br> (B)SSZ-24 is defined as a zeolite having a mole ratio of an oxide selected from silicon oxide, <br><br> germanium oxide, and mixtures thereof to an oxide selected from boron oxide or mixtures of boron oxide with aluminum oxide, gallium oxide, <br><br> -4- <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 2 3 4 4 <br><br> and iron oxide, between 20:1 and 100:1 and having the X-ray diffraction lines of Table 2. The X-ray diffraction lines of Table 2 correspond to the calcined (B)SSZ-24. <br><br> Table 2 <br><br> 2 e d/n <br><br> 100 x I/I <br><br> 7.50 <br><br> 11.79 <br><br> 100 <br><br> 13.00 <br><br> 6.81 <br><br> 16 <br><br> 15.03 <br><br> 5.894 <br><br> 8 <br><br> 19.93 <br><br> 4.455 <br><br> 35 <br><br> 21.42 <br><br> 4.148 <br><br> 48 <br><br> 22.67 <br><br> 3.922 <br><br> 60 <br><br> 25.15 <br><br> 3.541 <br><br> 3 <br><br> 26.20 <br><br> 3.401 <br><br> 22 <br><br> 29.38 <br><br> 3.040 <br><br> 12 <br><br> 30.43 <br><br> 2.947 <br><br> 12 <br><br> Boron beta zeolite is a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide, and mixtures thereof to an oxide selected from boron oxide, or mixtures of boron oxide with aluminum oxide, gallium oxide or iron oxide, greater than 10:1 and wherein the amount of aluminum is less than 0.10% by weight and having the X-ray diffraction lines of Table 3. The X-ray diffraction lines of Table 3 correspond to the calcined boron beta zeolite. <br><br> -5- <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 23 4 4 <br><br> Table 3 <br><br> 2 0 <br><br> d/n <br><br> 100 x I/I ' o <br><br> Shape <br><br> 7.7 <br><br> 11.5 <br><br> 85 <br><br> Broad <br><br> 13.58 <br><br> 6.52 <br><br> 9 <br><br> 14.87 <br><br> 5.96 <br><br> 12 <br><br> Broad <br><br> 18.50 <br><br> 4.80 <br><br> 3 <br><br> Very Broad <br><br> 21.83 <br><br> 4.07 <br><br> 15 <br><br> 22.87 <br><br> 3.89 <br><br> 100 <br><br> Broad <br><br> 27.38 <br><br> 3.26 <br><br> 10 <br><br> 29.30 <br><br> 3.05 <br><br> 6 <br><br> Broad <br><br> 30.08 <br><br> 2.97 <br><br> 8 <br><br> SSZ-31 is defined as a zeolite having a mole ratio of an oxide selected from silicon oxide, germanium oxide, and mixtures thereof to an oxide selected from aluminum oxide, gallium oxide, iron oxide, and mixtures thereof greater than about 50:1, and having the X-ray diffraction lines of Table 4. The X-ray diffraction lines of Table 4 correspond to the calcined SSZ-31. <br><br> Table 4 <br><br> 2 9 <br><br> d/n <br><br> 100 x I/I <br><br> 0 <br><br> Shape <br><br> 6.08 <br><br> 14.54 <br><br> 9 <br><br> 7.35 <br><br> 12.03 <br><br> 9 <br><br> 8.00 <br><br> 11.05 <br><br> 7 <br><br> Broad <br><br> 18.48 <br><br> 4.80 <br><br> 11 <br><br> 20.35 <br><br> 4. 36 <br><br> 9 <br><br> Broad <br><br> 21.11 <br><br> 4.21 <br><br> 100 <br><br> 22.24 <br><br> 4.00 <br><br> 56 <br><br> 24 .71 <br><br> 3.60 <br><br> 21 <br><br> 30.88 <br><br> 2.90 <br><br> 7 <br><br> -6- <br><br> 23 4 4 ' <br><br> °1 The large-pore borosilicat.es can be used as reforming 02 catalysts to convert light straight run naphthas and similar mixtures to highly aromatic mixtures. Thus, normal and slightly branched chained hydrocarbons, preferably having a boiling range above about 40°C and less than about 250°C, can be converted to products having a substantial aromatics content by contacting the hydrocarbon feed with the zeolite at a temperature in the range of from about 400°C to 600°C, at pressures ranging from atmospheric to 20 atmospheres, <br><br> LHSV ranging from 0.1 to 15, and a recycle hydrogen to hydrocarbon ratio of about 1 to 10. <br><br> 12 <br><br> 13 The reforming catalyst preferably contains a Group VIII <br><br> 14 metal compound to have sufficient activity for commercial <br><br> | 15 use. By Group VIII metal compound as used herein is meant <br><br> 1^ the metal itself or a compound thereof. The Group VIII 1^ noble metals and their compounds, platinum, palladium, and 1® iridium, or combinations thereof can be used. The most 19 preferred metal is platinum. The amount of Group VIII metal <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 20 <br><br> present in the conversion catalyst should be within the <br><br> 21 normal range of use in reforming catalysts, from about 0.05 <br><br> 22 <br><br> to 2.0 wt. percent, preferably 0.2 to 0.8 wt. percent. In <br><br> 23 addition, the catalyst can also contain a second Group VII <br><br> 24 metal. Especially preferred is rhenium. <br><br> 25 <br><br> 26 The zeolite/Group VIII metal catalyst can be used with or ^ 27 without a binder or matrix. The preferred inorganic matrix, <br><br> 28 where one is used, is a silica-based binder such as <br><br> 29 Cab-O-Sil or Ludox. Other matrices such as alumina, <br><br> 30 magnesia and titania can be used. The preferred inorganic <br><br> 31 matrix is nonacidic. <br><br> 32 <br><br> 33 <br><br> 34 <br><br> r&gt; 2 3 4 4 16 <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> It is critical to the selective production of aromatics in useful quantities that the conversion catalyst be substantially free of acidity, for example, by exchanging the sites in the zeolite with metal ions, e.g., Group I and Group II ions. The zeolite is usually prepared from mixtures containing alkali metal hydroxides and thus, have alkali metal contents of about 1-2 wt. %. These high levels of alkali metal, usually sodium or potassium, are unacceptable for most other catalytic applications because they greatly deactivate the catalyst for cracking reactions H by reducing catalyst acidity. Therefore, the alkali metal <br><br> 12 is removed to low levels by ion exchange with hydrogen or <br><br> 13 ammonium ions. By alkali metals as used herein is meant <br><br> 1^ ionic alkali metals or their basic compounds. Surprisingly, I5 unless the zeolite itself is substantially free of acidity, 1® the alkali metal is required in the present process to 17 reduce acidity and improve aromatics production. Alkali 1® metals are incorporated by impregnation or ion exchange <br><br> 19 using nitrate, chloride or carbonate salts. <br><br> 20 <br><br> 21 The amount of alkali metal necessary to render the zeolites ^ 22 substantially free of acidity can be calculated using <br><br> 23 standard techniques based on the aluminum, gallium or iron <br><br> 24 content of the zeolites. If a zeolite free of alkali metal is the starting material, alkali metal ions can be ion exchanged into the zeolite to substantially eliminate the acidity of the zeolite. An alkali metal content of about <br><br> 2® 100%, or greater, of the acid sites calculated on a molar <br><br> 29 basis is sufficient. <br><br> 30 <br><br> 31 where the metal ion content is less than 100% of the acid <br><br> 32 sites on a molar basis, the test described in U.S. Patent <br><br> 33 No. 4,347,394, which patent is incorporated totally herein <br><br> 34 <br><br> 25 <br><br> 26 <br><br> J 27 <br><br> -8- <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 23^4 16 <br><br> by reference, can be used to determine if the zeolite is substantially free of acidity. <br><br> The preferred alkali metals are sodium, potassium, and cesium, as well as other Groups IA and IIA metals. The zeolites can be substantially free of acidity only at very high silica:alumina mole ratios; by "zeolite consisting essentially of silica" is meant a zeolite which is substantially free of acidity without base poisoning. <br><br> A low sulfur feed is preferred in the reforming process; but due to the sulfur tolerance of these catalysts, feed desulfurization does not have to be as complete as with conventional reforming catalysts. The feed should contain less than 10 parts per million sulfur. In the case of a feed which is not low enough in sulfur, acceptable levels can be reached by hydrogenating the feed with a hydrogenating catalyst which is resistant to sulfur poisoning. An example of a suitable catalyst for this hydrodesulfurization process is an alumina-containing support and a minor catalytic proportion of molybdenum oxide, cobalt oxide and/or nickel oxide. A platinum on alumina hydrogenating catalyst can also work. In which case, a sulfur sorber is preferably placed downstream of the hydrogenating catalyst, but upstream of the present reforming catalyst. Examples of sulfur sorbers are alkali or alkaline earth metals on porous refractory inorganic oxides, zinc, etc. Hydrodesulfurization is typically conducted at 315-455°C, at 200-2000 psig, and at a LHSV of 1-5. <br><br> -9- <br><br> ) <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 00 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 23 4 4 1 6 <br><br> It. is preferable to limit the nitrogen level and the water content of the feed. Catalysts and processes which are suitable for these purposes are known to those skilled in the art. <br><br> After a period of operation, the catalyst can become deactivated by coke. Coke can be removed by contacting the catalyst with an oxygen-containing gas at an elevated temperature. If the Group VIII metal(s) have agglomerated, <br><br> then it can be redispersed by contacting the catalyst with a chlorine gas under conditions effective to redisperse the metal(s). The method of regenerating the catalyst may depend on whether there is a fixed bed, moving bed, or fluidized bed operation. Regeneration methods and conditions are well known in the art. <br><br> The reforming catalysts preferably contain a Group VIII metal compound to have sufficient activity for commercial use. By Group VIII metal compound as used herein is meant the metal itself or a compound thereof. The Group VIII noble metals and their compounds, platinum, palladium, and iridium, or combinations thereof can be used. Rhenium and tin may also be used in conjunction with the noble metal. <br><br> The most preferred metal is platinum. The amount of Group VIII metal present in the conversion catalyst should be within the normal range of use in reforming catalysts, from about 0.05-2.0 wt. %. , <br><br> Example 1 <br><br> Preparation of Platinum-(B)SSZ-24 <br><br> The borosilicate version of (B)SSZ-2'4 was prepared for use as a reforming catalyst. The zeolite powder was impregnated <br><br> -10- <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 23 4 4 <br><br> with Pt(NH^)^"2NO3 to give 0.8 wt. % Pt. The material was calcined up to 550°F in air and maintained at this temperature for three hours. The powder was pelletized on a Carver press at 1000 psi and broken and meshed to 24-40. <br><br> Example 2 Reforming Test Results <br><br> (B)SSZ—24 from Example 1 was tested as a reforming catalyst. The conditions for the reforming test were as follows. The catalyst was prereduced for 1 hour in flowing hydrogen at 950°F and atmospheric pressure. Test conditions were: <br><br> Total Pressure = 200 psig E^/HC Molar Ratio = 6.4 WHSV = 6 hr-1 <br><br> The catalyst was initially tested at 800°F and then at 900°F. The feed was an iC^ mixture supplied by Philips Petroleum Company. The catalyst from Example 1 was tested with these results. <br><br> Feed Products <br><br> Temperature, °F 800°F 900°F <br><br> Conversion % 0 79.6 100 <br><br> Toluene, wt. % 0.5 22.1 21.9 <br><br> Cg-Cg Octane, RON 63.7 86.8 105.2 <br><br> C5+ Yield, wt. % 100 54.9 35.4 Aromatization <br><br> Selectivity, % 32.1 30.2 Toluene in the <br><br> Cg+ Aromatics % 86.6 72.7 <br><br> -11- <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 2 3 4 4 <br><br> As shown by the complete conversion, this catalyst is capable of converting all types of feedstock molecules. <br><br> Example 3 <br><br> Preparation and Testing of a Neutralized Platinum-Aluminum-Boron SSZ-24 <br><br> Aluminum was substituted into the borosilicate version of (B)SSZ-24 by refluxing the zeolite with an equal mass of Al (NOg ) 2* 9^0 overnight. Prior to use, the aluminum nitrate was dissolved in 1^0 at a ratio of 50:1. The product contained acidity due to the aluminum incorporation, and this would lead to unacceptable cracking losses. Two back ion exchanges with KNOg were performed and the catalyst was calcined to 1000°F. Next, a reforming catalyst was prepared as in Example 1. It was tested as in Example 2. <br><br> Feed Products <br><br> Temperature, °F 800 900 <br><br> Conversion % 0 53.0 95.1 <br><br> Toluene, wt. % 0.5 22.6 26.6 <br><br> C5-Cg Octane, RON 63.7 78.1 99.6 <br><br> C5+ Yield, wt. % 100 81.5 46.2 Aromatization <br><br> Selectivity, % ■ 47.1 35.7 Toluene in the <br><br> Cg+ Aromatics % 90.6 78.1 <br><br> By comparison with Example 2, the incorporation of aluminum, <br><br> accompanied by its neutralization, gives a less active, but more selective catalyst. <br><br> -12- <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 23 4 4 1 <br><br> Example 4 <br><br> Preparation and Testing of a Platinum-Boron-Beta Catalyst <br><br> The borosilicate version of boron beta was impregnated with Pt(NH^)^"2N0g to give 0.8 wt. % Pt. The material was calcined up to 550°F in air and maintained at this temperature for three hours. The powder was pelletized on a Carver press at 1000 psi and broken and meshed to 24-40. The catalyst was tested as shown in Example 2 with the exception that operation at both 200 and 50 psig were explored. <br><br> Pressure, psig <br><br> 200 <br><br> 50 <br><br> 200 <br><br> Temperature, °F <br><br> 800 <br><br> 800 <br><br> 900 <br><br> Conversion % <br><br> CO CO <br><br> 8 <br><br> 77 <br><br> .0 <br><br> 100 <br><br> Toluene, wt. % <br><br> 19. <br><br> 1 <br><br> 39 <br><br> .3 <br><br> 16. <br><br> 9 <br><br> Cg-Cg Octane, RON <br><br> 00 <br><br> vo <br><br> 5 <br><br> 90 <br><br> .6 <br><br> 104. <br><br> 3 <br><br> Cg+ Yield, wt. % <br><br> 46. <br><br> 9 <br><br> 77 <br><br> .4 <br><br> 30. <br><br> 2 <br><br> Aromatization <br><br> Selectivity, % <br><br> 25. <br><br> 4 <br><br> 54 <br><br> .5 <br><br> 25. <br><br> 3 <br><br> Toluene in the <br><br> Cg+ Aromatics % <br><br> CO <br><br> 9 <br><br> 93 <br><br> .7 <br><br> 67. <br><br> 8 <br><br> The catalyst is quite stable and the values are averaged over at least 20 hours of run time. , <br><br> Example 5 <br><br> Preparation and Testing of a Platinum-Cobalt-Boron-Beta Catalyst <br><br> Cobalt was incorporated into the boron beta as described in Example 3 with Co(NO^)^ '6H20 as the cobalt source replacing <br><br> -13- <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 2344 16 <br><br> Al (NO^ ) ^ ' 9^0 as the aluminum source in Example 3. The catalyst was calcined to 1000°F, and a Platinum reforming catalyst was prepared as described in Example 1. It was tested as described in Example 2 except the WHSV was 12 and operation at both 200 and 100 psig was evaluated. <br><br> Pressure, psig 200 100 <br><br> Temperature, °F 800 800 <br><br> Conversion % 83.3 86.0 <br><br> Toluene, wt. % 18.8 27.3 <br><br> C5~C8 0ctane' R0N 85.3 90.3 <br><br> Cg+ Yield, wt. % 59.8 63.7 Aromatization <br><br> Selectivity, % 27 37 Toluene in the <br><br> C^+ Aromatics % 83.3 85.9 <br><br> By comparison with Example 4, the incorporating of cobalt gives a more active catalyst. The catalyst has good stability at 800°F. <br><br> Example 6 <br><br> Preparation of Pt-SSZ-33 <br><br> SSZ-33 was prepared for use as a reforming catalyst. The zeolite powder was impregnated with Pt(NH^)^'2NOj to give 0.8 wt. % Pt. The material was calcined up to 550°°F in air and maintained at this temperature for three hours. The powder was pelletized on a Carver press at 1000 psi and broken and screened to 24-40 mesh. <br><br> -14- <br><br> * <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 23 4 4 1 <br><br> Example 7 <br><br> Preparation of Pt-Zinc-SSZ-33 <br><br> Zinc was incorporated into the novel large-pore borosilicate SSZ-33 by refluxing ZnfAc^'^O as described in Example 3. The product was washed, dried, and calcined to 1000°F, and then impregnated with Pt(NH^)^to give 0.8 wt.% Pt. The material was calcined up to 550°F in air and maintained at this temperature for three hours. The powder was pelletized on a Carver press at 1000 psig, broken, and meshed to 24-40. It was tested as described in Example 2. Results are as follows: <br><br> Pressure, psig 200 <br><br> Temperature, °F 900 <br><br> Conversion % 71.1 <br><br> Toluene, wt. % 28 <br><br> C5-C8 0ctane' R0N 8!) <br><br> C^+ Yield, wt. % 74.2 Aromatization <br><br> Selectivity, % 44.5 Toluene in the <br><br> Cg+ Aromatics % 88.5 <br><br> -15- <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 234 4 <br><br> Example 8 <br><br> Testing of Pt-SSZ-33 and Pt-Zinc-SSZ-33 <br><br> The catalysts of Examples 6 and 7 were tested with a partially reformed naphtha at: <br><br> Total Pressure = 50 psig H-/HC Molar Ratio = 3 <br><br> -1 <br><br> LHSV = 2 hr <br><br> These conditions simulate use of the catalyst in the last reactor of a multi-stage reforming process. An analysis of the feed and products is shown below. <br><br> Feed Products <br><br> Molecular Sieve Pt-SSZ-33 Pt-Zn-SSZ-33 <br><br> Temperature, °F 780 860 <br><br> Composition, wt. % <br><br> C4- 0 13.4 9.4 <br><br> C5's Total 0 8.3 7.0 <br><br> Cg Paraffins 8.7 8.3 7.7 <br><br> Cg Naphthenes 1.0 0.9 0.9 <br><br> Benzene 1.6 3.5 2.6 <br><br> -16- <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 2 3 4 4 <br><br> Feed <br><br> C-j Paraffins 8.6 <br><br> Naphthenes 0.2 <br><br> Toluene 8.8 <br><br> Cg Paraffins 5.8 <br><br> Cg Naphthenes 0.1 <br><br> Cg Aromatics 21.1 <br><br> Cg Paraffins 2.1 <br><br> Cg+ Aromatics 32.3 <br><br> Octane, RON 94.6 <br><br> C5+ Yield, LV% 100.0 <br><br> of the Feed <br><br> These examples illustrate the ability of both catalysts to upgrade partially reformed naphtha. Incorporation of zinc improves the liquid product selectivity, apparently by reducing dealkylation of existing aromatics. <br><br> Example 9 <br><br> Comparison of Unsulfided and Sulfided Platinum Boron Beta <br><br> The borosilicate version of Beta was impregnated with Pt(NH3)4"2N03 as in Example 4. The catalyst was sulfided at 950°F for 1 hour in the presence of hydrogen. <br><br> Products <br><br> 2.9 4.5 <br><br> 0.1 0 <br><br> 13.3 11.6 <br><br> 0.5 0 <br><br> 0 0 <br><br> 22.7 23.8 <br><br> 0 0 <br><br> 26.4 31.4 101.0 101.0 <br><br> 86.0 89.0 <br><br> -17- <br><br> / <br><br> J <br><br> I <br><br> 4 4 <br><br> 01 <br><br> 02 <br><br> Test, conditions were: <br><br> 03 <br><br> Temperature = <br><br> 800°F <br><br> 04 <br><br> H2/HC Molar Ratio = <br><br> 6.4 <br><br> 05 <br><br> 06 <br><br> WHSV <br><br> 6 <br><br> 07 <br><br> Unsulfided <br><br> Pt/(B)beta <br><br> Sulfided <br><br> Pt/(B)beta <br><br> 08 <br><br> 09 <br><br> Pressure, psig 200 <br><br> 200 <br><br> 200 <br><br> 200 <br><br> 10 <br><br> Time, hrs. 3 <br><br> 18 <br><br> 3 <br><br> 18 <br><br> 11 <br><br> Feed Conversion, % 96.9 <br><br> 95.8 <br><br> 79.1 <br><br> 81.6 <br><br> 12 <br><br> Cg+ Yield, wt. % 37.6 <br><br> 40.2 <br><br> 59.4 <br><br> 57.0 <br><br> 13 <br><br> Calculated RON 93.0 <br><br> 92.8 <br><br> 87.5 <br><br> 88.4 <br><br> 14 <br><br> Aromatization 19.4 <br><br> 21.3 <br><br> 35.2 <br><br> 34.0 <br><br> 15 <br><br> 16 <br><br> Selectivity, % <br><br> 17 <br><br> 18 <br><br> Example 10 <br><br> 19 <br><br> Comparison of Sulfided Pt/(B)beta and <br><br> 20 <br><br> 21 <br><br> Sulfided Pt/(B)beta with 52% Si02 Binder <br><br> 22 <br><br> 23 <br><br> 800°F, 200 psig, <br><br> 6 WHSV, 6. <br><br> 4 H2:HC <br><br> 24 <br><br> 25 <br><br> Pt/(B)beta <br><br> Bound Pt/(B)beta <br><br> 26 <br><br> 27 <br><br> Time, hrs. 3 <br><br> 18 <br><br> 3 <br><br> 18 <br><br> 28 <br><br> Peed Conversion, % 79. <br><br> 1 81.6 <br><br> 52.7 <br><br> 57.7 <br><br> 29 <br><br> Cg+ Yield, wt. % 59. <br><br> 4 57.0 <br><br> 86.5 <br><br> 82.1 <br><br> 30 <br><br> Calculated RON 87. <br><br> 5 88.4 <br><br> 79.5 <br><br> 80.2 <br><br> 31 <br><br> Aromatization 35. <br><br> 2 34 .0 <br><br> 52.9 <br><br> 47.0 <br><br> 32 <br><br> Selectivi ty <br><br> 33 <br><br> 34 <br><br> -18- <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 26 <br><br> 27 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 2344 16 <br><br> 800°F, 50 psig, 6 WHSV, 6.4 H2:HC <br><br> Pt/(B: <br><br> (beta <br><br> Bound <br><br> Pt/(B)beta <br><br> Time, hrs. <br><br> 3 <br><br> 18 <br><br> 3 <br><br> 18 <br><br> Feed Conversion, % <br><br> 87.9 <br><br> 86.5 <br><br> 62.6 <br><br> 61.5 <br><br> Cg+ Yield, wt. % <br><br> 64.3 <br><br> 66.0 <br><br> 84.4 <br><br> 85.0 <br><br> Calculated RON <br><br> 97 .8 <br><br> 96.5 <br><br> 84.4 <br><br> 83.7 <br><br> Aromatization <br><br> 50.8 <br><br> 51.5 <br><br> 56.3 <br><br> 55.5 <br><br> Selectivity <br><br> Example 11 <br><br> Comparison of Sulfided Pt/(B)beta and Sulfided Pt/Cs-(Al)-(B)beta <br><br> 8000F, 200 psig, 6 WHSV, 6.4 H2:HC* <br><br> Pt/(B)beta Pt/Cs-(Al)-(B) beta <br><br> Feed Conversion, % 79.6 48.0 <br><br> C5+ Yield, wt. % 59.7 93.7 <br><br> Calculated RON 87.9 77.0 <br><br> Propane + Butanes, 18.8 2.3 wt. % <br><br> Toluene, wt. % 25.6 25.9 <br><br> Arom. Selectivity 35.7 56.0 <br><br> *Data averaged for first five hours. <br><br> -19- <br><br> n <br><br> ' N .J <br><br> i ' <br><br> 01 <br><br> 02 <br><br> 03 <br><br> 04 <br><br> 05 <br><br> 06 <br><br> 07 <br><br> 08 <br><br> 09 <br><br> 10 <br><br> 11 <br><br> 12 <br><br> 13 <br><br> 14 <br><br> 15 <br><br> 16 <br><br> 17 <br><br> 18 <br><br> 19 <br><br> 20 <br><br> 21 <br><br> 22 <br><br> 23 <br><br> 24 <br><br> 25 <br><br> 28 <br><br> 29 <br><br> 30 <br><br> 31 <br><br> 32 <br><br> 33 <br><br> 34 <br><br> 25 4 4 i § <br><br> 800 °F, 50 psig, 6 WHSV, 6.4 H2:HC** <br><br> Pt/(B)Beta <br><br> Pt/Cs-(Al) <br><br> -(B )beta <br><br> Time, hrs. <br><br> 3 <br><br> 18 <br><br> 3 <br><br> 18 <br><br> Feed Conversion, % <br><br> 87.9 <br><br> 86.5 <br><br> 46.0 <br><br> 40.0 <br><br> C^+ Yield, wt. % <br><br> 64.3 <br><br> 66.0 <br><br> 95.0 <br><br> 96.0 <br><br> Calculated RON <br><br> 97.8 <br><br> 96.5 <br><br> 77.0 <br><br> 74.5 <br><br> Arom. Selectivity <br><br> 50.8 <br><br> 51.5 <br><br> 59.5 <br><br> 58.0 <br><br> Propane + Butanes, <br><br> 31.4 <br><br> 28.1 <br><br> 3.3 <br><br> 2.5 <br><br> wt. % <br><br> Toluene, wt. % <br><br> 42.0 <br><br> 41.8 <br><br> 26.0 <br><br> 22.0 <br><br> **Interpolated data. <br><br> Example <br><br> 12 <br><br> Preparation and <br><br> Testing of Pt- <br><br> •Boron-SSZ-31 <br><br> 26 <br><br> , "&gt; mesh <br><br> ^ 27 <br><br> The borosilicate version of SSZ-31 was prepared for use as a reforming catalyst. The zeolite powder was impregnated with Pt(NH^)^"2NO^ to give 0.7 wt. % Pt. The material was calcined up to 600°F in air and maintained at this temperature for three hours. The powder was pelletized on a Carver press at 1000 psi, broken, and screened to 24-40 <br><br> Pt-Boron-SSZ-31 was tested for reforming using an iC^ feed mixture (Philips Petroleum Company) as follows: <br><br> -20- <br><br></p> </div>

Claims (14)

<div id="claims" class="application article clearfix printTableText"> <p lang="en"> 01<br><br> 02<br><br> 03<br><br> 04<br><br> 05<br><br> 06<br><br> 07<br><br> 08<br><br> 09<br><br> 10<br><br> 11<br><br> 12<br><br> 13<br><br> 14<br><br> 15<br><br> 16<br><br> 17<br><br> 18<br><br> 19<br><br> 20<br><br> 21<br><br> 22<br><br> 23<br><br> 24<br><br> 25<br><br> 26<br><br> 27<br><br> 28<br><br> 29<br><br> 30<br><br> 31<br><br> 32<br><br> 33<br><br> 34<br><br> 234 4<br><br> Reaction Conditions<br><br> Run 1<br><br> Run 2<br><br> Temperature, °F<br><br> 800<br><br> 800<br><br> Total pressure, psig<br><br> 200<br><br> 50<br><br> l^/Hydrocarbon Mole Ratio<br><br> 6.4<br><br> 6.4<br><br> Feed rate, WHSV, hr<br><br> 6<br><br> 6<br><br> Results<br><br> Feed<br><br> Run 1<br><br> Run 2<br><br> Conversion, %<br><br> 0<br><br> 68.1<br><br> 69.7<br><br> Aromatization Select.<br><br> 0<br><br> 39.4<br><br> 54.7<br><br> Toluene, wt. %<br><br> 0.7<br><br> 24.6<br><br> 36.0<br><br> C5-C8 Octane, RON<br><br> 63.9<br><br> 82.8<br><br> 87.6<br><br> -21-<br><br> 01<br><br> 02<br><br> 03<br><br> 04<br><br> 05<br><br> 06<br><br> 07<br><br> 08<br><br> 09<br><br> 10<br><br> 11<br><br> 12<br><br> 13<br><br> 14<br><br> 15<br><br> 16<br><br> 17<br><br> 18<br><br> 19<br><br> 20<br><br> 21<br><br> 22<br><br> 23<br><br> 24<br><br> 25<br><br> 26<br><br> 27<br><br> 28<br><br> 29<br><br> 30<br><br> 31<br><br> 32<br><br> 33<br><br> 34<br><br> 2.3441 6<br><br> WHAT IS CLAIMED IS-; WHAT if WE CLAIM IS :<br><br>
1. A catalytic reforming process which comprises contacting a hydrocarbonaceous feedstream under catalytic reforming conditions with a composition comprising large-pore borosilicate zeolites having a pore size greater than 6 and less than 8 angstroms, with the proviso that the large-pore borosilicate zeolite is not SSZ-33.<br><br>
2. A process in accordance with Claim 1 wherein said large-pore borosilicate zeolites contain less than 1000 parts per million aluminum.<br><br>
3. A process in accordance with Claim 2 wherein said large-pore borosilicate zeolites are boron beta zeolite, boron SSZ-24 and boron SSZ-31.<br><br>
4. A process in accordance with Claims 1, 2 and 3 wherein the boron in the large-pore borosilicate zeolites is partially replaced by a Group IIIA metal, or a first row transition metal.<br><br>
5. A process in accordance with Claim 4 wherein the replacing metal is cobalt, zinc, aluminum, gallium,<br><br> iron, nickel, tin and titanium.<br><br>
6. A process in accordance with Claims 1, 2, 3 and 4 wherein the hydrogenation/dehydrogenation component of said large-pore borosilicate zeolites is a Group VIII metal.<br><br>
7. A process in accordance with Claim 6 wherein the hydrogenation/dehydrogenation component of said large-pore borosilicate zeolite comprises platinum.<br><br> -22-<br><br> j V '<br><br> 01<br><br> 02<br><br> 03<br><br> 04<br><br> 05<br><br> 06<br><br> 07<br><br> 08<br><br> 09<br><br> 10<br><br> 11<br><br> 12<br><br> 13<br><br> 14<br><br> 15<br><br> 16<br><br> 17<br><br> 18<br><br> 19<br><br> 20<br><br> 21<br><br> 22<br><br> 23<br><br> 24<br><br> 25<br><br> 26<br><br> 27<br><br> 28<br><br> 29<br><br> 30<br><br> 31<br><br> 32<br><br> 33<br><br> 34<br><br> 23 4 4 1 6<br><br>
8. A process in accordance with Claim 6 wherein said large-pore borosilicate zeolite contains an alkali metal component.<br><br>
9. A process in accordance with Claims 1, 2, 3 and 4 wherein the hydrogenation/dehydrogenation component of said large-pore borosilicate zeolite comprises rhenium and platinum.<br><br>
10. A process in accordance with Claims 1, 2, 3 and 4 wherein the hydrogenation/dehydrogenation component of said large-pore borosilicate zeolites comprises platinum and tin.<br><br>
11. A process in accordance with Claims 1, 2 and 3 comprising using a fixed, moving or fluid bed reformer.<br><br>
12. A process in accordance with Claims 1, 2 and 3 which is a multi-stage catalytic reforming process.<br><br>
13. A process in accordance with Claim 12 where the large-pore borosilicate zeolite is used in the last reactor to convert the remaining light paraffins not converted by the Pt Re/A^O^ or Pt Sn/A^O^ catalysts used in the upstream reactors.<br><br>
14. A process in accordance with Claim 12 where the large-pore borosilicate zeolite is used in the last stage of a multi-stage catalytic reforming process where the operating pressure of the last stage is much -lower than the upstream stage.<br><br> -23-<br><br> 01<br><br> 02<br><br> 03<br><br> 04<br><br> 05<br><br> 06<br><br> 07<br><br> 08<br><br> 09<br><br> 10<br><br> 11<br><br> 12<br><br> 13<br><br> 14<br><br> 15<br><br> 16<br><br> 17<br><br> 18<br><br> 19<br><br> 20<br><br> 21<br><br> 22<br><br> 23<br><br> 24<br><br> 25<br><br> 26<br><br> 27<br><br> 28<br><br> 29<br><br> 30<br><br> 31<br><br> 32<br><br> 33<br><br> 34<br><br> 23 4 4 1<br><br> A process in accordance with Claim 1 wherein the feedstream contains less than 1 part per million' sulfur.<br><br> A process as claimed in any one of the preceding claims when performed substantially as hereinbefore described with reference to any example thereof.<br><br> A reform product produced by a process as claimed in any one of the preceding claims. ^—<br><br> DATED THIS C^ri DAY OF 19 90<br><br> ■' A-J- a<br><br> PER<br><br> AGENTS FOR THE APPLICANTS<br><br> -24-<br><br> </p> </div>
NZ234416A 1990-01-26 1990-07-09 Reforming naphtha with boron-containing large-pore zeolites NZ234416A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US47125690A 1990-03-09 1990-03-09

Publications (1)

Publication Number Publication Date
NZ234416A true NZ234416A (en) 1992-05-26

Family

ID=23870892

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ234416A NZ234416A (en) 1990-01-26 1990-07-09 Reforming naphtha with boron-containing large-pore zeolites

Country Status (7)

Country Link
EP (1) EP0465606A4 (en)
JP (1) JPH04504439A (en)
KR (1) KR920701398A (en)
AU (1) AU5965390A (en)
CA (1) CA2049928A1 (en)
NZ (1) NZ234416A (en)
WO (1) WO1991011501A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227569A (en) * 1991-08-19 1993-07-13 Texaco Inc. Skeletal isomerization of n-butylenes to isobutylene on boron-beta zeolites
FR2689033B1 (en) * 1992-03-27 1994-11-04 Inst Francais Du Petrole Gallium-containing catalysts and its use in the dehydrogenation of saturated hydrocarbons.
KR101514580B1 (en) * 2010-08-12 2015-04-22 미쓰이 가가쿠 가부시키가이샤 Method for manufacturing unsaturated hydrocarbon, and dehydrogenation catalyst used in said method
EP3398679A4 (en) 2015-12-28 2018-11-07 Toyota Jidosha Kabushiki Kaisha Cluster supported catalyst and production method therefor
JP6845324B2 (en) 2017-06-27 2021-03-17 トヨタ自動車株式会社 Cluster-supported porous carrier and its manufacturing method
JP6683656B2 (en) 2017-06-27 2020-04-22 トヨタ自動車株式会社 Cluster-supported catalyst and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4268420A (en) * 1978-04-18 1981-05-19 Standard Oil Company (Indiana) Hydrocarbon-conversion catalyst and its method of preparation
US4327236A (en) * 1979-07-03 1982-04-27 Standard Oil Company (Indiana) Hydrocarbon-conversion catalyst and its method of preparation
US4331641A (en) * 1979-11-07 1982-05-25 National Distillers & Chemical Corp. Synthetic crystalline metal silicate compositions and preparation thereof
US4435283A (en) * 1982-02-01 1984-03-06 Chevron Research Company Method of dehydrocyclizing alkanes
US4584089A (en) * 1983-10-24 1986-04-22 Standard Oil Company (Indiana) Borosilicate-containing catalyst and reforming processes employing same
FR2615201B2 (en) * 1986-08-25 1995-06-02 Institut Francais Petrole PROCESS FOR REGENERATING A HYDROCONVERSION HYDROCONVERSION CATALYST
US4839027A (en) * 1987-12-03 1989-06-13 Mobil Oil Corp. Catalytic reforming process

Also Published As

Publication number Publication date
EP0465606A1 (en) 1992-01-15
EP0465606A4 (en) 1992-05-20
AU5965390A (en) 1991-08-21
JPH04504439A (en) 1992-08-06
KR920701398A (en) 1992-08-11
CA2049928A1 (en) 1991-07-27
WO1991011501A1 (en) 1991-08-08

Similar Documents

Publication Publication Date Title
EP3743488B1 (en) Modified usy-zeolite catalyst for reforming hydrocarbons
US4645586A (en) Reforming process
US4435283A (en) Method of dehydrocyclizing alkanes
US4447316A (en) Composition and a method for its use in dehydrocyclization of alkanes
US4517306A (en) Composition and a method for its use in dehydrocyclization of alkanes
US4619906A (en) Catalytic composite for conversion of hydrocarbons and the method of preparation
CA1196027A (en) Method of dehydrocyclizing alkanes
US3376214A (en) Hydroforming process with mordenite, alumina and platinum catalyst
US4867864A (en) Dehydrogenation, dehydrocyclization and reforming catalyst
US3546102A (en) Catalyst and reforming process employing same
US5114565A (en) Reforming naphtha with boron-containing large-pore zeolites
US4935566A (en) Dehydrocyclization and reforming process
US4882040A (en) Reforming process
US4018711A (en) Catalytic composition
JPS6160787A (en) Dehydrocyclization method
US4539304A (en) Pretreatment method for increasing conversion of reforming catalyst
US5185484A (en) Dehydrocyclization and reforming catalyst
US3694345A (en) Nickel-containing crystalline alumino-silicate catalyst and hydrocracking process
US5028312A (en) Method of dehydrocyclizing alkanes
US8366909B2 (en) Reforming process at low pressure
US3707460A (en) Naphtha hydroforming process
NZ234416A (en) Reforming naphtha with boron-containing large-pore zeolites
US5279998A (en) Zeolitic catalyst
US5011805A (en) Dehydrogenation, dehydrocyclization and reforming catalyst
US4636298A (en) Reforming process