NZ233823A - Hand held hair drier with conical air flow from nozzles on circular array - Google Patents

Hand held hair drier with conical air flow from nozzles on circular array

Info

Publication number
NZ233823A
NZ233823A NZ23382390A NZ23382390A NZ233823A NZ 233823 A NZ233823 A NZ 233823A NZ 23382390 A NZ23382390 A NZ 23382390A NZ 23382390 A NZ23382390 A NZ 23382390A NZ 233823 A NZ233823 A NZ 233823A
Authority
NZ
New Zealand
Prior art keywords
fluid
hair
nozzles
opening
toroidal
Prior art date
Application number
NZ23382390A
Inventor
Donavon J Allen
Original Assignee
Torus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Torus Corp filed Critical Torus Corp
Priority to NZ23382390A priority Critical patent/NZ233823A/en
Publication of NZ233823A publication Critical patent/NZ233823A/en

Links

Landscapes

  • Cleaning And Drying Hair (AREA)

Description

O Priority Date(s) Coiiip.wie Specification Filed: .}C-S:3v ft 1+5. pso.ta,.. .fffessjcs....
' .""' KS APR 1993 Publication Date: P.O. Journal, No: . 233 823 NEW ZEALAND PATENTS ACT, 1953 No.: Date: SUBSTITUTION OF APPLICANT UNDER SECTION 24 rXocus . . Corporation COMPLETE SPECIFICATION FLUID FLCW APPARATUS AND PROCESS -+/We, "Err ^ROBUSTS-USAy-ING-?, of 2525 Ocean Park Blvd, Santa Monica, State of California, U.S.A., a corporation of the State of California, U.S.A., hereby declare the invention for which -t / we pray that a patent may be granted to -me/us, and the method by which it is to be performed, to be particularly described in and by the following statement:- (Followed by Page la) r''vr: ■''"OH-FCt! ' 5 A;A:'! 0 o 1 FLUID FLOW APPARATUS AND PROCESS RACKGKOUUD OF THE INVENTION This invention relates generally to the art of devices which impinge a fluid upon an object and, more particularly, to the art of fluid dynamics in the areas of washing and drying.
There are numerous examples and applications of a fluid moving when under pressure. Attention is directed particularly toward cases in which a fluid is impinged upon an object to be treated. Such cases would include the use of a garden hose to, for example, water flowers or wash a variety of items, the use of a vacuum cleaner, hair dryer and fluid contact generally. In most such cases, there is a specific application of the principles of fluid flow dynamics and, typically, a singular purpose or outcome is effected.
For example, fluid flow dynamics include the principle of focused or swirling action, whereby a mass of fluid has a circular motion which tends to form a cavity or vacuum in the center of the circle, drawing towards this cavity or vacuum matter subject to its action. This principle of vortexes (or la 2338 vortices} has been utilized in vacuum cleaning equipment to effect soli<J/gas separation.
Various specialized devices have existed within the prior art as applications of the dynamics of fluid flow to solve a variety of problems. One example is a hair cutting apparatus disclosed in U. S. Patent No- 3,900,949 to Anzalone wherein a hollow open-ended enclosure includes air movement means for drawing a subject's hair away from the scalp and into the open end of the enclosure, wherein a cutter effects severance of the drawn hair. The air movement means simultaneously removes the hair clippings.
In U. S. Patent No. 3,529,724 to Macluda, et al. , a device is disclosed which separates solid contaminate particles from a fluid medium. Fluid, is forced into a cylindrical enclosure and caused to flow in an outer circuitous path. Fluid migrates from this outer circuitous path towards the interior where it is withdrawn through a central opening, leaving heavier elements to the outside while clean fluid passes to the interior and out of the device.
U. S. Patent No. 3,475,028 to Fiedman discloses a process and apparatus for drying and finishing a washed fabric article having at least 65% polyester fibers. Steam #*. ?3 3823 and hot air are blown into a freely suspended article, followed by hot air alone to return the article to a state wherein ironing is not required.
In U. S. Patent No. 3,0 0 3,34G to Morris, et al., a laundry machine with a hydraulic separator is disclosed wherein undesirable foreign particles are removed from the laundering fluid by a system which uses a conically-shaped separating chamber.
With regard to hair dryiny, it is readily seen that fluid flow dynamics are basic to effective hair drying equipment. Generally, heated air is forced from various embodiments of a heater/blower assembly onto wet hair to dry it. The direct force of the blown air can be problematic, however, since it tends to mat down the hair, causing a barrier so that the forced air is unable to penetrate efficiently to the base of the hair. In such cases, unless one hand is used to lift and separate the hair, the drying process is prolonged. Obtaining dry hair in the shortest period of time is desirable for several reasons, principal among thein being that the application of heat to the hair tends to cause the hair ends to become brittle and split, leaving the hair less manageable and less attractive. In addition, the prolonged application of heat may cause scalp and facial discomfort and the relaxing of permanent wave 3 »-Z.pyrn\'7 0rHCE ■ 5 MAY 1991 •" "v ; V" '"i ,i >w>.j > ' --v - , 1 ' .. , ?338 curls.
In U. S. Patent No. 2, 392,405 to Phipps, a hair drying process is disclosed which provides for the continuous use of air from which a large part of the moisture content has been removed by refrigerating and reheating it. U. S. Patent No. 1,541,908 to Meyer discloses a method and means for drying the hair and scalp which involves projecting radiant heat and radiant light with the steam or blast of air upon the hair or scalp to stimulate circulation sufficiently to counteract the chilling effect of the air accompanying evaporation and I absorption of the moisture from the hair.
In addition to hair drying equipment, fluid flow dynamics are basic to cleaning devices which use a cleaning fluid. In particular, the cleaning of paint brushes and paint rollers is a consideration.
There is a widespread use of paint brushes and paint rollers for applying paint to surfaces. Through use, however, the brush or roller becomes totally saturated and paint is forced deep within bristles to become trapped at the handle, or penetrates the roller mat to remain at its core. Current methods of cleaning, to a greater or lesser extent, allow residue to remain in the applicator. When dry, the residual paint and/or other deposits inhibit effective use of 2338 the brush or roller and cause the item to be untimely discarded. With effective cleaning, however, the life of the applicator may be significantly extended.
Complicating the cleaning process is the consideration that rollers vary in diameter and a cleaning apparatus having an interference fit with one roller may not suitably engage another roller. /additionally, liquid under pressure must be applied at an appropriate angle to the roller to avoid causiny the mat of the roller to compress, inhibiting penetration of the liquid into ttie mat. Further, the inevitable splashing caused by liquid under pressure must bd offset. However, to shield the user inevitably inhibits the user's ability to monitor the cleaning process. Periodically, then, the process must be interrupted so that the user can evaluate progress which causes inconvenience and takes additional time.
Various cleaning devices for paint applicators and methods for their user have existed within the prior art. U. S. Patent No. 4,606, 777 to f3row discloses an apparatus for cleaning a paint roller comprising an annular sleeve adapted to have an interference fit with the pad of the roller. /\ similar device is disclosed in U. S. Patent No. 4,517,699 to Petricks which further includes scrubber elements positioned along the inner surface of the annular sleeve.
In U. 5. Patent no. 4 , 1 2G, 404 to Monteiro, an elongated, hollow, cylindrical body is disclosed which slidability receives the roller in close tolerance. Cylindrical casings L'or roller-type applicators are also disclosed in U. S. Patent No. 4,377,175 to Fritz and U. S. Patent No. 4 , 155, 230 to Lacher. U. S. Patent No. 2 , 905, 170 to Christensen provides an annular tube with orifices which are tangentially directed against the surface of a roller, causing it to spin or rotate. An ixially extending shield arranged about the annular tube to protect the user is t included in the disclosure. Other related disclosures include U. S. Patent No. 3,577,280 to George and U. S. Patent No. 1,421,527 to Dettiuan.
Thus, various specific applications of impinging a fluid upon an object to be treated exist in tlie prior art, each tendiny to have a singular purpose. There does not exist, however, a general application of principles of fluid flow dynamics having diverse purposes and effecting multiple outcomes.
SUMMARY OF THE INVENTION It is thus an object of this invention to provide a novel apparatus for impinging a fluid upon an object to be 0 0 7 7 o ' ■ '. J J u c.
O trea ted.
It is a further object of this invention to provide a novel process for impinging a fluid upon an object to be treated which employs either turbulent scrubbing action or turbulent drying action.
It is a more particular object of this invention to provide a novel apparatus and process for efficient and thorouyh cleaning of paint applicators.
It is a further particular object of this invention to provide a novel apparatus and process for cleaning paint applicators which allows the progress of the cleaning process* to be continuously and conveniently monitored.
It is an additional particular object of this invention to provide a novel apparatus and process for drying hair without matting it down or relaxing permanent wave curls.
It is an additional particular object of this invention to provide a novel apparatus and process for drying the hair rapidly while requiring the use of only one hand, and for minimizing heat-related facial and scalp discomfort.
These, as well as other objects, are accomplished by an apparatus which impinges a fluid upon an object to be treated, the apparatus comprising a circular, toroidal tube having an outer surface, an inner surface and a plurality of surface faces, and which defines an annular fluid passage 2338 means within the toroidal tube between its inner and outer surfaces, a straicjht connecting tube defining a fluid entry means for connecting perpendicularly to the fluid passage means, fluid outlet means disposed in a circular array and formed in one face of the toroidal tube about the inner surface at a specified angle with respect to a stated reference line positioned within the toroidal tube and communicating with the fluid passage means, and a source of forced fluid, Jr fluid under pressure, the fluid exiting from the toroidal tube through the outlet means forming a conical array of jet streams which converges to a point on the toroidal axis. The process of this invention is carried out by creating a focused flow of fluid in a predetermined direction and simply placing an object between the focal point of the focused flow and the source of the focused flow for treatment by the fluid therein.
BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 of the drawings is a bottom view of one preferred embodiment (cleaning device for paint applicators) of the apparatus in accordance with this invention showing the overall arrangement of the parts of the device and includes sectional views of the toroidal tube and straight 8 connecting tube showing the fluid passage means connecting with the fluid entry means.
Fiyure 2 o£ the drawings includes a side view of the straight connecting tube (handle) of the preferred embodiment of the apparatus in accordance with this invention shown in Figure 1, a longitudinal sectional view of the straight connecting tube and a cross-sectional view o£ the toroidal tube about the line 2-2 of Figure 1.
Figure 3 of the drawings is a bottom view of a second preferred embodiment (hand-held hair drying device) of the apparatus in accordance with this invention showing the overall arranyeinent of the parts of the device and includes sectional views of the toroidal tube and straight connecting tube illustrating the fluid passage means connecting with the fluid entry means.
Figure A of the drawings includes side views of the straight connecting tube and the associated heater/blower assembly of a second preferred einbod iine n t of the apparatus in accordance with this invention shown in Figure 3, a longitudinal sectional view of the straiglit connecting tube and a cross-sectional view o£ the toroidal tube about the line 4-4 of Figure 3.
DETAILED DESCRIPTION OF THE DRAWINGS In accordance with this invention, it has been found that an apparatus which impinges a fluid upon an object to be treated described herein represents a single application for effecting multiple and diverse purposes. Such purposes include liquid contact such as in laundering, mixing, dying and gaseous contacts such as drying. The apparatus in one preferred form is adapted for use with a cleaning fluid. This apparatus of this invention efficently and thoroughly cleans items formed of or covered with bristles, hair, fur or similar nappy fibrous material, both woven and non-woven. In particular, this preferred form of the apparatus of this invention cleans paint brushes and rollers, significantly extending the life and performance of these items.
Jet streams, emitted through a plurality of orifices positioned in a circular array on the apparatus, lift, separate and otherwise manipulate the contacted material, providing a scrubbing action to accomplish thorough cleaning. This scrubbing action when used on paint brushes and rollers j *• cleans below surfaces allowing the liquid to penetrate the brush bristles to their origin at the handle and the roller mat to its core for deep-cleaning results.
In one preferred embodiment of the device of the instant A{*1992 » invention, the cleaniny process is effectively and conveniently monitored as it proceeds. Areas of the brush or roller needing further attention are readily identified and the overall process is rapidly expedited. User of the device o£ the instant invention provides an easy and quick way to clean paint brushes and rollers, reducing the mess and frustration typically associated with this task.
The following description is of the fluid mechanics and resulting effects thereof associated with the apparatus of the instant invention, whose embodiment is a cleaning device for paint applicators: Upon connection to a pressurized water source such as a residential yard spigot and hose, and upon opening of the ball valve, the torus and connecting straight tube fill with water at inlet pressure. The static' pressure of the contained water is converted to velocity pressure at the orifice discharge openings, and the velocity of the issuing jets is determined by Torricelli's theorem.
Due to the geometry of the array of orifices with respect to that of the torus, the issuing jets form a hollow right circular cone of spray, the base of the cone being of the same diameter as that of the orifice array, and the conical axis coinciding with the toroidal axis, i.e., perpendicular to the principal face of the torus tube. The 11 ?338 individual water jets coincide at a [joint being the apex of the cone, on the toroidal axis; in other words, the jets are focused symmetrically to a point- When the apparatus is applied to a cleaning operation, it is held with the principal face parallel to the surface to be cleaned (herein referred to as the "target surface"), hence the conical spray axis is perpendicular to the target surface. The distance separating the work surface and the toroid is less than the height of the spray cone which would develop in free flow; therefore, the jets impinge on a circular ring of the target surface area short of the point of focus.
Hence, each individual jet has a component of momentum perpendicular to the target surface and a component parallel to it as well. When viewed from the base of the spray cone, each parallel component of momentum is directed towards the center or the axial point of focus. As an individual jet strikes the target surface, it is reflected backward toward the torus and at the same time inwardly toward the concial axis. As a result, the reflected jets all converge toward the conical axis. Geometrically, the shape of the flow is that of a hollow right circular cone, truncated at the area of impact with the target surface, and with the truncated 12 conical tip being reversed in direction so as to point back along the concial axis toward the principal face of the torus (perpendicular to and away from the target surface).
There are three main effects produced by the converging jets as they impact and reflect off of the target surface. First, the bristles, hairs or individual strands of target media become entrained in the liquid jets and are forced to lift away from ("stand up" upon) the target surfaces. This exposes the roots and base of the media to being wetted by the washing liquid. Rather than being compressed by liquid impact into a tangled dense mat, the target media strands tend to be isolated and lifted upright from the target surface to which they are connected, greatly increasing the strands' exposure to wetting.
Second, by the sane effect, the roots and base of the media are exposed to the kinetic energy of the jets, allowing particules of paint, dirt and other deposits to be dislodged and flushed away by the reflected jet streams.
Third, a considerable amount of fluid turbulence is created as the jets are reflected and interact dynamically with the strands of uplifted target media. Particularly as the toroid is moved in an oscillatory manner parallel to the target surface and coupled with a slight reciprocating motion along the conical spray axis perpendicular to the target 13 2338 surface, the? intensity and patterns o£ turbulence vary considerably. This causes a great "scrubbing action". The strands of media are forced into a waving or swaying notion as they continue to stand upriyht in the reflected liquid stream, and this enhances the cleaning action by further dislodging particulate matter from the media strands.
The overall effects of the fluid mechanics peculiar to this device are to physically lift entrained solids away from the media to be cleaned, from the base of the fibers outward, by direct transfer of momentum; to separate tangles and ( eliminate matting of the media which occurs in other types of cleaning methods; to thoroughly wet, clean and rinse the entire length of the media through the induced turbulence and reflected flow characteristic of the jet pattern; to accomplish the cleaning operation very efficiently, that is, througli the expenditure of less time and consumption of water or cleansing liquid than is required in other methods.
In addition, a second preferred form of the apparatus of this invention is used with a conventional heater/blower assembly to dry hair. The process of this invention employs a focused fluid-mechanical induced rotational effect which entrains, lifts from the scalp and separates the hair, the result being highly efficient turbulent drying action which 14 / 3 3 8 k 3 reaches the base of the hair tor rapid drying, requiring the use of only one hand. Drying is effected without matting down the hair, removing permanent wave curls or producing as much heat-related discomfort as perceived through the use of other types of dryers having the same wattage of heating elements.
The following description is of the fluid mechanics and resulting effects thereof associated with the stated preferred form of the apparatus of the instant invention: Upon switching on a conventional heater/blower assembly, a flow of heated air is forced into the connecting straight^ tube and hence into the toroidal tube. The static pressure of the air in the torus is converted to velocity pressure at the discharge nozzle openings and the velocity of the issuing air jets is determined by Torricelli's theorem.
Due to the geometry of the array of discharge nozzle with respect to that of the torus, the issuing jets form a hollow right circular cone of primary airflow, the base of the cone being of the same diameter as that of the nozzle array, and the conical axis coinciding with the toroidal axis, i.e., perpendicular to the face of the torus tube. The individual air jets coincide at a point being the apex of the cone on the toroidal axis; in other words, the jets are focused symmetrically to a point. Within this disclosure, V o \ -o * ■ v 2338 the term "focused flow" means a flow which is focused to a point or vertex and includes a straight conical flow and a swirling or a vortical flow which is focused.
When the device is applied to a hair drying operation, it is held with its toroidal face parallel to the scalp, hence the conical airflow axis is perpendicular to the user's scalp. Tho distance separating the scalp and the toroid is less than the height of the airflow cone which would develop in free flow; therefore, the jets impinge on a circu.'ar ring of the scalp area short of the point of focus.
Hence, each individual jet has a component of momentum perpendicular to the scalp surface and a component parallel to it as well. When viewed from the base of the airflow cone, each parallel component of momentum is directed towards the center or the axial point of focus. As an individual jet strikes the scalp surface, it is reflected backward toward the torus and at the same time inwardly toward the conical axis. As a result, the reflected jets all converge toward the conical axis. Geometrically, the shape of the flow is that of a hollow right circular cone, truncated at the area of impact with the scalp surface and with the truncated conical tip being reversed in direction so as to point back along the concial axis toward the face of the torus (perpendicular to and away from the scalp).
There are three main effects produced by the converging jets as they impact and reflect off of the scalp, which give rise to the efficiency and unique features of the drying process resulting froin this device. First, the individual strands of wet hair become entrained in the converging airflow jets and, due to the reflection and inward turning motion of the airflow, are lifted away from (forced to "stand up" upon) the sculp. This exposes the roots and lower portions of the hair strands nearest the scaip to the drying 4 airflow directly. Rather than being compressed by airstream impact into a tangled dense mat, the individual hair strands tend to be isolated and lifted upright from the scalp's surface. This action may eliminate the need for the user to use his or her second hand to manually lift the hair from the scalp with a comb or brush while holding the dryer with his or her first hand. It also contributes to this device's ability to dry hair without creating inatted tangles or removing permanent wave curls.
Second, by virtue of the geometry of the airflow pattern as it converges and is then reflected off the scalp, the hair roots and the scalp are exposed to a diffused kinetic and thermal eneryy stream in comparison to that produced by conventional types of hair dryers. That is, the scalp area 17 j" ■ - ■ i impacted by the airflow from this device, when held in a steady position, is greater than the corresponding scalp area impacted by the discharge from conventional dryers. Even though the thermal energy content of both streams is equal, the laws of heat transfer decree that, for a given time of exposure and due to t lie larger impacted surface area, the scalp temperature will be raised less with this device's airflow pattern than would occur if a conventional dryer, using the same total air flowrate and discharge temperature, were used. It has been found that this effect is quite noticeable to the user, and results in greater comfort and significantly less heat damage to the hair and scalp than possible with conventional dryers.
Third, a considerable amount of fluid turbulence is created as the airflow from this device is reflected from the scalp and interacts dynamically with the individual strands of uplifted hair. The turbulence is particularly enhanced as the toroid is moved in an oscillatory manner parallel to the target surface, and coupled with a slight reciprocating motion along the conical airflow axis perpendicular to the user's scalp; the intensity and patterns of turbulence vary considerably with this motion. The strands of hair are forced into a waving or swaying motion as they continue to 18 233823 stand upright in the reelected airstreain, and this enhances the drying rate Cor a given fixed air flowrate and temperature. The drying of wet ha i r follows the same physical laws as in the drying of any solid material, i.e., the basic laws of heat and mass transfer. The time rate of drying is a function of temperature gradient, concentration (of moisture) gradient and turbulence. The demonstrated effects of this invention are surprising in that, in comparison to conventional types of hair dryers, given the same volumetric rote of airflow through the devices and the same electrical power consumption by the air heating elements, this invention removes the same amount of moisture from the same head of hair in less time, apparently due to the turbulence patterns created.
The overall effects of the fluid mechanics unique to this invention are to physically lift entrained strands of hair from the scalp by direct transfer of momentum; to separate tangles and eliminate matting of the hair which occurs with other types of existing conventional hair dryers; to thoroughly dry the entire length of the hair through the induced turbulence and reflected flow characteristic of the airflow pattern; to accomplish the drying operation very efficiently, i.e., through the expenditure of less time than is required in other methods; to accomplish the drying 23382 without removing permanent wave curls; to provide greater comfort to the user, who perceives lower scalp temperatures than with the user o£ conventional dryers, and to reduce the process to a single-handed rather than two—handed operation for the user.
The features and advantages detailed for both preferred embodiments of the instant invention, as well as others, will be apparent from the following description and reference to the figures of drawings.
Figure 1 of the drawings illustrates one prefer red fortn 1 of the apparatus of the invention, a cleaning device for paint applicators. The device includes a circular toroidal tube 3 having an outer surface 5 and an inner surface 7 and defining an annular fluid passage means 9 between the inner and outer surfaces of toroidal tube 3. Annular fluid passage means 9 connects perpendicularly with fluid entry means 11 which is defined by straight connecting tube 13. The straight tube 13 includes a threaded connection 15, as shown in Figure 2, for accepting a conventional male hose fitting (not shown) for purposes of connecting fluid passage means 9, via fluid entry means 11, with a source of fluid under pressure. The straight tube 13 further includes a conventional unitary quarter-turn ball valve 17 with 235823 associated lever 19 for reyulating the flow of pressurized fluid.
Communicating with fluid passage' means 9 is fluid outlet means 21, comprising a plurality of orifices, also 21, are disposed in a circular array 23 and are found in face of toroidal tube 3 about the inner surface 7 the array 23 is formed such that it's centerline is coincident with the centerline of the face of torus 3. Orifices 21 are disposed at an angle of disposition with respect to a stated reference line positioned within toroidal tube 3. This angle of disposition of orifices 21 is best understood with reference' to Figure 2 of the drawings.
With respect to the preferred embodiment 1 of the apparatus of this invention, a cleaning device for paint applicators, the fluid comprises water and the source of fluid under pressure comprises a conventional water source, such as a residential yard spigot.
With respect to the orientation of the apparatus of this invention as illustrated in Figure 2 of the drawings, the horizontal center line 25 of the circular cross-section of toroidal tube 3 coincident with an orifice 21 is the reference line for the specified angle of disposition typically approximately 25 degrees of the orifice 21. At eacli pertinent position along circular array 23, an orifice 21 ^ T £ !\i f is disposed with respect to the centerline 25 o£ its respective stated cross-section. That is, each orifice 21 is set normal to the circular cross-section of toroidal tube 3, inclined off the principal axis of toroidal symmetry such that liquid flowing under pressure (see line 27) from within the torus 3, througli orifices 21, forms a conical array of liquid jets which converge to a point 33 on the toroidal axis 29. The focusing of a plurality of liquid jets into a hollow conical zone 35 which converges to a point 33, is the fluid-mechanical mechanism which causes the effectiveness of the i invention. The hollow conical zone 35 becomes the zone of optimal cleaning and minimal splashing. It is by positioning the paint brush or roller to be cleaned within zone 35 and, after connecting the cleaning device to a source of fluid under pressure [not shown] and setting it in operation, moving the cleaning device principally along the axes of the brush or roller that optimal cleaning results. The jet streams exiting througli orifices 21 manipulate brush bristles and roller mat by lifting and separating, causing a scrubbing action which forces liquid to penetrate the material deeply and agitate the material completely. This scrubbing action flushes paint and tends to loosen dried deposits to provide a clean and re-usable brush or roller. 22 •; ew • ''•' !x" ■ ■'• ■.' ■ -"'• . m ,»<a uw -r&* .-ru .* t« «•_< r;» *•• >35823 ^ \ w' In addition, flange 37 is disposed circumferentially around the outer surface 5 of toroidal tube 3, providing blade 39, positioned directly opposite straight tube 13, with angled forward edge 41. Serrations or notches 43 are positioned along flange 37 between blade 39 and straight tube 13 to scrape and loosen dried paint and other deposits from brushes or rollers which may not have been adequately cleaned at previous times of use.
It is intended that the scope of this preferred embodiment 1 of the instant invention not be limited to the t aforesaid, but include cleaning devices whose associated cleaning fluid comprises any suitable liquid and the object to be treated comprises any object suitably cleaned by liquid.
It is thus seen that the cleaning device described herein provides a novel and effective apparatus and process for cleaning paint brushes and rollers. Further, the device of this invention is made of readily available light-weight materials, is easily manipulated and allows its user to conveniently monitor the cleaning process.
Illustrated in Figure 3 of the drawings is another preferred form G1 of the apparatus of the instant invention, a hand-held hair drying device. The device includes a circular toroidal tube 63 having an outer surface 65 and an 23 1992 j ?338 inner surface 67, and defining an annular fluid passage means 69 between the inner and outer surfaces of toroidal tube 63. Annular fluid passage means 69 connects perpendicularly with fluid entry means 71 which is defined by straight connecting tube 73.
Communicating w i t li fluid passage means 69 is fluid outlet means 81, comprising a plurality of open-ended cylindrical nozzles, also 81. Cylindrical nozzles 81 are disposed in a circular array G3 and are formed in one face of toroidal tube 63 about the inner surface 67 at a specified i angle of disposition witli respect to a stated reference line positioned within the toroidal tube 63. This angle of disposition is best understood with reference to Figure 4 of the drawings, and particularly with.reference to the previously detailed discussion of angle o£ disposition in connection witli the preferred embodiment 1 of this invention, the device for cleaning paint applicators. With respect to the preferred embodiment 2 of the apparatus of this invention, a hand-held hair drying device, the referenced fluid comprised heated air and the source of forced fluid comprises a conventional heater/blower assembly.
The circular array 83 of nozzles 81 is formed such that the centerline 89 of the array is coincident with the 24 < • -<v. - ^.„y(._ „ >35823 centerline 09 of the face of the torus 63. The nozzles 81 are set normal to the circular cross-section of the toroidal tube 63/ but are inclined off the principal axes of toroidal symmetry such that air flowing under pressure (see line 87) from the source of forced air 64 through nozzles 81, forms a conical array of air jets which converges to a point 93 on the toroidal axis 89. The focusing of a plurality of air jets into a hollow conical zone 95 which converges to a point 93 is the fluid-mechanical mechanism which causes the effectiveness of apparatus 61.
The sourse of forced fluid associated with preferred embodiment 61 comprises a conventional heater/blower assembly 64 which fits, hand in glove fashion, into straight connecting tube 73 for purposes of feeding forced heated air into fluid entry means 71, througli fluid passage means 69, and out open-ended nozzles 01.
It is intended that the scope of this invention embodiment 61 of the instant invention not be limited to the aforesaid, but include hand-held drying devices whereby the associated fluid comprises heated air and the object to be treated comprises any object suitably dried by the apparatus.
The process of utilizing the embodiments of the apparatus in accordance with this invention is carried out by creating a focused flow of fluid 27 in (Figure 2) and 87 ^ fc/V/Nv c /V , '• v - i"1 " V*'r/7 •*, %t ., ... ,n,--• , >> i' i' •• ^'V£VT'R',,T<,£ ,.,, 3823 (Figure 4) in a predetermined direction and placing an object to be treated (not shown] between the focal point 33 (Figure 2) and 93 (Figure 4) of the focused flow and the source 21 (Figure 2) and 81 (Figure 4) of the flow for treatment by the fluid forced from the apparatus 1 (Figure 2) and 61 (Figure 4) .
It is thus seen that the apparatus of this invention provides a novel apparatus which impinges a fluid upon an object to be treated. It is further seen that this invention provides a novel process, whereby a focused flow is created in a predetermined direction to treat with fluid therein an object between the focal point of the flow and the source of the flow. It is further seen that the process and apparatuses of this invention have other applications such as laundering, mixing, dying, etc. As many variations will be apparent to one of skill in the art from a reading of the above specification, such variations are within the spirit and scope of the instant invention as defined by the following appended claims. 0 7 27

Claims (19)

WHAT WE CLAIM IS:
1. An apparatus suitable for drying hair comprising: a) a tubular body defining a fluid passageway therewithin and an opening therethrough; b) a plurality of nozzles located in a generally circular array about said opening and being in fluid communication with said passageway, said nozzles being adapted to focus fluid passing therethrough towards a common point away from said tubular body with fluid passing through said nozzles collectively following a conical pattern; and c) means for supplying fluid through said passageway and out said nozzles at adequate pressure that upon striking a surface having hair thereon to be dried that is apart from said body but short of said common point, fluid will be reflected rearwardly and pass through said opening while lifting hair being dried in a direction of said opening.
2. Apparatus as defined in claim 1 wherein said nozzles are of unitary construction with said tubular body.
3. Apparatus as defined in claim 1 wherein said common point falls along a center line axis through said opening. 28
4. Apparatus as defined in claim 1 wherein said nozzles are equally spaced around said opening.
5. Apparatus as defined in claim 1 further comprising: an elongated tubular member secured to said tubular body and extending outwardly therefrom along an axis parallel to an axis along a diameter of said opening, said elongated tubular member and said body being in fluid communication.
6. Apparatus as defined in claim 5 wherein said elongated tubular member is of unitary construction with said tubular body.
7. Apparatus as defined in claim 1 wherein said tubular body has a generally toroidal shape and defines a generally circular opening therethrough.
8. Apparatus as defined in any one of claims 1-7 wherein said fluid supply means is an air heater-blower unit.
9. Apparatus as defined in claim 8 wherein said air heater-blower unit forms a handle for said apparatus. 29 ' i T n ' J J 0 c. j
10. Apparatus as defined in any one of claims 5-9 wherein an elongated tubular member forms a part of said tubular body and said fluid supplying means is secured thereto.
11. Apparatus as defined in any one of claims 1-10 wherein said fluid supplied by said fluid supplying means is heated.
12. A process for drying hair comprising the steps of: a) generating a generally conical flow of fluid under pressure about an opening adjacent a base of the cone; and b) locating hair to be dried between an apex of the cone and the base of the cone so that said air reflects off said hair and returns towards said base of said cone and through said opening, while lifting hair towards said opening.
13. A process as defined in claim 12 further comprising the steps of: directing jets of a drying fluid from a generally circular array from a surface defining an unimpeded opening therethrough to form said generally conical flow of fluid from said jets. * Ox V ^ <■ \^Mari992S I V
14. A process as defined in claim 12 or claim 13 further comprising the steps of: a) providing a tubular body having a generally circular array of fluid nozzles around an opening through said body, said nozzles being oriented to direct said jets of fluid toward a common point located away from said body; b) supplying drying fluid under pressure to said nozzles to generate said generally conical flow of fluid from said nozzles; and c) positioning said body with respect to hair to be dried such that the distance from said hair and said body is less than the distance between said nozzles and said common point so that fluid from said nozzles reflects off said hair and returns through said opening.
15. The process as defined in any one of claims 12-14 wherein the fluid is heated air.
16. The process as defined in claim 14 or claim 15 comprising the further step of moving said body towards and away from said hair.
17. A process defined in any one of claims 12-16 further comprising the steps of: providing a toroidal body having openings therein v;?o? 31 for projecting said fluid therefrom, said toroidal body defining in the center thereof an orifice; directing jets of a said fluid from said openings of said toroidal body to form a flow of fluid, said jets focusing to form a hollow right circular cone of primary fluid flow with the base of said cone being coincident with said jets of fluid at said toroidal body and with the conical axis of said cone coinciding with the toroidal axis of said toroidal body; positioning said toroidal body with respect to said hair such that said flow of fluid striking the hair surface is reflected backwards toward said toroidal body and through said orifice; and said reflected flow of drying gas thereby causing said hair to be lifted toward said orifice. J O
18. An apparatus suitable for drying hair substantially as herein described with reference to any embodiment disclosed in the accompanying drawings. o
19. A process for drying hair substantially as herein described with reference to any embodiment disclosed in the accompanying drawings. 2 10 APR 19921 W >! c m PrvdxfS ilMJnC. Sjfn/eJnlr ndSho-H:'. •>4 • \ ~ •1 A. k j>m& ih SOM. S>,
NZ23382390A 1990-05-25 1990-05-25 Hand held hair drier with conical air flow from nozzles on circular array NZ233823A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ23382390A NZ233823A (en) 1990-05-25 1990-05-25 Hand held hair drier with conical air flow from nozzles on circular array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NZ23382390A NZ233823A (en) 1990-05-25 1990-05-25 Hand held hair drier with conical air flow from nozzles on circular array

Publications (1)

Publication Number Publication Date
NZ233823A true NZ233823A (en) 1993-04-28

Family

ID=19923255

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ23382390A NZ233823A (en) 1990-05-25 1990-05-25 Hand held hair drier with conical air flow from nozzles on circular array

Country Status (1)

Country Link
NZ (1) NZ233823A (en)

Similar Documents

Publication Publication Date Title
US5297739A (en) Enhanced rising device with circular array of orifices
US4991314A (en) Fluid flow apparatus and process
AU637683B2 (en) Fluid flow apparatus and process
US4928402A (en) Fluid flow apparatus and process
US9326484B2 (en) Fluid cleaning device
US11330954B2 (en) Steam nozzle system and method
USRE41367E1 (en) Sprayless surface cleaner
CA2218949C (en) Hand held turbine powered extractor nozzle
CA2948489C (en) Cleaning apparatus
US6408862B1 (en) Centrifugal paint roller cleaner
US4662768A (en) Cleaning and washing appliance
KR20180020175A (en) Surface cleaning devices and methods
WO1994026144A1 (en) Hand-held domestic utensil cleaning device
US2582552A (en) Brush having bristle cleaning apertures
NZ233823A (en) Hand held hair drier with conical air flow from nozzles on circular array
JP2001520568A (en) Full recovery stripping system
EP0034631A1 (en) Fish scaler
CA2065438A1 (en) Fluid flow apparatus and process
CA2348709C (en) Paint roller cleaning device
JPH0397950A (en) Apparatus for restricting spreading of treating liquid sprayed against textile material
AU664947B2 (en) Extraction devices for cleaning equipment
CN2487454Y (en) Multifunctional steam cleaner
KR20200002506U (en) Spray nozzle for washer
FR3119740A1 (en) Cleaning device comprising a nebulizer and a suction unit
US6185756B1 (en) Hand sprinkling rose