NZ229351A - Highly alkaline liquid, automatic dishwashing detergents - Google Patents

Highly alkaline liquid, automatic dishwashing detergents

Info

Publication number
NZ229351A
NZ229351A NZ229351A NZ22935189A NZ229351A NZ 229351 A NZ229351 A NZ 229351A NZ 229351 A NZ229351 A NZ 229351A NZ 22935189 A NZ22935189 A NZ 22935189A NZ 229351 A NZ229351 A NZ 229351A
Authority
NZ
New Zealand
Prior art keywords
composition
clay
fatty acid
chlorine
aqueous
Prior art date
Application number
NZ229351A
Inventor
Myriam Delvaux
Julien Drapier
Franco Angeli
De Gaer Daniel Van
Original Assignee
Colgate Palmolive Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Colgate Palmolive Co filed Critical Colgate Palmolive Co
Publication of NZ229351A publication Critical patent/NZ229351A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/2075Carboxylic acids-salts thereof
    • C11D3/2079Monocarboxylic acids-salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/003Colloidal solutions, e.g. gels; Thixotropic solutions or pastes
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • C11D3/12Water-insoluble compounds
    • C11D3/124Silicon containing, e.g. silica, silex, quartz or glass beads
    • C11D3/1246Silicates, e.g. diatomaceous earth
    • C11D3/1253Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite
    • C11D3/1266Layer silicates, e.g. talcum, kaolin, clay, bentonite, smectite, montmorillonite, hectorite or attapulgite in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/395Bleaching agents
    • C11D3/3956Liquid compositions

Abstract

The physical stability of liquid gel-like compositions based on montmorillonite, attapulgite, hectorite or other inorganic colloid-forming clay or other thixotropic thickener, and small amounts, such as 0.1 to 0.2 weight percent, of calcium, magnesium, aluminium or zinc stearate or other polyvalent metal salt of long chain fatty acid is greatly improved by increasing the alkalinity level to such an extent that when the composition is added to an aqueous wash bath at a concentration of about 10 grams per liter the pH of the wash bath becomes at least 11.2. The aqueous compositions preferably also includes chlorine bleach, and the chlorine-bleach loss with time is also reduced in the high alkalinity formulations. Use as liquid gel-like automatic dishwasher compositions are described.

Description

<div id="description" class="application article clearfix"> <p lang="en" class="printTableText">New Zealand Paient Spedficaiion for Paient Number £29351 <br><br> Priority Dat3(s): <br><br> 32 9 3 5 <br><br> Compete Speci'Scat;ori Fi'cj: Class: <br><br> , „ , 2 8 im 1992 <br><br> Publication P'te: •"••••." <br><br> P.O. Jourriat, No: <br><br> /.M. <br><br> NO DRAWINGS <br><br> Patents Form No. 5 <br><br> Number <br><br> &amp; i ■ &lt;t <br><br> |[;/V <br><br> 1*30 MAY 1989 ®J ;PATENTS ACT 1953 ;Dated ;COMPLETE SPECIFICATION ;HIGH ALKALINITY LIQUID AUTOMATIC DISHWASHER DETERGENT COMPOSITIONS ;We, COLGATE-PALMOLIVE COMPANY of 300 Park Avenue, New York, New York 10022, United States of America, a corporation organised under the laws of the State of Delaware, United States of America, do hereby declare the invention for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be described in and by the following statement: ;1 ;(followed by page 1a) ;22 9 3 5 1 ;The present invention relates to built aqueous liquid automatic dishwasher detergent compositions with improved cleaning performance and physical stability. More specifically the invention relates to the use of higher alkalinity levels to improve cleaning performance and rheological properties of long chain fatty acid (and their metal salts) stabilized thickened liquid automatic dishwasher detergent compositions. ;The present invention specifically relates to automatic dishwashing detergent compositions having thixotropic properties, improved chemical and physical stability, and with increased apparent viscosity, and which are readily dispersible in the washing medium to provide improved cleaning performance on dishware, glassware, china and the like. ;Commercially available household-machine dishwasher detergents provided in powder form have several disadvantages, e.g. non-uniform composition; costly operations necessary in their manufacture; tendency to cake in storage at high humidities, resulting in the formation of lumps which are difficult to disperse; dustiness, a source of particular irritation to users who suffer allergies; and tendency to cake in the dishwasher machine dispenser. Liquid forms of such compositions, however, generally cannot be used in automatic dishwashers . ;la ;22 9 3 5 1 ;Recent research and development activity has focused on the gel or "thixotropic" form of such compositions, e.g. scouring cleansers and automatic-dishwasher products characterized as thixotropic pastes. Dishwasher products so provided are primarily objectionable in that they are insufficiently viscous to remain "anchored" in the dispenser cup of the dishwasher. Ideally, thixotropic cleansing compositions should be highly viscous in a quiescent state, Bingham plastic in nature, and have relatively high yield values, when subjected to shear stresses, however, such as being shaken in a container or squeezed through an orifice, they should quickly fluidize and, upon cessation of the applied shear stress, quickly revert to the high viscosity/-Bingham plastic state. Stability is likewise of primary importance, i.e. there should be no significant evidence of phase separation or leaking after long standing. ;The provision of automatic-dishwasher compositions in gel form having the aforedescribed properties has thus for proven problematical, particularly as regards compositions for use in home dishwasher machines. For effective use, it is generally recommended that the automatic dishwashing detergent, hereinafter also designated ADD, contain (1) sodium tripolyphosphate (NaTPP) to soften or tie up hard-water minerals and to emulsify and/or peptize soil; (2) sodium silicate to supply the alkalinity necessary for effective detergency and to provide protection for fine china glaze and pattern; (3) sodium carbonate, generally considered to be optional, to enhance alkalinity.; (4) a chlorine-releasing agent to aid in the elimination of soil specks which lead to water spotting; and (5) defoamer/surfactant to reduce foam, thereby enhancing machine efficiency and supplying requisite detergency. See, for example, SDA Detergents in Depth, ;2 ;22 9 3 5 1 ;"Formulations Aspects of Machine Dishwashing," Thomas Oberle (1974). Cleansers approximating to the aforedescribed compositions are mostly liquids or powders. Combining such ingredients in a gel form effective for home-machine use has proved difficult. Generally, such compositions omit hypochlorite bleach, since it tends to react with other chemically active ingredients, particularly surfactant. Thus, U.S. Patent 4,115,308 discloses thixotropic automatic dishwasher pastes containing a suspending agent, e.g. CMC, synthetic clays or the like? inorganic salts including silicates, phosphates and polyphosphates; a small amount of surfactant and a suds depressor. Bleach is not disclosed. U.S. Patent 4,147,650 is somewhat similar, optionally including CI-(hypochlorite) bleach but no organic surfactant or foam depressant. The product is described, moreover, as a detergent slurry with no apparent thixotropic properties. ;U.S. Patent 3,985,668 describes abrasive scouring cleaners of gel-like consistency containing (1) suspending agent, preferably the Smectite and attapulgite types of clay; (2) abrasive, e.g. silica sand or perlite; and (3) filler comprising light density powdered polymers, expanded perlite and the like, which has a buoyancy and thus stabilizing effect on the composition in addition to serving as a bulking agent, thereby replacing water otherwise available for undesired supernatant layer formation due to leaking and phase destabilization. The foregoing are the essential ingredients. Optional ingredients include hypochlorite bleach, bleach stable surfactant and buffer, e.g. silicates, carbonates, and monophosphates. Builders, such as NaTPP, can be included as further optional ingredients to supply or supplement building function not provided by the ;3 ;229351 ;buffer, the amount of such builder not exceeding 5% of the total composition, according to the patent. Maintenance of the desired (greater than) pH 10 levels is-achieved by the buffer/builder components. High pH is said to minimize decomposition of chlorine bleach and undesired interaction between surfactant and bleach. When present, NaTPP is limited to 5%, as stated. Foam killer is not disclosed. ;In U.K. Patent Application GB 2,116,199A and GB 2,140,450A, both of which are assigned to Colgate-Palmolive, liquid ADD compositions are disclosed which have properties desirably characterizing thixotropic, gel-type structure and which include each of the various ingredients necessary for effective detergency within an automatic dishwasher. The normally gel-like aqueous automatic dishwasher detergent composition having thixotropic properties includes the following ingredients, on a weight basis: ;(a) 5 to 35% alkali metal tripolyphosphate; ;(b) 2.5 to 20% sodium silicate; ;(c) 0 to 9% alkali metal carbonate; ;(d) 0.1 to 5% chlorine bleach stable, water dispersible organic detergent active material; ;(e) 0 to 5% chlorine bleach stable foam depressant; ;(f) chlorine bleach compound in an amount to provide about 0.2 to 4% of available chlorine; ;(g) thixotropic thickener in an amount sufficient to provide the composition with thixotropy index of about 2.5 to 10; ;(h) sodium hydroxide, as necessary, to adjust pH; and ;(i) water, balance. ;ADD compositions so formulated are low-foaming; are readily soluble in the washing medium and most effective at pH ;4 ;values best conducive to improved cleaning performance, viz, pH 10.5-14. The compositions are normally of gel consistency, i.e. a highly viscous, opaque jelly-like material having Bingham plastic character and thus relatively high yield values. Accordingly, a definite shear force is necessary to initiate or increase flow. Under such conditions, the composition is quickly fluidized and easily dispersed. When the shear force is discontinued, the fluid composition quickly reverts to a high viscosity, Bingham plastic state closely approximating its prior consistency. ;U.S. Patent 4,511,487, dated April 16, 1985, describes a low-foaming detergent paste for dishwashers. The patented thixotropic cleaning agent has a viscosity of at least 30 Pa.s at 20°C as determined with a rotational viscometer at a spindle speed of 5 revolutions per minute. The composition is based on a mixture of finely divided hydrated sodium metasilicate, an active chlorine compound and a thickening agent which is a foliated silicate of the hectorite type. Small amount of nonionic tensides and alkali metal carbonates and/or hydroxides may be used. ;While these previously disclosed liquid ADD formulations are not subject or are subject to a lesser degree to one or more of the above-described deficiencies, it has been found that in actual practice, still further improvements in physical stability are required to "increase the shelf-life of the product and thereby enhance consumer acceptance. ;In Now Zealand patent specification No. 221556, the disclosure of which is incorporated herein in its entirety by reference, some of the present inventors described the use of minor amounts of fatty ;? 2 9 3 j 1 ;acid metal salts, such as aluminum stearate, as antisettling additives to improve physical stability and rheological properties of clay based thixotropic aqueous liquid ADD compositions. ;Although this prior application disclosed alkalinity levels to provide LADD compositions with pH's of at least 9.5, preferably at least 12.5, in actual practice these composition pH levels corresponded to pH levels in the aqueous wash bath which were substantially lower, usually below pH 11. For instance, the compositions oxempl i f i od in fhe examples of" Now Zealand patent specification No. 221556 included 2.2 weight- percent, or 3. 1 weight pcrcent of a caustic soda solution ( 50% NaOFi) , to provide compos i tion pll's of about 1 j. However, when added t;o the aqueous wash bath at a typical concentration level of about 10 grams per liter, the wash bath had a pH )f under 11, such as 10.9. ;Whils these prior compositions provide improved physical stability and acceptable cleaning performance it was desired to achieve still better cleaning performance. Toward this end the present inventors decided to increase the alkalinity level of the clay/fatty acid salt-containing liquid ADD compositions as disclosed in the aforementioned New Zealand patent specification No. 221556. ;Quite surprisingly, it was discovered that increasing alkalinity not only provided the desired improvement in cleaning performance, but unexpectedly also provided remarkable improvement in stabilizing against change with time of the rheological properties. It was also discovered, and this too was totally unexpected, that at the higher alkalinity levels, the decrease in available chlorine, for chlorine bleach containing compositions, was substantially reduced. ;6 ;13 JAN1992? ;22 9 3 5 1 ;Accordingly, it is an object of the invention to provide liquid ADD compositions having improved cleaning performance, physical stability and rheological properties. ;It is still another object of the invention to provide chlorine bleach-containing liquid ADD compositions in which loss of available chlorine with time is reduced. ;More specifically, it is an object of this invention to improve the cleaning performance and physical stability of aqueous liquid automatic dishwasher detergent pastes or gels 10 containing suspended particles (e.g. builder salts, bleach, etc.) clay thickener and fatty acid metal salt stabilizer. ;These and other objects of the invention which will become more readily understood from the following detailed description of the invention and preferred embodiments thereof 15 are achieved by a highly alkaline clay-thickened, built aqueous liquid automatic dishwasher detergent composition containing a physical stabilizer which is a long chain fatty acid metal salt and containing alkaline compounds such that when the composition is added to an aqueous wash bath, at a concentration of 10 grams 20 per liter, the wash bath has a pH of at least 11.2. In a preferred embodiment, the composition further includes a chlorine bleach compound, whereby due to the high alkalinity levels is less subject to loss of available chlorine during storage. ;In accordance with an especially preferred embodiment, 25 the present invention provides a thickened aqueous automatic dishwasher detergent composition which includes, on a weight basis: ;(a) 5 to 35% alkali metal tripolyphosphate; ;(b) 2.5 to 30% alkali metal silicate; 30 (c) 0 to 9% alkali metal carbonate; ;m ;22 9 3 5 f ;(d) 2 to ]0% alkali metal hydroxide; ;(e) 0.1 to 5% chlorine bleach stable, water dispersible organic detergent active material; ;(f) 0 to 5% chlorine bleach stable foam depressant; ;(g) chlorine bleach compound in an amount to provide about 0.2 to 4% of available chlorine; ;(h) 0.1 to 10% of inorganic colloid-forming clay ;(i) a metal salt of a long chain fatty acid in an amount effective to increase the physical stability of the composition; and ;(j) balance water; ;the total amount of (b) sodium silicate, (c) alkali metal carbonate and (d) alkali metal hydroxide providing a pH sufficiently high such that when the composition is diluted in an aqueous wash bath to provide a concentration of 10 grams per liter the pH o£ the aqueous wash bath becomes at least 11.2. ;The invention also provides a method for cleaning dishware in an automatic dishwashing machine with an aqueous wash bath containing an effective amount of the liquid automatic dishwasher detergent (LADD) composition as described above. According to this aspect of the invention, the LADD composition can be readily poured into the dispensing cup of the automatic dishwashing machine and will be sufficiently viscous to remain securely within the dispensing cup until shear forces are again applied thereto, such as by the water spray from the dishwashing machine. ;It is known that LADD effectiveness is directly related to (a) available chlorine levels; (b) alkalinity; (c) solubility in washing medium; and (d) foam inhibition. Therefore, it has been suggested that the pH of the LADD composition be at least ;8 ;about 9.5, most preferably at least about 12.5 Amounts of from about 0.5 to 6 weight percent of NaOH and about 2 to 9 weight percent of sodium carbonate irr-the LADD composition are proposed in Now Zonland patent s poo i f i c,i t-i on No. 221556. ;In accordance with the present invention the types and amounts of the alkaline components are chosen so that when the composition is added to an aqueous wash bath to provide a concentration of 10 grams of composition per liter of wash bath the pH of the wash bath becomes at least 11.2, preferably at least 11.5, such as from 11.5 to 13.5, preferably 11.5 to 12.5 By operating at these higher than normal alkalinity levels the cleaning performance is improved and at the same time the rheological properties, and particularly, physical stability, are also improved. Furthermore, in the preferred embodiment in which a chlorine bleach compound is included in the LADD composition, the additional benefit of reduction of loss of active chlorine is also obtained. ;To achieve these high pH levels it is necessary to increase the total concentration of the alkaline components, as compared to the levels actually used in the prior known LADD compositions. Such a composition is shown as Example 4 in New Zealand patent specification No. 221556. ;9 ;1 3 JA?&lt;] 1992," ;22 9 3 5 1 ;Ingredient ;Amount (A.I.) wt% ;Sodium silicate (47.5% sol'n Na20/Si02=l/2.4) ;Monostearyl phosphate ;Dowfax 3B-2 ;Thermphos NW ;Thermphos N Hexa ;Aluminum tristearate ;Sodium carbonate, anhydrous ;Caustic soda solution (50% NaOH) ;Pharmagel Euroclay ;(Mg/Al silicate clay) ;Sodium hypochlorite solution (11%) ;7.48 ;0.16 0.36 12.0 12.0 ;0.1 ;5.0 ;3.1 ;1. 25 1.0 ;balance ;Wate r pH 13 to 13.4. ;In this Example 4, the quantity of sodium hydroxide was increased from 2.2 weight percent (1.1 weight percent a.i.) to 6.2 weight percent (3.1 weight percent a.i.) with a corresponding decrease in the added water content, the sodium carbonate and sodium metasilicate levels remaining unchanged at 5.0% and 15.74% (7.48% a.i.), respectively. ;Tests for cleaning performance and rheological behavior for the high alkalinity composition of Example 4 demonstrated that these compositions were superior to the control composition (2.2 weight percent caustic soda solution). However, when tested for available chlorine content, the control composition was slightly superior to the Example 4 composition. In contrast, ;when a high alkalinity formulation according to the invention was prepared by increasing the caustic soda concentration at the ;10 ;22 9 3 5 1 ;expense of sodium carbonate then not only cleaning performance and rheological properties are improved, but loss of available chlorine content, as compared -to the control, is substantially reduced as well. Similarly, replacing Na2CC&gt;3 by additional alkali metal silicate also reduces available chlorine loss while improving cleaning performance and stabilizing rheological properties . ;Therefore, in accordance with an especially preferred embodiment of this invention, the high alkalinity is achieved in a clay-thickened, fatty acid salt stabilized, chlorine-bleach containing liquid automatic dishwasher detergent composition wherein the alkaline compounds include, on an active basis, based on the total composition, from about 3 to 20 weight percent alkali metal silicate, from about 1.0 to 4.5 weight percent alkali metal hydroxide, and from 0 to about 4 weight percent alkali metal carbonate, with the proviso that the total amount of alkali metal hydroxide and alkali metal carbonate is no more than about 6.5 weight percent and the total amount of alkali metal silicate and alkali metal carbonate is no more than about 20 weight percent, the pH of the composition being at least 12.8, and the pH of 1 liter of aqueous wash bath containing 10 grams of the composition being at least 11.5. ;Although the alkali metal of the alkaline compounds: silicate, carbonate and hydroxide, is preferably sodium, the corresponding potassium compounds, or mixtures of sodium and potassium compounds can also be used. ;The sodium silicate, which provides alkalinity and protection of hard surfaces, such as fine china glaze and pattern, is employed in an amount ranging from about 2.5 to 20 weight percent, preferably about 5 to 15 weight percent, in the ;11 ;22 9 3 5 1 ;composition. The sodium silicate is generally added in the form of an squeous solution, preferably having Na20:Si02 ratio of about 1:1.3 to 1:2.8, especially preferably 1:2.0 to 1:2.6. At this point, it should be mentioned that most of the other components of this composition, especially NaOH and sodium hypochlorite, are also often added in the form of a preliminary prepared aqueous dispersion or solution. ;The liquid automatic dishwasher detergent compositions of this invention also generally include an alkali metal phosphate detergency builder, such as sodium tripolyphosphate (NaTPP), and this too will contribute to the pH of the composi tion. ;The preferred NaTPP is employed in the LADD composition in a range of about 8 to 35 weight percent, preferably about 20 to 30 weight percent, and should preferably be free of heavy metal which tends to decompose or inactivate the preferred sodium hypochlorite and other chlorine bleach compounds. The NaTPP may be anhydrous or hydratea, including the stable hexahydrate with a degree of hydration of 6 corresponding to about 10% by weight of water or more. Especially preferred LADD compositions are obtained, for example, when using a 0.5:1 to 2:1 weight ratio of anhydrous to hexahydrated NaTPP, values of about 1:1 being particularly preferred. ;In addition to or in place of part or all of the NaTPP detergency builder, other phosphorus or non-phosphorus inorganic or organic detergency builder salts can also be used in the composition. Examples of suitable detergency builders-seauestrants include, for instance, trisodium nitrilotriacetate, tetrasodiumethvlenediamine tetraacetate, sodium citrate, and the corresponding potassium salts. Tetrapotassium or tetrasodium ;12 ;22 9 3 5 1 ;pyrophosphate can also be used. However, sodium tripolyphosphate is highly preferred where phosphorus-containing detergents are permitted. ;Foam inhibition is important to increase dishwasher machine efficiency and minimize destabilizing effects which might occur due to the presence of excess foam within the washer during use. Foam may be sufficiently reduced by suitable selection of the type and/or amount of detergent active material, the main foam-producing component. The degree of foam is also somewhat dependent on the hardness of the wash water in the machine whereby suitable adjustment of the proportions of NaTPP which has a water softening effect may aid in providing the desired degree of foam inhibition. However, it is generally preferred to include a chlorine bleach stable foam depressant or inhibitor. Particularly effective are the alkyl phosphonic acid esters of the formula ;0 ;HO P R ;OR ;and especially the alkyl acid phosphate esters of the formula ;0 ;HO—P OR ;OR ;In the above formulas, one or both R groups in each type of ester may represent independently a Ci2-&lt;-20 alkyl group. The ethoxylated derivatives of each type of ester, for example, the condensation products of one mole of ester with from 1 to 10 moles, preferably 2 to 6 moles, more preferably 3 or 4 moles, ethylene oxide can also be used. Some examples of the foregoing are commercially available, such as the products SAP from Hooker and LPKn-158 from Knapsack. Mixtures of the two types, or any ;13 ;22 9 3 5 1 ;other chlorine bleach stable types, or mixtures of mono- and di-esters of the same type, may be employed. Especially preferred is a mixture of mono- and di-C^g-C^s alkyl acid phosphate esters such as monostearyl/distearyl acid phosphates 1.2/1, and the 3 to 4 mole ethylene oxide condensates thereof. When employed, proportions of 0.1 to 5 weight percent, preferably 0.1 to 0.5 weight percent, of foam depressant in the composition is typical, the weight ratio of detergent active component (d) to foam depressant (e) generally ranging from about 10:1 to 1:1 and preferably about 5:1 to 1:1. Other defoamers which may be used include, for example, the known silicones, such as available from Dow Chemicals. In addition, it is an advantageous feature of this invention that many of the stabilizing salts, such as the stearate salts, for example, aluminum stearate, are also effective as foam killers. ;Although any chlorine bleach compound may be employed in the compositions of this invention, such as dichloro-isocyanurate, dichloro-dimethyl handantoin, or chlorinated TSP, alkali metal or alkaline earth metal, e.g. potassium, lithium, magnesium and especially sodium, hypochlorite is preferred. The composition should contain sufficient chlorine bleach compound to provide about 0.2 to 4.0% by weight of available chlorine, as determined, for example, by acidification of 100 parts of the composition with excess hydrochloric acid. A solution containing about 0-2 to 4.0% by weight of sodium hypochlorite contains or provides roughly the same percentage of available chlorine. ;About 0.8 to 1.6% by weight of available chlorine is especially preferred. For example, sodium hypochlorite (NaOCl) solution of from about 11 to about 13% available chlorine in amounts of about 3 to 20%, preferably about 7 to 12%, can be advantageously used. ;14 ;22 9 3 5 1 ;Detergent active material useful herein must be stable in the presence of chlorine bleach, especially hypochlorite bleach, and those of the organic anionic, amine oxide, phosphine oxide, sulphoxide or betaine water dispersible surfactant types are preferred, the first mentioned anionics being most preferred. They are used in amounts ranging from about 0.1 to 5% preferably about 0.3 to 2.0%. Particularly preferred surfactants herein are the linear or branched alkali metal mono- and/or di-(C8~Ci4) ;alkyl diphenyl oxide mono- and/or disulphates, commercially available for example as DOWFAX (registered trademark) 3B-2 and DOWFAX 2A-1. In addition, the surfactant should be compatible with the other ingredients of the composition. Other suitable surfactants include the primary alkylsulphates, alkylsulphonates, alkylarylsulphonates and sec.-alkylsulphates. Examples include sodium Ci0~^18 alkylsulphates such as sodium dodecylsulphate and sodium tallow alcoholsulphate; sodium Ciq-Ciq alkanesulphonates such as sodium hexadecyl-l-sulphonate and sodium Ci2"c18 alkylbenzenesulphonates such as sodium dodecylbenzenesulphonates. The corresponding potassium salts may also be employed. ;As other suitable surfactants or detergents, the amine oxide surfactants are typically of the structure R2R^N&gt;0, ;which each R represents a lower alkyl group, for instance, ;methyl, and R1 represents a long chain alkyl group having from 8 to 22 carbon atoms, for instance a lauryl, myristyl, palmityl or cetyl group. Instead of an amine oxide, a corresponding surfactant phosphine oxide I^R^PO or sulphoxide RR^SO can be employed. Betaine surfactants are typically of the structure R2R^N R"COO-, in which each R represents a lower alkylene group having from 1 to 5 carbon atoms. Specific examples of these surfactants include lauryl-dimethylamine oxide, myristyl- ;15 ;229351 ;dimethylamine oxide, the corresponding phosphine oxides and sulphoxides, and the corresponding betaines, including dodecyldimethylammonium acetate, tetradecyldiethylammonium pentanoate, hexadecyldimethylammonium hexanoate and the like. For biodegradability, the alkyl groups in these surfactants should be linear, and such compounds are preferred. ;Surfactants of the foregoing type, all well known in the art, are described, for example, in U.S. Patents 3,985,668 and 4,271,030. ;Thixotropic thickeners, i.e. thickeners for suspending agents which provide an aqueous medium with thixotropic properties, are known in the art and may be organic or inorganic water soluble, water dispersible or colloid-forming, and monomeric or polymeric, and should, of course, be stable in these compositions, e.g. stable to high alkalinity and chlorine bleach compounds, such as sodium hypochlorite. Those especially preferred generally comprise the inorganic, colloid-forming clays of smectite and/or attapulgite types. These materials are generally used in amounts of about 0.1 to 10, preferably 1 to 5 weight percent, to confer the desired thixotropic properties and Bingham plastic character. However, in the presence of the metal salt fatty acid stabilizers the desired thixotropic properties and Bingham plastic character can be obtained in the presence of lesser amounts of the thixotropic thickeners. For example, amounts of the inorganic colloid-forming clays of the smectite and/or attapulgite types in the range of from 0.1 to 3%, preferably 0.1 to 2.5%, especially 0.1 to 2%, are generally sufficient to achieve the desired thixotropic properties and Bingham plastic character when used in combination with the physical stabilizer. ;16 ;22 9 3 5 1 ;Smectite clays include montmorillonite (bentonite), hectorite, smectite, saponite, and the like. Montmorillonite clays are preferred and are available under the tradenames such as Thixogel (registered trademark) No. 1 and Gelwhite (registered trademark) GP, H, etc., from Georgia Kaolin Company; and ECCAGUM (registered trademark) GP, H, etc., from Luthern Clay Products. Attapulgite clays include the materials commercially available under the tradename Attagel (registered trademark), i.e. Attagel 40, Attagel 50 and Attagel 150 from Engelhard Minerals and Chemicals Corporation. Mixtures of smectite and attapulgite types in weight ratios of 4:1 to 1:5 are also useful herein. Abrasives or polishing agents should be avoided in the LADD compositions as they may mar the surface of fine dishware, ;crystal and the like. ;The preferred long chain fatty acids are the higher aliphatic fatty acids having from about 8 to 22 carbon atoms, ;more preferably from about 10 to 20 carbon atoms, and especially preferably from about 12 to 18 carbon atoms, inclusive of the carbon atom of the carboxyl group of the fatty acid. The aliphatic radical may be saturated or unsaturated and may be straight or branched. Straight chain saturated fatty acids are preferred. Mixtures of fatty acids may be used, such as those derived from natural sources, such as tallow fatty acid, coco fatty acid, soya fatty acid, etc., or from synthetic sources available from industrial manufacturing processes. ;Thus, examples of the fatty acids from which the polyvalent metal salt stabilizers can be formed include, for example, decanoic acid, dodecanoic acid, palmitic acid, myristic acid, stearic acid, oleic acid, eicosanoic acid, tallow fatty ;17 ;11 9 35 1 ;acid, coco fatty acid, soya fatty acid, mixtures of these acids, etc. Stearic acid and mixed fatty acids are preferred. ;The preferred metals-are the polyvalent metals of Groups IIA, IIB and IIIB, such as magnesium, calcium, aluminum and zinc, although other polyvalent metals, including those of Groups IIIA, IVA, VA, IB, IVB, VB, VIB, VIIB and VIII of the Periodic Table of the Elements can also be used. Specific examples of such other polyvalent metals include Ti, Zr, V, Nb, Mn, Fe, Co, Ni, Cd, Sn, Sb, Bi, etc. Generally, the metals may be present in the divalent to pentavalent state. Preferably, the metal salts are used in their higher oxidation states. ;Naturally, for LADD compositions, as well as any other applications where the invention composition will or may come into contact with articles used for the handling, storage or serving of food products or which otherwise may come into contact with or be consumed by people or animals, the metal salt should be selected by taking into consideration the toxicity of the metal. For this purpose, the calcium and magnesium salts are especially higher preferred as generally safe food additives. ;Many of these metal salts are commercially available. For example, the aluminum salts are available in the triacid form, e.g. aluminum stearate as aluminum tristearate, Al (C^y — 1135000)3. The monoacid salts, e.g. aluminum monostearate and diacid salts, e.g. aluminum distearate, and mixtures of two or three of the mono-, di- and tri-acid salts can be used for those metals, e.g. Al, with valences of +3, and mixtures of the mono-and di-acid salts can be used for those metals, e.g. 2n, with valences of +2. It is most preferred that the diacids of the +2 valent metals and the triacids of the +3 valent metals, the ;18 ;22 935 1 ;tetraacids of the +4 metals, and the pentacids of the +5 valent metals, be used in predominant amounts. ;The metal salts, as mentioned above, are generally commercially available but can be easily produced by, for example, saponification of a fatty acid, e.g. animal fat, ;followed by treatment with an hydroxide or oxide of the polyvalent metal, for example, in the case of the aluminum salt, ;with alum, alumina, etc., or by reaction of a soluble metal salt with a soluble fatty acid salt. ;Calcium stearate, i.e. calcium distearate, magnesium stearate, i.e. magnesium distearate, aluminum stearate, i.e. aluminum tristearate, and zinc stearate, i.e. zinc distearate, are the preferred polyvalent fatty acid salt stabilizers. Mixed fatty acid metal salts, such as the naturally occurring acids, e.g. coco acid, as well as mixed fatty acids resulting from the commercial manufacturing process are also advantageously used as an inexpensive but effective source of the long chain fatty acid. ;the amount of the fatty acid salt stabilizer to achieve the desired enhancement of physical stability will depend on such factors as the nature of the fatty acid salt, the nature and amount of the thixotropic agent, detergent active compound, inorganic salts, especially NaTPP, other LADD ingredients, as well as the anticipated storage and shipping conditions. ;Generally, however, amounts of the polyvalent metal fatty acid salt stabilizing agents in the range of from about 0.02 to 1%, preferably from about 0.06 to 0.8%, especially preferably from about 0.08 to 0.4%, provide a long term stability and absence of phase separation upon standing or during transport at both low and elevated temperatures as are required for a commercially acceptable product. ;19 ;22 935 1 ;Depending on the amounts, proportions and types of physical stabilizers and thixotropic agents, the addition of the fatty acid salt not only increases physical stability but also provides a simultaneous increase in apparent viscosity. Ratios of fatty acid salt to thixotropic agent in the range of from about 0.08-0.4 weight percent fatty acid salt and from about 1-2.5 weight percent thixotropic agent are usually sufficient to provide these simultaneous benefits and, therefore, the use of these ingredients in these ratios is most preferred. ;The amount of water contained in these composition should, of course, be neither so high as to produce unduly low viscosity and fluidity, nor so low as to produce unduly high viscosity and low flowability, thixotropic properties in either case being diminished or destroyed. Such amount is readily determined by routine experimentation in any particular instance, generally ranging from about 30 to 75 weight percent, preferably about 35 to 65 weight percent. The water should also be preferably deionized or softened. ;According to one preferred method of making these compositions, one should dissolve or disperse first all the inorganic salts, i.e. carbonate (when employed), silicate and tripolyphosphate, in the aqueous medium. Thickening agent is added last. The foam depressor (when employed) is preliminarily provided as an aqueous dispersion, as is the thickening agent. The foam depressant dispersion, caustic soda (when employed) and inorganic salts are first mixed at elevated temperatures in aqueous solution (deionized water) and, thereafter, cooled, using agitation throughout. Bleach, surfactant, fatty acid metal salt stabilizer and thickener dispersion at room temperature are thereafter added to the cooled (25-35°C) solution. Excluding the ;20 ;22 9 35 1 ;chlorine bleach compound, total salt concentration (NaTPP, sodium silicate and carbonate) is generally about 20 to 50 weight percent, preferably about 30 to 40 weight percent in the composition . ;Another highly preferred method for mixing the ingredients of the LADD formulations involves first forming a mixture of the water, foam suppressor, detergent, physical stabilizer (fatty acid salt) and thixotropic agent, e.g. clay. These ingredients are mixed together under high shear conditions, preferably starting at room temperature, to form a uniform dispersion. To this premixed portion, the remaining ingredients are introduced under low shear mixing conditions. For instance, the required amount of the premix is introduced into a low shear mixer and thereafter the remaining ingredients are added, with mixing, either sequentially or simultaneously. Preferably, the ingredients are added sequentially, although it is not necessary to complete the addition of all of one ingredient before beginning to add the next ingredient. Furthermore, one or more of the ingredients can be divided into portions and added at different times. Good results have been obtained by adding the remaining ingredients in the following sequence: sodium hydroxide, alkali metal carbonate, sodium silicate, alkali metal tripolyphosphate (hydrated), alkali metal tripolyphosphate (anhydrous or up to 5% water), bleach (preferably, sodium hypochlorite) and sodium hydroxide. ;Other conventional ingredients may be included in these compositions in small amounts, generally less than about 3 weight percent, such as perfume, hydrotropic agents such as the sodium benzene, toluene, xylene and cumene sulphonates, preservatives, dyestuffs and pigments and the like, all of course being stable ;21 ;22 9 3 5 1 ;to chlorine bleach compound and high alkalinity (properties of all the components). Especially preferred for coloring are the chlorinated phthalocyanines arul polysulphides of aluminosilicate which provide, respectively, pleasing green and blue tints. Ti02 may be employed for whitening or neutralizing off-shades. ;The liquid ADD compositions of this invention are readily employed in known manner for washing dishes, other kitchen utensils and the like in an automatic dishwasher, ;provided with a suitable detergent dispenser, in an aqueous wash bath containing an effective amount of the composition, generally sufficient to fill or partially fill the automatic dispenser cup of the particular machine being used. ;The invention may be put into practice in various ways and a number of specific embodiments will be described to illustrate the invention with reference to the accompanying examples. ;All amounts of proportions referred to herein are by weight of the composition unless otherwise indicated. ;Example 1 ;In order to demonstrate the effect of the alkalinity of the fatty acid metal salt stabilized, clay thickened liquid ADD formulations, compositions as shown in Table I ate prepared with varying amounts of alkaline compounds. ;22 ;Table I ;Amount (Weight/%) ;fo U&gt; ;Run No. Run No. Run No. Run No. Run No. Run No. Ingredient. Con trol 1 2 3 4 5 6 ;Water, deionized 41.75 41.75 41.75 37.75 35.75 38.05 34.24 ;Caustic soda, sol'n 2.20 5.20 7.20 6.20 8.20 2.20 2.20 ;(50% NaOH) ;Ha2C03 5.00 2.00 5.00 5.00 ;Na20•Si02 ;(47.5% sol'n, Na20:Si02=l: 2. 4 ) ;(57.5% sol'n, Na20:Si02=l--2. 4 ) ;(55.9% sol'n, Na20:Si02=l:2) ;Sodium tripolyphosphate, ;anhydrous Sodium tripolyphosphate, ;hexahydrate Sodium hypochlorite ;(11% available chlorine) ;Monostearyl phosphate Dowfax 3B-2 (45% Na monodecyl/didecyl diphenyl oxide disulfonate-aqueous solution) ;Aluminum tristearate Pharmagel H, clay ;15 .74 ;15 ;. 74 ;15. ;74 ;15 . ;74 ;15 ;. 74 ;15 . ;74 ;— ;— ;8 . ;70 ;— ;— ;— ;— ;— ;28 ;. 25 ;12.00 ;12 ;.00 ;12. ;00 ;12. ;00 ;12 ;.00 ;12. ;00 ;12 ;.00 ;12.00 ;12 ;.00 ;12. ;00 ;12. ;00 ;12 ;.00 ;12. ;GO ;12 ;.00 ;9.00 ;9 ;.00 ;9. ;00 ;9. ;00 ;9 ;.00 ;9. ;00 ;9 ;.00 ;0.16 ;0 ;.16 ;0. ;16 ;0. ;16 ;0 ;.16 ;0. ;16 ;0 ;. 16 ;0.80 ;0 ;.80 ;0. ;80 ;0. ;80 ;0 ;.80 ;0 . ;80 ;0 ;.80 ;0.10 ;0 ;.10 ;0. ;10 ;0. ;10 ;0 ;.10 ;0. ;10 ;0 ;.10 ;1.25 ;1 ;. 25 ;1. ;25 ;1 . ;25 ;1 ;. 25 ;1. ;25 ;1 ;. 25 ;00.00 ;100 ;.00 ;100. ;00 ;100. ;00 ;100 ;. 00 ;100. ;00 ;100 ;.00 ;10.9 ;11 ;.4 ;11. ;7 ;11 ;.8 ;rv&gt; ;Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 CO ;pH 0&gt;| ;pH of 10g/ 10.9 11.4 11.7 11.8 CJ1 liter ;22 9 3 5 1 ;In preparing these formulations, the monostearyl phosphate foam depressant and Dowfax 3B-2 detergent active compound are added to the mixture just before the Pharmagel H clay thickener; all of the NaOH is added after the clay. ;The resulting liquid ADD formulations as shown in Table I are measured for cleaning performance (Table II); and for density, and physical stability (phase separation) on standing and in a shipping test. The results are shown in Table III. ;Table II ;CLEANING PERFORMANCE ;Composition Run No. ;1 ;2 ;3 ;4 ;5 ;6 ;CONTROL POWDER 1) ;AVERAGE RATING ON MIXED SOILS ;5.71 ;5.85 ;5.12 6.11 ;AVERAGE RATING ON STARCHY SOILS 2&gt; ;3.80 4.00 ;3.50 4.61 ;Commercially available powdery ADD, pH = 12.2 2) Dishes with rice and cutterv with rice and porridge ;24 ;Compos i t ion Run No. ;^ I 4 £ ;V&gt; ;Table III ;Unshaken liquid separation measured after 12 weeks ;Density n / nm 3 ;Glass Bottle (% height) ;CT Type Bottle ;100 Days 1) ;Shipping ;4 °C ;RT3 ) ;35 °C ;43 °C ;4 °C ;RT3 &gt; ;35 ;°C 43 °C ;RT3 ) ;% Separation (by weight) ;1 ;1.27 ;0 ;0 ;0 ;0 . 2 ;&lt;0.1 ;0.4 ;0.5 ;1±0. 5 ;0.7 ;2 ;1 . 27 ;&lt;2 ;0 ;0 ;0 ;1. 4 ;0.3 ;3.0 ;5.0 ;1±0.5 ;0.7 ;3 ;1.30 ;&lt;2 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;4- ;1.31 ;3 ;0 ;0 ;0 ;2 ;0.2 ;0 ;0 ;0 ;1. 5 ;5 ;1.30 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;6 ;1. 28 ;3 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;0 ;Average measurement with 5 different CT bottles 2) Liquid separation measured after 6 weeks and 3000 kms in a private car in plastic bottles Room temperature = 2.0±2°C ;ro ro ;CO ;o*r <br><br> CJl <br><br> 22 9 3 5 1 <br><br> Example 2 <br><br> The control composition and the compositions of Run Nos. 3 and 5 were aged at 4°C,"-room temperature (RT), 35°C or 43°C and the viscosity of each sample was measured after storage in a plastic bottle for 1, 4, 6 and 12 weeks with a Brookfield LVT viscometer using a No. 54 spindle at 3 rpm. The results are shown in Table IV. <br><br> 26 <br><br> I <br><br> TABLE IV <br><br> Viscosity (kps) <br><br> Temp (°C) 4 RT 35 43 <br><br> Composition <br><br> Run No. <br><br> Time (weeks) <br><br> 2 <br><br> 4 <br><br> 6 <br><br> 12 <br><br> 2 <br><br> 4 <br><br> 6 <br><br> 12 <br><br> 2 <br><br> 4 <br><br> 6 <br><br> 12 <br><br> o <br><br> 4 <br><br> 6 <br><br> 12 <br><br> CONTROL <br><br> 19 <br><br> 23 <br><br> 25 <br><br> 29 <br><br> 24 <br><br> 34 <br><br> 53 <br><br> 70 <br><br> 36 <br><br> 48 <br><br> — <br><br> 68 <br><br> — <br><br> 74 <br><br> 120 <br><br> 180 <br><br> 3 <br><br> 25 <br><br> 27 <br><br> 26 <br><br> 18 <br><br> 30 <br><br> 48 <br><br> 28 <br><br> 23 <br><br> 40 <br><br> 23 <br><br> 22 <br><br> 31 <br><br> 38 <br><br> 24 <br><br> 28 <br><br> 18 <br><br> 5 <br><br> 28 <br><br> 23 <br><br> 17 <br><br> 20 <br><br> 27 <br><br> 12 <br><br> 20 <br><br> 15 <br><br> 18 <br><br> 20 <br><br> 18 <br><br> 25 <br><br> 26 <br><br> 20 <br><br> 29 <br><br> 24 <br><br> ro ro co <br><br> CM CJl <br><br> 22 9 3 5 <br><br> Example 3 <br><br> The Control composition and the compositions of Run Nos. 3 and 5 and a referential-example in which the aluminum stearate of the control composition was omitted and the amount clay increased to 2% were tested to measure rheological properties after standing at room temperature for 10 days, 6 weeks and 3 months. The results are shown in Table V. <br><br> 28 <br><br> t <br><br> Jl- <br><br> Table V <br><br> Composi tion <br><br> Age i ng <br><br> Low <br><br> Shear <br><br> High <br><br> Shear <br><br> Thixotropy <br><br> Apparent <br><br> Viscos i ty p <br><br> Time <br><br> 3 <br><br> rpm <br><br> 30 <br><br> rpm <br><br> °0 <br><br> ni <br><br> 00 <br><br> HI <br><br> 1.58 S"1 <br><br> 25 S"1 <br><br> 158 <br><br> (Pa) <br><br> (Pa-S) <br><br> (Pa) <br><br> (Pa-S) <br><br> (Pa/S) <br><br> (Pa-S) <br><br> (Pa-S) <br><br> (Pa- <br><br> Ref erence <br><br> 10 <br><br> days <br><br> 6 <br><br> weeks <br><br> 6.2 <br><br> 28.9 <br><br> 34.0 <br><br> 0.014 <br><br> 766 <br><br> 21. 5 <br><br> 1.65 <br><br> 0.33 <br><br> 3 <br><br> months <br><br> 6.3 <br><br> 21.1 <br><br> 19.0 <br><br> 0 . 007 <br><br> 269 <br><br> 15.6 <br><br> 0.93 <br><br> 0.19 <br><br> Con trol <br><br> 10 <br><br> days <br><br> 6.9 <br><br> 35.1 <br><br> 34 . 0 <br><br> 0 . 001 <br><br> 1665 <br><br> 22.6 <br><br> 1. 47 <br><br> 0. 24 <br><br> 6 <br><br> weeks <br><br> — <br><br> — <br><br> — <br><br> — <br><br> — <br><br> — <br><br> — <br><br> — <br><br> 3 <br><br> months <br><br> 5.6 <br><br> 33.6 <br><br> 33.7 <br><br> 0 .001 <br><br> 1450 <br><br> 22.2 <br><br> 1. 42 <br><br> 0. 23 <br><br> Run No. 3 <br><br> 10 <br><br> days <br><br> 6.6 <br><br> 41. 4 <br><br> 38 . 7 <br><br> 0.012 <br><br> 1971 <br><br> 23.0 <br><br> 1.86 t- <br><br> 0.34 <br><br> 6 <br><br> weeks <br><br> 6.8 <br><br> 37. 9 <br><br> 39.2 <br><br> 0.013 <br><br> 1938 <br><br> 21.2 <br><br> 1.89 <br><br> 0.35 <br><br> 3 <br><br> months <br><br> 7 . 4 <br><br> 28 .0 <br><br> 35.2 <br><br> 0.017 <br><br> 1397 <br><br> 18.1 <br><br> 1. 73 <br><br> 0 . 35 <br><br> Run No. 5 <br><br> 10 <br><br> days <br><br> 7.5 <br><br> 30 .8 <br><br> 37. 5 <br><br> 0. 003 <br><br> 1665 <br><br> 21. 2 <br><br> 1. 66 <br><br> 0 . 29 <br><br> 6 <br><br> weeks <br><br> 7.1 <br><br> 31.8 <br><br> 341.1 <br><br> 0.008 <br><br> 1538 <br><br> 19 . 9 <br><br> 1.58 <br><br> — <br><br> 3 <br><br> months <br><br> 6 . 3 <br><br> 21. 7 <br><br> 31 . 6 <br><br> 0 . 008 <br><br> 1215 <br><br> 16 . 4 <br><br> 1. 43 <br><br> 0.28 <br><br> no ro <br><br> CO Ol on <br><br> 229351 <br><br> Example 4 <br><br> Using the control composition, and the compositions of Run Nos. 1, 3 and 5 the available chlorine levels remaining after storage at room temperature, 35°C and 43°C for 2, 4, 6 or 12 weeks was measured. The results are shown in Table VI. <br><br> I <br><br> 30 <br><br></p> </div>

Claims (2)

<div id="claims" class="application article clearfix printTableText"> <p lang="en"> TABLE VI<br><br> Compos i fcion<br><br> RESIDUAL<br><br> RT<br><br> CHLORINE<br><br> LEVELS 35°<br><br> (% C<br><br> of original)<br><br> u o<br><br> Weeks<br><br> _2<br><br> _4<br><br> _6<br><br> 12<br><br> _2<br><br> 4<br><br> _6<br><br> 12<br><br> _2<br><br> _4<br><br> _6<br><br> 11<br><br> Control<br><br> 96<br><br> 94<br><br> 90<br><br> 77<br><br> 85<br><br> 80<br><br> 75<br><br> 55<br><br> 66<br><br> 51<br><br> 35<br><br> 18<br><br> Run No. 1<br><br> 98<br><br> 96<br><br> 95<br><br> 88<br><br> —<br><br> --<br><br> 92<br><br> 68<br><br> 96<br><br> 74<br><br> 64<br><br> 40<br><br> Run No. 3<br><br> 91<br><br> 92<br><br> 89<br><br> 74<br><br> 84<br><br> 78<br><br> 72<br><br> 52<br><br> 57<br><br> 55<br><br> 30<br><br> 22<br><br> Run No. 5<br><br> 98<br><br> 95<br><br> 93<br><br> 84<br><br> 92<br><br> 92<br><br> 90<br><br> 64<br><br> 76<br><br> 66<br><br> 59<br><br> 33<br><br> W CO CM Ol<br><br> WHAT Wi: CI.A I M I :• :<br><br>
1. All aqueoii;j thixotropic liquid composition comprising water, a clay th i.xot rop i a agent., an amount of a metal salt of at least one long chain fatty acid effective to increase the physical stability of Lhu composi t: i on, organic detergent, chlorine bleach and detergent builder, said cornpooition containing alkali metal and alkaline earth metal ccnponents in relative amounts such that if about 10 grams of the composition were diluted to 1 liter with water, the pH of the diluted aqueous composition would be at least 11.2.<br><br>
2. The composition of claim 1 wherein the metal salt comprises a polyvalent metal salt of a metal of Group XI, III or 3V of* the periodic table of elements of a long chain fatty acid having from substantially 8 to 22 c.'ubon atoiiu; or mixture of two or more of audi fat l y acirlr,.;3. The composition of claim 1 wherein the polyvalent metal is aluminum, zinc, calcium or magnesium.;4. The composition of claim 1 wherein the fatty acid metal salt is calcium stearate or magnesium stearate.;■\;5. An aqueous thixotropic automatic dishwasher composition comprising substantially by weight:;(a) 5 to 35% alkali metal tripolyphosphate;;(b) 2.5 to 30% alkali-metal silicate;;{c) 0 to 91 alkali metal carbonate;;(d) 3 to 104 alkali metal hydroxide;;32;(e) 0.1 t:o ril chlorine bliNich stable, wnLer-dispersible organic ciuLurrjnn t. active material;;(f) 0 to 5't chl or i ne-bl e&lt;ieh Mjble f.ouin depressant;;(g) chlorine blotch compound in an amount to provide .'nibs tiiii I. i a 1 1 y 0.2 to 'IV, of .i va i 1 &lt;il&gt; 1t; chloi i ne ;;(h) 0.1 to 104 of inorganic co 11 o i d-f or in i ng clay;;(i) a metal salt of a long chain fatty acid as a physical stabilizer in on amount effective to increase the physical stability of the composition; and;(j ) water;;the total relative amounts of ccnponents (b), (c) and (d);being such that if 10 grains of the conposition were diluted to 1 liter with water, the pH of the diluted aqueous conposition would be at least 11.2.;6. The composition of claim 5, wherein the physical stabilizer (i) is a polyvalent metal salt of an sliphatic fatty acid having Croin substanl. i ;i I 1 y 12 t:o 18 carbon atoms.;7. The composition ol" claim 6 wherein the polyvalent metal is selected from the group consisting of Mg, Ca, Ti, Z£, V, Nb, Mn, Fe, Co, Hi, Cd , Sn, Sb, Bi, Al and Zn,;8. The composition of claim 5 wherein the physical stabiliser (i&gt; is the aluminum, zinc, magnesium or calcium salt of stearic acid.;9. The composition of claim 5 wherein the physical stabilizer (ij is present in an amount of from substantially 0,02 to U.;33;;v93'jl;10. The composition of claim b wherein the clay (h) is an a t t.apu 1 g i te clay or a smectite clay.;11. The composition of claim 10 wherein the amount of the clay (h) is in the range of from r.iibut ant. i &lt;i 1 I y 0.1 to 3%.;12. The composition of claim 10 which contains from substantial ly 0.1 to 0.'.&gt;1 of the physical stabilizer (i) and f roin substantially 0 . 5 to 21, by weight, of the co11oid-forming clay (h ) .;13. The composition of claim 5 in which the chlorine bleach compound (g) is sodium hypochlorite.;14. The composition of claim 5 which contains at least substantial 1y 0.1 weight percent or the foam dcpressanL;(f).;15. The composition of claim 14 in which the foam depressant is an alkyl acid phosphate ester, an alkyl phosphonic acid ester containing one or two Cj2-20 groups, an ethoxylated product thereof or a mixture thereof.;16. The composition of claim 5 wherein the relative amounts of ccnponents (b), (c) and (d) are such that if 10 grams of the composition were diluted to 1 liter with water, the pH of the diluted aqueous conposition would be fron substantially 11.5 to 13.5.;17. A method for cleaning soiled dishware in an automatic dishwashing machine which comprises contacting the soiled dishware in an automatic dishwashing machine in an aqueous washbath having dispersed therein an effective amount of the;34 L,;; ' 3 j/u/1992; 1;composition ol claim 'j in ar, amount sui 11 c i i: nt: to provide a p!l ol the washbath of at leant suhst ,int i.i 1 1 y II.::.;10, A method tor improving stability against phase separation of a composition comprising a &lt;jol-like aqueous dispersion of at least one wa ter-inso1uble finely divided detergent builder material, said method comprising incorporating in the dispersion from substantially 1 In 2.5 weight. percent of smeet. i t.i! clay thickening agenL and 1 i imi subs trint i a 11 y 0.011 Lo 0.4 weight percent of a long chain t" j ^ - c: 1 ( fatty acid metal sail, ol a polyvalent metal selected from Croups J 1A, I1IA, IVA, VA,;III, 1113, mil, 1VB, VII, vrn, Villi and VIII of the I'criodic Table of the Klcment.s, whereby said compos i I i on has n viscosity when mixed at low shear condit ions at .1 rpm which is substantially 2 to 3 times higher than tin; viscosity at the saint* low shear conditions of the Composition without: the long chain fatly acid motnl salt, and whereby the viscosity of t.lio composition when mixed at high shear conditions al. 30 rpm is from substantially 1/2 to 1/10 the vi.scos'SDy at; said low shear conditions, said conposition including sufficient sodium hydroxide, sodium carbonate and sodium silicate in relative amounts such that j.if 10 grams of the composition were diluted to 1 liter with ^ water, the pH of the diluted aqueous conposition would be at least 11.2.<br><br> WEST-WALK EH. McCABE<br><br> j&gt; ■ '' '<br><br> per:^., - ' . ;'t ; . - ' '<br><br> ATTOHNEYS FGfi THE APPLICANT<br><br> 35<br><br> &gt; /■<br><br> " M .<br><br> </p> </div>
NZ229351A 1988-06-09 1989-05-30 Highly alkaline liquid, automatic dishwashing detergents NZ229351A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US20447688A 1988-06-09 1988-06-09

Publications (1)

Publication Number Publication Date
NZ229351A true NZ229351A (en) 1992-07-28

Family

ID=22758050

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ229351A NZ229351A (en) 1988-06-09 1989-05-30 Highly alkaline liquid, automatic dishwashing detergents

Country Status (14)

Country Link
EP (1) EP0345611B1 (en)
JP (1) JPH0243300A (en)
AT (1) ATE130028T1 (en)
AU (1) AU3598789A (en)
BR (1) BR8902755A (en)
CA (1) CA1319308C (en)
DE (1) DE68924727D1 (en)
DK (1) DK284689A (en)
IL (1) IL90481A0 (en)
MX (1) MX169914B (en)
NO (1) NO892361L (en)
NZ (1) NZ229351A (en)
PT (1) PT90771B (en)
ZA (1) ZA894153B (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5279755A (en) * 1991-09-16 1994-01-18 The Clorox Company Thickening aqueous abrasive cleaner with improved colloidal stability
US5346641A (en) * 1992-01-17 1994-09-13 The Clorox Company Thickened aqueous abrasive cleanser with improved colloidal stability
JP2871941B2 (en) * 1992-02-19 1999-03-17 ザ、プロクター、エンド、ギャンブル、カンパニー Aqueous detergent composition for hard surfaces containing calcium ions
CA2107938C (en) * 1993-01-11 2005-01-11 Clement K. Choy Thickened hypochlorite solutions with reduced bleach odor and methods of manufacture and use
US5470499A (en) * 1993-09-23 1995-11-28 The Clorox Company Thickened aqueous abrasive cleanser with improved rinsability
US5529711A (en) * 1993-09-23 1996-06-25 The Clorox Company Phase stable, thickened aqueous abrasive bleaching cleanser
US5929008A (en) * 1997-09-29 1999-07-27 The Procter & Gamble Company Liquid automatic dishwashing compositions providing high pH wash solutions
US20080108537A1 (en) * 2006-11-03 2008-05-08 Rees Wayne M Corrosion inhibitor system for mildly acidic to ph neutral halogen bleach-containing cleaning compositions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4752409A (en) * 1985-06-14 1988-06-21 Colgate-Palmolive Company Thixotropic clay aqueous suspensions
US4801395A (en) * 1986-08-07 1989-01-31 Colgate-Palmolive Company Thixotropic clay aqueous suspensions containing long chain saturated fatty acid stabilizers
ZA887068B (en) * 1987-09-29 1990-05-30 Colgate Palmolive Co Thixotropic aqueous liquid automatic dishwashing detergent composition

Also Published As

Publication number Publication date
JPH0243300A (en) 1990-02-13
EP0345611A2 (en) 1989-12-13
MX169914B (en) 1993-07-30
NO892361L (en) 1989-12-11
ATE130028T1 (en) 1995-11-15
DK284689A (en) 1989-12-10
DK284689D0 (en) 1989-06-09
EP0345611A3 (en) 1990-12-12
EP0345611B1 (en) 1995-11-08
DE68924727D1 (en) 1995-12-14
ZA894153B (en) 1991-02-27
IL90481A0 (en) 1990-01-18
PT90771B (en) 1995-03-31
AU3598789A (en) 1989-12-14
PT90771A (en) 1989-12-29
NO892361D0 (en) 1989-06-08
BR8902755A (en) 1990-02-01
CA1319308C (en) 1993-06-22

Similar Documents

Publication Publication Date Title
US4752409A (en) Thixotropic clay aqueous suspensions
US4857226A (en) Thixotropic clay aqueous suspensions containing polyacrylic acid polymer or copolymer stabilizers
US4801395A (en) Thixotropic clay aqueous suspensions containing long chain saturated fatty acid stabilizers
US4836946A (en) Thixotropic clay aqueous suspensions containing alkali metal fatty acid salt stabilizers
GB2176495A (en) Dishwasher detergent compositions
NZ204916A (en) Thixotropic,automatic dishwasher composition
US4968445A (en) Thixotropic aqueous liquid automatic dishwashing detergent composition
US5089161A (en) Thixotropic aqueous liquid automatic dishwashing detergent composition
GB2185037A (en) Dishwasher thioxtotropic detergent compositions
US4889653A (en) Thixotropic aqueous liquid automatic dishwashing detergent composition containing anti-spotting and anti-filming agents
GB2210382A (en) Thixotropic aqueous liquid detergent composition
US4970016A (en) Thixotropic aqueous liquid automatic dishwashing detergent composition
NZ226174A (en) Aqueous cleaning composition; no- or low-phosphorus built mixture
US4968446A (en) Thixotropic aqueous liquid automatic dishwashing detergent composition
EP0345611B1 (en) High alkalinity liquid automatic dishwasher detergent compositions
US5057237A (en) Thixotropic liquid automatic dishwasher detergent composition with improved physical stability
US5084198A (en) Thixotropic aqueous liquid automatic dishwashing detergent composition
AU606130B2 (en) Thixotropic clay aqueous suspensions
AU608047B2 (en) Thixotropic clay aqueous suspensions containing polycarboxylic acids and metal salts thereof stabilizers
AU616206B2 (en) Thixotropic aqueous liquid automatic dishwashing detergent composition
US4971717A (en) Aqueous liquid automatic dishwashing detergent composition with improved anti-filming and anti-spotting properties