NZ215351A - Tool for disassembling universal joints, hydraulic action - Google Patents

Tool for disassembling universal joints, hydraulic action

Info

Publication number
NZ215351A
NZ215351A NZ21535186A NZ21535186A NZ215351A NZ 215351 A NZ215351 A NZ 215351A NZ 21535186 A NZ21535186 A NZ 21535186A NZ 21535186 A NZ21535186 A NZ 21535186A NZ 215351 A NZ215351 A NZ 215351A
Authority
NZ
New Zealand
Prior art keywords
cylinder
yoke member
tool
universal joint
yoke
Prior art date
Application number
NZ21535186A
Inventor
John Miguel Lostra
Original Assignee
John Miguel Lostra
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by John Miguel Lostra filed Critical John Miguel Lostra
Priority to NZ21535186A priority Critical patent/NZ215351A/en
Publication of NZ215351A publication Critical patent/NZ215351A/en

Links

Landscapes

  • Hand Tools For Fitting Together And Separating, Or Other Hand Tools (AREA)

Description

21 535 1 ———i ■■ i Priority Date(s): Complete Specification Filed: Class: 6^062.7 /00..
P.O. Journal, No: No.: Date: NEW ZEALAND PATENTS ACT, J 953 COMPLETE SPECIFICATION TOOLS FOR DISASSEMBLING UNIVERSAL JOINTS ) 1 flL EL SIhjiX , Jfx I/Wef JOHN M. LOSTRA, of -Joct Office Do« 041> Elko, Nevada -5/«6 89801, U.S.A., hereby declare the invention for which 2 / we pray that a patent may be granted to me^us, and the method by which it is to be performed, to be particularly described in and by the following statement: - - 1 - (followed by Page -1A-) I 5 £1530! -lA Description Jk S Technical Field The present invention relates to tools for disassembling universal joints, and more specifically to two different types of tools — a pull-type tool and a push-type tool — for disassembling universal 10 joints of vehicles.
Background Art There are various situations in which it is necessary to disassemble the universal joint of the 15 drive shaft of a vehicle. For example, prior to towing a vehicle with the drive wheels remaining on the ground, it is necessary to disconnect the transmission from the drive axles to protect the vehicle from damage during towing. This is generally 20 achieved by disconnecting the drive shaft universal joint at the drive axle pinion yoke, or occasionally by pulling the drive axle shafts. However, substantial problems are often encountered when disassembling the universal joint. 25 Specifically, although new universal joint components are shiny and have accurately machined fits, and can be assembled easily, even when in dry condition, once a vehicle has been used for a year or more without disassembling the drive shaft universal 30 joint, the universal joint soon becomes rusted due to ,w,. wet roads and/or salty roads, so that the universal joint components become so tightly assembled that it is virtually impossible to disassemble them. \16 JUN1987 / ft .<>'? ■ "e r 1 21^1 k- •>_- <-■ Faced with such a problem, mechanics and towing/wrecker crews often resort to hammering the universal joint components apart, but that is very destructive to the components. In addition, even that technique is often not effective or is difficult to carry out, especially when it has to be done at night on cold, wet roads with merely a flashlight as a light source. The problems are further compounded by the fact that, in towing situations, there is usually very little room in which to work.
In response to the above-discussed problems, a mechanical puller apparatus for disassembling universal joints has been developed, and is disclosed in U.S. Patent No. 4,019,233 -Jirele. The apparatus or tool disclosed in that patent employs a driver screw which is rotated mechanically or manually to exert a downward force on a bridge assembly connected to a first yoke member of the universal joint, while an upward pulling force is exerted on bosses connected to the second yoke member of the universal joint by means of puller arms which are threadably connected to the driver screw.
Small hand pullers of the type described in the aforementioned patent have significant drawbacks. Notably, since such pullers are operated by manual force, their effectiveness varies from user to user, and often they are ineffective to do the job. In addition, such small hand pullers are not effective for the purposes of towing and wrecker crews, in that working conditions on the road (poor lighting, inclement weather, insufficient working space, and so forth) render manual pullers even less effective.
A further disadvantage of the manual puller described in the aforementioned patent resides in the 153 5 fact that, in the use of such a "rotating screw" tool, many unwanted reaction forces are produced when the screw is rotated manually, and this interferes with the successful accomplishment of the universal joint disassembly operation. This problem, together with the aforementioned problems of poor working conditions, results in the consumption of excessive time as the user attempts to disassemble the universal joint. Finally, it will be recognized that puller-type tools such as disclosed in the aforementioned patent are bulky, and this is a disadvantage not only from the standpoint of using the tool, but also from the standpoint of transporting the tool to the worksite.
Large, industrial-type tools are available in the marketplace, and are used for pulling assembled components apart, or pushing components out of an assembly. Such large, industrial-type tools often employ electric motors or pneumatic-powered hydraulic power packs, and occasionally handpowered units are employed in conjunction with closed hydraulic circuits. The following U.S. patents disclose such types of hydraulic-powered apparatus or arrangements: 2,807,081 Black; 3,069,761 - Sommer; and 3,908,2 58 - Barty.
However, such powered apparatus or arrangements are burdened by several disadvantages. They are usually very large and bulky, and are therefore not suitable for transport to and from towing or wrecker worksites, and are also not suitable for use under the adverse conditions often encountered by towing and wrecker crews. In addition, such industrial-type powered apparatus often operate under hydraulic power, and accordingly ? 1 Ki 5 require auxiliary hydraulic sources to power their operation, thus increasing their bulkiness and non-portability. Finally, such apparatus or arrangements as disclosed in the latter three patents are simply 5 not suitable or adaptable for use in the specific application of disassembling universal joints.
Other disassembly or pushing-pulling tools or apparatus, even less applicable to the job of disassembling drive shaft universal joints, are 10 disclosed in the following U.S. patents: 2,950,525 -Duncan et al; 3,337,943 - Powell; 3,339,263 - Dodge; 1,498,933 - Seppmann; 2,507,003 - Gagne; 2,566,847 -Miller; 3,230,617 - Spiess et al; 3,927,462 - Freeman et al; and 4,182,011 - Bretzger et al. 15 To summarize, the state of the prior art in this area of technology is such that it would be considered highly desirable and advantageous to have a tool or apparatus which is specifically designed for the disassembly of drive shaft universal joints, 20 especially under adverse road conditions as usually encountered by towing and wrecker crews. Such drive shaft universal joint disassembly tools should have the following characteristics: they should be portable and easily transportable to the worksite; 25 they should be powered so as to facilitate their use, especially under conditions of limited space and adverse working conditions; and they should be powered by some power source normally available to towing and wrecker crews at the worksite.
Disclosure of Invention The present invention relates to tools for disassembly of a drive shaft universal joint, and more specifically to pull-type and push-type tools ? f c 15 for disassembly of a universal joint of a drive shaft.
In one embodiment, a pull-type tool is utilized to disassemble a universal joint by forcing 5 one of two journal bearings mounted in respective end portions of a first yoke member out of the first yoke member. The pull-type tool comprises a pulling arrangement connectable to the second yoke member of the universal joint for exerting a pulling force 10 thereon, a standoff arrangement (comprising standoff studs) connectable to a given end portion of the first yoke member for exerting a pushing force (opposite to the pulling force) thereon, and an operating mechanism (in the form of a piston-cylinder 15 combination) interposed between the pulling assembly and the standoff arrangement for operating on the pulling assembly to cause it to exert the pulling force, and for operating on the standoff arrangement to cause exertion of the pushing force, so that the 20 journal bearing mounted in the given end portion of the first yoke member is forced out of that portion. In accordance with a further feature of the invention, the piston of the operation arrangement is movable within the cylinder thereof in response to 25 the injection of fluid under high pressure (such as grease from a high-pressure grease gun) into the cylinder so as to urge the pulling assembly in a direction away from the universal joint while the standoff arrangement maintains a pushing force in a 30 direction toward the universal joint.
Preferably, the first embodiment has a headplate and sidebars which form the pulling assembly while standoff studs form the standoff arrangement, the standoff studs having threaded ends fliu i . .^m ^ ^ ff® V 1 which are insertable in corresponding threaded holes located in an end portion of the yoke member from which the journal bearings are to be removed.
As a further preference, the operating 5 arrangement includes an aperture located in the wall of the cylinder for receiving the nozzle of a grease gun, from which grease at high pressure is injected -rj'1 into the cylinder so as to provide moving force to the piston contained therein.
A second embodiment of the invention comprises a push-type tool for disassembling a universal joint, the push-type tool comprising a _ cylinder closed at one end remote from the yoke member from which the journal bearing is to be 15 removed, a piston movable within the cylinder along its axis, and an injection mechanism located at a point in the cylinder wall between the closed end and the piston for receiving and injecting fluid under high pressure into the cylinder so as to move the 20 piston toward the journal bearing, forcing the bearing out of the far end of the yoke member.
Preferably, the push-type tool includes a support arrangement having a flat surface on which the cylinder is positioned, and contact fingers 25 extending from the flat surface toward the universal joint so as to contact a first yoke member, which is perpendicular to a second yoke member from which the journal bearing is to be removed, at respective points on either side of the first yoke member. 30 As a further preference, boreholes are provided within the cylinder wall and parallel to the ' cylindrical axis, and the yoke member from which the journal bearing is to be removed has threaded holes provided in its near end (that is, the end closest to - ■ -j. i 1 21 s: the tool) along an axis parallel to the cylindrical axis and in alignment with the boreholes so that threaded cap screws can be inserted through the boreholes and can be screwed into the threaded holes, thus securing the tool to the universal joint for the disassembly operation.
Furthermore, the push-type tool is preferably provided with injection means in the form of an aperture running through the wall of the cylinder at a point between the closed end thereof and the piston for receiving the nozzle of a grease gun, from which grease is injected under high pressure to move the piston and force the journal bearing from the remote end of the yoke member (that is, the end of the yoke member furthest from the tool).
Advantages of the present invention are as follows. Both embodiments of the invention comprise a compact tool, highly portable in nature, for disassembling the universal joint of the drive shaft of a vehicle utilizing a technique involving the injection of high-pressure fluid, such as grease from a grease gun, into a cylinder so as to drive a piston to create either a pulling force (via the use of a headplate and sidebars) or a pushing force (via the use of a support assembly) for ejecting a journal bearing from an end portion of a yoke member of the universal joint. Thus, the present invention provides two embodiments of a universal joint disassembly tool, both of which embodiments have the advantage of portability usually associated with manually driven tools, as well as the further advantage of high-pressure operation usually o o ^ 1 c 5 1 associated with large industrial-type pulling or pushing apparatus.
Furthermore, it should be noted that the two embodiments of the universal joint disassembly ; i tool have several elements or components in common \ (such as the piston and cylinder) , so that a i relatively small and highly portable tool kit can be devised while providing the user with the advantages of both embodiments (both the pull-type and push-type 10 tools) . | Therefore, it is a primary object of the i present invention to provide tools for the i i disassembly of a drive shaft universal joint of a i vehicle. i It is an additional object of the present | invention to provide tools for the disassembly of a f universal joint, wherein the tools operate in j response to the injection of fluid under high j pressure into the tool. \ It is an additional object of the present j invention to provide tools for the disassembly of a j universal joint, wherein the tools are composed of a compact arrangement of elements resulting in a high degree of portability.
It is an additional object of the present invention to provide tools for the disassembly of a universal joint, wherein the tools comprise pull-type tools which exert a pulling force on the universal joint, while exerting a pushing force on an end 30 portion of that one of the yoke members of the universal joint from which a journal bearing is to be removed.
It is an additional object of the present invention to provide tools for the disassembly of a 1 i * 7 1 CT universal joint, wherein the tools comprise push-type tools which exert a pushing force on the universal joint from which the journal bearing is to be removed.
The above and other objects that will hereinafter appear, and the nature of the invention, will be more clearly understood by reference to the following description, the appended claims, and the accompanying drawings.
Brief Description of Drawings FIGURE 1 is a perspective view of a first embodiment of the present invention, comprising a pull-type tool.
FIGURE 2 is a cross-sectional view of the cylinder of the present invention, as seen along line A-A' in FIGURE 1.
FIGURE 3 is a front view of the first embodiment of the present invention, as utilized during a first step of disassembling a universal joint.
FIGURE 4 is a front view of the first embodiment of the present invention, as utilized during a second step of disassembling a universal joint.
FIGURE 5 is a bottom view of the headplate shown in FIGURE 3.
FIGURE 6 is a perspective view of a second embodiment of the invention, comprising a push-type tool.
FIGURE 7 is a cross-sectional view of the cylinder, as seen along section line B-B' in FIGURE 21 5 Best Mode for Carrying Out the Invention The present invention will now be more fully described with reference to the various figures of the drawings.
FIGURE 1 is a perspective view of a first embodiment of the invention, comprising a pull-type tool for disassembly of a universal joint. As seen therein, the pull-type tool 10 comprises a headplate 12, sidebars 14 and 16, a cylinder 18, a piston 20, a filler plug 22a, and standoff studs 28 and 30. As also seen in FIGURE 1, sidebars 14 and 16 are provided with grooves 36 at the top portions thereof, the grooves 3 6 functioning to accommodate end portions of the headplate 12, while the end portions of the headplate 12 are provided with slots 37, into which downwardly protruding portions 38 of the end portions of the sidebars 14 and 16 are inserted when assembling the tool 10.
Sidebars 14 and 16 are further provided, at their distal ends, with holes 24 and 26, the latter being designed to accommodate cap screws (to be discussed below) on the universal joint. In addition, standoff studs 28 and 30 are dimensioned so as to be insertable into boreholes 34 provided in opposing portions of the cylindrical wall of the cylinder 18, while standoff studs 28 and 30 are provided at their other ends with threaded portions 28a and 30a, respectively, the latter being provided so that the standoff studs 28 and 30 can be screwed into respective boreholes (to be discussed below) in an end portion of the yoke member, from which the journal bearing is to be removed, in the universal joint. 2153 vi FIGURE 2 is a cross-sectional view of the cylinder 18 of FIGURE 1, taken along the section line A-A' thereof. As seen in FIGURE 2, the inner dimensions of the cylinder 18 are such as to 5 accommodate a piston 20. An 0-ring grease seal or grease fitting 32 is positioned prior to inserting ^ the piston 20 into the cylinder 18. Cylinder 18 is ■ ■'j ^ also provided with filler plugs 22a and 22b. As seen in FIGURE 2, opposing portions of the cylindrical 10 wall of the cylinder 18 are provided with boreholes 34, into which standoff studs 28 and 30 can be inserted.
FIGURE 3 is a front view of the pull-type tool 10 of FIGURE 1, as assembled for operation in 15 the disassembly of the universal joint. As seen in FIGURE 3, the universal joint 4 0 comprises a pair of yoke members generally perpendicular to each other, with the end portions of a first yoke member being indicated by reference numerals 42 and 44. As is 20 well-known to those of skill in the art, such universal joints contain journal bearings (not shown), each journal bearing disposed adjacent to or in a respective end portion (such as end portions 42 and 44) of the universal joint. The operation of 25 disassembling a universal joint, using the pull-type tool 10, will now be described with reference to FIGURE 3.
As a first step in such a disassembly operation, the pull-type tool 10 is utilized to 30 remove the journal bearing (not shown) contained in end portion 4 2 of the vertical yoke of universal joint 40. The two standoff studs 28 and 30 are screwed into boreholes in the end portion 42 of the yoke, and the cylinder 18 is slipped over the upper '■ • '• WwKWWuM^mimm, ...^■■^.a. ..„ # 215 3 5 1 o portions of the standoff studs 28 and 30 by inserting > those upper portions into the boreholes 34 contained in the cylinder wall of cylinder 18- With reference to FIGURE 5, which is a 5 bottom view of the headplate 12, it is seen that headplate 12 contains a recessed portion or shallow * bore 60 in its bottom face, so that the headplate 12 f can be placed on top of the cylinder 18, it being I noted that the cylinder 18 is positioned with its I' open end facing upward. A pull yoke assembly is now j; formed by placing sidebars 14 and 16 in engagement with the left and right end portions of the horizontal yoke of universal joint 40, as shown in FIGURE 3. This is accomplished by slipping sidebars 15 14 and 16, and specifically the holes 24 and 26 (FIGURE 1) therein, over retaining cap screws 52 and 54, which are best seen in FIGURE 4. The upper portions of sidebars 14 and 16 are then engaged with the end portions of headplate 12, as previously 20 discussed above with reference to the grooves 36, slots 37 and downwardly protruding portions 38 of sidebars 14 and 16, as best seen in FIGURE 1.
Finally, the entire assembly is held together for convenience in handling with an appropriately sized 25 0-ring 46.
The nozzle of a conventional grease gun is placed on filler plug 22a or 22b, so that grease pressure can be applied to the interior of the cylinder 18. This pressure causes the piston 20 to 30 rise inside of cylinder 18, exerting a lifting force on the headplate 12, and thus on the sidebars 14 and 16, as well as the horizontal yoke attached thereto.
This, in turn, causes a lifting force to be applied 7 1^ tv • - to the journal bearing contained within the upper yoke collar 42.
In the meantime, standoff studs 28 and 30, disposed between the cylinder 18 and the upper yoke collar 42, exert a downward force on the upper yoke collar 42. As a result, the journal bearing contained in the upper yoke collar 42 slips out into the space beneath the cylinder 18 and between the standoff studs 28 and 30. Headplate 12, sidebars 14 and 16, cylinder 18 and studs 28 and 30 can be removed, and the bearing is picked off. At this point, the journal end of the universal joint cross in the vertical yoke of FIGURE 3 is exposed.
FIGURE 4 is a front view of the pull-type tool, as utilized in a second step in the disassembly process, that is, the step of removing the journal bearing (not shown) contained in the lower yoke collar 44 of universal joint 40. After the first step is completed, power cylinder 18 is emptied by taking out filler plug 22a or 22b (FIGURE 2) and pushing the piston 20 back in the bore of cylinder 18. The filler plug 22a or 22b and piston 20 are then reinstalled, and cylinder 18 is then placed, with its open end downward, on the upper yoke collar 42, and is fastened thereto using cap screws 48 and 50. At this point, the piston 20 is contacting the exposed journal end of the universal joint cross.
The nozzle of a conventional grease gun is inserted into filler plug 22a or 22b, and grease pressure is once again applied to the interior of cylinder 18, causing piston 20 to move downward, forcing the journal bearing in lower yoke collar 44 to be pushed out of its bore. At this point, with both bearings removed, the universal joint cross, which is attached to the other yoke (the horizontal yoke in the figures) , and that end of the drive shaft, can now be taken off the drive pinion yoke.
For total disassembly of the universal joint with the present invention, two conventional hook adapters of appropriate fit can be placed over the bare ends of the universal joint cross, the latter being well-known to those of skill in the art, and the arrangements of FIGURES 3 and 4 can be again employed in a two-step process to remove journal bearings from the end portions of the other yoke (the horizontal yoke).
FIGURE 6 is a perspective view of the second embodiment of the present invention, and specifically a perspective view of a push-type tool for disassembling the universal joint of the drive shaft of a vehicle. As seen in FIGURE 6, the push-type tool 70 comprises a cylinder 18 and associated piston (not shown in FIGURE 6, but shown by reference numeral 2 0 in FIGURE 7) , a pair of cap screws 72 and 74, and a pushing assembly 80 having a flat surface 82 and pushing or contact fingers 84 and 86 extending downward from the flat surface 82. As was the case in the previous figures, the wall of cylinder 18 is provided with boreholes 76 and 78, through which cap screws 72 and 74 are inserted. In addition, further holes 88 and 90 are provided in the flat surface 82 of pushing assembly 8 0 to accommodate the portions of cap screws 7 2 and 74 protruding from the cylinder 18. Furthermore, cap screws 72 and 7 4 are provided, at their distal ends, with threaded portions 72a and 74a, such threaded portions being provided so that cap screws 72 and 7 4 are able to be screwed into corresponding threaded holes provided in the upper 2 J 53 yoke collar (such as upper yoke collar 42 of universal joint 40 in FIGURE 3) , so as to fasten the entire assembly, comprising cylinder 18 and pushing assembly 80, to the universal joint.
FIGURE 7 is a cross-sectional view of the cylinder 18, as taken along section line B-B' of FIGURE 6. Again, as was the case previously, cylinder 18 is equipped with filler plugs 22a and 22b, and the interior bore of cylinder 18 is designed to accommodate piston 20. Element 32 is an 0-ring grease seal which stays on the piston 20.
In preparation for the disassembly operation using push-type tool 70, the cylinder 18 and piston 20 are mounted on the flat surface 82 of pushing assembly 80, using cap screws 72 and 74 inserted through holes 76 and 78, respectively, in the cylinder 18, and through holes 88 and 90, respectively, in the pushing assembly 80. The entire assembly is then placed over that yoke collar of the universal joint opposite to the yoke collar which contains the first journal bearing to be removed. That is to say, referring back to the universal joint 4 0 shown in FIGURE 3, the push-type tool 70 would be placed over upper yoke collar 42 so that the fingers 84 and 86 would contact the universal joint 40 at points 84a and 86a, respectively, in FIGURE 3 (that is, at its cross). In addition, the piston 20 would be in cylinder 18 which is indirectly connected to upper yoke collar 42 via screws 72 and 74.
In operation, the nozzle of a conventional grease gun is inserted onto filler plug 22a or 22b, and grease pressure is applied to the interior of cylinder 18, forcing piston 20 downward so as to exert a pushing force, via pushing assembly 80 i'SSSO' m ° ■? r Q ~ 1 -i. u _L V* 16JUN1987 j C\ /' x'< o E \ %' ■' (FIGURE 6) , on the "cross" of the universal joint, causing a reactive pulling force to be exerted, via screws 72 and 74, on upper yoke collar 42 (FIGURE 3). In this manner, the journal bearing contained in lower yoke collar 4 4 is pushed out of the opposite side of universal joint 40. The push-type tool 7 0 is then removed from contact with the universal joint 40, and the journal end of the universal joint cross is exposed.
Either filler plug 22a or 22b is removed from the cylinder 18, the cylinder 18 is emptied by pushing the piston back into its bore, and then the filler plug 22a or 22b is reinstalled in cylinder 18.
As a second step, the journal bearing contained in upper yoke collar 42 of universal joint 40 (FIGURE 3) can be removed by reassembling the push-type tool 70, and fastening it to the lower yoke collar 44 using cap screws 72 and 74 as previously described. Grease pressure is then, applied to the interior of cylinder 18 through filler plug 22a or 22b, and the journal bearing in upper yoke collar 42 will be pushed out. The universal joint cross can now be removed from the universal joint 40.
For a drive shaft to be disconnected, this is all that would have to be done, as would be well appreciated by those of skill in the art. However, as will be equally appreciated, for a total universal joint disassembly, steps one and two outlined above would be repeated for the left and right yoke collars of the horizontal yoke of universal joint 40 as seen in FIGURE 3.
It will be further recognized by those of skill in the art that, in accordance with the operation of the push-type tool as just described 7 H c above, if it is considered preferable, the first step ] *" could be repeated four times, once for each yoke I collar of each yoke member of the universal joint.
While preferred forms and arrangements have 5 been shown in illustrating the invention, it is to be | understood that various changes in detail and | arrangement may be made without departing from the spirit and scope of this disclosure.
O sJ

Claims (14)

<"> -* f— r% »- '1 -18- WHATI/J*£ CLAIM IS:
1. A tool for disassembly of a universal joint, said universal joint comprising a first yoke 5 member having a near end and a far end defining a first yoke axis, a second yoke member having a second yoke axis generally perpendicular to said first yoke axis, and at least one journal bearing mounted in said first yoke member, said first yoke member and 10 said second yoke member being interconnected by a cross, said tool comprising: a cylinder; connecting means comprising at least two cap screws for mountably connecting said cylinder to 15 said first yoke member at the near end thereof so that a cylindrical axis of said cylinder is aligned with the first yoke axis, said cylinder comprising a cylindrical shell closed at one end .remote from the first yoke member; 20 a piston movable within said cylinder along said cylindrical axis so that said piston can be moved toward said universal joint; support means disposed between said cylinder and said first yoke member, and having a generally flat surface on which said cylinder is positioned, and having contact fingers extending from said generally flat surface toward said second yoke member so as to contact said cross; and injection means located in the cylinder for 30 receiving and injecting fluid under high pressure into the cylinder in order to move said piston toward said universal joint so as to bear against said generally flat surface, thereby exerting a pushing \ force via said contact fingers on said cross and 16 JUNf987 o■* rro mJLOu -19- simultaneously a pulling force via said connecting means on said first yoke member, whereby to move said at least one journal bearing out of said first yoke member, thus disassembling said universal joint.
2. The tool of claim 1, wherein at least two boreholes are provided parallel to the cylindrical axis of the cylinder and within said cylindrical shell, and wherein said first yoke member has at least two threaded holes provided in said near end along axes parallel to said cylindrical axis and in alignment with said at least two boreholes, said at least two cap screws being insertable into said at least two boreholes, said at least two cap screws having a cap at one end and being threaded at the other end thereof so as to be able to be screwed into said at least two threaded holes, whereby to securely fasten said cylinder to said first yoke member for the disassembly operation.
3. The tool of claim 2, wherein said injection means comprises at least one of an aperture in the closed end of the cylinder and an aperture running through the cylindrical wall of the cylinder for receiving the nozzle of a grease gun, and wherein the fluid injected under high pressure comprises grease emitted from the grease gun.
4. The tool of claim 1, wherein said injection means comprises at least one of an aperture in the closed end of the cylinder and an aperture running through the cylindrical wall of the cylinder for receiving the nozzle of a grease gun, and wherein the fluid injected under high pressure comprises grease emitted from the grease gun.
5. A tool for disassembly of a universal joint, said universal joint comprising first and O J ir *5 * -20- second yoke members, said first yoke member having a journal bearing mounted in a given end portion thereof, said tool comprising: pulling means connectable to said second 5 yoke member for exerting a pulling force on said second yoke member during disassembly; ' standoff means connectable to said given end portion of said first yoke member for exerting a pushing force, opposite to said pulling force, on the 10 given end portion of the first yoke member during disassembly; and operating means interposed between said pulling means and said standoff means for operating on said pulling means to cause said pulling means to 15 exert said pulling force on said second yoke member/ and for operating on said standoff means to cause said standoff means to exert said pushing force on the given end portion of the first yoke member, thereby forcing the journal bearing mounted in said 20 given end portion of said first yoke member out of said given end portion of said first yoke member; wherein said operating means comprises a cylinder connected to said standoff means and a piston operating on said pulling means, said piston 25 being movable within said cylinder in a direction away from the universal joint in response to the injection of fluid under high pressure into the cylinder so as to urge said pulling means in a direction away from the universal joint; and 30 wherein said cylinder is in the form of a cylindrical shell formed around a cylindrical axis of said cylinder, said cylindrical shell having built-up portions running parallel to the cylindrical axis, and wherein at least two boreholes are provided along ^"L* r> »*• ^ W X u' i) ^ j -21- the length of the cylinder within said built-up portions of said cylindrical shell, said standoff means comprising at least two standoff studs, each being insertable into a respective one of said at 5 least two boreholes.
6. The tool of claim 5, wherein said pulling means comprises a headplate positioned against said piston, and a pair of sidebars, a given end of each of said sidebars being connected to said 10 headplate, and a distal end of each of said sidebars being connected to a respective end portion of said second yoke member? and wherein said headplate has a recessed portion in a bottom surface of said headplate facing 15 said piston, said piston being positioned in said recessed portion for pushing against said headplate and in a direction away from the universal joint during the disassembly operation, said recessed portion acting to preclude lateral movement of said 20 piston during operation of said tool.
7. The tool of claim 6, further comprising holding means for holding said sidebars and said headplate in a connected relationship during the disassembly operation. 25
8. The tool of claim 7, wherein said holding means comprises an 0-ring surrounding said sidebars.
9. The tool of claim 6, wherein said second yoke member is provided with retaining cap screws 30 protruding from respective end portions of said second yoke member, said distal end of each of said sidebars being provided with respective retaining cap screw engaging holes into which a respective one of said retaining cap screws fits, thereby connecting -22- said each of said sidebars directly to said respective end portions of said second yoke member without the need of any adapters.
10. The tool of claim 9, wherein said 5 sidebars are provided with grooves generally perpendicular to the length of said sidebars and located at an end thereof remote from said respective end portions of said second yoke member, said grooves being dimensioned in accordance with the thickness of 10 said headplate so that respective sides of said headplate fit into the groove in respective ones of said sidebars.
11. The tool of claim 10, further comprising holding means for holding said sidebars 15 and said headplate in a connected relationship during the disassembly operation.
12. The tool of claim 11, wherein said holding means comprises an 0-ring surrounding said sidebars. 20
13. The tool of claim 5, wherein said at least two standoff studs have threaded ends which are insertable into corresponding threaded holes in said given end portion of said first yoke member.
14. A tool for diassembly of a universal 25 joint substantially as herein described with reference to any one, some or all of the accompanying drawings. : .••• K, M L" -• By Kis/^rW^ ninhorised Agen; A. J. f' * u OON Per. ■- I TC4/G
NZ21535186A 1986-03-03 1986-03-03 Tool for disassembling universal joints, hydraulic action NZ215351A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
NZ21535186A NZ215351A (en) 1986-03-03 1986-03-03 Tool for disassembling universal joints, hydraulic action

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NZ21535186A NZ215351A (en) 1986-03-03 1986-03-03 Tool for disassembling universal joints, hydraulic action

Publications (1)

Publication Number Publication Date
NZ215351A true NZ215351A (en) 1988-02-12

Family

ID=19921572

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ21535186A NZ215351A (en) 1986-03-03 1986-03-03 Tool for disassembling universal joints, hydraulic action

Country Status (1)

Country Link
NZ (1) NZ215351A (en)

Similar Documents

Publication Publication Date Title
US5220716A (en) Tools for disassembling universal joints
US6886227B1 (en) Low impact shaft remover
CA2277202C (en) Device for trenchless replacement of underground pipe
US4991472A (en) D.C. direct drive impact wrench
US5163210A (en) Tools for disassembling universal joints
US4904010A (en) Gripping tool
CN88100320A (en) The improvement of torque wrench
US5894650A (en) Universal gear puller
CA2384216C (en) Improved puller apparatus
GB2254034A (en) Tool for separating chain links
AU577183B2 (en) Tools for disassembling universal joints
US4210990A (en) Gear puller
US4178816A (en) Portable hydrant wrench
US6931965B1 (en) Portable pipe tong and method of use
NZ215351A (en) Tool for disassembling universal joints, hydraulic action
GB2305383A (en) Pulling device for removing an expander from a boring tool
US2575602A (en) Universal joint of the jaw type
CA1313316C (en) Portable hydrant wrench
CA1272582A (en) Tools for disassembling universal joints
US5138915A (en) Impact pipe wrench
US5894665A (en) Bearing puller extension and method for extending same
US5042132A (en) Hydraulic cam bushing installation and removal tool
US7779733B1 (en) Glow plug removal method
US5271257A (en) Pipe crimping apparatus
US3858300A (en) Jackscrew device