NZ203080A - Moving coil electroacoustic transducer:two part diaphragm supports coil - Google Patents

Moving coil electroacoustic transducer:two part diaphragm supports coil

Info

Publication number
NZ203080A
NZ203080A NZ203080A NZ20308083A NZ203080A NZ 203080 A NZ203080 A NZ 203080A NZ 203080 A NZ203080 A NZ 203080A NZ 20308083 A NZ20308083 A NZ 20308083A NZ 203080 A NZ203080 A NZ 203080A
Authority
NZ
New Zealand
Prior art keywords
coil
diaphragm
transducer
annular
magnet
Prior art date
Application number
NZ203080A
Inventor
F Taylor
N W Tester
T G Young
T Burton
M R King
L E B Dymoke-Bradshaw
Original Assignee
Int Standard Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Int Standard Electric Corp filed Critical Int Standard Electric Corp
Publication of NZ203080A publication Critical patent/NZ203080A/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/02Details
    • H04R9/04Construction, mounting, or centering of coil
    • H04R9/045Mounting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/10Telephone receivers

Description

2 030 80 ORIGINAL Priority Date(s): •■! JX.K'fc'dfy.
Complete Specification Filed: Class: Publication Date: ... .U.9.WAY...
PO. Journal, No: , NEW ZEALAND THE PATENTS ACT, 1953 COMPLETE SPECIFICATION "MOVING COIL TRANSDUCER" WE, INTERNATIONAL STANDARD ELECTRIC- CORPORATION , a Corporation of the State of Delaware, United States of America, of 320 Park Avenue, New York 22, New York, United States of America, hereby declare the invention, for which we pray that a patent may be granted to us, and the method by which it is to be performed, to be particularly described in and by the following statement: 20308 This invention relates to electro-acoustic transducers of the moving coil type, especially but not solely for use in telephone subscriber's apparatus.
Moving coil transducers are well known, and have been much used, especially for loudspeakers. With the advent of the so-called "electronic" telephone, i.e. one in which the subscriber's set includes electronic circuitry, it is convenient to use such transducers in telephones. Although the fact that they need amplifiers may be an apparent disadvantage, this is not so since the presence of electronic circuitry for other reasons means that the amplifier needed can be readily provided. Further the sound quality characteristics of moving coil transducers are better than for such existing devices as the carbon granules transducer. The existing transducers as currently used in telephones are relatively cheap so it is desirable to provide moving coil transducers which are compact and inexpensive.
According to the invention there is provided an electro-acoustic transducer of the moving coil type, which includes a diaphragm unit including the diaphragm and a coil, and a magnet unit including a magnet and a plurality of pole pieces so located as to define an annular air gap in which the coil is located, wherein the diaphragm is made in two parts one of which is a substantially circular central part whose outer periphery carries the coil, and the other of which is a 203080 substantially annular outer portion attached to the coll carrying portion of the central part of the diaphragm.
According to the invention there 13 also provided an electro-acoustic transducer of the moving coll type, which includes a diaphragm 5 unit including the diaphragm and coll, and a magnet unit including a magnet and a plurality of pole pieces so located as to define an annular air gap in which the coil is located, wherein the diaphragm is made in two parts one of which is a substantially circular central part the outer egde of which forms a coil support which supports the coil, 10 wherein the other part of the diaphragm is a substantially annular por tion which nests with at least a portion of the coll support when the transducer is assembled, wherein one of the pole pieces is a cylindrical member of a ferromagnet material with a flat disc-like portion at one of its ends, which disc-line portion supports an annular magnet, and 15 wherein the other pole piece is a flat annular member of a ferromagnet material attached to the other end of the magnet, its inner circular periphery with the outer periphery of the other end of the cylindrical portion of the first mentioned pole piece defining the air gap in which said coil is located. ^0 According to the invention there is further provided an electro- acoustic transducer of the moving coil type, which includes a diaphragm unit inluding the diaphragm and a coil, and a magnet unit including a magnet and a plurality of pole pieces so located as to define an annular air gap in which the coil is located, wherein the diaphragm is made in N.Z. PATENT OFF RE 19 DEC 1785 RECEfVE.O 2030?0 two parts one of which is a substantially circular central part the outer edge of which forms a coil suport which supports the coil, wherein the other part of the diaphragm is a substantially annular portion which nests with at least a portion of the coil support when the transducer is 5 assembled, wherein one of the pole pieces Is a disc of a ferromagnet ma terial with an upstanding wall at its outer rim, wherein an annulus of a ferromagnetic material is mounted with its outer rim in magnetic contact with said wall, wherein a cylindrical magnet is supported at the centre of the disc, and wherein the other pole piece is a flat disc of a 0 ferromagnet material attached to the other end of the magnet, its outer circular periphery with the inner periphery of the annulus on said wall defining the air gap In which said coil is located.
An embodiment of the Invention will now be described with reference to the accompanying drawings, in which Pig. 1, 2 and 3 each shows a 5 cross-section of a moving coil transducer embodying the invention.
The transducers described herein are so designed that fully automated assembly can be achieved, and the assembly technique used ensures that the speech coil is accurately positioned in the air gap. The speech coil is wound on an aluminium former, which ensures accuracy of 1 shape, and the 4 2 030 80 aluminium also acts as an electrical damper. The outer part of the diaphragm is formed in situ on the mounting ring, such that a nest into which the speech coil locates is accurately positioned with respect to the datum diameter on the mounting ring for the diaphragm. The same datum also positions the outer pole piece of the magnetic assembly which reduces the build up of tolerances associated with conventional transducers.
The formation of a nest as just mentioned provides a secure way to attach a speech coil to the diaphragm, and also provides protection for the coil itself.
The transducers described herein each have a two part diaphragm, which includes an aluminium coil former, so that automatic coil winding and termination of the lead out wires can be achieved. It also permits the use of an assembly technique, which ensures accurate alignment of the coil to the pole gap (air gap) and gives a positive means of attaching the coil to the diaphragm.
The first transducer to be described, see Fig. 1, has a rear cover 1 which is generally circular and has three upstanding pillars such as 2 in its middle which locate the inner pole 3, which is of magnetic material. This pole has a central hole to fit over the pillars 2 and a flat portion parallel to the rear cover. Secured to this flat portion is an annular magnet 5 so magnetised that its end faces are the 203080 poles. This magnet Is made from one of the modern magnetic materials which can have high magnetic strength. To the upper face of the magnet there Is secured a disc 6 of magnetic material, whose inner rim provides the outer pole. As can be seen from Pig. 1, the poles are so shaped as 5 to provide an annular gap for the reception of the coll.
Also mounted on the rear cover, and ultrasonically welded to it, there Is a support ring 7 of a non-magnetic material (like the rear cover) which has a mounting ring 8 integral with its upper end. This mounting ring is so dimensioned as to provide an annular face which lo-10 cates on the upper face of the magnet. It also has an inner datum face which rests against the outer cylindrical rim of the pole piece 6. The mounting ring 8 has an annular region 9 for supporting the outer ring of the diaphragm.
Mounted between the magnet 5 and the inner pole 3 there is a metal-15 lie ring 10 which forms a short-ciurculted turn, which minimises hum pick up when the transducer is in use. Between the pole 3 and the rear cover 1 there is an acoustic damper 21 of a fibrous material.
With the method of assembly indicated above it is found that the tolerances accumulate at the welded joint. This facilitates assembly with a low rejection rate.
We now consider the diaphragm unit. This Includes a two portion diaphragm, the outer portion of which is an 6 203080 annulus 11 of a suitable stiff insulating material or aluminium whose outer rim is secured to the annular region 9 of the support ring 7. The inner portion of the diaphragm is a bent down cylindrical part 12 with an annular portion 13 at 5 its lower end. The inner portion 14 of the diaphragm is of aluminium, and is convex, except for its central region which is concave, to provide adequate clearance within the transducer's front chamber. This inner portion also has a cylindrical portion 16 bent down to and integral with an 10 annular portion 17. The coil 18 is carried by the portions 16 and 17 of the inner portion of the diaphragm. Thus the inner portion of the diaphragm with the coil fits accurately into the nest formed by the portions 12-13 of the diaphragm's outer portion.
The leads from the winding, one of which is shown at , go from the ends of the winding of the coil 18 to two terminals one of which is shown at 21. Each of these terminals is fixed into a tunnel in the wall of the support ring 7.
The outer side, i.e. the side which faces the user, of 70 the transducer, has so-called spit guard 22, which is a thin flexible membrane, e.g. of polyethylene terephthalate fifteen microns thick. Outside of this there is the front cover 23, which has a ring, for instance of twelve holes such as 24, for the ingress or egress of sound, dependent on whether the 203080 transducer (in its telephone application) is used as a transmitter or as a receiver. Behind these holes there is a mesh membrane 25, which may be of nylon, and which imparts acoustic damping to the transducer.
During the assembly of the transducer, the coil is wound on the cylindrical portion of the inner part of the diaphragm, and the result is then assembled to the magnet structure and casing in situ. The outer part of the diaphragm is, as already indicated attached to the raised part 9 of the mounting ring 8, and the recess 31 in that part 11 of the diaphragm is located by the diaphragm forming tool relative to the datum surface referred to above. Hence the coil is accurately located relative to that datum and therefore to the nagnetic circuit. The magnetic circuit structure is also located by the outer diameter of the outer pole piece 6 relative to the datum surface, thus ensuring the accuate location of the coil in the gap. Thus the necessity for the use of an adhesive bonding of the coil to the diaphragm, as in many known transducers is avoided.
In certain cases, the short-circuited turn 10, and/or the spit guard 11, and possibly also the membrane 25, may not be needed, in which case whichever is not needed is not provided.
The transducer shown in Fig. 2 is similar in most respects to that shown in Fig. 1, so the description is confined to the points of difference. Whereas in Fig. 1 the 2030 8 damping arrangement include a disc of fibrous material at the rear of the inner pole, this is not so in Fig. 2. In this arrangement, the inside of the inner pole 40 has a stepped recess 41 into which is secured an annular damper 42 of a fibrous material. The upper edge of this recess is formed over as shown at 43 to secure the damper in place.
Thus In this case we have a through-flow damper mounted within the inner pole.
The transducer shown in Fig. 3, while it uses the same method of constructing the diagram used in Figs. 1 and 2, differs from the other two transducers in a number of respects, as will be seen. Thus the magnet is a cylindrical magnet 50 located at the centre of an outer pole formed by a flat disc 51 and an outer wall 52. This outer pole is located to the rear cover 5 3 and the support ring 54 substantially as for the other two transducers.
Mounted on the outer wall 52 of the outer pole is a disc 55 whose inner cylindrical rim defines the outside of the air gap. The inner side of the air gap is defined by the outer cylindrical rim of a disc-shaped pole piece 56 mounted on the upper end of the magnet.
In this transducer it will be noted that the only damping arrangement shown is the mesh 57 on the inside of the front cover 58. However, further damping arrangements, e.g. as in Fig. 1 or 2, can be added if these are needed.
The magnets used in the transducers described herein can be either ceramic magnets or metal magnets.

Claims (15)

2O3OS0 What we claim is:-
1. An electro-acoustic transducer of the moving coll type which Includes a diaphragm unit Including a diaphragm and a coil, and a magnet unit Including a magnet and a plurality of pole pieces so located as to define an annular air gap in which the coil is located, wherein the diaphragm is made in two parts one of which Is a substantially circular central part whose outer periphery carries the coil, and the other of which is a substantially annular outer portion attached to the coil-carrying portion of the central part of the diaphragm.
2. An electro-acoustic transducer of the moving coil type which includes a diaphragm unit including the diaphragm and a coil, and a magnet unit including a magnet and a plurality of pole pieces so located as to define an annular air gap in which the coll is located, wherein the diaphragm is made in two parts one of which Is a substantially circular central part the outer edge of which forms a coil support which supports the coil, wherein the other part of the diaphragm is a substantially annular portion which nests with at least a portion of the coil support when the transducer is assembled wherein one of the pole pieces is a cylindrical member of a ferromagnet material with a flat disc-like portion at one of its ends, which disc-like portion supports an annular magnet, and wherein the other pole piece is a flat annular member of a ferromagnet material attached to the other end of T" NJL PATENT OFFRT-S -5 MAP 19-% — . tfFCPT ...... /O 203QSQ the magnet, its inner circular periphery with the outer periphery of the other end of the cylindrical portion of the first mentioned pole piece defining the air gap in which said coil is located.
3. A transducer as claimed in claim 2, wherein each of the two parts of the diaphragm has a cylindrical portion which extends into the air gap so that the coil is between the two cylindrical portions, and wherein each of the cylindrical portions of the two parts of the diaphragm has an annular portion so located that the two annular portions are contiguous when the two parts of the diaphragm are assembled together
4. A transducer as claimed in claim 2 or'3, wherein an acoustic damper formed by an annular damper is located between the rear face of the first mentioned pole piece and the rear cover portion of the transducer, the hole of the annulus being substantially concentric with the inside of the cylindrical member of that pole piece.
5. A transducer as claimed in claim 2 or 3, wherein the inside of the cylindrical member of the first-mentioned pole piece has a stepped recess on its inside at its front end, and wherein an annular damping ring is located in the recess.
6. A transducer as claimed in claim 5, and wherein the •annular damper is held in place by a formed-over rim from the pole piece.
7. A transducer as claimed in claim 4, 5 or 6, and wherein // 203080 the damper is a ring of a fibrous material.
8. A transducer as claimed in any one of claims 2, 3, 5, 6 or 7, and wherein a generally cylindrical member of an electrically conductive material is located about the cylindrical member of the first pole piece, between that member and the magnet, such that that member forms a short-circuited turn.
9. A transducer as claimed in claim 2 or in any claim appendent thereto, and wherein the cylindrical member of the front pole piece is hollow and fits over one or more upstanding pillars on the rear cover of the transducer.
10. An electro-acoustic transducer of the moving coll type which includes a dlaghragm unit including the diaphragm and a coil, and a magnet unit Including a magnet and a plurality of pole pieces so located sis to define an annular air gap in which the coil is located wherein the diaphragm is made in two parts one of which Is a substantially circular central part the outer edge of which forms a coil support which supports the coll, wherein the other part of the diaphragm is a substantially annular portion which nests with at least a portion of the coil support when the transducer is asembled, wherein one of the pole pieces is a disc of a ferromagnet material with an upstanding wall at its outer rim, wherein an annulus of a ferromagnetic material is mounted with its outer rim in magnetic contact with said wall, wherein a cylindrical magnet is supported at the centre of the disc, and wherein the other pole piece is a flat disc of a ferromagnet material !Z 2,03080 attached to the other end of the magnet, its outer circular periphery with the inner periphery of the annulus on said wall defining the air gap in which said coil is located.
11. A transducer as claimed in claim 10, wherein each of the two parts of the diaphragm has a cylindrical portion which extends into the air gap so that the coil is between the two cylindrical portions, and wherein each of the cylindrical portions has an annular portion at its lower end so located that the two annular portions are contiguous when the two parts of the diaphragm are assembled together.
12. A transducer as claimed in any one of the preceding claims, wherein the central circular part of the diaphragm is of a highly conductive material such as aluminium.
13. A transducer as claimed in claim 12, wherein the central circular part is domed outward with a shallow saucer-like recess at its middle.
14. A transducer as claimed in claim 12 or 13, wherein the outer annular part of the diaphragm is also made of a highly conductive material such as aluminium.
15. An electro-acoustic transducer of the moving coil type, substantially as described with reference to Fig. 1, or Fig. 2 or Fig, 3 of the accompanying drawings. INTERNATIONAL STANDARD ELECTRIC CORPORATION ■) P.M. Conrick Authorized Agent P5/1/1466
NZ203080A 1982-02-09 1983-01-25 Moving coil electroacoustic transducer:two part diaphragm supports coil NZ203080A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB08203650A GB2114855B (en) 1982-02-09 1982-02-09 Moving coil transducer

Publications (1)

Publication Number Publication Date
NZ203080A true NZ203080A (en) 1986-05-09

Family

ID=10528192

Family Applications (1)

Application Number Title Priority Date Filing Date
NZ203080A NZ203080A (en) 1982-02-09 1983-01-25 Moving coil electroacoustic transducer:two part diaphragm supports coil

Country Status (7)

Country Link
AU (1) AU560342B2 (en)
ES (1) ES270258Y (en)
GB (1) GB2114855B (en)
HK (1) HK75987A (en)
NZ (1) NZ203080A (en)
SG (1) SG42087G (en)
ZA (1) ZA829558B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378722A (en) * 2014-11-21 2015-02-25 音品电子(深圳)有限公司 Ultra-miniature moving-coil electric-acoustic converter

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2134847B (en) * 1983-02-04 1985-11-13 Standard Telephones Cables Ltd Assembly using ultrasonics
GB2134745B (en) * 1983-02-04 1986-10-22 Standard Telephones Cables Ltd Electro acoustic tranducer
GB2145300B (en) * 1983-08-16 1987-05-07 Standard Telephones Cables Ltd Electroacoustic transducer
DE4419250A1 (en) * 1994-06-01 1995-12-07 Nokia Deutschland Gmbh Voice coil former for loudspeakers
DE69917148T2 (en) * 1998-02-17 2005-05-04 Koninklijke Philips Electronics N.V. ELECTRIC ACOUSTIC CONVERTER AND MEMBRANES FOR ELECTRIC ACOUSTIC CONVERTERS
ATE394895T1 (en) 2003-08-19 2008-05-15 Matsushita Electric Ind Co Ltd SPEAKER
GB2425433A (en) * 2005-04-19 2006-10-25 Merry Electronics Co Ltd Power-tolerant assembly of sound ring and loudspeaker diaphragm

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104378722A (en) * 2014-11-21 2015-02-25 音品电子(深圳)有限公司 Ultra-miniature moving-coil electric-acoustic converter

Also Published As

Publication number Publication date
AU1097883A (en) 1983-08-18
SG42087G (en) 1987-07-17
ES270258Y (en) 1984-05-16
AU560342B2 (en) 1987-04-02
GB2114855A (en) 1983-08-24
ES270258U (en) 1983-08-01
HK75987A (en) 1987-10-23
GB2114855B (en) 1985-10-23
ZA829558B (en) 1983-10-26

Similar Documents

Publication Publication Date Title
US5157731A (en) Dome radiator speaker
US4315112A (en) Speaker
JP2566823B2 (en) Electroacoustic transducer and speaker
JP3337631B2 (en) Dome speaker and manufacturing method thereof
US4868882A (en) Loudspeaker
US20060215872A1 (en) Compact high performance speaker
EP0650656B1 (en) Loudspeaker
JPH0335880B2 (en)
US4885773A (en) Apparatus for mounting a unidirectional microphone in a hands-free telephone subset
US3614335A (en) Electroacoustic transducer held together by thermoplastic clamping ring
US4697283A (en) Telephone handset with integrated flux coil
US20050276436A1 (en) Speaker device
NZ203080A (en) Moving coil electroacoustic transducer:two part diaphragm supports coil
US4608463A (en) Electro-acoustic transducer
US6717305B2 (en) Apparatus having an electroacoustic transducer forming a sound reproducing means and a part of vibration generating means
GB2076257A (en) Electro-acoustic transducers
JP3606877B2 (en) Sounder
CA2034898C (en) Receiver
CN218243813U (en) Bone conduction speaker oscillator and bone conduction earphone
EP1329130B1 (en) Compact high performance speaker
JP4553278B2 (en) Multifunctional sounding body and method for producing the same
JP2001231096A (en) Multi-function sounder
CN219834359U (en) Acoustic device
JP3747575B2 (en) Speaker
JP2600363B2 (en) Electromagnetic sounding body