NO952957L - A method for predicting the physical properties of hydrocarbon products - Google Patents

A method for predicting the physical properties of hydrocarbon products

Info

Publication number
NO952957L
NO952957L NO952957A NO952957A NO952957L NO 952957 L NO952957 L NO 952957L NO 952957 A NO952957 A NO 952957A NO 952957 A NO952957 A NO 952957A NO 952957 L NO952957 L NO 952957L
Authority
NO
Norway
Prior art keywords
data
values
spectra
neural network
input
Prior art date
Application number
NO952957A
Other languages
Norwegian (no)
Other versions
NO952957D0 (en
Inventor
John Michael Tolchard
Andrew Boyd
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of NO952957D0 publication Critical patent/NO952957D0/en
Publication of NO952957L publication Critical patent/NO952957L/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/359Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using near infrared light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3577Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing liquids, e.g. polluted water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2829Mixtures of fuels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/26Oils; Viscous liquids; Paints; Inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • G01N33/2835Specific substances contained in the oils or fuels
    • G01N33/2852Alcohol in fuels

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Fremgangsmåte for dataprosessering og optimalisering av et neuralt nettverk for anvendelse for bestemmelse av fysikalske data for egenskapene av hydrokar- bonprodukter ut fra målte (N)lR-spekter- absorbanser, kjennetegnet ved at man a) måler (N)IR-spektrene for et stort sett av hydrokarbonproduktprøver fra et bredt område av kilder; b) velger et overtoneområde (harmonisk område) blant de således oppnådde (N)IR-spektre, c) velger et antall adskilte bølge- lengder i hvert N(IR)-spektrum, over- fører et antall av disse bølgelenger til absorpsjonsdata og anvender disse ab- sorpsjonsdata som inngangsverdier til et neuralt nettverk, idet antallet lag i det neurale nettverk er fra 2 til 5 og antallet knutepunkter - når det forelig- ger tre eller flere lag - er fra 3 til 10 i inngangslaget, fra l til 10 i det eller de skjulte lag og fra l til 3 i utgangslaget, d) trener det neurale nettverk på hele datasettet ved gjentatt innmating av inngangsverdier og kjente utgangsverdier, dvs. (N)IR-dataene for hydrokarbonproduktet og dets relevante data for fysikalske egenskaper, slik at sammenhengen mellom de to læres, og overvåker ydelsen hva angår dets forut- sigelser mot de aktuelle relevante fysi- kalske egenskapsdata målt ved hjelp av standardmetoder for treningsdataene, slik at absorbansverdiene korreleres med den nevnte relevante fysikalske egen- skap, e) genererer et sett av verdier for det justerte nettverks sammenkob- lingsvektfaktorer og forspenninger etter læringsperioden i trinn d), og f) på-trykker disse justerte verdier, under anvendelse av nettverkalgoritmen, til (N)IR-spektre opptatt under de samme betingelser, for hydrokarbonprodukter med ukjente fysikalske egenskapsdata.Method of data processing and optimization of a neural network for use in determining physical data for the properties of hydrocarbon products from measured (N) IR spectra absorbances, characterized by a) measuring (N) the IR spectra of a large sets of hydrocarbon product samples from a wide range of sources; b) selects an overtone range (harmonic range) from the thus obtained (N) IR spectra; c) selects a number of distinct wavelengths in each N (IR) spectrum, transfers a number of these wavelengths to absorption data, and uses these absorption data as input values to a neural network, the number of layers in the neural network being from 2 to 5 and the number of nodes - when there are three or more layers - from 3 to 10 in the input layer, from 1 to 10 in the hidden layer (s) and from 1 to 3 in the starting layer; (d) training the neural network of the entire data set by repeated input of input values and known output values, i.e. (N) IR data for the hydrocarbon product and its relevant physical property data, such as that the relationship between the two is learned, and monitors performance in terms of its predictions against the relevant relevant physical property data measured by standard training data methods, so that the absorbance values are correlated with the said relevant physical properties, e) generating a set of values for the adjusted network's interconnection weight factors and biases after the learning period in step d), and f) applying these adjusted values, using the network algorithm, to (N) IR spectra recorded under the same conditions, for hydrocarbon products with unknown physical property data.

NO952957A 1993-01-28 1995-07-26 A method for predicting the physical properties of hydrocarbon products NO952957L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP93200229 1993-01-28
PCT/EP1994/000233 WO1994017391A1 (en) 1993-01-28 1994-01-26 Method for prediction of physical property data of hydrocarbon products

Publications (2)

Publication Number Publication Date
NO952957D0 NO952957D0 (en) 1995-07-26
NO952957L true NO952957L (en) 1995-07-26

Family

ID=8213596

Family Applications (1)

Application Number Title Priority Date Filing Date
NO952957A NO952957L (en) 1993-01-28 1995-07-26 A method for predicting the physical properties of hydrocarbon products

Country Status (12)

Country Link
EP (1) EP0681693A1 (en)
JP (1) JPH08505944A (en)
KR (1) KR960700450A (en)
CN (1) CN1116878A (en)
AU (1) AU5971994A (en)
BR (1) BR9405871A (en)
CA (1) CA2154786A1 (en)
FI (1) FI953579A0 (en)
NO (1) NO952957L (en)
NZ (1) NZ261119A (en)
WO (1) WO1994017391A1 (en)
ZA (1) ZA94536B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5572030A (en) * 1994-04-22 1996-11-05 Intevep, S.A. Method for determining parameter of hydrocarbon
US5643796A (en) * 1994-10-14 1997-07-01 University Of Washington System for sensing droplet formation time delay in a flow cytometer
JPH10510355A (en) * 1994-12-09 1998-10-06 フォス エレクトリック アクティーゼルスカブ Information acquisition method
US6850874B1 (en) 1998-04-17 2005-02-01 United Technologies Corporation Method and apparatus for predicting a characteristic of a product attribute formed by a machining process using a model of the process
US20060031027A1 (en) * 2004-08-03 2006-02-09 Alman David H Method and apparatus for predicting properties of a chemical mixture
CN100335885C (en) * 2004-09-30 2007-09-05 长沙开元仪器有限公司 Method for testing hydrogen content in coal
EP1744049A3 (en) * 2005-07-14 2012-08-15 Korea Petroleum Quality Inspection Institute Vehicle mounted type fuel testing apparatus
US7679059B2 (en) * 2006-04-19 2010-03-16 Spectrasensors, Inc. Measuring water vapor in hydrocarbons
US9244052B2 (en) 2011-12-22 2016-01-26 Exxonmobil Research And Engineering Company Global crude oil quality monitoring using direct measurement and advanced analytic techniques for raw material valuation
GB2520520B (en) * 2013-11-22 2018-05-23 Jaguar Land Rover Ltd Methods and system for determining fuel quality in a vehicle
DE102015106881B4 (en) * 2015-05-04 2016-12-29 Rofa Laboratory & Process Analyzers Method for determining a characteristic of a fuel that characterizes the knock resistance and corresponding test arrangement
FR3035970B1 (en) 2015-05-05 2017-06-02 Ifp Energies Now METHOD FOR CONTINUOUSLY MONITORING THE ADVANCED STATE OF OXIDATION OF A FUEL
CN105424539A (en) * 2015-11-06 2016-03-23 中国科学院天津工业生物技术研究所 Neural network-based method for predicting sugar yield produced through corn straw hydrolysis
CN108369218A (en) * 2015-12-08 2018-08-03 国立研究开发法人物质材料研究机构 Using the particle of alkyl modification as the fuel oil identification sensor of receptive layers and fuel oil recognition methods

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2245401A (en) * 1989-11-01 1992-01-02 Hughes Aircraft Co Neural network signal processor

Also Published As

Publication number Publication date
CA2154786A1 (en) 1994-08-04
NO952957D0 (en) 1995-07-26
JPH08505944A (en) 1996-06-25
EP0681693A1 (en) 1995-11-15
NZ261119A (en) 1997-08-22
FI953579A (en) 1995-07-26
BR9405871A (en) 1995-12-12
AU5971994A (en) 1994-08-15
CN1116878A (en) 1996-02-14
FI953579A0 (en) 1995-07-26
ZA94536B (en) 1994-09-09
WO1994017391A1 (en) 1994-08-04
KR960700450A (en) 1996-01-20

Similar Documents

Publication Publication Date Title
NO952957L (en) A method for predicting the physical properties of hydrocarbon products
Wang et al. Uncertainties of inherent optical properties obtained from semianalytical inversions of ocean color
CN107491784A (en) Tobacco leaf near infrared spectrum quantitative modeling method and application based on deep learning algorithm
US5015856A (en) Automated process for permeability determinations of barrier resins
AU2095388A (en) Method for the direct determination of physical properties of hydrocarbon products
CN107273633B (en) Varying delay method of estimation and flow time lag method of estimation is hydrocracked between multiple operation
Fatemi et al. Identification of informative spectral ranges for predicting major chemical constituents in corn using NIR spectroscopy
Wang Research on the prediction of per capita coal consumption based on the ARIMA–BP combined model
Kose Modelling of colour perception of different age groups using artificial neural networks
Aires et al. The" weight smoothing" regularization of MLP for Jacobian stabilization
CN102184452B (en) The flexible measurement method of the component gas of " Texaco syngas "
US6052194A (en) Method and apparatus for controlling the spectral reflectance of a material
GR3022931T3 (en) Method for prediction of cetane numbers of gasoils.
Seemann et al. Classical and modern algorithms for the evaluation of data from sensor-arrays
Zhang et al. Neural network-molecular descriptors approach to the prediction of properties of alkenes
CN114935565B (en) Method for detecting rhodamine B content in grape juice based on laser-induced fluorescence technology
Zhu et al. Discrimination of Brands of Strong Aroma Type Liquors Using Synchronous Fluorescence Spectroscopy and Chemometrics Methods
Billock et al. Sensory recoding via neural synchronization: integrating hue and luminance into chromatic brightness and saturation
Cen et al. Pattern recognition of visible and near-infrared spectroscopy from bayberry juice by use of partial least squares and a backpropagation neural network
Mandal et al. To Predict the Lightfastness of Prints on Foil Applying Artificial Neural Network
Walczak et al. Calibration of non-linear analytical systems by a neuro fuzzy approach
Shao et al. Optical system for tablet variety discrimination using visible/near-infrared spectroscopy
REN et al. PROGRESS AND PROSPECT OF OCEAN COLOR REMOTE SENSING IN CASE 2 WATERS
Sodre The connection between continuum emission and emission lines in galaxy spectra
EP0922953A1 (en) Process for predicting the cold characteristics of gasoils