NO883037L - PROCEDURE FOR SEPARATING RARE EARTH ELEMENTS. - Google Patents

PROCEDURE FOR SEPARATING RARE EARTH ELEMENTS.

Info

Publication number
NO883037L
NO883037L NO88883037A NO883037A NO883037L NO 883037 L NO883037 L NO 883037L NO 88883037 A NO88883037 A NO 88883037A NO 883037 A NO883037 A NO 883037A NO 883037 L NO883037 L NO 883037L
Authority
NO
Norway
Prior art keywords
rare earth
organic phase
extraction
earth elements
hydrocarbons
Prior art date
Application number
NO88883037A
Other languages
Norwegian (no)
Other versions
NO883037D0 (en
Inventor
Alain Leveque
Original Assignee
Rhone Poulenc Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Chimie filed Critical Rhone Poulenc Chimie
Publication of NO883037D0 publication Critical patent/NO883037D0/en
Publication of NO883037L publication Critical patent/NO883037L/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/38Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds containing phosphorus
    • C22B3/384Pentavalent phosphorus oxyacids, esters thereof
    • C22B3/3846Phosphoric acid, e.g. (O)P(OH)3
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/10Preparation or treatment, e.g. separation or purification
    • C01F17/17Preparation or treatment, e.g. separation or purification involving a liquid-liquid extraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D11/00Solvent extraction
    • B01D11/02Solvent extraction of solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F17/00Compounds of rare earth metals
    • C01F17/20Compounds containing only rare earth metals as the metal element
    • C01F17/206Compounds containing only rare earth metals as the metal element oxide or hydroxide being the only anion
    • C01F17/224Oxides or hydroxides of lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/409Mixtures at least one compound being an organo-metallic compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

Foreliggende oppfinnelse vedrører en fremgangsmåte for separering av sjeldne jordartelementer ved hjelp av væske-væskeekstraksjon. The present invention relates to a method for the separation of rare earth elements by means of liquid-liquid extraction.

Man vet at separasjon av sjeldne jordartelementer ved hjelp av væske-væskeekstraksjon kan gjennomføres på en svært effektiv måte ved hjelp av organofosforsyrer. It is known that separation of rare earth elements using liquid-liquid extraction can be carried out in a very efficient manner using organophosphoric acids.

Denne separasjonen gjennomføres ved at en vandig løsning inneholdende de sjeldne jordartelementer bringes i kontakt med en organisk fase inneholdende organofosforsyrer som This separation is carried out by bringing an aqueous solution containing the rare earth elements into contact with an organic phase containing organophosphoric acids which

ekstraksjonsmiddel. Denne type syre er svært selektiv og man oppnår således utmerket separasjon ved å gjennomføre en rekke relativt små teoretiske ekstraksjonstrinn i motstrøm. extraction agent. This type of acid is very selective and excellent separation is thus achieved by carrying out a series of relatively small theoretical extraction steps in countercurrent.

Likevel, kan et problem opptre i forbindelse med reekstraksjonen når man går ut fra den organiske fase inneholdende de ekstraherte jordartelementer. Denne reekstraksjon gjennomføres med syreløsninger som f.eks. saltsyre, salpetersyre. Imidlertid, er organofosforsyrene sterkt sure ekstraksjonsmidler. Dessuten, i industrielle prosesser, anvendes syrene fortynnet i paraffiniske hydrokarboner av typen kerosen. Under disse forhold, medfører reekstraksjonen forbruk av sterkt konsentrerte syrer som følgelig blir desto større ved ønsket høyere utvinning av sjeldne j ordartelementer. Nevertheless, a problem can arise in connection with the re-extraction when starting from the organic phase containing the extracted soil elements. This re-extraction is carried out with acid solutions such as e.g. hydrochloric acid, nitric acid. However, the organophosphorus acids are strongly acidic extractants. Also, in industrial processes, the acids are used diluted in paraffinic hydrocarbons of the kerosene type. Under these conditions, the re-extraction entails the consumption of highly concentrated acids, which consequently become all the greater with the desired higher extraction of rare earth elements.

Dette medfører store omkostninger med hensyn til reaksjonskomponenter, som kan gjøre væske-væskeekstraksjonsprosessene mindre interessante sett ut fra et økonomisk synspunkt. This entails large costs with regard to reaction components, which can make the liquid-liquid extraction processes less interesting from an economic point of view.

Formålet med den foreliggende oppfinnelse er således å finne en løsningsmiddelblanding og særlig et fortynningsmiddel som kan forenkle reekstraksjonen. The purpose of the present invention is thus to find a solvent mixture and in particular a diluent which can simplify the re-extraction.

Fremgangsmåten for separering av sjeldne jordartelementer ved hjelp av væske-væskeekstraksjon i henhold til oppfinnelsen er således av en type omfattende at en vandig løsning som opprinnelig inneholder minst ett sjeldent jordartelement bringes i kontakt med en initial organisk fase omfattende et ekstraksjonsmiddel valgt fra gruppen bestående av organofosforsyrer og minst ett fortynningsmiddel; separasjon av en vandig fase og en organisk fase; reekstraksjon av det eller de jordartelementene i den organiske fase ved at den bringes i kontakt med en vandig sur løsning; og det karakteristiske er at man anvender i det minste ett fluorert fortynningsmiddel. The method for separating rare earth elements by means of liquid-liquid extraction according to the invention is thus of a type comprising that an aqueous solution which originally contains at least one rare earth element is brought into contact with an initial organic phase comprising an extraction agent selected from the group consisting of organophosphoric acids and at least one diluent; separation of an aqueous phase and an organic phase; re-extraction of the soil element(s) in the organic phase by bringing it into contact with an aqueous acidic solution; and the characteristic is that at least one fluorinated diluent is used.

Anvendelse av disse fortynningsmidler i henhold til oppfinnelsen nedsetter helt klart forbruket av syre for reekstraksjonen eller, med andre ord, øker utvinningsutbyttet av sjeldne jordartselementer under like betingelser. Use of these diluents according to the invention clearly reduces the consumption of acid for the re-extraction or, in other words, increases the extraction yield of rare earth elements under equal conditions.

Andre egenskaper og fordeler med den foreliggende oppfinnelse er nærmere angitt i den følgende beskrivelse og eksempler. Other properties and advantages of the present invention are detailed in the following description and examples.

Den initiale organiske fase i henhold til oppfinnelsen inneholder først og fremst et ekstraksjonsmiddel som er valgt fra gruppen av organofosforsyrer, dvs. forbindelser med formel (R^O) (R2O) PO(OH) hvorved Ri og R2kan være like eller forskjellige og er alkylradikalene, alicykliske radikakaler, alkenylradikalene, alkoksyalkylradikalene som er rettkjedet eller forgrenet, arylradikalene, alkylarylradikalene, arylalkylradikalene. The initial organic phase according to the invention primarily contains an extractant selected from the group of organophosphoric acids, i.e. compounds with the formula (R^O) (R2O) PO(OH) whereby Ri and R2 can be the same or different and are the alkyl radicals , alicyclic radicals, the alkenyl radicals, the straight-chain or branched alkoxyalkyl radicals, the aryl radicals, the alkylaryl radicals, the arylalkyl radicals.

Man kan særlig nevne dem hvor R^og R2er alkylradikalene og spesielt bis(2 etylheksyl)-fosforsyre, bis(paraoktylfenyl)-fosforsyre. One can particularly mention those where R 1 and R 2 are the alkyl radicals and in particular bis(2 ethylhexyl) phosphoric acid, bis(paraoctylphenyl) phosphoric acid.

I henhold til den viktigste egenskap med den foreliggende oppfinnelse, inneholder den organiske fase minst ett fluorert fortynningsmiddel. Dette kan særlig velges fra gruppen av fluorerte hydrokarboner. According to the most important feature of the present invention, the organic phase contains at least one fluorinated diluent. This can in particular be selected from the group of fluorinated hydrocarbons.

Man kan særlig nevne de fluorerte alifatiske hydrokarboner, alicykliske hydrokarboner, benzenhydrokarboner og særlig de fluorerte mettede alifatiske hydrokarboner og etyleniske hydrokarboner. One can particularly mention the fluorinated aliphatic hydrocarbons, alicyclic hydrocarbons, benzene hydrocarbons and especially the fluorinated saturated aliphatic hydrocarbons and ethylenic hydrocarbons.

Som eksempel kan man nevne dibromodifluoretan, de fluorerte derivater av kumen, dietylbenzen, p-etyltoluen. Examples include dibromodifluoroethane, the fluorinated derivatives of cumene, diethylbenzene, p-ethyltoluene.

Man kan også nevne forbindelsene med handelsbetegnelsen Flugene, særlig triklortrifluoretan, difluortetrakloretan (Flugene 112). One can also mention the compounds with the trade name Flugene, especially trichlorotrifluoroethane, difluorotetrachloroethane (Flugene 112).

Selvfølgelig kan fortynningsmidlene som er beskrevet ovenfor anvendes alene eller i blanding. På den annen side representerer mengden av fortynningsmidler i den organiske fase i henhold til oppfinnelsen generelt mellom omtrent 30 og 95 volum% av denne fase. Dessuten, i spesielle tilfeller, for å forbedre hydrodynamikken av systemet, er det interessant å tilsette et hydrokarbon av typen som vanligvis anvendes. Man konstaterer at hydrokarboninnholdet kan gå opptil 30 % av den organiske fase uten å forstyrre virkningen av fortynningsmidlene i henhold til oppfinnelsen. Of course, the diluents described above can be used alone or in admixture. On the other hand, the amount of diluents in the organic phase according to the invention generally represents between about 30 and 95% by volume of this phase. Moreover, in special cases, in order to improve the hydrodynamics of the system, it is interesting to add a hydrocarbon of the type usually used. It is established that the hydrocarbon content can go up to 30% of the organic phase without interfering with the effect of the diluents according to the invention.

Den initiale vandige løsning kan være av enhver type. Den inneholder ett eller flere sjeldne jordartselementer, generelt i form av klorid eller nitrat. The initial aqueous solution can be of any type. It contains one or more rare earth elements, generally in the form of chloride or nitrate.

Alt som vedrører det å bringe fasen i kontakt med hverandre, er ikke en del av den foreliggende oppfinnelse. Man minner om at denne kontakt kan gjennomføres i et apparat av typen blande-dekanteringsinnretning eller kolonne, foretrukket kontinuerlig og i motstrøm i flere trinn. Everything that relates to bringing the phases into contact with each other is not part of the present invention. It is recalled that this contact can be carried out in an apparatus of the type mixing-decanting device or column, preferably continuously and in countercurrent in several stages.

Temperaturen for denne operasjon er ikke kritisk og den er generelt i området mellom omgivelsestemperatur og omtrent 80°C. The temperature for this operation is not critical and is generally in the range between ambient temperature and about 80°C.

Reekstraksjonen gjennomføres også på en måte som i seg selv er kjent, i apparater av typen som nevnt i det foregående. The re-extraction is also carried out in a manner which is known per se, in devices of the type mentioned above.

Ved reekstraksjon av de sjeldne jordartselementer anvendes en vandig sur løsning som klart kan være mindre konsentrert. When re-extracting the rare earth elements, an aqueous acidic solution is used which can clearly be less concentrated.

Følgende eksempler illustrerer den foreliggende oppfinnelse: The following examples illustrate the present invention:

Sammenlianinaseksempel 1Comparison example 1

1 1 vandig neodymkloridløsning med 89,8 g/l regnet som oksyd og1 1 aqueous neodymium chloride solution with 89.8 g/l calculated as oxide and

1 1 organisk fase bestående av bis(2 etylheksyl)-fosforsyre (HDEHP) med 1 M/l og kerosen bringes i kontakt og blandingen omrøres ved omgivelsestemperatur. 1 1 organic phase consisting of bis(2 ethylhexyl)-phosphoric acid (HDEHP) with 1 M/l and the kerosene are brought into contact and the mixture is stirred at ambient temperature.

Etter separering av fasene utvinnes det en organisk fase inneholdende 16,2 g neodymoksyd. After separation of the phases, an organic phase containing 16.2 g of neodymium oxide is recovered.

Hele denne organiske fase bringes på nytt i kontakt med 0,5 M saltsyre og etter separering av fasene oppnås en løsning inneholdende 10,8 g/l neodymoksyd som representerer et utbytte på 67 % med utgangspunkt i den organiske fase. This entire organic phase is again brought into contact with 0.5 M hydrochloric acid and, after separation of the phases, a solution containing 10.8 g/l neodymium oxide is obtained, which represents a yield of 67% based on the organic phase.

Eksempel 2Example 2

1 1 av den vandige løsning fra eksempel 1 bringes i kontakt med1 1 of the aqueous solution from example 1 is brought into contact with

1 1 av den organiske fase bestående av IM HDEHP og Flugene 112 under de samme betingelser som i eksempel 1. 1 1 of the organic phase consisting of IM HDEHP and Flugene 112 under the same conditions as in example 1.

Den organiske fase som utvinnes inneholder 11,6 g/l neodymoksyd. The organic phase that is recovered contains 11.6 g/l neodymium oxide.

Etter at man har bragt denne i kontakt med 0,5M saltsyre under de samme betingelser som i eksempel 1, utvinnes, etter seperasjonen av fasene, en vandig fase inneholdende 8,9 g/l neodymoksyd som representerer et utbytte på 89 %. After this has been brought into contact with 0.5 M hydrochloric acid under the same conditions as in example 1, an aqueous phase containing 8.9 g/l of neodymium oxide is recovered, after the separation of the phases, which represents a yield of 89%.

Claims (2)

1. Fremgangsmåte for separering av sjeldne jordartselementer ved væske-væskeekstraksjon av typen omfattende at en vandig initial løsning inneholdende minst ett av de sjeldne jordartselementer bringes i kontakt med en initial organisk fase inneholdende et ekstraksjonsmiddel valgt fra gruppen bestående av organofosforsyrer og minst ett fortynningsmiddel; separering av en vandig fase og en organisk fase; reekstraksjon av det eller de sjeldne jordartselementer i den organiske fase ved at denne bringes i kontakt med en sur vandig løsning; karakterisert ved at man for å forbedre reekstraksjonen, anvender minst ett fluorert fortynningsmiddel.1. Method for separating rare earth elements by liquid-liquid extraction of the type comprising bringing an aqueous initial solution containing at least one of the rare earth elements into contact with an initial organic phase containing an extractant selected from the group consisting of organophosphoric acids and at least one diluent; separation of an aqueous phase and an organic phase; re-extraction of the rare earth element(s) in the organic phase by bringing this into contact with an acidic aqueous solution; characterized in that in order to improve the re-extraction, at least one fluorinated diluent is used. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at fortynningsmiddelet er valgt fra gruppen bestående av fluorerte hydrokarboner og særlig de fluorerte alifatiske hydrokarboner, alicykliske hydrokarboner, etyleniske hydrokarboner, benzen-hydrokarboner.2. Method as stated in claim 1, characterized in that the diluent is selected from the group consisting of fluorinated hydrocarbons and in particular the fluorinated aliphatic hydrocarbons, alicyclic hydrocarbons, ethylenic hydrocarbons, benzene hydrocarbons.
NO88883037A 1987-07-10 1988-07-07 PROCEDURE FOR SEPARATING RARE EARTH ELEMENTS. NO883037L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8709795A FR2617828B1 (en) 1987-07-10 1987-07-10 PROCESS FOR SEPARATING RARE EARTHS BY LIQUID-LIQUID EXTRACTION USING FLUORINATED DILUENTS

Publications (2)

Publication Number Publication Date
NO883037D0 NO883037D0 (en) 1988-07-07
NO883037L true NO883037L (en) 1989-01-11

Family

ID=9353052

Family Applications (1)

Application Number Title Priority Date Filing Date
NO88883037A NO883037L (en) 1987-07-10 1988-07-07 PROCEDURE FOR SEPARATING RARE EARTH ELEMENTS.

Country Status (7)

Country Link
EP (1) EP0298842A1 (en)
JP (1) JPH0193417A (en)
KR (1) KR890001612A (en)
AU (1) AU1887088A (en)
BR (1) BR8803440A (en)
FR (1) FR2617828B1 (en)
NO (1) NO883037L (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5620056B2 (en) * 2008-10-10 2014-11-05 スリーエム イノベイティブプロパティズカンパニー Fluorine solvent purification method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3047601A (en) * 1950-10-18 1962-07-31 Johnson Oliver Separation of thorium from rare earth values in aqueous acidic solution by solvent extraction with an alkyl phosphate-oxygen containing organic diluent
BE558856A (en) * 1956-06-29 1900-01-01
US3812232A (en) * 1972-08-15 1974-05-21 Us Interior Solvent extraction procedure for separating samarium from neodymium
US4016237A (en) * 1975-09-08 1977-04-05 The United States Of America As Represented By The United States Energy Research And Development Administration Process for separation of the rare earths by solvent extraction
FR2460276A1 (en) * 1979-07-03 1981-01-23 Rhone Poulenc Ind PROCESS FOR TREATING RARE EARTH OXIDES AND GALLIUM MIXTURES

Also Published As

Publication number Publication date
BR8803440A (en) 1989-01-31
EP0298842A1 (en) 1989-01-11
FR2617828B1 (en) 1990-12-07
FR2617828A1 (en) 1989-01-13
AU1887088A (en) 1989-01-12
NO883037D0 (en) 1988-07-07
KR890001612A (en) 1989-03-28
JPH0193417A (en) 1989-04-12

Similar Documents

Publication Publication Date Title
US3399055A (en) Separation of cobalt by liquid extraction from acid solutions
US3761249A (en) Copper extraction from ammoniacal solutions
KR870007845A (en) Purification method of barium salt
NO127964B (en)
US3989607A (en) Solvent extraction and electrowinning of zinc and copper from sulfate solution
EP0186882A1 (en) Solvent extraction process for recovery of zinc
US4207294A (en) Process for recovering uranium from wet-process phosphoric acid
US4741887A (en) Gallium complexes and solvent extraction of gallium
CA1083828A (en) Extraction of copper values from aqueous solutions with hydroxy-oximes
US4233273A (en) Selective extraction of iron and aluminum from acidic solutions
CA1052019A (en) Continuous process for extracting nitrates from nitrate-containing solutions
US4883912A (en) Process for the recovery of acetic acid
JPH0445570B2 (en)
US4166837A (en) Solvent-extraction process for recovery and separation of metal values
NO133978B (en)
US6645453B2 (en) Solvent extraction process for recovery of uranium from phosphoric acid (25-55% P205)
US4212849A (en) Simultaneous extraction and recovery of uranium and vanadium from wet process acids
US4194905A (en) Solvent-extraction process for recovery and separation of metal values
NO883037L (en) PROCEDURE FOR SEPARATING RARE EARTH ELEMENTS.
US4261959A (en) Process for extracting ferric iron from an aqueous solution
JPH0761865B2 (en) Separation method of rare earth elements by liquid-liquid extraction
US4939299A (en) Succinyl dihydroxamic acids
Juang et al. Effect of a water‐insoluble organic acid on amine extraction of acetic acid from aqueous solutions. Equilibrium studies
US5993757A (en) Reoximation of metal extraction circuit organics
US5188735A (en) Separation of rare earth values by liquid/liquid extraction