NO871088L - ROTATE SPONGE LIFTING SALES. - Google Patents

ROTATE SPONGE LIFTING SALES.

Info

Publication number
NO871088L
NO871088L NO871088A NO871088A NO871088L NO 871088 L NO871088 L NO 871088L NO 871088 A NO871088 A NO 871088A NO 871088 A NO871088 A NO 871088A NO 871088 L NO871088 L NO 871088L
Authority
NO
Norway
Prior art keywords
inner part
channel
tool
mold body
axis
Prior art date
Application number
NO871088A
Other languages
Norwegian (no)
Other versions
NO871088D0 (en
Inventor
Guenter Wirth
Peter Prattes
Gunter Dipl Ing Grassmueck
Original Assignee
Ver Edelstahlwerke Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ver Edelstahlwerke Ag filed Critical Ver Edelstahlwerke Ag
Publication of NO871088D0 publication Critical patent/NO871088D0/en
Publication of NO871088L publication Critical patent/NO871088L/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/06Drills with lubricating or cooling equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/32Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools twist-drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/34Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools milling cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/004Article comprising helical form elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2250/00Compensating adverse effects during turning, boring or drilling
    • B23B2250/12Cooling and lubrication
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2251/00Details of tools for drilling machines
    • B23B2251/24Overall form of drilling tools
    • B23B2251/241Cross sections of the diameter of the drill

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Catching Or Destruction (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Cleaning Implements For Floors, Carpets, Furniture, Walls, And The Like (AREA)
  • Confectionery (AREA)
  • Milling Processes (AREA)
  • Auxiliary Devices For Machine Tools (AREA)
  • Scissors And Nippers (AREA)
  • Powder Metallurgy (AREA)

Abstract

Rotating cutting tool, in particular a drilling, milling and/or reaming tool, with a tool body having a pronounced longitudinal extension in the direction of the rotational or main axis and made of carbide or mechanically resistant material, which tool body has on its outside at least one groove running preferably at an angle to the axis differing from 0 DEG , in particular roughly helically, and at least one web running in accordance with the course of the groove and if need be having at least one cutting edge, and also at least one channel, essentially passing through the tool body in longitudinal extension, for carrying a fluid medium, at least one channel (7) being arranged in the tool body (1), which is built up in one piece with an inner part (2) having the axis (a) and with at least one outer part (3) sinter-bonded in a planar manner to the inner part (2) essentially over the entire longitudinal extension and having or forming at least one radially outer area of the web (5), which channel (7), running essentially in accordance with the preferably helical course of the web (5), is arranged in the area of the sintered bond (23) of the said parts (2, 3), its wall (71) being formed essentially over its entire extension partly (72) by the inner part (2) and to the remaining extent (73) by the outer part (3).

Description

Oppfinnelsen vedrører et roterbart sponavhevende verktøy, særlig bore-, frese- og/eller slipeverktøy, med verktøy-legemer med utpreget lengdeutstrekning i retning av rotasjonsaksen henholdsvis hovedaksen og med hårdmetall eller hårdstoff, samt med minst et, fortrinnsvis i en vinkel forskjellig fra 0° i forhold til aksen, særlig omtrentlig i vindelaktig forløpende spor på yttersiden og minst et i samsvar med sporet forløpende og med minst en egg forsynt steg, samt med minst en kanal for føring av et strømmende medium, hvilken kanal i hovedsaken går på langs gjennom verktøylegemet. The invention relates to a rotatable chip-removing tool, in particular drilling, milling and/or grinding tools, with tool-bodies with a pronounced longitudinal extension in the direction of the axis of rotation or the main axis and with cemented carbide or hard material, and with at least one, preferably at an angle different from 0° in relation to the axis, particularly approximately in a spirally extending groove on the outside and at least one step extending in accordance with the groove and provided with at least one egg, as well as with at least one channel for guiding a flowing medium, which channel mainly runs longitudinally through the tool body .

I forbindelse med rasjonalisering og automatisering av den sponavhevende metallbearbeidel se, hvor det for stadig vanskeligere bearbeidelsesoppgaver stilles stigende krav til verktøyene, såsom lengre levetid og høyere arbeidshastighet, benyttes det i stigende grad bore-, frese- og slipeverktøy fremstilt av sintret massiv-hånrdmetall eller- hårdstoff. Slike verktøy anvendes eksempelvis for utforming av henholdsvis for bearbeidelse av dype hullboringer i emner av høyfaste legeringer. I verktøyet vil det herunder ofte opptre temperaturer langt over 600°C. For oppnåelse av høy borsynk, og særlig for å fremme sporfJerningen fra de dype borhullene, er borene forsynt med en sentral kanal for spylemiddeltil-førsel. Fra denne sentrale kanal går det i nærheten av borets fremre ende ut flere i borenden munnende grenkanaler hvori-gjennom spylemiddelet kan bringes frem til arbeidsstedet. Fremstillingen av slike bor kan i hovedsaken skje ved at det ved hjelp av mekanisk eller isostatisk pressing med utgangspunkt i et hårdmetallsintergranulat tilveiebringes et råemne med denn ønskede dimensjon. Etter en forsintring innarbeides det eksempelvis ved hjelp av diamantslipeskiver ytterspor med et ønsket, eksempelvis vindelaktig forløp. Det bores også ut en spylemiddelkanal. Deretter foretas en avsluttende sintring med etterfølgende sluttbearbeidelse, særlig for utforming av vindeleggene. In connection with the rationalization and automation of chip-removing metalworking, where increasing demands are placed on the tools for increasingly difficult processing tasks, such as longer service life and higher working speed, drilling, milling and grinding tools made of sintered solid metal or - hard substance. Such tools are used, for example, for designing or for machining deep holes in workpieces made of high-strength alloys. Temperatures far above 600°C will often occur in the tool. To achieve a high drill sink, and in particular to promote the removal of traces from the deep drill holes, the drills are equipped with a central channel for flushing agent supply. From this central channel, several branch channels opening at the drill end exit near the front end of the drill, through which the flushing agent can be brought to the workplace. The production of such drills can mainly take place by means of mechanical or isostatic pressing, starting from a cemented carbide sinter granulate, to provide a blank with the desired dimension. After pre-sintering, outer grooves with a desired, for example spiral-like course are incorporated, for example with the aid of diamond grinding wheels. A rinse aid channel is also drilled out. A final sintering is then carried out with subsequent final processing, especially for the design of the winding eggs.

Utførelsen av boringen er krevende og blir stadig vanskeligere og mer unøyaktig med økende borlengde og dermed forbundet kjølekanallengde. Det er naturligvis mulig å foreta utboring i det forsintrerte formlegeme i fra begge endesider, men i praksis vil man da ikke kunne oppnå en nøyaktig innretting av de to borepartier. Dette unøyaktige møtested i kanalen hindrer spylemiddelstrømmen og gir trykktap. The execution of the drilling is demanding and becomes increasingly difficult and more imprecise with increasing drilling length and thus associated cooling channel length. It is of course possible to drill out the sintered molded body from both end sides, but in practice it will not be possible to achieve an exact alignment of the two drill parts. This imprecise meeting point in the channel prevents the flow of flushing agent and causes a loss of pressure.

Hensikten med oppfinnelsen er å tilveiebringe et verktøy som nevnt innledningsvis, ved hvilket verktøy man unngår en av fremsti 11ingsmetoden betinget begrensning av lengden, samtidig som fremstillingen skal være mindre krevende. The purpose of the invention is to provide a tool as mentioned in the introduction, with which tool one avoids a limitation of the length conditioned by the manufacturing method, while at the same time the manufacturing should be less demanding.

Oppfinnelsen vedrører således et roterbart sponavhevende verktøy, særlig bore-, frese- eller slipeverktøy av den innledningsvis nevnte type, og verktøyet er kjennetegnet ved at det i et av en aksen inneholdende innerdel og av minst en med innerdelen i hovedsaken over hele lengden flate-sinter-forbundet ytterdel med i det minste et radielt ytre stegområde, er det i området ved sinterforbandet mellom de nevnte deler anordnet minst en i hovedsaken i samsvar med stegets, fortrinnsvis vindelaktige, forløp forløpende kanal, idet dens vegg i hovedsaken over hele sin utstrekning delvis dannes av innerdelen og forøvrig dannes av ytterdelen. Ved en slik bor, fres eller lignende, bestående av to med hverandre integrert ved hjelp av flate-sinterforband over i hovedsaken hele lengden forbundne inner- og ytterdel henholdsvis ytterdeler, oppnås den fordel at verktøyet ikke er begrenset i lengden. Videre er kanal tverrsnittet mer varierbart. Dersom det forefinnes flere steg med egger så kan hvert av disse steg ha en tilordnet, i samsvar med stegets forløp forløpende kanal, hvorved det oppnås et høyere totaltverrsnitt og dermed også større spylemiddelgjennomgang, med samtidig bedring av sponfJerningen. Videre kan det oppnås en nøyaktig kjøling av vindlene og eggene over hele lengden innenifra, og man oppnår dessutenden fordel at hver kanal vil kunne munne ut på et ønsket sted på verktøyets endeside, altså eksempelvis ved bor mellom borets spiss og borets omkrets, slik at det kan oppnås optimale plasseringer av spylemediumutløpene. Som følge av den nøyaktige kjøling av eggene kan skjærnastigheten og borsynken økes betydelig. Det er ikke lenger nødvendig med den krevende boring på langs gjennom det forsintrede verk-tøylegeme. Som følge av den kanalen i hvert steg omsluttende integrerte forbindelse mellom innerdelen og en eller flere ytterdeler, som i det minste innbefatter radielt sett ytre stegområder, oppnås dessuten en slags sandwich-struktur virkning, hvorved den fra lange verktøy kjente tendens til vibrasjon vil være vesentlig redusert, også ved høye turtall, slik at det således muliggjøres større lengder og større nøyaktighet for boringene. Som følge av den todelte utforming av verktøylegemet kan kanalene ha en hvilken som helst ønsket, til vindlene tilpasset stigning og spiralvinkel. En ytterligere fordel er at ved ettersliping av boret vil man ikke være underkastet noen begrensninger, fordi kanalene over hele lengden vil være anordnet i samme avstand fra rotasjonsaksen. The invention thus relates to a rotatable chip-removing tool, in particular a drilling, milling or grinding tool of the type mentioned at the outset, and the tool is characterized by the fact that in one of the inner parts containing the axis and of at least one with the inner part in the main body over the entire length, surface-sintering -connected outer part with at least one radially outer step area, in the area of the sinter connection between the mentioned parts, at least one is arranged in the main body in accordance with the step's, preferably spiral-like, continuous channel, as its wall is partially formed in the main body over its entire extent of the inner part and is otherwise formed by the outer part. With such a drill, milling cutter or similar, consisting of two integrated with each other by means of surface-sintered joints over essentially the entire length of connected inner and outer parts respectively outer parts, the advantage is achieved that the tool is not limited in length. Furthermore, the channel cross-section is more variable. If there are several steps with eggs, then each of these steps can have an assigned channel, in accordance with the progress of the step, whereby a higher total cross-section is achieved and thus also greater flushing agent passage, with a simultaneous improvement in chip removal. Furthermore, a precise cooling of the coils and eggs can be achieved over the entire length from the inside, and you also get the advantage that each channel will be able to open at a desired place on the end side of the tool, i.e. for example at drills between the tip of the drill and the circumference of the drill, so that optimal locations of the flushing medium outlets can be achieved. As a result of the precise cooling of the eggs, the hardness and the boron sink can be increased significantly. There is no longer any need for the demanding longitudinal drilling through the sintered tool body. As a result of the integrated connection between the inner part and one or more outer parts enclosing the channel in each step, which at least includes radially outer step areas, a kind of sandwich structure effect is also achieved, whereby the tendency to vibration known from long tools will be significant reduced, also at high speeds, so that greater lengths and greater accuracy for the bores are thus made possible. As a result of the two-part design of the tool body, the channels can have any desired pitch and spiral angle adapted to the spirals. A further advantage is that when regrinding the drill, one will not be subject to any restrictions, because the channels over the entire length will be arranged at the same distance from the axis of rotation.

Med hesnyn til sinterforbindelsen skal det nevnes at det fra DE-OS 28 10 746 er kjent avlange hårdmetallegemer bygget opp av sinterforbundne kjerne- og mantellegemer. With regard to the sinter connection, it should be mentioned that from DE-OS 28 10 746 oblong cemented carbide bodies built up of sinter-connected core and mantle bodies are known.

Det nye verktøy kan fremstilles på en enkel måte dersom kanalen anordnes slik at den strekker seg langs en akseparallell sylindrisk sinterforbandflate mellom innerdel og ytterdel. The new tool can be manufactured in a simple way if the channel is arranged so that it extends along an axis-parallel cylindrical sinter joint surface between the inner part and the outer part.

Dersom, som foretrukket, den av ytterdelen dannede del av kanalveggen tilsvarer sinterforbandflaten mellom innerdel og ytterdel, vil man til tross for tilstedeværelsen av en kanal ikke få noen materialsvekninger i stegets eller stegenes yttterdeler, hvor verktøyet er underkastet sterke mekaniske påkjenninger. If, as preferred, the part of the channel wall formed by the outer part corresponds to the sinter connection surface between the inner part and the outer part, despite the presence of a channel, no material weakening will occur in the outer parts of the step or steps, where the tool is subjected to strong mechanical stresses.

For oppnåelse av høy stabilitet mot svingninger, og for å ta hensyn til de uklike påkjenninger på verktøy-yttersiden og i verktøykjernen, kan det fordelaktig sørges for at de sinterforbundne inner- og ytterdeler har ulik kjemisk sammensetning og/eller oppviser ulike fysikalske egenskaper. Således kan eksemeplvis innerdelen være utført av et seigere sinterhårdmetall, eksempelvis K 20, mens ytterdelen kan være av et mer slitasjefast sinterhårdmetall K 10, begge ifølge IS0-recommandation R 513 1, november 1966. In order to achieve high stability against fluctuations, and to take into account the unequal stresses on the tool exterior and in the tool core, it can advantageously be ensured that the sintered inner and outer parts have different chemical compositions and/or exhibit different physical properties. Thus, for example, the inner part can be made of a tougher sintered carbide, for example K 20, while the outer part can be of a more wear-resistant sintered carbide K 10, both according to IS0 recommendation R 513 1, November 1966.

I tillegg til den bedre forsyning av verktøyet med spyle-middel vil i dette tilfelle verktøyets radielt sett ytre område ha en høyere sl itasJefasthet enn innerdelen, idet innerdelen gir høyere seighet. In addition to the better supply of the tool with flushing agent, in this case the radially outer area of the tool will have a higher wear resistance than the inner part, as the inner part gives higher toughness.

Det skal i tillegg bemerkes at kanalene kan ha avsnitt med ulike forløp. Således kan de ha vindelaktig forløp i området til vindlene,, eggene eller lignende, mens de i verktøy-skaftet kan ha et akseparallelt forløp langs sinterforband-flanten. It should also be noted that the channels may have sections with different courses. Thus, they can have a spiral-like course in the area of the windings, eggs or the like, while in the tool shaft they can have an axis-parallel course along the sinter connection flange.

En foretrukken fremgangsmåte til fremstilling av verktøyet ifølge oppfinnelsen består i at det av hårdmetallgranulat ved hjelp av, eventuelt isostatisk, pressing og etterfølgende forsintring dannes et fortrinnsvis rotasjonssymmetrisk innerdel-formlegeme og et ytterdel-formlegeme, med en til innerdel-formlegemets yttermantel dimensjonsmessig tilsvarende utsparing, at det i innerdel-formlegemets mantel, i samsvar med et ønsket, eksempelvis vindelaktig, forløp av en kanal for et flytende medium, utformes minst et spoor, en renne eller lignende, at innerdel, formlegemet anordnes i ytterdel-formlegemet, med sin ytterside fortrinnsvis i full flatekontakt med ytterdel-formlegemets innside, og at de to legemer materialforbindes med hverandre ved hjelp av sintring, med etterfølgende sluttbearbeidelse. Ved en slik fremstilling erstattes den hittil krevende boring gjennom et forsintret formlegeme av envesentlig enklere utforming av et i samsvar med det ønskede kanalforløp forløpende spor på innerdel-formlegemets ytterflate, noe som kan skje uten problemer på en automatisk måte. Fortrinnsvis kan grupper av ved siden av hverandre forløpende kanaler utformes når boringen har mer enn en vindel. Den etter ferdigsintringen foretatte utforming av ytter sporene, med utforming av borvindlene henholdsvis de eggbærende steg i en fres, kan skje med en slik dybde at sporbunnen går inn i innerdelen. For det tilfelle at yttersporene skal ha en liten dybde og ikke gå inn i innerdelen, kan man også gå frem på den måten at det i det forsintrede ytterdel-formlegeme, dvs. i dets mantel, utformes tilsvarende spor før sammensettingen, slik at det etter sintringen bare vil være nødvendig med en etterarbeidelse av sporene og en sliping av eggene. A preferred method for producing the tool according to the invention consists in forming a preferably rotationally symmetrical inner part mold body and an outer part mold body from cemented carbide granules by means of possibly isostatic pressing and subsequent sintering, with a recess corresponding in dimensions to the outer shell of the inner part mold body, that in the mantle of the inner part mold body, in accordance with a desired, for example spiral-like, course of a channel for a liquid medium, at least a track, a channel or the like is designed, that the inner part, the mold body is arranged in the outer part mold body, preferably with its outer side in full surface contact with the inside of the outer mold body, and that the two bodies are materially connected to each other by means of sintering, with subsequent finishing. With such a production, the hitherto demanding drilling through a sintered mold body is replaced by a significantly simpler design of a groove running in accordance with the desired channel course on the outer surface of the inner part mold body, which can be done without problems in an automatic manner. Preferably, groups of channels running next to each other can be designed when the bore has more than one helix. The design of the outer grooves after completion of sintering, with the design of the drill bits or the egg-carrying steps in a milling cutter, can be done to such a depth that the bottom of the groove goes into the inner part. In the event that the outer grooves are to have a small depth and do not go into the inner part, one can also proceed in such a way that corresponding grooves are formed in the sintered outer part mold body, i.e. in its mantle, before assembly, so that after the sintering will only require a post-processing of the grooves and a grinding of the eggs.

For å oppnå en særlig også i området ved kanalen eller kanalene fullstendig sinterforbindelse er det særlig fordelaktig før forsintringen av innerdel-formelegemet å presse dette, særlig isostatisk, med et trykk som er minst 20$ og fortrinnsvis 30-100$ høyere enn det presstrykk som benyttes ved dannelsen av ytterdel-formlegemet. Man utnytter da forskjellen i krymping mellom innerdel og ytterdel under fremstillingen av verktøy-formlegemet. Svinnet eller krymp-ingen i ytterdelen vil være kraftigere, som følge av det lavere pressetrykk, og det oppnås således en slags innkrym-ping av innerdelen, med dannelse av en høytett sinterforbindelse mellom de anliggende delflater. Holder man seg innenfor de nevnte grenser så oppnås et meget sikkert sinterforband, samtidig som man i kanalveggen oppnår en glatt forbindelse uten spalter ved skjøtstedene mellom innerdel og ytterdel. In order to achieve a complete sintering connection, especially also in the area of the channel or channels, it is particularly advantageous before the sintering of the inner part mold body to press it, especially isostatically, with a pressure which is at least 20$ and preferably 30-100$ higher than the pressing pressure which used in the formation of the outer part mold body. The difference in shrinkage between the inner part and the outer part is then exploited during the production of the tool mold. The shrinkage or shrinkage in the outer part will be stronger, as a result of the lower pressing pressure, and a kind of shrinking of the inner part is thus achieved, with the formation of a highly tight sinter connection between the adjacent part surfaces. If you stay within the aforementioned limits, a very secure sinter connection is achieved, while at the same time you achieve a smooth connection in the channel wall without gaps at the joints between the inner part and the outer part.

Eksempel:Example:

Av en hårdmetall-sinterpulverblanding med sammensetningen 6,3 vekt-# Co, restWC + 2,5 vekt-# (TiTaNb)C-gJennomsnitts-kornstørrelse 1 jjm, ble det ved hjelp av isostatisk pressing med et trykk på 1800 bar utformet et formlegeme som ble forsintret en time etter en 11 timers oppvarming til ca. 750°C. Av dette formlegeme ble det utformet 180 mm langt, omtrentlig synlindrisk innerdel-formlegeme med en diameter på 11,0 mm. Dette formlegemes mantelflate ble forsynt med tre spor med omtrent halvsirkelformede tverrsnitt med radius From a cemented carbide sinter powder mixture with the composition 6.3 wt-# Co, residual WC + 2.5 wt-# (TiTaNb)C-gAverage grain size 1 jjm, a molded body was formed by means of isostatic pressing with a pressure of 1800 bar which was sintered one hour after an 11-hour heating to approx. 750°C. From this mold, a 180 mm long, approximately cylindrical inner part mold with a diameter of 11.0 mm was formed. The mantle surface of this shaped body was provided with three grooves with approximately semi-circular cross-sections with a radius

1,1 mm. Sporene ble utformet med utgangspunkt i tre i innbyrdes like vinkelavstander plasserte steder på ende-flatene og ble utformet med 30° stigningsvinkel. 1.1 mm. The tracks were designed on the basis of three equally spaced locations on the end surfaces and were designed with a 30° pitch angle.

Av et med i hovedsaken samme sammensetning tilveiebragte granulat med en gjennomsnittskornstørrelse på 0,7 pm ble det ved hjelp av isostatisk pressing med 1000 bar, etterfølgende forsintring under de foran beskrevne betingelser, og etter-følgende bearbeidelse, tilveiebragt en 180 mm lang hulsyl-indrisk formlegemehylse med en innerdiameter på 11,1 mm og med en ytterdiameter på 22,2 mm. Det med de tre kanalspor forsynte innerdel-formlegeme ble innførti ytterdel-hylsens hulrom og det slik sammensatte legeme ble etter 10 timers oppvarming ved 1450°C sintret en time, under et trykk på A 180 mm long hollow cylinder was produced from a granule with essentially the same composition, with an average grain size of 0.7 pm, by means of isostatic pressing at 1000 bar, subsequent sintering under the conditions described above, and subsequent processing. mold body sleeve with an inner diameter of 11.1 mm and with an outer diameter of 22.2 mm. The inner part mold body provided with the three channel grooves was introduced into the cavity of the outer part sleeve and the body thus assembled was, after 10 hours of heating at 1450°C, sintered for one hour, under a pressure of

0,1 mbar. Det derved frembragte bor-formlegeme hadde en lengde på 14,4 mm og en diameter påå 17,5 mm. I yttermantelen ble det på respektive steder mellom de tre på forhånd i sinter legemet utformede kjølekanaler uttatt vindelspor. Deretter ble eggene slipt og bordet kappet til ønsket lengde. Det på denne måten oppnådde bor muliggjør en gjennomsnittlig øking av borfremføringshastigheten på 1,4 sammenlignet med et lignende bor med konvensjonell kjølekanal med diameter 2 mm og med to avgreningskanaler i borspissen, fremstilt av en sintermetallgranulatblanding som for ytterdelen i det ovenfor beskrevne bor, og forøvrig under like betingelser og ved boring i grått støpestål. 0.1 mbar. The resulting drill body had a length of 14.4 mm and a diameter of 17.5 mm. In the outer casing, spiral grooves were made at respective locations between the three cooling channels previously formed in the sintered body. The eggs were then ground and the table cut to the desired length. The drill obtained in this way enables an average increase in the drill feed rate of 1.4 compared to a similar drill with a conventional cooling channel with a diameter of 2 mm and with two branch channels in the drill tip, made from a sintered metal granulate mixture as for the outer part of the drill described above, and otherwise under the same conditions and when drilling in gray cast steel.

Oppfinnelsen skal forklares nærmere under henvisning til tegningen. The invention shall be explained in more detail with reference to the drawing.

I det skjematiske riss er det med stiplede linjer antydet et borlegeme 1 ifølge oppfinnelsen, slik dette ser ut før de utvendige vindelspor 7 er utformet. Borlegemet 1 er oppbygget av en aksel a oppvisende sylindrisk innerdel 2 og en ytterdel 3 som omgir innerdelen som en hylse. Begge deler er fremstilt av sinterhårdmetal 1 . Delene er enhetlig forbundne med hverandre ved hjelp av et ekte sinterforband 23 mellom innerdelens 2 ytterflate 2 og innerflaten 30 i ytterdelens 3 hulrom. På endeflaten til borlegemet 1 er det vist hvordan det i innerdelens 2 ytterflate 20 med like vinkelavstander a er uttatt tre i tverrsnittet omtrent halvsirkelformede spor med her i hovedsaken vindelaktige forløp, idet sporveggen 72 dannes av innerdelen 2. Den resterende del 73 av veggen 71 i de respektive lukkede kanaler 7 dannes av ytterdelens 3 innerflate 30 og har samme krumming som denne. Med fullt opptrukne linjer er det vist hvordan i ytterdelen 3 utformede spor 35 går ut i fra borets endeside etter ferdigsintrer-ingen. I dette tilfelle strekker sporbunnene seg inn i innerlegemet 2. De dannede steg 5 med egger 50 har samme forløp som kanalene 3 inne i hårdmetall-boret. In the schematic diagram, dotted lines indicate a drill body 1 according to the invention, as it appears before the external spiral grooves 7 are formed. The drill body 1 is made up of a shaft a showing a cylindrical inner part 2 and an outer part 3 which surrounds the inner part like a sleeve. Both parts are made of sinter carbide 1 . The parts are uniformly connected to each other by means of a real sinter connection 23 between the outer surface 2 of the inner part 2 and the inner surface 30 in the cavity of the outer part 3. On the end surface of the drill body 1, it is shown how in the outer surface 20 of the inner part 2, at equal angular distances a, three approximately semi-circular grooves in the cross-section have been taken out, with here mainly spiral-like courses, the groove wall 72 being formed by the inner part 2. The remaining part 73 of the wall 71 in the respective closed channels 7 are formed by the inner surface 30 of the outer part 3 and have the same curvature as this. With solid lines, it is shown how grooves 35 formed in the outer part 3 extend from the end side of the drill after completion of sintering. In this case, the groove bottoms extend into the inner body 2. The formed steps 5 with eggs 50 have the same course as the channels 3 inside the cemented carbide drill.

Claims (6)

1. Roterbart sponavhevende verktøy, særlig bore-, frese-og/eller slipeverktøy, med et verktøylegeme med utpreget lengdeutstrekning i retning av rotasjonsaksen eller hovedaksen og med hårdmetall eller hårdstoff, hvilket verktøy-legeme har minst et fortrinnsvis i en vinkel forskjellig fra 0° relativt aksen, særlig vindelaktig forløpende spor på yttersiden, minst et med minst en egg utført steg med samme forløp som sporet, og minst en kanal for et strømningsmedium, hvilken kanal i hovedsaken går gjennom verktøylegemet i dets lengderetning, karakterisert ved at det i et av en aksen (a) inneholdende innerdel (2) og av minst en med innerdelen i hovedsaken over hele lengden flate-sinterforbundet ytterdel (3) med i det minste et radielt ytre stegområde (5), er det i området ved sinterforbandet (23) mellom de nevnte deler (2,3) anordnet minst en i hovedsaken i samsvar med stegets (5), fortrinnsvis vindelaktige forløp forløpende kanal (7), idet kanalens vegg (71) i hovedsaken over hele sin utstrekning delvis ((72) dannes av innerdelen (2) og forøvrig (72) dannes av ytterdelen (3).1. Rotatable chip removal tool, in particular drilling, milling and/or grinding tools, with a tool body with a pronounced longitudinal extension in the direction of the axis of rotation or the main axis and with hard metal or hard material, which tool body has at least one preferably at an angle different from 0° relative to the axis , particularly a spirally extending groove on the outside, at least one with at least one egg-shaped step with the same course as the groove, and at least one channel for a flow medium, which channel mainly passes through the tool body in its longitudinal direction, characterized in that in one of the axes (a) containing inner part (2) and of at least one surface-sintered outer part (3) with at least one radial outer step area (5) with the inner part mainly over the entire length, it is in the area of the sinter joint (23) between the aforementioned parts (2,3) arranged at least one in the main body in accordance with the step (5), preferably spiral-like course running through the channel (7), the wall (71) of the channel in the main body over its entire extent ing partly ((72) is formed by the inner part (2) and otherwise (72) is formed by the outer part (3). 2. Verktøy ifølge krav 1, karakterisert ved at kanalen (7) er anordnet forløpende langs en akseparallell sylindrisk sinterforbandflate (23) mellom innerdel (2) og ytterdel (3).2. Tool according to claim 1, characterized in that the channel (7) is arranged continuously along an axis-parallel cylindrical sinter connection surface (23) between the inner part (2) and the outer part (3). 3. Verktøy ifølge krav 1 eller 2, karakterisert ved at den av ytterdelen (3) dannede del (73) av veggen (71) i kanalen (7) tilsvarer flaten (23) i sinterforbandet mellom innerdel (2) og ytterdel (3).3. Tool according to claim 1 or 2, characterized in that the part (73) of the wall (71) in the channel (7) formed by the outer part (3) corresponds to the surface (23) in the sinter joint between the inner part (2) and the outer part (3). 4. Verktøy ifølge et av kravene 1-3, karakterisert ved at det enhetlige verktøylegeme (1) dannes av sinterforbundne inner- og ytterdeler (2,3) av sinterhårdmetaller som har ulik kjemisk sammensetning og/eller ulike fysikalske egenskaper.4. Tool according to one of claims 1-3, characterized in that the uniform tool body (1) is formed by sinter-connected inner and outer parts (2,3) of cemented carbides that have different chemical compositions and/or different physical properties. 5. Fremgangsmåte til fremstilling av et verktøy eller verktøy-legeme ifølge et av kravene 1-4, karakterisert ved at det av hårdmetallgranulat ved hjelp av, eventuelt isostatisk, pressing og etterfølgende forsintring dannes et fortrinnsvis rotasjonssymmetrisk innerdel-formlegeme og et ytterdel-formlegeme , med en til innerdel-formlegemets yttermantel dimensjonsmessig tilsvarende utsparing, at det i innerdel-formlegemets mantel, i samsvar med et ønsket, eksempelvis vindelaktig, forløp av en kanal for et flytende medium, utformes minst et spor, enn renne eller lignende, at innerdel-formlegemet anordnes i ytterdel-formlegemet, med sin ytterside fortrinnsvis i full flatekontakt med ytterdel-formlegemets innside, og at de to legemer materialforbindes med hverandre ved hjelp av sintring,, med etterfølgende sluttbearbeidelse.5. Method for producing a tool or tool body according to one of claims 1-4, characterized in that a preferably rotationally symmetrical inner part mold body and an outer part mold body are formed from cemented carbide granules by means of, possibly isostatic, pressing and subsequent sintering, with a to the outer casing of the inner part mold body with a corresponding recess in terms of dimensions, that in accordance with a desired, for example spiral-like, course of a channel for a liquid medium, at least one groove, rather than a chute or the like, is designed in the inner part mold body's mantle, that the inner part mold body is arranged in the outer mold body, with its outer side preferably in full surface contact with the inside of the outer mold body, and that the two bodies are materially connected to each other by means of sintering, with subsequent finishing. 6. Fremgangsmåte ifølge krav 5, karakterisert ved at før forsintringen blir innerdel-formlegemet presset, fortrinnsvis isostatisk, med et trykk som er minst 20%, og fortrinnsvis 30-100$ høyere enn det presstrykk som benyttes ved dannelsen av ytterdel-formlegemet.6. Method according to claim 5, characterized in that before the sintering, the inner part mold body is pressed, preferably isostatically, with a pressure that is at least 20%, and preferably 30-100% higher than the pressing pressure used in the formation of the outer part mold body.
NO871088A 1986-03-18 1987-03-17 ROTATE SPONGE LIFTING SALES. NO871088L (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0072186A AT386145B (en) 1986-03-18 1986-03-18 ROTATABLE CHIP TOOL

Publications (2)

Publication Number Publication Date
NO871088D0 NO871088D0 (en) 1987-03-17
NO871088L true NO871088L (en) 1987-09-21

Family

ID=3498058

Family Applications (1)

Application Number Title Priority Date Filing Date
NO871088A NO871088L (en) 1986-03-18 1987-03-17 ROTATE SPONGE LIFTING SALES.

Country Status (5)

Country Link
EP (1) EP0238477B1 (en)
AT (2) AT386145B (en)
DE (1) DE3772418D1 (en)
DK (1) DK126387A (en)
NO (1) NO871088L (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002049801A1 (en) * 2000-12-21 2002-06-27 Element Six (Pty) Ltd Method of making a cutting tool
SE522600C2 (en) * 2001-10-24 2004-02-24 Seco Tools Ab Drilling tool for cutting machining with three cutting edges at which three coil channels open
DE10344620B4 (en) * 2003-09-25 2007-07-05 Werkzeugfabrik Manfred Schwegler Drilling tool and clamping sleeve
DE102004021190A1 (en) * 2004-04-29 2005-12-29 Günther & Co GmbH Interface for a cutting tool
CN104955599A (en) 2013-01-29 2015-09-30 Osg株式会社 Drill
US9623490B2 (en) 2013-03-26 2017-04-18 Osg Corporation Three-bladed drill with cutting fluid supply hole
CN109465481B (en) * 2018-12-07 2020-06-02 西安交通大学 Integral milling cutter with self-cooling lubricating structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL62342A (en) * 1981-03-10 1983-12-30 Iscar Ltd Method of bonding cemented carbide bodies and composite hard metal products manufactured thereby
GB2153850B (en) * 1984-02-07 1987-08-12 Nippon Piston Ring Co Ltd Method of manufacturing a camshaft
DE3601385A1 (en) * 1986-01-18 1987-07-23 Krupp Gmbh METHOD FOR PRODUCING SINTER BODIES WITH INNER CHANNELS, EXTRACTION TOOL FOR IMPLEMENTING THE METHOD, AND DRILLING TOOL

Also Published As

Publication number Publication date
DK126387A (en) 1987-09-19
ATA72186A (en) 1987-12-15
EP0238477A2 (en) 1987-09-23
DK126387D0 (en) 1987-03-12
AT386145B (en) 1988-07-11
ATE66634T1 (en) 1991-09-15
EP0238477B1 (en) 1991-08-28
NO871088D0 (en) 1987-03-17
DE3772418D1 (en) 1991-10-02
EP0238477A3 (en) 1989-05-24

Similar Documents

Publication Publication Date Title
US6152657A (en) Center cutting end mill
US6511265B1 (en) Composite rotary tool and tool fabrication method
CN103111663B (en) There is cutting tool and the manufacture method thereof of at least partly body of molding
US6402438B1 (en) Composite Cutting Tool
US9302332B2 (en) Twist drill assembly, components for same and method for making same
US7201543B2 (en) Twist drill and method for producing a twist drill which method includes forming a flute of a twist drill
KR100694578B1 (en) Milling tool and process for its manufacture
CN102858482B (en) Super-hard cutter bits, its manufacture method and comprise its instrument
US20050271890A1 (en) Machine tool with a tool shank and a cutting head
CN100418682C (en) Drill bit for forming stepped hole
EP1741507A1 (en) Twist drill
CZ301728B6 (en) Blank and drill for chip machining
JP5539913B2 (en) Cooling channel structure
JPH06508566A (en) Twist drill and its manufacturing method
CN101352766A (en) Ceramic drill for high-speed perforation of composite materials
CN108526552B (en) Twist drill with unequal groove spacing and unequal relief angle
US20110097976A1 (en) Twist drill and method for producing a twist drill which method includes forming a flute of a twist drill
CA2733786C (en) Core drill bit
CN103100833A (en) Process for producing tool, especially reaming tool, and tool
NO871088L (en) ROTATE SPONGE LIFTING SALES.
Mukanov et al. Face turning of holes
CN100475393C (en) Single-lip drill and method for the production thereof
CN104440006B (en) Manufacture rotary tool method and rotary tool
GB2293562A (en) Drilling brittle materials using a drill comprising preliminary bore bits and final bore bit provided with diamond coating and/or annular bit with guide
JPH0373210A (en) High hardness cutting tool and manufacture and use thereof