NO870604L - EPOXY / AROMATIC AMINHARPIX SYSTEMS CONTAINING AROMATIC TRIHYDROXY COMPOUNDS AS Curing Accelerators. - Google Patents

EPOXY / AROMATIC AMINHARPIX SYSTEMS CONTAINING AROMATIC TRIHYDROXY COMPOUNDS AS Curing Accelerators.

Info

Publication number
NO870604L
NO870604L NO870604A NO870604A NO870604L NO 870604 L NO870604 L NO 870604L NO 870604 A NO870604 A NO 870604A NO 870604 A NO870604 A NO 870604A NO 870604 L NO870604 L NO 870604L
Authority
NO
Norway
Prior art keywords
epoxy
approx
mixture according
epoxy resin
mixtures
Prior art date
Application number
NO870604A
Other languages
Norwegian (no)
Other versions
NO870604D0 (en
Inventor
Shahid Parvez Oureshi
Hugh Chester Gardner
Original Assignee
Union Carbide Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US06/747,189 external-priority patent/US4593056A/en
Application filed by Union Carbide Corp filed Critical Union Carbide Corp
Publication of NO870604D0 publication Critical patent/NO870604D0/en
Publication of NO870604L publication Critical patent/NO870604L/en

Links

Landscapes

  • Epoxy Resins (AREA)

Description

Foreliggende oppfinnelse angår et herdbart epoksy/aromatisk diamin harpikssystem inneholdende en definert gruppe aromatiske trihydroksyforbindelser som herdingsakselleratorer. The present invention relates to a curable epoxy/aromatic diamine resin system containing a defined group of aromatic trihydroxy compounds as curing accelerators.

De tredimensjonale epoksy/aminnettverk som dannes ved herding av amin/epoksy harpiksformuleringer er kjent å gi ønskede mekaniske og termiske egenskaper. Som et resultat er aminherdbare epoksyharpikssystemer hyppig benyttet som belegg, adhesiver, tetningsmidler og matriser for fiberfor-sterkede preparater. For hver anvendelse må epoksy/aminhar-piksformuleringen ha en spesiell reaktivitetsgrad. I mange tilfeller må reaksjonshastigheten økes og det tilsettes herdeakselleratorer. Karakteristisk vil additiver som øker herdehastigheten alvorlig redusere de mekaniske og termiske egenskaper for den herdede harpiks. Således er det et behov for å øke herdehastigheten for epoksy/aminformuleringene mens man bibeholder eller fortrinnsvis øker de høye mekaniske egenskaper (slik som strekkstyrke og modul) som oppnås med de ikke aksellererte harpikssystemer. Denne forbedring er spesielt ønskelig i høyytelsesanvendelser slik som kompositt materialer. The three-dimensional epoxy/amine networks formed by curing amine/epoxy resin formulations are known to provide desirable mechanical and thermal properties. As a result, amine-curable epoxy resin systems are frequently used as coatings, adhesives, sealants and matrices for fiber-reinforced preparations. For each application, the epoxy/amine resin formulation must have a particular degree of reactivity. In many cases, the reaction rate must be increased and curing accelerators added. Typically, additives that increase the cure rate will seriously reduce the mechanical and thermal properties of the cured resin. Thus, there is a need to increase the cure rate of the epoxy/amine formulations while maintaining or preferably increasing the high mechanical properties (such as tensile strength and modulus) achieved with the non-accelerated resin systems. This improvement is particularly desirable in high performance applications such as composite materials.

Betydelige forsøk har i henhold til dette vært gjort på å forbedre epoksy/aminharpikssystemer ved tilsetning av forskjellige additiver. Accordingly, considerable efforts have been made to improve epoxy/amine resin systems by the addition of various additives.

CA. May og Y. Tanaka, Epoxy Resins Chemistry and Technology. Marcel Dekker, New York, 1973 beskriver for eksempel tilsetning av forskjellige Lewis syrer, Lewis baser og tallrike salter og komplekser som akselleratorer for epoksy/aminosys-temer. Slike akselleratorer er, mens de er funnet å forbedre herdehastigheten, også funnet ugunstig å påvirke mekaniske egenskaper på grunn av homopolymeriser ing av epoksygruppene, noe som lettes ved nærværet av slike akselleratorer. ABOUT. May and Y. Tanaka, Epoxy Resins Chemistry and Technology. Marcel Dekker, New York, 1973 for example describes the addition of various Lewis acids, Lewis bases and numerous salts and complexes as accelerators for epoxy/amino systems. Such accelerators, while found to improve cure rate, have also been found to adversely affect mechanical properties due to homopolymerization of the epoxy groups, which is facilitated by the presence of such accelerators.

Det er også beskrevet at forskjellige mono- og dihydroksy substituerte aromatiske forbindelser er effektive med henblikk på å øke herdehastigheten for visse epoksyharpikser. For eksempel beskriver Schecter et al i Industrial and Engineering Chemistry. Volume 48, No. 1, sidene 94 til 97, 1956, at fenol var mere effektiv enn alifatiske alkoholer når det gjaldt å aksellerere reaksjonen av fenyl glycidyl eter med dietylamin. Bowen et al beskriver i American Chemical Society Advances in Chemistry Series. Volume 92, sidene 48 til 59, 1970, at 4,4'-dihydroksydifenyl sulfon, fenol, tetrabrombisfenol A og bisfenol A reduserte geldannelsestiden for bisfenol A epoksy/trietylentetramin systemer med tilsvarende grader av effektivitet. It is also disclosed that various mono- and dihydroxy substituted aromatic compounds are effective in increasing the cure rate of certain epoxy resins. For example, Schecter et al describe in Industrial and Engineering Chemistry. Volume 48, No. 1, pages 94 to 97, 1956, that phenol was more effective than aliphatic alcohols in accelerating the reaction of phenyl glycidyl ether with diethylamine. Bowen et al describe in the American Chemical Society Advances in Chemistry Series. Volume 92, pages 48 to 59, 1970, that 4,4'-dihydroxydiphenyl sulfone, phenol, tetrabromobisphenol A and bisphenol A reduced the gel time of bisphenol A epoxy/triethylenetetramine systems with similar degrees of effectiveness.

Resorcinol, fenol og forskjellige halogenerte og nitrerte derivater av disse forbindelser er også av Gough et al, Journal of Oil and Color Chemists Association. Volum 43, sidene 409 til 418, 1960, Nagy, Adhesives Age, side 20 til 27, April 1967 og Partensky American Chemical Society Advances in Chemistry Series. Volum 92, sidene 29 til 47, 1970, og aksellerere herdingen av glycidyl epoksy/amin blandinger. I tillegg har Markovitz i "Chemical Properties of Crosslinked Polymers", American Chemical Society Symposium 1976, S.S. Labana, Ed, sidene 49 til 58, beskrevet bruken av resorcinol og metallsalter som koakselleratorer for herdbare preparater inneholdende cykloalifatiske epoksyder. Resorcinol, phenol and various halogenated and nitrated derivatives of these compounds are also by Gough et al, Journal of Oil and Color Chemists Association. Volume 43, pages 409 to 418, 1960, Nagy, Adhesives Age, pages 20 to 27, April 1967 and Partensky American Chemical Society Advances in Chemistry Series. Volume 92, pages 29 to 47, 1970, and accelerate the cure of glycidyl epoxy/amine blends. In addition, Markovitz in "Chemical Properties of Crosslinked Polymers", American Chemical Society Symposium 1976, S.S. Labana, Ed, pages 49 to 58, described the use of resorcinol and metal salts as coaccelerators for curable compositions containing cycloaliphatic epoxides.

Mens resorcinol og fenol således er funnet å gi ønskelige forbedringer i herdehastigheten til visse epoksy/aminharpikssystemer er likevel ytterligere forbedringer i herdehastigheten for slike systemer, spesielt med henblikk på cykloalifatiske epoksyd/aminharpiks formuleringer, ønskelige. Thus, while resorcinol and phenol have been found to provide desirable improvements in the cure rate of certain epoxy/amine resin systems, further improvements in the cure rate of such systems, particularly with regard to cycloaliphatic epoxy/amine resin formulations, are still desirable.

I mange epoksy/aminformuler inger blir cykloalifatiske epoksyder benyttet som epoksykomponent fordi de gir forbedrede mekaniske og termiske egenskaper til de herdede prepar- åter. For eksempel har uforsterkede støpegjenstander av bis(2 , 3-epoksycyklopentyl)eter, herdet med m-fenylendiamin, strekkstyrker og strekkmoduli som er blant de høyeste for termoherdende stoffer. In many epoxy/amine formulas, cycloaliphatic epoxides are used as an epoxy component because they provide improved mechanical and thermal properties to the cured preparations. For example, unreinforced castings of bis(2,3-epoxycyclopentyl)ether, cured with m-phenylenediamine, have tensile strengths and tensile moduli that are among the highest for thermosetting substances.

Videre og som beskrevet av McLean et al i Report No. 14450 i The National Research Council of Canada, november 1974, kan høye mekaniske egenskaper oppnås for uforsterkede støpegjen-stander^ ved å.herde .3,4-epoksycykloheksylmetyl 3, 4- epQksycyk-loheksan karboksylat med metylen_dianilin. Imidlertid herder harpikssystemer som inneholder bis(2,3-epoksycyklopentyl)eter eller 3 , 4-epoksycykloheksylmetyl 3 , 4-epoksycykloheksan karboksylat langsommere med aromatiske aminer enn tilsvarende preparater inneholdende bisfenol A epoksyharpikser. Dette karakteristikum begrenser deres anvendelighet i kompositt-fremstilling slik som filamentvikling og reaksjonsinjeksjons-støping. Således er det et behov for forbedrede herdeakselleratorer for cyklalifatiske epoksyd/aminharpikssystemer. Furthermore and as described by McLean et al in Report No. 14450 in The National Research Council of Canada, November 1974, high mechanical properties can be obtained for unreinforced castings by curing 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate with methylene-dianiline. However, resin systems containing bis(2,3-epoxycyclopentyl)ether or 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate cure more slowly with aromatic amines than corresponding preparations containing bisphenol A epoxy resins. This characteristic limits their applicability in composite manufacturing such as filament winding and reaction injection molding. Thus, there is a need for improved cure accelerators for cycloaliphatic epoxy/amine resin systems.

Fra japansk Kokai nr. 82/192428 av 26. november 1982 er det kjent adisive preparater omfattende 3,4-epoksycykloheksyl-metyl 3,4-epoksycykloheksan karboksylat, trietanolamin borat og pyrogallol i et vektforhold på 100:1:3. Trietanolaminbo-rat fremmer homopolymeriseringen av epoksygruppene tilstede i formuleringen. Ved herding har blandingene ifølge denne publikasjon primært en tverrbundet epoksy homopolymerstruktur som har dårligere mekaniske egenskaper sammenlignet med termoherdende systemer som karakteriseres ved en epoksy-amin nettsverkstruktur , det vil si epoksy/aromatisk diamin formuleringene. Som et resultat har blandingene ifølge denne litteraturhenvisning begrensede anvendelsesmuligheter og er ikke brukbar ved høyytelsesanvendelser slik som i kompositt materialer. From Japanese Kokai No. 82/192428 of 26 November 1982, there are known additive preparations comprising 3,4-epoxycyclohexyl-methyl 3,4-epoxycyclohexane carboxylate, triethanolamine borate and pyrogallol in a weight ratio of 100:1:3. Triethanolamine borate promotes the homopolymerization of the epoxy groups present in the formulation. When curing, according to this publication, the mixtures primarily have a cross-linked epoxy homopolymer structure which has poorer mechanical properties compared to thermosetting systems which are characterized by an epoxy-amine network structure, i.e. the epoxy/aromatic diamine formulations. As a result, the mixtures according to this literature reference have limited application possibilities and are not usable in high performance applications such as in composite materials.

DE-OS 2924717 beskriver bruken av omtrent støkiometriske mengder pyrogallol for å herde 1,3-diglycidyl-5,5-dimetylhyd-antoin. Dette system inneholder ikke noe aromatisk aminher- demiddel. Videre virker i dette system pyrogallol ikke som herdeaksellerator men tverrbinder med epoksyharpiksen. Således virker pyrogallol i dette system som et herdemiddel som gir en herdet blanding med en eternettverksstruktur. DE-OS 2924717 describes the use of approximately stoichiometric amounts of pyrogallol to cure 1,3-diglycidyl-5,5-dimethylhyd-antoin. This system does not contain any aromatic amine curing agent. Furthermore, in this system, pyrogallol does not act as a curing accelerator but cross-links with the epoxy resin. Thus, in this system, pyrogallol acts as a curing agent giving a cured mixture with an ether network structure.

GB-PS 1 054 045 beskriver bruken av pyrogallol for å herde bisfenol A type epoksymaterialer. I blandingene ifølge dette mothold blir en omtrent støkiometrisk mengde pyrogallol med en liten mengde metylen dianilin (1,5 deler/100 deler harpiks) som medherdemiddel benyttet for å kryssbinde en bisfenol A type epoksy med en epoksyd ekvivalent på 500. På grunn av den store mengde pyrogallol som er tilstede i dette system virker pyrogallonen som det primære kryssbindingsmid-del og fører til en herdet blanding med primært en eternettverksstruktur . GB-PS 1 054 045 describes the use of pyrogallol to cure bisphenol A type epoxy materials. In the compositions of this countermeasure, an approximately stoichiometric amount of pyrogallol with a small amount of methylene dianiline (1.5 parts/100 parts resin) as a co-curing agent is used to crosslink a bisphenol A type epoxy with an epoxy equivalent of 500. Because of the large amount of pyrogallol present in this system, the pyrogallon acts as the primary cross-linking agent and leads to a hardened mixture with primarily an ether network structure.

Mens den kjente teknikk således har beskrvet forskjellige mono- og dihydroksyaromatiske forbindelser som herdeakselleratorer for epoksy/aminharpikssystemer og har beskrevet bruken av pyrogallol som et tverrbindingsmiddel (herder) for epoksyharpikser, mangler den kjente teknikk noen beskrivelse på bruken av aromatiske trihydroksyforbindelser som herdeakselleratorer for epoksy/aromatiske harpikssystemer. Thus, while the prior art has described various mono- and dihydroxyaromatic compounds as curing accelerators for epoxy/amine resin systems and has described the use of pyrogallol as a cross-linking agent (hardener) for epoxy resins, the prior art lacks any description of the use of aromatic trihydroxy compounds as curing accelerators for epoxy/ aromatic resin systems.

Som velkjent av fagmannen virker herdeakselleratorer på en virkelig katalytisk måte og øker reaksjonshastigheten mellom epoksyharpiksen og amin herdemidlet uten selv i vesentlig grad å reagere med epoksyharpiksen slik som f. eks. vist ved oppløsningsmiddel ekstraheringsstudier. Dette resultatet står i motsetning til bruken av disse forbindelser som herdemidler der den trihydroksyaromatiske forbindelse kjemisk innarbeides i harpiksnettverksstrukturen. Bruken av trihydroksy aromatiske forbindelser som herdere (dvs. som herdemidler eller kryssbindere) krever støkiometriske mengder (dvs. fra ca. 0,4 til 1,0 ekvivalenter hydroksy/ekvivalent epoksygrupper i epoksyharpiksen), mens herdeaksellerering er basert på bruken av kun små mengder av aksellerator fra ca. As is well known to those skilled in the art, curing accelerators act in a truly catalytic manner and increase the reaction rate between the epoxy resin and the amine curing agent without even reacting to a significant extent with the epoxy resin such as e.g. shown by solvent extraction studies. This result stands in contrast to the use of these compounds as curing agents where the trihydroxyaromatic compound is chemically incorporated into the resin network structure. The use of trihydroxy aromatic compounds as hardeners (i.e. as curing agents or crosslinkers) requires stoichiometric amounts (i.e. from about 0.4 to 1.0 equivalents of hydroxy/equivalent epoxy groups in the epoxy resin), while cure acceleration is based on the use of only small amounts of accelerator from approx.

0,01 til ca. 0,35 ekvivalenter hydroksy/ekvivalent epoksygrupper i epoksyharpiksen, sammen med det samtidige nærvær av en aromatisk diaminherder i en mengde innen det generelle område ca. 0,4 til ca. 2,0 ekvivalenter amin N-H pr. ekvivalent 1,2-epoksygrupper i epoksyharpiksen. Herdeaksellerasjon er således en heller forskjellig funksjon fra den rene herding og involverer forskjellige mengder additiv, forskjellige mengder virkning og nærværet av en primærherder i fortrinnsvis støkiometrisk overskudd. 0.01 to approx. 0.35 equivalents of hydroxy/equivalent epoxy groups in the epoxy resin, together with the simultaneous presence of an aromatic diamine hardener in an amount within the general range of approx. 0.4 to approx. 2.0 equivalents of amine N-H per equivalent 1,2-epoxy groups in the epoxy resin. Curing acceleration is thus a rather different function from pure curing and involves different amounts of additive, different amounts of action and the presence of a primary hardener in preferably stoichiometric excess.

Oppfinnelsen er rettet mot herdbare termoherdende epoksyblan-dinger som omfatter: a) en epoksyharpiks som inneholder minst to 1,2 epoksy-c! e j grupper- epr .x ano leekyle^ a et. blandinø- meé r- r y jts» r t. er ». r e r r ■-- 'h r - b) en aromatisk diaminherder i en mengde tilstrekkelig til å gi fra ca. 0,4 til ca. 2,0 ekvivalenter amin N-H pr. The invention is directed to curable thermosetting epoxy mixtures comprising: a) an epoxy resin containing at least two 1,2 epoxy-c! e j groups- epr .x ano leekyle^ a et. blandinømeé r- r y jts» r t. er ». r e r r ■-- 'h r - b) an aromatic diamine hardener in an amount sufficient to give from approx. 0.4 to approx. 2.0 equivalents of amine N-H per

ekvivalent 1,2-epoksygrupper i epoksyharpiksen; ogequivalent 1,2-epoxy groups in the epoxy resin; and

c) en aromatisk trihydroksy herdeaksellerator med formel I c) an aromatic trihydroxy curing accelerator of formula I

0 0 0 0 0 0

hvor R er hydrogen, aryl, alkyl, -C-R, -C0R<1>, -CNHR<1>, SO2R<1>, eller SO2NHR<1>og R<1>er alkyl eller aryl med fra 1 til 12 karbonatomer, i en mengde tilstrekkelig til å gi ca. 0,01 til ca. 0,35 ekvivalenter hydroksy pr. ekvivalent 1,2-epoksygrupper i epoksyharpiksen. where R is hydrogen, aryl, alkyl, -C-R, -C0R<1>, -CNHR<1>, SO2R<1>, or SO2NHR<1> and R<1> is alkyl or aryl with from 1 to 12 carbon atoms, in an amount sufficient to give approx. 0.01 to approx. 0.35 equivalents of hydroxy per equivalent 1,2-epoxy groups in the epoxy resin.

Eventuelt kan blandingene ifølge oppfinnelsen også inneholde en termoplastisk polymer, en strukturfiber og/eller modifi-ser ingsmidler for å øke modulen til den herdede epoksyharpiks. Optionally, the mixtures according to the invention may also contain a thermoplastic polymer, a structural fiber and/or modifying agents to increase the modulus of the hardened epoxy resin.

Ifølge oppfinnelsen er det oppdaget at blandingene ifølge oppfinnelsen kombinerer ikke bare forbedrede herdehastigheter sammenlignet f. eks. med epoksy/aromatisk diamin harpikssystemer inneholdende mono- og dihydrksyaromatiske forbindelser som herdeakselleratorer, men i tillegg har utmerkede mekaniske egenskaper. Herdede blandinger basert på bis(2,3-epoksycyklopentyl)eter, en foretrukket epoksyharpiks for bruk heri, en aromatisk diaminherder og de aromatiske trihydroksy-herdeakselleratorer med formel (I) f. eks. er funnet å ha strekkstyrker på over 18.000 psi og strekkmoduli på over 700 000 psi. Denne kombinasjon av mekaniske egenskaper, spesielt 1 kombinasjon med den høye reaktivitet og herdehastigheter som er karakteristisk for blandingene ifølge oppfinnelsen, er unik og gjør blandingene ideelle for bruk i filamentviklings-systemer. According to the invention, it has been discovered that the compositions according to the invention combine not only improved curing rates compared to e.g. with epoxy/aromatic diamine resin systems containing mono- and dihydroxyaromatic compounds as curing accelerators, but in addition have excellent mechanical properties. Cured compositions based on bis(2,3-epoxycyclopentyl)ether, a preferred epoxy resin for use herein, an aromatic diamine hardener and the aromatic trihydroxy cure accelerators of formula (I) e.g. have been found to have tensile strengths in excess of 18,000 psi and tensile moduli in excess of 700,000 psi. This combination of mechanical properties, especially a combination with the high reactivity and cure rates characteristic of the compositions according to the invention, is unique and makes the compositions ideal for use in filament winding systems.

Oppnåelse av både de nevnte fremragende mekaniske egenskaper og de høye herdehastigheter for de foreliggende blandinger er uventet og tvertimot det man skulle forvente med herdeakselleratorer. Det er ogås uventet at akselleratorene ifølge oppfinnelsen øker herdehastigheten mer enn de aromatiske dihydroksyakselleratorer og at modulen for herdede støpegjen-stander som inneholder trihydroksyakselleratorene er høyere enn de til analoge støpegjenstander inneholdende a) de aromatiske dihydroksyakselleratorer, eller b) ingen aksellerator. Vanligvis er bruken av herdeakselleratorer funnet å ha en ugunstig virkning på de mekaniske egenskaper for herdede blandinger. Uten å ønske å være bundet av noen spesiell teori eller arbeidsmåte antas det at forbedringene i de mekaniske egenskaper som er et resultat av bruken av herdeakselleratorene ifølge oppfinnelsen, stammer fra det faktum at akselleratorene med formel (I) oppviser en antimykgjør-ingsvirkning på harpiksen. I ethvert tilfelle er det funnet at blandingene ifølge oppfinnelsen genrelt viser forbedrede fysikalske egenskape slik som strekkmodul og strekkstyrke, sammenlignet med tilsvarende blandinger som inneholder f. eks. bisfenol S som herdeaksellerator. Achieving both the aforementioned outstanding mechanical properties and the high cure rates for the present compositions is unexpected and contrary to what one would expect with cure accelerators. It is also unexpected that the accelerators according to the invention increase the curing speed more than the aromatic dihydroxy accelerators and that the modulus of hardened castings containing the trihydroxy accelerators is higher than that of analogous castings containing a) the aromatic dihydroxy accelerators, or b) no accelerator. Generally, the use of curing accelerators has been found to have an adverse effect on the mechanical properties of cured mixtures. Without wishing to be bound by any particular theory or method, it is believed that the improvements in the mechanical properties resulting from the use of the curing accelerators according to the invention originate from the fact that the accelerators of formula (I) exhibit an anti-softening effect on the resin. In any case, it has been found that the mixtures according to the invention generally show improved physical properties such as tensile modulus and tensile strength, compared to corresponding mixtures containing e.g. bisphenol S as curing accelerator.

I tillegg til de forskjellige fordeler som var nevnt ovenfor har de angjeldende blandinger god stabilitet, d.v.s. at aksellerator og eposkyharpiks kan blandes på forhånd opptil uker eller måneder før uten vesentlige egenskapsendring. Dette karakteristikum letter behandling ved fremstilling. In addition to the various advantages mentioned above, the mixtures in question have good stability, i.e. that accelerator and epoxy resin can be mixed in advance up to weeks or months before without significant changes in properties. This characteristic facilitates processing during manufacture.

Som et resultat av dette finner blandingene ifølge oppfinnelsen spesielt anvendelse ved fremstilling av komposittmaterialer ved f.eks. filamentvikling og reaksjonsinjeksjonsstøp-ing. I en annen utførelsesform tilveiebringer oppfinnelsen således komposittmaterialer som omfatter blandingene som nevnt ovenfor inneholdende strukturelle fibre med en strekkstyrke på mer enn 100 000 psi, en strekkmodul på mere enn ca. to millioner psi og en dekomponerings temperatur på mer enn ca. 200°C. As a result of this, the mixtures according to the invention find particular application in the production of composite materials by e.g. filament winding and reaction injection molding. In another embodiment, the invention thus provides composite materials comprising the mixtures as mentioned above containing structural fibers with a tensile strength of more than 100,000 psi, a tensile modulus of more than approx. two million psi and a decomposition temperature of more than approx. 200°C.

Andre utførelsesformer, trekk og fordeler ved oppfinnelsen vil fremgå for fagmannen ved et nærmere studium av beskrivel-sen. Herdeakselleratorene med formel (I) inkluderer 1,3,5-tr ihydrksybenzen ( f loroglucinol); 1, 2 , 3-tr ihydroksybenzen (pyrogallol); C±til C12derivater derav; arylderivater derav inneholdende opptil 12 karbonatomer i arylgruppen slik som fenyl-, benzyl- og tolylderivatene; hydrater slik som floroglucinol dihydratet; C±til C12alkylenetere av gallussyre (3,4,5-trihydroksybenzosyre) slik som metyl gallat, etyl gallat, n-propyl gallat, butyl gallat osv.; arylestrene av gallussyre hvori arylgruppen inneholder opptil 12 karonatomer slik som fenyl gallat, benzyl gallat og tolyl gallat; fenoner slik som 2 , 4 , 6-trihydroksy acetofenon, 2 , 3 , 4-trihydroksy acetofenon og 2,3,4-trihydroksy benzofenon; og de forskjellige N-C^til Ci2alkyl amider av gallussyre; N-aryl amidene av gallussyre hvori arylgruppen inneholder opptil 12 karbonatomer slik som N-fenyl-, N-benzyl- og N-tolylamidet av gallussyre; (3,4,5-1rihydroksyfenyl)- C± til C12alkyl sulfoner, og aryl analoger derav hvori arylgruppen inneholder opptil 12 karbonatomer; og tilsvarende sulfonamid analoger. Foretrukne herdingaksellertorer omfatter de forskjellige posisjonelle isomerer av trihydroksybenzen, hydratene derav og C1til C-L2alkylestrene av gallussyre, av hvilke f loroglucinol, n-propyl gallat og pyrogallol er spesielt foretrukket. Other embodiments, features and advantages of the invention will become apparent to the person skilled in the art from a closer study of the description. The cure accelerators of formula (I) include 1,3,5-trihydroxybenzene (phloroglucinol); 1,2,3-trihydroxybenzene (pyrogallol); C± to C12 derivatives thereof; aryl derivatives thereof containing up to 12 carbon atoms in the aryl group such as the phenyl, benzyl and tolyl derivatives; hydrates such as phloroglucinol dihydrate; C± to C12 alkylene ethers of gallic acid (3,4,5-trihydroxybenzoic acid) such as methyl gallate, ethyl gallate, n-propyl gallate, butyl gallate, etc.; the aryl esters of gallic acid in which the aryl group contains up to 12 carbon atoms such as phenyl gallate, benzyl gallate and tolyl gallate; phenones such as 2,4,6-trihydroxy acetophenone, 2,3,4-trihydroxy acetophenone and 2,3,4-trihydroxy benzophenone; and the various N-C 1 to C 12 alkyl amides of gallic acid; The N-aryl amides of gallic acid in which the aryl group contains up to 12 carbon atoms such as the N-phenyl, N-benzyl and N-tolylamide of gallic acid; (3,4,5-1rihydroxyphenyl)- C ± to C 12 alkyl sulfones, and aryl analogs thereof in which the aryl group contains up to 12 carbon atoms; and corresponding sulfonamide analogues. Preferred curing accelerators include the various positional isomers of trihydroxybenzene, the hydrates thereof and the C1 to C-L2 alkyl esters of gallic acid, of which phloroglucinol, n-propyl gallate and pyrogallol are particularly preferred.

Epoksyharpiksene som kan benyttes inneholder to eller flere epoksygrupper med formelen: Epoksygruppene kan være terminal epoksygrupper eller interne epoksygrupper. Epoksygruppene er av to generelle typer: polyglycidylforbindelser eller produkter avledeÆ :nfra epoksyr dering av diener eller polyener. Polyglycidylforbindelsene inneholder et antall 1,2-epoksydgrupper avledet fra omsetning av en polyfunksjonell aktivt hydrogenholdig forbindelse med et overskudd av et epihalogen hydrin under basiske betingel-ser. Når den aktive hydrogenforbindelse er en polyhydroksy-alkohol eller fenol inneholder den resulterende epoksydbland-ing glycidyletergrupper. En foretrukket gruppe av polyglycidyl forbindelser fremstilles via kondensasjonsreaksjoner med 2,2-bis(4-hydroksyfenyl) propan, også kjent som bisfenol A, og har strukturer slik som (II), The epoxy resins that can be used contain two or more epoxy groups with the formula: The epoxy groups can be terminal epoxy groups or internal epoxy groups. The epoxy groups are of two general types: polyglycidyl compounds or products derived from epoxidation of dienes or polyenes. The polyglycidyl compounds contain a number of 1,2-epoxide groups derived from the reaction of a polyfunctional active hydrogen-containing compound with an excess of an epihalogen hydrin under basic conditions. When the active hydrogen compound is a polyhydroxy alcohol or phenol, the resulting epoxide mixture contains glycidyl ether groups. A preferred group of polyglycidyl compounds are prepared via condensation reactions with 2,2-bis(4-hydroxyphenyl) propane, also known as bisphenol A, and have structures such as (II),

der n har en verdi fra ca. 0 til 15. Disse epoksyder er bisfenol-A epoksyharpikser. De er kommersielt tilgjengelige where n has a value from approx. 0 to 15. These epoxies are bisphenol-A epoxy resins. They are commercially available

under betegnelser som "Epon 828", "Epon 1001" og "Epon 1009" og som "DER 331", "DER 332" og "DER 334". Den mest foretrukne bisfenol A epoksyharpiks har en "n" verdi på mellom 0 og 10. under designations such as "Epon 828", "Epon 1001" and "Epon 1009" and as "DER 331", "DER 332" and "DER 334". The most preferred bisphenol A epoxy resin has an "n" value between 0 and 10.

Polyepoksyder som er polyglycidyletere av 4,4'-fihydroksy-fenyl metan, 4,4'-dihydroksyfenyl sulfon, 4 , 4 '-bifenol, 4,4'-dihydroksyfenyl sulfid, fenolftalein, resorcinol, 4,2'-bifenol eller tris(4-hydroksyfenyl)metan slik som "Tactix 742" og lignende er brukbare Ifølge oppfinnelsen. I tillegg kan også "EPON 1031" (et tetraglycidyl derivat av 1,1,2,2-tetrakis(hydroksyf enyl )etan og "Apogen 101" (en metylolert bisfenol A harpiks) også brukes. Halogenerte polyglycidylforbindelser slik som "D.E.R. 580" (en bromert bisfenol A epoksyharpiks) er også brukbare. Andre egnede epoksyharpikser inkluderer polyepoksyder fremstilt fra polyoler slik som pentaerytritol, glycerol, butandiol eller trimetylolpropan og et epihalogenhydrin. Polyepoxides which are polyglycidyl ethers of 4,4'-fihydroxy-phenyl methane, 4,4'-dihydroxyphenyl sulfone, 4,4'-biphenol, 4,4'-dihydroxyphenyl sulfide, phenolphthalein, resorcinol, 4,2'-biphenol or tris (4-Hydroxyphenyl)methane such as "Tactix 742" and the like are useful according to the invention. In addition, "EPON 1031" (a tetraglycidyl derivative of 1,1,2,2-tetrakis(hydroxyphenyl)ethane and "Apogen 101" (a methylolated bisphenol A resin) can also be used. Halogenated polyglycidyl compounds such as "D.E.R. 580" (a brominated bisphenol A epoxy resin) are also useful.Other suitable epoxy resins include polyepoxides prepared from polyols such as pentaerythritol, glycerol, butanediol or trimethylolpropane and an epihalohydrin.

Polyglycidyl derivater av fenol-formaldehyd novolaker slik som III der n = 0,1 til 8 og kresol-formaldehyd novolaker slik som IV der n=0,1 til 8, er også brukbare. Polyglycidyl derivatives of phenol-formaldehyde novolaks such as III where n=0.1 to 8 and cresol-formaldehyde novolaks such as IV where n=0.1 to 8 are also usable.

De førstnevnte er kommersielt tilgjengelige som "D.E.N 431", "D.E.N. 438" og "D.E.N. 485". De sistnevnte er tilgjengelige som "ECN 1235", "ECN 1273" og "ECN 1299". Epoksyderte novolaker fremstilt fra bisfenol A og formaldehyd slik som "SU-8" er også brukbar. The former are commercially available as "D.E.N. 431", "D.E.N. 438" and "D.E.N. 485". The latter are available as "ECN 1235", "ECN 1273" and "ECN 1299". Epoxidized novolaks made from bisphenol A and formaldehyde such as "SU-8" are also usable.

Andre polyfunksjonelle aktive hydrogenforbindelser ved siden av fenoler og alkoholer kan benyttes for å fremstille polyglycidyladduktene ifølge oppfinnelsen. Disse inkluderer aminer, aminoalkoholer og polykarboksylsyrer. Other polyfunctional active hydrogen compounds besides phenols and alcohols can be used to prepare the polyglycidyl adducts according to the invention. These include amines, amino alcohols and polycarboxylic acids.

Addukter avledet fra aminer inkluderer N,N-diglycidyl anilin, N,N-diglycidyl toluidin, N,N,N',N'-tetraglycidylxylylen di amin., N., N' ,N-tetraglycidyl.-bls(me.tyLamiiio )-cykloheksan, N,N,N',N'-tetraglycidyl-4,4'-diaminodifenyl metan, N,N,N',N'-tetraglycidyl-3 , 3 '-diaminodifenyl sulfon og N,N<*->dimetyl-N , N '-diglycidyl-4,4'-diaminodifenyl metan. Kommersielt tilgjengelige harpikser av denne type inkluderer "Glyamin iQ5tii3ageV'5Glyamln. 125?', "Araldite MY-7-20:" cogr''PGA-sX^og A'PGA-C" . ;Egnede polyglycidyl addukter avledet fra aminoalkoholer inkluderer 0 ,N,N-triglycidyl-4-aminofenol, tilgjengelig som "Araldite 0500" eller "Araldite 0510". Også kan O.N.N-triglycidyl-3-aminofenyl benyttes. ;Også egnet for bruk heri er glycidylestrene av karboksylsyrer. Slike glycidylestre inkluderer f. eks. diglycidyl ftalat, diglycidyl tereftalat, diglycidyl isoftalat og diglycidyl adipat. Det kan også benyttes polyepoksyder slik som triglycidyl cyanurater og -isocyanurater, N,N-diglycidyl oksamider, N,N'-diglycidyl derivater av hydantoin slik som "XB 2793" diglycidylestere av sykloalifatiske diglycidyl karboksylsyrer og polyglycidyl tioetere av polytioler. ;Andre epoksyholdige stoffer er kopolymerer av akrylsyreestere av glycidol slik som glycidyl akrylat og glycidyl metakrylat med en eller flere kopolymeriserbare vinylforbindelser. Eksempler på slike kopolymerer er 1:1 styren-glycidyl metakrylat, 1:1 metyl metakrylat-glycidyl akrylat og 62.5:24-:13.5 metyl metakrylat:etyl akrylat:glycidyl metakrylat. Si 1 ikonharpikser inneholdende epoksyfunksjonalitet slik som f. eks. 2 , 4,6,8,10-pentakis [3-(2 ,3-epoksypropoksy)propyl] - 2 , 4 , 6 ,8 ,10-pentametylcyklopentasiloksan og diglycidyleteren av 1 , 3-bis-( 3-hydroksypropyl )tetrametyldisiolksan er også brukbare. ;Den andre gruppe av epoksyharpikser er den som fremstilles ved epoksydering av diener eller polyener. Harpikser av denne type inkluderer bis(2,3-epoksycyklopentyl) eter: ; kopolymerer mellom V og etylenglykol som beskrevet i US-PS 3 398 102, 5(6)-glycidyl-2-(l,2-epoksyetyl)bicyklo[2,2,l]hep-tan, VI; og d i cykl opent ad i en diepoksyd. Kommersielle eksempler på disse typer epoksyder inkluderer vinylcykloheksen dioksid, f. eks. "ERL-4206", 3,4-epoksycykloheksylmetyl 3,4-epoksycykloheksan karboksylat, f. eks. "ERL-4221", 3,4-epoksy-6-metylcykloheksylmetyl 3,4-epoksy-6-metylcykloheksan karboksylat, f. eks. "ERL-4201", bis(3,4-epoksy-6-metylcyklo-heksylmetyl) adipat, f. eks. "ERL-4289", dipenten dioksyd, f. eks. "ERL-4269", 2-(3,4-epoksycykloheksyl-5,5-spiro-3,4 - epoksy) cykloheksan meta-dioksan, f. eks. "ERL-4234" og epoksydert polybutadien, f. eks. "Oxiron 2001". ;Andre egnede cykloalifatiske epoksyder inkluderer de som er beskrevet i US-PS 2 750 395; 2 890 194 og 3 318 822, og de følgende: ; Andre egnede epoksyder inkluderer: ; der b er 1 til 4, m er (5-b) og R2er H, halogen eller C 1 til C4alkyl. ;De foretrukne epoksyharpikser, spesielt for bruk i kompositt-anvendelser, omfatter de tidligere nevnte cykloalifatiske epoksyder, spesielt bis(2,3-epoksycyklopentyl )eter , vinyl cykloheksen diepoksyd, 2-( 3 , 4-epoksycykloheksyl-5 , 5-spiro-3,4-epoksy) cykloheksan meta-dioksan, diepoksydene av allyl cyklopentyl eter, 1,4-cykloheksadien diepoksyd, 3,4-epoksycykloheksylmetyl 3,4-epoksycykloheksan karboksylat og bis(3 , 4-epoksycykloheksylmetyl) adipat, av hvilke bis-(2,3-epoksycyklopentyl ) eter og 3,4-epoksycykloheksylmetyl 3,4-epoksycykloheksan karboksylat er spesielt foretrukket. Der det er ønskelig kan opptil 40$ og fortrinnsvis opptil 30 vekt-# av et koepoksyd benyttes istedet for det cykloalifatiske epoksyd, beregnet på den kombinerte vekt av cykloalifat isk epoksyd og koepoksyd. Foretrukne koepoksyder for dette formål inkluderer bisfenol A eposkyharpiksene med formel II, der n er mellom 0 og 15, epoksyderte novolak harpikser med formel III og IV hvori n er mellom 0,1 og 8 samt N,N,N',N'-tetraglycidyl 4,4'-diaminodifenyl metan. ;Andre foretrukne harpiksformuleringer vil karakteristisk inneholde en diglycidyleter av bisfenol A, N,N,N',N'-tetra-glyci dy lxy lylen diamin, 0,N,N-triglycidyl-3-aminofenol , 0 , N , N-triglycidyl-4-aminofenol, glycidyl glycidat, N,N-diglycidyl anilin og N,N-diglycidyl toluidin som harpiks komponent. ;De aromatiske diaminherdere som kan benyttes i preparatene ifølge oppfinnelsen inkluderer en hvilken som helst av de aromatiske diaminherdere som konvensjonelt benyttes for å herde epoksyharpikser. Eksempler på slike herdere inkluderer 4 , 4 '-diaminodifenyleter, 3,3'-diaminodifenyl sulfon, p-fenylendiamin, 4 , 4'-diamindifenyl propan, 4,4'-diaminodi-fenylsulfid, 1,4-bis(p-aminofenoksy) benzen, l,4-bis(m-aminofenoksy) benzen, 3,3'-diaminodifeyl metan, m-fenylendiamin, 1,3-bis-(m-aminofenoksy) benzen, eutectiske blandinger av m-f enylendiamin og 4 ,4 '-diaminodif enyl metan, 4,4'-diaminodif enyl metan, 3 , 4 '-diaminodif enyl eter, bis(4-aminocykloheksyl )metan, 4,4'-( 3-f enyl end i i sopropyl iden ) bisanilin, 4 , 4'-(4-fenylendiisopropyliden) bisanilin, 4,4'-(3-fenylendiisopropyliden) bis-(3-toluiden), 4,4'-bis(3-aminof enoksy )-difenyl sulfon, 2,2-bis[4-(4-aminofenoksy)fenyl] propan, trimetylen glykol di-p-aminobenzoat, 4,4'-diaminodifenyl sulfon, 4 , 4'-bis(4-aminofenoksy) difenyl sulfon, 4,4'-bis(4-aminofenoksy)-3,3',5,5'-tetrametyl difenyl sulfon, 4,4'-bis(4 - am i no - 3 -me tyl f enoksy )di f enyl sulfon , ringalkylerte derivater av m-fenylendiamin, addukter av epoksyharpikser med de foregående diaminer slik som adduktet som dannes ved omsetning av et mol av en flytende bisfenol A epoksyharpiks med 2 til 4 mol m-f enylendiamin i seg selv eller i kombinasjon med 4,4'-diaminodifenyl metan, addukter av bisfenol A epoksyharpiks med et molart overskudd av 4,4'-diaminodifenyl sulfon og de forskjellige aromatiske diaminer som er beskrevet i US-SN 534 649 og 564 393 samt US-PS 4 517 321. ;Foretrukne diaminer for anvendelse ifølge oppfinnelsen inkluderer m-fenylendiamin, de ringalkylerte derivater derav, addukter av epoksyharpikser og m-f enylendiamin, eutektiske blandinger av m-f enylendiamin og -4 ,-4-'— diaminodifenyl -metan 4 , 4 '-bis(3-aminofenoksy) difenyl sulfon, 2 , 2 '-bis[4-(4-aminofenoksy) fenyl] propan og trimetylenglykol di-para-aminobenzoat. ;Blandingene -ifølge oppfinnelsen kan eventueltiSneEoldé<e>en termoplastisk polymer. Disse stoffer har fordelaktige virkninger på viskositeten og filmstyrkeegenskapene til epoksy/herder/akselleratorblandingen. ;De termoplastiske polymerer som benyttes ifølge oppfinnelsen inkluderer polyaryl etere med formel VII som beskrevet i US-PS 4 108 837 og 4 175 175, ; ; hvori R3er en rest av en dihydroksyfenol slik som bisfenol A, hydroquinon, resorcinol, 4,4'-bisfenol, 4 ,4'-dihydroksydifenyl sulfon, 4 , 4 '-dihydroksy-3 , 3 ' , 5 , 5 '-tetrametyldifenyl sulfid, 4,4'-dihydroksy-3,3',5,5'-tetrametyldifenyl sulfon og lignende. R4er en rest av en benzenoid forbindelse istand til nucleofil aromatisk substitsjon slik som 4,4'-diklorodi-fenyl sulfon, 4 , 4 '-difluorobenzofenon og lignende. Den midlere verdi for e er fra ca. 8 til ca. 120. ;Disse polymerer kan ha terminale grupper som reagerer med epoksyharpikser slik som hydroksyl- eller karboksyl, eller terminale grupper som ikke reagerer. ;Andre egnede polyaryletere er beskrevet i US-PS 3 332 209. ;Også egnet er polyhydroksyetere med formel (VIII) ; ; der R3har den samme betydning som i formel VII og den midlere verdi for f er mellom ca. 8 og ca. 300; og polykarbo-nater slik som de som er basert på bisfenol A, tetrametyl bisfenol A, 4 , 4'-dihydroksydifenyl sulfon, hydroquinon, resorcinol, 4,4'-dihydroksy-3,3',5,5'-tetrametyldifenyl sulfid, 4 , 4'-bifenol, 4 ,4'-dihydroksydifenyl sulfid, fenolftalein, 2,2,4,4-tetrametyl-l,3-cyklobutan diol og lignende. Andre egnede termoplaster inkluderer poly(c-caprolacton); polybutadien; polybutadien/akrylonitril kopolymerer inkludert de som eventuelt inneholder amin-, karboksyl-, hydroksyl eller -SH-grupper; polyestere slik som poly(butylen tereftalat); poly(etylen tereftalat); polyeterimider slik som Ultem harpiksene; akrylnitril/butadien/styren terpolymerer , polyamider slik som nylon 6, nylon 6,6, nylon 6,12 og "Trogamid T"; poly(amidimid) slik som polyolefiner, polyetylen oksyd; poly(butyl metakrylat); slagmodifisert polystyren; sulfonert polyetylen; polyarylater slik som de som er avledet fra bisfenol A og isoftal- og tereftalsyre; poly(2,6-dimetyl fenylen oksyd); polyvinyl klorid og kopolymerer derav; polyacetaler; polyfenylen sulfid og lignende. De foretrukne termoplastiske polymerer for bruk i følge oppfinnelsen inkluderer polyhydroksyetrene, polyeterimidene og polyaryl-etrene. ;Blandingene ifølge oppfinnelsen kan inkludere en strukturell fiber. Strukturelle fibre som kan benyttes inkluderer karbon, grafitt, glass, silisiumkarbid, poly(benzotiazol), poly ( benz imidazol ) , poly ( benzoksazol ) , aluminiumoksyd, titanoksyd, bor og aromatiske polyamidfibre. Disse fibre karakteriseres ved en strekkstyrke på over 100.000 psi, en strekkmodul på mere enn 2 millioner psi og en dekomponeringstemperatur på over 200° C. Fibrene kan benyttes i form av kontinuerlige rep (1000 - 400.000 filamenter hver) vevede tøyer, hakkede fibre, tilfeldige matter eller whiskers. De foretrukne fibre er karbonfibre, aromatiske polyamidf ibre slik som "Kevlar 49" fibre og silisiumkarbidfIbre. Blandingene ifølge oppfinnelsen kan også inkludere modifiseringsmidler som øker de herdede epoksyharpiksers modul. ;Eksempler på slike midler inkluderer antimyknere slik som dibutylftalat, fenoladduktene av bisfenol A epoksyharpikser, polyhalogenert bifenyler-, azobenzeri, hydroksy difenyl, tricresyl fosfat; forsterkere slik som de forskjellige reaksjonsprodukter mellom et egnet aromatisk amin eller amid og et monoepoksyd eller diepoksyd som beskrevet av P.D. McLean et al i The British Polymer Journal, Volume 15, Maren 1983, sidene 66-70, såvel som andre modifiseringsmidler som kjente for fagmannen. ;Foretrukne modifiseringsmidler for bruk i blandingene ifølge oppfinnelsen omfatter de forsterkningsmidler som er beskrevet i US-PS 4 480 082. Disse omfatter reaksjonsproduktet av (i) et aromatisk amid med amingruppen på amidet bundet til den aromatiske ring, og (ii) et mono- eller diepoksyd. Et spesielt foretrukket middel av denne type utgjøres av reaksjonsproduktet av fenyl glycidyl eter og 4-hydroksyacetanilid. Dette er kommersielt tilgjengelig under betegnelsen "Fortifier I" og inneholder ca. 80 til 98 vekt-£ av addukter av 4-hydroksyacetanilid og fenyl glycidyl eter i molforholdet 1:4,3, 0 til 12$ ikke omsatt fenyl glycidyleter og 0 til &% ikke omsatt 4-hydroksyacetanilid. Epoksyekvivalentvekten for "Fortifier I" er mere enn eller lik 900 g/mol. ;Også foretrukket er den kommersielt tilgjengelige "Fortifier ;C", bestående av reaksjonsproduktet av anilin og vinylcykloheksen dioksyd. ;I blandingene ifølge oppfinnelsen blir den aromatiske diamin herder benyttet i en mengde tilstrekkelig til å tilveiebringe 0,4 til 2,0, fortrinnsvis 0,6 til 1,9 og helst 0,7 til 1,7 ekvivalenter amin N-H pr. ekvivalent epoksygruppe i epoksyharpiksen. Herdingsakselleratoren benyttes generelt i en mengde tilstrekkelig til å gi fra 0,01 til 0,35, helst 0,03 til 0,3 og fortrinnsvis 0,04 til 0,25 ekvivalenter hydroksy-grupper pr. ekvivalent epoksygrupper i harpiksen. Typiske formuleringer innen disse områder vil omfatte fra ca. 30 til 90 og fortrinnsvis fra 40 til 80 vekt-# epoksyharpiks, fra ca. 10 til 70 og fortrinnsvis 15 til 65 vekt-% herder og 0,1 til 10 og fortrinnsvis 0,5 til 7 og aller helst ca. 1 til 6 vekt-$ herdeaksellerator. Når en termoplastisk polymer innarbeides i blandingen utgjør mengden av denne opptil 20$ og fortrinnsvis mindre enn 15 vekt-$. Modifiseringsmidlet omfatter når det benyttes opptil 35 og fortrinnsvis mindre enn 30 vekt-%. Alle disse er beregnet på den kombinerte vekt av harpiks, herder, herdeaksellerator, eventuelt modifiseringsmiddel og eventuelt termoplastisk polymer, kollektivt her kalt "harpiksdelen av komposittmaterialet". ;Der strukturfibre innarbeides i blandingen ligger mengden derav fra opptil 85 og generelt fra 20 til 80 og helst fra 30 til 80 vekt-$ av den totale blanding, det vil si den kombinerte vekt av st ruktur f ibre og harpiksdelen av komposittmaterialet . ;En spesielt foretrukket formulering for bruk ved fremstilling av komposittmaterialer omfatter som harpiksdel av dette bis(2,3-epoksycyklopentyl) eter; fra 5 til 40 vekt-$ "Fortifier I" modif i ser ingsmiddel ; f loroglucinol , pyrogallol og/eller n-propyl gallat i en mengde til å tilveiebringe 0,03 til 0,3 ekvivalenter hydroksygruppe pr. ekvivalent epoksygruppe; og m-fenylen diamin i en mengde tilstrekkelig til å tilveiebringe fra 0,6 til 1,9 ekvivalenter amin N-H-grupper pr. ekvivalent epoksygruppe. ;Blandingene ifølge oppfinnelsen kan fremstilles ved å kombinere herdeakselleratoren med enten epoksy eller amin for å lage en forblanding som deretter blandes med gjenværende komponenter for å fullføre blandingen. ;Komposittmater-ialer kan_ .fremstilles ved en. hvilken som helst av de kjente prosedyrer slik som våtvikling eller varmsmelt-ing. Ved våtviklingen blir et kontinuerlig forsterkingstau ført gjennom et harpiksbad inneholdende en blanding av epoksyd, amidherder, aksellerator og eventuelt modifiserings-raiddel og .f termoplastisk-; polymer s Etter -at- -tauet-? re& -impreg-; nert med harpiksen føres det gjennom pressvalser for å fjerne overskytende harpiks. Fortrinnsvis og på grunn av de hurtige herdeegenskapene for disse blandinger benyttes forimpregnert forsterkning til å fremstille en komposittgjenstand snart etter at den er fremstilt. ;Komposittmaterialene kan fremstilles ved å herde på forhånd impregnert forsterkning ved bruk av varme og eventuelt trykk. Varmepose/autoklavherdere arbeider godt med disse blandinger. Laminater kan også fremstilles via våtopplegging fulgt av kompresjonsstøping, harpiksoverføringsstøping eller ved harpiksinj iser ing som beskrevet i Europeisk søknad 0019149 med herdetemperaturer fra 100 til ca. 500°F og fortrinnsvis fra 180 til ca. 450°F. Herdetider avhenger av fremstillings-prosessen og kan være helt opp til flere timer eller helt ned til ca. 1-2 minutter, avhenging av benyttet blanding. ;Blandingene ifølge oppfinnelsen er godt egnet for filamentvikling. I denne komposittfremstillingsprosess blir kontinuerlig forsterkning i form av bånd eller tau, eventuelt på forhånd impregnert med harpiks eller impregnert under vikling, anbragt over en roterende og fjernbar form eller spindel i et på forhånd bestemt mønster. Generelt er formen en omdreiningsoverflate og inneholder endelukninger. Når det riktige antall sjikt er påført blir viklingen herdet i en ovn eller autoklav og spindelen fjernet. ;Blandingene ifølge oppfinnelsen kan benyttes som flydeler slik som vingehud, vinge-kropp-pakninger, gulvplater, flaps, radomer; som bildeler slik som drivakslinger, støtdempere og fjærer, og som trykktanker, tanker og rør. De er også egnet for sportsgjenstander slik som golfkøller, tennisrackerter og fiskestenger. ;I tillegg til strukturelle fibre kan blandingene også inneholde partikkelformige fyllstoffer slik som talkum, mica, kalsium karbonat, aluminium trihydrat, glass mikrosfærer, fenoliske termosfærer og sot. Opptil halvparten av vekten av de strukturelle fibre i blandingen kan erstattes av fyll-stoff. Thixotrope midler slik som dampet silisiumdioksyd kan også benyttes. ;Videre kan blandingene benyttes som adhesiver, omhyllende eller innkapslingsforbindelser og ved belegningsanvendelser. ;De følgende eksempler skal gi en illustrasjon av oppfinnel-sens gjennomføring uten å begrense den. ;I eksemplene som følger er epoksyekvivalentvekten, EEW, definert som mengden gram epoksyharpiks pr. mol 1,2-epoksygruppe. ;Eksemplene 1 og 2 og kontrollene A og B.;Eksemplene 1 og 2 og kontrollene A og B beskriver viskositet mot tid for bis(2,3-epoksycyklopentyl) eter/meta-fenylendiamin, MPDA, blandinger alene og med florglucinol, n-propylgallat og bisfenol-S som herdeakselleratorer. Den benyttede prosedyre er som følger: ;En 250 ml trehalskolbe utstyrt med bladrører, termometer med Therm-O-Watch kontroll, innløp og utløp for nitrogen samt en elektrisk kjølekappe ble chargert med 100 g og 5 g aksellerator. Blandingen ble oppvarmet og omrørt ved 120°C o 115 minutter. I løpet av dette tidsrom ble akselleratoren oppløst. Etter at oppløsningen ble avkjølt til 65°C ble 47 g m-fenylendiamin tilsatt. Blandingen ble deretter omrørt i 12 minutter inntil aminherderen var oppløst. I kontroll B ble 100 g . bis( 2 , 3-epoksycyklopentyl )eter blandet med . 47 g MPDA ved 65°C. I alle tilfellene ble 15 til 20 g oppløsning chargert til en prøvekopp i et Brookfield termosel viskosi-meter. Viskositet mot tid ble så gjennomført ved 66°C. Resultatene av disse forsøk er vist i Tabell 1. Disse resultater viser at florglucinol og n-propyl gallat signifikant er mere aktive akselleratorer enn den dihydroksy aromatiske forbindelse bisfenol S. a) Konsentrasjon ved alle akselleratorer: 5 phr. ;b) Etter tilsetning av MPDA.;c) Viskositeten målt i centipoises. EEW for ;bis(2,3-epoksycyklopentyl)eter - 92 g/mol. ;Eksempel 3.;En 30 g andel av en oppløsning av f loroglucinol i bis(2,3-epoksycyklopentyl)eter som beskrevet i Eksempel 1 ble holdt ved en temperatur på 60° C i 45 dager. Viskositeten for den ferdige oppløsning ved romtemperatur var tilsvarende den til den opprinnelige blanding. EEW for bis(2,3-epoksycyklopentyl )eter harpiks/floroglucinol blandingen endret seg imidlertid ikke etter 45 dager. Disse resultater viser den utmerkede lagringsstabiltet for epoksyharpiks/herdeaksellerator-blandingene Ifølge oppfinnelsen i fravær av aminherdemidler. ;Eksemplene 4 til 9 og kontrollene C til E beskriver fremstil-lingen og egenskapene til uforsterkede herdede støpestykker. Dimensjonene på stykkene var 1/8x8x4 til 8 tommer. Karakteristisk vekt for disse stykker lå I området 8 til 160 g. ;Stykkene som ble fremstilt i disse forsøk ble prøvet for å bestemme strekkegenskapene og varmedefleksjonstemperaturen. Strekkegenskapene ble målt i henhold til ASTM D-638 ved bruk av en type I hundebengjenstand. Varmedefleksjonstemperatur-ene ble målt i henhold til ASTM D-648 ved 264 psi belast-ning. ;Eksempel 4;En 250 ml rundbunnet kolbe utstyrt med bladrører, termometer med Therm-O-Watch kontroll, innløp og utløp for inertgass og en elektrisk kjølekappe ble chargert med 100 g bis(2,3-epoksycyklopentyl)eter og 5,0 g floroglucinol. ;Blandingen ble oppvarmet og omrørt ved 110°C i 115 minutter. I løpet av dette tidsrom ble florglucinolene oppløst. Etter at bis(2 ,3-epoksycyklopentyl)eter floroflucinol oppløsningen var avkjølt til 60° C ble 47 g m-fenylen diamin chargert til kolben. Den resulterende blanding ble omrørt i 12 minutter ved 60°C inntil diaminet var oppløst. Denne oppløst ble så helt i en form forvarmet til 100°C. Formen ble plassert i en ovn og oppvarmet i 4 timer til 85°C. Temperaturen i ovnen ble så hevet fra 85 til 179° C i løpet av 100 minutter fulgt av 2 timer ved 179°C. Etter at formen var avkjølt til romtemperatur ble det fjernet et hårdt, klart fast støpe-stykke. Egenskapene er vist i Tabell II. ;Eksempel 5.;Prosedyren i Eks. 4 ble gjentatt bortsett fra at 5,0 g n-propyl gallat ble benyttet istedet for fluorogluclnolT Egenskapene er angitt i Tabell II. ;Eksempel 6.;Prosedyren i Eks. 4 ble igjen gjentatt bortsett fra at 5,0 g pyjrorga Ilso ]epcf$eK rfrænyt te t * i s tfe~detr rf or? ~f luor ogluc~ijrrol=.~ T "Egen - skapene er angitt i Tabell II. Adducts derived from amines include N,N-diglycidyl aniline, N,N-diglycidyl toluidine, N,N,N',N'-tetraglycidylxylylene di amin., N., N' ,N-tetraglycidyl.-bls(me.tyLamiiio )-cyclohexane, N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenyl methane, N,N,N',N'-tetraglycidyl-3 , 3 '-diaminodiphenyl sulfone and N,N<*- >dimethyl-N , N '-diglycidyl-4,4'-diaminodiphenyl methane. Commercially available resins of this type include "Glyamin iQ5tii3ageV'5Glyamln. 125?', "Araldite MY-7-20:" cogr''PGA-sX^and A'PGA-C". Suitable polyglycidyl adducts derived from amino alcohols include O,N,N-triglycidyl-4-aminophenol, available as "Araldite 0500" or "Araldite 0510". O.N.N-triglycidyl-3-aminophenyl can also be used. Also suitable for use herein are the glycidyl esters of carboxylic acids. Such glycidyl esters include e.g. diglycidyl phthalate, diglycidyl terephthalate, diglycidyl isophthalate and diglycidyl adipate. Polyepoxides such as triglycidyl cyanurates and -isocyanurates, N,N-diglycidyl oxamides, N,N'-diglycidyl derivatives of hydantoin such as "XB 2793" diglycidyl esters of cycloaliphatic diglycidyl carboxylic acids and polyglycidyl thioethers of polythiols can also be used. Other epoxy-containing substances are copolymers of acrylic acid esters of glycidol such as glycidyl acrylate and glycidyl methacrylate with one or more copolymerizable vinyl compounds. Examples of such copolymers are 1:1 styrene-glycidyl methacrylate, 1:1 methyl methacrylate-glycidyl acrylate and 62.5:24-:13.5 methyl methacrylate:ethyl acrylate:glycidyl methacrylate. Si 1 icon resins containing epoxy functionality such as e.g. 2, 4,6,8,10-pentakis[3-(2,3-epoxypropoxy)propyl]-2,4,6,8,10-pentamethylcyclopentasiloxane and the diglycidyl ether of 1,3-bis-(3-hydroxypropyl)tetramethyldisiolkane are also usable. ;The second group of epoxy resins is that produced by epoxidizing dienes or polyenes. Resins of this type include bis(2,3-epoxycyclopentyl) ether: ; copolymers between V and ethylene glycol as described in US-PS 3,398,102, 5(6)-glycidyl-2-(1,2-epoxyethyl)bicyclo[2,2,1]heptane, VI; and d in cycle open ad in a diepoxide. Commercial examples of these types of epoxides include vinylcyclohexene dioxide, e.g. "ERL-4206", 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate, e.g. "ERL-4221", 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexane carboxylate, e.g. "ERL-4201", bis(3,4-epoxy-6-methylcyclohexylmethyl) adipate, e.g. "ERL-4289", dipentene dioxide, e.g. "ERL-4269", 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane meta-dioxane, e.g. "ERL-4234" and epoxidized polybutadiene, e.g. "Oxiron 2001". Other suitable cycloaliphatic epoxides include those described in US-PS 2,750,395; 2,890,194 and 3,318,822, and the following: ; Other suitable epoxies include: ; where b is 1 to 4, m is (5-b) and R 2 is H, halogen or C 1 to C 4 alkyl. The preferred epoxy resins, especially for use in composite applications, include the previously mentioned cycloaliphatic epoxides, especially bis(2,3-epoxycyclopentyl)ether, vinyl cyclohexene diepoxide, 2-(3,4-epoxycyclohexyl-5,5-spiro- 3,4-epoxy)cyclohexane meta-dioxane, the diepoxides of allyl cyclopentyl ether, 1,4-cyclohexadiene diepoxide, 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate and bis(3,4-epoxycyclohexylmethyl)adipate, of which bis- (2,3-epoxycyclopentyl) ether and 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate are particularly preferred. Where desired, up to 40% and preferably up to 30% by weight of a cow epoxide can be used instead of the cycloaliphatic epoxide, calculated on the combined weight of cycloaliphatic epoxide and cow epoxide. Preferred co-epoxides for this purpose include the bisphenol A epoxy resins of formula II, wherein n is between 0 and 15, epoxidized novolak resins of formulas III and IV wherein n is between 0.1 and 8, and N,N,N',N'-tetraglycidyl 4,4'-diaminodiphenyl methane. ;Other preferred resin formulations will characteristically contain a diglycidyl ether of bisphenol A, N,N,N',N'-tetra-glyci dy lxy lylene diamine, 0,N,N-triglycidyl-3-aminophenol , 0 , N , N-triglycidyl -4-aminophenol, glycidyl glycidate, N,N-diglycidyl aniline and N,N-diglycidyl toluidine as resin component. The aromatic diamine hardeners which can be used in the preparations according to the invention include any of the aromatic diamine hardeners which are conventionally used to harden epoxy resins. Examples of such hardeners include 4,4'-diaminodiphenyl ether, 3,3'-diaminodiphenyl sulfone, p-phenylenediamine, 4,4'-diaminodiphenyl propane, 4,4'-diaminodiphenyl sulfide, 1,4-bis(p-aminophenoxy ) benzene, 1,4-bis(m-aminophenoxy)benzene, 3,3'-diaminodiphenylmethane, m-phenylenediamine, 1,3-bis-(m-aminophenoxy)benzene, eutectic mixtures of m-phenylenediamine and 4,4' -diaminodiphenyl methane, 4,4'-diaminodiphenyl methane, 3, 4'-diaminodiphenyl ether, bis(4-aminocyclohexyl)methane, 4,4'-(3-phenylend iisopropylidene)bisaniline, 4, 4'-(4-phenylenediisopropylidene) bisaniline, 4,4'-(3-phenylenediisopropylidene) bis-(3-toluide), 4,4'-bis(3-aminophenoxy)-diphenyl sulfone, 2,2-bis[ 4-(4-aminophenoxy)phenyl] propane, trimethylene glycol di-p-aminobenzoate, 4,4'-diaminodiphenyl sulfone, 4 , 4'-bis(4-aminophenoxy) diphenyl sulfone, 4,4'-bis(4- aminophenoxy)-3,3',5,5'-tetramethyl diphenyl sulfone, 4,4'-bis(4-amino-3-methylphenoxy)di f phenyl sulfone, ring alkylated derivatives of m-phenylenediamine, adducts of epoxy harp ics with the preceding diamines such as the adduct formed by reacting one mole of a liquid bisphenol A epoxy resin with 2 to 4 moles of m-phenylenediamine by itself or in combination with 4,4'-diaminodiphenyl methane, adducts of bisphenol A epoxy resin with a molar excess of 4,4'-diaminodiphenyl sulfone and the various aromatic diamines described in US-SN 534 649 and 564 393 as well as US-PS 4 517 321. Preferred diamines for use according to the invention include m-phenylenediamine, the ring alkylated derivatives thereof, adducts of epoxy resins and m-f phenylenediamine, eutectic mixtures of m-f phenylenediamine and -4 ,-4-'— diaminodiphenyl -methane 4 , 4 '-bis(3-aminophenoxy) diphenyl sulfone, 2 , 2 '-bis[4-( 4-aminophenoxy)phenyl]propane and trimethyleneglycol di-para-aminobenzoate. The mixtures - according to the invention can optionally contain a thermoplastic polymer. These substances have beneficial effects on the viscosity and film strength properties of the epoxy/hardener/accelerator mixture. The thermoplastic polymers used according to the invention include polyaryl ethers of formula VII as described in US-PS 4,108,837 and 4,175,175, ; ; wherein R3 is a residue of a dihydroxyphenol such as bisphenol A, hydroquinone, resorcinol, 4,4'-bisphenol, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxy-3,3',5,5'-tetramethyldiphenyl sulfide , 4,4'-dihydroxy-3,3',5,5'-tetramethyldiphenyl sulfone and the like. R4 is a residue of a benzenoid compound capable of nucleophilic aromatic substitution such as 4,4'-dichlorodiphenyl sulfone, 4,4'-difluorobenzophenone and the like. The average value for e is from approx. 8 to approx. 120. ;These polymers may have terminal groups that react with epoxy resins such as hydroxyl or carboxyl, or terminal groups that do not react. Other suitable polyaryl ethers are described in US-PS 3,332,209. Also suitable are polyhydroxy ethers of formula (VIII); ; where R3 has the same meaning as in formula VII and the average value for f is between approx. 8 and approx. 300; and polycarbonates such as those based on bisphenol A, tetramethyl bisphenol A, 4,4'-dihydroxydiphenyl sulfone, hydroquinone, resorcinol, 4,4'-dihydroxy-3,3',5,5'-tetramethyldiphenyl sulfide, 4,4'-biphenol, 4,4'-dihydroxydiphenyl sulphide, phenolphthalein, 2,2,4,4-tetramethyl-1,3-cyclobutane diol and the like. Other suitable thermoplastics include poly(c-caprolactone); polybutadiene; polybutadiene/acrylonitrile copolymers including those optionally containing amine, carboxyl, hydroxyl or -SH groups; polyesters such as poly(butylene terephthalate); poly(ethylene terephthalate); polyetherimides such as the Ultem resins; acrylonitrile/butadiene/styrene terpolymers, polyamides such as nylon 6, nylon 6,6, nylon 6,12 and "Trogamide T"; poly(amidimide) such as polyolefins, polyethylene oxide; poly(butyl methacrylate); impact modified polystyrene; sulfonated polyethylene; polyarylates such as those derived from bisphenol A and isophthalic and terephthalic acids; poly(2,6-dimethyl phenylene oxide); polyvinyl chloride and copolymers thereof; polyacetals; polyphenylene sulfide and the like. The preferred thermoplastic polymers for use in the invention include the polyhydroxyethers, the polyetherimides and the polyarylethers. The mixtures according to the invention may include a structural fiber. Structural fibers that can be used include carbon, graphite, glass, silicon carbide, poly(benzothiazole), poly(benz imidazole), poly(benzoxazole), alumina, titanium oxide, boron and aromatic polyamide fibers. These fibers are characterized by a tensile strength of more than 100,000 psi, a tensile modulus of more than 2 million psi and a decomposition temperature of more than 200° C. The fibers can be used in the form of continuous ropes (1000 - 400,000 filaments each), woven fabrics, chopped fibers, random mats or whiskers. The preferred fibers are carbon fibers, aromatic polyamide fibers such as "Kevlar 49" fibers and silicon carbide fibers. The mixtures according to the invention can also include modifiers which increase the modulus of the hardened epoxy resins. Examples of such agents include antiplasticizers such as dibutyl phthalate, the phenol adducts of bisphenol A epoxy resins, polyhalogenated biphenyls, azobenzers, hydroxy diphenyl, tricresyl phosphate; enhancers such as the various reaction products between a suitable aromatic amine or amide and a monoepoxide or diepoxide as described by P.D. McLean et al in The British Polymer Journal, Volume 15, Maren 1983, pages 66-70, as well as other modifiers known to those skilled in the art. Preferred modifiers for use in the compositions according to the invention include the strengthening agents described in US-PS 4,480,082. These include the reaction product of (i) an aromatic amide with the amine group on the amide bound to the aromatic ring, and (ii) a mono- or diepoxide. A particularly preferred agent of this type consists of the reaction product of phenyl glycidyl ether and 4-hydroxyacetanilide. This is commercially available under the name "Fortifier I" and contains approx. 80 to 98% by weight of adducts of 4-hydroxyacetanilide and phenyl glycidyl ether in the molar ratio 1:4.3, 0 to 12% unreacted phenyl glycidyl ether and 0 to &% unreacted 4-hydroxyacetanilide. The epoxy equivalent weight for "Fortifier I" is greater than or equal to 900 g/mol. Also preferred is the commercially available "Fortifier C", consisting of the reaction product of aniline and vinylcyclohexene dioxide. In the mixtures according to the invention, the aromatic diamine hardener is used in an amount sufficient to provide 0.4 to 2.0, preferably 0.6 to 1.9 and preferably 0.7 to 1.7 equivalents of amine N-H per equivalent epoxy group in the epoxy resin. The curing accelerator is generally used in an amount sufficient to provide from 0.01 to 0.35, preferably 0.03 to 0.3 and preferably 0.04 to 0.25 equivalents of hydroxy groups per equivalent epoxy groups in the resin. Typical formulations within these areas will include from approx. 30 to 90 and preferably from 40 to 80 wt # of epoxy resin, from approx. 10 to 70 and preferably 15 to 65% by weight hardener and 0.1 to 10 and preferably 0.5 to 7 and most preferably approx. 1 to 6 wt-$ cure accelerator. When a thermoplastic polymer is incorporated into the mixture, the amount of this is up to 20$ and preferably less than 15$ by weight. The modifier comprises when used up to 35 and preferably less than 30% by weight. All of these are calculated on the combined weight of resin, hardener, cure accelerator, optional modifier and optional thermoplastic polymer, collectively referred to herein as the "resin portion of the composite material". Where structural fibers are incorporated into the mixture, the amount thereof is from up to 85 and generally from 20 to 80 and preferably from 30 to 80 weight-$ of the total mixture, that is, the combined weight of structural fibers and the resin part of the composite material. A particularly preferred formulation for use in the production of composite materials comprises as resin part of this bis(2,3-epoxycyclopentyl) ether; from 5 to 40 wt-$ "Fortifier I" modifier; f loroglucinol, pyrogallol and/or n-propyl gallate in an amount to provide 0.03 to 0.3 equivalents of hydroxy group per equivalent epoxy group; and m-phenylene diamine in an amount sufficient to provide from 0.6 to 1.9 equivalents of amine N-H groups per equivalent epoxy group. ;The compositions of the invention can be prepared by combining the curing accelerator with either epoxy or amine to create a premix which is then mixed with the remaining components to complete the composition. Composite materials can be produced by a any of the known procedures such as wet winding or hot melt-ing. During the wet winding, a continuous reinforcing rope is passed through a resin bath containing a mixture of epoxy, amide hardener, accelerator and any modification-raid part and .f thermoplastic-; polymer s After -that- -the rope-? re&-impreg-; nerted with the resin, it is passed through press rollers to remove excess resin. Preferably, and because of the rapid curing properties of these mixtures, prepreg is used to produce a composite article soon after it is produced. ;The composite materials can be produced by curing pre-impregnated reinforcement using heat and possibly pressure. Heat bag/autoclave hardeners work well with these mixes. Laminates can also be produced via wet laying followed by compression molding, resin transfer molding or by resin injection as described in European application 0019149 with curing temperatures from 100 to approx. 500°F and preferably from 180 to approx. 450°F. Curing times depend on the manufacturing process and can be up to several hours or down to approx. 1-2 minutes, depending on the mixture used. The mixtures according to the invention are well suited for filament winding. In this composite manufacturing process, continuous reinforcement in the form of ribbon or rope, optionally pre-impregnated with resin or impregnated during winding, is placed over a rotating and removable mold or spindle in a predetermined pattern. In general, the mold is a surface of revolution and contains end closures. When the correct number of layers have been applied, the winding is cured in an oven or autoclave and the spindle is removed. The mixtures according to the invention can be used as aircraft parts such as wing skins, wing-body gaskets, floor plates, flaps, radomes; as car parts such as drive shafts, shock absorbers and springs, and as pressure tanks, tanks and pipes. They are also suitable for sports items such as golf clubs, tennis rackets and fishing rods. In addition to structural fibres, the mixtures may also contain particulate fillers such as talc, mica, calcium carbonate, aluminum trihydrate, glass microspheres, phenolic thermospheres and carbon black. Up to half of the weight of the structural fibers in the mixture can be replaced by filler. Thixotropic agents such as fumed silica can also be used. Furthermore, the mixtures can be used as adhesives, enveloping or encapsulating compounds and in coating applications. The following examples shall provide an illustration of the implementation of the invention without limiting it. In the examples that follow, the epoxy equivalent weight, EEW, is defined as the amount of grams of epoxy resin per mole 1,2-epoxy group. ;Examples 1 and 2 and Controls A and B. ;Examples 1 and 2 and Controls A and B describe viscosity versus time for bis(2,3-epoxycyclopentyl) ether/meta-phenylenediamine, MPDA, mixtures alone and with florglucinol, n- propyl gallate and bisphenol-S as curing accelerators. The procedure used is as follows: A 250 ml three-necked flask equipped with blade stirrer, thermometer with Therm-O-Watch control, inlet and outlet for nitrogen and an electric cooling jacket was charged with 100 g and 5 g of accelerator. The mixture was heated and stirred at 120°C for 115 minutes. During this time, the accelerator was dissolved. After the solution was cooled to 65°C, 47 g of m-phenylenediamine was added. The mixture was then stirred for 12 minutes until the amine hardener was dissolved. In control B, 100 g . bis(2,3-epoxycyclopentyl)ether mixed with . 47 g of MPDA at 65°C. In all cases, 15 to 20 g of solution were charged to a sample cup in a Brookfield thermosel viscometer. Viscosity versus time was then carried out at 66°C. The results of these tests are shown in Table 1. These results show that florglucinol and n-propyl gallate are significantly more active accelerators than the dihydroxy aromatic compound bisphenol S. a) Concentration for all accelerators: 5 phr. ;b) After addition of MPDA.;c) The viscosity measured in centipoises. EEW for bis(2,3-epoxycyclopentyl)ether - 92 g/mol. ;Example 3. ;A 30 g portion of a solution of fluoroglucinol in bis(2,3-epoxycyclopentyl)ether as described in Example 1 was kept at a temperature of 60° C. for 45 days. The viscosity of the finished solution at room temperature was similar to that of the original mixture. However, the EEW of the bis(2,3-epoxycyclopentyl)ether resin/phloroglucinol mixture did not change after 45 days. These results demonstrate the excellent storage stability of the epoxy resin/cure accelerator compositions of the invention in the absence of amine curing agents. Examples 4 to 9 and controls C to E describe the production and properties of unreinforced hardened castings. The dimensions of the pieces were 1/8x8x4 by 8 inches. Characteristic weight of these pieces was in the range of 8 to 160 g. The pieces produced in these experiments were tested to determine the tensile properties and heat deflection temperature. The tensile properties were measured according to ASTM D-638 using a type I dog bone specimen. Heat deflection temperatures were measured according to ASTM D-648 at 264 psi load. ;Example 4;A 250 mL round-bottomed flask equipped with a paddle stirrer, thermometer with Therm-O-Watch control, inert gas inlet and outlet, and an electrical cooling jacket was charged with 100 g of bis(2,3-epoxycyclopentyl)ether and 5.0 g phloroglucinol. The mixture was heated and stirred at 110°C for 115 minutes. During this time the florglucinols were dissolved. After the bis(2,3-epoxycyclopentyl)ether fluoroflucinol solution had cooled to 60° C., 47 g of m-phenylene diamine was charged to the flask. The resulting mixture was stirred for 12 minutes at 60°C until the diamine was dissolved. This solution was then poured into a mold preheated to 100°C. The mold was placed in an oven and heated for 4 hours to 85°C. The temperature in the oven was then raised from 85 to 179°C over 100 minutes followed by 2 hours at 179°C. After the mold had cooled to room temperature, a hard, clear solid piece of casting was removed. The properties are shown in Table II. ;Example 5. ;The procedure in Ex. 4 was repeated except that 5.0 g of n-propyl gallate was used instead of fluoroglucolnol. The properties are given in Table II. ;Example 6. ;The procedure in Ex. 4 was again repeated except that 5.0 g pyjrorga Ilso ]epcf$eK rfrænyt te t * i s tfe~detr rf or? ~f luor andluc~ijrrol=.~ T "Egen - cabinets are indicated in Table II.

Kontroll C.Control C.

Prosedyren i Eks. 4 ble gjentatt bortsett fra at bisfenol-S ble benyttet istedet for floroglucinol. The procedure in Ex. 4 was repeated except that bisphenol-S was used instead of phloroglucinol.

Kontroll D.Control D.

Prosedyren beskrevet i Eks. 4 ble gjentatt bortsett fra at det ikke ble benyttet noen aksellerator for fremstilling av denne prøvestøp. The procedure described in Ex. 4 was repeated except that no accelerator was used for the production of this test casting.

Slik man ser fra Tabell I viste støpestykkene inneholdende floroglucinol og n-propyl gallat høyere styrke og modul enn kontrollene uten aksellerator eller med bisfenol S. Ved 5 phr (basert på 100 deler epoksy harpiks) floroglucinol var strekkstyrken øket fra ca. 127 til 139 MPa og modulen øket fra 4.600 til 5.490 MPa. Varmevridningstemperaturen som var noe lavere enn den til stykker fremstilt uten aksellerator, 157 mot 166°C, var ikke desto mindre fremdeles god og lik den til bisfenol S basert støp. Floroglucinol og n-propyl gallat virker således ikke bare som akselleratorer for epoksy/amin systemer men også som modul- og styrkemodifiserere for slike systemer også. As can be seen from Table I, the castings containing phloroglucinol and n-propyl gallate showed higher strength and modulus than the controls without accelerator or with bisphenol S. At 5 phr (based on 100 parts of epoxy resin) phloroglucinol, the tensile strength was increased from approx. 127 to 139 MPa and the modulus increased from 4,600 to 5,490 MPa. The heat distortion temperature, which was somewhat lower than that of pieces produced without an accelerator, 157 versus 166°C, was nevertheless still good and similar to that of bisphenol S based casting. Phloroglucinol and n-propyl gallate thus act not only as accelerators for epoxy/amine systems but also as modulus and strength modifiers for such systems as well.

Kontroll E.Control E.

Det ble fremstilt en homogen blanding ved å kombinere 100 g bis( 2,3-epoksycyklopentyl )eter med 20 g "Fortifier I" ved 100° C i 30 minutter. Denne oppløsning ble blandet med 47 g MPDA ved 60°C. Blandingen ble omrørt, avgasset, helt i en form og herdet som beskrevet i Tabell II. A homogeneous mixture was prepared by combining 100 g of bis(2,3-epoxycyclopentyl) ether with 20 g of "Fortifier I" at 100° C. for 30 minutes. This solution was mixed with 47 g of MPDA at 60°C. The mixture was stirred, degassed, poured into a mold and cured as described in Table II.

Eksempel 7.Example 7.

En oppløsning inneholdende 100 g bis(2,3-epoksycyklopentyl )-eter og 5,0 g floroglucinol ble fremstilt som i Eks. 1. Denne blanding ble blandet med 20 g "Fortifier I" og så blandet med 47 g MPDA ved 60°C; den homogene blanding ble avgasset og helt i en form og herdet som beskrevet i Eks. 2. Strekkegenskapene og varmedef leksj onstemperaturen er gitt i Tabell II. A solution containing 100 g of bis(2,3-epoxycyclopentyl) ether and 5.0 g of phloroglucinol was prepared as in Ex. 1. This mixture was mixed with 20 g "Fortifier I" and then mixed with 47 g MPDA at 60°C; the homogeneous mixture was degassed and poured into a mold and cured as described in Ex. 2. The tensile properties and the heat deflection temperature are given in Table II.

Slik man ser av Tabell II gir denne blanding fremragende mekaniske egenskaper. Strekkstyrken øket fra 127 til 161 MPa og modulen fra 4.600 til 5.930 MPa. Systemet ga også høyere reaktivitet enn kontrollene C og D. As can be seen from Table II, this mixture provides excellent mechanical properties. The tensile strength increased from 127 to 161 MPa and the modulus from 4,600 to 5,930 MPa. The system also gave higher reactivity than controls C and D.

Eksempel 8.Example 8.

En oppløsning inneholdende 100 g bis(2,3-epoksycyklopentyl)-eter og 3,0 g floroglucinol ble fremstilt som i Eks. 1. Oppløsningen ble blandet med 12,5 g "Fortifier I" og så blandet med 47 g MPDA ved 60° C. Den homogene blanding ble avgasset og helt i en form og herdet som beskrevet i Tabell A solution containing 100 g of bis(2,3-epoxycyclopentyl) ether and 3.0 g of phloroglucinol was prepared as in Ex. 1. The solution was mixed with 12.5 g of "Fortifier I" and then mixed with 47 g of MPDA at 60° C. The homogeneous mixture was degassed and poured into a mold and cured as described in Table

II. II.

Eksempel 9.Example 9.

Prosedyren fra Eks. 6 ble gjentatt bortsett fra at 5,0 g pyrogallol ble benyttet istedet for floroglucinol. Egenskapene er vist i Tabell II. The procedure from Ex. 6 was repeated except that 5.0 g of pyrogallol was used instead of phloroglucinol. The properties are shown in Table II.

Eksemplene 7 til 9 og kontroll E viser virkningen av floroglucinol og pyrogallol på blandinger inneholdende et modifi seringsmiddel. Slik man ser fra Tabell II forbedrer tilset-ningen av floroglucinol og pyrogallol ytterligere strekkmo-dulen for blandingene i forhold til det som oppnås ved tilsetning av "Fortifier I", noe som gir støpestykker med eksepsjonelt høy modul. Eksemplene 1 til 12 og kontrollene F, G , H og K beskriver uforsterkede støpestykker fremstilt fra forskjellige andre epoksy/aromatisk aminharpikssystemer. Harpiksformuleringer, støpegenskaper og herdeskjemaer er angitt i Tabellene III og Examples 7 to 9 and Control E show the effect of phloroglucinol and pyrogallol on compositions containing a modifier. As can be seen from Table II, the addition of phloroglucinol and pyrogallol further improves the tensile modulus of the mixtures compared to that achieved by the addition of "Fortifier I", which gives castings with an exceptionally high modulus. Examples 1 through 12 and Controls F, G, H and K describe unreinforced castings made from various other epoxy/aromatic amine resin systems. Resin formulations, casting properties and curing schemes are given in Tables III and

IV. IV.

Data gitt i tabellen III og IV viser at herdeakselleratorene ifølge oppfinnelsen kan benyttes med et vidt spektruk epoksyder og aromatiske aminer for å forbedre modul, styrke og i enkelte tilfeller varmedefleksjonstemperaturen. Data given in Tables III and IV show that the curing accelerators according to the invention can be used with a wide range of epoxides and aromatic amines to improve modulus, strength and in some cases the heat deflection temperature.

Eksempel- 10. En 250 ml kolbe utstyrt som beskrevet i Eks. 1 ble chargert med 100 g 3 , 4-epoksycykloheksylmetyl 3,4-epoksycykloheksan karboksylat "ERL-4221", "EEW-137" og 5,0 g f loroglucinol. Blandingen ble oppvarmet under omrøring til 110°C i 80 minutter for å oppløse floroglucinolen. Etter at oppløsnin-gen var avkjølt til 65° C ble 28 g MPDA tilsatt. Blandingen ble omrørt, avgasset, helt i en form og herdet som beskrevet i Tabell III. Example- 10. A 250 ml flask equipped as described in Ex. 1 was charged with 100 g of 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate "ERL-4221", "EEW-137" and 5.0 g of loroglucinol. The mixture was heated with stirring to 110°C for 80 minutes to dissolve the phloroglucinol. After the solution had cooled to 65° C., 28 g of MPDA were added. The mixture was stirred, degassed, poured into a mold and cured as described in Table III.

Kontrollene F og G.Controls F and G.

Prosedyren som beskrevet i Eks. 10 ble gjentatt for kontroll F bortsett fra at bisfenol S ble benyttet istedet for floroglucinol. Kontroll G ble tilsvarende fremstilt men uten aksellerator. The procedure as described in Ex. 10 was repeated for control F except that bisphenol S was used instead of phloroglucinol. Control G was similarly produced but without an accelerator.

Eksempel 11 Example 11

En oppløsning inneholdende 100 g bis(2,3-epoksycyklopentyl)-eter og 8,0 g f loroglucinol ble fremstilt som beskrevet i Eks. 1. Denne oppløsning ble blandet med 114 g trimetylenglykol-di-para-aminobenzoat ved 119°C. Den resulterende homogene blanding ble så avgasset og helt i en form og herdet som beskrevet i Tabell IV. A solution containing 100 g of bis(2,3-epoxycyclopentyl) ether and 8.0 g of loroglucinol was prepared as described in Ex. 1. This solution was mixed with 114 g of trimethylene glycol di-para-aminobenzoate at 119°C. The resulting homogeneous mixture was then degassed and poured into a mold and cured as described in Table IV.

Kontroll HControl H

Prosedyren i Eks. 11 ble gjentatt bortsett fra at det ikke ble benyttet noen aksellerator. The procedure in Ex. 11 was repeated except that no accelerator was used.

Kontroll KControl K

En homogen oppløsning "ble fremstilt ved å kombinere 100 g diglycidyleter av bisfenol A epoksyharpiks "EEW-180" med 52 g trimetylenglykol-di-para-aminobenzoat ved 110°C. A homogeneous solution was prepared by combining 100 g diglycidyl ether of bisphenol A epoxy resin "EEW-180" with 52 g trimethylene glycol di-para-aminobenzoate at 110°C.

Oppløsningen ble avgasset og så helt i en form og herdet som beskrevet i Tabell IV. The solution was degassed and then poured into a mold and cured as described in Table IV.

Eksempel 12.Example 12.

En oppløsning inneholdende 100 g diglycidyleter av bisfenol A epoksyharpiks "EEW-180" med 5,0 g floroglucinol ble fremstilt sonurbe.sk-revet i Eks. 1. Oppløsningen ble blandet med 52 g trimetylenglykol-di-para-aminobenzoat. Et ikke-forsterket støpestykke ble deretter preparert fra denne blanding som beskrevet i Kontroll K. A solution containing 100 g of diglycidyl ether of bisphenol A epoxy resin "EEW-180" with 5.0 g of phloroglucinol was prepared sonorbe.sk-revet in Ex. 1. The solution was mixed with 52 g of trimethylene glycol di-para-aminobenzoate. An unreinforced casting was then prepared from this mixture as described in Control K.

Det fremgår av Tabell IV at stykkene fremstilt i Eks. 12 hadde høyere modul og høyere varmedistorsjonstemperatur enn den ekvivalente støp som ikke inneholdt f loroglucinol, det vil si Kontroll K. Eksemplene 13 og 14 "beskriver fremstilling av unidireksjo-nelle karbonfiber komposittmaterialer ved bruk av oppfinnel-sens blandinger. Hver av de beskrevne blandinger ble fremstilt ved bruk av en polyakryl nitril basert karbonfiber med en strekkstyrke på 7,8 x IO<5>psi og en strekkmodul på 41 x IO<6>psi. It appears from Table IV that the pieces produced in Ex. 12 had a higher modulus and higher heat distortion temperature than the equivalent cast which did not contain fluoroglucinol, i.e. Control K. Examples 13 and 14 "describe the production of unidirectional carbon fiber composite materials using the compositions of the invention. Each of the described compositions was manufactured using a polyacrylic nitrile based carbon fiber with a tensile strength of 7.8 x IO<5>psi and a tensile modulus of 41 x IO<6>psi.

Eksempel 13Example 13

Et karbonfibertau inneholdende 12.000 filamenter ble trukket gjennom et harpiksbad inneholdende harpiksformuleringen fra Eks. 8. Den Impregnerte fiber ble viklet på en 20 cm firkantramme til en tykkelse på ca. 1/8 tomme. Den impregnerte fiber i rammen inneholdt ca. 30 vekt-$ harpiks. Harpiksen ble herdet ved å bringe rammen i en ovn og gjennom-føre j3n oppvarming i henhold til en programmert herdecyklus som omfattet 4 timer ved 85°C, 85 - 120°C med l°C/minutt, opphold i 2 timer ved 120°C, 120 - 179°C med 1°C/minutt samt opphold i 2 timer ved 179°C. Rammen ble deretter fjernet fra ovnen hvoretter herdet karbonfiber komposittmateriale ble fjernet og prøvet på tverrstyrke og modul i henhold til ASTM D-3039. Tverrstrekkmodulen for komposittmaterialet ble funnet å være 1,78 millioner psi. Fibervolumfraksjonen var 70,2$. A carbon fiber rope containing 12,000 filaments was drawn through a resin bath containing the resin formulation of Ex. 8. The impregnated fiber was wound on a 20 cm square frame to a thickness of approx. 1/8 inch. The impregnated fiber in the frame contained approx. 30 wt-$ resin. The resin was cured by placing the frame in an oven and heating according to a programmed curing cycle comprising 4 hours at 85°C, 85 - 120°C at 1°C/minute, hold for 2 hours at 120° C, 120 - 179°C with 1°C/minute and stay for 2 hours at 179°C. The frame was then removed from the furnace after which the cured carbon fiber composite material was removed and tested for transverse strength and modulus in accordance with ASTM D-3039. The transverse tensile modulus of the composite material was found to be 1.78 million psi. The fiber volume fraction was 70.2$.

Eksempel 14.Example 14.

Den impregnerte fiber fremstilt som i Eks. 13 ble viklet på en stålspindel med en diameter på 5 3/4 tomme. Fire sjikt-fibre ble lagt i et bånd med en lengde på ca. 10 cm. Fiberarealvekten var ca. 206 g/m^. Spindel og impregnert fiber ble herdet ved bruk av skjemaet i Eks. 13. Etter at harpiksen var herdet ble sylindrisk herdet komposittmateriale fjernet fra spindelen og delt i 12,7 mm brede ringer for løkkestrekkprøving i henhold til ASTM D-2290. Fibervolumfraksjonen var 68,3 $. The impregnated fiber prepared as in Ex. 13 was wound on a 5 3/4 inch diameter steel spindle. Four layer fibers were laid in a band with a length of approx. 10 cm. The fiber area weight was approx. 206 g/m². Spindle and impregnated fiber were cured using the scheme in Ex. 13. After the resin was cured, cylindrical cured composite material was removed from the mandrel and divided into 12.7 mm wide rings for loop tensile testing according to ASTM D-2290. The fiber volume fraction was $68.3.

Den midlere løkke strekkstyrke for fem ringer var 489.000 psi. Dette resultat indikerer at blandingene ifølge oppfinnelsen med fordel kan benyttes ved fremstilling av høystyrke komposittmaterialer via filamentvikling. The average loop tensile strength for five rings was 489,000 psi. This result indicates that the mixtures according to the invention can be advantageously used in the production of high-strength composite materials via filament winding.

Claims (27)

©f Herbar, termoherdende epoksyblanding omfattende: a) en epoksyharpiks inneholdende minst to 1,2-epoksygrupper pr. molekyl; b) en aromatisk diaminherder i en mengde tilstrekkelig til æ gi fra ca. 0,4 til ca. 2,0 ekvivalenter amin N-H pr. ekvivalent 1,2-epoksygruppe i epoksyharpiksen; og c) en aromatisk trihydroksyherdeaksellerator med formelen: ©f Curable, thermosetting epoxy compound comprising: a) an epoxy resin containing at least two 1,2-epoxy groups per molecule; b) an aromatic diamine hardener in an amount sufficient to give from approx. 0.4 to approx. 2.0 equivalents of amine N-H per equivalent 1,2-epoxy group in the epoxy resin; and c) an aromatic trihydroxy cure accelerator of the formula: 0 0 0 hvori R er hydrogen, aryl, alkyl, -C-R', -C0R <1> , -CNHR <1> , S02 R', eller S02 NHR og R' er alkyl eller aryl med 1 til 12 karbonatomer, i en mengde tilstrekkelig til æ gi fra ca. 0,01 til ca. 0,35 ekvivalenter hydroksy pr. ekvivalent 1,2-epoksygruppe i epoksyharpiksen. 0 0 0 in which R is hydrogen, aryl, alkyl, -C-R', -C0R <1> , -CNHR <1> , SO2 R', or SO2 NHR and R' is alkyl or aryl with 1 to 12 carbon atoms, in a quantity sufficient to give from approx. 0.01 to approx. 0.35 equivalents of hydroxy per equivalent 1,2-epoxy group in the epoxy resin. 2. Blanding ifølge krav 1, karakterisert ved at herdeakselleratoren er f loroglucinol, n-propyl gallat, pyrogallol eller blandinger derav. 2. Mixture according to claim 1, characterized in that the curing accelerator is f loroglucinol, n-propyl gallate, pyrogallol or mixtures thereof. 3. Blanding ifølge krav 2, karakterisert ved at herdeakselleratoren er floroglucinol. 3. Mixture according to claim 2, characterized in that the curing accelerator is phloroglucinol. 4. Blanding ifølge krav 2, karakterisert ved at herdeakselleratoren er n-propylgallat. 4. Mixture according to claim 2, characterized in that the curing accelerator is n-propyl gallate. 5. Blanding ifølge krav 2, karakterisert ved at herdeakselleratoren er pyrogallol. 5. Mixture according to claim 2, characterized in that the hardening accelerator is pyrogallol. 6. Blanding ifølge krav 2, karakterisert ved at epoksyharpiksen er et cykloalifatisk epoksyd. 6. Mixture according to claim 2, characterized in that the epoxy resin is a cycloaliphatic epoxide. 7. Blanding ifølge krav 6, karakterisert ved at den aromatiske diaminherder er m-f enylendiamin, en autektisk blanding av en fenylendiamin og 4,4 <1-> diaminodifenyl metan, 4 , 4 1-diamindif enyl metan, 4,4 <1-> bis(3-aminofenoksy)-difenyl sulfon, 2,2-bis[4-(4-aminofenoksy)fenyl]propan, trimetylen glykol di-para-aminobenzoat, 4 ,4-diaminodifenyl sulfon, 4 , 41-bis(4-aminofenoksy)difenyl sulfon, addukter av epoksyharpiks-.med m-fenylendiamin> 4,4'-bis(4-aminofenoksy)-3 , 3 1 ,5,51-tetrametyl difenyl sulfon, 4,4 <1-> bis(4-amino-3-metylfenoksy) difenyl sulfon, ringalkylerte derivater av m-fenylendiamin eller blandinger derav. 7. Mixture according to claim 6, characterized in that the aromatic diamine hardener is m-f phenylenediamine, an autectic mixture of a phenylenediamine and 4,4 <1-> diaminodiphenyl methane, 4 , 4 1-diamindiphenyl methane, 4,4 <1-> bis( 3-aminophenoxy)-diphenyl sulfone, 2,2-bis[4-(4-aminophenoxy)phenyl]propane, trimethylene glycol di-para-aminobenzoate, 4 ,4-diaminodiphenyl sulfone, 4 , 41-bis(4-aminophenoxy) diphenyl sulfone, adducts of epoxy resin-.with m-phenylenediamine> 4,4'-bis(4-aminophenoxy)-3 , 3 1 ,5,51-tetramethyl diphenyl sulfone, 4,4 <1-> bis(4-amino -3-methylphenoxy) diphenyl sulfone, ring alkylated derivatives of m-phenylenediamine or mixtures thereof. 8. Blanding ifølge krav 6, karakterisert ved at den aromatiske diamin herder er m-fenylendiamin, ringalkylerte derivater derav, addukter av epoksyharpikser og m-f enylendiamin, autektiske blandinger av m-f enylendiamin og4 ,4<1-> diaminodifenylmetan eller blandinger derav. 8. Mixture according to claim 6, characterized in that the aromatic diamine hardener is m-phenylenediamine, ring alkylated derivatives thereof, adducts of epoxy resins and m-phenylenediamine, autectic mixtures of m-phenylenediamine and 4,4<1-> diaminodiphenylmethane or mixtures thereof. 9. Blanding ifølge krav 6, karakterisert ved at det cykloalifatiske epoksyd er bis(2,3-epoksycyklopentyl)-eter. 9. Mixture according to claim 6, characterized in that the cycloaliphatic epoxide is bis(2,3-epoxycyclopentyl) ether. 10. Blanding ifølge krav 6, karakterisert ved at det cykloalifatiske epoksyd er vinylcykloheksen diepoksyd, 2-(3,4-epoksycykloheksyl-5,5-spiro-3,4-epoksy)cykloheksan meta-dioksan, 3,4-epoksycykloheksyl-metyl 3,4-epoksycykloheksan karboksylat, 3,4-epoksy-6-metylcykloheksylmetyl 3,4-epoksy-6- metylcykloheksan karboksylat, dipenten dioksyd, epoksydert polybutadien, bis(3,4-epoksy cykloheksylmetyl)adipat eller blandinger derav. 10. Mixture according to claim 6, characterized in that the cycloaliphatic epoxide is vinylcyclohexene diepoxide, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane meta-dioxane, 3,4-epoxycyclohexyl-methyl 3, 4-epoxycyclohexane carboxylate, 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexane carboxylate, dipentene dioxide, epoxidized polybutadiene, bis(3,4-epoxy cyclohexylmethyl)adipate or mixtures thereof. 11. Blanding ifølge krav 6, karakterisert ved at det cykloalifatiske epoksyd er valgt blant en eller flere av 11. Mixture according to claim 6, characterized in that the cycloaliphatic epoxide is selected from one or more of der b er 1 til 4, m er (5-b) og R2 er H, halogen eller Ci til C4 alkyl. where b is 1 to 4, m is (5-b) and R 2 is H, halogen or C 1 to C 4 alkyl. 12. Blanding ifølge krav 6, karakterisert ved at den videre inneholder opptil 40 vekt-% av en koepoksyharpiks. 12. Mixture according to claim 6, characterized in that it further contains up to 40% by weight of a co-epoxy resin. 13 . Blanding ifølge krav 12, karakterisert ved at koepoksyharpiksen er valgt blant en eller flere av 13 . Mixture according to claim 12, characterized in that the co-epoxy resin is selected from one or more of der n er fra 0 til ca. 15; where n is from 0 to approx. 15; der n er fra 0,1 til ca. 8 og R er hydrogen; og der n er fra 0,1 til ca. 8 og R er CH3 . where n is from 0.1 to approx. 8 and R is hydrogen; and where n is from 0.1 to approx. 8 and R is CH 3 . 14. Blanding ifølge krav 6, karakterisert ved at den videre omfatter opptil ca. 20 vekt-% av en termoplastisk polymer. 14. Mixture according to claim 6, characterized in that it further comprises up to approx. 20% by weight of a thermoplastic polymer. 15. Blanding ifølge krav 14, karakterisert ved at den termoplastiske polymer er en polyhydroksyeter, et polyeterimid, en polyaryleter, et polysulfon, et polykarbonat eller blandinger derav. 15. Mixture according to claim 14, characterized in that the thermoplastic polymer is a polyhydroxyether, a polyetherimide, a polyarylether, a polysulfone, a polycarbonate or mixtures thereof. 16. Blanding ifølge krav 6, karakterisert ved at den videre omfatter opptil 35 vekt-% av et modifiseringsmiddel som øker epoksyharpiksens modul. 16. Mixture according to claim 6, characterized in that it further comprises up to 35% by weight of a modifier which increases the modulus of the epoxy resin. 17. Blanding ifølge kravene 1, 2, 6, 14 eller 16, karakterisert ved at den ytterligere omfatter en struktur fiber med en strekkstyrke pæ over ca. 100.000 psi, en strekkmodul pæ mer enn ca. 2 millioner psi og den dekomponeringstemperatur pæ over ca. 200|C. 17. Mixture according to claims 1, 2, 6, 14 or 16, characterized in that it further comprises a structural fiber with a tensile strength of over approx. 100,000 psi, a tensile modulus of more than approx. 2 million psi and the decomposition temperature of over approx. 200|C. 18. Blanding ifølge krav 17, karakterisert ved at strukturfibren er valgt blant karbon, grafitt, glass, silisiumkarbid, poly (benzotiazol) , poly (benzimidazol) , poly(benzoksazol), aluminium, titan, bor, aromatiske polyamider og blandinger derav. 18. Mixture according to claim 17, characterized in that the structural fiber is selected from carbon, graphite, glass, silicon carbide, poly(benzothiazole), poly(benzimidazole), poly(benzoxazole), aluminium, titanium, boron, aromatic polyamides and mixtures thereof. 19. Blanding ifølge krav 17 i form av et komposittmateriale. 19. Mixture according to claim 17 in the form of a composite material. 20. Komposittmateriale, karakterisert ved at det omfatter: a) en cykloalifatisk epoksydharpiks inneholdende minst to 1,2-epoksygrupper pr. molekyl; b) en aromatisk diaminherder i en mengde tilstrekkelig til æ gi fra ca. 0,4 til 2,0 ekvivalenter amin N-H pr. ekvivalent 1,2-epoksygruper i epoksydharpiksen; c) en aromatisk trihydroksy herdeaksellerator valgt blant f loroglucinol, n-propyl gallat, pyrogallol og blandinger derav i en mengde tilstrekkelig til æ gi fra ca. 0,01 til ca. 0,35 ekvivalenter hydroksy pr. ekvivalent 1,2-epoksy i^ epoksydharpiksen; og d) opptil ca. 85 vekt-%, basert pæ den totale vekt av blandingen, av en strukturfiber med en strekkstyrke pæ over ca. 100 . 000 psi, en strekkmodul pæ over ca. 2 millioner psi samt en dekomponeringstemperatur pæ over ca.200|C. 20. Composite material, characterized in that it includes: a) a cycloaliphatic epoxy resin containing at least two 1,2-epoxy groups per molecule; b) an aromatic diamine hardener in an amount sufficient to æ give from approx. 0.4 to 2.0 equivalents of amine N-H per equivalent 1,2-epoxy groups in the epoxy resin; c) an aromatic trihydroxy curing accelerator selected from phloroglucinol, n-propyl gallate, pyrogallol and mixtures thereof in an amount sufficient to give from approx. 0.01 to approx. 0.35 equivalents of hydroxy per equivalent of 1,2-epoxy in the epoxy resin; and d) up to approx. 85% by weight, based on the total weight of the mixture, of a structural fiber with a tensile strength of over approx. 100 . 000 psi, a tensile modulus of over approx. 2 million psi and a decomposition temperature of over approx.200|C. 21. Blanding ifølge krav 20, karakterisert ved at det cykloalifatiske epoksyd er bis(2,3-epoksycyklopentyl) eter. 21. Mixture according to claim 20, characterized in that the cycloaliphatic epoxide is bis(2,3-epoxycyclopentyl) ether. 22 . Komposittmateriale ifølge krav 20, karakterisert ved at det cykloalifatiske epoksyd er vinylcykloheksen diepoksyd, 2-(3,4-epoksycykloheksyl-5,5-spiro-3,4-epoksy) cykloheksan meta-dioksan, 3,4-epoksycykloheksylmetyl 3 , 4-epoksycykloheksan karboksylat, 3 ,4-epoksy-6-metylcyklo-heksylmetyl 3 , 4-epoksy-6-metylcykloheksan karboksylat, dipenten dioksyd, epoksydert polybutadien, bis (3,4-epoksy cykloheksylmetyl) adipat eller blandinger derav. 22 . Composite material according to claim 20, characterized in that the cycloaliphatic epoxide is vinylcyclohexene diepoxide, 2-(3,4-epoxycyclohexyl-5,5-spiro-3,4-epoxy)cyclohexane meta-dioxane, 3,4-epoxycyclohexylmethyl 3,4- epoxycyclohexane carboxylate, 3,4-epoxy-6-methylcyclohexylmethyl 3,4-epoxy-6-methylcyclohexane carboxylate, dipentene dioxide, epoxidized polybutadiene, bis (3,4-epoxy cyclohexylmethyl) adipate or mixtures thereof. 23 . Komposittmateriale ifølge krav 20, karakterisert ved at det cykloalifatiske epoksyd er valgt blant en eller flere av: 23 . Composite material according to claim 20, characterized in that the cycloaliphatic epoxide is selected from one or more of: der b er 1 til 4, m er (5-b) og R2 er H, halogen eller C± til C4 alkyl. where b is 1 to 4, m is (5-b) and R 2 is H, halogen or C± to C 4 alkyl. 24. Komposittmateriale ifølge kravene 21, 22 eller 23, karakterisert ved at den aromatiske diaminherder er m-f enylendiamin, de ringalkylerte derivater derav, addukter av epoksyharpikser og m-fenylen diamin, autektiske blandinger av m-fenylendiamin og 4,4 <1-> diaminodi-fenylmetan eller blandinger derav. 24. Composite material according to claims 21, 22 or 23, characterized in that the aromatic diamine hardener is m-f phenylenediamine, the ring alkylated derivatives thereof, adducts of epoxy resins and m-phenylene diamine, autectic mixtures of m-phenylenediamine and 4,4 <1-> diaminodi-phenylmethane or mixtures thereof. 25. Komposittmateriale ifølge krav 24, karakterisert ved at det videre inneholder opptil 4 0 vekt-% av en koepoksyharpiks, basert pæ den kombinerte vekt av.den cykloalifatiske epoksydharpiks og koepoksyharpiksen. 25. Composite material according to claim 24, characterized in that it further contains up to 40% by weight of a co-epoxy resin, based on the combined weight of the cycloaliphatic epoxy resin and the co-epoxy resin. 26. Komposittmateriale ifølge krav 24, karakterisert ved at det omfatter opptil ca. 35 vekt-%, beregnet pæ den totale vekt av harpiksdelen av komposittmateriale, av et modifiseringsmiddel som øker epoksyharpiksens modul. 26. Composite material according to claim 24, characterized in that it comprises up to approx. 35% by weight, calculated on the total weight of the resin part of composite material, of a modifier that increases the modulus of the epoxy resin. 27. Komposittmateriale ifølge krav 24, karakterisert ved at det videre inneholder opptil ca. 2 0 vekt-%, beregnet pæ den totale vekt av harpiksdelen av komposittmaterialet, av en termoplastisk polymer.27. Composite material according to claim 24, characterized in that it further contains up to approx. 20% by weight, calculated on the total weight of the resin portion of the composite material, of a thermoplastic polymer.
NO870604A 1985-06-21 1987-02-16 EPOXY / AROMATIC AMINHARPIX SYSTEMS CONTAINING AROMATIC TRIHYDROXY COMPOUNDS AS Curing Accelerators. NO870604L (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US06/747,189 US4593056A (en) 1985-06-21 1985-06-21 Epoxy/aromatic amine resin systems containing aromatic trihydroxy compounds as cure accelerators
PCT/US1986/000898 WO1986007597A1 (en) 1985-06-21 1986-04-30 Epoxy/aromatic amine resin systems containing aromatic trihydroxy compounds as cure accelerators

Publications (2)

Publication Number Publication Date
NO870604D0 NO870604D0 (en) 1987-02-16
NO870604L true NO870604L (en) 1987-02-16

Family

ID=26773615

Family Applications (1)

Application Number Title Priority Date Filing Date
NO870604A NO870604L (en) 1985-06-21 1987-02-16 EPOXY / AROMATIC AMINHARPIX SYSTEMS CONTAINING AROMATIC TRIHYDROXY COMPOUNDS AS Curing Accelerators.

Country Status (1)

Country Link
NO (1) NO870604L (en)

Also Published As

Publication number Publication date
NO870604D0 (en) 1987-02-16

Similar Documents

Publication Publication Date Title
EP0229770B1 (en) Epoxy/aromatic amine resin systems containing aromatic trihydroxy compounds as cure accelerators
EP0127198B1 (en) Preimpregnated reinforcements and high strength composites therefrom
EP0148493B1 (en) Thermoplastic modified epoxy compositions
US5599856A (en) Epoxy resin systems containing modifiers
US4983672A (en) Epoxide resin compositions and method
EP0135647B1 (en) Epoxy compositions containing substituted diamine hardeners
RU2574054C2 (en) Epoxy resin-based curable compositions and composite materials obtained therefrom
EP0217657B1 (en) Low-viscosity epoxy resin, resin composition containing it, and fibre-reinforced composite material containing cured product of the composition
JPH0554503B2 (en)
JP5922582B2 (en) Composite composition
JP2013512988A (en) Epoxy resin composition
EP0126494B1 (en) Impact resistant matrix resins for advanced composites
CA1281835C (en) Moisture resistant, wet winding epoxy resin system containing aromaticdiamines
JPS63250351A (en) Novel low polymer diamine curing agent and its use for curing expoxy resin
EP0130270B1 (en) Epoxy compositions containing oligomeric diamine hardeners and high strength composites therefrom
US5599629A (en) High modulus prepregable epoxy resin systems
US5599628A (en) Accelerated cycloaliphatic epoxide/aromatic amine resin systems
EP0132853B1 (en) Preimpregnated reinforcements and high strength composites therefrom
US5045363A (en) Epoxide resin compositions and method
NO870604L (en) EPOXY / AROMATIC AMINHARPIX SYSTEMS CONTAINING AROMATIC TRIHYDROXY COMPOUNDS AS Curing Accelerators.
US5596050A (en) High modulus epoxy resin systems
JPS6274918A (en) Low-viscosity polyglycidyl derivative
JPS62246924A (en) Curable resin composition
CA2099230A1 (en) High modulus epoxy resin systems
CA2099179A1 (en) Accelerated cycloaliphatic epoxide/aromatic amine resin systems