NO863756L - METHOD FOR CELLPLAST PREPARATION. - Google Patents

METHOD FOR CELLPLAST PREPARATION.

Info

Publication number
NO863756L
NO863756L NO863756A NO863756A NO863756L NO 863756 L NO863756 L NO 863756L NO 863756 A NO863756 A NO 863756A NO 863756 A NO863756 A NO 863756A NO 863756 L NO863756 L NO 863756L
Authority
NO
Norway
Prior art keywords
plastic
mass
processing
blowing agent
mixture
Prior art date
Application number
NO863756A
Other languages
Norwegian (no)
Other versions
NO863756D0 (en
Inventor
Jan Kaasin
Original Assignee
Spydevold Baard
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Publication of NO863756D0 publication Critical patent/NO863756D0/en
Priority to NO863756A priority Critical patent/NO863756L/en
Application filed by Spydevold Baard filed Critical Spydevold Baard
Priority to BR8707470A priority patent/BR8707470A/en
Priority to EP87906112A priority patent/EP0281609A1/en
Priority to PCT/NO1987/000060 priority patent/WO1988001934A1/en
Priority to JP62505627A priority patent/JPH01500812A/en
Priority to AU79631/87A priority patent/AU7963187A/en
Priority to ZA876985A priority patent/ZA876985B/en
Priority to GR871448A priority patent/GR871448B/en
Priority to PT85761A priority patent/PT85761B/en
Priority to CN198787106832A priority patent/CN87106832A/en
Priority to IE872545A priority patent/IE872545L/en
Priority to ES8702711A priority patent/ES2007112A6/en
Publication of NO863756L publication Critical patent/NO863756L/en
Priority to DK279788A priority patent/DK279788D0/en
Priority to FI882379A priority patent/FI882379A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/20Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of indefinite length
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3442Mixing, kneading or conveying the foamable material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/50Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length using pressure difference, e.g. by extrusion or by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2027/00Use of polyvinylhalogenides or derivatives thereof as moulding material
    • B29K2027/06PVC, i.e. polyvinylchloride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/046Condition, form or state of moulded material or of the material to be shaped cellular or porous with closed cells

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

"FREMGANGSMÅTE FOR FREMSTILLING AV PVC - CELLEPLAST"'"PROCESS FOR THE MANUFACTURE OF PVC - CELLULAR PLASTIC"'

TEKNIKKENS STANDSTATE OF THE ART

Det finnes idag flere kjente prosesser for fremstilling av PVC - celleplast (skumplast). Det skal beskrives tre prinsipielt forskjellige prosesser som er interessante i forbindelse med foreliggende oppfinnelse for fremstilling av celleplast (skumplast) av PVC (Polyvinylklorid). 1. Høytrykksmetoden som gir PVC-celleplast med lukkede celler. Prosessen består .av flere trinn: PVC-plasten blandes med kjemisk esemiddel, stabilisator og evnt. andre prosessregulerende stoffer og tilsatsstoffer. Komponentene blandes godt ved relativt lav temeratur, evt. i flere trinn. Den godt blandede massen bringes i former og under høyt trykk (ca. 180 bar) holdes formene lukket f. eks. med kraftige mekaniske presser mens det tilføres varme til plastmassen slik at den varmes opp til ca. 170 grader C. Ved denne temperaturen dekomponeres og forgasses det kjemiske esemiddelet samtidig som plastblandingen pias ti fi seres og til en viss grad homogeniseres (gelatineres). Dette foregår mens massen ligger stille i formen. Etter at plastmassen er oppvarmet tilstrekkelig og har vært tilstrekkelig lenge under høyt trykk, vanligvis 40-60 min., avkjøles formene og dermed plastmassen til under plastens glasstemperatur slik at plasten ikke ekspanderer etter at det ytre trykket er tatt bort, selv om det nå inneholder esemiddel i gassfase med høyt innvendig trykk. Plastdelen som nå er et stivt halvfabrikata, tas ut av formen og lagres i noen tid. Plastdelen varmes deretter opp igjen til ca. 100 grader C. Dermed mykgjøres plasten, samtidig som det indre trykket i esemiddelet øker noe. Dette gjør at plastdelen ekspanderer inntil likevekt er oppnådd mellom indre ekspansjonstrykk og spenninger i plasten. Fordi en meget stor del av det varmestabiliserende middlet i plastblandingen er "oppbrukt" i dekomponeringsfasen kan normalt ikke høyere temperatur enn ca. 100 grader C benyttes i ekspansjonsfasen fordi PVC-plasten ellers kan nedbrytes. There are today several known processes for the production of PVC - cell plastic (foam plastic). Three fundamentally different processes are to be described which are interesting in connection with the present invention for the production of cellular plastic (foam plastic) from PVC (Polyvinyl Chloride). 1. The high-pressure method that produces PVC cellular plastic with closed cells. The process consists of several steps: the PVC plastic is mixed with a chemical foaming agent, stabilizer and possibly other process-regulating substances and additives. The components are mixed well at a relatively low temperature, possibly in several stages. The well-mixed mass is placed in molds and under high pressure (approx. 180 bar) the molds are kept closed, e.g. with powerful mechanical presses while heat is added to the plastic mass so that it is heated to approx. 170 degrees C. At this temperature, the chemical foaming agent decomposes and gasifies at the same time as the plastic mixture solidifies and homogenizes (gelatinizes) to a certain extent. This takes place while the mass lies still in the mold. After the plastic mass has been sufficiently heated and has been sufficiently long under high pressure, usually 40-60 min., the molds and thus the plastic mass are cooled to below the glass transition temperature of the plastic so that the plastic does not expand after the external pressure is removed, even if it now contains blowing agent in gas phase with high internal pressure. The plastic part, which is now a rigid semi-finished product, is removed from the mold and stored for some time. The plastic part is then heated again to approx. 100 degrees C. This softens the plastic, at the same time as the internal pressure in the blowing agent increases somewhat. This causes the plastic part to expand until equilibrium is achieved between internal expansion pressure and stresses in the plastic. Because a very large part of the heat-stabilizing agent in the plastic mixture is "used up" in the decomposition phase, a higher temperature than approx. 100 degrees C is used in the expansion phase because the PVC plastic can otherwise break down.

Et PVC-produkt fremstillt etter denne metode, har lukkede celler og kan ha en egenvekt ned til ca. 40 kg pr. m3. Det produseres også produkter etter denne metoden med egenvekter opp til ca. 600 kg pr.m3. Pa grunn av det nødvendige høye statiske spesifikke trykket under dekomponer ingsfasen for esemiddelet, er det store praktiske begrensninger på størrelsen av sluttproduktet. Det er også store vanskeligheter med oppvarming av plastmassen i formen slik at alle deler av massen får relativt like mye varme tilført. A PVC product produced using this method has closed cells and can have a specific gravity down to approx. 40 kg per m3. Products are also produced using this method with specific weights of up to approx. 600 kg per m3. Due to the high static specific pressure required during the decomposition phase of the effervescent agent, there are major practical limitations on the size of the final product. There are also great difficulties with heating the plastic mass in the mold so that all parts of the mass receive a relatively equal amount of heat.

Normalt benyttes esemiddel som er eksotermisk. Dette gir stor fare for "brenning" og nedbryting av deler av plastmassen før alt er blitt tilført tilstrekkelig varmeenergi i forbindelse med dekomponering av esemiddelet. Dette gir begrensninger på tykkelsen av plastmassen som oppvarmes. Dessuten er prosessen meget arbeidskrevende og betinger relativt store investeringer i teknisk utstyr. Normally, an exothermic foaming agent is used. This creates a great danger of "burning" and decomposition of parts of the plastic mass before sufficient heat energy has been supplied in connection with the decomposition of the foaming agent. This places limitations on the thickness of the plastic mass that is heated. In addition, the process is very labor-intensive and requires relatively large investments in technical equipment.

En annen metode som er meget utbredt for fremstilling av PVC celleplast, er ekstrudering av en plastblanding bestående av PVC-plast, kjemisk esemiddel, stabilisator og eventuelle prosessregulerende stoffer og tilsatsstoff er hvor de forskjellige komponentene blandes god ved relativt lav temperatur (f.eks. 110 grader C) før blandingen tilføres ekstruderingsmaskinen, vanligvis i form av pulver eller granulat. I ekstruderen blandes komponentene godt sammen under høy temperatur .(f. eks. 180 grader C) slik at massen blir omdannet til en relativt homogen smelte (gelatinert), samtidig som esemiddelet blir tilført tilstrekkelig varmeenergi til at dekomponeringsprosessen startes. Prosessen styres slik at det alt vesentlige av dekomponeringen av esemiddelet foregår utenfor (etter) ekstruderen (inklusive verktøy). Etter utgang av ekstruderverktøyet vil plastmassen på grunn av det store trykket i det etterhvert dekomponerte esemiddelet, ekspandere opp til likevekt er oppnådd mellom det indre trykket og spenningene i plastmassen. Another method that is very widespread for the production of PVC cellular plastic is the extrusion of a plastic mixture consisting of PVC plastic, chemical foaming agent, stabilizer and any process-regulating substances and additive is where the various components are mixed well at a relatively low temperature (e.g. 110 degrees C) before the mixture is fed to the extrusion machine, usually in the form of powder or granules. In the extruder, the components are mixed well together under a high temperature (e.g. 180 degrees C) so that the mass is converted into a relatively homogeneous melt (gelatinized), at the same time that the foaming agent is supplied with sufficient heat energy to start the decomposition process. The process is controlled so that most of the decomposition of the blowing agent takes place outside (after) the extruder (including tools). After exiting the extruder tool, the plastic mass will, due to the great pressure in the eventually decomposed blowing agent, expand until equilibrium is achieved between the internal pressure and the stresses in the plastic mass.

Prosessen er kontinuerlig og kan automatiseres i svært høy grad. Den gir stor kapasitet med relativt små investeringer i teknisk utstyr. En celleplast produsert etter denne metoden vil imidlertid vanligvis ha en stor del av åpne celler. Det har heller ikke vært mulig å produsere PVC-celleplast etter denne metoden med egenvekt under ca. 450 kg. pr.m3. Det kan forklares med at i en PVC - celleplast produsert etter denne metoden, er cellene dannet av relativt store konsentrasjoner av esemiddel som gir store enkeltceller. Dette betyr at ved tilsetting av for mye esemiddel vil store konsentrasjoner av esemiddel gi ekspansjonskrefter i hver enkelt celle som er så store at de overstiger plastmassens evne til å holde på ekspansjonsgassen, og gassen bryter gjennom overflaten og unnslipper. Sluttproduktet kan dermed få en høyere egenvekt enn ved bruk av mindre esemiddel, og dessuten vil overflaten være opprevet og i mange tilfeller ikke tilfredsstillende. Det etterstrebes vanligvis resepter og prosessbetingelser som gir lavest mulig egenvekt med tilfredsstillende overflate på produktet. The process is continuous and can be automated to a very high degree. It provides large capacity with relatively small investments in technical equipment. However, a cellular plastic produced by this method will usually have a large proportion of open cells. Nor has it been possible to produce PVC cell plastic using this method with a specific gravity below approx. 450 kg. per m3. This can be explained by the fact that in a PVC - cellular plastic produced according to this method, the cells are formed from relatively large concentrations of blowing agent, which give large individual cells. This means that when too much blowing agent is added, large concentrations of blowing agent will produce expansion forces in each individual cell that are so great that they exceed the plastic mass's ability to hold the expansion gas, and the gas breaks through the surface and escapes. The end product can thus have a higher specific gravity than when using less blowing agent, and furthermore the surface will be rough and in many cases not satisfactory. Recipes and process conditions that give the lowest possible specific gravity with a satisfactory surface on the product are usually sought after.

En tredje metode for fremstilling av PVC - celleplast er ekstrudering av en plastblanding bestående av PVC - plast, stabilisator og eventuelle prosessregulerende stoffer og tilsats-stoffer hvor de forskjellig komponentene blandes godt ved relativt lav temperatur (f.eks. 110 grader C) før plastblandingen tilføres ekstruderen. Blandingen smeltes ved høyerer temperatur i ekstruderen samtidig som blandingen homogeniseres. Etter nedsmeltingen tilsettes en gass (f.eks. C02 eller N2) til smeiten under høyt trykk... Gassen fordeles i smeiten og bevirker ekspansjon av plastmassen etter utløp av ekstruderen på grunn av reduksjon av det ytre trykk. Metoden er svært rasjonell og kan gi svært lave egenvekter på PVC-produktet (ned til ca. 30 kg. pr.m3). Sluttproduktet har imidlertid åpne celler, og vil derfor f.eks. absorbere vann allerede ved svært små trykk. A third method for producing PVC - cellular plastic is the extrusion of a plastic mixture consisting of PVC - plastic, stabilizer and any process-regulating substances and additives, where the different components are mixed well at a relatively low temperature (e.g. 110 degrees C) before the plastic mixture fed to the extruder. The mixture is melted at a higher temperature in the extruder at the same time as the mixture is homogenised. After the meltdown, a gas (e.g. C02 or N2) is added to the melt under high pressure... The gas is distributed in the melt and causes expansion of the plastic mass after exiting the extruder due to the reduction of the external pressure. The method is very rational and can give very low specific weights of the PVC product (down to approx. 30 kg per m3). However, the end product has open cells, and will therefore e.g. absorb water already at very low pressures.

Det er i de fleste tilfeller ønskelig med tette celler i PVC - celleplast. Absorbsjon av væske er da minimal, og celleplasten har dessuten svært god termisk i solasjonsevne. I mange tilfeller vil også fysikalske egenskaper forbedres. In most cases, it is desirable to have tight cells in PVC - cell plastic. Absorption of liquid is then minimal, and the cellular plastic also has very good thermal insulation properties. In many cases, physical properties will also be improved.

BESKRIVELSE AV OPPFINNELSENDESCRIPTION OF THE INVENTION

Den foreliggende oppfinnelse kombinerer de gode kjemiske og fysikalske egenskapene hos PVC - celleplast med tette celler produsert etter den beskrevne høytrykksmetoden, med den meget rasjonelle fremstilling av PVC - celleplast i en ekstruder eller annen hensiktsmessig plastbearbeidingsmaskin. Metoden går ut på at det benyttes en homogen PVC - masse inneholdende PVC - plast, stabilisator, kjemisk esemiddel og eventuelle andre prosessregulerende stoffer og tilsattsstoff er hvor det kjemiske esemiddelet er finfordelt i massen. Finfordelingen av det kjemiske esemiddelet gjøres ved at plastblandingen plastifiseres og homogeniseres til en homogen smelte slik at man får et godt gelatinert mellomprodukt. I denne gelatineringsprosessen holdes temperaturen i smeiten under dekomponeringstemperaturen for det kjemiske esemiddelet i kombinasjon med eventuell aktivator og andre komponenter i plastblandingen eller på et temperaturnivå som sammen med de øvrige plastblandingskomponentene og prosessparameterne ikke resulterer i dekomponering/forgassing av esemiddelet eller kun dekomponering/ forgassing av esemiddelet i ubetydelig grad. Denne gelatineringsprosessen kan utføres i en plastbearbeidingsmaskin som tilfredsstiller kravene til temperatur, blandeeffekt og trykk f. eks. en ekstruderingsmaskin. The present invention combines the good chemical and physical properties of PVC - cellular plastic with dense cells produced according to the described high pressure method, with the very rational production of PVC - cellular plastic in an extruder or other appropriate plastic processing machine. The method involves the use of a homogeneous PVC mass containing PVC plastic, stabilizer, chemical foaming agent and any other process-regulating substances and additives where the chemical foaming agent is finely distributed in the mass. The fine distribution of the chemical foaming agent is done by plasticizing and homogenizing the plastic mixture into a homogeneous melt so that a well-gelatinized intermediate product is obtained. In this gelatinization process, the temperature in the melt is kept below the decomposition temperature of the chemical blowing agent in combination with any activator and other components in the plastic mixture or at a temperature level which, together with the other plastic mixture components and the process parameters, does not result in decomposition/gasification of the blowing agent or only decomposition/gasification of the blowing agent to an insignificant extent. This gelatinization process can be carried out in a plastic processing machine that meets the requirements for temperature, mixing effect and pressure, e.g. an extrusion machine.

Sammensetningen av de forskjellige stoffene i en plastblanding må tilpasses bl.a. til type av blandemaskin, maskin for videre bearbeiding og krav til sluttproduktet. Plastblandingen må imidlertid være bygget opp slik at det er mulig å produsere et godt gelatinert mellomprodukt uten at det kjemiske esemiddelet blir dekomponert/forgasset eller bare dekomponert/forgasset i ubetydelig grad. De fleste kjemiske esemidler som idag benyttes, f. eks. azodicarbonamid, har dekomponerings- temperatur ved ca. 235 grader C. Vanligvis må dekomponerings- temperaturen reduseres til ca. 170 til 180 grader C for å unngå vanskeligheter med nedbryting av PVC materialet. Dette gjøres ved en tilsetting av aktivator eller "kicker" for esemiddelet. Oftest benyttes en metallforbindelse basert på Pb, Zn Cd eller Sn. Som PVC - plast kan det benyttes emulsjons-PVC (e-PVC), masse-PVC (m-PVC) og suspensjons PVC The composition of the different substances in a plastic mixture must be adapted to, among other things, to type of mixing machine, machine for further processing and requirements for the final product. However, the plastic mixture must be structured so that it is possible to produce a well-gelatinized intermediate product without the chemical blowing agent being decomposed/gasified or only decomposed/gasified to an insignificant extent. Most chemical sprays used today, e.g. azodicarbonamide, has a decomposition temperature of approx. 235 degrees C. Usually the decomposition temperature must be reduced to approx. 170 to 180 degrees C to avoid difficulties with the breakdown of the PVC material. This is done by adding an activator or "kicker" for the foaming agent. A metal compound based on Pb, Zn, Cd or Sn is most often used. Emulsion PVC (e-PVC), mass PVC (m-PVC) and suspension PVC can be used as PVC plastic

(s-PVC) eller kombinasjoner av disse. Det kan også benyttes en kopolymer til PVC-plasten f.eks. vinylacetat... (s-PVC) or combinations thereof. A copolymer can also be used for the PVC plastic, e.g. vinyl acetate...

Den gelatinerte PVC-massen føres videre til neste bearbeidingsfase som kan foregå i samme plastbearbeidingsmaskin eller i en annen plastbearbeidingsmaskin som er velegnet for den videre bearbeiding, f. eks. en ekstruderingsmaskin eller en sprøytestøpemaskin. Plastmassen kan tilføres i form av granulat eller pulver eller massen kan tilføres i varm tilstand fra gelatineringsprosessen uten at plastmassen er nedkjølt nevneverdig. En oppnår derved en energibesparelse i produksjonen av PVC - celleplast. The gelatinized PVC mass is carried on to the next processing phase, which can take place in the same plastic processing machine or in another plastic processing machine that is suitable for the further processing, e.g. an extrusion machine or an injection molding machine. The plastic mass can be supplied in the form of granules or powder or the mass can be supplied in a hot state from the gelatinization process without the plastic mass being significantly cooled. One thereby achieves an energy saving in the production of PVC - cellular plastic.

PVC - massen blir i denne bearbeidingsfasen raskt oppvarmet til en temperatur over dekomponeringstemperaturen for det kjemiske esemiddelet i kombinasjon med eventuell aktivator og andre plastblandings- komponenter samtidig som massen blir påført et stort ytre trykk. Dette for å unngå at esemiddelet får anledning til å ekspandere i selve plastbearbeidingsmaskinen. Plasten bearbeides mekanisk, eltes i maskinen slik at alle deler av massen får tilnærmet samme temperatur. Fordi massen raskt oppnår gjevn temperatur, har man en relativt god kontroll over den eventuelle eksoterme varmeutviklingen fra esemiddelet, som er et stort problem ved bl.a. kjente statiske høytrykksprosess som idag benyttes og som er beskrevet tidligere. På grunn av den raske oppvarmingen av hele massen som en oppnår ved den mekaniske bearbeidingen får man også en meget rask dekomponering av det kjemiske esemiddelet. Hele denne prosessen kan ta 3-5 min. mot 40-60 min. i den idag brukte høytrykksprosess. In this processing phase, the PVC mass is quickly heated to a temperature above the decomposition temperature for the chemical foaming agent in combination with any activator and other plastic mixture components, while the mass is subjected to a large external pressure. This is to prevent the foaming agent from expanding in the plastic processing machine itself. The plastic is processed mechanically, kneaded in the machine so that all parts of the mass get approximately the same temperature. Because the mass quickly reaches a given temperature, one has a relatively good control over the possible exothermic heat development from the foaming agent, which is a major problem in e.g. known static high-pressure process which is used today and which has been described previously. Due to the rapid heating of the entire mass that is achieved by the mechanical processing, you also get a very rapid decomposition of the chemical foaming agent. This whole process can take 3-5 min. against 40-60 min. in the high-pressure process used today.

Idet plastmassen forlater plastbearbeidingsmaskinen med eventuell forlengelse, reduseres det utvendige trykket på plastmassen og massen ekspanderer inntil det er oppnådd likevekt mellom det indre trykket i esemiddelet og spenningene i massen. Fordi massen ekspanderer ved høy temperatur (160-230 grader C) er massen svært myk og man oppnår en høy ekspanderingsgrad. Den høye temperaturen kan benyttes fordi det meste av den tilsatte varmestabilisator er aktiv på dette trinnet av prosessen. Det kan være nødvendig å redusere plastmassens temperatur noe før ekspansjonen for enkelte resepter og former for å unngå at massen kollapserer etter ekspansjonen. Etter ekspansjonen nedkjøles PVC - massen. Den kan deretter bearbeides videre i henhold til krav. Det ferdige PVC-produkt har meget finfordelte lukkede celler. As the plastic mass leaves the plastic processing machine with any extension, the external pressure on the plastic mass is reduced and the mass expands until equilibrium is achieved between the internal pressure in the blowing agent and the tensions in the mass. Because the mass expands at a high temperature (160-230 degrees C), the mass is very soft and a high degree of expansion is achieved. The high temperature can be used because most of the added heat stabilizer is active at this stage of the process. It may be necessary to reduce the temperature of the plastic mass somewhat before expansion for certain recipes and shapes to avoid the mass collapsing after expansion. After expansion, the PVC mass is cooled. It can then be further processed according to requirements. The finished PVC product has very finely distributed closed cells.

BESKRIVELSE AV EKSEMPLER PÅ PLASTBLANDINGER OG PROSESSBETINGELSERDESCRIPTION OF EXAMPLES OF PLASTIC MIXTURES AND PROCESS CONDITIONS

Som tidligere nevnt må en ved oppbyggingen av en plastblanding/ resept ta hensyn til den plastbearbeidingsmaskinen som skal benyttes og vurdere de egenskapene en ønsker at sluttproduktet skal ha. Dersom det benyttes en ekstruder både til den omtalte gelatineringsprosess og en ekstruder til dekomponeringsprosessen av esemiddelet, vil følgende piastblandinger gi en hard PVC - celleplast med lukkede celler.: As previously mentioned, when building up a plastic mixture/recipe, you must take into account the plastic processing machine to be used and assess the properties you want the end product to have. If an extruder is used both for the mentioned gelatinization process and an extruder for the decomposition process of the foaming agent, the following piast mixtures will produce a hard PVC - cellular plastic with closed cells.:

Eksempel 1 Eksempel 2 Eksempel 3 Example 1 Example 2 Example 3

De forskjellig komponentene i de ovenstående plastblandingene blandes i en dertil egnet blandemaskin, f.eks. i en såkalt hurtigmikser til en temperatur på ca. 110 grader C er oppnådd. Deretter avkjøles blandingen og tilføres en plastbearbeidingsmaskin f. eks. en ekstruderingsmaskin. Blandingen bearbeides, blandes, smeltes og homogeniseres til en homogen smelte med en maksimal temperatur på ca. 150 grader C som ligger noe under dekomponeringstemperaturen for det kjemiske esemiddelet i kombinasjon med de andre komponentene i blandingene. Denne prosessen, også kalt gelatineringsprosess/gir en homogen smelte inneholdende finfordelt kjemiske esemiddel som ikke er dekomponert/forgasset eller bare dekomponert/forgasset i ubetydelig grad. Det gelatinerte materialet overføres til neste fase i bearbeidingen, som kan foregå i samme plastbearbeidingsmaskin eller til en separat plast- bearbeidingsmaskin for videre bearbeiding. The various components in the above plastic mixtures are mixed in a suitable mixing machine, e.g. in a so-called high-speed mixer to a temperature of approx. 110 degrees C has been achieved. The mixture is then cooled and fed to a plastic processing machine, e.g. an extrusion machine. The mixture is processed, mixed, melted and homogenized to a homogeneous melt with a maximum temperature of approx. 150 degrees C, which is slightly below the decomposition temperature for the chemical foaming agent in combination with the other components in the mixtures. This process, also called the gelatinization process/gives a homogeneous melt containing finely divided chemical blowing agent which is not decomposed/gasified or only decomposed/gasified to a negligible extent. The gelatinized material is transferred to the next phase in the processing, which can take place in the same plastic processing machine or to a separate plastic processing machine for further processing.

Det gelatinerte plastmaterialet kan tilføres den nye The gelatinized plastic material can be added to the new one

bearbeidingsfasen/mask i nen enten med temperatur bare ubetydelig lavere enn temperaturen under gelatineringsprosessen eller godt avkjølt og da gjerne opphakket i fine korn, såkalt granulert. the processing phase/mash in nen either with a temperature only slightly lower than the temperature during the gelatinization process or well cooled and then preferably chopped into fine grains, so-called granulated.

I denne plastbearbeidingsmaskinen som kan være en ekstruderingsmaskin, sprøytestøpemaskin eller annen egnet plastbearbeidingsmaskin, bearbeides den gelatinerte plastmassen mekanisk/eltes samtidig som temperaturen økes til over dekomponeringstemperaturen for esemiddelet i kombinasjon med de andre komponentene i plastblandingen, for de beskrevne plastblandingene ca. 175 grader C. Det utvendige trykket i maskinen holdes over ekspansjonstrykket i det etterhvert dekomponerte esemiddelet. For å oppnå en tilstrekkelig dekomponeringsgrad/ forgassingsgrad av esemiddelet, bearbeides materialet mekanisk/eltes under denne temperaturen og dette trykket normalt minst 3 til 5 min. Den varme massen, eventuelt noe nedkjølt, føres deretter ut av plastbearbeidings- maskinens munnstykke og det utvendige trykket reduseres enten umiddelbart eller suksesivt til normalt atmosfæretrykk. Den varme plastmassen ekspanderer dermed opp inntil likevekt er oppnådd mellom det innvendige trykket i esemiddelet og spenningene i plastmaterialet. Plasten avkjøles deretter med f.eks. luft eller vann og kan bearbeides f. eks. mekanisk dersom ønsket. In this plastic processing machine, which can be an extrusion machine, injection molding machine or other suitable plastic processing machine, the gelatinized plastic mass is processed mechanically/kneaded at the same time as the temperature is increased to above the decomposition temperature of the blowing agent in combination with the other components of the plastic mixture, for the described plastic mixtures approx. 175 degrees C. The external pressure in the machine is kept above the expansion pressure in the eventually decomposed foaming agent. In order to achieve a sufficient degree of decomposition/gasification of the foaming agent, the material is mechanically processed/kneaded under this temperature and this pressure normally for at least 3 to 5 min. The hot mass, possibly slightly cooled, is then fed out of the plastic processing machine's nozzle and the external pressure is reduced either immediately or successively to normal atmospheric pressure. The hot plastic mass thus expands until equilibrium is achieved between the internal pressure in the blowing agent and the stresses in the plastic material. The plastic is then cooled with e.g. air or water and can be processed e.g. mechanically if desired.

For å øke de fysikalske egenskapene til sluttproduktet, spesielt ved høye temperaturer og samtidig forbedre de kjemikalske egenskapene, er det mulig å fornette eller tverrbinde endel av plastmassens molelyler. Dette kan skje f. eks. ved bruk av peroksyder som fornettes (tverrbindes/kryssbindes) ved høy temperatur eller ved tilsetting av en komponent til massen som lar seg fornette ved tilførsel av høy energi f. eks. ved bruk av gammastråler. Fornetting kan også oppnås ved tilsetting av en komponent til plastmassen som fornettes kjemisk uten tilførsel av spesielt høy energi. En slik komponent eller tilleggsstoff kan f. eks. være en isoscyanat. For å unngå at fornettingen skal inntreffe på et for tidlig tidspunkt, vil det vanligvis være riktig å benytte en tidsforsinken.de komponent i forbindelse med bruk av et kjemisk virkende fornetningsmiddel. Av samme grunn bør i noen tilfelle kjemisk virkende fornetningsmiddel tilsettes så sent i prosessen som praktisk mulig f. eks. umiddelbart før dekomponeringsfasen av esemiddelet. In order to increase the physical properties of the final product, especially at high temperatures and at the same time improve the chemical properties, it is possible to cross-link or cross-link some of the molecules of the plastic mass. This can happen e.g. by using peroxides that are cross-linked (cross-linked/cross-linked) at high temperature or by adding a component to the mass that can be cross-linked by the application of high energy, e.g. using gamma rays. Cross-linking can also be achieved by adding a component to the plastic mass which is chemically cross-linked without the application of particularly high energy. Such a component or additive can e.g. be an isocyanate. In order to avoid that the cross-linking occurs at too early a time, it will usually be correct to use a time-delayed component in connection with the use of a chemically active cross-linking agent. For the same reason, in some cases a chemically active crosslinking agent should be added as late in the process as practically possible, e.g. immediately before the decomposition phase of the emulsifier.

BRUKSOMRÅDER FOR PVC - CELLEPLAST MED LUKKEDE CELLERAREAS OF USE FOR PVC - CELLULAR PLASTIC WITH CLOSED CELLS

Oppfinnelsen gir mulighet til produksjon av både hard og myk PVC - celleplast med lukkede celler avhengig av myknermengde som tilsettes i plastblandingen. The invention enables the production of both hard and soft PVC - cellular plastic with closed cells depending on the amount of plasticizer that is added to the plastic mixture.

PVC - celleplast med lukkede celler kan bl.a. benyttes til følgede produktområder : Termisk isolasjon (f.eks. i kjølevogner og av gass/olje- rørledinger) PVC - cellular plastic with closed cells can i.a. used for the following product areas: Thermal insulation (e.g. in refrigerated vans and of gas/oil pipelines)

Produkter til oppdrift (f.eks. flottører, bøyer og pontonger) Products for buoyancy (e.g. floats, buoys and pontoons)

Konstruksjoner (f.eks. lette sandwich-konstruksjoner med PVC-celleplast som kjernemateriale i f.eks. vegger, båter og fly). Constructions (e.g. light sandwich constructions with PVC cellular plastic as core material in e.g. walls, boats and planes).

Claims (11)

1. Fremgangsmåte for fremstilling av celleplast med lukkede celler inneholdende polyvinylklorid (PVC) og/eller copolymer med polyvinylklorid, kjemisk esemiddel, stabilisator og eventuelle andre prosessregulerende stoffer og tilsatsstoffer, karakterisert ved at plastblandingen beararbeides i en plastbearbeidingsmaskin og tilføres denne bearbeidingsfasen i godt gelatinert tilstand og at det kjemiske esemiddelet er blitt godt finfordelt i plastmassen under gelatineringsprosessen ved en temperatur som sammen med øvrige prosessparametere gir plastmassen en god gelatineringsgrad, samtidig som det kjemiske esemiddelet ikke er blitt dekomponert/forgasset eller bare dekomponert/forgasset i ubetydelig grad, og at plastblandingen bearbeides mekanisk (eltes) i bearbeidingsmaskinen ved en temperatur over dekomponerings-/forgassingstemperaturen for esemiddelet i kombinasjon med de andre komponentene i plastblandingen tilstrekkelig lenge til at minst 75% av esemiddelet dekomponeres/forgasses i bearbeidingsmaskinen og en eventuell forlengelse av denne og at bearbeidingen foregår ved et ytre trykk på plastmassen som er høyt nok til at det dekomponerte/forgassede esemiddelet ikke danner gassceller som er større enn 0,06 millimeter i tverrmål i noen del av plastmassen inntil minst 75% av esemiddelet er dekomponert/forgasset og at den bearbeidede plastblandingen etter at minst 75% av esemiddelet er dekomponert/forgasset, ved reduksjon av det ytre trykk på plastmassen og eventuelt etter reduksjon av plastmassens temperatur, ekspanderer til den ønskede form.1. Process for the production of cellular plastic with closed cells containing polyvinyl chloride (PVC) and/or copolymer with polyvinyl chloride, chemical blowing agent, stabilizer and any other process-regulating substances and additives, characterized in that the plastic mixture is processed in a plastic processing machine and supplied to this processing phase in a well-gelatinized state and that the chemical foaming agent has been finely distributed in the plastic mass during the gelatinization process at a temperature which, together with other process parameters, gives the plastic mass a good degree of gelatinization, at the same time that the chemical foaming agent has not been decomposed/gasified or only decomposed/gasified to an insignificant extent, and that the plastic mixture is processed mechanically (kneaded) in the processing machine at a temperature above the decomposition/gasification temperature for the blowing agent in combination with the other components in the plastic mixture for a sufficient time so that at least 75% of the blowing agent is decomposed/gasified during processing the iding machine and any extension thereof and that the processing takes place at an external pressure on the plastic mass that is high enough so that the decomposed/gasified emulsifier does not form gas cells larger than 0.06 millimeters in cross-section in any part of the plastic mass up to at least 75% of the blowing agent is decomposed/gasified and that the processed plastic mixture, after at least 75% of the blowing agent has been decomposed/gasified, by reducing the external pressure on the plastic mass and possibly after reducing the temperature of the plastic mass, expands to the desired shape. 2. Fremgangsmåte som angitt i krav 1, karakterisert ved at plastblandingen inneholder tilstrekkelig mengde kjemisk esemiddel til at plastblandingen etter bearbeidingen og reduksjon av det ytre trykk, oppnår en ekspansjon som gir plastblandingen en egenvekt som er mindre enn 350 kg. pr. m3.2. Method as stated in claim 1, characterized in that the plastic mixture contains a sufficient amount of chemical blowing agent so that the plastic mixture, after the processing and reduction of the external pressure, achieves an expansion which gives the plastic mixture a specific weight of less than 350 kg. per m3. 3. Fremgangsmåte som angitt i krav 1, karakterisert ved at den mekaniske bearbeidingen (eltingen) av plastblandingen i plastbearbeidingsmaskinen er helkontinuerlig eller foregår i minst 60% av oppholdstiden for plastblandingen i den plastbearbeidende delen i plastbearbeidingsmaskinen.3. Method as stated in claim 1, characterized in that the mechanical processing (kneading) of the plastic mixture in the plastic processing machine is completely continuous or takes place for at least 60% of the residence time of the plastic mixture in the plastic processing part of the plastic processing machine. 4. Fremgangsmåte som angitt i krav 1, karakterisert ved at det kjemiske esemiddelet i plastmassen består av et esemiddelsystem som utvikler en varmemengde som er mindre enn 150 calorier per gram av esemiddelsystemet i plastmassen under dekomponeringen/forgassingen.4. Method as stated in claim 1, characterized in that the chemical blowing agent in the plastic mass consists of a blowing agent system which develops an amount of heat that is less than 150 calories per gram of the blowing agent system in the plastic mass during the decomposition/gasification. 5. Fremgangsmåte som angitt i krav 1, karakterisert ved at det som plastbearbeidingsmaskin anvendes en ekstruder eller en sprøytestøpemaskin.5. Method as stated in claim 1, characterized in that an extruder or an injection molding machine is used as the plastic processing machine. 6. Fremgangsmåte som angitt i krav 1, karakterisert ved at plastbearbeidingsmaskinen er en ekstruder eller en sprøytestøpemaskin og at det ytre trykket på plastmassen oppnås ved at skruen/skruene i ekstruderen/sprøytestøpemaskinen er konstruert slik at den nødvendige kompresjonen av plastmassen og dermed det nødvendige ytre trykket på plastmassen oppnås i skruen/skruene uavhengig av trykket på plastmassen etter skruen/skruene i ekstruderen/sprøytestøpemaskinen.6. Method as stated in claim 1, characterized in that the plastic processing machine is an extruder or an injection molding machine and that the external pressure on the plastic mass is achieved by the screw(s) in the extruder/injection molding machine being designed so that the necessary compression of the plastic mass and thus the necessary external the pressure on the plastic mass is achieved in the screw(s) independently of the pressure on the plastic mass after the screw(s) in the extruder/injection molding machine. 7. Fremgangsmåte som angitt i krav 1, karakterisert ved at det som plastbearbeidingsmaskin benyttes to eller flere koblede plastbearbeidingsmaskiner hvor den/de første er en ekstruder/ekstrudere og at plastblandingen tilføres i ikke gelatinert tilstand og at plastblandingen bearbeides i den/de første ekstruder/ekstrudere på en slik måte at plastblandingen blir godt gelatinert ved en temperatur noe under dekomponeringstemperaturen for esemiddelet i kombinasjon med de andre komponentene i plastblandingen, slik at esemiddelet blir finfordelt i plastmassen uten at esemiddelet dekomponeres/forgasses eller bare dekomponeres/forgås ses i ubetydelig grad, og at plastblandingen i varm tilstand videretransporteres til neste bearbeidingsfase og bearbeides som beskrevet i krav 1.7. Method as specified in claim 1, characterized in that two or more linked plastic processing machines are used as plastic processing machines, where the first one is an extruder/extruders and that the plastic mixture is supplied in a non-gelatinized state and that the plastic mixture is processed in the first extruder/s extrude in such a way that the plastic mixture is well gelatinized at a temperature somewhat below the decomposition temperature of the blowing agent in combination with the other components in the plastic mixture, so that the blowing agent is finely distributed in the plastic mass without the blowing agent decomposing/gasifying or only decomposing/gassing to an insignificant extent, and that the plastic mixture in a hot state is transported to the next processing phase and processed as described in claim 1. 8. Fremgangsmåte som angitt i krav 1, karakterisert ved at det som plastbearbeidingsmaskin benyttes, for eksempel en ekstruder eller en sprøytestøpemaskin og at plastmassen tilføres maskinen i ikke gelatinert tilstand og at gelatineringen og finfordelingen av esemiddelet foregår i en tidlig fase i bearbeidingen uten at esemiddelet dekomponeres/forgasses eller bare dekomponeres/forgasses i ubetydelig grad, og at plastmassen deretter transporteres videre i maskinen og bearbeides som beskrevet i krav 1.8. Method as specified in claim 1, characterized in that the plastic processing machine is used, for example an extruder or an injection molding machine and that the plastic mass is fed to the machine in a non-gelatinized state and that the gelatinization and fine distribution of the foaming agent takes place in an early phase of the processing without the foaming agent is decomposed/gasified or only decomposed/gasified to an insignificant degree, and that the plastic mass is then transported further in the machine and processed as described in claim 1. 9. Fremgangsmåte som angitt i krav 1, karakterisert ved at plastmassen etter at den er kommet ut av plastbearbeidingsmaskinen, bringes i varm og ekspandert tilstand inn i et formgivende verktøy hvor plastmassen oppnår sin endelige form.9. Method as stated in claim 1, characterized in that the plastic mass, after it has come out of the plastic processing machine, is brought in a warm and expanded state into a shaping tool where the plastic mass achieves its final shape. 10. Fremgangsmåte som angitt i krav 1, karakterisert ved at det utvendige trykket på plastmassen etter bearbeidingen reduseres trinnvis.10. Method as stated in claim 1, characterized in that the external pressure on the plastic mass after the processing is reduced step by step. 11. Fremgangsmåte som angitt i krav 1, karakterisert ved at plastmassen umiddelbart før dekomponerings-/ forgassningsfasen av esemiddelet, tilsettes som tilleggsstoff et tverrbindingsmiddel, for eksempel isocyanat.11. Method as stated in claim 1, characterized in that the plastic mass immediately before the decomposition/gasification phase of the emulsifier, a cross-linking agent, for example isocyanate, is added as an additional substance.
NO863756A 1986-09-22 1986-09-22 METHOD FOR CELLPLAST PREPARATION. NO863756L (en)

Priority Applications (14)

Application Number Priority Date Filing Date Title
NO863756A NO863756L (en) 1986-09-22 1986-09-22 METHOD FOR CELLPLAST PREPARATION.
BR8707470A BR8707470A (en) 1986-09-22 1987-09-16 PROCESS TO PRODUCE CELLULAR PVC PLASTIC
EP87906112A EP0281609A1 (en) 1986-09-22 1987-09-16 A method for producing cellular pvc plastic
PCT/NO1987/000060 WO1988001934A1 (en) 1986-09-22 1987-09-16 A method for producing cellular pvc plastic
JP62505627A JPH01500812A (en) 1986-09-22 1987-09-16 Method for manufacturing polyvinyl chloride foam
AU79631/87A AU7963187A (en) 1986-09-22 1987-09-16 A method for producing cellular pvc plastic
ZA876985A ZA876985B (en) 1986-09-22 1987-09-17 A method for producing cellular pvc-plastic
GR871448A GR871448B (en) 1986-09-22 1987-09-18 Method for producing cellular pvc plastic
IE872545A IE872545L (en) 1986-09-22 1987-09-21 A method for producing cellular PVC-plastic
PT85761A PT85761B (en) 1986-09-22 1987-09-21 A method for producing cellular puc-plastic
CN198787106832A CN87106832A (en) 1986-09-22 1987-09-21 The production method of cellular PVC-plastic
ES8702711A ES2007112A6 (en) 1986-09-22 1987-09-22 A method for producing cellular pvc plastic.
DK279788A DK279788D0 (en) 1986-09-22 1988-05-20 PROCEDURE FOR MANUFACTURING FOAM PLASTIC MATERIAL
FI882379A FI882379A (en) 1986-09-22 1988-05-20 FOERFARANDE FOER FRAMSTAELLNING AV PVC-CELLPLAST.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
NO863756A NO863756L (en) 1986-09-22 1986-09-22 METHOD FOR CELLPLAST PREPARATION.

Publications (2)

Publication Number Publication Date
NO863756D0 NO863756D0 (en) 1986-09-22
NO863756L true NO863756L (en) 1988-03-23

Family

ID=19889226

Family Applications (1)

Application Number Title Priority Date Filing Date
NO863756A NO863756L (en) 1986-09-22 1986-09-22 METHOD FOR CELLPLAST PREPARATION.

Country Status (14)

Country Link
EP (1) EP0281609A1 (en)
JP (1) JPH01500812A (en)
CN (1) CN87106832A (en)
AU (1) AU7963187A (en)
BR (1) BR8707470A (en)
DK (1) DK279788D0 (en)
ES (1) ES2007112A6 (en)
FI (1) FI882379A (en)
GR (1) GR871448B (en)
IE (1) IE872545L (en)
NO (1) NO863756L (en)
PT (1) PT85761B (en)
WO (1) WO1988001934A1 (en)
ZA (1) ZA876985B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO178771C (en) * 1993-09-15 1996-05-29 Polynor Partners As Process for producing light cell plastic product with closed cells
US7763345B2 (en) 1999-12-14 2010-07-27 Mannington Mills, Inc. Thermoplastic planks and methods for making the same
US8028486B2 (en) 2001-07-27 2011-10-04 Valinge Innovation Ab Floor panel with sealing means
SE530653C2 (en) 2006-01-12 2008-07-29 Vaelinge Innovation Ab Moisture-proof floor board and floor with an elastic surface layer including a decorative groove
ITMI20061107A1 (en) * 2006-06-08 2007-12-09 Diab Int Ab FORMULATIONS FOR CELLULAR PRODUCTS OF EXPANDED POLYMER BASED ON POLIVINL CHLORIDE EXTENDED EXPANDED POLYMER CELL PRODUCTS IMPROVED BASED ON POLYVINYL CHLORIDE AND PROCESS FOR PRODUCING THESE EXPANDED IMPROVED POLYMER CELL PRODUCTS
NL2003019C2 (en) 2009-06-12 2010-12-15 4Sight Innovation Bv FLOOR PANEL AND FLOOR COVERAGE CONSISING OF MULTIPLE OF SUCH FLOOR PANELS.
US8197074B2 (en) * 2009-08-21 2012-06-12 Nite Glow Industries, Inc. Omnidirectionally reflective buoyant rope
US9957365B2 (en) * 2013-03-13 2018-05-01 Berry Plastics Corporation Cellular polymeric material
CN104974447A (en) * 2015-06-30 2015-10-14 苏州博利迈新材料科技有限公司 Polyvinyl chloride foam plastic and preparation method thereof
NL2018781B1 (en) 2017-04-26 2018-11-05 Innovations4Flooring Holding N V Panel and covering

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3160688A (en) * 1961-06-02 1964-12-08 Monsanto Co Extrusion process
US3436446A (en) * 1966-06-08 1969-04-01 Union Carbide Corp Molding of foamed thermoplastic articles
US3830901A (en) * 1968-09-09 1974-08-20 T Winstead Continuous process for extruding cellular thermoplastics
DE2500972A1 (en) * 1975-01-11 1976-07-15 Schloemann Siemag Ag Injection mouldings of thermoplastics with expansion agents - mixing head between plasticiser and buffer chamber improves product quality
DK183380A (en) * 1979-05-11 1980-11-12 Shinetsu Chemical Co PROCEDURE FOR THE PREPARATION OF FOAMED CELL BODY OF VINYL CHLORIDE BASE RESIN
US4415514A (en) * 1980-04-26 1983-11-15 Stamicarbon B.V. Method for the preparation of rigid polyvinyl chloride foams
US4323528A (en) * 1980-08-07 1982-04-06 Valcour Imprinted Papers, Inc. Method and apparatus for making large size, low density, elongated thermoplastic cellular bodies
US4401612A (en) * 1981-06-17 1983-08-30 The B. F. Goodrich Company Method and apparatus for extruding foam polymeric materials involving the use of an extrusion screw having spaced multiple flight mixing means thereon

Also Published As

Publication number Publication date
ZA876985B (en) 1988-03-21
NO863756D0 (en) 1986-09-22
BR8707470A (en) 1988-12-06
CN87106832A (en) 1988-04-06
WO1988001934A1 (en) 1988-03-24
IE872545L (en) 1988-03-22
AU7963187A (en) 1988-04-07
EP0281609A1 (en) 1988-09-14
DK279788A (en) 1988-05-20
JPH01500812A (en) 1989-03-23
PT85761A (en) 1987-10-01
FI882379A0 (en) 1988-05-20
DK279788D0 (en) 1988-05-20
GR871448B (en) 1988-01-22
FI882379A (en) 1988-05-20
PT85761B (en) 1990-01-08
ES2007112A6 (en) 1989-06-01

Similar Documents

Publication Publication Date Title
US5753717A (en) Plastics foam and method of manufacturing same
US3822331A (en) Continuous process for making low density thermoplastic foam
US3391051A (en) Thermoplastic foam sheet material and apparatus for the manufacture thereof
US5560877A (en) Process for manufacturing an ethylene vinyl acetate sole using first and second mold units
US20040119185A1 (en) Method for manufacturing opened-cell plastic foams
JP3655302B2 (en) Extrusion of low density foam using water blowing agent
US4877814A (en) Process for producing open-cell polyethylene foam materials and the resultant product
NO863756L (en) METHOD FOR CELLPLAST PREPARATION.
NO801318L (en) PROCEDURE FOR THE PREPARATION OF A FOAM BODY OF A VINYL CHLORIDE RESIN
US5667740A (en) Process for the production of products of light cellular plastic with closed cells
EP0483230B1 (en) Process for the production of cellular plastic
CA2185221A1 (en) Plastics foam and method of manufacturing same
US3619445A (en) Method for producing biaxially oriented polystyrene heavy gauge sheet
EP1219673A2 (en) Blowing agents blend for producing extruded thermoplastic foams
US20080200572A1 (en) Process For The Production of Extruded Sheets Of Expanded Polystyrene
US4596684A (en) Method for manufacturing low density rubber foamed body
US3248462A (en) Method for producing foamed sheet material having essentially equal tensile properties
EP0071662B1 (en) Method for manufacturing low density rubber foamed body
AU2004245248B2 (en) Continuous method for producing solid, hollow or open profiles
JPH02279739A (en) Foamed article and its manufacture
WO2002012379A1 (en) Process for the preparation of cross linked polymer foam
JP4782306B2 (en) Open-cell cross-linked polyolefin foam and method for producing the same
JPH0564653B2 (en)
SU533339A3 (en) The method of producing foam
JPS59138420A (en) Manufacture of foamed product